1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 } 726 /* It is possible TX completion already happened 727 * before we set TSQ_THROTTLED. 728 */ 729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 730 return; 731 } 732 733 if (flags & MSG_MORE) 734 nonagle = TCP_NAGLE_CORK; 735 736 __tcp_push_pending_frames(sk, mss_now, nonagle); 737 } 738 739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 740 unsigned int offset, size_t len) 741 { 742 struct tcp_splice_state *tss = rd_desc->arg.data; 743 int ret; 744 745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 746 min(rd_desc->count, len), tss->flags); 747 if (ret > 0) 748 rd_desc->count -= ret; 749 return ret; 750 } 751 752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 753 { 754 /* Store TCP splice context information in read_descriptor_t. */ 755 read_descriptor_t rd_desc = { 756 .arg.data = tss, 757 .count = tss->len, 758 }; 759 760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 761 } 762 763 /** 764 * tcp_splice_read - splice data from TCP socket to a pipe 765 * @sock: socket to splice from 766 * @ppos: position (not valid) 767 * @pipe: pipe to splice to 768 * @len: number of bytes to splice 769 * @flags: splice modifier flags 770 * 771 * Description: 772 * Will read pages from given socket and fill them into a pipe. 773 * 774 **/ 775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 776 struct pipe_inode_info *pipe, size_t len, 777 unsigned int flags) 778 { 779 struct sock *sk = sock->sk; 780 struct tcp_splice_state tss = { 781 .pipe = pipe, 782 .len = len, 783 .flags = flags, 784 }; 785 long timeo; 786 ssize_t spliced; 787 int ret; 788 789 sock_rps_record_flow(sk); 790 /* 791 * We can't seek on a socket input 792 */ 793 if (unlikely(*ppos)) 794 return -ESPIPE; 795 796 ret = spliced = 0; 797 798 lock_sock(sk); 799 800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 801 while (tss.len) { 802 ret = __tcp_splice_read(sk, &tss); 803 if (ret < 0) 804 break; 805 else if (!ret) { 806 if (spliced) 807 break; 808 if (sock_flag(sk, SOCK_DONE)) 809 break; 810 if (sk->sk_err) { 811 ret = sock_error(sk); 812 break; 813 } 814 if (sk->sk_shutdown & RCV_SHUTDOWN) 815 break; 816 if (sk->sk_state == TCP_CLOSE) { 817 /* 818 * This occurs when user tries to read 819 * from never connected socket. 820 */ 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 ret = sk_wait_data(sk, &timeo, NULL); 835 if (ret < 0) 836 break; 837 if (signal_pending(current)) { 838 ret = sock_intr_errno(timeo); 839 break; 840 } 841 continue; 842 } 843 tss.len -= ret; 844 spliced += ret; 845 846 if (!tss.len || !timeo) 847 break; 848 release_sock(sk); 849 lock_sock(sk); 850 851 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 852 (sk->sk_shutdown & RCV_SHUTDOWN) || 853 signal_pending(current)) 854 break; 855 } 856 857 release_sock(sk); 858 859 if (spliced) 860 return spliced; 861 862 return ret; 863 } 864 EXPORT_SYMBOL(tcp_splice_read); 865 866 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 867 bool force_schedule) 868 { 869 struct sk_buff *skb; 870 871 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 872 if (likely(skb)) { 873 bool mem_scheduled; 874 875 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 876 if (force_schedule) { 877 mem_scheduled = true; 878 sk_forced_mem_schedule(sk, skb->truesize); 879 } else { 880 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 881 } 882 if (likely(mem_scheduled)) { 883 skb_reserve(skb, MAX_TCP_HEADER); 884 skb->ip_summed = CHECKSUM_PARTIAL; 885 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 886 return skb; 887 } 888 __kfree_skb(skb); 889 } else { 890 sk->sk_prot->enter_memory_pressure(sk); 891 sk_stream_moderate_sndbuf(sk); 892 } 893 return NULL; 894 } 895 896 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 897 int large_allowed) 898 { 899 struct tcp_sock *tp = tcp_sk(sk); 900 u32 new_size_goal, size_goal; 901 902 if (!large_allowed) 903 return mss_now; 904 905 /* Note : tcp_tso_autosize() will eventually split this later */ 906 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 907 908 /* We try hard to avoid divides here */ 909 size_goal = tp->gso_segs * mss_now; 910 if (unlikely(new_size_goal < size_goal || 911 new_size_goal >= size_goal + mss_now)) { 912 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 913 sk->sk_gso_max_segs); 914 size_goal = tp->gso_segs * mss_now; 915 } 916 917 return max(size_goal, mss_now); 918 } 919 920 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 921 { 922 int mss_now; 923 924 mss_now = tcp_current_mss(sk); 925 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 926 927 return mss_now; 928 } 929 930 /* In some cases, sendmsg() could have added an skb to the write queue, 931 * but failed adding payload on it. We need to remove it to consume less 932 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 933 * epoll() users. Another reason is that tcp_write_xmit() does not like 934 * finding an empty skb in the write queue. 935 */ 936 void tcp_remove_empty_skb(struct sock *sk) 937 { 938 struct sk_buff *skb = tcp_write_queue_tail(sk); 939 940 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 941 tcp_unlink_write_queue(skb, sk); 942 if (tcp_write_queue_empty(sk)) 943 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 944 tcp_wmem_free_skb(sk, skb); 945 } 946 } 947 948 /* skb changing from pure zc to mixed, must charge zc */ 949 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 950 { 951 if (unlikely(skb_zcopy_pure(skb))) { 952 u32 extra = skb->truesize - 953 SKB_TRUESIZE(skb_end_offset(skb)); 954 955 if (!sk_wmem_schedule(sk, extra)) 956 return -ENOMEM; 957 958 sk_mem_charge(sk, extra); 959 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 960 } 961 return 0; 962 } 963 964 965 int tcp_wmem_schedule(struct sock *sk, int copy) 966 { 967 int left; 968 969 if (likely(sk_wmem_schedule(sk, copy))) 970 return copy; 971 972 /* We could be in trouble if we have nothing queued. 973 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 974 * to guarantee some progress. 975 */ 976 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 977 if (left > 0) 978 sk_forced_mem_schedule(sk, min(left, copy)); 979 return min(copy, sk->sk_forward_alloc); 980 } 981 982 void tcp_free_fastopen_req(struct tcp_sock *tp) 983 { 984 if (tp->fastopen_req) { 985 kfree(tp->fastopen_req); 986 tp->fastopen_req = NULL; 987 } 988 } 989 990 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 991 size_t size, struct ubuf_info *uarg) 992 { 993 struct tcp_sock *tp = tcp_sk(sk); 994 struct inet_sock *inet = inet_sk(sk); 995 struct sockaddr *uaddr = msg->msg_name; 996 int err, flags; 997 998 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 999 TFO_CLIENT_ENABLE) || 1000 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1001 uaddr->sa_family == AF_UNSPEC)) 1002 return -EOPNOTSUPP; 1003 if (tp->fastopen_req) 1004 return -EALREADY; /* Another Fast Open is in progress */ 1005 1006 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1007 sk->sk_allocation); 1008 if (unlikely(!tp->fastopen_req)) 1009 return -ENOBUFS; 1010 tp->fastopen_req->data = msg; 1011 tp->fastopen_req->size = size; 1012 tp->fastopen_req->uarg = uarg; 1013 1014 if (inet_test_bit(DEFER_CONNECT, sk)) { 1015 err = tcp_connect(sk); 1016 /* Same failure procedure as in tcp_v4/6_connect */ 1017 if (err) { 1018 tcp_set_state(sk, TCP_CLOSE); 1019 inet->inet_dport = 0; 1020 sk->sk_route_caps = 0; 1021 } 1022 } 1023 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1024 err = __inet_stream_connect(sk->sk_socket, uaddr, 1025 msg->msg_namelen, flags, 1); 1026 /* fastopen_req could already be freed in __inet_stream_connect 1027 * if the connection times out or gets rst 1028 */ 1029 if (tp->fastopen_req) { 1030 *copied = tp->fastopen_req->copied; 1031 tcp_free_fastopen_req(tp); 1032 inet_clear_bit(DEFER_CONNECT, sk); 1033 } 1034 return err; 1035 } 1036 1037 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1038 { 1039 struct tcp_sock *tp = tcp_sk(sk); 1040 struct ubuf_info *uarg = NULL; 1041 struct sk_buff *skb; 1042 struct sockcm_cookie sockc; 1043 int flags, err, copied = 0; 1044 int mss_now = 0, size_goal, copied_syn = 0; 1045 int process_backlog = 0; 1046 int zc = 0; 1047 long timeo; 1048 1049 flags = msg->msg_flags; 1050 1051 if ((flags & MSG_ZEROCOPY) && size) { 1052 if (msg->msg_ubuf) { 1053 uarg = msg->msg_ubuf; 1054 if (sk->sk_route_caps & NETIF_F_SG) 1055 zc = MSG_ZEROCOPY; 1056 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1057 skb = tcp_write_queue_tail(sk); 1058 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1059 if (!uarg) { 1060 err = -ENOBUFS; 1061 goto out_err; 1062 } 1063 if (sk->sk_route_caps & NETIF_F_SG) 1064 zc = MSG_ZEROCOPY; 1065 else 1066 uarg_to_msgzc(uarg)->zerocopy = 0; 1067 } 1068 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1069 if (sk->sk_route_caps & NETIF_F_SG) 1070 zc = MSG_SPLICE_PAGES; 1071 } 1072 1073 if (unlikely(flags & MSG_FASTOPEN || 1074 inet_test_bit(DEFER_CONNECT, sk)) && 1075 !tp->repair) { 1076 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1077 if (err == -EINPROGRESS && copied_syn > 0) 1078 goto out; 1079 else if (err) 1080 goto out_err; 1081 } 1082 1083 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1084 1085 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1086 1087 /* Wait for a connection to finish. One exception is TCP Fast Open 1088 * (passive side) where data is allowed to be sent before a connection 1089 * is fully established. 1090 */ 1091 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1092 !tcp_passive_fastopen(sk)) { 1093 err = sk_stream_wait_connect(sk, &timeo); 1094 if (err != 0) 1095 goto do_error; 1096 } 1097 1098 if (unlikely(tp->repair)) { 1099 if (tp->repair_queue == TCP_RECV_QUEUE) { 1100 copied = tcp_send_rcvq(sk, msg, size); 1101 goto out_nopush; 1102 } 1103 1104 err = -EINVAL; 1105 if (tp->repair_queue == TCP_NO_QUEUE) 1106 goto out_err; 1107 1108 /* 'common' sending to sendq */ 1109 } 1110 1111 sockcm_init(&sockc, sk); 1112 if (msg->msg_controllen) { 1113 err = sock_cmsg_send(sk, msg, &sockc); 1114 if (unlikely(err)) { 1115 err = -EINVAL; 1116 goto out_err; 1117 } 1118 } 1119 1120 /* This should be in poll */ 1121 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1122 1123 /* Ok commence sending. */ 1124 copied = 0; 1125 1126 restart: 1127 mss_now = tcp_send_mss(sk, &size_goal, flags); 1128 1129 err = -EPIPE; 1130 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1131 goto do_error; 1132 1133 while (msg_data_left(msg)) { 1134 ssize_t copy = 0; 1135 1136 skb = tcp_write_queue_tail(sk); 1137 if (skb) 1138 copy = size_goal - skb->len; 1139 1140 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1141 bool first_skb; 1142 1143 new_segment: 1144 if (!sk_stream_memory_free(sk)) 1145 goto wait_for_space; 1146 1147 if (unlikely(process_backlog >= 16)) { 1148 process_backlog = 0; 1149 if (sk_flush_backlog(sk)) 1150 goto restart; 1151 } 1152 first_skb = tcp_rtx_and_write_queues_empty(sk); 1153 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1154 first_skb); 1155 if (!skb) 1156 goto wait_for_space; 1157 1158 process_backlog++; 1159 1160 tcp_skb_entail(sk, skb); 1161 copy = size_goal; 1162 1163 /* All packets are restored as if they have 1164 * already been sent. skb_mstamp_ns isn't set to 1165 * avoid wrong rtt estimation. 1166 */ 1167 if (tp->repair) 1168 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1169 } 1170 1171 /* Try to append data to the end of skb. */ 1172 if (copy > msg_data_left(msg)) 1173 copy = msg_data_left(msg); 1174 1175 if (zc == 0) { 1176 bool merge = true; 1177 int i = skb_shinfo(skb)->nr_frags; 1178 struct page_frag *pfrag = sk_page_frag(sk); 1179 1180 if (!sk_page_frag_refill(sk, pfrag)) 1181 goto wait_for_space; 1182 1183 if (!skb_can_coalesce(skb, i, pfrag->page, 1184 pfrag->offset)) { 1185 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1186 tcp_mark_push(tp, skb); 1187 goto new_segment; 1188 } 1189 merge = false; 1190 } 1191 1192 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1193 1194 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1195 if (tcp_downgrade_zcopy_pure(sk, skb)) 1196 goto wait_for_space; 1197 skb_zcopy_downgrade_managed(skb); 1198 } 1199 1200 copy = tcp_wmem_schedule(sk, copy); 1201 if (!copy) 1202 goto wait_for_space; 1203 1204 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1205 pfrag->page, 1206 pfrag->offset, 1207 copy); 1208 if (err) 1209 goto do_error; 1210 1211 /* Update the skb. */ 1212 if (merge) { 1213 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1214 } else { 1215 skb_fill_page_desc(skb, i, pfrag->page, 1216 pfrag->offset, copy); 1217 page_ref_inc(pfrag->page); 1218 } 1219 pfrag->offset += copy; 1220 } else if (zc == MSG_ZEROCOPY) { 1221 /* First append to a fragless skb builds initial 1222 * pure zerocopy skb 1223 */ 1224 if (!skb->len) 1225 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1226 1227 if (!skb_zcopy_pure(skb)) { 1228 copy = tcp_wmem_schedule(sk, copy); 1229 if (!copy) 1230 goto wait_for_space; 1231 } 1232 1233 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1234 if (err == -EMSGSIZE || err == -EEXIST) { 1235 tcp_mark_push(tp, skb); 1236 goto new_segment; 1237 } 1238 if (err < 0) 1239 goto do_error; 1240 copy = err; 1241 } else if (zc == MSG_SPLICE_PAGES) { 1242 /* Splice in data if we can; copy if we can't. */ 1243 if (tcp_downgrade_zcopy_pure(sk, skb)) 1244 goto wait_for_space; 1245 copy = tcp_wmem_schedule(sk, copy); 1246 if (!copy) 1247 goto wait_for_space; 1248 1249 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1250 sk->sk_allocation); 1251 if (err < 0) { 1252 if (err == -EMSGSIZE) { 1253 tcp_mark_push(tp, skb); 1254 goto new_segment; 1255 } 1256 goto do_error; 1257 } 1258 copy = err; 1259 1260 if (!(flags & MSG_NO_SHARED_FRAGS)) 1261 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1262 1263 sk_wmem_queued_add(sk, copy); 1264 sk_mem_charge(sk, copy); 1265 } 1266 1267 if (!copied) 1268 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1269 1270 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1271 TCP_SKB_CB(skb)->end_seq += copy; 1272 tcp_skb_pcount_set(skb, 0); 1273 1274 copied += copy; 1275 if (!msg_data_left(msg)) { 1276 if (unlikely(flags & MSG_EOR)) 1277 TCP_SKB_CB(skb)->eor = 1; 1278 goto out; 1279 } 1280 1281 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1282 continue; 1283 1284 if (forced_push(tp)) { 1285 tcp_mark_push(tp, skb); 1286 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1287 } else if (skb == tcp_send_head(sk)) 1288 tcp_push_one(sk, mss_now); 1289 continue; 1290 1291 wait_for_space: 1292 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1293 tcp_remove_empty_skb(sk); 1294 if (copied) 1295 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1296 TCP_NAGLE_PUSH, size_goal); 1297 1298 err = sk_stream_wait_memory(sk, &timeo); 1299 if (err != 0) 1300 goto do_error; 1301 1302 mss_now = tcp_send_mss(sk, &size_goal, flags); 1303 } 1304 1305 out: 1306 if (copied) { 1307 tcp_tx_timestamp(sk, sockc.tsflags); 1308 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1309 } 1310 out_nopush: 1311 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1312 if (uarg && !msg->msg_ubuf) 1313 net_zcopy_put(uarg); 1314 return copied + copied_syn; 1315 1316 do_error: 1317 tcp_remove_empty_skb(sk); 1318 1319 if (copied + copied_syn) 1320 goto out; 1321 out_err: 1322 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1323 if (uarg && !msg->msg_ubuf) 1324 net_zcopy_put_abort(uarg, true); 1325 err = sk_stream_error(sk, flags, err); 1326 /* make sure we wake any epoll edge trigger waiter */ 1327 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1328 sk->sk_write_space(sk); 1329 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1330 } 1331 return err; 1332 } 1333 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1334 1335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1336 { 1337 int ret; 1338 1339 lock_sock(sk); 1340 ret = tcp_sendmsg_locked(sk, msg, size); 1341 release_sock(sk); 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(tcp_sendmsg); 1346 1347 void tcp_splice_eof(struct socket *sock) 1348 { 1349 struct sock *sk = sock->sk; 1350 struct tcp_sock *tp = tcp_sk(sk); 1351 int mss_now, size_goal; 1352 1353 if (!tcp_write_queue_tail(sk)) 1354 return; 1355 1356 lock_sock(sk); 1357 mss_now = tcp_send_mss(sk, &size_goal, 0); 1358 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1359 release_sock(sk); 1360 } 1361 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1362 1363 /* 1364 * Handle reading urgent data. BSD has very simple semantics for 1365 * this, no blocking and very strange errors 8) 1366 */ 1367 1368 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1369 { 1370 struct tcp_sock *tp = tcp_sk(sk); 1371 1372 /* No URG data to read. */ 1373 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1374 tp->urg_data == TCP_URG_READ) 1375 return -EINVAL; /* Yes this is right ! */ 1376 1377 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1378 return -ENOTCONN; 1379 1380 if (tp->urg_data & TCP_URG_VALID) { 1381 int err = 0; 1382 char c = tp->urg_data; 1383 1384 if (!(flags & MSG_PEEK)) 1385 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1386 1387 /* Read urgent data. */ 1388 msg->msg_flags |= MSG_OOB; 1389 1390 if (len > 0) { 1391 if (!(flags & MSG_TRUNC)) 1392 err = memcpy_to_msg(msg, &c, 1); 1393 len = 1; 1394 } else 1395 msg->msg_flags |= MSG_TRUNC; 1396 1397 return err ? -EFAULT : len; 1398 } 1399 1400 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1401 return 0; 1402 1403 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1404 * the available implementations agree in this case: 1405 * this call should never block, independent of the 1406 * blocking state of the socket. 1407 * Mike <pall@rz.uni-karlsruhe.de> 1408 */ 1409 return -EAGAIN; 1410 } 1411 1412 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1413 { 1414 struct sk_buff *skb; 1415 int copied = 0, err = 0; 1416 1417 /* XXX -- need to support SO_PEEK_OFF */ 1418 1419 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1420 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1421 if (err) 1422 return err; 1423 copied += skb->len; 1424 } 1425 1426 skb_queue_walk(&sk->sk_write_queue, skb) { 1427 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1428 if (err) 1429 break; 1430 1431 copied += skb->len; 1432 } 1433 1434 return err ?: copied; 1435 } 1436 1437 /* Clean up the receive buffer for full frames taken by the user, 1438 * then send an ACK if necessary. COPIED is the number of bytes 1439 * tcp_recvmsg has given to the user so far, it speeds up the 1440 * calculation of whether or not we must ACK for the sake of 1441 * a window update. 1442 */ 1443 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1444 { 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 bool time_to_ack = false; 1447 1448 if (inet_csk_ack_scheduled(sk)) { 1449 const struct inet_connection_sock *icsk = inet_csk(sk); 1450 1451 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1452 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1453 /* 1454 * If this read emptied read buffer, we send ACK, if 1455 * connection is not bidirectional, user drained 1456 * receive buffer and there was a small segment 1457 * in queue. 1458 */ 1459 (copied > 0 && 1460 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1462 !inet_csk_in_pingpong_mode(sk))) && 1463 !atomic_read(&sk->sk_rmem_alloc))) 1464 time_to_ack = true; 1465 } 1466 1467 /* We send an ACK if we can now advertise a non-zero window 1468 * which has been raised "significantly". 1469 * 1470 * Even if window raised up to infinity, do not send window open ACK 1471 * in states, where we will not receive more. It is useless. 1472 */ 1473 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1474 __u32 rcv_window_now = tcp_receive_window(tp); 1475 1476 /* Optimize, __tcp_select_window() is not cheap. */ 1477 if (2*rcv_window_now <= tp->window_clamp) { 1478 __u32 new_window = __tcp_select_window(sk); 1479 1480 /* Send ACK now, if this read freed lots of space 1481 * in our buffer. Certainly, new_window is new window. 1482 * We can advertise it now, if it is not less than current one. 1483 * "Lots" means "at least twice" here. 1484 */ 1485 if (new_window && new_window >= 2 * rcv_window_now) 1486 time_to_ack = true; 1487 } 1488 } 1489 if (time_to_ack) 1490 tcp_send_ack(sk); 1491 } 1492 1493 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1494 { 1495 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1499 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1500 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1501 __tcp_cleanup_rbuf(sk, copied); 1502 } 1503 1504 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1505 { 1506 __skb_unlink(skb, &sk->sk_receive_queue); 1507 if (likely(skb->destructor == sock_rfree)) { 1508 sock_rfree(skb); 1509 skb->destructor = NULL; 1510 skb->sk = NULL; 1511 return skb_attempt_defer_free(skb); 1512 } 1513 __kfree_skb(skb); 1514 } 1515 1516 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1517 { 1518 struct sk_buff *skb; 1519 u32 offset; 1520 1521 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1522 offset = seq - TCP_SKB_CB(skb)->seq; 1523 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1524 pr_err_once("%s: found a SYN, please report !\n", __func__); 1525 offset--; 1526 } 1527 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1528 *off = offset; 1529 return skb; 1530 } 1531 /* This looks weird, but this can happen if TCP collapsing 1532 * splitted a fat GRO packet, while we released socket lock 1533 * in skb_splice_bits() 1534 */ 1535 tcp_eat_recv_skb(sk, skb); 1536 } 1537 return NULL; 1538 } 1539 EXPORT_SYMBOL(tcp_recv_skb); 1540 1541 /* 1542 * This routine provides an alternative to tcp_recvmsg() for routines 1543 * that would like to handle copying from skbuffs directly in 'sendfile' 1544 * fashion. 1545 * Note: 1546 * - It is assumed that the socket was locked by the caller. 1547 * - The routine does not block. 1548 * - At present, there is no support for reading OOB data 1549 * or for 'peeking' the socket using this routine 1550 * (although both would be easy to implement). 1551 */ 1552 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1553 sk_read_actor_t recv_actor) 1554 { 1555 struct sk_buff *skb; 1556 struct tcp_sock *tp = tcp_sk(sk); 1557 u32 seq = tp->copied_seq; 1558 u32 offset; 1559 int copied = 0; 1560 1561 if (sk->sk_state == TCP_LISTEN) 1562 return -ENOTCONN; 1563 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1564 if (offset < skb->len) { 1565 int used; 1566 size_t len; 1567 1568 len = skb->len - offset; 1569 /* Stop reading if we hit a patch of urgent data */ 1570 if (unlikely(tp->urg_data)) { 1571 u32 urg_offset = tp->urg_seq - seq; 1572 if (urg_offset < len) 1573 len = urg_offset; 1574 if (!len) 1575 break; 1576 } 1577 used = recv_actor(desc, skb, offset, len); 1578 if (used <= 0) { 1579 if (!copied) 1580 copied = used; 1581 break; 1582 } 1583 if (WARN_ON_ONCE(used > len)) 1584 used = len; 1585 seq += used; 1586 copied += used; 1587 offset += used; 1588 1589 /* If recv_actor drops the lock (e.g. TCP splice 1590 * receive) the skb pointer might be invalid when 1591 * getting here: tcp_collapse might have deleted it 1592 * while aggregating skbs from the socket queue. 1593 */ 1594 skb = tcp_recv_skb(sk, seq - 1, &offset); 1595 if (!skb) 1596 break; 1597 /* TCP coalescing might have appended data to the skb. 1598 * Try to splice more frags 1599 */ 1600 if (offset + 1 != skb->len) 1601 continue; 1602 } 1603 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1604 tcp_eat_recv_skb(sk, skb); 1605 ++seq; 1606 break; 1607 } 1608 tcp_eat_recv_skb(sk, skb); 1609 if (!desc->count) 1610 break; 1611 WRITE_ONCE(tp->copied_seq, seq); 1612 } 1613 WRITE_ONCE(tp->copied_seq, seq); 1614 1615 tcp_rcv_space_adjust(sk); 1616 1617 /* Clean up data we have read: This will do ACK frames. */ 1618 if (copied > 0) { 1619 tcp_recv_skb(sk, seq, &offset); 1620 tcp_cleanup_rbuf(sk, copied); 1621 } 1622 return copied; 1623 } 1624 EXPORT_SYMBOL(tcp_read_sock); 1625 1626 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1627 { 1628 struct sk_buff *skb; 1629 int copied = 0; 1630 1631 if (sk->sk_state == TCP_LISTEN) 1632 return -ENOTCONN; 1633 1634 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1635 u8 tcp_flags; 1636 int used; 1637 1638 __skb_unlink(skb, &sk->sk_receive_queue); 1639 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1640 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1641 used = recv_actor(sk, skb); 1642 if (used < 0) { 1643 if (!copied) 1644 copied = used; 1645 break; 1646 } 1647 copied += used; 1648 1649 if (tcp_flags & TCPHDR_FIN) 1650 break; 1651 } 1652 return copied; 1653 } 1654 EXPORT_SYMBOL(tcp_read_skb); 1655 1656 void tcp_read_done(struct sock *sk, size_t len) 1657 { 1658 struct tcp_sock *tp = tcp_sk(sk); 1659 u32 seq = tp->copied_seq; 1660 struct sk_buff *skb; 1661 size_t left; 1662 u32 offset; 1663 1664 if (sk->sk_state == TCP_LISTEN) 1665 return; 1666 1667 left = len; 1668 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1669 int used; 1670 1671 used = min_t(size_t, skb->len - offset, left); 1672 seq += used; 1673 left -= used; 1674 1675 if (skb->len > offset + used) 1676 break; 1677 1678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1679 tcp_eat_recv_skb(sk, skb); 1680 ++seq; 1681 break; 1682 } 1683 tcp_eat_recv_skb(sk, skb); 1684 } 1685 WRITE_ONCE(tp->copied_seq, seq); 1686 1687 tcp_rcv_space_adjust(sk); 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 if (left != len) 1691 tcp_cleanup_rbuf(sk, len - left); 1692 } 1693 EXPORT_SYMBOL(tcp_read_done); 1694 1695 int tcp_peek_len(struct socket *sock) 1696 { 1697 return tcp_inq(sock->sk); 1698 } 1699 EXPORT_SYMBOL(tcp_peek_len); 1700 1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1702 int tcp_set_rcvlowat(struct sock *sk, int val) 1703 { 1704 int space, cap; 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 cap = sk->sk_rcvbuf >> 1; 1708 else 1709 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1710 val = min(val, cap); 1711 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1712 1713 /* Check if we need to signal EPOLLIN right now */ 1714 tcp_data_ready(sk); 1715 1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1717 return 0; 1718 1719 space = tcp_space_from_win(sk, val); 1720 if (space > sk->sk_rcvbuf) { 1721 WRITE_ONCE(sk->sk_rcvbuf, space); 1722 tcp_sk(sk)->window_clamp = val; 1723 } 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(tcp_set_rcvlowat); 1727 1728 void tcp_update_recv_tstamps(struct sk_buff *skb, 1729 struct scm_timestamping_internal *tss) 1730 { 1731 if (skb->tstamp) 1732 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1733 else 1734 tss->ts[0] = (struct timespec64) {0}; 1735 1736 if (skb_hwtstamps(skb)->hwtstamp) 1737 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1738 else 1739 tss->ts[2] = (struct timespec64) {0}; 1740 } 1741 1742 #ifdef CONFIG_MMU 1743 static const struct vm_operations_struct tcp_vm_ops = { 1744 }; 1745 1746 int tcp_mmap(struct file *file, struct socket *sock, 1747 struct vm_area_struct *vma) 1748 { 1749 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1750 return -EPERM; 1751 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1752 1753 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1754 vm_flags_set(vma, VM_MIXEDMAP); 1755 1756 vma->vm_ops = &tcp_vm_ops; 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(tcp_mmap); 1760 1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1762 u32 *offset_frag) 1763 { 1764 skb_frag_t *frag; 1765 1766 if (unlikely(offset_skb >= skb->len)) 1767 return NULL; 1768 1769 offset_skb -= skb_headlen(skb); 1770 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1771 return NULL; 1772 1773 frag = skb_shinfo(skb)->frags; 1774 while (offset_skb) { 1775 if (skb_frag_size(frag) > offset_skb) { 1776 *offset_frag = offset_skb; 1777 return frag; 1778 } 1779 offset_skb -= skb_frag_size(frag); 1780 ++frag; 1781 } 1782 *offset_frag = 0; 1783 return frag; 1784 } 1785 1786 static bool can_map_frag(const skb_frag_t *frag) 1787 { 1788 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1789 } 1790 1791 static int find_next_mappable_frag(const skb_frag_t *frag, 1792 int remaining_in_skb) 1793 { 1794 int offset = 0; 1795 1796 if (likely(can_map_frag(frag))) 1797 return 0; 1798 1799 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1800 offset += skb_frag_size(frag); 1801 ++frag; 1802 } 1803 return offset; 1804 } 1805 1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1807 struct tcp_zerocopy_receive *zc, 1808 struct sk_buff *skb, u32 offset) 1809 { 1810 u32 frag_offset, partial_frag_remainder = 0; 1811 int mappable_offset; 1812 skb_frag_t *frag; 1813 1814 /* worst case: skip to next skb. try to improve on this case below */ 1815 zc->recv_skip_hint = skb->len - offset; 1816 1817 /* Find the frag containing this offset (and how far into that frag) */ 1818 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1819 if (!frag) 1820 return; 1821 1822 if (frag_offset) { 1823 struct skb_shared_info *info = skb_shinfo(skb); 1824 1825 /* We read part of the last frag, must recvmsg() rest of skb. */ 1826 if (frag == &info->frags[info->nr_frags - 1]) 1827 return; 1828 1829 /* Else, we must at least read the remainder in this frag. */ 1830 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1831 zc->recv_skip_hint -= partial_frag_remainder; 1832 ++frag; 1833 } 1834 1835 /* partial_frag_remainder: If part way through a frag, must read rest. 1836 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1837 * in partial_frag_remainder. 1838 */ 1839 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1840 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1841 } 1842 1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1844 int flags, struct scm_timestamping_internal *tss, 1845 int *cmsg_flags); 1846 static int receive_fallback_to_copy(struct sock *sk, 1847 struct tcp_zerocopy_receive *zc, int inq, 1848 struct scm_timestamping_internal *tss) 1849 { 1850 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1851 struct msghdr msg = {}; 1852 int err; 1853 1854 zc->length = 0; 1855 zc->recv_skip_hint = 0; 1856 1857 if (copy_address != zc->copybuf_address) 1858 return -EINVAL; 1859 1860 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1861 &msg.msg_iter); 1862 if (err) 1863 return err; 1864 1865 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1866 tss, &zc->msg_flags); 1867 if (err < 0) 1868 return err; 1869 1870 zc->copybuf_len = err; 1871 if (likely(zc->copybuf_len)) { 1872 struct sk_buff *skb; 1873 u32 offset; 1874 1875 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1876 if (skb) 1877 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1878 } 1879 return 0; 1880 } 1881 1882 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1883 struct sk_buff *skb, u32 copylen, 1884 u32 *offset, u32 *seq) 1885 { 1886 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1887 struct msghdr msg = {}; 1888 int err; 1889 1890 if (copy_address != zc->copybuf_address) 1891 return -EINVAL; 1892 1893 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1894 &msg.msg_iter); 1895 if (err) 1896 return err; 1897 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1898 if (err) 1899 return err; 1900 zc->recv_skip_hint -= copylen; 1901 *offset += copylen; 1902 *seq += copylen; 1903 return (__s32)copylen; 1904 } 1905 1906 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1907 struct sock *sk, 1908 struct sk_buff *skb, 1909 u32 *seq, 1910 s32 copybuf_len, 1911 struct scm_timestamping_internal *tss) 1912 { 1913 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1914 1915 if (!copylen) 1916 return 0; 1917 /* skb is null if inq < PAGE_SIZE. */ 1918 if (skb) { 1919 offset = *seq - TCP_SKB_CB(skb)->seq; 1920 } else { 1921 skb = tcp_recv_skb(sk, *seq, &offset); 1922 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1923 tcp_update_recv_tstamps(skb, tss); 1924 zc->msg_flags |= TCP_CMSG_TS; 1925 } 1926 } 1927 1928 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1929 seq); 1930 return zc->copybuf_len < 0 ? 0 : copylen; 1931 } 1932 1933 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1934 struct page **pending_pages, 1935 unsigned long pages_remaining, 1936 unsigned long *address, 1937 u32 *length, 1938 u32 *seq, 1939 struct tcp_zerocopy_receive *zc, 1940 u32 total_bytes_to_map, 1941 int err) 1942 { 1943 /* At least one page did not map. Try zapping if we skipped earlier. */ 1944 if (err == -EBUSY && 1945 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1946 u32 maybe_zap_len; 1947 1948 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1949 *length + /* Mapped or pending */ 1950 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1951 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1952 err = 0; 1953 } 1954 1955 if (!err) { 1956 unsigned long leftover_pages = pages_remaining; 1957 int bytes_mapped; 1958 1959 /* We called zap_page_range_single, try to reinsert. */ 1960 err = vm_insert_pages(vma, *address, 1961 pending_pages, 1962 &pages_remaining); 1963 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1964 *seq += bytes_mapped; 1965 *address += bytes_mapped; 1966 } 1967 if (err) { 1968 /* Either we were unable to zap, OR we zapped, retried an 1969 * insert, and still had an issue. Either ways, pages_remaining 1970 * is the number of pages we were unable to map, and we unroll 1971 * some state we speculatively touched before. 1972 */ 1973 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1974 1975 *length -= bytes_not_mapped; 1976 zc->recv_skip_hint += bytes_not_mapped; 1977 } 1978 return err; 1979 } 1980 1981 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1982 struct page **pages, 1983 unsigned int pages_to_map, 1984 unsigned long *address, 1985 u32 *length, 1986 u32 *seq, 1987 struct tcp_zerocopy_receive *zc, 1988 u32 total_bytes_to_map) 1989 { 1990 unsigned long pages_remaining = pages_to_map; 1991 unsigned int pages_mapped; 1992 unsigned int bytes_mapped; 1993 int err; 1994 1995 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1996 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1997 bytes_mapped = PAGE_SIZE * pages_mapped; 1998 /* Even if vm_insert_pages fails, it may have partially succeeded in 1999 * mapping (some but not all of the pages). 2000 */ 2001 *seq += bytes_mapped; 2002 *address += bytes_mapped; 2003 2004 if (likely(!err)) 2005 return 0; 2006 2007 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2008 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2009 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2010 err); 2011 } 2012 2013 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2014 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2015 struct tcp_zerocopy_receive *zc, 2016 struct scm_timestamping_internal *tss) 2017 { 2018 unsigned long msg_control_addr; 2019 struct msghdr cmsg_dummy; 2020 2021 msg_control_addr = (unsigned long)zc->msg_control; 2022 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2023 cmsg_dummy.msg_controllen = 2024 (__kernel_size_t)zc->msg_controllen; 2025 cmsg_dummy.msg_flags = in_compat_syscall() 2026 ? MSG_CMSG_COMPAT : 0; 2027 cmsg_dummy.msg_control_is_user = true; 2028 zc->msg_flags = 0; 2029 if (zc->msg_control == msg_control_addr && 2030 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2031 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2032 zc->msg_control = (__u64) 2033 ((uintptr_t)cmsg_dummy.msg_control_user); 2034 zc->msg_controllen = 2035 (__u64)cmsg_dummy.msg_controllen; 2036 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2037 } 2038 } 2039 2040 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2041 unsigned long address, 2042 bool *mmap_locked) 2043 { 2044 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2045 2046 if (vma) { 2047 if (vma->vm_ops != &tcp_vm_ops) { 2048 vma_end_read(vma); 2049 return NULL; 2050 } 2051 *mmap_locked = false; 2052 return vma; 2053 } 2054 2055 mmap_read_lock(mm); 2056 vma = vma_lookup(mm, address); 2057 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2058 mmap_read_unlock(mm); 2059 return NULL; 2060 } 2061 *mmap_locked = true; 2062 return vma; 2063 } 2064 2065 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2066 static int tcp_zerocopy_receive(struct sock *sk, 2067 struct tcp_zerocopy_receive *zc, 2068 struct scm_timestamping_internal *tss) 2069 { 2070 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2071 unsigned long address = (unsigned long)zc->address; 2072 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2073 s32 copybuf_len = zc->copybuf_len; 2074 struct tcp_sock *tp = tcp_sk(sk); 2075 const skb_frag_t *frags = NULL; 2076 unsigned int pages_to_map = 0; 2077 struct vm_area_struct *vma; 2078 struct sk_buff *skb = NULL; 2079 u32 seq = tp->copied_seq; 2080 u32 total_bytes_to_map; 2081 int inq = tcp_inq(sk); 2082 bool mmap_locked; 2083 int ret; 2084 2085 zc->copybuf_len = 0; 2086 zc->msg_flags = 0; 2087 2088 if (address & (PAGE_SIZE - 1) || address != zc->address) 2089 return -EINVAL; 2090 2091 if (sk->sk_state == TCP_LISTEN) 2092 return -ENOTCONN; 2093 2094 sock_rps_record_flow(sk); 2095 2096 if (inq && inq <= copybuf_len) 2097 return receive_fallback_to_copy(sk, zc, inq, tss); 2098 2099 if (inq < PAGE_SIZE) { 2100 zc->length = 0; 2101 zc->recv_skip_hint = inq; 2102 if (!inq && sock_flag(sk, SOCK_DONE)) 2103 return -EIO; 2104 return 0; 2105 } 2106 2107 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2108 if (!vma) 2109 return -EINVAL; 2110 2111 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2112 avail_len = min_t(u32, vma_len, inq); 2113 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2114 if (total_bytes_to_map) { 2115 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2116 zap_page_range_single(vma, address, total_bytes_to_map, 2117 NULL); 2118 zc->length = total_bytes_to_map; 2119 zc->recv_skip_hint = 0; 2120 } else { 2121 zc->length = avail_len; 2122 zc->recv_skip_hint = avail_len; 2123 } 2124 ret = 0; 2125 while (length + PAGE_SIZE <= zc->length) { 2126 int mappable_offset; 2127 struct page *page; 2128 2129 if (zc->recv_skip_hint < PAGE_SIZE) { 2130 u32 offset_frag; 2131 2132 if (skb) { 2133 if (zc->recv_skip_hint > 0) 2134 break; 2135 skb = skb->next; 2136 offset = seq - TCP_SKB_CB(skb)->seq; 2137 } else { 2138 skb = tcp_recv_skb(sk, seq, &offset); 2139 } 2140 2141 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2142 tcp_update_recv_tstamps(skb, tss); 2143 zc->msg_flags |= TCP_CMSG_TS; 2144 } 2145 zc->recv_skip_hint = skb->len - offset; 2146 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2147 if (!frags || offset_frag) 2148 break; 2149 } 2150 2151 mappable_offset = find_next_mappable_frag(frags, 2152 zc->recv_skip_hint); 2153 if (mappable_offset) { 2154 zc->recv_skip_hint = mappable_offset; 2155 break; 2156 } 2157 page = skb_frag_page(frags); 2158 prefetchw(page); 2159 pages[pages_to_map++] = page; 2160 length += PAGE_SIZE; 2161 zc->recv_skip_hint -= PAGE_SIZE; 2162 frags++; 2163 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2164 zc->recv_skip_hint < PAGE_SIZE) { 2165 /* Either full batch, or we're about to go to next skb 2166 * (and we cannot unroll failed ops across skbs). 2167 */ 2168 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2169 pages_to_map, 2170 &address, &length, 2171 &seq, zc, 2172 total_bytes_to_map); 2173 if (ret) 2174 goto out; 2175 pages_to_map = 0; 2176 } 2177 } 2178 if (pages_to_map) { 2179 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2180 &address, &length, &seq, 2181 zc, total_bytes_to_map); 2182 } 2183 out: 2184 if (mmap_locked) 2185 mmap_read_unlock(current->mm); 2186 else 2187 vma_end_read(vma); 2188 /* Try to copy straggler data. */ 2189 if (!ret) 2190 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2191 2192 if (length + copylen) { 2193 WRITE_ONCE(tp->copied_seq, seq); 2194 tcp_rcv_space_adjust(sk); 2195 2196 /* Clean up data we have read: This will do ACK frames. */ 2197 tcp_recv_skb(sk, seq, &offset); 2198 tcp_cleanup_rbuf(sk, length + copylen); 2199 ret = 0; 2200 if (length == zc->length) 2201 zc->recv_skip_hint = 0; 2202 } else { 2203 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2204 ret = -EIO; 2205 } 2206 zc->length = length; 2207 return ret; 2208 } 2209 #endif 2210 2211 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2212 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2213 struct scm_timestamping_internal *tss) 2214 { 2215 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2216 bool has_timestamping = false; 2217 2218 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2219 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2220 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2221 if (new_tstamp) { 2222 struct __kernel_timespec kts = { 2223 .tv_sec = tss->ts[0].tv_sec, 2224 .tv_nsec = tss->ts[0].tv_nsec, 2225 }; 2226 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2227 sizeof(kts), &kts); 2228 } else { 2229 struct __kernel_old_timespec ts_old = { 2230 .tv_sec = tss->ts[0].tv_sec, 2231 .tv_nsec = tss->ts[0].tv_nsec, 2232 }; 2233 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2234 sizeof(ts_old), &ts_old); 2235 } 2236 } else { 2237 if (new_tstamp) { 2238 struct __kernel_sock_timeval stv = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_usec = tss->ts[0].tv_nsec / 1000, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2243 sizeof(stv), &stv); 2244 } else { 2245 struct __kernel_old_timeval tv = { 2246 .tv_sec = tss->ts[0].tv_sec, 2247 .tv_usec = tss->ts[0].tv_nsec / 1000, 2248 }; 2249 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2250 sizeof(tv), &tv); 2251 } 2252 } 2253 } 2254 2255 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2256 has_timestamping = true; 2257 else 2258 tss->ts[0] = (struct timespec64) {0}; 2259 } 2260 2261 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2262 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2263 has_timestamping = true; 2264 else 2265 tss->ts[2] = (struct timespec64) {0}; 2266 } 2267 2268 if (has_timestamping) { 2269 tss->ts[1] = (struct timespec64) {0}; 2270 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2271 put_cmsg_scm_timestamping64(msg, tss); 2272 else 2273 put_cmsg_scm_timestamping(msg, tss); 2274 } 2275 } 2276 2277 static int tcp_inq_hint(struct sock *sk) 2278 { 2279 const struct tcp_sock *tp = tcp_sk(sk); 2280 u32 copied_seq = READ_ONCE(tp->copied_seq); 2281 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2282 int inq; 2283 2284 inq = rcv_nxt - copied_seq; 2285 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2286 lock_sock(sk); 2287 inq = tp->rcv_nxt - tp->copied_seq; 2288 release_sock(sk); 2289 } 2290 /* After receiving a FIN, tell the user-space to continue reading 2291 * by returning a non-zero inq. 2292 */ 2293 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2294 inq = 1; 2295 return inq; 2296 } 2297 2298 /* 2299 * This routine copies from a sock struct into the user buffer. 2300 * 2301 * Technical note: in 2.3 we work on _locked_ socket, so that 2302 * tricks with *seq access order and skb->users are not required. 2303 * Probably, code can be easily improved even more. 2304 */ 2305 2306 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2307 int flags, struct scm_timestamping_internal *tss, 2308 int *cmsg_flags) 2309 { 2310 struct tcp_sock *tp = tcp_sk(sk); 2311 int copied = 0; 2312 u32 peek_seq; 2313 u32 *seq; 2314 unsigned long used; 2315 int err; 2316 int target; /* Read at least this many bytes */ 2317 long timeo; 2318 struct sk_buff *skb, *last; 2319 u32 urg_hole = 0; 2320 2321 err = -ENOTCONN; 2322 if (sk->sk_state == TCP_LISTEN) 2323 goto out; 2324 2325 if (tp->recvmsg_inq) { 2326 *cmsg_flags = TCP_CMSG_INQ; 2327 msg->msg_get_inq = 1; 2328 } 2329 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2330 2331 /* Urgent data needs to be handled specially. */ 2332 if (flags & MSG_OOB) 2333 goto recv_urg; 2334 2335 if (unlikely(tp->repair)) { 2336 err = -EPERM; 2337 if (!(flags & MSG_PEEK)) 2338 goto out; 2339 2340 if (tp->repair_queue == TCP_SEND_QUEUE) 2341 goto recv_sndq; 2342 2343 err = -EINVAL; 2344 if (tp->repair_queue == TCP_NO_QUEUE) 2345 goto out; 2346 2347 /* 'common' recv queue MSG_PEEK-ing */ 2348 } 2349 2350 seq = &tp->copied_seq; 2351 if (flags & MSG_PEEK) { 2352 peek_seq = tp->copied_seq; 2353 seq = &peek_seq; 2354 } 2355 2356 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2357 2358 do { 2359 u32 offset; 2360 2361 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2362 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2363 if (copied) 2364 break; 2365 if (signal_pending(current)) { 2366 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2367 break; 2368 } 2369 } 2370 2371 /* Next get a buffer. */ 2372 2373 last = skb_peek_tail(&sk->sk_receive_queue); 2374 skb_queue_walk(&sk->sk_receive_queue, skb) { 2375 last = skb; 2376 /* Now that we have two receive queues this 2377 * shouldn't happen. 2378 */ 2379 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2380 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2381 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2382 flags)) 2383 break; 2384 2385 offset = *seq - TCP_SKB_CB(skb)->seq; 2386 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2387 pr_err_once("%s: found a SYN, please report !\n", __func__); 2388 offset--; 2389 } 2390 if (offset < skb->len) 2391 goto found_ok_skb; 2392 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2393 goto found_fin_ok; 2394 WARN(!(flags & MSG_PEEK), 2395 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2396 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2397 } 2398 2399 /* Well, if we have backlog, try to process it now yet. */ 2400 2401 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2402 break; 2403 2404 if (copied) { 2405 if (!timeo || 2406 sk->sk_err || 2407 sk->sk_state == TCP_CLOSE || 2408 (sk->sk_shutdown & RCV_SHUTDOWN) || 2409 signal_pending(current)) 2410 break; 2411 } else { 2412 if (sock_flag(sk, SOCK_DONE)) 2413 break; 2414 2415 if (sk->sk_err) { 2416 copied = sock_error(sk); 2417 break; 2418 } 2419 2420 if (sk->sk_shutdown & RCV_SHUTDOWN) 2421 break; 2422 2423 if (sk->sk_state == TCP_CLOSE) { 2424 /* This occurs when user tries to read 2425 * from never connected socket. 2426 */ 2427 copied = -ENOTCONN; 2428 break; 2429 } 2430 2431 if (!timeo) { 2432 copied = -EAGAIN; 2433 break; 2434 } 2435 2436 if (signal_pending(current)) { 2437 copied = sock_intr_errno(timeo); 2438 break; 2439 } 2440 } 2441 2442 if (copied >= target) { 2443 /* Do not sleep, just process backlog. */ 2444 __sk_flush_backlog(sk); 2445 } else { 2446 tcp_cleanup_rbuf(sk, copied); 2447 err = sk_wait_data(sk, &timeo, last); 2448 if (err < 0) { 2449 err = copied ? : err; 2450 goto out; 2451 } 2452 } 2453 2454 if ((flags & MSG_PEEK) && 2455 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2456 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2457 current->comm, 2458 task_pid_nr(current)); 2459 peek_seq = tp->copied_seq; 2460 } 2461 continue; 2462 2463 found_ok_skb: 2464 /* Ok so how much can we use? */ 2465 used = skb->len - offset; 2466 if (len < used) 2467 used = len; 2468 2469 /* Do we have urgent data here? */ 2470 if (unlikely(tp->urg_data)) { 2471 u32 urg_offset = tp->urg_seq - *seq; 2472 if (urg_offset < used) { 2473 if (!urg_offset) { 2474 if (!sock_flag(sk, SOCK_URGINLINE)) { 2475 WRITE_ONCE(*seq, *seq + 1); 2476 urg_hole++; 2477 offset++; 2478 used--; 2479 if (!used) 2480 goto skip_copy; 2481 } 2482 } else 2483 used = urg_offset; 2484 } 2485 } 2486 2487 if (!(flags & MSG_TRUNC)) { 2488 err = skb_copy_datagram_msg(skb, offset, msg, used); 2489 if (err) { 2490 /* Exception. Bailout! */ 2491 if (!copied) 2492 copied = -EFAULT; 2493 break; 2494 } 2495 } 2496 2497 WRITE_ONCE(*seq, *seq + used); 2498 copied += used; 2499 len -= used; 2500 2501 tcp_rcv_space_adjust(sk); 2502 2503 skip_copy: 2504 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2505 WRITE_ONCE(tp->urg_data, 0); 2506 tcp_fast_path_check(sk); 2507 } 2508 2509 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2510 tcp_update_recv_tstamps(skb, tss); 2511 *cmsg_flags |= TCP_CMSG_TS; 2512 } 2513 2514 if (used + offset < skb->len) 2515 continue; 2516 2517 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2518 goto found_fin_ok; 2519 if (!(flags & MSG_PEEK)) 2520 tcp_eat_recv_skb(sk, skb); 2521 continue; 2522 2523 found_fin_ok: 2524 /* Process the FIN. */ 2525 WRITE_ONCE(*seq, *seq + 1); 2526 if (!(flags & MSG_PEEK)) 2527 tcp_eat_recv_skb(sk, skb); 2528 break; 2529 } while (len > 0); 2530 2531 /* According to UNIX98, msg_name/msg_namelen are ignored 2532 * on connected socket. I was just happy when found this 8) --ANK 2533 */ 2534 2535 /* Clean up data we have read: This will do ACK frames. */ 2536 tcp_cleanup_rbuf(sk, copied); 2537 return copied; 2538 2539 out: 2540 return err; 2541 2542 recv_urg: 2543 err = tcp_recv_urg(sk, msg, len, flags); 2544 goto out; 2545 2546 recv_sndq: 2547 err = tcp_peek_sndq(sk, msg, len); 2548 goto out; 2549 } 2550 2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2552 int *addr_len) 2553 { 2554 int cmsg_flags = 0, ret; 2555 struct scm_timestamping_internal tss; 2556 2557 if (unlikely(flags & MSG_ERRQUEUE)) 2558 return inet_recv_error(sk, msg, len, addr_len); 2559 2560 if (sk_can_busy_loop(sk) && 2561 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2562 sk->sk_state == TCP_ESTABLISHED) 2563 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2564 2565 lock_sock(sk); 2566 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2567 release_sock(sk); 2568 2569 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2570 if (cmsg_flags & TCP_CMSG_TS) 2571 tcp_recv_timestamp(msg, sk, &tss); 2572 if (msg->msg_get_inq) { 2573 msg->msg_inq = tcp_inq_hint(sk); 2574 if (cmsg_flags & TCP_CMSG_INQ) 2575 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2576 sizeof(msg->msg_inq), &msg->msg_inq); 2577 } 2578 } 2579 return ret; 2580 } 2581 EXPORT_SYMBOL(tcp_recvmsg); 2582 2583 void tcp_set_state(struct sock *sk, int state) 2584 { 2585 int oldstate = sk->sk_state; 2586 2587 /* We defined a new enum for TCP states that are exported in BPF 2588 * so as not force the internal TCP states to be frozen. The 2589 * following checks will detect if an internal state value ever 2590 * differs from the BPF value. If this ever happens, then we will 2591 * need to remap the internal value to the BPF value before calling 2592 * tcp_call_bpf_2arg. 2593 */ 2594 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2595 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2596 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2597 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2599 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2600 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2602 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2603 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2604 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2605 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2606 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2607 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2608 2609 /* bpf uapi header bpf.h defines an anonymous enum with values 2610 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2611 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2612 * But clang built vmlinux does not have this enum in DWARF 2613 * since clang removes the above code before generating IR/debuginfo. 2614 * Let us explicitly emit the type debuginfo to ensure the 2615 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2616 * regardless of which compiler is used. 2617 */ 2618 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2619 2620 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2621 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2622 2623 switch (state) { 2624 case TCP_ESTABLISHED: 2625 if (oldstate != TCP_ESTABLISHED) 2626 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2627 break; 2628 2629 case TCP_CLOSE: 2630 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2631 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2632 2633 sk->sk_prot->unhash(sk); 2634 if (inet_csk(sk)->icsk_bind_hash && 2635 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2636 inet_put_port(sk); 2637 fallthrough; 2638 default: 2639 if (oldstate == TCP_ESTABLISHED) 2640 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2641 } 2642 2643 /* Change state AFTER socket is unhashed to avoid closed 2644 * socket sitting in hash tables. 2645 */ 2646 inet_sk_state_store(sk, state); 2647 } 2648 EXPORT_SYMBOL_GPL(tcp_set_state); 2649 2650 /* 2651 * State processing on a close. This implements the state shift for 2652 * sending our FIN frame. Note that we only send a FIN for some 2653 * states. A shutdown() may have already sent the FIN, or we may be 2654 * closed. 2655 */ 2656 2657 static const unsigned char new_state[16] = { 2658 /* current state: new state: action: */ 2659 [0 /* (Invalid) */] = TCP_CLOSE, 2660 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2661 [TCP_SYN_SENT] = TCP_CLOSE, 2662 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2663 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2664 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2665 [TCP_TIME_WAIT] = TCP_CLOSE, 2666 [TCP_CLOSE] = TCP_CLOSE, 2667 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2668 [TCP_LAST_ACK] = TCP_LAST_ACK, 2669 [TCP_LISTEN] = TCP_CLOSE, 2670 [TCP_CLOSING] = TCP_CLOSING, 2671 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2672 }; 2673 2674 static int tcp_close_state(struct sock *sk) 2675 { 2676 int next = (int)new_state[sk->sk_state]; 2677 int ns = next & TCP_STATE_MASK; 2678 2679 tcp_set_state(sk, ns); 2680 2681 return next & TCP_ACTION_FIN; 2682 } 2683 2684 /* 2685 * Shutdown the sending side of a connection. Much like close except 2686 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2687 */ 2688 2689 void tcp_shutdown(struct sock *sk, int how) 2690 { 2691 /* We need to grab some memory, and put together a FIN, 2692 * and then put it into the queue to be sent. 2693 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2694 */ 2695 if (!(how & SEND_SHUTDOWN)) 2696 return; 2697 2698 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2699 if ((1 << sk->sk_state) & 2700 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2701 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2702 /* Clear out any half completed packets. FIN if needed. */ 2703 if (tcp_close_state(sk)) 2704 tcp_send_fin(sk); 2705 } 2706 } 2707 EXPORT_SYMBOL(tcp_shutdown); 2708 2709 int tcp_orphan_count_sum(void) 2710 { 2711 int i, total = 0; 2712 2713 for_each_possible_cpu(i) 2714 total += per_cpu(tcp_orphan_count, i); 2715 2716 return max(total, 0); 2717 } 2718 2719 static int tcp_orphan_cache; 2720 static struct timer_list tcp_orphan_timer; 2721 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2722 2723 static void tcp_orphan_update(struct timer_list *unused) 2724 { 2725 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2726 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2727 } 2728 2729 static bool tcp_too_many_orphans(int shift) 2730 { 2731 return READ_ONCE(tcp_orphan_cache) << shift > 2732 READ_ONCE(sysctl_tcp_max_orphans); 2733 } 2734 2735 bool tcp_check_oom(struct sock *sk, int shift) 2736 { 2737 bool too_many_orphans, out_of_socket_memory; 2738 2739 too_many_orphans = tcp_too_many_orphans(shift); 2740 out_of_socket_memory = tcp_out_of_memory(sk); 2741 2742 if (too_many_orphans) 2743 net_info_ratelimited("too many orphaned sockets\n"); 2744 if (out_of_socket_memory) 2745 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2746 return too_many_orphans || out_of_socket_memory; 2747 } 2748 2749 void __tcp_close(struct sock *sk, long timeout) 2750 { 2751 struct sk_buff *skb; 2752 int data_was_unread = 0; 2753 int state; 2754 2755 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2756 2757 if (sk->sk_state == TCP_LISTEN) { 2758 tcp_set_state(sk, TCP_CLOSE); 2759 2760 /* Special case. */ 2761 inet_csk_listen_stop(sk); 2762 2763 goto adjudge_to_death; 2764 } 2765 2766 /* We need to flush the recv. buffs. We do this only on the 2767 * descriptor close, not protocol-sourced closes, because the 2768 * reader process may not have drained the data yet! 2769 */ 2770 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2771 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2772 2773 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2774 len--; 2775 data_was_unread += len; 2776 __kfree_skb(skb); 2777 } 2778 2779 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2780 if (sk->sk_state == TCP_CLOSE) 2781 goto adjudge_to_death; 2782 2783 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2784 * data was lost. To witness the awful effects of the old behavior of 2785 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2786 * GET in an FTP client, suspend the process, wait for the client to 2787 * advertise a zero window, then kill -9 the FTP client, wheee... 2788 * Note: timeout is always zero in such a case. 2789 */ 2790 if (unlikely(tcp_sk(sk)->repair)) { 2791 sk->sk_prot->disconnect(sk, 0); 2792 } else if (data_was_unread) { 2793 /* Unread data was tossed, zap the connection. */ 2794 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2795 tcp_set_state(sk, TCP_CLOSE); 2796 tcp_send_active_reset(sk, sk->sk_allocation); 2797 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2798 /* Check zero linger _after_ checking for unread data. */ 2799 sk->sk_prot->disconnect(sk, 0); 2800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2801 } else if (tcp_close_state(sk)) { 2802 /* We FIN if the application ate all the data before 2803 * zapping the connection. 2804 */ 2805 2806 /* RED-PEN. Formally speaking, we have broken TCP state 2807 * machine. State transitions: 2808 * 2809 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2810 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2811 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2812 * 2813 * are legal only when FIN has been sent (i.e. in window), 2814 * rather than queued out of window. Purists blame. 2815 * 2816 * F.e. "RFC state" is ESTABLISHED, 2817 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2818 * 2819 * The visible declinations are that sometimes 2820 * we enter time-wait state, when it is not required really 2821 * (harmless), do not send active resets, when they are 2822 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2823 * they look as CLOSING or LAST_ACK for Linux) 2824 * Probably, I missed some more holelets. 2825 * --ANK 2826 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2827 * in a single packet! (May consider it later but will 2828 * probably need API support or TCP_CORK SYN-ACK until 2829 * data is written and socket is closed.) 2830 */ 2831 tcp_send_fin(sk); 2832 } 2833 2834 sk_stream_wait_close(sk, timeout); 2835 2836 adjudge_to_death: 2837 state = sk->sk_state; 2838 sock_hold(sk); 2839 sock_orphan(sk); 2840 2841 local_bh_disable(); 2842 bh_lock_sock(sk); 2843 /* remove backlog if any, without releasing ownership. */ 2844 __release_sock(sk); 2845 2846 this_cpu_inc(tcp_orphan_count); 2847 2848 /* Have we already been destroyed by a softirq or backlog? */ 2849 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2850 goto out; 2851 2852 /* This is a (useful) BSD violating of the RFC. There is a 2853 * problem with TCP as specified in that the other end could 2854 * keep a socket open forever with no application left this end. 2855 * We use a 1 minute timeout (about the same as BSD) then kill 2856 * our end. If they send after that then tough - BUT: long enough 2857 * that we won't make the old 4*rto = almost no time - whoops 2858 * reset mistake. 2859 * 2860 * Nope, it was not mistake. It is really desired behaviour 2861 * f.e. on http servers, when such sockets are useless, but 2862 * consume significant resources. Let's do it with special 2863 * linger2 option. --ANK 2864 */ 2865 2866 if (sk->sk_state == TCP_FIN_WAIT2) { 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 if (READ_ONCE(tp->linger2) < 0) { 2869 tcp_set_state(sk, TCP_CLOSE); 2870 tcp_send_active_reset(sk, GFP_ATOMIC); 2871 __NET_INC_STATS(sock_net(sk), 2872 LINUX_MIB_TCPABORTONLINGER); 2873 } else { 2874 const int tmo = tcp_fin_time(sk); 2875 2876 if (tmo > TCP_TIMEWAIT_LEN) { 2877 inet_csk_reset_keepalive_timer(sk, 2878 tmo - TCP_TIMEWAIT_LEN); 2879 } else { 2880 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2881 goto out; 2882 } 2883 } 2884 } 2885 if (sk->sk_state != TCP_CLOSE) { 2886 if (tcp_check_oom(sk, 0)) { 2887 tcp_set_state(sk, TCP_CLOSE); 2888 tcp_send_active_reset(sk, GFP_ATOMIC); 2889 __NET_INC_STATS(sock_net(sk), 2890 LINUX_MIB_TCPABORTONMEMORY); 2891 } else if (!check_net(sock_net(sk))) { 2892 /* Not possible to send reset; just close */ 2893 tcp_set_state(sk, TCP_CLOSE); 2894 } 2895 } 2896 2897 if (sk->sk_state == TCP_CLOSE) { 2898 struct request_sock *req; 2899 2900 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2901 lockdep_sock_is_held(sk)); 2902 /* We could get here with a non-NULL req if the socket is 2903 * aborted (e.g., closed with unread data) before 3WHS 2904 * finishes. 2905 */ 2906 if (req) 2907 reqsk_fastopen_remove(sk, req, false); 2908 inet_csk_destroy_sock(sk); 2909 } 2910 /* Otherwise, socket is reprieved until protocol close. */ 2911 2912 out: 2913 bh_unlock_sock(sk); 2914 local_bh_enable(); 2915 } 2916 2917 void tcp_close(struct sock *sk, long timeout) 2918 { 2919 lock_sock(sk); 2920 __tcp_close(sk, timeout); 2921 release_sock(sk); 2922 sock_put(sk); 2923 } 2924 EXPORT_SYMBOL(tcp_close); 2925 2926 /* These states need RST on ABORT according to RFC793 */ 2927 2928 static inline bool tcp_need_reset(int state) 2929 { 2930 return (1 << state) & 2931 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2932 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2933 } 2934 2935 static void tcp_rtx_queue_purge(struct sock *sk) 2936 { 2937 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2938 2939 tcp_sk(sk)->highest_sack = NULL; 2940 while (p) { 2941 struct sk_buff *skb = rb_to_skb(p); 2942 2943 p = rb_next(p); 2944 /* Since we are deleting whole queue, no need to 2945 * list_del(&skb->tcp_tsorted_anchor) 2946 */ 2947 tcp_rtx_queue_unlink(skb, sk); 2948 tcp_wmem_free_skb(sk, skb); 2949 } 2950 } 2951 2952 void tcp_write_queue_purge(struct sock *sk) 2953 { 2954 struct sk_buff *skb; 2955 2956 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2957 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2958 tcp_skb_tsorted_anchor_cleanup(skb); 2959 tcp_wmem_free_skb(sk, skb); 2960 } 2961 tcp_rtx_queue_purge(sk); 2962 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2963 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2964 tcp_sk(sk)->packets_out = 0; 2965 inet_csk(sk)->icsk_backoff = 0; 2966 } 2967 2968 int tcp_disconnect(struct sock *sk, int flags) 2969 { 2970 struct inet_sock *inet = inet_sk(sk); 2971 struct inet_connection_sock *icsk = inet_csk(sk); 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 int old_state = sk->sk_state; 2974 u32 seq; 2975 2976 if (old_state != TCP_CLOSE) 2977 tcp_set_state(sk, TCP_CLOSE); 2978 2979 /* ABORT function of RFC793 */ 2980 if (old_state == TCP_LISTEN) { 2981 inet_csk_listen_stop(sk); 2982 } else if (unlikely(tp->repair)) { 2983 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2984 } else if (tcp_need_reset(old_state) || 2985 (tp->snd_nxt != tp->write_seq && 2986 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2987 /* The last check adjusts for discrepancy of Linux wrt. RFC 2988 * states 2989 */ 2990 tcp_send_active_reset(sk, gfp_any()); 2991 WRITE_ONCE(sk->sk_err, ECONNRESET); 2992 } else if (old_state == TCP_SYN_SENT) 2993 WRITE_ONCE(sk->sk_err, ECONNRESET); 2994 2995 tcp_clear_xmit_timers(sk); 2996 __skb_queue_purge(&sk->sk_receive_queue); 2997 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2998 WRITE_ONCE(tp->urg_data, 0); 2999 tcp_write_queue_purge(sk); 3000 tcp_fastopen_active_disable_ofo_check(sk); 3001 skb_rbtree_purge(&tp->out_of_order_queue); 3002 3003 inet->inet_dport = 0; 3004 3005 inet_bhash2_reset_saddr(sk); 3006 3007 WRITE_ONCE(sk->sk_shutdown, 0); 3008 sock_reset_flag(sk, SOCK_DONE); 3009 tp->srtt_us = 0; 3010 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3011 tp->rcv_rtt_last_tsecr = 0; 3012 3013 seq = tp->write_seq + tp->max_window + 2; 3014 if (!seq) 3015 seq = 1; 3016 WRITE_ONCE(tp->write_seq, seq); 3017 3018 icsk->icsk_backoff = 0; 3019 icsk->icsk_probes_out = 0; 3020 icsk->icsk_probes_tstamp = 0; 3021 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3022 icsk->icsk_rto_min = TCP_RTO_MIN; 3023 icsk->icsk_delack_max = TCP_DELACK_MAX; 3024 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3025 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3026 tp->snd_cwnd_cnt = 0; 3027 tp->is_cwnd_limited = 0; 3028 tp->max_packets_out = 0; 3029 tp->window_clamp = 0; 3030 tp->delivered = 0; 3031 tp->delivered_ce = 0; 3032 if (icsk->icsk_ca_ops->release) 3033 icsk->icsk_ca_ops->release(sk); 3034 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3035 icsk->icsk_ca_initialized = 0; 3036 tcp_set_ca_state(sk, TCP_CA_Open); 3037 tp->is_sack_reneg = 0; 3038 tcp_clear_retrans(tp); 3039 tp->total_retrans = 0; 3040 inet_csk_delack_init(sk); 3041 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3042 * issue in __tcp_select_window() 3043 */ 3044 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3045 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3046 __sk_dst_reset(sk); 3047 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3048 tcp_saved_syn_free(tp); 3049 tp->compressed_ack = 0; 3050 tp->segs_in = 0; 3051 tp->segs_out = 0; 3052 tp->bytes_sent = 0; 3053 tp->bytes_acked = 0; 3054 tp->bytes_received = 0; 3055 tp->bytes_retrans = 0; 3056 tp->data_segs_in = 0; 3057 tp->data_segs_out = 0; 3058 tp->duplicate_sack[0].start_seq = 0; 3059 tp->duplicate_sack[0].end_seq = 0; 3060 tp->dsack_dups = 0; 3061 tp->reord_seen = 0; 3062 tp->retrans_out = 0; 3063 tp->sacked_out = 0; 3064 tp->tlp_high_seq = 0; 3065 tp->last_oow_ack_time = 0; 3066 tp->plb_rehash = 0; 3067 /* There's a bubble in the pipe until at least the first ACK. */ 3068 tp->app_limited = ~0U; 3069 tp->rate_app_limited = 1; 3070 tp->rack.mstamp = 0; 3071 tp->rack.advanced = 0; 3072 tp->rack.reo_wnd_steps = 1; 3073 tp->rack.last_delivered = 0; 3074 tp->rack.reo_wnd_persist = 0; 3075 tp->rack.dsack_seen = 0; 3076 tp->syn_data_acked = 0; 3077 tp->rx_opt.saw_tstamp = 0; 3078 tp->rx_opt.dsack = 0; 3079 tp->rx_opt.num_sacks = 0; 3080 tp->rcv_ooopack = 0; 3081 3082 3083 /* Clean up fastopen related fields */ 3084 tcp_free_fastopen_req(tp); 3085 inet_clear_bit(DEFER_CONNECT, sk); 3086 tp->fastopen_client_fail = 0; 3087 3088 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3089 3090 if (sk->sk_frag.page) { 3091 put_page(sk->sk_frag.page); 3092 sk->sk_frag.page = NULL; 3093 sk->sk_frag.offset = 0; 3094 } 3095 sk_error_report(sk); 3096 return 0; 3097 } 3098 EXPORT_SYMBOL(tcp_disconnect); 3099 3100 static inline bool tcp_can_repair_sock(const struct sock *sk) 3101 { 3102 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3103 (sk->sk_state != TCP_LISTEN); 3104 } 3105 3106 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3107 { 3108 struct tcp_repair_window opt; 3109 3110 if (!tp->repair) 3111 return -EPERM; 3112 3113 if (len != sizeof(opt)) 3114 return -EINVAL; 3115 3116 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3117 return -EFAULT; 3118 3119 if (opt.max_window < opt.snd_wnd) 3120 return -EINVAL; 3121 3122 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3123 return -EINVAL; 3124 3125 if (after(opt.rcv_wup, tp->rcv_nxt)) 3126 return -EINVAL; 3127 3128 tp->snd_wl1 = opt.snd_wl1; 3129 tp->snd_wnd = opt.snd_wnd; 3130 tp->max_window = opt.max_window; 3131 3132 tp->rcv_wnd = opt.rcv_wnd; 3133 tp->rcv_wup = opt.rcv_wup; 3134 3135 return 0; 3136 } 3137 3138 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3139 unsigned int len) 3140 { 3141 struct tcp_sock *tp = tcp_sk(sk); 3142 struct tcp_repair_opt opt; 3143 size_t offset = 0; 3144 3145 while (len >= sizeof(opt)) { 3146 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3147 return -EFAULT; 3148 3149 offset += sizeof(opt); 3150 len -= sizeof(opt); 3151 3152 switch (opt.opt_code) { 3153 case TCPOPT_MSS: 3154 tp->rx_opt.mss_clamp = opt.opt_val; 3155 tcp_mtup_init(sk); 3156 break; 3157 case TCPOPT_WINDOW: 3158 { 3159 u16 snd_wscale = opt.opt_val & 0xFFFF; 3160 u16 rcv_wscale = opt.opt_val >> 16; 3161 3162 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3163 return -EFBIG; 3164 3165 tp->rx_opt.snd_wscale = snd_wscale; 3166 tp->rx_opt.rcv_wscale = rcv_wscale; 3167 tp->rx_opt.wscale_ok = 1; 3168 } 3169 break; 3170 case TCPOPT_SACK_PERM: 3171 if (opt.opt_val != 0) 3172 return -EINVAL; 3173 3174 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3175 break; 3176 case TCPOPT_TIMESTAMP: 3177 if (opt.opt_val != 0) 3178 return -EINVAL; 3179 3180 tp->rx_opt.tstamp_ok = 1; 3181 break; 3182 } 3183 } 3184 3185 return 0; 3186 } 3187 3188 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3189 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3190 3191 static void tcp_enable_tx_delay(void) 3192 { 3193 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3194 static int __tcp_tx_delay_enabled = 0; 3195 3196 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3197 static_branch_enable(&tcp_tx_delay_enabled); 3198 pr_info("TCP_TX_DELAY enabled\n"); 3199 } 3200 } 3201 } 3202 3203 /* When set indicates to always queue non-full frames. Later the user clears 3204 * this option and we transmit any pending partial frames in the queue. This is 3205 * meant to be used alongside sendfile() to get properly filled frames when the 3206 * user (for example) must write out headers with a write() call first and then 3207 * use sendfile to send out the data parts. 3208 * 3209 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3210 * TCP_NODELAY. 3211 */ 3212 void __tcp_sock_set_cork(struct sock *sk, bool on) 3213 { 3214 struct tcp_sock *tp = tcp_sk(sk); 3215 3216 if (on) { 3217 tp->nonagle |= TCP_NAGLE_CORK; 3218 } else { 3219 tp->nonagle &= ~TCP_NAGLE_CORK; 3220 if (tp->nonagle & TCP_NAGLE_OFF) 3221 tp->nonagle |= TCP_NAGLE_PUSH; 3222 tcp_push_pending_frames(sk); 3223 } 3224 } 3225 3226 void tcp_sock_set_cork(struct sock *sk, bool on) 3227 { 3228 lock_sock(sk); 3229 __tcp_sock_set_cork(sk, on); 3230 release_sock(sk); 3231 } 3232 EXPORT_SYMBOL(tcp_sock_set_cork); 3233 3234 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3235 * remembered, but it is not activated until cork is cleared. 3236 * 3237 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3238 * even TCP_CORK for currently queued segments. 3239 */ 3240 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3241 { 3242 if (on) { 3243 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3244 tcp_push_pending_frames(sk); 3245 } else { 3246 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3247 } 3248 } 3249 3250 void tcp_sock_set_nodelay(struct sock *sk) 3251 { 3252 lock_sock(sk); 3253 __tcp_sock_set_nodelay(sk, true); 3254 release_sock(sk); 3255 } 3256 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3257 3258 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3259 { 3260 if (!val) { 3261 inet_csk_enter_pingpong_mode(sk); 3262 return; 3263 } 3264 3265 inet_csk_exit_pingpong_mode(sk); 3266 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3267 inet_csk_ack_scheduled(sk)) { 3268 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3269 tcp_cleanup_rbuf(sk, 1); 3270 if (!(val & 1)) 3271 inet_csk_enter_pingpong_mode(sk); 3272 } 3273 } 3274 3275 void tcp_sock_set_quickack(struct sock *sk, int val) 3276 { 3277 lock_sock(sk); 3278 __tcp_sock_set_quickack(sk, val); 3279 release_sock(sk); 3280 } 3281 EXPORT_SYMBOL(tcp_sock_set_quickack); 3282 3283 int tcp_sock_set_syncnt(struct sock *sk, int val) 3284 { 3285 if (val < 1 || val > MAX_TCP_SYNCNT) 3286 return -EINVAL; 3287 3288 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3289 return 0; 3290 } 3291 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3292 3293 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3294 { 3295 /* Cap the max time in ms TCP will retry or probe the window 3296 * before giving up and aborting (ETIMEDOUT) a connection. 3297 */ 3298 if (val < 0) 3299 return -EINVAL; 3300 3301 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3302 return 0; 3303 } 3304 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3305 3306 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3307 { 3308 struct tcp_sock *tp = tcp_sk(sk); 3309 3310 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3311 return -EINVAL; 3312 3313 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3314 WRITE_ONCE(tp->keepalive_time, val * HZ); 3315 if (sock_flag(sk, SOCK_KEEPOPEN) && 3316 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3317 u32 elapsed = keepalive_time_elapsed(tp); 3318 3319 if (tp->keepalive_time > elapsed) 3320 elapsed = tp->keepalive_time - elapsed; 3321 else 3322 elapsed = 0; 3323 inet_csk_reset_keepalive_timer(sk, elapsed); 3324 } 3325 3326 return 0; 3327 } 3328 3329 int tcp_sock_set_keepidle(struct sock *sk, int val) 3330 { 3331 int err; 3332 3333 lock_sock(sk); 3334 err = tcp_sock_set_keepidle_locked(sk, val); 3335 release_sock(sk); 3336 return err; 3337 } 3338 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3339 3340 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3341 { 3342 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3343 return -EINVAL; 3344 3345 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3346 return 0; 3347 } 3348 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3349 3350 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3351 { 3352 if (val < 1 || val > MAX_TCP_KEEPCNT) 3353 return -EINVAL; 3354 3355 /* Paired with READ_ONCE() in keepalive_probes() */ 3356 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3357 return 0; 3358 } 3359 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3360 3361 int tcp_set_window_clamp(struct sock *sk, int val) 3362 { 3363 struct tcp_sock *tp = tcp_sk(sk); 3364 3365 if (!val) { 3366 if (sk->sk_state != TCP_CLOSE) 3367 return -EINVAL; 3368 tp->window_clamp = 0; 3369 } else { 3370 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3371 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3372 SOCK_MIN_RCVBUF / 2 : val; 3373 3374 if (new_window_clamp == old_window_clamp) 3375 return 0; 3376 3377 tp->window_clamp = new_window_clamp; 3378 if (new_window_clamp < old_window_clamp) { 3379 /* need to apply the reserved mem provisioning only 3380 * when shrinking the window clamp 3381 */ 3382 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3383 3384 } else { 3385 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3386 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3387 tp->rcv_ssthresh); 3388 } 3389 } 3390 return 0; 3391 } 3392 3393 /* 3394 * Socket option code for TCP. 3395 */ 3396 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3397 sockptr_t optval, unsigned int optlen) 3398 { 3399 struct tcp_sock *tp = tcp_sk(sk); 3400 struct inet_connection_sock *icsk = inet_csk(sk); 3401 struct net *net = sock_net(sk); 3402 int val; 3403 int err = 0; 3404 3405 /* These are data/string values, all the others are ints */ 3406 switch (optname) { 3407 case TCP_CONGESTION: { 3408 char name[TCP_CA_NAME_MAX]; 3409 3410 if (optlen < 1) 3411 return -EINVAL; 3412 3413 val = strncpy_from_sockptr(name, optval, 3414 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3415 if (val < 0) 3416 return -EFAULT; 3417 name[val] = 0; 3418 3419 sockopt_lock_sock(sk); 3420 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3421 sockopt_ns_capable(sock_net(sk)->user_ns, 3422 CAP_NET_ADMIN)); 3423 sockopt_release_sock(sk); 3424 return err; 3425 } 3426 case TCP_ULP: { 3427 char name[TCP_ULP_NAME_MAX]; 3428 3429 if (optlen < 1) 3430 return -EINVAL; 3431 3432 val = strncpy_from_sockptr(name, optval, 3433 min_t(long, TCP_ULP_NAME_MAX - 1, 3434 optlen)); 3435 if (val < 0) 3436 return -EFAULT; 3437 name[val] = 0; 3438 3439 sockopt_lock_sock(sk); 3440 err = tcp_set_ulp(sk, name); 3441 sockopt_release_sock(sk); 3442 return err; 3443 } 3444 case TCP_FASTOPEN_KEY: { 3445 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3446 __u8 *backup_key = NULL; 3447 3448 /* Allow a backup key as well to facilitate key rotation 3449 * First key is the active one. 3450 */ 3451 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3452 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3453 return -EINVAL; 3454 3455 if (copy_from_sockptr(key, optval, optlen)) 3456 return -EFAULT; 3457 3458 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3459 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3460 3461 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3462 } 3463 default: 3464 /* fallthru */ 3465 break; 3466 } 3467 3468 if (optlen < sizeof(int)) 3469 return -EINVAL; 3470 3471 if (copy_from_sockptr(&val, optval, sizeof(val))) 3472 return -EFAULT; 3473 3474 /* Handle options that can be set without locking the socket. */ 3475 switch (optname) { 3476 case TCP_SYNCNT: 3477 return tcp_sock_set_syncnt(sk, val); 3478 case TCP_USER_TIMEOUT: 3479 return tcp_sock_set_user_timeout(sk, val); 3480 case TCP_KEEPINTVL: 3481 return tcp_sock_set_keepintvl(sk, val); 3482 case TCP_KEEPCNT: 3483 return tcp_sock_set_keepcnt(sk, val); 3484 case TCP_LINGER2: 3485 if (val < 0) 3486 WRITE_ONCE(tp->linger2, -1); 3487 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3488 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3489 else 3490 WRITE_ONCE(tp->linger2, val * HZ); 3491 return 0; 3492 case TCP_DEFER_ACCEPT: 3493 /* Translate value in seconds to number of retransmits */ 3494 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3495 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3496 TCP_RTO_MAX / HZ)); 3497 return 0; 3498 } 3499 3500 sockopt_lock_sock(sk); 3501 3502 switch (optname) { 3503 case TCP_MAXSEG: 3504 /* Values greater than interface MTU won't take effect. However 3505 * at the point when this call is done we typically don't yet 3506 * know which interface is going to be used 3507 */ 3508 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3509 err = -EINVAL; 3510 break; 3511 } 3512 tp->rx_opt.user_mss = val; 3513 break; 3514 3515 case TCP_NODELAY: 3516 __tcp_sock_set_nodelay(sk, val); 3517 break; 3518 3519 case TCP_THIN_LINEAR_TIMEOUTS: 3520 if (val < 0 || val > 1) 3521 err = -EINVAL; 3522 else 3523 tp->thin_lto = val; 3524 break; 3525 3526 case TCP_THIN_DUPACK: 3527 if (val < 0 || val > 1) 3528 err = -EINVAL; 3529 break; 3530 3531 case TCP_REPAIR: 3532 if (!tcp_can_repair_sock(sk)) 3533 err = -EPERM; 3534 else if (val == TCP_REPAIR_ON) { 3535 tp->repair = 1; 3536 sk->sk_reuse = SK_FORCE_REUSE; 3537 tp->repair_queue = TCP_NO_QUEUE; 3538 } else if (val == TCP_REPAIR_OFF) { 3539 tp->repair = 0; 3540 sk->sk_reuse = SK_NO_REUSE; 3541 tcp_send_window_probe(sk); 3542 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3543 tp->repair = 0; 3544 sk->sk_reuse = SK_NO_REUSE; 3545 } else 3546 err = -EINVAL; 3547 3548 break; 3549 3550 case TCP_REPAIR_QUEUE: 3551 if (!tp->repair) 3552 err = -EPERM; 3553 else if ((unsigned int)val < TCP_QUEUES_NR) 3554 tp->repair_queue = val; 3555 else 3556 err = -EINVAL; 3557 break; 3558 3559 case TCP_QUEUE_SEQ: 3560 if (sk->sk_state != TCP_CLOSE) { 3561 err = -EPERM; 3562 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3563 if (!tcp_rtx_queue_empty(sk)) 3564 err = -EPERM; 3565 else 3566 WRITE_ONCE(tp->write_seq, val); 3567 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3568 if (tp->rcv_nxt != tp->copied_seq) { 3569 err = -EPERM; 3570 } else { 3571 WRITE_ONCE(tp->rcv_nxt, val); 3572 WRITE_ONCE(tp->copied_seq, val); 3573 } 3574 } else { 3575 err = -EINVAL; 3576 } 3577 break; 3578 3579 case TCP_REPAIR_OPTIONS: 3580 if (!tp->repair) 3581 err = -EINVAL; 3582 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3583 err = tcp_repair_options_est(sk, optval, optlen); 3584 else 3585 err = -EPERM; 3586 break; 3587 3588 case TCP_CORK: 3589 __tcp_sock_set_cork(sk, val); 3590 break; 3591 3592 case TCP_KEEPIDLE: 3593 err = tcp_sock_set_keepidle_locked(sk, val); 3594 break; 3595 case TCP_SAVE_SYN: 3596 /* 0: disable, 1: enable, 2: start from ether_header */ 3597 if (val < 0 || val > 2) 3598 err = -EINVAL; 3599 else 3600 tp->save_syn = val; 3601 break; 3602 3603 case TCP_WINDOW_CLAMP: 3604 err = tcp_set_window_clamp(sk, val); 3605 break; 3606 3607 case TCP_QUICKACK: 3608 __tcp_sock_set_quickack(sk, val); 3609 break; 3610 3611 case TCP_AO_REPAIR: 3612 if (!tcp_can_repair_sock(sk)) { 3613 err = -EPERM; 3614 break; 3615 } 3616 err = tcp_ao_set_repair(sk, optval, optlen); 3617 break; 3618 #ifdef CONFIG_TCP_AO 3619 case TCP_AO_ADD_KEY: 3620 case TCP_AO_DEL_KEY: 3621 case TCP_AO_INFO: { 3622 /* If this is the first TCP-AO setsockopt() on the socket, 3623 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3624 * in any state. 3625 */ 3626 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3627 goto ao_parse; 3628 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3629 lockdep_sock_is_held(sk))) 3630 goto ao_parse; 3631 if (tp->repair) 3632 goto ao_parse; 3633 err = -EISCONN; 3634 break; 3635 ao_parse: 3636 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3637 break; 3638 } 3639 #endif 3640 #ifdef CONFIG_TCP_MD5SIG 3641 case TCP_MD5SIG: 3642 case TCP_MD5SIG_EXT: 3643 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3644 break; 3645 #endif 3646 case TCP_FASTOPEN: 3647 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3648 TCPF_LISTEN))) { 3649 tcp_fastopen_init_key_once(net); 3650 3651 fastopen_queue_tune(sk, val); 3652 } else { 3653 err = -EINVAL; 3654 } 3655 break; 3656 case TCP_FASTOPEN_CONNECT: 3657 if (val > 1 || val < 0) { 3658 err = -EINVAL; 3659 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3660 TFO_CLIENT_ENABLE) { 3661 if (sk->sk_state == TCP_CLOSE) 3662 tp->fastopen_connect = val; 3663 else 3664 err = -EINVAL; 3665 } else { 3666 err = -EOPNOTSUPP; 3667 } 3668 break; 3669 case TCP_FASTOPEN_NO_COOKIE: 3670 if (val > 1 || val < 0) 3671 err = -EINVAL; 3672 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3673 err = -EINVAL; 3674 else 3675 tp->fastopen_no_cookie = val; 3676 break; 3677 case TCP_TIMESTAMP: 3678 if (!tp->repair) { 3679 err = -EPERM; 3680 break; 3681 } 3682 /* val is an opaque field, 3683 * and low order bit contains usec_ts enable bit. 3684 * Its a best effort, and we do not care if user makes an error. 3685 */ 3686 tp->tcp_usec_ts = val & 1; 3687 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3688 break; 3689 case TCP_REPAIR_WINDOW: 3690 err = tcp_repair_set_window(tp, optval, optlen); 3691 break; 3692 case TCP_NOTSENT_LOWAT: 3693 WRITE_ONCE(tp->notsent_lowat, val); 3694 sk->sk_write_space(sk); 3695 break; 3696 case TCP_INQ: 3697 if (val > 1 || val < 0) 3698 err = -EINVAL; 3699 else 3700 tp->recvmsg_inq = val; 3701 break; 3702 case TCP_TX_DELAY: 3703 if (val) 3704 tcp_enable_tx_delay(); 3705 WRITE_ONCE(tp->tcp_tx_delay, val); 3706 break; 3707 default: 3708 err = -ENOPROTOOPT; 3709 break; 3710 } 3711 3712 sockopt_release_sock(sk); 3713 return err; 3714 } 3715 3716 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3717 unsigned int optlen) 3718 { 3719 const struct inet_connection_sock *icsk = inet_csk(sk); 3720 3721 if (level != SOL_TCP) 3722 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3723 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3724 optval, optlen); 3725 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3726 } 3727 EXPORT_SYMBOL(tcp_setsockopt); 3728 3729 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3730 struct tcp_info *info) 3731 { 3732 u64 stats[__TCP_CHRONO_MAX], total = 0; 3733 enum tcp_chrono i; 3734 3735 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3736 stats[i] = tp->chrono_stat[i - 1]; 3737 if (i == tp->chrono_type) 3738 stats[i] += tcp_jiffies32 - tp->chrono_start; 3739 stats[i] *= USEC_PER_SEC / HZ; 3740 total += stats[i]; 3741 } 3742 3743 info->tcpi_busy_time = total; 3744 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3745 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3746 } 3747 3748 /* Return information about state of tcp endpoint in API format. */ 3749 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3750 { 3751 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3752 const struct inet_connection_sock *icsk = inet_csk(sk); 3753 unsigned long rate; 3754 u32 now; 3755 u64 rate64; 3756 bool slow; 3757 3758 memset(info, 0, sizeof(*info)); 3759 if (sk->sk_type != SOCK_STREAM) 3760 return; 3761 3762 info->tcpi_state = inet_sk_state_load(sk); 3763 3764 /* Report meaningful fields for all TCP states, including listeners */ 3765 rate = READ_ONCE(sk->sk_pacing_rate); 3766 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3767 info->tcpi_pacing_rate = rate64; 3768 3769 rate = READ_ONCE(sk->sk_max_pacing_rate); 3770 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3771 info->tcpi_max_pacing_rate = rate64; 3772 3773 info->tcpi_reordering = tp->reordering; 3774 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3775 3776 if (info->tcpi_state == TCP_LISTEN) { 3777 /* listeners aliased fields : 3778 * tcpi_unacked -> Number of children ready for accept() 3779 * tcpi_sacked -> max backlog 3780 */ 3781 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3782 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3783 return; 3784 } 3785 3786 slow = lock_sock_fast(sk); 3787 3788 info->tcpi_ca_state = icsk->icsk_ca_state; 3789 info->tcpi_retransmits = icsk->icsk_retransmits; 3790 info->tcpi_probes = icsk->icsk_probes_out; 3791 info->tcpi_backoff = icsk->icsk_backoff; 3792 3793 if (tp->rx_opt.tstamp_ok) 3794 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3795 if (tcp_is_sack(tp)) 3796 info->tcpi_options |= TCPI_OPT_SACK; 3797 if (tp->rx_opt.wscale_ok) { 3798 info->tcpi_options |= TCPI_OPT_WSCALE; 3799 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3800 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3801 } 3802 3803 if (tp->ecn_flags & TCP_ECN_OK) 3804 info->tcpi_options |= TCPI_OPT_ECN; 3805 if (tp->ecn_flags & TCP_ECN_SEEN) 3806 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3807 if (tp->syn_data_acked) 3808 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3809 if (tp->tcp_usec_ts) 3810 info->tcpi_options |= TCPI_OPT_USEC_TS; 3811 3812 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3813 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3814 tcp_delack_max(sk))); 3815 info->tcpi_snd_mss = tp->mss_cache; 3816 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3817 3818 info->tcpi_unacked = tp->packets_out; 3819 info->tcpi_sacked = tp->sacked_out; 3820 3821 info->tcpi_lost = tp->lost_out; 3822 info->tcpi_retrans = tp->retrans_out; 3823 3824 now = tcp_jiffies32; 3825 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3826 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3827 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3828 3829 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3830 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3831 info->tcpi_rtt = tp->srtt_us >> 3; 3832 info->tcpi_rttvar = tp->mdev_us >> 2; 3833 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3834 info->tcpi_advmss = tp->advmss; 3835 3836 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3837 info->tcpi_rcv_space = tp->rcvq_space.space; 3838 3839 info->tcpi_total_retrans = tp->total_retrans; 3840 3841 info->tcpi_bytes_acked = tp->bytes_acked; 3842 info->tcpi_bytes_received = tp->bytes_received; 3843 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3844 tcp_get_info_chrono_stats(tp, info); 3845 3846 info->tcpi_segs_out = tp->segs_out; 3847 3848 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3849 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3850 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3851 3852 info->tcpi_min_rtt = tcp_min_rtt(tp); 3853 info->tcpi_data_segs_out = tp->data_segs_out; 3854 3855 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3856 rate64 = tcp_compute_delivery_rate(tp); 3857 if (rate64) 3858 info->tcpi_delivery_rate = rate64; 3859 info->tcpi_delivered = tp->delivered; 3860 info->tcpi_delivered_ce = tp->delivered_ce; 3861 info->tcpi_bytes_sent = tp->bytes_sent; 3862 info->tcpi_bytes_retrans = tp->bytes_retrans; 3863 info->tcpi_dsack_dups = tp->dsack_dups; 3864 info->tcpi_reord_seen = tp->reord_seen; 3865 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3866 info->tcpi_snd_wnd = tp->snd_wnd; 3867 info->tcpi_rcv_wnd = tp->rcv_wnd; 3868 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3869 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3870 3871 info->tcpi_total_rto = tp->total_rto; 3872 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3873 info->tcpi_total_rto_time = tp->total_rto_time; 3874 if (tp->rto_stamp) 3875 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3876 3877 unlock_sock_fast(sk, slow); 3878 } 3879 EXPORT_SYMBOL_GPL(tcp_get_info); 3880 3881 static size_t tcp_opt_stats_get_size(void) 3882 { 3883 return 3884 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3885 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3886 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3888 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3889 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3891 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3892 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3894 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3895 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3897 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3898 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3899 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3900 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3901 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3902 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3903 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3906 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3907 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3908 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3909 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3911 0; 3912 } 3913 3914 /* Returns TTL or hop limit of an incoming packet from skb. */ 3915 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3916 { 3917 if (skb->protocol == htons(ETH_P_IP)) 3918 return ip_hdr(skb)->ttl; 3919 else if (skb->protocol == htons(ETH_P_IPV6)) 3920 return ipv6_hdr(skb)->hop_limit; 3921 else 3922 return 0; 3923 } 3924 3925 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3926 const struct sk_buff *orig_skb, 3927 const struct sk_buff *ack_skb) 3928 { 3929 const struct tcp_sock *tp = tcp_sk(sk); 3930 struct sk_buff *stats; 3931 struct tcp_info info; 3932 unsigned long rate; 3933 u64 rate64; 3934 3935 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3936 if (!stats) 3937 return NULL; 3938 3939 tcp_get_info_chrono_stats(tp, &info); 3940 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3941 info.tcpi_busy_time, TCP_NLA_PAD); 3942 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3943 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3944 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3945 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3946 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3947 tp->data_segs_out, TCP_NLA_PAD); 3948 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3949 tp->total_retrans, TCP_NLA_PAD); 3950 3951 rate = READ_ONCE(sk->sk_pacing_rate); 3952 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3953 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3954 3955 rate64 = tcp_compute_delivery_rate(tp); 3956 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3957 3958 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3959 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3960 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3961 3962 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3963 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3964 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3965 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3966 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3967 3968 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3969 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3970 3971 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3972 TCP_NLA_PAD); 3973 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3974 TCP_NLA_PAD); 3975 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3976 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3977 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3978 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3979 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3980 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3981 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3982 TCP_NLA_PAD); 3983 if (ack_skb) 3984 nla_put_u8(stats, TCP_NLA_TTL, 3985 tcp_skb_ttl_or_hop_limit(ack_skb)); 3986 3987 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3988 return stats; 3989 } 3990 3991 int do_tcp_getsockopt(struct sock *sk, int level, 3992 int optname, sockptr_t optval, sockptr_t optlen) 3993 { 3994 struct inet_connection_sock *icsk = inet_csk(sk); 3995 struct tcp_sock *tp = tcp_sk(sk); 3996 struct net *net = sock_net(sk); 3997 int val, len; 3998 3999 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4000 return -EFAULT; 4001 4002 len = min_t(unsigned int, len, sizeof(int)); 4003 4004 if (len < 0) 4005 return -EINVAL; 4006 4007 switch (optname) { 4008 case TCP_MAXSEG: 4009 val = tp->mss_cache; 4010 if (tp->rx_opt.user_mss && 4011 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4012 val = tp->rx_opt.user_mss; 4013 if (tp->repair) 4014 val = tp->rx_opt.mss_clamp; 4015 break; 4016 case TCP_NODELAY: 4017 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4018 break; 4019 case TCP_CORK: 4020 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4021 break; 4022 case TCP_KEEPIDLE: 4023 val = keepalive_time_when(tp) / HZ; 4024 break; 4025 case TCP_KEEPINTVL: 4026 val = keepalive_intvl_when(tp) / HZ; 4027 break; 4028 case TCP_KEEPCNT: 4029 val = keepalive_probes(tp); 4030 break; 4031 case TCP_SYNCNT: 4032 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4033 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4034 break; 4035 case TCP_LINGER2: 4036 val = READ_ONCE(tp->linger2); 4037 if (val >= 0) 4038 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4039 break; 4040 case TCP_DEFER_ACCEPT: 4041 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4042 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4043 TCP_RTO_MAX / HZ); 4044 break; 4045 case TCP_WINDOW_CLAMP: 4046 val = tp->window_clamp; 4047 break; 4048 case TCP_INFO: { 4049 struct tcp_info info; 4050 4051 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4052 return -EFAULT; 4053 4054 tcp_get_info(sk, &info); 4055 4056 len = min_t(unsigned int, len, sizeof(info)); 4057 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4058 return -EFAULT; 4059 if (copy_to_sockptr(optval, &info, len)) 4060 return -EFAULT; 4061 return 0; 4062 } 4063 case TCP_CC_INFO: { 4064 const struct tcp_congestion_ops *ca_ops; 4065 union tcp_cc_info info; 4066 size_t sz = 0; 4067 int attr; 4068 4069 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4070 return -EFAULT; 4071 4072 ca_ops = icsk->icsk_ca_ops; 4073 if (ca_ops && ca_ops->get_info) 4074 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4075 4076 len = min_t(unsigned int, len, sz); 4077 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4078 return -EFAULT; 4079 if (copy_to_sockptr(optval, &info, len)) 4080 return -EFAULT; 4081 return 0; 4082 } 4083 case TCP_QUICKACK: 4084 val = !inet_csk_in_pingpong_mode(sk); 4085 break; 4086 4087 case TCP_CONGESTION: 4088 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4089 return -EFAULT; 4090 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4091 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4092 return -EFAULT; 4093 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4094 return -EFAULT; 4095 return 0; 4096 4097 case TCP_ULP: 4098 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4099 return -EFAULT; 4100 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4101 if (!icsk->icsk_ulp_ops) { 4102 len = 0; 4103 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4104 return -EFAULT; 4105 return 0; 4106 } 4107 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4108 return -EFAULT; 4109 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4110 return -EFAULT; 4111 return 0; 4112 4113 case TCP_FASTOPEN_KEY: { 4114 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4115 unsigned int key_len; 4116 4117 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4118 return -EFAULT; 4119 4120 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4121 TCP_FASTOPEN_KEY_LENGTH; 4122 len = min_t(unsigned int, len, key_len); 4123 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4124 return -EFAULT; 4125 if (copy_to_sockptr(optval, key, len)) 4126 return -EFAULT; 4127 return 0; 4128 } 4129 case TCP_THIN_LINEAR_TIMEOUTS: 4130 val = tp->thin_lto; 4131 break; 4132 4133 case TCP_THIN_DUPACK: 4134 val = 0; 4135 break; 4136 4137 case TCP_REPAIR: 4138 val = tp->repair; 4139 break; 4140 4141 case TCP_REPAIR_QUEUE: 4142 if (tp->repair) 4143 val = tp->repair_queue; 4144 else 4145 return -EINVAL; 4146 break; 4147 4148 case TCP_REPAIR_WINDOW: { 4149 struct tcp_repair_window opt; 4150 4151 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4152 return -EFAULT; 4153 4154 if (len != sizeof(opt)) 4155 return -EINVAL; 4156 4157 if (!tp->repair) 4158 return -EPERM; 4159 4160 opt.snd_wl1 = tp->snd_wl1; 4161 opt.snd_wnd = tp->snd_wnd; 4162 opt.max_window = tp->max_window; 4163 opt.rcv_wnd = tp->rcv_wnd; 4164 opt.rcv_wup = tp->rcv_wup; 4165 4166 if (copy_to_sockptr(optval, &opt, len)) 4167 return -EFAULT; 4168 return 0; 4169 } 4170 case TCP_QUEUE_SEQ: 4171 if (tp->repair_queue == TCP_SEND_QUEUE) 4172 val = tp->write_seq; 4173 else if (tp->repair_queue == TCP_RECV_QUEUE) 4174 val = tp->rcv_nxt; 4175 else 4176 return -EINVAL; 4177 break; 4178 4179 case TCP_USER_TIMEOUT: 4180 val = READ_ONCE(icsk->icsk_user_timeout); 4181 break; 4182 4183 case TCP_FASTOPEN: 4184 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4185 break; 4186 4187 case TCP_FASTOPEN_CONNECT: 4188 val = tp->fastopen_connect; 4189 break; 4190 4191 case TCP_FASTOPEN_NO_COOKIE: 4192 val = tp->fastopen_no_cookie; 4193 break; 4194 4195 case TCP_TX_DELAY: 4196 val = READ_ONCE(tp->tcp_tx_delay); 4197 break; 4198 4199 case TCP_TIMESTAMP: 4200 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4201 if (tp->tcp_usec_ts) 4202 val |= 1; 4203 else 4204 val &= ~1; 4205 break; 4206 case TCP_NOTSENT_LOWAT: 4207 val = READ_ONCE(tp->notsent_lowat); 4208 break; 4209 case TCP_INQ: 4210 val = tp->recvmsg_inq; 4211 break; 4212 case TCP_SAVE_SYN: 4213 val = tp->save_syn; 4214 break; 4215 case TCP_SAVED_SYN: { 4216 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4217 return -EFAULT; 4218 4219 sockopt_lock_sock(sk); 4220 if (tp->saved_syn) { 4221 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4222 len = tcp_saved_syn_len(tp->saved_syn); 4223 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4224 sockopt_release_sock(sk); 4225 return -EFAULT; 4226 } 4227 sockopt_release_sock(sk); 4228 return -EINVAL; 4229 } 4230 len = tcp_saved_syn_len(tp->saved_syn); 4231 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4232 sockopt_release_sock(sk); 4233 return -EFAULT; 4234 } 4235 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4236 sockopt_release_sock(sk); 4237 return -EFAULT; 4238 } 4239 tcp_saved_syn_free(tp); 4240 sockopt_release_sock(sk); 4241 } else { 4242 sockopt_release_sock(sk); 4243 len = 0; 4244 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4245 return -EFAULT; 4246 } 4247 return 0; 4248 } 4249 #ifdef CONFIG_MMU 4250 case TCP_ZEROCOPY_RECEIVE: { 4251 struct scm_timestamping_internal tss; 4252 struct tcp_zerocopy_receive zc = {}; 4253 int err; 4254 4255 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4256 return -EFAULT; 4257 if (len < 0 || 4258 len < offsetofend(struct tcp_zerocopy_receive, length)) 4259 return -EINVAL; 4260 if (unlikely(len > sizeof(zc))) { 4261 err = check_zeroed_sockptr(optval, sizeof(zc), 4262 len - sizeof(zc)); 4263 if (err < 1) 4264 return err == 0 ? -EINVAL : err; 4265 len = sizeof(zc); 4266 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4267 return -EFAULT; 4268 } 4269 if (copy_from_sockptr(&zc, optval, len)) 4270 return -EFAULT; 4271 if (zc.reserved) 4272 return -EINVAL; 4273 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4274 return -EINVAL; 4275 sockopt_lock_sock(sk); 4276 err = tcp_zerocopy_receive(sk, &zc, &tss); 4277 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4278 &zc, &len, err); 4279 sockopt_release_sock(sk); 4280 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4281 goto zerocopy_rcv_cmsg; 4282 switch (len) { 4283 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4284 goto zerocopy_rcv_cmsg; 4285 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4286 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4287 case offsetofend(struct tcp_zerocopy_receive, flags): 4288 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4289 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4290 case offsetofend(struct tcp_zerocopy_receive, err): 4291 goto zerocopy_rcv_sk_err; 4292 case offsetofend(struct tcp_zerocopy_receive, inq): 4293 goto zerocopy_rcv_inq; 4294 case offsetofend(struct tcp_zerocopy_receive, length): 4295 default: 4296 goto zerocopy_rcv_out; 4297 } 4298 zerocopy_rcv_cmsg: 4299 if (zc.msg_flags & TCP_CMSG_TS) 4300 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4301 else 4302 zc.msg_flags = 0; 4303 zerocopy_rcv_sk_err: 4304 if (!err) 4305 zc.err = sock_error(sk); 4306 zerocopy_rcv_inq: 4307 zc.inq = tcp_inq_hint(sk); 4308 zerocopy_rcv_out: 4309 if (!err && copy_to_sockptr(optval, &zc, len)) 4310 err = -EFAULT; 4311 return err; 4312 } 4313 #endif 4314 case TCP_AO_REPAIR: 4315 if (!tcp_can_repair_sock(sk)) 4316 return -EPERM; 4317 return tcp_ao_get_repair(sk, optval, optlen); 4318 case TCP_AO_GET_KEYS: 4319 case TCP_AO_INFO: { 4320 int err; 4321 4322 sockopt_lock_sock(sk); 4323 if (optname == TCP_AO_GET_KEYS) 4324 err = tcp_ao_get_mkts(sk, optval, optlen); 4325 else 4326 err = tcp_ao_get_sock_info(sk, optval, optlen); 4327 sockopt_release_sock(sk); 4328 4329 return err; 4330 } 4331 default: 4332 return -ENOPROTOOPT; 4333 } 4334 4335 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4336 return -EFAULT; 4337 if (copy_to_sockptr(optval, &val, len)) 4338 return -EFAULT; 4339 return 0; 4340 } 4341 4342 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4343 { 4344 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4345 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4346 */ 4347 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4348 return true; 4349 4350 return false; 4351 } 4352 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4353 4354 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4355 int __user *optlen) 4356 { 4357 struct inet_connection_sock *icsk = inet_csk(sk); 4358 4359 if (level != SOL_TCP) 4360 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4361 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4362 optval, optlen); 4363 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4364 USER_SOCKPTR(optlen)); 4365 } 4366 EXPORT_SYMBOL(tcp_getsockopt); 4367 4368 #ifdef CONFIG_TCP_MD5SIG 4369 int tcp_md5_sigpool_id = -1; 4370 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4371 4372 int tcp_md5_alloc_sigpool(void) 4373 { 4374 size_t scratch_size; 4375 int ret; 4376 4377 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4378 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4379 if (ret >= 0) { 4380 /* As long as any md5 sigpool was allocated, the return 4381 * id would stay the same. Re-write the id only for the case 4382 * when previously all MD5 keys were deleted and this call 4383 * allocates the first MD5 key, which may return a different 4384 * sigpool id than was used previously. 4385 */ 4386 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4387 return 0; 4388 } 4389 return ret; 4390 } 4391 4392 void tcp_md5_release_sigpool(void) 4393 { 4394 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4395 } 4396 4397 void tcp_md5_add_sigpool(void) 4398 { 4399 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4400 } 4401 4402 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4403 const struct tcp_md5sig_key *key) 4404 { 4405 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4406 struct scatterlist sg; 4407 4408 sg_init_one(&sg, key->key, keylen); 4409 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4410 4411 /* We use data_race() because tcp_md5_do_add() might change 4412 * key->key under us 4413 */ 4414 return data_race(crypto_ahash_update(hp->req)); 4415 } 4416 EXPORT_SYMBOL(tcp_md5_hash_key); 4417 4418 /* Called with rcu_read_lock() */ 4419 enum skb_drop_reason 4420 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4421 const void *saddr, const void *daddr, 4422 int family, int l3index, const __u8 *hash_location) 4423 { 4424 /* This gets called for each TCP segment that has TCP-MD5 option. 4425 * We have 3 drop cases: 4426 * o No MD5 hash and one expected. 4427 * o MD5 hash and we're not expecting one. 4428 * o MD5 hash and its wrong. 4429 */ 4430 const struct tcp_sock *tp = tcp_sk(sk); 4431 struct tcp_md5sig_key *key; 4432 u8 newhash[16]; 4433 int genhash; 4434 4435 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4436 4437 if (!key && hash_location) { 4438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4439 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4440 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4441 } 4442 4443 /* Check the signature. 4444 * To support dual stack listeners, we need to handle 4445 * IPv4-mapped case. 4446 */ 4447 if (family == AF_INET) 4448 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4449 else 4450 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4451 NULL, skb); 4452 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4453 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4454 if (family == AF_INET) { 4455 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4456 genhash ? "tcp_v4_calc_md5_hash failed" 4457 : "", l3index); 4458 } else { 4459 if (genhash) { 4460 tcp_hash_fail("MD5 Hash failed", 4461 AF_INET6, skb, "L3 index %d", 4462 l3index); 4463 } else { 4464 tcp_hash_fail("MD5 Hash mismatch", 4465 AF_INET6, skb, "L3 index %d", 4466 l3index); 4467 } 4468 } 4469 return SKB_DROP_REASON_TCP_MD5FAILURE; 4470 } 4471 return SKB_NOT_DROPPED_YET; 4472 } 4473 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4474 4475 #endif 4476 4477 void tcp_done(struct sock *sk) 4478 { 4479 struct request_sock *req; 4480 4481 /* We might be called with a new socket, after 4482 * inet_csk_prepare_forced_close() has been called 4483 * so we can not use lockdep_sock_is_held(sk) 4484 */ 4485 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4486 4487 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4488 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4489 4490 tcp_set_state(sk, TCP_CLOSE); 4491 tcp_clear_xmit_timers(sk); 4492 if (req) 4493 reqsk_fastopen_remove(sk, req, false); 4494 4495 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4496 4497 if (!sock_flag(sk, SOCK_DEAD)) 4498 sk->sk_state_change(sk); 4499 else 4500 inet_csk_destroy_sock(sk); 4501 } 4502 EXPORT_SYMBOL_GPL(tcp_done); 4503 4504 int tcp_abort(struct sock *sk, int err) 4505 { 4506 int state = inet_sk_state_load(sk); 4507 4508 if (state == TCP_NEW_SYN_RECV) { 4509 struct request_sock *req = inet_reqsk(sk); 4510 4511 local_bh_disable(); 4512 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4513 local_bh_enable(); 4514 return 0; 4515 } 4516 if (state == TCP_TIME_WAIT) { 4517 struct inet_timewait_sock *tw = inet_twsk(sk); 4518 4519 refcount_inc(&tw->tw_refcnt); 4520 local_bh_disable(); 4521 inet_twsk_deschedule_put(tw); 4522 local_bh_enable(); 4523 return 0; 4524 } 4525 4526 /* BPF context ensures sock locking. */ 4527 if (!has_current_bpf_ctx()) 4528 /* Don't race with userspace socket closes such as tcp_close. */ 4529 lock_sock(sk); 4530 4531 if (sk->sk_state == TCP_LISTEN) { 4532 tcp_set_state(sk, TCP_CLOSE); 4533 inet_csk_listen_stop(sk); 4534 } 4535 4536 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4537 local_bh_disable(); 4538 bh_lock_sock(sk); 4539 4540 if (!sock_flag(sk, SOCK_DEAD)) { 4541 WRITE_ONCE(sk->sk_err, err); 4542 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4543 smp_wmb(); 4544 sk_error_report(sk); 4545 if (tcp_need_reset(sk->sk_state)) 4546 tcp_send_active_reset(sk, GFP_ATOMIC); 4547 tcp_done(sk); 4548 } 4549 4550 bh_unlock_sock(sk); 4551 local_bh_enable(); 4552 tcp_write_queue_purge(sk); 4553 if (!has_current_bpf_ctx()) 4554 release_sock(sk); 4555 return 0; 4556 } 4557 EXPORT_SYMBOL_GPL(tcp_abort); 4558 4559 extern struct tcp_congestion_ops tcp_reno; 4560 4561 static __initdata unsigned long thash_entries; 4562 static int __init set_thash_entries(char *str) 4563 { 4564 ssize_t ret; 4565 4566 if (!str) 4567 return 0; 4568 4569 ret = kstrtoul(str, 0, &thash_entries); 4570 if (ret) 4571 return 0; 4572 4573 return 1; 4574 } 4575 __setup("thash_entries=", set_thash_entries); 4576 4577 static void __init tcp_init_mem(void) 4578 { 4579 unsigned long limit = nr_free_buffer_pages() / 16; 4580 4581 limit = max(limit, 128UL); 4582 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4583 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4584 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4585 } 4586 4587 static void __init tcp_struct_check(void) 4588 { 4589 /* TX read-mostly hotpath cache lines */ 4590 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4591 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4592 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4593 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4594 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4595 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4596 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4597 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4598 4599 /* TXRX read-mostly hotpath cache lines */ 4600 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4601 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4602 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4603 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4604 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4605 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4606 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4607 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 31); 4608 4609 /* RX read-mostly hotpath cache lines */ 4610 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4611 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4612 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4613 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4614 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4615 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4616 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4617 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4618 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4619 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4620 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4621 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4622 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4623 4624 /* TX read-write hotpath cache lines */ 4625 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4626 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4627 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4628 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4629 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4630 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4631 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4632 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4633 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache); 4637 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp); 4638 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4639 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4641 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4642 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 113); 4643 4644 /* TXRX read-write hotpath cache lines */ 4645 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4652 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4654 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4658 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76); 4659 4660 /* RX read-write hotpath cache lines */ 4661 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4662 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4667 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4669 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4675 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4676 } 4677 4678 void __init tcp_init(void) 4679 { 4680 int max_rshare, max_wshare, cnt; 4681 unsigned long limit; 4682 unsigned int i; 4683 4684 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4685 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4686 sizeof_field(struct sk_buff, cb)); 4687 4688 tcp_struct_check(); 4689 4690 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4691 4692 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4693 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4694 4695 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4696 thash_entries, 21, /* one slot per 2 MB*/ 4697 0, 64 * 1024); 4698 tcp_hashinfo.bind_bucket_cachep = 4699 kmem_cache_create("tcp_bind_bucket", 4700 sizeof(struct inet_bind_bucket), 0, 4701 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4702 SLAB_ACCOUNT, 4703 NULL); 4704 tcp_hashinfo.bind2_bucket_cachep = 4705 kmem_cache_create("tcp_bind2_bucket", 4706 sizeof(struct inet_bind2_bucket), 0, 4707 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4708 SLAB_ACCOUNT, 4709 NULL); 4710 4711 /* Size and allocate the main established and bind bucket 4712 * hash tables. 4713 * 4714 * The methodology is similar to that of the buffer cache. 4715 */ 4716 tcp_hashinfo.ehash = 4717 alloc_large_system_hash("TCP established", 4718 sizeof(struct inet_ehash_bucket), 4719 thash_entries, 4720 17, /* one slot per 128 KB of memory */ 4721 0, 4722 NULL, 4723 &tcp_hashinfo.ehash_mask, 4724 0, 4725 thash_entries ? 0 : 512 * 1024); 4726 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4727 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4728 4729 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4730 panic("TCP: failed to alloc ehash_locks"); 4731 tcp_hashinfo.bhash = 4732 alloc_large_system_hash("TCP bind", 4733 2 * sizeof(struct inet_bind_hashbucket), 4734 tcp_hashinfo.ehash_mask + 1, 4735 17, /* one slot per 128 KB of memory */ 4736 0, 4737 &tcp_hashinfo.bhash_size, 4738 NULL, 4739 0, 4740 64 * 1024); 4741 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4742 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4743 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4744 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4745 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4746 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4747 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4748 } 4749 4750 tcp_hashinfo.pernet = false; 4751 4752 cnt = tcp_hashinfo.ehash_mask + 1; 4753 sysctl_tcp_max_orphans = cnt / 2; 4754 4755 tcp_init_mem(); 4756 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4757 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4758 max_wshare = min(4UL*1024*1024, limit); 4759 max_rshare = min(6UL*1024*1024, limit); 4760 4761 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4762 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4763 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4764 4765 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4766 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4767 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4768 4769 pr_info("Hash tables configured (established %u bind %u)\n", 4770 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4771 4772 tcp_v4_init(); 4773 tcp_metrics_init(); 4774 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4775 tcp_tasklet_init(); 4776 mptcp_init(); 4777 } 4778