xref: /linux/net/ipv4/tcp.c (revision afb8d5f4311585a9d79ca45da3e53c382e826e7b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 
439 	/* See draft-stevens-tcpca-spec-01 for discussion of the
440 	 * initialization of these values.
441 	 */
442 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 	tp->snd_cwnd_clamp = ~0;
444 	tp->mss_cache = TCP_MSS_DEFAULT;
445 
446 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
447 	tcp_assign_congestion_control(sk);
448 
449 	tp->tsoffset = 0;
450 	tp->rack.reo_wnd_steps = 1;
451 
452 	sk->sk_write_space = sk_stream_write_space;
453 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454 
455 	icsk->icsk_sync_mss = tcp_sync_mss;
456 
457 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
458 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
459 
460 	sk_sockets_allocated_inc(sk);
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 	return sk_is_readable(sk);
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sock, wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 		u16 urg_data = READ_ONCE(tp->urg_data);
551 
552 		if (unlikely(urg_data) &&
553 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
554 		    !sock_flag(sk, SOCK_URGINLINE))
555 			target++;
556 
557 		if (tcp_stream_is_readable(sk, target))
558 			mask |= EPOLLIN | EPOLLRDNORM;
559 
560 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
561 			if (__sk_stream_is_writeable(sk, 1)) {
562 				mask |= EPOLLOUT | EPOLLWRNORM;
563 			} else {  /* send SIGIO later */
564 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
565 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
566 
567 				/* Race breaker. If space is freed after
568 				 * wspace test but before the flags are set,
569 				 * IO signal will be lost. Memory barrier
570 				 * pairs with the input side.
571 				 */
572 				smp_mb__after_atomic();
573 				if (__sk_stream_is_writeable(sk, 1))
574 					mask |= EPOLLOUT | EPOLLWRNORM;
575 			}
576 		} else
577 			mask |= EPOLLOUT | EPOLLWRNORM;
578 
579 		if (urg_data & TCP_URG_VALID)
580 			mask |= EPOLLPRI;
581 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
582 		/* Active TCP fastopen socket with defer_connect
583 		 * Return EPOLLOUT so application can call write()
584 		 * in order for kernel to generate SYN+data
585 		 */
586 		mask |= EPOLLOUT | EPOLLWRNORM;
587 	}
588 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
589 	smp_rmb();
590 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
591 		mask |= EPOLLERR;
592 
593 	return mask;
594 }
595 EXPORT_SYMBOL(tcp_poll);
596 
597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
598 {
599 	struct tcp_sock *tp = tcp_sk(sk);
600 	int answ;
601 	bool slow;
602 
603 	switch (cmd) {
604 	case SIOCINQ:
605 		if (sk->sk_state == TCP_LISTEN)
606 			return -EINVAL;
607 
608 		slow = lock_sock_fast(sk);
609 		answ = tcp_inq(sk);
610 		unlock_sock_fast(sk, slow);
611 		break;
612 	case SIOCATMARK:
613 		answ = READ_ONCE(tp->urg_data) &&
614 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
615 		break;
616 	case SIOCOUTQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 			answ = 0;
622 		else
623 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
624 		break;
625 	case SIOCOUTQNSD:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = READ_ONCE(tp->write_seq) -
633 			       READ_ONCE(tp->snd_nxt);
634 		break;
635 	default:
636 		return -ENOIOCTLCMD;
637 	}
638 
639 	return put_user(answ, (int __user *)arg);
640 }
641 EXPORT_SYMBOL(tcp_ioctl);
642 
643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
644 {
645 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
646 	tp->pushed_seq = tp->write_seq;
647 }
648 
649 static inline bool forced_push(const struct tcp_sock *tp)
650 {
651 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
652 }
653 
654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
658 
659 	tcb->seq     = tcb->end_seq = tp->write_seq;
660 	tcb->tcp_flags = TCPHDR_ACK;
661 	__skb_header_release(skb);
662 	tcp_add_write_queue_tail(sk, skb);
663 	sk_wmem_queued_add(sk, skb->truesize);
664 	sk_mem_charge(sk, skb->truesize);
665 	if (tp->nonagle & TCP_NAGLE_PUSH)
666 		tp->nonagle &= ~TCP_NAGLE_PUSH;
667 
668 	tcp_slow_start_after_idle_check(sk);
669 }
670 
671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
672 {
673 	if (flags & MSG_OOB)
674 		tp->snd_up = tp->write_seq;
675 }
676 
677 /* If a not yet filled skb is pushed, do not send it if
678  * we have data packets in Qdisc or NIC queues :
679  * Because TX completion will happen shortly, it gives a chance
680  * to coalesce future sendmsg() payload into this skb, without
681  * need for a timer, and with no latency trade off.
682  * As packets containing data payload have a bigger truesize
683  * than pure acks (dataless) packets, the last checks prevent
684  * autocorking if we only have an ACK in Qdisc/NIC queues,
685  * or if TX completion was delayed after we processed ACK packet.
686  */
687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
688 				int size_goal)
689 {
690 	return skb->len < size_goal &&
691 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
692 	       !tcp_rtx_queue_empty(sk) &&
693 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
694 	       tcp_skb_can_collapse_to(skb);
695 }
696 
697 void tcp_push(struct sock *sk, int flags, int mss_now,
698 	      int nonagle, int size_goal)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 	struct sk_buff *skb;
702 
703 	skb = tcp_write_queue_tail(sk);
704 	if (!skb)
705 		return;
706 	if (!(flags & MSG_MORE) || forced_push(tp))
707 		tcp_mark_push(tp, skb);
708 
709 	tcp_mark_urg(tp, flags);
710 
711 	if (tcp_should_autocork(sk, skb, size_goal)) {
712 
713 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
714 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
716 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 		}
718 		/* It is possible TX completion already happened
719 		 * before we set TSQ_THROTTLED.
720 		 */
721 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
722 			return;
723 	}
724 
725 	if (flags & MSG_MORE)
726 		nonagle = TCP_NAGLE_CORK;
727 
728 	__tcp_push_pending_frames(sk, mss_now, nonagle);
729 }
730 
731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
732 				unsigned int offset, size_t len)
733 {
734 	struct tcp_splice_state *tss = rd_desc->arg.data;
735 	int ret;
736 
737 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
738 			      min(rd_desc->count, len), tss->flags);
739 	if (ret > 0)
740 		rd_desc->count -= ret;
741 	return ret;
742 }
743 
744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 {
746 	/* Store TCP splice context information in read_descriptor_t. */
747 	read_descriptor_t rd_desc = {
748 		.arg.data = tss,
749 		.count	  = tss->len,
750 	};
751 
752 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 }
754 
755 /**
756  *  tcp_splice_read - splice data from TCP socket to a pipe
757  * @sock:	socket to splice from
758  * @ppos:	position (not valid)
759  * @pipe:	pipe to splice to
760  * @len:	number of bytes to splice
761  * @flags:	splice modifier flags
762  *
763  * Description:
764  *    Will read pages from given socket and fill them into a pipe.
765  *
766  **/
767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
768 			struct pipe_inode_info *pipe, size_t len,
769 			unsigned int flags)
770 {
771 	struct sock *sk = sock->sk;
772 	struct tcp_splice_state tss = {
773 		.pipe = pipe,
774 		.len = len,
775 		.flags = flags,
776 	};
777 	long timeo;
778 	ssize_t spliced;
779 	int ret;
780 
781 	sock_rps_record_flow(sk);
782 	/*
783 	 * We can't seek on a socket input
784 	 */
785 	if (unlikely(*ppos))
786 		return -ESPIPE;
787 
788 	ret = spliced = 0;
789 
790 	lock_sock(sk);
791 
792 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 	while (tss.len) {
794 		ret = __tcp_splice_read(sk, &tss);
795 		if (ret < 0)
796 			break;
797 		else if (!ret) {
798 			if (spliced)
799 				break;
800 			if (sock_flag(sk, SOCK_DONE))
801 				break;
802 			if (sk->sk_err) {
803 				ret = sock_error(sk);
804 				break;
805 			}
806 			if (sk->sk_shutdown & RCV_SHUTDOWN)
807 				break;
808 			if (sk->sk_state == TCP_CLOSE) {
809 				/*
810 				 * This occurs when user tries to read
811 				 * from never connected socket.
812 				 */
813 				ret = -ENOTCONN;
814 				break;
815 			}
816 			if (!timeo) {
817 				ret = -EAGAIN;
818 				break;
819 			}
820 			/* if __tcp_splice_read() got nothing while we have
821 			 * an skb in receive queue, we do not want to loop.
822 			 * This might happen with URG data.
823 			 */
824 			if (!skb_queue_empty(&sk->sk_receive_queue))
825 				break;
826 			sk_wait_data(sk, &timeo, NULL);
827 			if (signal_pending(current)) {
828 				ret = sock_intr_errno(timeo);
829 				break;
830 			}
831 			continue;
832 		}
833 		tss.len -= ret;
834 		spliced += ret;
835 
836 		if (!timeo)
837 			break;
838 		release_sock(sk);
839 		lock_sock(sk);
840 
841 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
842 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
843 		    signal_pending(current))
844 			break;
845 	}
846 
847 	release_sock(sk);
848 
849 	if (spliced)
850 		return spliced;
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL(tcp_splice_read);
855 
856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
857 				     bool force_schedule)
858 {
859 	struct sk_buff *skb;
860 
861 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 	if (likely(skb)) {
863 		bool mem_scheduled;
864 
865 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
897 
898 	/* We try hard to avoid divides here */
899 	size_goal = tp->gso_segs * mss_now;
900 	if (unlikely(new_size_goal < size_goal ||
901 		     new_size_goal >= size_goal + mss_now)) {
902 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
903 				     sk->sk_gso_max_segs);
904 		size_goal = tp->gso_segs * mss_now;
905 	}
906 
907 	return max(size_goal, mss_now);
908 }
909 
910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
911 {
912 	int mss_now;
913 
914 	mss_now = tcp_current_mss(sk);
915 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
916 
917 	return mss_now;
918 }
919 
920 /* In some cases, both sendpage() and sendmsg() could have added
921  * an skb to the write queue, but failed adding payload on it.
922  * We need to remove it to consume less memory, but more
923  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
924  * users.
925  */
926 void tcp_remove_empty_skb(struct sock *sk)
927 {
928 	struct sk_buff *skb = tcp_write_queue_tail(sk);
929 
930 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
931 		tcp_unlink_write_queue(skb, sk);
932 		if (tcp_write_queue_empty(sk))
933 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
934 		tcp_wmem_free_skb(sk, skb);
935 	}
936 }
937 
938 /* skb changing from pure zc to mixed, must charge zc */
939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
940 {
941 	if (unlikely(skb_zcopy_pure(skb))) {
942 		u32 extra = skb->truesize -
943 			    SKB_TRUESIZE(skb_end_offset(skb));
944 
945 		if (!sk_wmem_schedule(sk, extra))
946 			return -ENOMEM;
947 
948 		sk_mem_charge(sk, extra);
949 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
950 	}
951 	return 0;
952 }
953 
954 
955 static int tcp_wmem_schedule(struct sock *sk, int copy)
956 {
957 	int left;
958 
959 	if (likely(sk_wmem_schedule(sk, copy)))
960 		return copy;
961 
962 	/* We could be in trouble if we have nothing queued.
963 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
964 	 * to guarantee some progress.
965 	 */
966 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
967 	if (left > 0)
968 		sk_forced_mem_schedule(sk, min(left, copy));
969 	return min(copy, sk->sk_forward_alloc);
970 }
971 
972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
973 				      struct page *page, int offset, size_t *size)
974 {
975 	struct sk_buff *skb = tcp_write_queue_tail(sk);
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	bool can_coalesce;
978 	int copy, i;
979 
980 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
981 	    !tcp_skb_can_collapse_to(skb)) {
982 new_segment:
983 		if (!sk_stream_memory_free(sk))
984 			return NULL;
985 
986 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
987 					   tcp_rtx_and_write_queues_empty(sk));
988 		if (!skb)
989 			return NULL;
990 
991 #ifdef CONFIG_TLS_DEVICE
992 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
993 #endif
994 		tcp_skb_entail(sk, skb);
995 		copy = size_goal;
996 	}
997 
998 	if (copy > *size)
999 		copy = *size;
1000 
1001 	i = skb_shinfo(skb)->nr_frags;
1002 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1004 		tcp_mark_push(tp, skb);
1005 		goto new_segment;
1006 	}
1007 	if (tcp_downgrade_zcopy_pure(sk, skb))
1008 		return NULL;
1009 
1010 	copy = tcp_wmem_schedule(sk, copy);
1011 	if (!copy)
1012 		return NULL;
1013 
1014 	if (can_coalesce) {
1015 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 	} else {
1017 		get_page(page);
1018 		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1019 	}
1020 
1021 	if (!(flags & MSG_NO_SHARED_FRAGS))
1022 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1023 
1024 	skb->len += copy;
1025 	skb->data_len += copy;
1026 	skb->truesize += copy;
1027 	sk_wmem_queued_add(sk, copy);
1028 	sk_mem_charge(sk, copy);
1029 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1030 	TCP_SKB_CB(skb)->end_seq += copy;
1031 	tcp_skb_pcount_set(skb, 0);
1032 
1033 	*size = copy;
1034 	return skb;
1035 }
1036 
1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1038 			 size_t size, int flags)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	int mss_now, size_goal;
1042 	int err;
1043 	ssize_t copied;
1044 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 
1046 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1047 	    WARN_ONCE(!sendpage_ok(page),
1048 		      "page must not be a Slab one and have page_count > 0"))
1049 		return -EINVAL;
1050 
1051 	/* Wait for a connection to finish. One exception is TCP Fast Open
1052 	 * (passive side) where data is allowed to be sent before a connection
1053 	 * is fully established.
1054 	 */
1055 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 	    !tcp_passive_fastopen(sk)) {
1057 		err = sk_stream_wait_connect(sk, &timeo);
1058 		if (err != 0)
1059 			goto out_err;
1060 	}
1061 
1062 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1063 
1064 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 	copied = 0;
1066 
1067 	err = -EPIPE;
1068 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1069 		goto out_err;
1070 
1071 	while (size > 0) {
1072 		struct sk_buff *skb;
1073 		size_t copy = size;
1074 
1075 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1076 		if (!skb)
1077 			goto wait_for_space;
1078 
1079 		if (!copied)
1080 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081 
1082 		copied += copy;
1083 		offset += copy;
1084 		size -= copy;
1085 		if (!size)
1086 			goto out;
1087 
1088 		if (skb->len < size_goal || (flags & MSG_OOB))
1089 			continue;
1090 
1091 		if (forced_push(tp)) {
1092 			tcp_mark_push(tp, skb);
1093 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 		} else if (skb == tcp_send_head(sk))
1095 			tcp_push_one(sk, mss_now);
1096 		continue;
1097 
1098 wait_for_space:
1099 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1101 			 TCP_NAGLE_PUSH, size_goal);
1102 
1103 		err = sk_stream_wait_memory(sk, &timeo);
1104 		if (err != 0)
1105 			goto do_error;
1106 
1107 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 	}
1109 
1110 out:
1111 	if (copied) {
1112 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1113 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1114 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1115 	}
1116 	return copied;
1117 
1118 do_error:
1119 	tcp_remove_empty_skb(sk);
1120 	if (copied)
1121 		goto out;
1122 out_err:
1123 	/* make sure we wake any epoll edge trigger waiter */
1124 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1125 		sk->sk_write_space(sk);
1126 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1127 	}
1128 	return sk_stream_error(sk, flags, err);
1129 }
1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1131 
1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1133 			size_t size, int flags)
1134 {
1135 	if (!(sk->sk_route_caps & NETIF_F_SG))
1136 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1137 
1138 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1139 
1140 	return do_tcp_sendpages(sk, page, offset, size, flags);
1141 }
1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1143 
1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1145 		 size_t size, int flags)
1146 {
1147 	int ret;
1148 
1149 	lock_sock(sk);
1150 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1151 	release_sock(sk);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(tcp_sendpage);
1156 
1157 void tcp_free_fastopen_req(struct tcp_sock *tp)
1158 {
1159 	if (tp->fastopen_req) {
1160 		kfree(tp->fastopen_req);
1161 		tp->fastopen_req = NULL;
1162 	}
1163 }
1164 
1165 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1166 			 size_t size, struct ubuf_info *uarg)
1167 {
1168 	struct tcp_sock *tp = tcp_sk(sk);
1169 	struct inet_sock *inet = inet_sk(sk);
1170 	struct sockaddr *uaddr = msg->msg_name;
1171 	int err, flags;
1172 
1173 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1174 	      TFO_CLIENT_ENABLE) ||
1175 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1176 	     uaddr->sa_family == AF_UNSPEC))
1177 		return -EOPNOTSUPP;
1178 	if (tp->fastopen_req)
1179 		return -EALREADY; /* Another Fast Open is in progress */
1180 
1181 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1182 				   sk->sk_allocation);
1183 	if (unlikely(!tp->fastopen_req))
1184 		return -ENOBUFS;
1185 	tp->fastopen_req->data = msg;
1186 	tp->fastopen_req->size = size;
1187 	tp->fastopen_req->uarg = uarg;
1188 
1189 	if (inet->defer_connect) {
1190 		err = tcp_connect(sk);
1191 		/* Same failure procedure as in tcp_v4/6_connect */
1192 		if (err) {
1193 			tcp_set_state(sk, TCP_CLOSE);
1194 			inet->inet_dport = 0;
1195 			sk->sk_route_caps = 0;
1196 		}
1197 	}
1198 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1199 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1200 				    msg->msg_namelen, flags, 1);
1201 	/* fastopen_req could already be freed in __inet_stream_connect
1202 	 * if the connection times out or gets rst
1203 	 */
1204 	if (tp->fastopen_req) {
1205 		*copied = tp->fastopen_req->copied;
1206 		tcp_free_fastopen_req(tp);
1207 		inet->defer_connect = 0;
1208 	}
1209 	return err;
1210 }
1211 
1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1213 {
1214 	struct tcp_sock *tp = tcp_sk(sk);
1215 	struct ubuf_info *uarg = NULL;
1216 	struct sk_buff *skb;
1217 	struct sockcm_cookie sockc;
1218 	int flags, err, copied = 0;
1219 	int mss_now = 0, size_goal, copied_syn = 0;
1220 	int process_backlog = 0;
1221 	bool zc = false;
1222 	long timeo;
1223 
1224 	flags = msg->msg_flags;
1225 
1226 	if ((flags & MSG_ZEROCOPY) && size) {
1227 		skb = tcp_write_queue_tail(sk);
1228 
1229 		if (msg->msg_ubuf) {
1230 			uarg = msg->msg_ubuf;
1231 			net_zcopy_get(uarg);
1232 			zc = sk->sk_route_caps & NETIF_F_SG;
1233 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1234 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1235 			if (!uarg) {
1236 				err = -ENOBUFS;
1237 				goto out_err;
1238 			}
1239 			zc = sk->sk_route_caps & NETIF_F_SG;
1240 			if (!zc)
1241 				uarg_to_msgzc(uarg)->zerocopy = 0;
1242 		}
1243 	}
1244 
1245 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1246 	    !tp->repair) {
1247 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1248 		if (err == -EINPROGRESS && copied_syn > 0)
1249 			goto out;
1250 		else if (err)
1251 			goto out_err;
1252 	}
1253 
1254 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1255 
1256 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1257 
1258 	/* Wait for a connection to finish. One exception is TCP Fast Open
1259 	 * (passive side) where data is allowed to be sent before a connection
1260 	 * is fully established.
1261 	 */
1262 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1263 	    !tcp_passive_fastopen(sk)) {
1264 		err = sk_stream_wait_connect(sk, &timeo);
1265 		if (err != 0)
1266 			goto do_error;
1267 	}
1268 
1269 	if (unlikely(tp->repair)) {
1270 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1271 			copied = tcp_send_rcvq(sk, msg, size);
1272 			goto out_nopush;
1273 		}
1274 
1275 		err = -EINVAL;
1276 		if (tp->repair_queue == TCP_NO_QUEUE)
1277 			goto out_err;
1278 
1279 		/* 'common' sending to sendq */
1280 	}
1281 
1282 	sockcm_init(&sockc, sk);
1283 	if (msg->msg_controllen) {
1284 		err = sock_cmsg_send(sk, msg, &sockc);
1285 		if (unlikely(err)) {
1286 			err = -EINVAL;
1287 			goto out_err;
1288 		}
1289 	}
1290 
1291 	/* This should be in poll */
1292 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1293 
1294 	/* Ok commence sending. */
1295 	copied = 0;
1296 
1297 restart:
1298 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1299 
1300 	err = -EPIPE;
1301 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1302 		goto do_error;
1303 
1304 	while (msg_data_left(msg)) {
1305 		int copy = 0;
1306 
1307 		skb = tcp_write_queue_tail(sk);
1308 		if (skb)
1309 			copy = size_goal - skb->len;
1310 
1311 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1312 			bool first_skb;
1313 
1314 new_segment:
1315 			if (!sk_stream_memory_free(sk))
1316 				goto wait_for_space;
1317 
1318 			if (unlikely(process_backlog >= 16)) {
1319 				process_backlog = 0;
1320 				if (sk_flush_backlog(sk))
1321 					goto restart;
1322 			}
1323 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1324 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1325 						   first_skb);
1326 			if (!skb)
1327 				goto wait_for_space;
1328 
1329 			process_backlog++;
1330 
1331 			tcp_skb_entail(sk, skb);
1332 			copy = size_goal;
1333 
1334 			/* All packets are restored as if they have
1335 			 * already been sent. skb_mstamp_ns isn't set to
1336 			 * avoid wrong rtt estimation.
1337 			 */
1338 			if (tp->repair)
1339 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1340 		}
1341 
1342 		/* Try to append data to the end of skb. */
1343 		if (copy > msg_data_left(msg))
1344 			copy = msg_data_left(msg);
1345 
1346 		if (!zc) {
1347 			bool merge = true;
1348 			int i = skb_shinfo(skb)->nr_frags;
1349 			struct page_frag *pfrag = sk_page_frag(sk);
1350 
1351 			if (!sk_page_frag_refill(sk, pfrag))
1352 				goto wait_for_space;
1353 
1354 			if (!skb_can_coalesce(skb, i, pfrag->page,
1355 					      pfrag->offset)) {
1356 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1357 					tcp_mark_push(tp, skb);
1358 					goto new_segment;
1359 				}
1360 				merge = false;
1361 			}
1362 
1363 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1364 
1365 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1366 				if (tcp_downgrade_zcopy_pure(sk, skb))
1367 					goto wait_for_space;
1368 				skb_zcopy_downgrade_managed(skb);
1369 			}
1370 
1371 			copy = tcp_wmem_schedule(sk, copy);
1372 			if (!copy)
1373 				goto wait_for_space;
1374 
1375 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1376 						       pfrag->page,
1377 						       pfrag->offset,
1378 						       copy);
1379 			if (err)
1380 				goto do_error;
1381 
1382 			/* Update the skb. */
1383 			if (merge) {
1384 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1385 			} else {
1386 				skb_fill_page_desc(skb, i, pfrag->page,
1387 						   pfrag->offset, copy);
1388 				page_ref_inc(pfrag->page);
1389 			}
1390 			pfrag->offset += copy;
1391 		} else {
1392 			/* First append to a fragless skb builds initial
1393 			 * pure zerocopy skb
1394 			 */
1395 			if (!skb->len)
1396 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1397 
1398 			if (!skb_zcopy_pure(skb)) {
1399 				copy = tcp_wmem_schedule(sk, copy);
1400 				if (!copy)
1401 					goto wait_for_space;
1402 			}
1403 
1404 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1405 			if (err == -EMSGSIZE || err == -EEXIST) {
1406 				tcp_mark_push(tp, skb);
1407 				goto new_segment;
1408 			}
1409 			if (err < 0)
1410 				goto do_error;
1411 			copy = err;
1412 		}
1413 
1414 		if (!copied)
1415 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1416 
1417 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1418 		TCP_SKB_CB(skb)->end_seq += copy;
1419 		tcp_skb_pcount_set(skb, 0);
1420 
1421 		copied += copy;
1422 		if (!msg_data_left(msg)) {
1423 			if (unlikely(flags & MSG_EOR))
1424 				TCP_SKB_CB(skb)->eor = 1;
1425 			goto out;
1426 		}
1427 
1428 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1429 			continue;
1430 
1431 		if (forced_push(tp)) {
1432 			tcp_mark_push(tp, skb);
1433 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1434 		} else if (skb == tcp_send_head(sk))
1435 			tcp_push_one(sk, mss_now);
1436 		continue;
1437 
1438 wait_for_space:
1439 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1440 		if (copied)
1441 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1442 				 TCP_NAGLE_PUSH, size_goal);
1443 
1444 		err = sk_stream_wait_memory(sk, &timeo);
1445 		if (err != 0)
1446 			goto do_error;
1447 
1448 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1449 	}
1450 
1451 out:
1452 	if (copied) {
1453 		tcp_tx_timestamp(sk, sockc.tsflags);
1454 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1455 	}
1456 out_nopush:
1457 	net_zcopy_put(uarg);
1458 	return copied + copied_syn;
1459 
1460 do_error:
1461 	tcp_remove_empty_skb(sk);
1462 
1463 	if (copied + copied_syn)
1464 		goto out;
1465 out_err:
1466 	net_zcopy_put_abort(uarg, true);
1467 	err = sk_stream_error(sk, flags, err);
1468 	/* make sure we wake any epoll edge trigger waiter */
1469 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1470 		sk->sk_write_space(sk);
1471 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1472 	}
1473 	return err;
1474 }
1475 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1476 
1477 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1478 {
1479 	int ret;
1480 
1481 	lock_sock(sk);
1482 	ret = tcp_sendmsg_locked(sk, msg, size);
1483 	release_sock(sk);
1484 
1485 	return ret;
1486 }
1487 EXPORT_SYMBOL(tcp_sendmsg);
1488 
1489 /*
1490  *	Handle reading urgent data. BSD has very simple semantics for
1491  *	this, no blocking and very strange errors 8)
1492  */
1493 
1494 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1495 {
1496 	struct tcp_sock *tp = tcp_sk(sk);
1497 
1498 	/* No URG data to read. */
1499 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1500 	    tp->urg_data == TCP_URG_READ)
1501 		return -EINVAL;	/* Yes this is right ! */
1502 
1503 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1504 		return -ENOTCONN;
1505 
1506 	if (tp->urg_data & TCP_URG_VALID) {
1507 		int err = 0;
1508 		char c = tp->urg_data;
1509 
1510 		if (!(flags & MSG_PEEK))
1511 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1512 
1513 		/* Read urgent data. */
1514 		msg->msg_flags |= MSG_OOB;
1515 
1516 		if (len > 0) {
1517 			if (!(flags & MSG_TRUNC))
1518 				err = memcpy_to_msg(msg, &c, 1);
1519 			len = 1;
1520 		} else
1521 			msg->msg_flags |= MSG_TRUNC;
1522 
1523 		return err ? -EFAULT : len;
1524 	}
1525 
1526 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1527 		return 0;
1528 
1529 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1530 	 * the available implementations agree in this case:
1531 	 * this call should never block, independent of the
1532 	 * blocking state of the socket.
1533 	 * Mike <pall@rz.uni-karlsruhe.de>
1534 	 */
1535 	return -EAGAIN;
1536 }
1537 
1538 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1539 {
1540 	struct sk_buff *skb;
1541 	int copied = 0, err = 0;
1542 
1543 	/* XXX -- need to support SO_PEEK_OFF */
1544 
1545 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1546 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1547 		if (err)
1548 			return err;
1549 		copied += skb->len;
1550 	}
1551 
1552 	skb_queue_walk(&sk->sk_write_queue, skb) {
1553 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1554 		if (err)
1555 			break;
1556 
1557 		copied += skb->len;
1558 	}
1559 
1560 	return err ?: copied;
1561 }
1562 
1563 /* Clean up the receive buffer for full frames taken by the user,
1564  * then send an ACK if necessary.  COPIED is the number of bytes
1565  * tcp_recvmsg has given to the user so far, it speeds up the
1566  * calculation of whether or not we must ACK for the sake of
1567  * a window update.
1568  */
1569 static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1570 {
1571 	struct tcp_sock *tp = tcp_sk(sk);
1572 	bool time_to_ack = false;
1573 
1574 	if (inet_csk_ack_scheduled(sk)) {
1575 		const struct inet_connection_sock *icsk = inet_csk(sk);
1576 
1577 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1578 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1579 		    /*
1580 		     * If this read emptied read buffer, we send ACK, if
1581 		     * connection is not bidirectional, user drained
1582 		     * receive buffer and there was a small segment
1583 		     * in queue.
1584 		     */
1585 		    (copied > 0 &&
1586 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1587 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1588 		       !inet_csk_in_pingpong_mode(sk))) &&
1589 		      !atomic_read(&sk->sk_rmem_alloc)))
1590 			time_to_ack = true;
1591 	}
1592 
1593 	/* We send an ACK if we can now advertise a non-zero window
1594 	 * which has been raised "significantly".
1595 	 *
1596 	 * Even if window raised up to infinity, do not send window open ACK
1597 	 * in states, where we will not receive more. It is useless.
1598 	 */
1599 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1600 		__u32 rcv_window_now = tcp_receive_window(tp);
1601 
1602 		/* Optimize, __tcp_select_window() is not cheap. */
1603 		if (2*rcv_window_now <= tp->window_clamp) {
1604 			__u32 new_window = __tcp_select_window(sk);
1605 
1606 			/* Send ACK now, if this read freed lots of space
1607 			 * in our buffer. Certainly, new_window is new window.
1608 			 * We can advertise it now, if it is not less than current one.
1609 			 * "Lots" means "at least twice" here.
1610 			 */
1611 			if (new_window && new_window >= 2 * rcv_window_now)
1612 				time_to_ack = true;
1613 		}
1614 	}
1615 	if (time_to_ack)
1616 		tcp_send_ack(sk);
1617 }
1618 
1619 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1620 {
1621 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1622 	struct tcp_sock *tp = tcp_sk(sk);
1623 
1624 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1625 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1626 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1627 	__tcp_cleanup_rbuf(sk, copied);
1628 }
1629 
1630 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1631 {
1632 	__skb_unlink(skb, &sk->sk_receive_queue);
1633 	if (likely(skb->destructor == sock_rfree)) {
1634 		sock_rfree(skb);
1635 		skb->destructor = NULL;
1636 		skb->sk = NULL;
1637 		return skb_attempt_defer_free(skb);
1638 	}
1639 	__kfree_skb(skb);
1640 }
1641 
1642 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1643 {
1644 	struct sk_buff *skb;
1645 	u32 offset;
1646 
1647 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1648 		offset = seq - TCP_SKB_CB(skb)->seq;
1649 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1650 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1651 			offset--;
1652 		}
1653 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1654 			*off = offset;
1655 			return skb;
1656 		}
1657 		/* This looks weird, but this can happen if TCP collapsing
1658 		 * splitted a fat GRO packet, while we released socket lock
1659 		 * in skb_splice_bits()
1660 		 */
1661 		tcp_eat_recv_skb(sk, skb);
1662 	}
1663 	return NULL;
1664 }
1665 EXPORT_SYMBOL(tcp_recv_skb);
1666 
1667 /*
1668  * This routine provides an alternative to tcp_recvmsg() for routines
1669  * that would like to handle copying from skbuffs directly in 'sendfile'
1670  * fashion.
1671  * Note:
1672  *	- It is assumed that the socket was locked by the caller.
1673  *	- The routine does not block.
1674  *	- At present, there is no support for reading OOB data
1675  *	  or for 'peeking' the socket using this routine
1676  *	  (although both would be easy to implement).
1677  */
1678 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1679 		  sk_read_actor_t recv_actor)
1680 {
1681 	struct sk_buff *skb;
1682 	struct tcp_sock *tp = tcp_sk(sk);
1683 	u32 seq = tp->copied_seq;
1684 	u32 offset;
1685 	int copied = 0;
1686 
1687 	if (sk->sk_state == TCP_LISTEN)
1688 		return -ENOTCONN;
1689 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1690 		if (offset < skb->len) {
1691 			int used;
1692 			size_t len;
1693 
1694 			len = skb->len - offset;
1695 			/* Stop reading if we hit a patch of urgent data */
1696 			if (unlikely(tp->urg_data)) {
1697 				u32 urg_offset = tp->urg_seq - seq;
1698 				if (urg_offset < len)
1699 					len = urg_offset;
1700 				if (!len)
1701 					break;
1702 			}
1703 			used = recv_actor(desc, skb, offset, len);
1704 			if (used <= 0) {
1705 				if (!copied)
1706 					copied = used;
1707 				break;
1708 			}
1709 			if (WARN_ON_ONCE(used > len))
1710 				used = len;
1711 			seq += used;
1712 			copied += used;
1713 			offset += used;
1714 
1715 			/* If recv_actor drops the lock (e.g. TCP splice
1716 			 * receive) the skb pointer might be invalid when
1717 			 * getting here: tcp_collapse might have deleted it
1718 			 * while aggregating skbs from the socket queue.
1719 			 */
1720 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1721 			if (!skb)
1722 				break;
1723 			/* TCP coalescing might have appended data to the skb.
1724 			 * Try to splice more frags
1725 			 */
1726 			if (offset + 1 != skb->len)
1727 				continue;
1728 		}
1729 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1730 			tcp_eat_recv_skb(sk, skb);
1731 			++seq;
1732 			break;
1733 		}
1734 		tcp_eat_recv_skb(sk, skb);
1735 		if (!desc->count)
1736 			break;
1737 		WRITE_ONCE(tp->copied_seq, seq);
1738 	}
1739 	WRITE_ONCE(tp->copied_seq, seq);
1740 
1741 	tcp_rcv_space_adjust(sk);
1742 
1743 	/* Clean up data we have read: This will do ACK frames. */
1744 	if (copied > 0) {
1745 		tcp_recv_skb(sk, seq, &offset);
1746 		tcp_cleanup_rbuf(sk, copied);
1747 	}
1748 	return copied;
1749 }
1750 EXPORT_SYMBOL(tcp_read_sock);
1751 
1752 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1753 {
1754 	struct tcp_sock *tp = tcp_sk(sk);
1755 	u32 seq = tp->copied_seq;
1756 	struct sk_buff *skb;
1757 	int copied = 0;
1758 	u32 offset;
1759 
1760 	if (sk->sk_state == TCP_LISTEN)
1761 		return -ENOTCONN;
1762 
1763 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1764 		u8 tcp_flags;
1765 		int used;
1766 
1767 		__skb_unlink(skb, &sk->sk_receive_queue);
1768 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1769 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1770 		used = recv_actor(sk, skb);
1771 		consume_skb(skb);
1772 		if (used < 0) {
1773 			if (!copied)
1774 				copied = used;
1775 			break;
1776 		}
1777 		seq += used;
1778 		copied += used;
1779 
1780 		if (tcp_flags & TCPHDR_FIN) {
1781 			++seq;
1782 			break;
1783 		}
1784 	}
1785 	WRITE_ONCE(tp->copied_seq, seq);
1786 
1787 	tcp_rcv_space_adjust(sk);
1788 
1789 	/* Clean up data we have read: This will do ACK frames. */
1790 	if (copied > 0)
1791 		__tcp_cleanup_rbuf(sk, copied);
1792 
1793 	return copied;
1794 }
1795 EXPORT_SYMBOL(tcp_read_skb);
1796 
1797 void tcp_read_done(struct sock *sk, size_t len)
1798 {
1799 	struct tcp_sock *tp = tcp_sk(sk);
1800 	u32 seq = tp->copied_seq;
1801 	struct sk_buff *skb;
1802 	size_t left;
1803 	u32 offset;
1804 
1805 	if (sk->sk_state == TCP_LISTEN)
1806 		return;
1807 
1808 	left = len;
1809 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1810 		int used;
1811 
1812 		used = min_t(size_t, skb->len - offset, left);
1813 		seq += used;
1814 		left -= used;
1815 
1816 		if (skb->len > offset + used)
1817 			break;
1818 
1819 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1820 			tcp_eat_recv_skb(sk, skb);
1821 			++seq;
1822 			break;
1823 		}
1824 		tcp_eat_recv_skb(sk, skb);
1825 	}
1826 	WRITE_ONCE(tp->copied_seq, seq);
1827 
1828 	tcp_rcv_space_adjust(sk);
1829 
1830 	/* Clean up data we have read: This will do ACK frames. */
1831 	if (left != len)
1832 		tcp_cleanup_rbuf(sk, len - left);
1833 }
1834 EXPORT_SYMBOL(tcp_read_done);
1835 
1836 int tcp_peek_len(struct socket *sock)
1837 {
1838 	return tcp_inq(sock->sk);
1839 }
1840 EXPORT_SYMBOL(tcp_peek_len);
1841 
1842 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1843 int tcp_set_rcvlowat(struct sock *sk, int val)
1844 {
1845 	int cap;
1846 
1847 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1848 		cap = sk->sk_rcvbuf >> 1;
1849 	else
1850 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1851 	val = min(val, cap);
1852 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1853 
1854 	/* Check if we need to signal EPOLLIN right now */
1855 	tcp_data_ready(sk);
1856 
1857 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1858 		return 0;
1859 
1860 	val <<= 1;
1861 	if (val > sk->sk_rcvbuf) {
1862 		WRITE_ONCE(sk->sk_rcvbuf, val);
1863 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1864 	}
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL(tcp_set_rcvlowat);
1868 
1869 void tcp_update_recv_tstamps(struct sk_buff *skb,
1870 			     struct scm_timestamping_internal *tss)
1871 {
1872 	if (skb->tstamp)
1873 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1874 	else
1875 		tss->ts[0] = (struct timespec64) {0};
1876 
1877 	if (skb_hwtstamps(skb)->hwtstamp)
1878 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1879 	else
1880 		tss->ts[2] = (struct timespec64) {0};
1881 }
1882 
1883 #ifdef CONFIG_MMU
1884 static const struct vm_operations_struct tcp_vm_ops = {
1885 };
1886 
1887 int tcp_mmap(struct file *file, struct socket *sock,
1888 	     struct vm_area_struct *vma)
1889 {
1890 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1891 		return -EPERM;
1892 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1893 
1894 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1895 	vma->vm_flags |= VM_MIXEDMAP;
1896 
1897 	vma->vm_ops = &tcp_vm_ops;
1898 	return 0;
1899 }
1900 EXPORT_SYMBOL(tcp_mmap);
1901 
1902 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1903 				       u32 *offset_frag)
1904 {
1905 	skb_frag_t *frag;
1906 
1907 	if (unlikely(offset_skb >= skb->len))
1908 		return NULL;
1909 
1910 	offset_skb -= skb_headlen(skb);
1911 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1912 		return NULL;
1913 
1914 	frag = skb_shinfo(skb)->frags;
1915 	while (offset_skb) {
1916 		if (skb_frag_size(frag) > offset_skb) {
1917 			*offset_frag = offset_skb;
1918 			return frag;
1919 		}
1920 		offset_skb -= skb_frag_size(frag);
1921 		++frag;
1922 	}
1923 	*offset_frag = 0;
1924 	return frag;
1925 }
1926 
1927 static bool can_map_frag(const skb_frag_t *frag)
1928 {
1929 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1930 }
1931 
1932 static int find_next_mappable_frag(const skb_frag_t *frag,
1933 				   int remaining_in_skb)
1934 {
1935 	int offset = 0;
1936 
1937 	if (likely(can_map_frag(frag)))
1938 		return 0;
1939 
1940 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1941 		offset += skb_frag_size(frag);
1942 		++frag;
1943 	}
1944 	return offset;
1945 }
1946 
1947 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1948 					  struct tcp_zerocopy_receive *zc,
1949 					  struct sk_buff *skb, u32 offset)
1950 {
1951 	u32 frag_offset, partial_frag_remainder = 0;
1952 	int mappable_offset;
1953 	skb_frag_t *frag;
1954 
1955 	/* worst case: skip to next skb. try to improve on this case below */
1956 	zc->recv_skip_hint = skb->len - offset;
1957 
1958 	/* Find the frag containing this offset (and how far into that frag) */
1959 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1960 	if (!frag)
1961 		return;
1962 
1963 	if (frag_offset) {
1964 		struct skb_shared_info *info = skb_shinfo(skb);
1965 
1966 		/* We read part of the last frag, must recvmsg() rest of skb. */
1967 		if (frag == &info->frags[info->nr_frags - 1])
1968 			return;
1969 
1970 		/* Else, we must at least read the remainder in this frag. */
1971 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1972 		zc->recv_skip_hint -= partial_frag_remainder;
1973 		++frag;
1974 	}
1975 
1976 	/* partial_frag_remainder: If part way through a frag, must read rest.
1977 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1978 	 * in partial_frag_remainder.
1979 	 */
1980 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1981 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1982 }
1983 
1984 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1985 			      int flags, struct scm_timestamping_internal *tss,
1986 			      int *cmsg_flags);
1987 static int receive_fallback_to_copy(struct sock *sk,
1988 				    struct tcp_zerocopy_receive *zc, int inq,
1989 				    struct scm_timestamping_internal *tss)
1990 {
1991 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1992 	struct msghdr msg = {};
1993 	struct iovec iov;
1994 	int err;
1995 
1996 	zc->length = 0;
1997 	zc->recv_skip_hint = 0;
1998 
1999 	if (copy_address != zc->copybuf_address)
2000 		return -EINVAL;
2001 
2002 	err = import_single_range(READ, (void __user *)copy_address,
2003 				  inq, &iov, &msg.msg_iter);
2004 	if (err)
2005 		return err;
2006 
2007 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2008 				 tss, &zc->msg_flags);
2009 	if (err < 0)
2010 		return err;
2011 
2012 	zc->copybuf_len = err;
2013 	if (likely(zc->copybuf_len)) {
2014 		struct sk_buff *skb;
2015 		u32 offset;
2016 
2017 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2018 		if (skb)
2019 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2020 	}
2021 	return 0;
2022 }
2023 
2024 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2025 				   struct sk_buff *skb, u32 copylen,
2026 				   u32 *offset, u32 *seq)
2027 {
2028 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2029 	struct msghdr msg = {};
2030 	struct iovec iov;
2031 	int err;
2032 
2033 	if (copy_address != zc->copybuf_address)
2034 		return -EINVAL;
2035 
2036 	err = import_single_range(READ, (void __user *)copy_address,
2037 				  copylen, &iov, &msg.msg_iter);
2038 	if (err)
2039 		return err;
2040 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2041 	if (err)
2042 		return err;
2043 	zc->recv_skip_hint -= copylen;
2044 	*offset += copylen;
2045 	*seq += copylen;
2046 	return (__s32)copylen;
2047 }
2048 
2049 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2050 				  struct sock *sk,
2051 				  struct sk_buff *skb,
2052 				  u32 *seq,
2053 				  s32 copybuf_len,
2054 				  struct scm_timestamping_internal *tss)
2055 {
2056 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2057 
2058 	if (!copylen)
2059 		return 0;
2060 	/* skb is null if inq < PAGE_SIZE. */
2061 	if (skb) {
2062 		offset = *seq - TCP_SKB_CB(skb)->seq;
2063 	} else {
2064 		skb = tcp_recv_skb(sk, *seq, &offset);
2065 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2066 			tcp_update_recv_tstamps(skb, tss);
2067 			zc->msg_flags |= TCP_CMSG_TS;
2068 		}
2069 	}
2070 
2071 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2072 						  seq);
2073 	return zc->copybuf_len < 0 ? 0 : copylen;
2074 }
2075 
2076 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2077 					      struct page **pending_pages,
2078 					      unsigned long pages_remaining,
2079 					      unsigned long *address,
2080 					      u32 *length,
2081 					      u32 *seq,
2082 					      struct tcp_zerocopy_receive *zc,
2083 					      u32 total_bytes_to_map,
2084 					      int err)
2085 {
2086 	/* At least one page did not map. Try zapping if we skipped earlier. */
2087 	if (err == -EBUSY &&
2088 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2089 		u32 maybe_zap_len;
2090 
2091 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2092 				*length + /* Mapped or pending */
2093 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2094 		zap_page_range(vma, *address, maybe_zap_len);
2095 		err = 0;
2096 	}
2097 
2098 	if (!err) {
2099 		unsigned long leftover_pages = pages_remaining;
2100 		int bytes_mapped;
2101 
2102 		/* We called zap_page_range, try to reinsert. */
2103 		err = vm_insert_pages(vma, *address,
2104 				      pending_pages,
2105 				      &pages_remaining);
2106 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2107 		*seq += bytes_mapped;
2108 		*address += bytes_mapped;
2109 	}
2110 	if (err) {
2111 		/* Either we were unable to zap, OR we zapped, retried an
2112 		 * insert, and still had an issue. Either ways, pages_remaining
2113 		 * is the number of pages we were unable to map, and we unroll
2114 		 * some state we speculatively touched before.
2115 		 */
2116 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2117 
2118 		*length -= bytes_not_mapped;
2119 		zc->recv_skip_hint += bytes_not_mapped;
2120 	}
2121 	return err;
2122 }
2123 
2124 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2125 					struct page **pages,
2126 					unsigned int pages_to_map,
2127 					unsigned long *address,
2128 					u32 *length,
2129 					u32 *seq,
2130 					struct tcp_zerocopy_receive *zc,
2131 					u32 total_bytes_to_map)
2132 {
2133 	unsigned long pages_remaining = pages_to_map;
2134 	unsigned int pages_mapped;
2135 	unsigned int bytes_mapped;
2136 	int err;
2137 
2138 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2139 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2140 	bytes_mapped = PAGE_SIZE * pages_mapped;
2141 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2142 	 * mapping (some but not all of the pages).
2143 	 */
2144 	*seq += bytes_mapped;
2145 	*address += bytes_mapped;
2146 
2147 	if (likely(!err))
2148 		return 0;
2149 
2150 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2151 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2152 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2153 		err);
2154 }
2155 
2156 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2157 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2158 				      struct tcp_zerocopy_receive *zc,
2159 				      struct scm_timestamping_internal *tss)
2160 {
2161 	unsigned long msg_control_addr;
2162 	struct msghdr cmsg_dummy;
2163 
2164 	msg_control_addr = (unsigned long)zc->msg_control;
2165 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2166 	cmsg_dummy.msg_controllen =
2167 		(__kernel_size_t)zc->msg_controllen;
2168 	cmsg_dummy.msg_flags = in_compat_syscall()
2169 		? MSG_CMSG_COMPAT : 0;
2170 	cmsg_dummy.msg_control_is_user = true;
2171 	zc->msg_flags = 0;
2172 	if (zc->msg_control == msg_control_addr &&
2173 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2174 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2175 		zc->msg_control = (__u64)
2176 			((uintptr_t)cmsg_dummy.msg_control);
2177 		zc->msg_controllen =
2178 			(__u64)cmsg_dummy.msg_controllen;
2179 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2180 	}
2181 }
2182 
2183 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2184 static int tcp_zerocopy_receive(struct sock *sk,
2185 				struct tcp_zerocopy_receive *zc,
2186 				struct scm_timestamping_internal *tss)
2187 {
2188 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2189 	unsigned long address = (unsigned long)zc->address;
2190 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2191 	s32 copybuf_len = zc->copybuf_len;
2192 	struct tcp_sock *tp = tcp_sk(sk);
2193 	const skb_frag_t *frags = NULL;
2194 	unsigned int pages_to_map = 0;
2195 	struct vm_area_struct *vma;
2196 	struct sk_buff *skb = NULL;
2197 	u32 seq = tp->copied_seq;
2198 	u32 total_bytes_to_map;
2199 	int inq = tcp_inq(sk);
2200 	int ret;
2201 
2202 	zc->copybuf_len = 0;
2203 	zc->msg_flags = 0;
2204 
2205 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2206 		return -EINVAL;
2207 
2208 	if (sk->sk_state == TCP_LISTEN)
2209 		return -ENOTCONN;
2210 
2211 	sock_rps_record_flow(sk);
2212 
2213 	if (inq && inq <= copybuf_len)
2214 		return receive_fallback_to_copy(sk, zc, inq, tss);
2215 
2216 	if (inq < PAGE_SIZE) {
2217 		zc->length = 0;
2218 		zc->recv_skip_hint = inq;
2219 		if (!inq && sock_flag(sk, SOCK_DONE))
2220 			return -EIO;
2221 		return 0;
2222 	}
2223 
2224 	mmap_read_lock(current->mm);
2225 
2226 	vma = vma_lookup(current->mm, address);
2227 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2228 		mmap_read_unlock(current->mm);
2229 		return -EINVAL;
2230 	}
2231 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2232 	avail_len = min_t(u32, vma_len, inq);
2233 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2234 	if (total_bytes_to_map) {
2235 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2236 			zap_page_range(vma, address, total_bytes_to_map);
2237 		zc->length = total_bytes_to_map;
2238 		zc->recv_skip_hint = 0;
2239 	} else {
2240 		zc->length = avail_len;
2241 		zc->recv_skip_hint = avail_len;
2242 	}
2243 	ret = 0;
2244 	while (length + PAGE_SIZE <= zc->length) {
2245 		int mappable_offset;
2246 		struct page *page;
2247 
2248 		if (zc->recv_skip_hint < PAGE_SIZE) {
2249 			u32 offset_frag;
2250 
2251 			if (skb) {
2252 				if (zc->recv_skip_hint > 0)
2253 					break;
2254 				skb = skb->next;
2255 				offset = seq - TCP_SKB_CB(skb)->seq;
2256 			} else {
2257 				skb = tcp_recv_skb(sk, seq, &offset);
2258 			}
2259 
2260 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2261 				tcp_update_recv_tstamps(skb, tss);
2262 				zc->msg_flags |= TCP_CMSG_TS;
2263 			}
2264 			zc->recv_skip_hint = skb->len - offset;
2265 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2266 			if (!frags || offset_frag)
2267 				break;
2268 		}
2269 
2270 		mappable_offset = find_next_mappable_frag(frags,
2271 							  zc->recv_skip_hint);
2272 		if (mappable_offset) {
2273 			zc->recv_skip_hint = mappable_offset;
2274 			break;
2275 		}
2276 		page = skb_frag_page(frags);
2277 		prefetchw(page);
2278 		pages[pages_to_map++] = page;
2279 		length += PAGE_SIZE;
2280 		zc->recv_skip_hint -= PAGE_SIZE;
2281 		frags++;
2282 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2283 		    zc->recv_skip_hint < PAGE_SIZE) {
2284 			/* Either full batch, or we're about to go to next skb
2285 			 * (and we cannot unroll failed ops across skbs).
2286 			 */
2287 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2288 							   pages_to_map,
2289 							   &address, &length,
2290 							   &seq, zc,
2291 							   total_bytes_to_map);
2292 			if (ret)
2293 				goto out;
2294 			pages_to_map = 0;
2295 		}
2296 	}
2297 	if (pages_to_map) {
2298 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2299 						   &address, &length, &seq,
2300 						   zc, total_bytes_to_map);
2301 	}
2302 out:
2303 	mmap_read_unlock(current->mm);
2304 	/* Try to copy straggler data. */
2305 	if (!ret)
2306 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2307 
2308 	if (length + copylen) {
2309 		WRITE_ONCE(tp->copied_seq, seq);
2310 		tcp_rcv_space_adjust(sk);
2311 
2312 		/* Clean up data we have read: This will do ACK frames. */
2313 		tcp_recv_skb(sk, seq, &offset);
2314 		tcp_cleanup_rbuf(sk, length + copylen);
2315 		ret = 0;
2316 		if (length == zc->length)
2317 			zc->recv_skip_hint = 0;
2318 	} else {
2319 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2320 			ret = -EIO;
2321 	}
2322 	zc->length = length;
2323 	return ret;
2324 }
2325 #endif
2326 
2327 /* Similar to __sock_recv_timestamp, but does not require an skb */
2328 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2329 			struct scm_timestamping_internal *tss)
2330 {
2331 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2332 	bool has_timestamping = false;
2333 
2334 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2335 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2336 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2337 				if (new_tstamp) {
2338 					struct __kernel_timespec kts = {
2339 						.tv_sec = tss->ts[0].tv_sec,
2340 						.tv_nsec = tss->ts[0].tv_nsec,
2341 					};
2342 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2343 						 sizeof(kts), &kts);
2344 				} else {
2345 					struct __kernel_old_timespec ts_old = {
2346 						.tv_sec = tss->ts[0].tv_sec,
2347 						.tv_nsec = tss->ts[0].tv_nsec,
2348 					};
2349 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2350 						 sizeof(ts_old), &ts_old);
2351 				}
2352 			} else {
2353 				if (new_tstamp) {
2354 					struct __kernel_sock_timeval stv = {
2355 						.tv_sec = tss->ts[0].tv_sec,
2356 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2357 					};
2358 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2359 						 sizeof(stv), &stv);
2360 				} else {
2361 					struct __kernel_old_timeval tv = {
2362 						.tv_sec = tss->ts[0].tv_sec,
2363 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2364 					};
2365 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2366 						 sizeof(tv), &tv);
2367 				}
2368 			}
2369 		}
2370 
2371 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2372 			has_timestamping = true;
2373 		else
2374 			tss->ts[0] = (struct timespec64) {0};
2375 	}
2376 
2377 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2378 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2379 			has_timestamping = true;
2380 		else
2381 			tss->ts[2] = (struct timespec64) {0};
2382 	}
2383 
2384 	if (has_timestamping) {
2385 		tss->ts[1] = (struct timespec64) {0};
2386 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2387 			put_cmsg_scm_timestamping64(msg, tss);
2388 		else
2389 			put_cmsg_scm_timestamping(msg, tss);
2390 	}
2391 }
2392 
2393 static int tcp_inq_hint(struct sock *sk)
2394 {
2395 	const struct tcp_sock *tp = tcp_sk(sk);
2396 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2397 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2398 	int inq;
2399 
2400 	inq = rcv_nxt - copied_seq;
2401 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2402 		lock_sock(sk);
2403 		inq = tp->rcv_nxt - tp->copied_seq;
2404 		release_sock(sk);
2405 	}
2406 	/* After receiving a FIN, tell the user-space to continue reading
2407 	 * by returning a non-zero inq.
2408 	 */
2409 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2410 		inq = 1;
2411 	return inq;
2412 }
2413 
2414 /*
2415  *	This routine copies from a sock struct into the user buffer.
2416  *
2417  *	Technical note: in 2.3 we work on _locked_ socket, so that
2418  *	tricks with *seq access order and skb->users are not required.
2419  *	Probably, code can be easily improved even more.
2420  */
2421 
2422 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2423 			      int flags, struct scm_timestamping_internal *tss,
2424 			      int *cmsg_flags)
2425 {
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 	int copied = 0;
2428 	u32 peek_seq;
2429 	u32 *seq;
2430 	unsigned long used;
2431 	int err;
2432 	int target;		/* Read at least this many bytes */
2433 	long timeo;
2434 	struct sk_buff *skb, *last;
2435 	u32 urg_hole = 0;
2436 
2437 	err = -ENOTCONN;
2438 	if (sk->sk_state == TCP_LISTEN)
2439 		goto out;
2440 
2441 	if (tp->recvmsg_inq) {
2442 		*cmsg_flags = TCP_CMSG_INQ;
2443 		msg->msg_get_inq = 1;
2444 	}
2445 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2446 
2447 	/* Urgent data needs to be handled specially. */
2448 	if (flags & MSG_OOB)
2449 		goto recv_urg;
2450 
2451 	if (unlikely(tp->repair)) {
2452 		err = -EPERM;
2453 		if (!(flags & MSG_PEEK))
2454 			goto out;
2455 
2456 		if (tp->repair_queue == TCP_SEND_QUEUE)
2457 			goto recv_sndq;
2458 
2459 		err = -EINVAL;
2460 		if (tp->repair_queue == TCP_NO_QUEUE)
2461 			goto out;
2462 
2463 		/* 'common' recv queue MSG_PEEK-ing */
2464 	}
2465 
2466 	seq = &tp->copied_seq;
2467 	if (flags & MSG_PEEK) {
2468 		peek_seq = tp->copied_seq;
2469 		seq = &peek_seq;
2470 	}
2471 
2472 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2473 
2474 	do {
2475 		u32 offset;
2476 
2477 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2478 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2479 			if (copied)
2480 				break;
2481 			if (signal_pending(current)) {
2482 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2483 				break;
2484 			}
2485 		}
2486 
2487 		/* Next get a buffer. */
2488 
2489 		last = skb_peek_tail(&sk->sk_receive_queue);
2490 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2491 			last = skb;
2492 			/* Now that we have two receive queues this
2493 			 * shouldn't happen.
2494 			 */
2495 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2496 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2497 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2498 				 flags))
2499 				break;
2500 
2501 			offset = *seq - TCP_SKB_CB(skb)->seq;
2502 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2503 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2504 				offset--;
2505 			}
2506 			if (offset < skb->len)
2507 				goto found_ok_skb;
2508 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2509 				goto found_fin_ok;
2510 			WARN(!(flags & MSG_PEEK),
2511 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2512 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2513 		}
2514 
2515 		/* Well, if we have backlog, try to process it now yet. */
2516 
2517 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2518 			break;
2519 
2520 		if (copied) {
2521 			if (!timeo ||
2522 			    sk->sk_err ||
2523 			    sk->sk_state == TCP_CLOSE ||
2524 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2525 			    signal_pending(current))
2526 				break;
2527 		} else {
2528 			if (sock_flag(sk, SOCK_DONE))
2529 				break;
2530 
2531 			if (sk->sk_err) {
2532 				copied = sock_error(sk);
2533 				break;
2534 			}
2535 
2536 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2537 				break;
2538 
2539 			if (sk->sk_state == TCP_CLOSE) {
2540 				/* This occurs when user tries to read
2541 				 * from never connected socket.
2542 				 */
2543 				copied = -ENOTCONN;
2544 				break;
2545 			}
2546 
2547 			if (!timeo) {
2548 				copied = -EAGAIN;
2549 				break;
2550 			}
2551 
2552 			if (signal_pending(current)) {
2553 				copied = sock_intr_errno(timeo);
2554 				break;
2555 			}
2556 		}
2557 
2558 		if (copied >= target) {
2559 			/* Do not sleep, just process backlog. */
2560 			__sk_flush_backlog(sk);
2561 		} else {
2562 			tcp_cleanup_rbuf(sk, copied);
2563 			sk_wait_data(sk, &timeo, last);
2564 		}
2565 
2566 		if ((flags & MSG_PEEK) &&
2567 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2568 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2569 					    current->comm,
2570 					    task_pid_nr(current));
2571 			peek_seq = tp->copied_seq;
2572 		}
2573 		continue;
2574 
2575 found_ok_skb:
2576 		/* Ok so how much can we use? */
2577 		used = skb->len - offset;
2578 		if (len < used)
2579 			used = len;
2580 
2581 		/* Do we have urgent data here? */
2582 		if (unlikely(tp->urg_data)) {
2583 			u32 urg_offset = tp->urg_seq - *seq;
2584 			if (urg_offset < used) {
2585 				if (!urg_offset) {
2586 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2587 						WRITE_ONCE(*seq, *seq + 1);
2588 						urg_hole++;
2589 						offset++;
2590 						used--;
2591 						if (!used)
2592 							goto skip_copy;
2593 					}
2594 				} else
2595 					used = urg_offset;
2596 			}
2597 		}
2598 
2599 		if (!(flags & MSG_TRUNC)) {
2600 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2601 			if (err) {
2602 				/* Exception. Bailout! */
2603 				if (!copied)
2604 					copied = -EFAULT;
2605 				break;
2606 			}
2607 		}
2608 
2609 		WRITE_ONCE(*seq, *seq + used);
2610 		copied += used;
2611 		len -= used;
2612 
2613 		tcp_rcv_space_adjust(sk);
2614 
2615 skip_copy:
2616 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2617 			WRITE_ONCE(tp->urg_data, 0);
2618 			tcp_fast_path_check(sk);
2619 		}
2620 
2621 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2622 			tcp_update_recv_tstamps(skb, tss);
2623 			*cmsg_flags |= TCP_CMSG_TS;
2624 		}
2625 
2626 		if (used + offset < skb->len)
2627 			continue;
2628 
2629 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2630 			goto found_fin_ok;
2631 		if (!(flags & MSG_PEEK))
2632 			tcp_eat_recv_skb(sk, skb);
2633 		continue;
2634 
2635 found_fin_ok:
2636 		/* Process the FIN. */
2637 		WRITE_ONCE(*seq, *seq + 1);
2638 		if (!(flags & MSG_PEEK))
2639 			tcp_eat_recv_skb(sk, skb);
2640 		break;
2641 	} while (len > 0);
2642 
2643 	/* According to UNIX98, msg_name/msg_namelen are ignored
2644 	 * on connected socket. I was just happy when found this 8) --ANK
2645 	 */
2646 
2647 	/* Clean up data we have read: This will do ACK frames. */
2648 	tcp_cleanup_rbuf(sk, copied);
2649 	return copied;
2650 
2651 out:
2652 	return err;
2653 
2654 recv_urg:
2655 	err = tcp_recv_urg(sk, msg, len, flags);
2656 	goto out;
2657 
2658 recv_sndq:
2659 	err = tcp_peek_sndq(sk, msg, len);
2660 	goto out;
2661 }
2662 
2663 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2664 		int *addr_len)
2665 {
2666 	int cmsg_flags = 0, ret;
2667 	struct scm_timestamping_internal tss;
2668 
2669 	if (unlikely(flags & MSG_ERRQUEUE))
2670 		return inet_recv_error(sk, msg, len, addr_len);
2671 
2672 	if (sk_can_busy_loop(sk) &&
2673 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2674 	    sk->sk_state == TCP_ESTABLISHED)
2675 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2676 
2677 	lock_sock(sk);
2678 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2679 	release_sock(sk);
2680 
2681 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2682 		if (cmsg_flags & TCP_CMSG_TS)
2683 			tcp_recv_timestamp(msg, sk, &tss);
2684 		if (msg->msg_get_inq) {
2685 			msg->msg_inq = tcp_inq_hint(sk);
2686 			if (cmsg_flags & TCP_CMSG_INQ)
2687 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2688 					 sizeof(msg->msg_inq), &msg->msg_inq);
2689 		}
2690 	}
2691 	return ret;
2692 }
2693 EXPORT_SYMBOL(tcp_recvmsg);
2694 
2695 void tcp_set_state(struct sock *sk, int state)
2696 {
2697 	int oldstate = sk->sk_state;
2698 
2699 	/* We defined a new enum for TCP states that are exported in BPF
2700 	 * so as not force the internal TCP states to be frozen. The
2701 	 * following checks will detect if an internal state value ever
2702 	 * differs from the BPF value. If this ever happens, then we will
2703 	 * need to remap the internal value to the BPF value before calling
2704 	 * tcp_call_bpf_2arg.
2705 	 */
2706 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2707 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2708 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2709 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2710 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2711 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2712 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2713 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2714 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2715 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2716 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2717 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2718 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2719 
2720 	/* bpf uapi header bpf.h defines an anonymous enum with values
2721 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2722 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2723 	 * But clang built vmlinux does not have this enum in DWARF
2724 	 * since clang removes the above code before generating IR/debuginfo.
2725 	 * Let us explicitly emit the type debuginfo to ensure the
2726 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2727 	 * regardless of which compiler is used.
2728 	 */
2729 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2730 
2731 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2732 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2733 
2734 	switch (state) {
2735 	case TCP_ESTABLISHED:
2736 		if (oldstate != TCP_ESTABLISHED)
2737 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2738 		break;
2739 
2740 	case TCP_CLOSE:
2741 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2742 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2743 
2744 		sk->sk_prot->unhash(sk);
2745 		if (inet_csk(sk)->icsk_bind_hash &&
2746 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2747 			inet_put_port(sk);
2748 		fallthrough;
2749 	default:
2750 		if (oldstate == TCP_ESTABLISHED)
2751 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2752 	}
2753 
2754 	/* Change state AFTER socket is unhashed to avoid closed
2755 	 * socket sitting in hash tables.
2756 	 */
2757 	inet_sk_state_store(sk, state);
2758 }
2759 EXPORT_SYMBOL_GPL(tcp_set_state);
2760 
2761 /*
2762  *	State processing on a close. This implements the state shift for
2763  *	sending our FIN frame. Note that we only send a FIN for some
2764  *	states. A shutdown() may have already sent the FIN, or we may be
2765  *	closed.
2766  */
2767 
2768 static const unsigned char new_state[16] = {
2769   /* current state:        new state:      action:	*/
2770   [0 /* (Invalid) */]	= TCP_CLOSE,
2771   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2772   [TCP_SYN_SENT]	= TCP_CLOSE,
2773   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2775   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2776   [TCP_TIME_WAIT]	= TCP_CLOSE,
2777   [TCP_CLOSE]		= TCP_CLOSE,
2778   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2779   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2780   [TCP_LISTEN]		= TCP_CLOSE,
2781   [TCP_CLOSING]		= TCP_CLOSING,
2782   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2783 };
2784 
2785 static int tcp_close_state(struct sock *sk)
2786 {
2787 	int next = (int)new_state[sk->sk_state];
2788 	int ns = next & TCP_STATE_MASK;
2789 
2790 	tcp_set_state(sk, ns);
2791 
2792 	return next & TCP_ACTION_FIN;
2793 }
2794 
2795 /*
2796  *	Shutdown the sending side of a connection. Much like close except
2797  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2798  */
2799 
2800 void tcp_shutdown(struct sock *sk, int how)
2801 {
2802 	/*	We need to grab some memory, and put together a FIN,
2803 	 *	and then put it into the queue to be sent.
2804 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2805 	 */
2806 	if (!(how & SEND_SHUTDOWN))
2807 		return;
2808 
2809 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2810 	if ((1 << sk->sk_state) &
2811 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2812 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2813 		/* Clear out any half completed packets.  FIN if needed. */
2814 		if (tcp_close_state(sk))
2815 			tcp_send_fin(sk);
2816 	}
2817 }
2818 EXPORT_SYMBOL(tcp_shutdown);
2819 
2820 int tcp_orphan_count_sum(void)
2821 {
2822 	int i, total = 0;
2823 
2824 	for_each_possible_cpu(i)
2825 		total += per_cpu(tcp_orphan_count, i);
2826 
2827 	return max(total, 0);
2828 }
2829 
2830 static int tcp_orphan_cache;
2831 static struct timer_list tcp_orphan_timer;
2832 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2833 
2834 static void tcp_orphan_update(struct timer_list *unused)
2835 {
2836 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2837 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2838 }
2839 
2840 static bool tcp_too_many_orphans(int shift)
2841 {
2842 	return READ_ONCE(tcp_orphan_cache) << shift >
2843 		READ_ONCE(sysctl_tcp_max_orphans);
2844 }
2845 
2846 bool tcp_check_oom(struct sock *sk, int shift)
2847 {
2848 	bool too_many_orphans, out_of_socket_memory;
2849 
2850 	too_many_orphans = tcp_too_many_orphans(shift);
2851 	out_of_socket_memory = tcp_out_of_memory(sk);
2852 
2853 	if (too_many_orphans)
2854 		net_info_ratelimited("too many orphaned sockets\n");
2855 	if (out_of_socket_memory)
2856 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2857 	return too_many_orphans || out_of_socket_memory;
2858 }
2859 
2860 void __tcp_close(struct sock *sk, long timeout)
2861 {
2862 	struct sk_buff *skb;
2863 	int data_was_unread = 0;
2864 	int state;
2865 
2866 	sk->sk_shutdown = SHUTDOWN_MASK;
2867 
2868 	if (sk->sk_state == TCP_LISTEN) {
2869 		tcp_set_state(sk, TCP_CLOSE);
2870 
2871 		/* Special case. */
2872 		inet_csk_listen_stop(sk);
2873 
2874 		goto adjudge_to_death;
2875 	}
2876 
2877 	/*  We need to flush the recv. buffs.  We do this only on the
2878 	 *  descriptor close, not protocol-sourced closes, because the
2879 	 *  reader process may not have drained the data yet!
2880 	 */
2881 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2882 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2883 
2884 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2885 			len--;
2886 		data_was_unread += len;
2887 		__kfree_skb(skb);
2888 	}
2889 
2890 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2891 	if (sk->sk_state == TCP_CLOSE)
2892 		goto adjudge_to_death;
2893 
2894 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2895 	 * data was lost. To witness the awful effects of the old behavior of
2896 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2897 	 * GET in an FTP client, suspend the process, wait for the client to
2898 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2899 	 * Note: timeout is always zero in such a case.
2900 	 */
2901 	if (unlikely(tcp_sk(sk)->repair)) {
2902 		sk->sk_prot->disconnect(sk, 0);
2903 	} else if (data_was_unread) {
2904 		/* Unread data was tossed, zap the connection. */
2905 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2906 		tcp_set_state(sk, TCP_CLOSE);
2907 		tcp_send_active_reset(sk, sk->sk_allocation);
2908 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2909 		/* Check zero linger _after_ checking for unread data. */
2910 		sk->sk_prot->disconnect(sk, 0);
2911 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2912 	} else if (tcp_close_state(sk)) {
2913 		/* We FIN if the application ate all the data before
2914 		 * zapping the connection.
2915 		 */
2916 
2917 		/* RED-PEN. Formally speaking, we have broken TCP state
2918 		 * machine. State transitions:
2919 		 *
2920 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2921 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2922 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2923 		 *
2924 		 * are legal only when FIN has been sent (i.e. in window),
2925 		 * rather than queued out of window. Purists blame.
2926 		 *
2927 		 * F.e. "RFC state" is ESTABLISHED,
2928 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2929 		 *
2930 		 * The visible declinations are that sometimes
2931 		 * we enter time-wait state, when it is not required really
2932 		 * (harmless), do not send active resets, when they are
2933 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2934 		 * they look as CLOSING or LAST_ACK for Linux)
2935 		 * Probably, I missed some more holelets.
2936 		 * 						--ANK
2937 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2938 		 * in a single packet! (May consider it later but will
2939 		 * probably need API support or TCP_CORK SYN-ACK until
2940 		 * data is written and socket is closed.)
2941 		 */
2942 		tcp_send_fin(sk);
2943 	}
2944 
2945 	sk_stream_wait_close(sk, timeout);
2946 
2947 adjudge_to_death:
2948 	state = sk->sk_state;
2949 	sock_hold(sk);
2950 	sock_orphan(sk);
2951 
2952 	local_bh_disable();
2953 	bh_lock_sock(sk);
2954 	/* remove backlog if any, without releasing ownership. */
2955 	__release_sock(sk);
2956 
2957 	this_cpu_inc(tcp_orphan_count);
2958 
2959 	/* Have we already been destroyed by a softirq or backlog? */
2960 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2961 		goto out;
2962 
2963 	/*	This is a (useful) BSD violating of the RFC. There is a
2964 	 *	problem with TCP as specified in that the other end could
2965 	 *	keep a socket open forever with no application left this end.
2966 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2967 	 *	our end. If they send after that then tough - BUT: long enough
2968 	 *	that we won't make the old 4*rto = almost no time - whoops
2969 	 *	reset mistake.
2970 	 *
2971 	 *	Nope, it was not mistake. It is really desired behaviour
2972 	 *	f.e. on http servers, when such sockets are useless, but
2973 	 *	consume significant resources. Let's do it with special
2974 	 *	linger2	option.					--ANK
2975 	 */
2976 
2977 	if (sk->sk_state == TCP_FIN_WAIT2) {
2978 		struct tcp_sock *tp = tcp_sk(sk);
2979 		if (tp->linger2 < 0) {
2980 			tcp_set_state(sk, TCP_CLOSE);
2981 			tcp_send_active_reset(sk, GFP_ATOMIC);
2982 			__NET_INC_STATS(sock_net(sk),
2983 					LINUX_MIB_TCPABORTONLINGER);
2984 		} else {
2985 			const int tmo = tcp_fin_time(sk);
2986 
2987 			if (tmo > TCP_TIMEWAIT_LEN) {
2988 				inet_csk_reset_keepalive_timer(sk,
2989 						tmo - TCP_TIMEWAIT_LEN);
2990 			} else {
2991 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2992 				goto out;
2993 			}
2994 		}
2995 	}
2996 	if (sk->sk_state != TCP_CLOSE) {
2997 		if (tcp_check_oom(sk, 0)) {
2998 			tcp_set_state(sk, TCP_CLOSE);
2999 			tcp_send_active_reset(sk, GFP_ATOMIC);
3000 			__NET_INC_STATS(sock_net(sk),
3001 					LINUX_MIB_TCPABORTONMEMORY);
3002 		} else if (!check_net(sock_net(sk))) {
3003 			/* Not possible to send reset; just close */
3004 			tcp_set_state(sk, TCP_CLOSE);
3005 		}
3006 	}
3007 
3008 	if (sk->sk_state == TCP_CLOSE) {
3009 		struct request_sock *req;
3010 
3011 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3012 						lockdep_sock_is_held(sk));
3013 		/* We could get here with a non-NULL req if the socket is
3014 		 * aborted (e.g., closed with unread data) before 3WHS
3015 		 * finishes.
3016 		 */
3017 		if (req)
3018 			reqsk_fastopen_remove(sk, req, false);
3019 		inet_csk_destroy_sock(sk);
3020 	}
3021 	/* Otherwise, socket is reprieved until protocol close. */
3022 
3023 out:
3024 	bh_unlock_sock(sk);
3025 	local_bh_enable();
3026 }
3027 
3028 void tcp_close(struct sock *sk, long timeout)
3029 {
3030 	lock_sock(sk);
3031 	__tcp_close(sk, timeout);
3032 	release_sock(sk);
3033 	sock_put(sk);
3034 }
3035 EXPORT_SYMBOL(tcp_close);
3036 
3037 /* These states need RST on ABORT according to RFC793 */
3038 
3039 static inline bool tcp_need_reset(int state)
3040 {
3041 	return (1 << state) &
3042 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3043 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3044 }
3045 
3046 static void tcp_rtx_queue_purge(struct sock *sk)
3047 {
3048 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3049 
3050 	tcp_sk(sk)->highest_sack = NULL;
3051 	while (p) {
3052 		struct sk_buff *skb = rb_to_skb(p);
3053 
3054 		p = rb_next(p);
3055 		/* Since we are deleting whole queue, no need to
3056 		 * list_del(&skb->tcp_tsorted_anchor)
3057 		 */
3058 		tcp_rtx_queue_unlink(skb, sk);
3059 		tcp_wmem_free_skb(sk, skb);
3060 	}
3061 }
3062 
3063 void tcp_write_queue_purge(struct sock *sk)
3064 {
3065 	struct sk_buff *skb;
3066 
3067 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3068 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3069 		tcp_skb_tsorted_anchor_cleanup(skb);
3070 		tcp_wmem_free_skb(sk, skb);
3071 	}
3072 	tcp_rtx_queue_purge(sk);
3073 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3074 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3075 	tcp_sk(sk)->packets_out = 0;
3076 	inet_csk(sk)->icsk_backoff = 0;
3077 }
3078 
3079 int tcp_disconnect(struct sock *sk, int flags)
3080 {
3081 	struct inet_sock *inet = inet_sk(sk);
3082 	struct inet_connection_sock *icsk = inet_csk(sk);
3083 	struct tcp_sock *tp = tcp_sk(sk);
3084 	int old_state = sk->sk_state;
3085 	u32 seq;
3086 
3087 	if (old_state != TCP_CLOSE)
3088 		tcp_set_state(sk, TCP_CLOSE);
3089 
3090 	/* ABORT function of RFC793 */
3091 	if (old_state == TCP_LISTEN) {
3092 		inet_csk_listen_stop(sk);
3093 	} else if (unlikely(tp->repair)) {
3094 		sk->sk_err = ECONNABORTED;
3095 	} else if (tcp_need_reset(old_state) ||
3096 		   (tp->snd_nxt != tp->write_seq &&
3097 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3098 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3099 		 * states
3100 		 */
3101 		tcp_send_active_reset(sk, gfp_any());
3102 		sk->sk_err = ECONNRESET;
3103 	} else if (old_state == TCP_SYN_SENT)
3104 		sk->sk_err = ECONNRESET;
3105 
3106 	tcp_clear_xmit_timers(sk);
3107 	__skb_queue_purge(&sk->sk_receive_queue);
3108 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3109 	WRITE_ONCE(tp->urg_data, 0);
3110 	tcp_write_queue_purge(sk);
3111 	tcp_fastopen_active_disable_ofo_check(sk);
3112 	skb_rbtree_purge(&tp->out_of_order_queue);
3113 
3114 	inet->inet_dport = 0;
3115 
3116 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3117 		inet_reset_saddr(sk);
3118 
3119 	sk->sk_shutdown = 0;
3120 	sock_reset_flag(sk, SOCK_DONE);
3121 	tp->srtt_us = 0;
3122 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3123 	tp->rcv_rtt_last_tsecr = 0;
3124 
3125 	seq = tp->write_seq + tp->max_window + 2;
3126 	if (!seq)
3127 		seq = 1;
3128 	WRITE_ONCE(tp->write_seq, seq);
3129 
3130 	icsk->icsk_backoff = 0;
3131 	icsk->icsk_probes_out = 0;
3132 	icsk->icsk_probes_tstamp = 0;
3133 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3134 	icsk->icsk_rto_min = TCP_RTO_MIN;
3135 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3136 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3137 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3138 	tp->snd_cwnd_cnt = 0;
3139 	tp->is_cwnd_limited = 0;
3140 	tp->max_packets_out = 0;
3141 	tp->window_clamp = 0;
3142 	tp->delivered = 0;
3143 	tp->delivered_ce = 0;
3144 	if (icsk->icsk_ca_ops->release)
3145 		icsk->icsk_ca_ops->release(sk);
3146 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3147 	icsk->icsk_ca_initialized = 0;
3148 	tcp_set_ca_state(sk, TCP_CA_Open);
3149 	tp->is_sack_reneg = 0;
3150 	tcp_clear_retrans(tp);
3151 	tp->total_retrans = 0;
3152 	inet_csk_delack_init(sk);
3153 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3154 	 * issue in __tcp_select_window()
3155 	 */
3156 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3157 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3158 	__sk_dst_reset(sk);
3159 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3160 	tcp_saved_syn_free(tp);
3161 	tp->compressed_ack = 0;
3162 	tp->segs_in = 0;
3163 	tp->segs_out = 0;
3164 	tp->bytes_sent = 0;
3165 	tp->bytes_acked = 0;
3166 	tp->bytes_received = 0;
3167 	tp->bytes_retrans = 0;
3168 	tp->data_segs_in = 0;
3169 	tp->data_segs_out = 0;
3170 	tp->duplicate_sack[0].start_seq = 0;
3171 	tp->duplicate_sack[0].end_seq = 0;
3172 	tp->dsack_dups = 0;
3173 	tp->reord_seen = 0;
3174 	tp->retrans_out = 0;
3175 	tp->sacked_out = 0;
3176 	tp->tlp_high_seq = 0;
3177 	tp->last_oow_ack_time = 0;
3178 	/* There's a bubble in the pipe until at least the first ACK. */
3179 	tp->app_limited = ~0U;
3180 	tp->rack.mstamp = 0;
3181 	tp->rack.advanced = 0;
3182 	tp->rack.reo_wnd_steps = 1;
3183 	tp->rack.last_delivered = 0;
3184 	tp->rack.reo_wnd_persist = 0;
3185 	tp->rack.dsack_seen = 0;
3186 	tp->syn_data_acked = 0;
3187 	tp->rx_opt.saw_tstamp = 0;
3188 	tp->rx_opt.dsack = 0;
3189 	tp->rx_opt.num_sacks = 0;
3190 	tp->rcv_ooopack = 0;
3191 
3192 
3193 	/* Clean up fastopen related fields */
3194 	tcp_free_fastopen_req(tp);
3195 	inet->defer_connect = 0;
3196 	tp->fastopen_client_fail = 0;
3197 
3198 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3199 
3200 	if (sk->sk_frag.page) {
3201 		put_page(sk->sk_frag.page);
3202 		sk->sk_frag.page = NULL;
3203 		sk->sk_frag.offset = 0;
3204 	}
3205 	sk_error_report(sk);
3206 	return 0;
3207 }
3208 EXPORT_SYMBOL(tcp_disconnect);
3209 
3210 static inline bool tcp_can_repair_sock(const struct sock *sk)
3211 {
3212 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3213 		(sk->sk_state != TCP_LISTEN);
3214 }
3215 
3216 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3217 {
3218 	struct tcp_repair_window opt;
3219 
3220 	if (!tp->repair)
3221 		return -EPERM;
3222 
3223 	if (len != sizeof(opt))
3224 		return -EINVAL;
3225 
3226 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3227 		return -EFAULT;
3228 
3229 	if (opt.max_window < opt.snd_wnd)
3230 		return -EINVAL;
3231 
3232 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3233 		return -EINVAL;
3234 
3235 	if (after(opt.rcv_wup, tp->rcv_nxt))
3236 		return -EINVAL;
3237 
3238 	tp->snd_wl1	= opt.snd_wl1;
3239 	tp->snd_wnd	= opt.snd_wnd;
3240 	tp->max_window	= opt.max_window;
3241 
3242 	tp->rcv_wnd	= opt.rcv_wnd;
3243 	tp->rcv_wup	= opt.rcv_wup;
3244 
3245 	return 0;
3246 }
3247 
3248 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3249 		unsigned int len)
3250 {
3251 	struct tcp_sock *tp = tcp_sk(sk);
3252 	struct tcp_repair_opt opt;
3253 	size_t offset = 0;
3254 
3255 	while (len >= sizeof(opt)) {
3256 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3257 			return -EFAULT;
3258 
3259 		offset += sizeof(opt);
3260 		len -= sizeof(opt);
3261 
3262 		switch (opt.opt_code) {
3263 		case TCPOPT_MSS:
3264 			tp->rx_opt.mss_clamp = opt.opt_val;
3265 			tcp_mtup_init(sk);
3266 			break;
3267 		case TCPOPT_WINDOW:
3268 			{
3269 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3270 				u16 rcv_wscale = opt.opt_val >> 16;
3271 
3272 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3273 					return -EFBIG;
3274 
3275 				tp->rx_opt.snd_wscale = snd_wscale;
3276 				tp->rx_opt.rcv_wscale = rcv_wscale;
3277 				tp->rx_opt.wscale_ok = 1;
3278 			}
3279 			break;
3280 		case TCPOPT_SACK_PERM:
3281 			if (opt.opt_val != 0)
3282 				return -EINVAL;
3283 
3284 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3285 			break;
3286 		case TCPOPT_TIMESTAMP:
3287 			if (opt.opt_val != 0)
3288 				return -EINVAL;
3289 
3290 			tp->rx_opt.tstamp_ok = 1;
3291 			break;
3292 		}
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3299 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3300 
3301 static void tcp_enable_tx_delay(void)
3302 {
3303 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3304 		static int __tcp_tx_delay_enabled = 0;
3305 
3306 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3307 			static_branch_enable(&tcp_tx_delay_enabled);
3308 			pr_info("TCP_TX_DELAY enabled\n");
3309 		}
3310 	}
3311 }
3312 
3313 /* When set indicates to always queue non-full frames.  Later the user clears
3314  * this option and we transmit any pending partial frames in the queue.  This is
3315  * meant to be used alongside sendfile() to get properly filled frames when the
3316  * user (for example) must write out headers with a write() call first and then
3317  * use sendfile to send out the data parts.
3318  *
3319  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3320  * TCP_NODELAY.
3321  */
3322 void __tcp_sock_set_cork(struct sock *sk, bool on)
3323 {
3324 	struct tcp_sock *tp = tcp_sk(sk);
3325 
3326 	if (on) {
3327 		tp->nonagle |= TCP_NAGLE_CORK;
3328 	} else {
3329 		tp->nonagle &= ~TCP_NAGLE_CORK;
3330 		if (tp->nonagle & TCP_NAGLE_OFF)
3331 			tp->nonagle |= TCP_NAGLE_PUSH;
3332 		tcp_push_pending_frames(sk);
3333 	}
3334 }
3335 
3336 void tcp_sock_set_cork(struct sock *sk, bool on)
3337 {
3338 	lock_sock(sk);
3339 	__tcp_sock_set_cork(sk, on);
3340 	release_sock(sk);
3341 }
3342 EXPORT_SYMBOL(tcp_sock_set_cork);
3343 
3344 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3345  * remembered, but it is not activated until cork is cleared.
3346  *
3347  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3348  * even TCP_CORK for currently queued segments.
3349  */
3350 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3351 {
3352 	if (on) {
3353 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3354 		tcp_push_pending_frames(sk);
3355 	} else {
3356 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3357 	}
3358 }
3359 
3360 void tcp_sock_set_nodelay(struct sock *sk)
3361 {
3362 	lock_sock(sk);
3363 	__tcp_sock_set_nodelay(sk, true);
3364 	release_sock(sk);
3365 }
3366 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3367 
3368 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3369 {
3370 	if (!val) {
3371 		inet_csk_enter_pingpong_mode(sk);
3372 		return;
3373 	}
3374 
3375 	inet_csk_exit_pingpong_mode(sk);
3376 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3377 	    inet_csk_ack_scheduled(sk)) {
3378 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3379 		tcp_cleanup_rbuf(sk, 1);
3380 		if (!(val & 1))
3381 			inet_csk_enter_pingpong_mode(sk);
3382 	}
3383 }
3384 
3385 void tcp_sock_set_quickack(struct sock *sk, int val)
3386 {
3387 	lock_sock(sk);
3388 	__tcp_sock_set_quickack(sk, val);
3389 	release_sock(sk);
3390 }
3391 EXPORT_SYMBOL(tcp_sock_set_quickack);
3392 
3393 int tcp_sock_set_syncnt(struct sock *sk, int val)
3394 {
3395 	if (val < 1 || val > MAX_TCP_SYNCNT)
3396 		return -EINVAL;
3397 
3398 	lock_sock(sk);
3399 	inet_csk(sk)->icsk_syn_retries = val;
3400 	release_sock(sk);
3401 	return 0;
3402 }
3403 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3404 
3405 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3406 {
3407 	lock_sock(sk);
3408 	inet_csk(sk)->icsk_user_timeout = val;
3409 	release_sock(sk);
3410 }
3411 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3412 
3413 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3414 {
3415 	struct tcp_sock *tp = tcp_sk(sk);
3416 
3417 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3418 		return -EINVAL;
3419 
3420 	tp->keepalive_time = val * HZ;
3421 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3422 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3423 		u32 elapsed = keepalive_time_elapsed(tp);
3424 
3425 		if (tp->keepalive_time > elapsed)
3426 			elapsed = tp->keepalive_time - elapsed;
3427 		else
3428 			elapsed = 0;
3429 		inet_csk_reset_keepalive_timer(sk, elapsed);
3430 	}
3431 
3432 	return 0;
3433 }
3434 
3435 int tcp_sock_set_keepidle(struct sock *sk, int val)
3436 {
3437 	int err;
3438 
3439 	lock_sock(sk);
3440 	err = tcp_sock_set_keepidle_locked(sk, val);
3441 	release_sock(sk);
3442 	return err;
3443 }
3444 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3445 
3446 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3447 {
3448 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3449 		return -EINVAL;
3450 
3451 	lock_sock(sk);
3452 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3453 	release_sock(sk);
3454 	return 0;
3455 }
3456 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3457 
3458 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3459 {
3460 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3461 		return -EINVAL;
3462 
3463 	lock_sock(sk);
3464 	tcp_sk(sk)->keepalive_probes = val;
3465 	release_sock(sk);
3466 	return 0;
3467 }
3468 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3469 
3470 int tcp_set_window_clamp(struct sock *sk, int val)
3471 {
3472 	struct tcp_sock *tp = tcp_sk(sk);
3473 
3474 	if (!val) {
3475 		if (sk->sk_state != TCP_CLOSE)
3476 			return -EINVAL;
3477 		tp->window_clamp = 0;
3478 	} else {
3479 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3480 			SOCK_MIN_RCVBUF / 2 : val;
3481 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3482 	}
3483 	return 0;
3484 }
3485 
3486 /*
3487  *	Socket option code for TCP.
3488  */
3489 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3490 		      sockptr_t optval, unsigned int optlen)
3491 {
3492 	struct tcp_sock *tp = tcp_sk(sk);
3493 	struct inet_connection_sock *icsk = inet_csk(sk);
3494 	struct net *net = sock_net(sk);
3495 	int val;
3496 	int err = 0;
3497 
3498 	/* These are data/string values, all the others are ints */
3499 	switch (optname) {
3500 	case TCP_CONGESTION: {
3501 		char name[TCP_CA_NAME_MAX];
3502 
3503 		if (optlen < 1)
3504 			return -EINVAL;
3505 
3506 		val = strncpy_from_sockptr(name, optval,
3507 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3508 		if (val < 0)
3509 			return -EFAULT;
3510 		name[val] = 0;
3511 
3512 		sockopt_lock_sock(sk);
3513 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3514 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3515 								    CAP_NET_ADMIN));
3516 		sockopt_release_sock(sk);
3517 		return err;
3518 	}
3519 	case TCP_ULP: {
3520 		char name[TCP_ULP_NAME_MAX];
3521 
3522 		if (optlen < 1)
3523 			return -EINVAL;
3524 
3525 		val = strncpy_from_sockptr(name, optval,
3526 					min_t(long, TCP_ULP_NAME_MAX - 1,
3527 					      optlen));
3528 		if (val < 0)
3529 			return -EFAULT;
3530 		name[val] = 0;
3531 
3532 		sockopt_lock_sock(sk);
3533 		err = tcp_set_ulp(sk, name);
3534 		sockopt_release_sock(sk);
3535 		return err;
3536 	}
3537 	case TCP_FASTOPEN_KEY: {
3538 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3539 		__u8 *backup_key = NULL;
3540 
3541 		/* Allow a backup key as well to facilitate key rotation
3542 		 * First key is the active one.
3543 		 */
3544 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3545 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3546 			return -EINVAL;
3547 
3548 		if (copy_from_sockptr(key, optval, optlen))
3549 			return -EFAULT;
3550 
3551 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3552 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3553 
3554 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3555 	}
3556 	default:
3557 		/* fallthru */
3558 		break;
3559 	}
3560 
3561 	if (optlen < sizeof(int))
3562 		return -EINVAL;
3563 
3564 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3565 		return -EFAULT;
3566 
3567 	sockopt_lock_sock(sk);
3568 
3569 	switch (optname) {
3570 	case TCP_MAXSEG:
3571 		/* Values greater than interface MTU won't take effect. However
3572 		 * at the point when this call is done we typically don't yet
3573 		 * know which interface is going to be used
3574 		 */
3575 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3576 			err = -EINVAL;
3577 			break;
3578 		}
3579 		tp->rx_opt.user_mss = val;
3580 		break;
3581 
3582 	case TCP_NODELAY:
3583 		__tcp_sock_set_nodelay(sk, val);
3584 		break;
3585 
3586 	case TCP_THIN_LINEAR_TIMEOUTS:
3587 		if (val < 0 || val > 1)
3588 			err = -EINVAL;
3589 		else
3590 			tp->thin_lto = val;
3591 		break;
3592 
3593 	case TCP_THIN_DUPACK:
3594 		if (val < 0 || val > 1)
3595 			err = -EINVAL;
3596 		break;
3597 
3598 	case TCP_REPAIR:
3599 		if (!tcp_can_repair_sock(sk))
3600 			err = -EPERM;
3601 		else if (val == TCP_REPAIR_ON) {
3602 			tp->repair = 1;
3603 			sk->sk_reuse = SK_FORCE_REUSE;
3604 			tp->repair_queue = TCP_NO_QUEUE;
3605 		} else if (val == TCP_REPAIR_OFF) {
3606 			tp->repair = 0;
3607 			sk->sk_reuse = SK_NO_REUSE;
3608 			tcp_send_window_probe(sk);
3609 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3610 			tp->repair = 0;
3611 			sk->sk_reuse = SK_NO_REUSE;
3612 		} else
3613 			err = -EINVAL;
3614 
3615 		break;
3616 
3617 	case TCP_REPAIR_QUEUE:
3618 		if (!tp->repair)
3619 			err = -EPERM;
3620 		else if ((unsigned int)val < TCP_QUEUES_NR)
3621 			tp->repair_queue = val;
3622 		else
3623 			err = -EINVAL;
3624 		break;
3625 
3626 	case TCP_QUEUE_SEQ:
3627 		if (sk->sk_state != TCP_CLOSE) {
3628 			err = -EPERM;
3629 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3630 			if (!tcp_rtx_queue_empty(sk))
3631 				err = -EPERM;
3632 			else
3633 				WRITE_ONCE(tp->write_seq, val);
3634 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3635 			if (tp->rcv_nxt != tp->copied_seq) {
3636 				err = -EPERM;
3637 			} else {
3638 				WRITE_ONCE(tp->rcv_nxt, val);
3639 				WRITE_ONCE(tp->copied_seq, val);
3640 			}
3641 		} else {
3642 			err = -EINVAL;
3643 		}
3644 		break;
3645 
3646 	case TCP_REPAIR_OPTIONS:
3647 		if (!tp->repair)
3648 			err = -EINVAL;
3649 		else if (sk->sk_state == TCP_ESTABLISHED)
3650 			err = tcp_repair_options_est(sk, optval, optlen);
3651 		else
3652 			err = -EPERM;
3653 		break;
3654 
3655 	case TCP_CORK:
3656 		__tcp_sock_set_cork(sk, val);
3657 		break;
3658 
3659 	case TCP_KEEPIDLE:
3660 		err = tcp_sock_set_keepidle_locked(sk, val);
3661 		break;
3662 	case TCP_KEEPINTVL:
3663 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3664 			err = -EINVAL;
3665 		else
3666 			tp->keepalive_intvl = val * HZ;
3667 		break;
3668 	case TCP_KEEPCNT:
3669 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3670 			err = -EINVAL;
3671 		else
3672 			tp->keepalive_probes = val;
3673 		break;
3674 	case TCP_SYNCNT:
3675 		if (val < 1 || val > MAX_TCP_SYNCNT)
3676 			err = -EINVAL;
3677 		else
3678 			icsk->icsk_syn_retries = val;
3679 		break;
3680 
3681 	case TCP_SAVE_SYN:
3682 		/* 0: disable, 1: enable, 2: start from ether_header */
3683 		if (val < 0 || val > 2)
3684 			err = -EINVAL;
3685 		else
3686 			tp->save_syn = val;
3687 		break;
3688 
3689 	case TCP_LINGER2:
3690 		if (val < 0)
3691 			tp->linger2 = -1;
3692 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3693 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3694 		else
3695 			tp->linger2 = val * HZ;
3696 		break;
3697 
3698 	case TCP_DEFER_ACCEPT:
3699 		/* Translate value in seconds to number of retransmits */
3700 		icsk->icsk_accept_queue.rskq_defer_accept =
3701 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3702 					TCP_RTO_MAX / HZ);
3703 		break;
3704 
3705 	case TCP_WINDOW_CLAMP:
3706 		err = tcp_set_window_clamp(sk, val);
3707 		break;
3708 
3709 	case TCP_QUICKACK:
3710 		__tcp_sock_set_quickack(sk, val);
3711 		break;
3712 
3713 #ifdef CONFIG_TCP_MD5SIG
3714 	case TCP_MD5SIG:
3715 	case TCP_MD5SIG_EXT:
3716 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3717 		break;
3718 #endif
3719 	case TCP_USER_TIMEOUT:
3720 		/* Cap the max time in ms TCP will retry or probe the window
3721 		 * before giving up and aborting (ETIMEDOUT) a connection.
3722 		 */
3723 		if (val < 0)
3724 			err = -EINVAL;
3725 		else
3726 			icsk->icsk_user_timeout = val;
3727 		break;
3728 
3729 	case TCP_FASTOPEN:
3730 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3731 		    TCPF_LISTEN))) {
3732 			tcp_fastopen_init_key_once(net);
3733 
3734 			fastopen_queue_tune(sk, val);
3735 		} else {
3736 			err = -EINVAL;
3737 		}
3738 		break;
3739 	case TCP_FASTOPEN_CONNECT:
3740 		if (val > 1 || val < 0) {
3741 			err = -EINVAL;
3742 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3743 			   TFO_CLIENT_ENABLE) {
3744 			if (sk->sk_state == TCP_CLOSE)
3745 				tp->fastopen_connect = val;
3746 			else
3747 				err = -EINVAL;
3748 		} else {
3749 			err = -EOPNOTSUPP;
3750 		}
3751 		break;
3752 	case TCP_FASTOPEN_NO_COOKIE:
3753 		if (val > 1 || val < 0)
3754 			err = -EINVAL;
3755 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3756 			err = -EINVAL;
3757 		else
3758 			tp->fastopen_no_cookie = val;
3759 		break;
3760 	case TCP_TIMESTAMP:
3761 		if (!tp->repair)
3762 			err = -EPERM;
3763 		else
3764 			tp->tsoffset = val - tcp_time_stamp_raw();
3765 		break;
3766 	case TCP_REPAIR_WINDOW:
3767 		err = tcp_repair_set_window(tp, optval, optlen);
3768 		break;
3769 	case TCP_NOTSENT_LOWAT:
3770 		tp->notsent_lowat = val;
3771 		sk->sk_write_space(sk);
3772 		break;
3773 	case TCP_INQ:
3774 		if (val > 1 || val < 0)
3775 			err = -EINVAL;
3776 		else
3777 			tp->recvmsg_inq = val;
3778 		break;
3779 	case TCP_TX_DELAY:
3780 		if (val)
3781 			tcp_enable_tx_delay();
3782 		tp->tcp_tx_delay = val;
3783 		break;
3784 	default:
3785 		err = -ENOPROTOOPT;
3786 		break;
3787 	}
3788 
3789 	sockopt_release_sock(sk);
3790 	return err;
3791 }
3792 
3793 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3794 		   unsigned int optlen)
3795 {
3796 	const struct inet_connection_sock *icsk = inet_csk(sk);
3797 
3798 	if (level != SOL_TCP)
3799 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3800 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3801 								optval, optlen);
3802 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3803 }
3804 EXPORT_SYMBOL(tcp_setsockopt);
3805 
3806 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3807 				      struct tcp_info *info)
3808 {
3809 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3810 	enum tcp_chrono i;
3811 
3812 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3813 		stats[i] = tp->chrono_stat[i - 1];
3814 		if (i == tp->chrono_type)
3815 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3816 		stats[i] *= USEC_PER_SEC / HZ;
3817 		total += stats[i];
3818 	}
3819 
3820 	info->tcpi_busy_time = total;
3821 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3822 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3823 }
3824 
3825 /* Return information about state of tcp endpoint in API format. */
3826 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3827 {
3828 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3829 	const struct inet_connection_sock *icsk = inet_csk(sk);
3830 	unsigned long rate;
3831 	u32 now;
3832 	u64 rate64;
3833 	bool slow;
3834 
3835 	memset(info, 0, sizeof(*info));
3836 	if (sk->sk_type != SOCK_STREAM)
3837 		return;
3838 
3839 	info->tcpi_state = inet_sk_state_load(sk);
3840 
3841 	/* Report meaningful fields for all TCP states, including listeners */
3842 	rate = READ_ONCE(sk->sk_pacing_rate);
3843 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3844 	info->tcpi_pacing_rate = rate64;
3845 
3846 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3847 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3848 	info->tcpi_max_pacing_rate = rate64;
3849 
3850 	info->tcpi_reordering = tp->reordering;
3851 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3852 
3853 	if (info->tcpi_state == TCP_LISTEN) {
3854 		/* listeners aliased fields :
3855 		 * tcpi_unacked -> Number of children ready for accept()
3856 		 * tcpi_sacked  -> max backlog
3857 		 */
3858 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3859 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3860 		return;
3861 	}
3862 
3863 	slow = lock_sock_fast(sk);
3864 
3865 	info->tcpi_ca_state = icsk->icsk_ca_state;
3866 	info->tcpi_retransmits = icsk->icsk_retransmits;
3867 	info->tcpi_probes = icsk->icsk_probes_out;
3868 	info->tcpi_backoff = icsk->icsk_backoff;
3869 
3870 	if (tp->rx_opt.tstamp_ok)
3871 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3872 	if (tcp_is_sack(tp))
3873 		info->tcpi_options |= TCPI_OPT_SACK;
3874 	if (tp->rx_opt.wscale_ok) {
3875 		info->tcpi_options |= TCPI_OPT_WSCALE;
3876 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3877 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3878 	}
3879 
3880 	if (tp->ecn_flags & TCP_ECN_OK)
3881 		info->tcpi_options |= TCPI_OPT_ECN;
3882 	if (tp->ecn_flags & TCP_ECN_SEEN)
3883 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3884 	if (tp->syn_data_acked)
3885 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3886 
3887 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3888 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3889 	info->tcpi_snd_mss = tp->mss_cache;
3890 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3891 
3892 	info->tcpi_unacked = tp->packets_out;
3893 	info->tcpi_sacked = tp->sacked_out;
3894 
3895 	info->tcpi_lost = tp->lost_out;
3896 	info->tcpi_retrans = tp->retrans_out;
3897 
3898 	now = tcp_jiffies32;
3899 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3900 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3901 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3902 
3903 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3904 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3905 	info->tcpi_rtt = tp->srtt_us >> 3;
3906 	info->tcpi_rttvar = tp->mdev_us >> 2;
3907 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3908 	info->tcpi_advmss = tp->advmss;
3909 
3910 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3911 	info->tcpi_rcv_space = tp->rcvq_space.space;
3912 
3913 	info->tcpi_total_retrans = tp->total_retrans;
3914 
3915 	info->tcpi_bytes_acked = tp->bytes_acked;
3916 	info->tcpi_bytes_received = tp->bytes_received;
3917 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3918 	tcp_get_info_chrono_stats(tp, info);
3919 
3920 	info->tcpi_segs_out = tp->segs_out;
3921 
3922 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3923 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3924 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3925 
3926 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3927 	info->tcpi_data_segs_out = tp->data_segs_out;
3928 
3929 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3930 	rate64 = tcp_compute_delivery_rate(tp);
3931 	if (rate64)
3932 		info->tcpi_delivery_rate = rate64;
3933 	info->tcpi_delivered = tp->delivered;
3934 	info->tcpi_delivered_ce = tp->delivered_ce;
3935 	info->tcpi_bytes_sent = tp->bytes_sent;
3936 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3937 	info->tcpi_dsack_dups = tp->dsack_dups;
3938 	info->tcpi_reord_seen = tp->reord_seen;
3939 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3940 	info->tcpi_snd_wnd = tp->snd_wnd;
3941 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3942 	unlock_sock_fast(sk, slow);
3943 }
3944 EXPORT_SYMBOL_GPL(tcp_get_info);
3945 
3946 static size_t tcp_opt_stats_get_size(void)
3947 {
3948 	return
3949 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3950 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3951 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3952 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3953 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3954 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3955 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3956 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3957 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3958 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3959 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3960 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3961 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3962 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3963 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3964 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3965 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3966 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3967 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3968 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3969 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3970 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3971 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3972 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3973 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3974 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3975 		0;
3976 }
3977 
3978 /* Returns TTL or hop limit of an incoming packet from skb. */
3979 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3980 {
3981 	if (skb->protocol == htons(ETH_P_IP))
3982 		return ip_hdr(skb)->ttl;
3983 	else if (skb->protocol == htons(ETH_P_IPV6))
3984 		return ipv6_hdr(skb)->hop_limit;
3985 	else
3986 		return 0;
3987 }
3988 
3989 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3990 					       const struct sk_buff *orig_skb,
3991 					       const struct sk_buff *ack_skb)
3992 {
3993 	const struct tcp_sock *tp = tcp_sk(sk);
3994 	struct sk_buff *stats;
3995 	struct tcp_info info;
3996 	unsigned long rate;
3997 	u64 rate64;
3998 
3999 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4000 	if (!stats)
4001 		return NULL;
4002 
4003 	tcp_get_info_chrono_stats(tp, &info);
4004 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4005 			  info.tcpi_busy_time, TCP_NLA_PAD);
4006 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4007 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4008 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4009 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4010 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4011 			  tp->data_segs_out, TCP_NLA_PAD);
4012 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4013 			  tp->total_retrans, TCP_NLA_PAD);
4014 
4015 	rate = READ_ONCE(sk->sk_pacing_rate);
4016 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4017 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4018 
4019 	rate64 = tcp_compute_delivery_rate(tp);
4020 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4021 
4022 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4023 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4024 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4025 
4026 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4027 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4028 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4029 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4030 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4031 
4032 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4033 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4034 
4035 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4036 			  TCP_NLA_PAD);
4037 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4038 			  TCP_NLA_PAD);
4039 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4040 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4041 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4042 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4043 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4044 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4045 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4046 			  TCP_NLA_PAD);
4047 	if (ack_skb)
4048 		nla_put_u8(stats, TCP_NLA_TTL,
4049 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4050 
4051 	return stats;
4052 }
4053 
4054 int do_tcp_getsockopt(struct sock *sk, int level,
4055 		      int optname, sockptr_t optval, sockptr_t optlen)
4056 {
4057 	struct inet_connection_sock *icsk = inet_csk(sk);
4058 	struct tcp_sock *tp = tcp_sk(sk);
4059 	struct net *net = sock_net(sk);
4060 	int val, len;
4061 
4062 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4063 		return -EFAULT;
4064 
4065 	len = min_t(unsigned int, len, sizeof(int));
4066 
4067 	if (len < 0)
4068 		return -EINVAL;
4069 
4070 	switch (optname) {
4071 	case TCP_MAXSEG:
4072 		val = tp->mss_cache;
4073 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4074 			val = tp->rx_opt.user_mss;
4075 		if (tp->repair)
4076 			val = tp->rx_opt.mss_clamp;
4077 		break;
4078 	case TCP_NODELAY:
4079 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4080 		break;
4081 	case TCP_CORK:
4082 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4083 		break;
4084 	case TCP_KEEPIDLE:
4085 		val = keepalive_time_when(tp) / HZ;
4086 		break;
4087 	case TCP_KEEPINTVL:
4088 		val = keepalive_intvl_when(tp) / HZ;
4089 		break;
4090 	case TCP_KEEPCNT:
4091 		val = keepalive_probes(tp);
4092 		break;
4093 	case TCP_SYNCNT:
4094 		val = icsk->icsk_syn_retries ? :
4095 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4096 		break;
4097 	case TCP_LINGER2:
4098 		val = tp->linger2;
4099 		if (val >= 0)
4100 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4101 		break;
4102 	case TCP_DEFER_ACCEPT:
4103 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4104 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4105 		break;
4106 	case TCP_WINDOW_CLAMP:
4107 		val = tp->window_clamp;
4108 		break;
4109 	case TCP_INFO: {
4110 		struct tcp_info info;
4111 
4112 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4113 			return -EFAULT;
4114 
4115 		tcp_get_info(sk, &info);
4116 
4117 		len = min_t(unsigned int, len, sizeof(info));
4118 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4119 			return -EFAULT;
4120 		if (copy_to_sockptr(optval, &info, len))
4121 			return -EFAULT;
4122 		return 0;
4123 	}
4124 	case TCP_CC_INFO: {
4125 		const struct tcp_congestion_ops *ca_ops;
4126 		union tcp_cc_info info;
4127 		size_t sz = 0;
4128 		int attr;
4129 
4130 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4131 			return -EFAULT;
4132 
4133 		ca_ops = icsk->icsk_ca_ops;
4134 		if (ca_ops && ca_ops->get_info)
4135 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4136 
4137 		len = min_t(unsigned int, len, sz);
4138 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4139 			return -EFAULT;
4140 		if (copy_to_sockptr(optval, &info, len))
4141 			return -EFAULT;
4142 		return 0;
4143 	}
4144 	case TCP_QUICKACK:
4145 		val = !inet_csk_in_pingpong_mode(sk);
4146 		break;
4147 
4148 	case TCP_CONGESTION:
4149 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4150 			return -EFAULT;
4151 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4152 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4153 			return -EFAULT;
4154 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4155 			return -EFAULT;
4156 		return 0;
4157 
4158 	case TCP_ULP:
4159 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4160 			return -EFAULT;
4161 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4162 		if (!icsk->icsk_ulp_ops) {
4163 			len = 0;
4164 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4165 				return -EFAULT;
4166 			return 0;
4167 		}
4168 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4169 			return -EFAULT;
4170 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4171 			return -EFAULT;
4172 		return 0;
4173 
4174 	case TCP_FASTOPEN_KEY: {
4175 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4176 		unsigned int key_len;
4177 
4178 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4179 			return -EFAULT;
4180 
4181 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4182 				TCP_FASTOPEN_KEY_LENGTH;
4183 		len = min_t(unsigned int, len, key_len);
4184 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4185 			return -EFAULT;
4186 		if (copy_to_sockptr(optval, key, len))
4187 			return -EFAULT;
4188 		return 0;
4189 	}
4190 	case TCP_THIN_LINEAR_TIMEOUTS:
4191 		val = tp->thin_lto;
4192 		break;
4193 
4194 	case TCP_THIN_DUPACK:
4195 		val = 0;
4196 		break;
4197 
4198 	case TCP_REPAIR:
4199 		val = tp->repair;
4200 		break;
4201 
4202 	case TCP_REPAIR_QUEUE:
4203 		if (tp->repair)
4204 			val = tp->repair_queue;
4205 		else
4206 			return -EINVAL;
4207 		break;
4208 
4209 	case TCP_REPAIR_WINDOW: {
4210 		struct tcp_repair_window opt;
4211 
4212 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4213 			return -EFAULT;
4214 
4215 		if (len != sizeof(opt))
4216 			return -EINVAL;
4217 
4218 		if (!tp->repair)
4219 			return -EPERM;
4220 
4221 		opt.snd_wl1	= tp->snd_wl1;
4222 		opt.snd_wnd	= tp->snd_wnd;
4223 		opt.max_window	= tp->max_window;
4224 		opt.rcv_wnd	= tp->rcv_wnd;
4225 		opt.rcv_wup	= tp->rcv_wup;
4226 
4227 		if (copy_to_sockptr(optval, &opt, len))
4228 			return -EFAULT;
4229 		return 0;
4230 	}
4231 	case TCP_QUEUE_SEQ:
4232 		if (tp->repair_queue == TCP_SEND_QUEUE)
4233 			val = tp->write_seq;
4234 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4235 			val = tp->rcv_nxt;
4236 		else
4237 			return -EINVAL;
4238 		break;
4239 
4240 	case TCP_USER_TIMEOUT:
4241 		val = icsk->icsk_user_timeout;
4242 		break;
4243 
4244 	case TCP_FASTOPEN:
4245 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4246 		break;
4247 
4248 	case TCP_FASTOPEN_CONNECT:
4249 		val = tp->fastopen_connect;
4250 		break;
4251 
4252 	case TCP_FASTOPEN_NO_COOKIE:
4253 		val = tp->fastopen_no_cookie;
4254 		break;
4255 
4256 	case TCP_TX_DELAY:
4257 		val = tp->tcp_tx_delay;
4258 		break;
4259 
4260 	case TCP_TIMESTAMP:
4261 		val = tcp_time_stamp_raw() + tp->tsoffset;
4262 		break;
4263 	case TCP_NOTSENT_LOWAT:
4264 		val = tp->notsent_lowat;
4265 		break;
4266 	case TCP_INQ:
4267 		val = tp->recvmsg_inq;
4268 		break;
4269 	case TCP_SAVE_SYN:
4270 		val = tp->save_syn;
4271 		break;
4272 	case TCP_SAVED_SYN: {
4273 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4274 			return -EFAULT;
4275 
4276 		sockopt_lock_sock(sk);
4277 		if (tp->saved_syn) {
4278 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4279 				len = tcp_saved_syn_len(tp->saved_syn);
4280 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4281 					sockopt_release_sock(sk);
4282 					return -EFAULT;
4283 				}
4284 				sockopt_release_sock(sk);
4285 				return -EINVAL;
4286 			}
4287 			len = tcp_saved_syn_len(tp->saved_syn);
4288 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4289 				sockopt_release_sock(sk);
4290 				return -EFAULT;
4291 			}
4292 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4293 				sockopt_release_sock(sk);
4294 				return -EFAULT;
4295 			}
4296 			tcp_saved_syn_free(tp);
4297 			sockopt_release_sock(sk);
4298 		} else {
4299 			sockopt_release_sock(sk);
4300 			len = 0;
4301 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4302 				return -EFAULT;
4303 		}
4304 		return 0;
4305 	}
4306 #ifdef CONFIG_MMU
4307 	case TCP_ZEROCOPY_RECEIVE: {
4308 		struct scm_timestamping_internal tss;
4309 		struct tcp_zerocopy_receive zc = {};
4310 		int err;
4311 
4312 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4313 			return -EFAULT;
4314 		if (len < 0 ||
4315 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4316 			return -EINVAL;
4317 		if (unlikely(len > sizeof(zc))) {
4318 			err = check_zeroed_sockptr(optval, sizeof(zc),
4319 						   len - sizeof(zc));
4320 			if (err < 1)
4321 				return err == 0 ? -EINVAL : err;
4322 			len = sizeof(zc);
4323 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4324 				return -EFAULT;
4325 		}
4326 		if (copy_from_sockptr(&zc, optval, len))
4327 			return -EFAULT;
4328 		if (zc.reserved)
4329 			return -EINVAL;
4330 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4331 			return -EINVAL;
4332 		sockopt_lock_sock(sk);
4333 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4334 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4335 							  &zc, &len, err);
4336 		sockopt_release_sock(sk);
4337 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4338 			goto zerocopy_rcv_cmsg;
4339 		switch (len) {
4340 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4341 			goto zerocopy_rcv_cmsg;
4342 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4343 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4344 		case offsetofend(struct tcp_zerocopy_receive, flags):
4345 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4346 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4347 		case offsetofend(struct tcp_zerocopy_receive, err):
4348 			goto zerocopy_rcv_sk_err;
4349 		case offsetofend(struct tcp_zerocopy_receive, inq):
4350 			goto zerocopy_rcv_inq;
4351 		case offsetofend(struct tcp_zerocopy_receive, length):
4352 		default:
4353 			goto zerocopy_rcv_out;
4354 		}
4355 zerocopy_rcv_cmsg:
4356 		if (zc.msg_flags & TCP_CMSG_TS)
4357 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4358 		else
4359 			zc.msg_flags = 0;
4360 zerocopy_rcv_sk_err:
4361 		if (!err)
4362 			zc.err = sock_error(sk);
4363 zerocopy_rcv_inq:
4364 		zc.inq = tcp_inq_hint(sk);
4365 zerocopy_rcv_out:
4366 		if (!err && copy_to_sockptr(optval, &zc, len))
4367 			err = -EFAULT;
4368 		return err;
4369 	}
4370 #endif
4371 	default:
4372 		return -ENOPROTOOPT;
4373 	}
4374 
4375 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4376 		return -EFAULT;
4377 	if (copy_to_sockptr(optval, &val, len))
4378 		return -EFAULT;
4379 	return 0;
4380 }
4381 
4382 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4383 {
4384 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4385 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4386 	 */
4387 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4388 		return true;
4389 
4390 	return false;
4391 }
4392 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4393 
4394 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4395 		   int __user *optlen)
4396 {
4397 	struct inet_connection_sock *icsk = inet_csk(sk);
4398 
4399 	if (level != SOL_TCP)
4400 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4401 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4402 								optval, optlen);
4403 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4404 				 USER_SOCKPTR(optlen));
4405 }
4406 EXPORT_SYMBOL(tcp_getsockopt);
4407 
4408 #ifdef CONFIG_TCP_MD5SIG
4409 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4410 static DEFINE_MUTEX(tcp_md5sig_mutex);
4411 static bool tcp_md5sig_pool_populated = false;
4412 
4413 static void __tcp_alloc_md5sig_pool(void)
4414 {
4415 	struct crypto_ahash *hash;
4416 	int cpu;
4417 
4418 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4419 	if (IS_ERR(hash))
4420 		return;
4421 
4422 	for_each_possible_cpu(cpu) {
4423 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4424 		struct ahash_request *req;
4425 
4426 		if (!scratch) {
4427 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4428 					       sizeof(struct tcphdr),
4429 					       GFP_KERNEL,
4430 					       cpu_to_node(cpu));
4431 			if (!scratch)
4432 				return;
4433 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4434 		}
4435 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4436 			continue;
4437 
4438 		req = ahash_request_alloc(hash, GFP_KERNEL);
4439 		if (!req)
4440 			return;
4441 
4442 		ahash_request_set_callback(req, 0, NULL, NULL);
4443 
4444 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4445 	}
4446 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4447 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4448 	 */
4449 	smp_wmb();
4450 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4451 	 * and tcp_get_md5sig_pool().
4452 	*/
4453 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4454 }
4455 
4456 bool tcp_alloc_md5sig_pool(void)
4457 {
4458 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4459 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4460 		mutex_lock(&tcp_md5sig_mutex);
4461 
4462 		if (!tcp_md5sig_pool_populated) {
4463 			__tcp_alloc_md5sig_pool();
4464 			if (tcp_md5sig_pool_populated)
4465 				static_branch_inc(&tcp_md5_needed);
4466 		}
4467 
4468 		mutex_unlock(&tcp_md5sig_mutex);
4469 	}
4470 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4471 	return READ_ONCE(tcp_md5sig_pool_populated);
4472 }
4473 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4474 
4475 
4476 /**
4477  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4478  *
4479  *	We use percpu structure, so if we succeed, we exit with preemption
4480  *	and BH disabled, to make sure another thread or softirq handling
4481  *	wont try to get same context.
4482  */
4483 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4484 {
4485 	local_bh_disable();
4486 
4487 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4488 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4489 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4490 		smp_rmb();
4491 		return this_cpu_ptr(&tcp_md5sig_pool);
4492 	}
4493 	local_bh_enable();
4494 	return NULL;
4495 }
4496 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4497 
4498 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4499 			  const struct sk_buff *skb, unsigned int header_len)
4500 {
4501 	struct scatterlist sg;
4502 	const struct tcphdr *tp = tcp_hdr(skb);
4503 	struct ahash_request *req = hp->md5_req;
4504 	unsigned int i;
4505 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4506 					   skb_headlen(skb) - header_len : 0;
4507 	const struct skb_shared_info *shi = skb_shinfo(skb);
4508 	struct sk_buff *frag_iter;
4509 
4510 	sg_init_table(&sg, 1);
4511 
4512 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4513 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4514 	if (crypto_ahash_update(req))
4515 		return 1;
4516 
4517 	for (i = 0; i < shi->nr_frags; ++i) {
4518 		const skb_frag_t *f = &shi->frags[i];
4519 		unsigned int offset = skb_frag_off(f);
4520 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4521 
4522 		sg_set_page(&sg, page, skb_frag_size(f),
4523 			    offset_in_page(offset));
4524 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4525 		if (crypto_ahash_update(req))
4526 			return 1;
4527 	}
4528 
4529 	skb_walk_frags(skb, frag_iter)
4530 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4531 			return 1;
4532 
4533 	return 0;
4534 }
4535 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4536 
4537 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4538 {
4539 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4540 	struct scatterlist sg;
4541 
4542 	sg_init_one(&sg, key->key, keylen);
4543 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4544 
4545 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4546 	return data_race(crypto_ahash_update(hp->md5_req));
4547 }
4548 EXPORT_SYMBOL(tcp_md5_hash_key);
4549 
4550 /* Called with rcu_read_lock() */
4551 enum skb_drop_reason
4552 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4553 		     const void *saddr, const void *daddr,
4554 		     int family, int dif, int sdif)
4555 {
4556 	/*
4557 	 * This gets called for each TCP segment that arrives
4558 	 * so we want to be efficient.
4559 	 * We have 3 drop cases:
4560 	 * o No MD5 hash and one expected.
4561 	 * o MD5 hash and we're not expecting one.
4562 	 * o MD5 hash and its wrong.
4563 	 */
4564 	const __u8 *hash_location = NULL;
4565 	struct tcp_md5sig_key *hash_expected;
4566 	const struct tcphdr *th = tcp_hdr(skb);
4567 	struct tcp_sock *tp = tcp_sk(sk);
4568 	int genhash, l3index;
4569 	u8 newhash[16];
4570 
4571 	/* sdif set, means packet ingressed via a device
4572 	 * in an L3 domain and dif is set to the l3mdev
4573 	 */
4574 	l3index = sdif ? dif : 0;
4575 
4576 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4577 	hash_location = tcp_parse_md5sig_option(th);
4578 
4579 	/* We've parsed the options - do we have a hash? */
4580 	if (!hash_expected && !hash_location)
4581 		return SKB_NOT_DROPPED_YET;
4582 
4583 	if (hash_expected && !hash_location) {
4584 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4585 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4586 	}
4587 
4588 	if (!hash_expected && hash_location) {
4589 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4590 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4591 	}
4592 
4593 	/* Check the signature.
4594 	 * To support dual stack listeners, we need to handle
4595 	 * IPv4-mapped case.
4596 	 */
4597 	if (family == AF_INET)
4598 		genhash = tcp_v4_md5_hash_skb(newhash,
4599 					      hash_expected,
4600 					      NULL, skb);
4601 	else
4602 		genhash = tp->af_specific->calc_md5_hash(newhash,
4603 							 hash_expected,
4604 							 NULL, skb);
4605 
4606 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4607 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4608 		if (family == AF_INET) {
4609 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4610 					saddr, ntohs(th->source),
4611 					daddr, ntohs(th->dest),
4612 					genhash ? " tcp_v4_calc_md5_hash failed"
4613 					: "", l3index);
4614 		} else {
4615 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4616 					genhash ? "failed" : "mismatch",
4617 					saddr, ntohs(th->source),
4618 					daddr, ntohs(th->dest), l3index);
4619 		}
4620 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4621 	}
4622 	return SKB_NOT_DROPPED_YET;
4623 }
4624 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4625 
4626 #endif
4627 
4628 void tcp_done(struct sock *sk)
4629 {
4630 	struct request_sock *req;
4631 
4632 	/* We might be called with a new socket, after
4633 	 * inet_csk_prepare_forced_close() has been called
4634 	 * so we can not use lockdep_sock_is_held(sk)
4635 	 */
4636 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4637 
4638 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4639 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4640 
4641 	tcp_set_state(sk, TCP_CLOSE);
4642 	tcp_clear_xmit_timers(sk);
4643 	if (req)
4644 		reqsk_fastopen_remove(sk, req, false);
4645 
4646 	sk->sk_shutdown = SHUTDOWN_MASK;
4647 
4648 	if (!sock_flag(sk, SOCK_DEAD))
4649 		sk->sk_state_change(sk);
4650 	else
4651 		inet_csk_destroy_sock(sk);
4652 }
4653 EXPORT_SYMBOL_GPL(tcp_done);
4654 
4655 int tcp_abort(struct sock *sk, int err)
4656 {
4657 	int state = inet_sk_state_load(sk);
4658 
4659 	if (state == TCP_NEW_SYN_RECV) {
4660 		struct request_sock *req = inet_reqsk(sk);
4661 
4662 		local_bh_disable();
4663 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4664 		local_bh_enable();
4665 		return 0;
4666 	}
4667 	if (state == TCP_TIME_WAIT) {
4668 		struct inet_timewait_sock *tw = inet_twsk(sk);
4669 
4670 		refcount_inc(&tw->tw_refcnt);
4671 		local_bh_disable();
4672 		inet_twsk_deschedule_put(tw);
4673 		local_bh_enable();
4674 		return 0;
4675 	}
4676 
4677 	/* Don't race with userspace socket closes such as tcp_close. */
4678 	lock_sock(sk);
4679 
4680 	if (sk->sk_state == TCP_LISTEN) {
4681 		tcp_set_state(sk, TCP_CLOSE);
4682 		inet_csk_listen_stop(sk);
4683 	}
4684 
4685 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4686 	local_bh_disable();
4687 	bh_lock_sock(sk);
4688 
4689 	if (!sock_flag(sk, SOCK_DEAD)) {
4690 		sk->sk_err = err;
4691 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4692 		smp_wmb();
4693 		sk_error_report(sk);
4694 		if (tcp_need_reset(sk->sk_state))
4695 			tcp_send_active_reset(sk, GFP_ATOMIC);
4696 		tcp_done(sk);
4697 	}
4698 
4699 	bh_unlock_sock(sk);
4700 	local_bh_enable();
4701 	tcp_write_queue_purge(sk);
4702 	release_sock(sk);
4703 	return 0;
4704 }
4705 EXPORT_SYMBOL_GPL(tcp_abort);
4706 
4707 extern struct tcp_congestion_ops tcp_reno;
4708 
4709 static __initdata unsigned long thash_entries;
4710 static int __init set_thash_entries(char *str)
4711 {
4712 	ssize_t ret;
4713 
4714 	if (!str)
4715 		return 0;
4716 
4717 	ret = kstrtoul(str, 0, &thash_entries);
4718 	if (ret)
4719 		return 0;
4720 
4721 	return 1;
4722 }
4723 __setup("thash_entries=", set_thash_entries);
4724 
4725 static void __init tcp_init_mem(void)
4726 {
4727 	unsigned long limit = nr_free_buffer_pages() / 16;
4728 
4729 	limit = max(limit, 128UL);
4730 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4731 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4732 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4733 }
4734 
4735 void __init tcp_init(void)
4736 {
4737 	int max_rshare, max_wshare, cnt;
4738 	unsigned long limit;
4739 	unsigned int i;
4740 
4741 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4742 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4743 		     sizeof_field(struct sk_buff, cb));
4744 
4745 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4746 
4747 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4748 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4749 
4750 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4751 			    thash_entries, 21,  /* one slot per 2 MB*/
4752 			    0, 64 * 1024);
4753 	tcp_hashinfo.bind_bucket_cachep =
4754 		kmem_cache_create("tcp_bind_bucket",
4755 				  sizeof(struct inet_bind_bucket), 0,
4756 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4757 				  SLAB_ACCOUNT,
4758 				  NULL);
4759 	tcp_hashinfo.bind2_bucket_cachep =
4760 		kmem_cache_create("tcp_bind2_bucket",
4761 				  sizeof(struct inet_bind2_bucket), 0,
4762 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4763 				  SLAB_ACCOUNT,
4764 				  NULL);
4765 
4766 	/* Size and allocate the main established and bind bucket
4767 	 * hash tables.
4768 	 *
4769 	 * The methodology is similar to that of the buffer cache.
4770 	 */
4771 	tcp_hashinfo.ehash =
4772 		alloc_large_system_hash("TCP established",
4773 					sizeof(struct inet_ehash_bucket),
4774 					thash_entries,
4775 					17, /* one slot per 128 KB of memory */
4776 					0,
4777 					NULL,
4778 					&tcp_hashinfo.ehash_mask,
4779 					0,
4780 					thash_entries ? 0 : 512 * 1024);
4781 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4782 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4783 
4784 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4785 		panic("TCP: failed to alloc ehash_locks");
4786 	tcp_hashinfo.bhash =
4787 		alloc_large_system_hash("TCP bind",
4788 					2 * sizeof(struct inet_bind_hashbucket),
4789 					tcp_hashinfo.ehash_mask + 1,
4790 					17, /* one slot per 128 KB of memory */
4791 					0,
4792 					&tcp_hashinfo.bhash_size,
4793 					NULL,
4794 					0,
4795 					64 * 1024);
4796 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4797 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4798 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4799 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4800 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4801 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4802 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4803 	}
4804 
4805 	tcp_hashinfo.pernet = false;
4806 
4807 	cnt = tcp_hashinfo.ehash_mask + 1;
4808 	sysctl_tcp_max_orphans = cnt / 2;
4809 
4810 	tcp_init_mem();
4811 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4812 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4813 	max_wshare = min(4UL*1024*1024, limit);
4814 	max_rshare = min(6UL*1024*1024, limit);
4815 
4816 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4817 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4818 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4819 
4820 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4821 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4822 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4823 
4824 	pr_info("Hash tables configured (established %u bind %u)\n",
4825 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4826 
4827 	tcp_v4_init();
4828 	tcp_metrics_init();
4829 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4830 	tcp_tasklet_init();
4831 	mptcp_init();
4832 }
4833