1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <net/rps.h> 286 287 /* Track pending CMSGs. */ 288 enum { 289 TCP_CMSG_INQ = 1, 290 TCP_CMSG_TS = 2 291 }; 292 293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 295 296 DEFINE_PER_CPU(u32, tcp_tw_isn); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 298 299 long sysctl_tcp_mem[3] __read_mostly; 300 EXPORT_SYMBOL(sysctl_tcp_mem); 301 302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 303 EXPORT_SYMBOL(tcp_memory_allocated); 304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 306 307 #if IS_ENABLED(CONFIG_SMC) 308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 309 EXPORT_SYMBOL(tcp_have_smc); 310 #endif 311 312 /* 313 * Current number of TCP sockets. 314 */ 315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 316 EXPORT_SYMBOL(tcp_sockets_allocated); 317 318 /* 319 * TCP splice context 320 */ 321 struct tcp_splice_state { 322 struct pipe_inode_info *pipe; 323 size_t len; 324 unsigned int flags; 325 }; 326 327 /* 328 * Pressure flag: try to collapse. 329 * Technical note: it is used by multiple contexts non atomically. 330 * All the __sk_mem_schedule() is of this nature: accounting 331 * is strict, actions are advisory and have some latency. 332 */ 333 unsigned long tcp_memory_pressure __read_mostly; 334 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 335 336 void tcp_enter_memory_pressure(struct sock *sk) 337 { 338 unsigned long val; 339 340 if (READ_ONCE(tcp_memory_pressure)) 341 return; 342 val = jiffies; 343 344 if (!val) 345 val--; 346 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 347 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 348 } 349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 350 351 void tcp_leave_memory_pressure(struct sock *sk) 352 { 353 unsigned long val; 354 355 if (!READ_ONCE(tcp_memory_pressure)) 356 return; 357 val = xchg(&tcp_memory_pressure, 0); 358 if (val) 359 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 360 jiffies_to_msecs(jiffies - val)); 361 } 362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 363 364 /* Convert seconds to retransmits based on initial and max timeout */ 365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 366 { 367 u8 res = 0; 368 369 if (seconds > 0) { 370 int period = timeout; 371 372 res = 1; 373 while (seconds > period && res < 255) { 374 res++; 375 timeout <<= 1; 376 if (timeout > rto_max) 377 timeout = rto_max; 378 period += timeout; 379 } 380 } 381 return res; 382 } 383 384 /* Convert retransmits to seconds based on initial and max timeout */ 385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 386 { 387 int period = 0; 388 389 if (retrans > 0) { 390 period = timeout; 391 while (--retrans) { 392 timeout <<= 1; 393 if (timeout > rto_max) 394 timeout = rto_max; 395 period += timeout; 396 } 397 } 398 return period; 399 } 400 401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 402 { 403 u32 rate = READ_ONCE(tp->rate_delivered); 404 u32 intv = READ_ONCE(tp->rate_interval_us); 405 u64 rate64 = 0; 406 407 if (rate && intv) { 408 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 409 do_div(rate64, intv); 410 } 411 return rate64; 412 } 413 414 /* Address-family independent initialization for a tcp_sock. 415 * 416 * NOTE: A lot of things set to zero explicitly by call to 417 * sk_alloc() so need not be done here. 418 */ 419 void tcp_init_sock(struct sock *sk) 420 { 421 struct inet_connection_sock *icsk = inet_csk(sk); 422 struct tcp_sock *tp = tcp_sk(sk); 423 424 tp->out_of_order_queue = RB_ROOT; 425 sk->tcp_rtx_queue = RB_ROOT; 426 tcp_init_xmit_timers(sk); 427 INIT_LIST_HEAD(&tp->tsq_node); 428 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 429 430 icsk->icsk_rto = TCP_TIMEOUT_INIT; 431 icsk->icsk_rto_min = TCP_RTO_MIN; 432 icsk->icsk_delack_max = TCP_DELACK_MAX; 433 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 434 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 435 436 /* So many TCP implementations out there (incorrectly) count the 437 * initial SYN frame in their delayed-ACK and congestion control 438 * algorithms that we must have the following bandaid to talk 439 * efficiently to them. -DaveM 440 */ 441 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 442 443 /* There's a bubble in the pipe until at least the first ACK. */ 444 tp->app_limited = ~0U; 445 tp->rate_app_limited = 1; 446 447 /* See draft-stevens-tcpca-spec-01 for discussion of the 448 * initialization of these values. 449 */ 450 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 451 tp->snd_cwnd_clamp = ~0; 452 tp->mss_cache = TCP_MSS_DEFAULT; 453 454 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 455 tcp_assign_congestion_control(sk); 456 457 tp->tsoffset = 0; 458 tp->rack.reo_wnd_steps = 1; 459 460 sk->sk_write_space = sk_stream_write_space; 461 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 462 463 icsk->icsk_sync_mss = tcp_sync_mss; 464 465 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 466 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 467 tcp_scaling_ratio_init(sk); 468 469 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 470 sk_sockets_allocated_inc(sk); 471 } 472 EXPORT_SYMBOL(tcp_init_sock); 473 474 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 475 { 476 struct sk_buff *skb = tcp_write_queue_tail(sk); 477 478 if (tsflags && skb) { 479 struct skb_shared_info *shinfo = skb_shinfo(skb); 480 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 481 482 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 483 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 484 tcb->txstamp_ack = 1; 485 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 486 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 487 } 488 } 489 490 static bool tcp_stream_is_readable(struct sock *sk, int target) 491 { 492 if (tcp_epollin_ready(sk, target)) 493 return true; 494 return sk_is_readable(sk); 495 } 496 497 /* 498 * Wait for a TCP event. 499 * 500 * Note that we don't need to lock the socket, as the upper poll layers 501 * take care of normal races (between the test and the event) and we don't 502 * go look at any of the socket buffers directly. 503 */ 504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 505 { 506 __poll_t mask; 507 struct sock *sk = sock->sk; 508 const struct tcp_sock *tp = tcp_sk(sk); 509 u8 shutdown; 510 int state; 511 512 sock_poll_wait(file, sock, wait); 513 514 state = inet_sk_state_load(sk); 515 if (state == TCP_LISTEN) 516 return inet_csk_listen_poll(sk); 517 518 /* Socket is not locked. We are protected from async events 519 * by poll logic and correct handling of state changes 520 * made by other threads is impossible in any case. 521 */ 522 523 mask = 0; 524 525 /* 526 * EPOLLHUP is certainly not done right. But poll() doesn't 527 * have a notion of HUP in just one direction, and for a 528 * socket the read side is more interesting. 529 * 530 * Some poll() documentation says that EPOLLHUP is incompatible 531 * with the EPOLLOUT/POLLWR flags, so somebody should check this 532 * all. But careful, it tends to be safer to return too many 533 * bits than too few, and you can easily break real applications 534 * if you don't tell them that something has hung up! 535 * 536 * Check-me. 537 * 538 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 539 * our fs/select.c). It means that after we received EOF, 540 * poll always returns immediately, making impossible poll() on write() 541 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 542 * if and only if shutdown has been made in both directions. 543 * Actually, it is interesting to look how Solaris and DUX 544 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 545 * then we could set it on SND_SHUTDOWN. BTW examples given 546 * in Stevens' books assume exactly this behaviour, it explains 547 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 548 * 549 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 550 * blocking on fresh not-connected or disconnected socket. --ANK 551 */ 552 shutdown = READ_ONCE(sk->sk_shutdown); 553 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 554 mask |= EPOLLHUP; 555 if (shutdown & RCV_SHUTDOWN) 556 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 557 558 /* Connected or passive Fast Open socket? */ 559 if (state != TCP_SYN_SENT && 560 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 561 int target = sock_rcvlowat(sk, 0, INT_MAX); 562 u16 urg_data = READ_ONCE(tp->urg_data); 563 564 if (unlikely(urg_data) && 565 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 566 !sock_flag(sk, SOCK_URGINLINE)) 567 target++; 568 569 if (tcp_stream_is_readable(sk, target)) 570 mask |= EPOLLIN | EPOLLRDNORM; 571 572 if (!(shutdown & SEND_SHUTDOWN)) { 573 if (__sk_stream_is_writeable(sk, 1)) { 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } else { /* send SIGIO later */ 576 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 577 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 578 579 /* Race breaker. If space is freed after 580 * wspace test but before the flags are set, 581 * IO signal will be lost. Memory barrier 582 * pairs with the input side. 583 */ 584 smp_mb__after_atomic(); 585 if (__sk_stream_is_writeable(sk, 1)) 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 } else 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 591 if (urg_data & TCP_URG_VALID) 592 mask |= EPOLLPRI; 593 } else if (state == TCP_SYN_SENT && 594 inet_test_bit(DEFER_CONNECT, sk)) { 595 /* Active TCP fastopen socket with defer_connect 596 * Return EPOLLOUT so application can call write() 597 * in order for kernel to generate SYN+data 598 */ 599 mask |= EPOLLOUT | EPOLLWRNORM; 600 } 601 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 602 smp_rmb(); 603 if (READ_ONCE(sk->sk_err) || 604 !skb_queue_empty_lockless(&sk->sk_error_queue)) 605 mask |= EPOLLERR; 606 607 return mask; 608 } 609 EXPORT_SYMBOL(tcp_poll); 610 611 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 612 { 613 struct tcp_sock *tp = tcp_sk(sk); 614 int answ; 615 bool slow; 616 617 switch (cmd) { 618 case SIOCINQ: 619 if (sk->sk_state == TCP_LISTEN) 620 return -EINVAL; 621 622 slow = lock_sock_fast(sk); 623 answ = tcp_inq(sk); 624 unlock_sock_fast(sk, slow); 625 break; 626 case SIOCATMARK: 627 answ = READ_ONCE(tp->urg_data) && 628 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 629 break; 630 case SIOCOUTQ: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 638 break; 639 case SIOCOUTQNSD: 640 if (sk->sk_state == TCP_LISTEN) 641 return -EINVAL; 642 643 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 644 answ = 0; 645 else 646 answ = READ_ONCE(tp->write_seq) - 647 READ_ONCE(tp->snd_nxt); 648 break; 649 default: 650 return -ENOIOCTLCMD; 651 } 652 653 *karg = answ; 654 return 0; 655 } 656 EXPORT_SYMBOL(tcp_ioctl); 657 658 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 659 { 660 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 661 tp->pushed_seq = tp->write_seq; 662 } 663 664 static inline bool forced_push(const struct tcp_sock *tp) 665 { 666 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 667 } 668 669 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 670 { 671 struct tcp_sock *tp = tcp_sk(sk); 672 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 673 674 tcb->seq = tcb->end_seq = tp->write_seq; 675 tcb->tcp_flags = TCPHDR_ACK; 676 __skb_header_release(skb); 677 tcp_add_write_queue_tail(sk, skb); 678 sk_wmem_queued_add(sk, skb->truesize); 679 sk_mem_charge(sk, skb->truesize); 680 if (tp->nonagle & TCP_NAGLE_PUSH) 681 tp->nonagle &= ~TCP_NAGLE_PUSH; 682 683 tcp_slow_start_after_idle_check(sk); 684 } 685 686 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 687 { 688 if (flags & MSG_OOB) 689 tp->snd_up = tp->write_seq; 690 } 691 692 /* If a not yet filled skb is pushed, do not send it if 693 * we have data packets in Qdisc or NIC queues : 694 * Because TX completion will happen shortly, it gives a chance 695 * to coalesce future sendmsg() payload into this skb, without 696 * need for a timer, and with no latency trade off. 697 * As packets containing data payload have a bigger truesize 698 * than pure acks (dataless) packets, the last checks prevent 699 * autocorking if we only have an ACK in Qdisc/NIC queues, 700 * or if TX completion was delayed after we processed ACK packet. 701 */ 702 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 703 int size_goal) 704 { 705 return skb->len < size_goal && 706 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 707 !tcp_rtx_queue_empty(sk) && 708 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 709 tcp_skb_can_collapse_to(skb); 710 } 711 712 void tcp_push(struct sock *sk, int flags, int mss_now, 713 int nonagle, int size_goal) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 struct sk_buff *skb; 717 718 skb = tcp_write_queue_tail(sk); 719 if (!skb) 720 return; 721 if (!(flags & MSG_MORE) || forced_push(tp)) 722 tcp_mark_push(tp, skb); 723 724 tcp_mark_urg(tp, flags); 725 726 if (tcp_should_autocork(sk, skb, size_goal)) { 727 728 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 729 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 731 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 732 smp_mb__after_atomic(); 733 } 734 /* It is possible TX completion already happened 735 * before we set TSQ_THROTTLED. 736 */ 737 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 738 return; 739 } 740 741 if (flags & MSG_MORE) 742 nonagle = TCP_NAGLE_CORK; 743 744 __tcp_push_pending_frames(sk, mss_now, nonagle); 745 } 746 747 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 748 unsigned int offset, size_t len) 749 { 750 struct tcp_splice_state *tss = rd_desc->arg.data; 751 int ret; 752 753 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 754 min(rd_desc->count, len), tss->flags); 755 if (ret > 0) 756 rd_desc->count -= ret; 757 return ret; 758 } 759 760 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 761 { 762 /* Store TCP splice context information in read_descriptor_t. */ 763 read_descriptor_t rd_desc = { 764 .arg.data = tss, 765 .count = tss->len, 766 }; 767 768 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 769 } 770 771 /** 772 * tcp_splice_read - splice data from TCP socket to a pipe 773 * @sock: socket to splice from 774 * @ppos: position (not valid) 775 * @pipe: pipe to splice to 776 * @len: number of bytes to splice 777 * @flags: splice modifier flags 778 * 779 * Description: 780 * Will read pages from given socket and fill them into a pipe. 781 * 782 **/ 783 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 784 struct pipe_inode_info *pipe, size_t len, 785 unsigned int flags) 786 { 787 struct sock *sk = sock->sk; 788 struct tcp_splice_state tss = { 789 .pipe = pipe, 790 .len = len, 791 .flags = flags, 792 }; 793 long timeo; 794 ssize_t spliced; 795 int ret; 796 797 sock_rps_record_flow(sk); 798 /* 799 * We can't seek on a socket input 800 */ 801 if (unlikely(*ppos)) 802 return -ESPIPE; 803 804 ret = spliced = 0; 805 806 lock_sock(sk); 807 808 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 809 while (tss.len) { 810 ret = __tcp_splice_read(sk, &tss); 811 if (ret < 0) 812 break; 813 else if (!ret) { 814 if (spliced) 815 break; 816 if (sock_flag(sk, SOCK_DONE)) 817 break; 818 if (sk->sk_err) { 819 ret = sock_error(sk); 820 break; 821 } 822 if (sk->sk_shutdown & RCV_SHUTDOWN) 823 break; 824 if (sk->sk_state == TCP_CLOSE) { 825 /* 826 * This occurs when user tries to read 827 * from never connected socket. 828 */ 829 ret = -ENOTCONN; 830 break; 831 } 832 if (!timeo) { 833 ret = -EAGAIN; 834 break; 835 } 836 /* if __tcp_splice_read() got nothing while we have 837 * an skb in receive queue, we do not want to loop. 838 * This might happen with URG data. 839 */ 840 if (!skb_queue_empty(&sk->sk_receive_queue)) 841 break; 842 ret = sk_wait_data(sk, &timeo, NULL); 843 if (ret < 0) 844 break; 845 if (signal_pending(current)) { 846 ret = sock_intr_errno(timeo); 847 break; 848 } 849 continue; 850 } 851 tss.len -= ret; 852 spliced += ret; 853 854 if (!tss.len || !timeo) 855 break; 856 release_sock(sk); 857 lock_sock(sk); 858 859 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 860 (sk->sk_shutdown & RCV_SHUTDOWN) || 861 signal_pending(current)) 862 break; 863 } 864 865 release_sock(sk); 866 867 if (spliced) 868 return spliced; 869 870 return ret; 871 } 872 EXPORT_SYMBOL(tcp_splice_read); 873 874 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 875 bool force_schedule) 876 { 877 struct sk_buff *skb; 878 879 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 880 if (likely(skb)) { 881 bool mem_scheduled; 882 883 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 884 if (force_schedule) { 885 mem_scheduled = true; 886 sk_forced_mem_schedule(sk, skb->truesize); 887 } else { 888 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 889 } 890 if (likely(mem_scheduled)) { 891 skb_reserve(skb, MAX_TCP_HEADER); 892 skb->ip_summed = CHECKSUM_PARTIAL; 893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 894 return skb; 895 } 896 __kfree_skb(skb); 897 } else { 898 sk->sk_prot->enter_memory_pressure(sk); 899 sk_stream_moderate_sndbuf(sk); 900 } 901 return NULL; 902 } 903 904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 905 int large_allowed) 906 { 907 struct tcp_sock *tp = tcp_sk(sk); 908 u32 new_size_goal, size_goal; 909 910 if (!large_allowed) 911 return mss_now; 912 913 /* Note : tcp_tso_autosize() will eventually split this later */ 914 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 /* In some cases, sendmsg() could have added an skb to the write queue, 939 * but failed adding payload on it. We need to remove it to consume less 940 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 941 * epoll() users. Another reason is that tcp_write_xmit() does not like 942 * finding an empty skb in the write queue. 943 */ 944 void tcp_remove_empty_skb(struct sock *sk) 945 { 946 struct sk_buff *skb = tcp_write_queue_tail(sk); 947 948 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 949 tcp_unlink_write_queue(skb, sk); 950 if (tcp_write_queue_empty(sk)) 951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 952 tcp_wmem_free_skb(sk, skb); 953 } 954 } 955 956 /* skb changing from pure zc to mixed, must charge zc */ 957 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 958 { 959 if (unlikely(skb_zcopy_pure(skb))) { 960 u32 extra = skb->truesize - 961 SKB_TRUESIZE(skb_end_offset(skb)); 962 963 if (!sk_wmem_schedule(sk, extra)) 964 return -ENOMEM; 965 966 sk_mem_charge(sk, extra); 967 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 968 } 969 return 0; 970 } 971 972 973 int tcp_wmem_schedule(struct sock *sk, int copy) 974 { 975 int left; 976 977 if (likely(sk_wmem_schedule(sk, copy))) 978 return copy; 979 980 /* We could be in trouble if we have nothing queued. 981 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 982 * to guarantee some progress. 983 */ 984 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 985 if (left > 0) 986 sk_forced_mem_schedule(sk, min(left, copy)); 987 return min(copy, sk->sk_forward_alloc); 988 } 989 990 void tcp_free_fastopen_req(struct tcp_sock *tp) 991 { 992 if (tp->fastopen_req) { 993 kfree(tp->fastopen_req); 994 tp->fastopen_req = NULL; 995 } 996 } 997 998 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 999 size_t size, struct ubuf_info *uarg) 1000 { 1001 struct tcp_sock *tp = tcp_sk(sk); 1002 struct inet_sock *inet = inet_sk(sk); 1003 struct sockaddr *uaddr = msg->msg_name; 1004 int err, flags; 1005 1006 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1007 TFO_CLIENT_ENABLE) || 1008 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1009 uaddr->sa_family == AF_UNSPEC)) 1010 return -EOPNOTSUPP; 1011 if (tp->fastopen_req) 1012 return -EALREADY; /* Another Fast Open is in progress */ 1013 1014 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1015 sk->sk_allocation); 1016 if (unlikely(!tp->fastopen_req)) 1017 return -ENOBUFS; 1018 tp->fastopen_req->data = msg; 1019 tp->fastopen_req->size = size; 1020 tp->fastopen_req->uarg = uarg; 1021 1022 if (inet_test_bit(DEFER_CONNECT, sk)) { 1023 err = tcp_connect(sk); 1024 /* Same failure procedure as in tcp_v4/6_connect */ 1025 if (err) { 1026 tcp_set_state(sk, TCP_CLOSE); 1027 inet->inet_dport = 0; 1028 sk->sk_route_caps = 0; 1029 } 1030 } 1031 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1032 err = __inet_stream_connect(sk->sk_socket, uaddr, 1033 msg->msg_namelen, flags, 1); 1034 /* fastopen_req could already be freed in __inet_stream_connect 1035 * if the connection times out or gets rst 1036 */ 1037 if (tp->fastopen_req) { 1038 *copied = tp->fastopen_req->copied; 1039 tcp_free_fastopen_req(tp); 1040 inet_clear_bit(DEFER_CONNECT, sk); 1041 } 1042 return err; 1043 } 1044 1045 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1046 { 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 struct ubuf_info *uarg = NULL; 1049 struct sk_buff *skb; 1050 struct sockcm_cookie sockc; 1051 int flags, err, copied = 0; 1052 int mss_now = 0, size_goal, copied_syn = 0; 1053 int process_backlog = 0; 1054 int zc = 0; 1055 long timeo; 1056 1057 flags = msg->msg_flags; 1058 1059 if ((flags & MSG_ZEROCOPY) && size) { 1060 if (msg->msg_ubuf) { 1061 uarg = msg->msg_ubuf; 1062 if (sk->sk_route_caps & NETIF_F_SG) 1063 zc = MSG_ZEROCOPY; 1064 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1065 skb = tcp_write_queue_tail(sk); 1066 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1067 if (!uarg) { 1068 err = -ENOBUFS; 1069 goto out_err; 1070 } 1071 if (sk->sk_route_caps & NETIF_F_SG) 1072 zc = MSG_ZEROCOPY; 1073 else 1074 uarg_to_msgzc(uarg)->zerocopy = 0; 1075 } 1076 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1077 if (sk->sk_route_caps & NETIF_F_SG) 1078 zc = MSG_SPLICE_PAGES; 1079 } 1080 1081 if (unlikely(flags & MSG_FASTOPEN || 1082 inet_test_bit(DEFER_CONNECT, sk)) && 1083 !tp->repair) { 1084 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1085 if (err == -EINPROGRESS && copied_syn > 0) 1086 goto out; 1087 else if (err) 1088 goto out_err; 1089 } 1090 1091 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1092 1093 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1094 1095 /* Wait for a connection to finish. One exception is TCP Fast Open 1096 * (passive side) where data is allowed to be sent before a connection 1097 * is fully established. 1098 */ 1099 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1100 !tcp_passive_fastopen(sk)) { 1101 err = sk_stream_wait_connect(sk, &timeo); 1102 if (err != 0) 1103 goto do_error; 1104 } 1105 1106 if (unlikely(tp->repair)) { 1107 if (tp->repair_queue == TCP_RECV_QUEUE) { 1108 copied = tcp_send_rcvq(sk, msg, size); 1109 goto out_nopush; 1110 } 1111 1112 err = -EINVAL; 1113 if (tp->repair_queue == TCP_NO_QUEUE) 1114 goto out_err; 1115 1116 /* 'common' sending to sendq */ 1117 } 1118 1119 sockcm_init(&sockc, sk); 1120 if (msg->msg_controllen) { 1121 err = sock_cmsg_send(sk, msg, &sockc); 1122 if (unlikely(err)) { 1123 err = -EINVAL; 1124 goto out_err; 1125 } 1126 } 1127 1128 /* This should be in poll */ 1129 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1130 1131 /* Ok commence sending. */ 1132 copied = 0; 1133 1134 restart: 1135 mss_now = tcp_send_mss(sk, &size_goal, flags); 1136 1137 err = -EPIPE; 1138 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1139 goto do_error; 1140 1141 while (msg_data_left(msg)) { 1142 ssize_t copy = 0; 1143 1144 skb = tcp_write_queue_tail(sk); 1145 if (skb) 1146 copy = size_goal - skb->len; 1147 1148 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1149 bool first_skb; 1150 1151 new_segment: 1152 if (!sk_stream_memory_free(sk)) 1153 goto wait_for_space; 1154 1155 if (unlikely(process_backlog >= 16)) { 1156 process_backlog = 0; 1157 if (sk_flush_backlog(sk)) 1158 goto restart; 1159 } 1160 first_skb = tcp_rtx_and_write_queues_empty(sk); 1161 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1162 first_skb); 1163 if (!skb) 1164 goto wait_for_space; 1165 1166 process_backlog++; 1167 1168 tcp_skb_entail(sk, skb); 1169 copy = size_goal; 1170 1171 /* All packets are restored as if they have 1172 * already been sent. skb_mstamp_ns isn't set to 1173 * avoid wrong rtt estimation. 1174 */ 1175 if (tp->repair) 1176 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1177 } 1178 1179 /* Try to append data to the end of skb. */ 1180 if (copy > msg_data_left(msg)) 1181 copy = msg_data_left(msg); 1182 1183 if (zc == 0) { 1184 bool merge = true; 1185 int i = skb_shinfo(skb)->nr_frags; 1186 struct page_frag *pfrag = sk_page_frag(sk); 1187 1188 if (!sk_page_frag_refill(sk, pfrag)) 1189 goto wait_for_space; 1190 1191 if (!skb_can_coalesce(skb, i, pfrag->page, 1192 pfrag->offset)) { 1193 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1194 tcp_mark_push(tp, skb); 1195 goto new_segment; 1196 } 1197 merge = false; 1198 } 1199 1200 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1201 1202 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1203 if (tcp_downgrade_zcopy_pure(sk, skb)) 1204 goto wait_for_space; 1205 skb_zcopy_downgrade_managed(skb); 1206 } 1207 1208 copy = tcp_wmem_schedule(sk, copy); 1209 if (!copy) 1210 goto wait_for_space; 1211 1212 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1213 pfrag->page, 1214 pfrag->offset, 1215 copy); 1216 if (err) 1217 goto do_error; 1218 1219 /* Update the skb. */ 1220 if (merge) { 1221 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1222 } else { 1223 skb_fill_page_desc(skb, i, pfrag->page, 1224 pfrag->offset, copy); 1225 page_ref_inc(pfrag->page); 1226 } 1227 pfrag->offset += copy; 1228 } else if (zc == MSG_ZEROCOPY) { 1229 /* First append to a fragless skb builds initial 1230 * pure zerocopy skb 1231 */ 1232 if (!skb->len) 1233 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1234 1235 if (!skb_zcopy_pure(skb)) { 1236 copy = tcp_wmem_schedule(sk, copy); 1237 if (!copy) 1238 goto wait_for_space; 1239 } 1240 1241 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1242 if (err == -EMSGSIZE || err == -EEXIST) { 1243 tcp_mark_push(tp, skb); 1244 goto new_segment; 1245 } 1246 if (err < 0) 1247 goto do_error; 1248 copy = err; 1249 } else if (zc == MSG_SPLICE_PAGES) { 1250 /* Splice in data if we can; copy if we can't. */ 1251 if (tcp_downgrade_zcopy_pure(sk, skb)) 1252 goto wait_for_space; 1253 copy = tcp_wmem_schedule(sk, copy); 1254 if (!copy) 1255 goto wait_for_space; 1256 1257 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1258 sk->sk_allocation); 1259 if (err < 0) { 1260 if (err == -EMSGSIZE) { 1261 tcp_mark_push(tp, skb); 1262 goto new_segment; 1263 } 1264 goto do_error; 1265 } 1266 copy = err; 1267 1268 if (!(flags & MSG_NO_SHARED_FRAGS)) 1269 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1270 1271 sk_wmem_queued_add(sk, copy); 1272 sk_mem_charge(sk, copy); 1273 } 1274 1275 if (!copied) 1276 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1277 1278 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1279 TCP_SKB_CB(skb)->end_seq += copy; 1280 tcp_skb_pcount_set(skb, 0); 1281 1282 copied += copy; 1283 if (!msg_data_left(msg)) { 1284 if (unlikely(flags & MSG_EOR)) 1285 TCP_SKB_CB(skb)->eor = 1; 1286 goto out; 1287 } 1288 1289 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1290 continue; 1291 1292 if (forced_push(tp)) { 1293 tcp_mark_push(tp, skb); 1294 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1295 } else if (skb == tcp_send_head(sk)) 1296 tcp_push_one(sk, mss_now); 1297 continue; 1298 1299 wait_for_space: 1300 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1301 tcp_remove_empty_skb(sk); 1302 if (copied) 1303 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1304 TCP_NAGLE_PUSH, size_goal); 1305 1306 err = sk_stream_wait_memory(sk, &timeo); 1307 if (err != 0) 1308 goto do_error; 1309 1310 mss_now = tcp_send_mss(sk, &size_goal, flags); 1311 } 1312 1313 out: 1314 if (copied) { 1315 tcp_tx_timestamp(sk, sockc.tsflags); 1316 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1317 } 1318 out_nopush: 1319 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1320 if (uarg && !msg->msg_ubuf) 1321 net_zcopy_put(uarg); 1322 return copied + copied_syn; 1323 1324 do_error: 1325 tcp_remove_empty_skb(sk); 1326 1327 if (copied + copied_syn) 1328 goto out; 1329 out_err: 1330 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1331 if (uarg && !msg->msg_ubuf) 1332 net_zcopy_put_abort(uarg, true); 1333 err = sk_stream_error(sk, flags, err); 1334 /* make sure we wake any epoll edge trigger waiter */ 1335 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1336 sk->sk_write_space(sk); 1337 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1338 } 1339 return err; 1340 } 1341 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1342 1343 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1344 { 1345 int ret; 1346 1347 lock_sock(sk); 1348 ret = tcp_sendmsg_locked(sk, msg, size); 1349 release_sock(sk); 1350 1351 return ret; 1352 } 1353 EXPORT_SYMBOL(tcp_sendmsg); 1354 1355 void tcp_splice_eof(struct socket *sock) 1356 { 1357 struct sock *sk = sock->sk; 1358 struct tcp_sock *tp = tcp_sk(sk); 1359 int mss_now, size_goal; 1360 1361 if (!tcp_write_queue_tail(sk)) 1362 return; 1363 1364 lock_sock(sk); 1365 mss_now = tcp_send_mss(sk, &size_goal, 0); 1366 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1367 release_sock(sk); 1368 } 1369 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1370 1371 /* 1372 * Handle reading urgent data. BSD has very simple semantics for 1373 * this, no blocking and very strange errors 8) 1374 */ 1375 1376 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1377 { 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 1380 /* No URG data to read. */ 1381 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1382 tp->urg_data == TCP_URG_READ) 1383 return -EINVAL; /* Yes this is right ! */ 1384 1385 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1386 return -ENOTCONN; 1387 1388 if (tp->urg_data & TCP_URG_VALID) { 1389 int err = 0; 1390 char c = tp->urg_data; 1391 1392 if (!(flags & MSG_PEEK)) 1393 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1394 1395 /* Read urgent data. */ 1396 msg->msg_flags |= MSG_OOB; 1397 1398 if (len > 0) { 1399 if (!(flags & MSG_TRUNC)) 1400 err = memcpy_to_msg(msg, &c, 1); 1401 len = 1; 1402 } else 1403 msg->msg_flags |= MSG_TRUNC; 1404 1405 return err ? -EFAULT : len; 1406 } 1407 1408 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1409 return 0; 1410 1411 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1412 * the available implementations agree in this case: 1413 * this call should never block, independent of the 1414 * blocking state of the socket. 1415 * Mike <pall@rz.uni-karlsruhe.de> 1416 */ 1417 return -EAGAIN; 1418 } 1419 1420 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1421 { 1422 struct sk_buff *skb; 1423 int copied = 0, err = 0; 1424 1425 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1426 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1427 if (err) 1428 return err; 1429 copied += skb->len; 1430 } 1431 1432 skb_queue_walk(&sk->sk_write_queue, skb) { 1433 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1434 if (err) 1435 break; 1436 1437 copied += skb->len; 1438 } 1439 1440 return err ?: copied; 1441 } 1442 1443 /* Clean up the receive buffer for full frames taken by the user, 1444 * then send an ACK if necessary. COPIED is the number of bytes 1445 * tcp_recvmsg has given to the user so far, it speeds up the 1446 * calculation of whether or not we must ACK for the sake of 1447 * a window update. 1448 */ 1449 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1450 { 1451 struct tcp_sock *tp = tcp_sk(sk); 1452 bool time_to_ack = false; 1453 1454 if (inet_csk_ack_scheduled(sk)) { 1455 const struct inet_connection_sock *icsk = inet_csk(sk); 1456 1457 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1458 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1459 /* 1460 * If this read emptied read buffer, we send ACK, if 1461 * connection is not bidirectional, user drained 1462 * receive buffer and there was a small segment 1463 * in queue. 1464 */ 1465 (copied > 0 && 1466 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1467 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1468 !inet_csk_in_pingpong_mode(sk))) && 1469 !atomic_read(&sk->sk_rmem_alloc))) 1470 time_to_ack = true; 1471 } 1472 1473 /* We send an ACK if we can now advertise a non-zero window 1474 * which has been raised "significantly". 1475 * 1476 * Even if window raised up to infinity, do not send window open ACK 1477 * in states, where we will not receive more. It is useless. 1478 */ 1479 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1480 __u32 rcv_window_now = tcp_receive_window(tp); 1481 1482 /* Optimize, __tcp_select_window() is not cheap. */ 1483 if (2*rcv_window_now <= tp->window_clamp) { 1484 __u32 new_window = __tcp_select_window(sk); 1485 1486 /* Send ACK now, if this read freed lots of space 1487 * in our buffer. Certainly, new_window is new window. 1488 * We can advertise it now, if it is not less than current one. 1489 * "Lots" means "at least twice" here. 1490 */ 1491 if (new_window && new_window >= 2 * rcv_window_now) 1492 time_to_ack = true; 1493 } 1494 } 1495 if (time_to_ack) 1496 tcp_send_ack(sk); 1497 } 1498 1499 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1500 { 1501 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1502 struct tcp_sock *tp = tcp_sk(sk); 1503 1504 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1505 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1506 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1507 __tcp_cleanup_rbuf(sk, copied); 1508 } 1509 1510 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1511 { 1512 __skb_unlink(skb, &sk->sk_receive_queue); 1513 if (likely(skb->destructor == sock_rfree)) { 1514 sock_rfree(skb); 1515 skb->destructor = NULL; 1516 skb->sk = NULL; 1517 return skb_attempt_defer_free(skb); 1518 } 1519 __kfree_skb(skb); 1520 } 1521 1522 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1523 { 1524 struct sk_buff *skb; 1525 u32 offset; 1526 1527 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1528 offset = seq - TCP_SKB_CB(skb)->seq; 1529 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1530 pr_err_once("%s: found a SYN, please report !\n", __func__); 1531 offset--; 1532 } 1533 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1534 *off = offset; 1535 return skb; 1536 } 1537 /* This looks weird, but this can happen if TCP collapsing 1538 * splitted a fat GRO packet, while we released socket lock 1539 * in skb_splice_bits() 1540 */ 1541 tcp_eat_recv_skb(sk, skb); 1542 } 1543 return NULL; 1544 } 1545 EXPORT_SYMBOL(tcp_recv_skb); 1546 1547 /* 1548 * This routine provides an alternative to tcp_recvmsg() for routines 1549 * that would like to handle copying from skbuffs directly in 'sendfile' 1550 * fashion. 1551 * Note: 1552 * - It is assumed that the socket was locked by the caller. 1553 * - The routine does not block. 1554 * - At present, there is no support for reading OOB data 1555 * or for 'peeking' the socket using this routine 1556 * (although both would be easy to implement). 1557 */ 1558 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1559 sk_read_actor_t recv_actor) 1560 { 1561 struct sk_buff *skb; 1562 struct tcp_sock *tp = tcp_sk(sk); 1563 u32 seq = tp->copied_seq; 1564 u32 offset; 1565 int copied = 0; 1566 1567 if (sk->sk_state == TCP_LISTEN) 1568 return -ENOTCONN; 1569 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1570 if (offset < skb->len) { 1571 int used; 1572 size_t len; 1573 1574 len = skb->len - offset; 1575 /* Stop reading if we hit a patch of urgent data */ 1576 if (unlikely(tp->urg_data)) { 1577 u32 urg_offset = tp->urg_seq - seq; 1578 if (urg_offset < len) 1579 len = urg_offset; 1580 if (!len) 1581 break; 1582 } 1583 used = recv_actor(desc, skb, offset, len); 1584 if (used <= 0) { 1585 if (!copied) 1586 copied = used; 1587 break; 1588 } 1589 if (WARN_ON_ONCE(used > len)) 1590 used = len; 1591 seq += used; 1592 copied += used; 1593 offset += used; 1594 1595 /* If recv_actor drops the lock (e.g. TCP splice 1596 * receive) the skb pointer might be invalid when 1597 * getting here: tcp_collapse might have deleted it 1598 * while aggregating skbs from the socket queue. 1599 */ 1600 skb = tcp_recv_skb(sk, seq - 1, &offset); 1601 if (!skb) 1602 break; 1603 /* TCP coalescing might have appended data to the skb. 1604 * Try to splice more frags 1605 */ 1606 if (offset + 1 != skb->len) 1607 continue; 1608 } 1609 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1610 tcp_eat_recv_skb(sk, skb); 1611 ++seq; 1612 break; 1613 } 1614 tcp_eat_recv_skb(sk, skb); 1615 if (!desc->count) 1616 break; 1617 WRITE_ONCE(tp->copied_seq, seq); 1618 } 1619 WRITE_ONCE(tp->copied_seq, seq); 1620 1621 tcp_rcv_space_adjust(sk); 1622 1623 /* Clean up data we have read: This will do ACK frames. */ 1624 if (copied > 0) { 1625 tcp_recv_skb(sk, seq, &offset); 1626 tcp_cleanup_rbuf(sk, copied); 1627 } 1628 return copied; 1629 } 1630 EXPORT_SYMBOL(tcp_read_sock); 1631 1632 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1633 { 1634 struct sk_buff *skb; 1635 int copied = 0; 1636 1637 if (sk->sk_state == TCP_LISTEN) 1638 return -ENOTCONN; 1639 1640 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1641 u8 tcp_flags; 1642 int used; 1643 1644 __skb_unlink(skb, &sk->sk_receive_queue); 1645 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1646 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1647 used = recv_actor(sk, skb); 1648 if (used < 0) { 1649 if (!copied) 1650 copied = used; 1651 break; 1652 } 1653 copied += used; 1654 1655 if (tcp_flags & TCPHDR_FIN) 1656 break; 1657 } 1658 return copied; 1659 } 1660 EXPORT_SYMBOL(tcp_read_skb); 1661 1662 void tcp_read_done(struct sock *sk, size_t len) 1663 { 1664 struct tcp_sock *tp = tcp_sk(sk); 1665 u32 seq = tp->copied_seq; 1666 struct sk_buff *skb; 1667 size_t left; 1668 u32 offset; 1669 1670 if (sk->sk_state == TCP_LISTEN) 1671 return; 1672 1673 left = len; 1674 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1675 int used; 1676 1677 used = min_t(size_t, skb->len - offset, left); 1678 seq += used; 1679 left -= used; 1680 1681 if (skb->len > offset + used) 1682 break; 1683 1684 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1685 tcp_eat_recv_skb(sk, skb); 1686 ++seq; 1687 break; 1688 } 1689 tcp_eat_recv_skb(sk, skb); 1690 } 1691 WRITE_ONCE(tp->copied_seq, seq); 1692 1693 tcp_rcv_space_adjust(sk); 1694 1695 /* Clean up data we have read: This will do ACK frames. */ 1696 if (left != len) 1697 tcp_cleanup_rbuf(sk, len - left); 1698 } 1699 EXPORT_SYMBOL(tcp_read_done); 1700 1701 int tcp_peek_len(struct socket *sock) 1702 { 1703 return tcp_inq(sock->sk); 1704 } 1705 EXPORT_SYMBOL(tcp_peek_len); 1706 1707 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1708 int tcp_set_rcvlowat(struct sock *sk, int val) 1709 { 1710 int space, cap; 1711 1712 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1713 cap = sk->sk_rcvbuf >> 1; 1714 else 1715 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1716 val = min(val, cap); 1717 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1718 1719 /* Check if we need to signal EPOLLIN right now */ 1720 tcp_data_ready(sk); 1721 1722 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1723 return 0; 1724 1725 space = tcp_space_from_win(sk, val); 1726 if (space > sk->sk_rcvbuf) { 1727 WRITE_ONCE(sk->sk_rcvbuf, space); 1728 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1729 } 1730 return 0; 1731 } 1732 EXPORT_SYMBOL(tcp_set_rcvlowat); 1733 1734 void tcp_update_recv_tstamps(struct sk_buff *skb, 1735 struct scm_timestamping_internal *tss) 1736 { 1737 if (skb->tstamp) 1738 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1739 else 1740 tss->ts[0] = (struct timespec64) {0}; 1741 1742 if (skb_hwtstamps(skb)->hwtstamp) 1743 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1744 else 1745 tss->ts[2] = (struct timespec64) {0}; 1746 } 1747 1748 #ifdef CONFIG_MMU 1749 static const struct vm_operations_struct tcp_vm_ops = { 1750 }; 1751 1752 int tcp_mmap(struct file *file, struct socket *sock, 1753 struct vm_area_struct *vma) 1754 { 1755 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1756 return -EPERM; 1757 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1758 1759 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1760 vm_flags_set(vma, VM_MIXEDMAP); 1761 1762 vma->vm_ops = &tcp_vm_ops; 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(tcp_mmap); 1766 1767 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1768 u32 *offset_frag) 1769 { 1770 skb_frag_t *frag; 1771 1772 if (unlikely(offset_skb >= skb->len)) 1773 return NULL; 1774 1775 offset_skb -= skb_headlen(skb); 1776 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1777 return NULL; 1778 1779 frag = skb_shinfo(skb)->frags; 1780 while (offset_skb) { 1781 if (skb_frag_size(frag) > offset_skb) { 1782 *offset_frag = offset_skb; 1783 return frag; 1784 } 1785 offset_skb -= skb_frag_size(frag); 1786 ++frag; 1787 } 1788 *offset_frag = 0; 1789 return frag; 1790 } 1791 1792 static bool can_map_frag(const skb_frag_t *frag) 1793 { 1794 struct page *page; 1795 1796 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1797 return false; 1798 1799 page = skb_frag_page(frag); 1800 1801 if (PageCompound(page) || page->mapping) 1802 return false; 1803 1804 return true; 1805 } 1806 1807 static int find_next_mappable_frag(const skb_frag_t *frag, 1808 int remaining_in_skb) 1809 { 1810 int offset = 0; 1811 1812 if (likely(can_map_frag(frag))) 1813 return 0; 1814 1815 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1816 offset += skb_frag_size(frag); 1817 ++frag; 1818 } 1819 return offset; 1820 } 1821 1822 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1823 struct tcp_zerocopy_receive *zc, 1824 struct sk_buff *skb, u32 offset) 1825 { 1826 u32 frag_offset, partial_frag_remainder = 0; 1827 int mappable_offset; 1828 skb_frag_t *frag; 1829 1830 /* worst case: skip to next skb. try to improve on this case below */ 1831 zc->recv_skip_hint = skb->len - offset; 1832 1833 /* Find the frag containing this offset (and how far into that frag) */ 1834 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1835 if (!frag) 1836 return; 1837 1838 if (frag_offset) { 1839 struct skb_shared_info *info = skb_shinfo(skb); 1840 1841 /* We read part of the last frag, must recvmsg() rest of skb. */ 1842 if (frag == &info->frags[info->nr_frags - 1]) 1843 return; 1844 1845 /* Else, we must at least read the remainder in this frag. */ 1846 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1847 zc->recv_skip_hint -= partial_frag_remainder; 1848 ++frag; 1849 } 1850 1851 /* partial_frag_remainder: If part way through a frag, must read rest. 1852 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1853 * in partial_frag_remainder. 1854 */ 1855 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1856 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1857 } 1858 1859 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1860 int flags, struct scm_timestamping_internal *tss, 1861 int *cmsg_flags); 1862 static int receive_fallback_to_copy(struct sock *sk, 1863 struct tcp_zerocopy_receive *zc, int inq, 1864 struct scm_timestamping_internal *tss) 1865 { 1866 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1867 struct msghdr msg = {}; 1868 int err; 1869 1870 zc->length = 0; 1871 zc->recv_skip_hint = 0; 1872 1873 if (copy_address != zc->copybuf_address) 1874 return -EINVAL; 1875 1876 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1877 &msg.msg_iter); 1878 if (err) 1879 return err; 1880 1881 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1882 tss, &zc->msg_flags); 1883 if (err < 0) 1884 return err; 1885 1886 zc->copybuf_len = err; 1887 if (likely(zc->copybuf_len)) { 1888 struct sk_buff *skb; 1889 u32 offset; 1890 1891 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1892 if (skb) 1893 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1894 } 1895 return 0; 1896 } 1897 1898 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1899 struct sk_buff *skb, u32 copylen, 1900 u32 *offset, u32 *seq) 1901 { 1902 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1903 struct msghdr msg = {}; 1904 int err; 1905 1906 if (copy_address != zc->copybuf_address) 1907 return -EINVAL; 1908 1909 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1910 &msg.msg_iter); 1911 if (err) 1912 return err; 1913 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1914 if (err) 1915 return err; 1916 zc->recv_skip_hint -= copylen; 1917 *offset += copylen; 1918 *seq += copylen; 1919 return (__s32)copylen; 1920 } 1921 1922 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1923 struct sock *sk, 1924 struct sk_buff *skb, 1925 u32 *seq, 1926 s32 copybuf_len, 1927 struct scm_timestamping_internal *tss) 1928 { 1929 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1930 1931 if (!copylen) 1932 return 0; 1933 /* skb is null if inq < PAGE_SIZE. */ 1934 if (skb) { 1935 offset = *seq - TCP_SKB_CB(skb)->seq; 1936 } else { 1937 skb = tcp_recv_skb(sk, *seq, &offset); 1938 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1939 tcp_update_recv_tstamps(skb, tss); 1940 zc->msg_flags |= TCP_CMSG_TS; 1941 } 1942 } 1943 1944 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1945 seq); 1946 return zc->copybuf_len < 0 ? 0 : copylen; 1947 } 1948 1949 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1950 struct page **pending_pages, 1951 unsigned long pages_remaining, 1952 unsigned long *address, 1953 u32 *length, 1954 u32 *seq, 1955 struct tcp_zerocopy_receive *zc, 1956 u32 total_bytes_to_map, 1957 int err) 1958 { 1959 /* At least one page did not map. Try zapping if we skipped earlier. */ 1960 if (err == -EBUSY && 1961 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1962 u32 maybe_zap_len; 1963 1964 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1965 *length + /* Mapped or pending */ 1966 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1967 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1968 err = 0; 1969 } 1970 1971 if (!err) { 1972 unsigned long leftover_pages = pages_remaining; 1973 int bytes_mapped; 1974 1975 /* We called zap_page_range_single, try to reinsert. */ 1976 err = vm_insert_pages(vma, *address, 1977 pending_pages, 1978 &pages_remaining); 1979 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1980 *seq += bytes_mapped; 1981 *address += bytes_mapped; 1982 } 1983 if (err) { 1984 /* Either we were unable to zap, OR we zapped, retried an 1985 * insert, and still had an issue. Either ways, pages_remaining 1986 * is the number of pages we were unable to map, and we unroll 1987 * some state we speculatively touched before. 1988 */ 1989 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1990 1991 *length -= bytes_not_mapped; 1992 zc->recv_skip_hint += bytes_not_mapped; 1993 } 1994 return err; 1995 } 1996 1997 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1998 struct page **pages, 1999 unsigned int pages_to_map, 2000 unsigned long *address, 2001 u32 *length, 2002 u32 *seq, 2003 struct tcp_zerocopy_receive *zc, 2004 u32 total_bytes_to_map) 2005 { 2006 unsigned long pages_remaining = pages_to_map; 2007 unsigned int pages_mapped; 2008 unsigned int bytes_mapped; 2009 int err; 2010 2011 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2012 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2013 bytes_mapped = PAGE_SIZE * pages_mapped; 2014 /* Even if vm_insert_pages fails, it may have partially succeeded in 2015 * mapping (some but not all of the pages). 2016 */ 2017 *seq += bytes_mapped; 2018 *address += bytes_mapped; 2019 2020 if (likely(!err)) 2021 return 0; 2022 2023 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2024 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2025 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2026 err); 2027 } 2028 2029 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2030 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2031 struct tcp_zerocopy_receive *zc, 2032 struct scm_timestamping_internal *tss) 2033 { 2034 unsigned long msg_control_addr; 2035 struct msghdr cmsg_dummy; 2036 2037 msg_control_addr = (unsigned long)zc->msg_control; 2038 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2039 cmsg_dummy.msg_controllen = 2040 (__kernel_size_t)zc->msg_controllen; 2041 cmsg_dummy.msg_flags = in_compat_syscall() 2042 ? MSG_CMSG_COMPAT : 0; 2043 cmsg_dummy.msg_control_is_user = true; 2044 zc->msg_flags = 0; 2045 if (zc->msg_control == msg_control_addr && 2046 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2047 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2048 zc->msg_control = (__u64) 2049 ((uintptr_t)cmsg_dummy.msg_control_user); 2050 zc->msg_controllen = 2051 (__u64)cmsg_dummy.msg_controllen; 2052 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2053 } 2054 } 2055 2056 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2057 unsigned long address, 2058 bool *mmap_locked) 2059 { 2060 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2061 2062 if (vma) { 2063 if (vma->vm_ops != &tcp_vm_ops) { 2064 vma_end_read(vma); 2065 return NULL; 2066 } 2067 *mmap_locked = false; 2068 return vma; 2069 } 2070 2071 mmap_read_lock(mm); 2072 vma = vma_lookup(mm, address); 2073 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2074 mmap_read_unlock(mm); 2075 return NULL; 2076 } 2077 *mmap_locked = true; 2078 return vma; 2079 } 2080 2081 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2082 static int tcp_zerocopy_receive(struct sock *sk, 2083 struct tcp_zerocopy_receive *zc, 2084 struct scm_timestamping_internal *tss) 2085 { 2086 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2087 unsigned long address = (unsigned long)zc->address; 2088 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2089 s32 copybuf_len = zc->copybuf_len; 2090 struct tcp_sock *tp = tcp_sk(sk); 2091 const skb_frag_t *frags = NULL; 2092 unsigned int pages_to_map = 0; 2093 struct vm_area_struct *vma; 2094 struct sk_buff *skb = NULL; 2095 u32 seq = tp->copied_seq; 2096 u32 total_bytes_to_map; 2097 int inq = tcp_inq(sk); 2098 bool mmap_locked; 2099 int ret; 2100 2101 zc->copybuf_len = 0; 2102 zc->msg_flags = 0; 2103 2104 if (address & (PAGE_SIZE - 1) || address != zc->address) 2105 return -EINVAL; 2106 2107 if (sk->sk_state == TCP_LISTEN) 2108 return -ENOTCONN; 2109 2110 sock_rps_record_flow(sk); 2111 2112 if (inq && inq <= copybuf_len) 2113 return receive_fallback_to_copy(sk, zc, inq, tss); 2114 2115 if (inq < PAGE_SIZE) { 2116 zc->length = 0; 2117 zc->recv_skip_hint = inq; 2118 if (!inq && sock_flag(sk, SOCK_DONE)) 2119 return -EIO; 2120 return 0; 2121 } 2122 2123 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2124 if (!vma) 2125 return -EINVAL; 2126 2127 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2128 avail_len = min_t(u32, vma_len, inq); 2129 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2130 if (total_bytes_to_map) { 2131 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2132 zap_page_range_single(vma, address, total_bytes_to_map, 2133 NULL); 2134 zc->length = total_bytes_to_map; 2135 zc->recv_skip_hint = 0; 2136 } else { 2137 zc->length = avail_len; 2138 zc->recv_skip_hint = avail_len; 2139 } 2140 ret = 0; 2141 while (length + PAGE_SIZE <= zc->length) { 2142 int mappable_offset; 2143 struct page *page; 2144 2145 if (zc->recv_skip_hint < PAGE_SIZE) { 2146 u32 offset_frag; 2147 2148 if (skb) { 2149 if (zc->recv_skip_hint > 0) 2150 break; 2151 skb = skb->next; 2152 offset = seq - TCP_SKB_CB(skb)->seq; 2153 } else { 2154 skb = tcp_recv_skb(sk, seq, &offset); 2155 } 2156 2157 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2158 tcp_update_recv_tstamps(skb, tss); 2159 zc->msg_flags |= TCP_CMSG_TS; 2160 } 2161 zc->recv_skip_hint = skb->len - offset; 2162 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2163 if (!frags || offset_frag) 2164 break; 2165 } 2166 2167 mappable_offset = find_next_mappable_frag(frags, 2168 zc->recv_skip_hint); 2169 if (mappable_offset) { 2170 zc->recv_skip_hint = mappable_offset; 2171 break; 2172 } 2173 page = skb_frag_page(frags); 2174 prefetchw(page); 2175 pages[pages_to_map++] = page; 2176 length += PAGE_SIZE; 2177 zc->recv_skip_hint -= PAGE_SIZE; 2178 frags++; 2179 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2180 zc->recv_skip_hint < PAGE_SIZE) { 2181 /* Either full batch, or we're about to go to next skb 2182 * (and we cannot unroll failed ops across skbs). 2183 */ 2184 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2185 pages_to_map, 2186 &address, &length, 2187 &seq, zc, 2188 total_bytes_to_map); 2189 if (ret) 2190 goto out; 2191 pages_to_map = 0; 2192 } 2193 } 2194 if (pages_to_map) { 2195 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2196 &address, &length, &seq, 2197 zc, total_bytes_to_map); 2198 } 2199 out: 2200 if (mmap_locked) 2201 mmap_read_unlock(current->mm); 2202 else 2203 vma_end_read(vma); 2204 /* Try to copy straggler data. */ 2205 if (!ret) 2206 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2207 2208 if (length + copylen) { 2209 WRITE_ONCE(tp->copied_seq, seq); 2210 tcp_rcv_space_adjust(sk); 2211 2212 /* Clean up data we have read: This will do ACK frames. */ 2213 tcp_recv_skb(sk, seq, &offset); 2214 tcp_cleanup_rbuf(sk, length + copylen); 2215 ret = 0; 2216 if (length == zc->length) 2217 zc->recv_skip_hint = 0; 2218 } else { 2219 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2220 ret = -EIO; 2221 } 2222 zc->length = length; 2223 return ret; 2224 } 2225 #endif 2226 2227 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2228 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2229 struct scm_timestamping_internal *tss) 2230 { 2231 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2232 bool has_timestamping = false; 2233 2234 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2235 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2236 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2237 if (new_tstamp) { 2238 struct __kernel_timespec kts = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_nsec = tss->ts[0].tv_nsec, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2243 sizeof(kts), &kts); 2244 } else { 2245 struct __kernel_old_timespec ts_old = { 2246 .tv_sec = tss->ts[0].tv_sec, 2247 .tv_nsec = tss->ts[0].tv_nsec, 2248 }; 2249 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2250 sizeof(ts_old), &ts_old); 2251 } 2252 } else { 2253 if (new_tstamp) { 2254 struct __kernel_sock_timeval stv = { 2255 .tv_sec = tss->ts[0].tv_sec, 2256 .tv_usec = tss->ts[0].tv_nsec / 1000, 2257 }; 2258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2259 sizeof(stv), &stv); 2260 } else { 2261 struct __kernel_old_timeval tv = { 2262 .tv_sec = tss->ts[0].tv_sec, 2263 .tv_usec = tss->ts[0].tv_nsec / 1000, 2264 }; 2265 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2266 sizeof(tv), &tv); 2267 } 2268 } 2269 } 2270 2271 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2272 has_timestamping = true; 2273 else 2274 tss->ts[0] = (struct timespec64) {0}; 2275 } 2276 2277 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2278 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2279 has_timestamping = true; 2280 else 2281 tss->ts[2] = (struct timespec64) {0}; 2282 } 2283 2284 if (has_timestamping) { 2285 tss->ts[1] = (struct timespec64) {0}; 2286 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2287 put_cmsg_scm_timestamping64(msg, tss); 2288 else 2289 put_cmsg_scm_timestamping(msg, tss); 2290 } 2291 } 2292 2293 static int tcp_inq_hint(struct sock *sk) 2294 { 2295 const struct tcp_sock *tp = tcp_sk(sk); 2296 u32 copied_seq = READ_ONCE(tp->copied_seq); 2297 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2298 int inq; 2299 2300 inq = rcv_nxt - copied_seq; 2301 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2302 lock_sock(sk); 2303 inq = tp->rcv_nxt - tp->copied_seq; 2304 release_sock(sk); 2305 } 2306 /* After receiving a FIN, tell the user-space to continue reading 2307 * by returning a non-zero inq. 2308 */ 2309 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2310 inq = 1; 2311 return inq; 2312 } 2313 2314 /* 2315 * This routine copies from a sock struct into the user buffer. 2316 * 2317 * Technical note: in 2.3 we work on _locked_ socket, so that 2318 * tricks with *seq access order and skb->users are not required. 2319 * Probably, code can be easily improved even more. 2320 */ 2321 2322 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2323 int flags, struct scm_timestamping_internal *tss, 2324 int *cmsg_flags) 2325 { 2326 struct tcp_sock *tp = tcp_sk(sk); 2327 int copied = 0; 2328 u32 peek_seq; 2329 u32 *seq; 2330 unsigned long used; 2331 int err; 2332 int target; /* Read at least this many bytes */ 2333 long timeo; 2334 struct sk_buff *skb, *last; 2335 u32 peek_offset = 0; 2336 u32 urg_hole = 0; 2337 2338 err = -ENOTCONN; 2339 if (sk->sk_state == TCP_LISTEN) 2340 goto out; 2341 2342 if (tp->recvmsg_inq) { 2343 *cmsg_flags = TCP_CMSG_INQ; 2344 msg->msg_get_inq = 1; 2345 } 2346 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2347 2348 /* Urgent data needs to be handled specially. */ 2349 if (flags & MSG_OOB) 2350 goto recv_urg; 2351 2352 if (unlikely(tp->repair)) { 2353 err = -EPERM; 2354 if (!(flags & MSG_PEEK)) 2355 goto out; 2356 2357 if (tp->repair_queue == TCP_SEND_QUEUE) 2358 goto recv_sndq; 2359 2360 err = -EINVAL; 2361 if (tp->repair_queue == TCP_NO_QUEUE) 2362 goto out; 2363 2364 /* 'common' recv queue MSG_PEEK-ing */ 2365 } 2366 2367 seq = &tp->copied_seq; 2368 if (flags & MSG_PEEK) { 2369 peek_offset = max(sk_peek_offset(sk, flags), 0); 2370 peek_seq = tp->copied_seq + peek_offset; 2371 seq = &peek_seq; 2372 } 2373 2374 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2375 2376 do { 2377 u32 offset; 2378 2379 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2380 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2381 if (copied) 2382 break; 2383 if (signal_pending(current)) { 2384 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2385 break; 2386 } 2387 } 2388 2389 /* Next get a buffer. */ 2390 2391 last = skb_peek_tail(&sk->sk_receive_queue); 2392 skb_queue_walk(&sk->sk_receive_queue, skb) { 2393 last = skb; 2394 /* Now that we have two receive queues this 2395 * shouldn't happen. 2396 */ 2397 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2398 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2399 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2400 flags)) 2401 break; 2402 2403 offset = *seq - TCP_SKB_CB(skb)->seq; 2404 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2405 pr_err_once("%s: found a SYN, please report !\n", __func__); 2406 offset--; 2407 } 2408 if (offset < skb->len) 2409 goto found_ok_skb; 2410 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2411 goto found_fin_ok; 2412 WARN(!(flags & MSG_PEEK), 2413 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2414 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2415 } 2416 2417 /* Well, if we have backlog, try to process it now yet. */ 2418 2419 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2420 break; 2421 2422 if (copied) { 2423 if (!timeo || 2424 sk->sk_err || 2425 sk->sk_state == TCP_CLOSE || 2426 (sk->sk_shutdown & RCV_SHUTDOWN) || 2427 signal_pending(current)) 2428 break; 2429 } else { 2430 if (sock_flag(sk, SOCK_DONE)) 2431 break; 2432 2433 if (sk->sk_err) { 2434 copied = sock_error(sk); 2435 break; 2436 } 2437 2438 if (sk->sk_shutdown & RCV_SHUTDOWN) 2439 break; 2440 2441 if (sk->sk_state == TCP_CLOSE) { 2442 /* This occurs when user tries to read 2443 * from never connected socket. 2444 */ 2445 copied = -ENOTCONN; 2446 break; 2447 } 2448 2449 if (!timeo) { 2450 copied = -EAGAIN; 2451 break; 2452 } 2453 2454 if (signal_pending(current)) { 2455 copied = sock_intr_errno(timeo); 2456 break; 2457 } 2458 } 2459 2460 if (copied >= target) { 2461 /* Do not sleep, just process backlog. */ 2462 __sk_flush_backlog(sk); 2463 } else { 2464 tcp_cleanup_rbuf(sk, copied); 2465 err = sk_wait_data(sk, &timeo, last); 2466 if (err < 0) { 2467 err = copied ? : err; 2468 goto out; 2469 } 2470 } 2471 2472 if ((flags & MSG_PEEK) && 2473 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2474 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2475 current->comm, 2476 task_pid_nr(current)); 2477 peek_seq = tp->copied_seq + peek_offset; 2478 } 2479 continue; 2480 2481 found_ok_skb: 2482 /* Ok so how much can we use? */ 2483 used = skb->len - offset; 2484 if (len < used) 2485 used = len; 2486 2487 /* Do we have urgent data here? */ 2488 if (unlikely(tp->urg_data)) { 2489 u32 urg_offset = tp->urg_seq - *seq; 2490 if (urg_offset < used) { 2491 if (!urg_offset) { 2492 if (!sock_flag(sk, SOCK_URGINLINE)) { 2493 WRITE_ONCE(*seq, *seq + 1); 2494 urg_hole++; 2495 offset++; 2496 used--; 2497 if (!used) 2498 goto skip_copy; 2499 } 2500 } else 2501 used = urg_offset; 2502 } 2503 } 2504 2505 if (!(flags & MSG_TRUNC)) { 2506 err = skb_copy_datagram_msg(skb, offset, msg, used); 2507 if (err) { 2508 /* Exception. Bailout! */ 2509 if (!copied) 2510 copied = -EFAULT; 2511 break; 2512 } 2513 } 2514 2515 WRITE_ONCE(*seq, *seq + used); 2516 copied += used; 2517 len -= used; 2518 if (flags & MSG_PEEK) 2519 sk_peek_offset_fwd(sk, used); 2520 else 2521 sk_peek_offset_bwd(sk, used); 2522 tcp_rcv_space_adjust(sk); 2523 2524 skip_copy: 2525 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2526 WRITE_ONCE(tp->urg_data, 0); 2527 tcp_fast_path_check(sk); 2528 } 2529 2530 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2531 tcp_update_recv_tstamps(skb, tss); 2532 *cmsg_flags |= TCP_CMSG_TS; 2533 } 2534 2535 if (used + offset < skb->len) 2536 continue; 2537 2538 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2539 goto found_fin_ok; 2540 if (!(flags & MSG_PEEK)) 2541 tcp_eat_recv_skb(sk, skb); 2542 continue; 2543 2544 found_fin_ok: 2545 /* Process the FIN. */ 2546 WRITE_ONCE(*seq, *seq + 1); 2547 if (!(flags & MSG_PEEK)) 2548 tcp_eat_recv_skb(sk, skb); 2549 break; 2550 } while (len > 0); 2551 2552 /* According to UNIX98, msg_name/msg_namelen are ignored 2553 * on connected socket. I was just happy when found this 8) --ANK 2554 */ 2555 2556 /* Clean up data we have read: This will do ACK frames. */ 2557 tcp_cleanup_rbuf(sk, copied); 2558 return copied; 2559 2560 out: 2561 return err; 2562 2563 recv_urg: 2564 err = tcp_recv_urg(sk, msg, len, flags); 2565 goto out; 2566 2567 recv_sndq: 2568 err = tcp_peek_sndq(sk, msg, len); 2569 goto out; 2570 } 2571 2572 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2573 int *addr_len) 2574 { 2575 int cmsg_flags = 0, ret; 2576 struct scm_timestamping_internal tss; 2577 2578 if (unlikely(flags & MSG_ERRQUEUE)) 2579 return inet_recv_error(sk, msg, len, addr_len); 2580 2581 if (sk_can_busy_loop(sk) && 2582 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2583 sk->sk_state == TCP_ESTABLISHED) 2584 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2585 2586 lock_sock(sk); 2587 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2588 release_sock(sk); 2589 2590 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2591 if (cmsg_flags & TCP_CMSG_TS) 2592 tcp_recv_timestamp(msg, sk, &tss); 2593 if (msg->msg_get_inq) { 2594 msg->msg_inq = tcp_inq_hint(sk); 2595 if (cmsg_flags & TCP_CMSG_INQ) 2596 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2597 sizeof(msg->msg_inq), &msg->msg_inq); 2598 } 2599 } 2600 return ret; 2601 } 2602 EXPORT_SYMBOL(tcp_recvmsg); 2603 2604 void tcp_set_state(struct sock *sk, int state) 2605 { 2606 int oldstate = sk->sk_state; 2607 2608 /* We defined a new enum for TCP states that are exported in BPF 2609 * so as not force the internal TCP states to be frozen. The 2610 * following checks will detect if an internal state value ever 2611 * differs from the BPF value. If this ever happens, then we will 2612 * need to remap the internal value to the BPF value before calling 2613 * tcp_call_bpf_2arg. 2614 */ 2615 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2616 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2617 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2618 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2619 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2620 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2621 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2622 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2623 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2624 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2625 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2626 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2627 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2628 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2629 2630 /* bpf uapi header bpf.h defines an anonymous enum with values 2631 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2632 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2633 * But clang built vmlinux does not have this enum in DWARF 2634 * since clang removes the above code before generating IR/debuginfo. 2635 * Let us explicitly emit the type debuginfo to ensure the 2636 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2637 * regardless of which compiler is used. 2638 */ 2639 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2640 2641 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2642 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2643 2644 switch (state) { 2645 case TCP_ESTABLISHED: 2646 if (oldstate != TCP_ESTABLISHED) 2647 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2648 break; 2649 2650 case TCP_CLOSE: 2651 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2652 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2653 2654 sk->sk_prot->unhash(sk); 2655 if (inet_csk(sk)->icsk_bind_hash && 2656 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2657 inet_put_port(sk); 2658 fallthrough; 2659 default: 2660 if (oldstate == TCP_ESTABLISHED) 2661 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2662 } 2663 2664 /* Change state AFTER socket is unhashed to avoid closed 2665 * socket sitting in hash tables. 2666 */ 2667 inet_sk_state_store(sk, state); 2668 } 2669 EXPORT_SYMBOL_GPL(tcp_set_state); 2670 2671 /* 2672 * State processing on a close. This implements the state shift for 2673 * sending our FIN frame. Note that we only send a FIN for some 2674 * states. A shutdown() may have already sent the FIN, or we may be 2675 * closed. 2676 */ 2677 2678 static const unsigned char new_state[16] = { 2679 /* current state: new state: action: */ 2680 [0 /* (Invalid) */] = TCP_CLOSE, 2681 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2682 [TCP_SYN_SENT] = TCP_CLOSE, 2683 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2684 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2685 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2686 [TCP_TIME_WAIT] = TCP_CLOSE, 2687 [TCP_CLOSE] = TCP_CLOSE, 2688 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2689 [TCP_LAST_ACK] = TCP_LAST_ACK, 2690 [TCP_LISTEN] = TCP_CLOSE, 2691 [TCP_CLOSING] = TCP_CLOSING, 2692 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2693 }; 2694 2695 static int tcp_close_state(struct sock *sk) 2696 { 2697 int next = (int)new_state[sk->sk_state]; 2698 int ns = next & TCP_STATE_MASK; 2699 2700 tcp_set_state(sk, ns); 2701 2702 return next & TCP_ACTION_FIN; 2703 } 2704 2705 /* 2706 * Shutdown the sending side of a connection. Much like close except 2707 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2708 */ 2709 2710 void tcp_shutdown(struct sock *sk, int how) 2711 { 2712 /* We need to grab some memory, and put together a FIN, 2713 * and then put it into the queue to be sent. 2714 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2715 */ 2716 if (!(how & SEND_SHUTDOWN)) 2717 return; 2718 2719 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2720 if ((1 << sk->sk_state) & 2721 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2722 TCPF_CLOSE_WAIT)) { 2723 /* Clear out any half completed packets. FIN if needed. */ 2724 if (tcp_close_state(sk)) 2725 tcp_send_fin(sk); 2726 } 2727 } 2728 EXPORT_SYMBOL(tcp_shutdown); 2729 2730 int tcp_orphan_count_sum(void) 2731 { 2732 int i, total = 0; 2733 2734 for_each_possible_cpu(i) 2735 total += per_cpu(tcp_orphan_count, i); 2736 2737 return max(total, 0); 2738 } 2739 2740 static int tcp_orphan_cache; 2741 static struct timer_list tcp_orphan_timer; 2742 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2743 2744 static void tcp_orphan_update(struct timer_list *unused) 2745 { 2746 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2747 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2748 } 2749 2750 static bool tcp_too_many_orphans(int shift) 2751 { 2752 return READ_ONCE(tcp_orphan_cache) << shift > 2753 READ_ONCE(sysctl_tcp_max_orphans); 2754 } 2755 2756 static bool tcp_out_of_memory(const struct sock *sk) 2757 { 2758 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 2759 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 2760 return true; 2761 return false; 2762 } 2763 2764 bool tcp_check_oom(const struct sock *sk, int shift) 2765 { 2766 bool too_many_orphans, out_of_socket_memory; 2767 2768 too_many_orphans = tcp_too_many_orphans(shift); 2769 out_of_socket_memory = tcp_out_of_memory(sk); 2770 2771 if (too_many_orphans) 2772 net_info_ratelimited("too many orphaned sockets\n"); 2773 if (out_of_socket_memory) 2774 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2775 return too_many_orphans || out_of_socket_memory; 2776 } 2777 2778 void __tcp_close(struct sock *sk, long timeout) 2779 { 2780 struct sk_buff *skb; 2781 int data_was_unread = 0; 2782 int state; 2783 2784 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2785 2786 if (sk->sk_state == TCP_LISTEN) { 2787 tcp_set_state(sk, TCP_CLOSE); 2788 2789 /* Special case. */ 2790 inet_csk_listen_stop(sk); 2791 2792 goto adjudge_to_death; 2793 } 2794 2795 /* We need to flush the recv. buffs. We do this only on the 2796 * descriptor close, not protocol-sourced closes, because the 2797 * reader process may not have drained the data yet! 2798 */ 2799 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2800 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2801 2802 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2803 len--; 2804 data_was_unread += len; 2805 __kfree_skb(skb); 2806 } 2807 2808 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2809 if (sk->sk_state == TCP_CLOSE) 2810 goto adjudge_to_death; 2811 2812 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2813 * data was lost. To witness the awful effects of the old behavior of 2814 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2815 * GET in an FTP client, suspend the process, wait for the client to 2816 * advertise a zero window, then kill -9 the FTP client, wheee... 2817 * Note: timeout is always zero in such a case. 2818 */ 2819 if (unlikely(tcp_sk(sk)->repair)) { 2820 sk->sk_prot->disconnect(sk, 0); 2821 } else if (data_was_unread) { 2822 /* Unread data was tossed, zap the connection. */ 2823 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2824 tcp_set_state(sk, TCP_CLOSE); 2825 tcp_send_active_reset(sk, sk->sk_allocation, 2826 SK_RST_REASON_NOT_SPECIFIED); 2827 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2828 /* Check zero linger _after_ checking for unread data. */ 2829 sk->sk_prot->disconnect(sk, 0); 2830 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2831 } else if (tcp_close_state(sk)) { 2832 /* We FIN if the application ate all the data before 2833 * zapping the connection. 2834 */ 2835 2836 /* RED-PEN. Formally speaking, we have broken TCP state 2837 * machine. State transitions: 2838 * 2839 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2840 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2841 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2842 * 2843 * are legal only when FIN has been sent (i.e. in window), 2844 * rather than queued out of window. Purists blame. 2845 * 2846 * F.e. "RFC state" is ESTABLISHED, 2847 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2848 * 2849 * The visible declinations are that sometimes 2850 * we enter time-wait state, when it is not required really 2851 * (harmless), do not send active resets, when they are 2852 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2853 * they look as CLOSING or LAST_ACK for Linux) 2854 * Probably, I missed some more holelets. 2855 * --ANK 2856 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2857 * in a single packet! (May consider it later but will 2858 * probably need API support or TCP_CORK SYN-ACK until 2859 * data is written and socket is closed.) 2860 */ 2861 tcp_send_fin(sk); 2862 } 2863 2864 sk_stream_wait_close(sk, timeout); 2865 2866 adjudge_to_death: 2867 state = sk->sk_state; 2868 sock_hold(sk); 2869 sock_orphan(sk); 2870 2871 local_bh_disable(); 2872 bh_lock_sock(sk); 2873 /* remove backlog if any, without releasing ownership. */ 2874 __release_sock(sk); 2875 2876 this_cpu_inc(tcp_orphan_count); 2877 2878 /* Have we already been destroyed by a softirq or backlog? */ 2879 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2880 goto out; 2881 2882 /* This is a (useful) BSD violating of the RFC. There is a 2883 * problem with TCP as specified in that the other end could 2884 * keep a socket open forever with no application left this end. 2885 * We use a 1 minute timeout (about the same as BSD) then kill 2886 * our end. If they send after that then tough - BUT: long enough 2887 * that we won't make the old 4*rto = almost no time - whoops 2888 * reset mistake. 2889 * 2890 * Nope, it was not mistake. It is really desired behaviour 2891 * f.e. on http servers, when such sockets are useless, but 2892 * consume significant resources. Let's do it with special 2893 * linger2 option. --ANK 2894 */ 2895 2896 if (sk->sk_state == TCP_FIN_WAIT2) { 2897 struct tcp_sock *tp = tcp_sk(sk); 2898 if (READ_ONCE(tp->linger2) < 0) { 2899 tcp_set_state(sk, TCP_CLOSE); 2900 tcp_send_active_reset(sk, GFP_ATOMIC, 2901 SK_RST_REASON_NOT_SPECIFIED); 2902 __NET_INC_STATS(sock_net(sk), 2903 LINUX_MIB_TCPABORTONLINGER); 2904 } else { 2905 const int tmo = tcp_fin_time(sk); 2906 2907 if (tmo > TCP_TIMEWAIT_LEN) { 2908 inet_csk_reset_keepalive_timer(sk, 2909 tmo - TCP_TIMEWAIT_LEN); 2910 } else { 2911 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2912 goto out; 2913 } 2914 } 2915 } 2916 if (sk->sk_state != TCP_CLOSE) { 2917 if (tcp_check_oom(sk, 0)) { 2918 tcp_set_state(sk, TCP_CLOSE); 2919 tcp_send_active_reset(sk, GFP_ATOMIC, 2920 SK_RST_REASON_NOT_SPECIFIED); 2921 __NET_INC_STATS(sock_net(sk), 2922 LINUX_MIB_TCPABORTONMEMORY); 2923 } else if (!check_net(sock_net(sk))) { 2924 /* Not possible to send reset; just close */ 2925 tcp_set_state(sk, TCP_CLOSE); 2926 } 2927 } 2928 2929 if (sk->sk_state == TCP_CLOSE) { 2930 struct request_sock *req; 2931 2932 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2933 lockdep_sock_is_held(sk)); 2934 /* We could get here with a non-NULL req if the socket is 2935 * aborted (e.g., closed with unread data) before 3WHS 2936 * finishes. 2937 */ 2938 if (req) 2939 reqsk_fastopen_remove(sk, req, false); 2940 inet_csk_destroy_sock(sk); 2941 } 2942 /* Otherwise, socket is reprieved until protocol close. */ 2943 2944 out: 2945 bh_unlock_sock(sk); 2946 local_bh_enable(); 2947 } 2948 2949 void tcp_close(struct sock *sk, long timeout) 2950 { 2951 lock_sock(sk); 2952 __tcp_close(sk, timeout); 2953 release_sock(sk); 2954 if (!sk->sk_net_refcnt) 2955 inet_csk_clear_xmit_timers_sync(sk); 2956 sock_put(sk); 2957 } 2958 EXPORT_SYMBOL(tcp_close); 2959 2960 /* These states need RST on ABORT according to RFC793 */ 2961 2962 static inline bool tcp_need_reset(int state) 2963 { 2964 return (1 << state) & 2965 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2966 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2967 } 2968 2969 static void tcp_rtx_queue_purge(struct sock *sk) 2970 { 2971 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2972 2973 tcp_sk(sk)->highest_sack = NULL; 2974 while (p) { 2975 struct sk_buff *skb = rb_to_skb(p); 2976 2977 p = rb_next(p); 2978 /* Since we are deleting whole queue, no need to 2979 * list_del(&skb->tcp_tsorted_anchor) 2980 */ 2981 tcp_rtx_queue_unlink(skb, sk); 2982 tcp_wmem_free_skb(sk, skb); 2983 } 2984 } 2985 2986 void tcp_write_queue_purge(struct sock *sk) 2987 { 2988 struct sk_buff *skb; 2989 2990 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2991 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2992 tcp_skb_tsorted_anchor_cleanup(skb); 2993 tcp_wmem_free_skb(sk, skb); 2994 } 2995 tcp_rtx_queue_purge(sk); 2996 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2997 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2998 tcp_sk(sk)->packets_out = 0; 2999 inet_csk(sk)->icsk_backoff = 0; 3000 } 3001 3002 int tcp_disconnect(struct sock *sk, int flags) 3003 { 3004 struct inet_sock *inet = inet_sk(sk); 3005 struct inet_connection_sock *icsk = inet_csk(sk); 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 int old_state = sk->sk_state; 3008 u32 seq; 3009 3010 if (old_state != TCP_CLOSE) 3011 tcp_set_state(sk, TCP_CLOSE); 3012 3013 /* ABORT function of RFC793 */ 3014 if (old_state == TCP_LISTEN) { 3015 inet_csk_listen_stop(sk); 3016 } else if (unlikely(tp->repair)) { 3017 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3018 } else if (tcp_need_reset(old_state) || 3019 (tp->snd_nxt != tp->write_seq && 3020 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3021 /* The last check adjusts for discrepancy of Linux wrt. RFC 3022 * states 3023 */ 3024 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED); 3025 WRITE_ONCE(sk->sk_err, ECONNRESET); 3026 } else if (old_state == TCP_SYN_SENT) 3027 WRITE_ONCE(sk->sk_err, ECONNRESET); 3028 3029 tcp_clear_xmit_timers(sk); 3030 __skb_queue_purge(&sk->sk_receive_queue); 3031 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3032 WRITE_ONCE(tp->urg_data, 0); 3033 sk_set_peek_off(sk, -1); 3034 tcp_write_queue_purge(sk); 3035 tcp_fastopen_active_disable_ofo_check(sk); 3036 skb_rbtree_purge(&tp->out_of_order_queue); 3037 3038 inet->inet_dport = 0; 3039 3040 inet_bhash2_reset_saddr(sk); 3041 3042 WRITE_ONCE(sk->sk_shutdown, 0); 3043 sock_reset_flag(sk, SOCK_DONE); 3044 tp->srtt_us = 0; 3045 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3046 tp->rcv_rtt_last_tsecr = 0; 3047 3048 seq = tp->write_seq + tp->max_window + 2; 3049 if (!seq) 3050 seq = 1; 3051 WRITE_ONCE(tp->write_seq, seq); 3052 3053 icsk->icsk_backoff = 0; 3054 icsk->icsk_probes_out = 0; 3055 icsk->icsk_probes_tstamp = 0; 3056 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3057 icsk->icsk_rto_min = TCP_RTO_MIN; 3058 icsk->icsk_delack_max = TCP_DELACK_MAX; 3059 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3060 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3061 tp->snd_cwnd_cnt = 0; 3062 tp->is_cwnd_limited = 0; 3063 tp->max_packets_out = 0; 3064 tp->window_clamp = 0; 3065 tp->delivered = 0; 3066 tp->delivered_ce = 0; 3067 if (icsk->icsk_ca_ops->release) 3068 icsk->icsk_ca_ops->release(sk); 3069 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3070 icsk->icsk_ca_initialized = 0; 3071 tcp_set_ca_state(sk, TCP_CA_Open); 3072 tp->is_sack_reneg = 0; 3073 tcp_clear_retrans(tp); 3074 tp->total_retrans = 0; 3075 inet_csk_delack_init(sk); 3076 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3077 * issue in __tcp_select_window() 3078 */ 3079 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3080 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3081 __sk_dst_reset(sk); 3082 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3083 tcp_saved_syn_free(tp); 3084 tp->compressed_ack = 0; 3085 tp->segs_in = 0; 3086 tp->segs_out = 0; 3087 tp->bytes_sent = 0; 3088 tp->bytes_acked = 0; 3089 tp->bytes_received = 0; 3090 tp->bytes_retrans = 0; 3091 tp->data_segs_in = 0; 3092 tp->data_segs_out = 0; 3093 tp->duplicate_sack[0].start_seq = 0; 3094 tp->duplicate_sack[0].end_seq = 0; 3095 tp->dsack_dups = 0; 3096 tp->reord_seen = 0; 3097 tp->retrans_out = 0; 3098 tp->sacked_out = 0; 3099 tp->tlp_high_seq = 0; 3100 tp->last_oow_ack_time = 0; 3101 tp->plb_rehash = 0; 3102 /* There's a bubble in the pipe until at least the first ACK. */ 3103 tp->app_limited = ~0U; 3104 tp->rate_app_limited = 1; 3105 tp->rack.mstamp = 0; 3106 tp->rack.advanced = 0; 3107 tp->rack.reo_wnd_steps = 1; 3108 tp->rack.last_delivered = 0; 3109 tp->rack.reo_wnd_persist = 0; 3110 tp->rack.dsack_seen = 0; 3111 tp->syn_data_acked = 0; 3112 tp->rx_opt.saw_tstamp = 0; 3113 tp->rx_opt.dsack = 0; 3114 tp->rx_opt.num_sacks = 0; 3115 tp->rcv_ooopack = 0; 3116 3117 3118 /* Clean up fastopen related fields */ 3119 tcp_free_fastopen_req(tp); 3120 inet_clear_bit(DEFER_CONNECT, sk); 3121 tp->fastopen_client_fail = 0; 3122 3123 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3124 3125 if (sk->sk_frag.page) { 3126 put_page(sk->sk_frag.page); 3127 sk->sk_frag.page = NULL; 3128 sk->sk_frag.offset = 0; 3129 } 3130 sk_error_report(sk); 3131 return 0; 3132 } 3133 EXPORT_SYMBOL(tcp_disconnect); 3134 3135 static inline bool tcp_can_repair_sock(const struct sock *sk) 3136 { 3137 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3138 (sk->sk_state != TCP_LISTEN); 3139 } 3140 3141 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3142 { 3143 struct tcp_repair_window opt; 3144 3145 if (!tp->repair) 3146 return -EPERM; 3147 3148 if (len != sizeof(opt)) 3149 return -EINVAL; 3150 3151 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3152 return -EFAULT; 3153 3154 if (opt.max_window < opt.snd_wnd) 3155 return -EINVAL; 3156 3157 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3158 return -EINVAL; 3159 3160 if (after(opt.rcv_wup, tp->rcv_nxt)) 3161 return -EINVAL; 3162 3163 tp->snd_wl1 = opt.snd_wl1; 3164 tp->snd_wnd = opt.snd_wnd; 3165 tp->max_window = opt.max_window; 3166 3167 tp->rcv_wnd = opt.rcv_wnd; 3168 tp->rcv_wup = opt.rcv_wup; 3169 3170 return 0; 3171 } 3172 3173 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3174 unsigned int len) 3175 { 3176 struct tcp_sock *tp = tcp_sk(sk); 3177 struct tcp_repair_opt opt; 3178 size_t offset = 0; 3179 3180 while (len >= sizeof(opt)) { 3181 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3182 return -EFAULT; 3183 3184 offset += sizeof(opt); 3185 len -= sizeof(opt); 3186 3187 switch (opt.opt_code) { 3188 case TCPOPT_MSS: 3189 tp->rx_opt.mss_clamp = opt.opt_val; 3190 tcp_mtup_init(sk); 3191 break; 3192 case TCPOPT_WINDOW: 3193 { 3194 u16 snd_wscale = opt.opt_val & 0xFFFF; 3195 u16 rcv_wscale = opt.opt_val >> 16; 3196 3197 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3198 return -EFBIG; 3199 3200 tp->rx_opt.snd_wscale = snd_wscale; 3201 tp->rx_opt.rcv_wscale = rcv_wscale; 3202 tp->rx_opt.wscale_ok = 1; 3203 } 3204 break; 3205 case TCPOPT_SACK_PERM: 3206 if (opt.opt_val != 0) 3207 return -EINVAL; 3208 3209 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3210 break; 3211 case TCPOPT_TIMESTAMP: 3212 if (opt.opt_val != 0) 3213 return -EINVAL; 3214 3215 tp->rx_opt.tstamp_ok = 1; 3216 break; 3217 } 3218 } 3219 3220 return 0; 3221 } 3222 3223 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3224 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3225 3226 static void tcp_enable_tx_delay(void) 3227 { 3228 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3229 static int __tcp_tx_delay_enabled = 0; 3230 3231 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3232 static_branch_enable(&tcp_tx_delay_enabled); 3233 pr_info("TCP_TX_DELAY enabled\n"); 3234 } 3235 } 3236 } 3237 3238 /* When set indicates to always queue non-full frames. Later the user clears 3239 * this option and we transmit any pending partial frames in the queue. This is 3240 * meant to be used alongside sendfile() to get properly filled frames when the 3241 * user (for example) must write out headers with a write() call first and then 3242 * use sendfile to send out the data parts. 3243 * 3244 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3245 * TCP_NODELAY. 3246 */ 3247 void __tcp_sock_set_cork(struct sock *sk, bool on) 3248 { 3249 struct tcp_sock *tp = tcp_sk(sk); 3250 3251 if (on) { 3252 tp->nonagle |= TCP_NAGLE_CORK; 3253 } else { 3254 tp->nonagle &= ~TCP_NAGLE_CORK; 3255 if (tp->nonagle & TCP_NAGLE_OFF) 3256 tp->nonagle |= TCP_NAGLE_PUSH; 3257 tcp_push_pending_frames(sk); 3258 } 3259 } 3260 3261 void tcp_sock_set_cork(struct sock *sk, bool on) 3262 { 3263 lock_sock(sk); 3264 __tcp_sock_set_cork(sk, on); 3265 release_sock(sk); 3266 } 3267 EXPORT_SYMBOL(tcp_sock_set_cork); 3268 3269 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3270 * remembered, but it is not activated until cork is cleared. 3271 * 3272 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3273 * even TCP_CORK for currently queued segments. 3274 */ 3275 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3276 { 3277 if (on) { 3278 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3279 tcp_push_pending_frames(sk); 3280 } else { 3281 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3282 } 3283 } 3284 3285 void tcp_sock_set_nodelay(struct sock *sk) 3286 { 3287 lock_sock(sk); 3288 __tcp_sock_set_nodelay(sk, true); 3289 release_sock(sk); 3290 } 3291 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3292 3293 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3294 { 3295 if (!val) { 3296 inet_csk_enter_pingpong_mode(sk); 3297 return; 3298 } 3299 3300 inet_csk_exit_pingpong_mode(sk); 3301 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3302 inet_csk_ack_scheduled(sk)) { 3303 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3304 tcp_cleanup_rbuf(sk, 1); 3305 if (!(val & 1)) 3306 inet_csk_enter_pingpong_mode(sk); 3307 } 3308 } 3309 3310 void tcp_sock_set_quickack(struct sock *sk, int val) 3311 { 3312 lock_sock(sk); 3313 __tcp_sock_set_quickack(sk, val); 3314 release_sock(sk); 3315 } 3316 EXPORT_SYMBOL(tcp_sock_set_quickack); 3317 3318 int tcp_sock_set_syncnt(struct sock *sk, int val) 3319 { 3320 if (val < 1 || val > MAX_TCP_SYNCNT) 3321 return -EINVAL; 3322 3323 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3324 return 0; 3325 } 3326 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3327 3328 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3329 { 3330 /* Cap the max time in ms TCP will retry or probe the window 3331 * before giving up and aborting (ETIMEDOUT) a connection. 3332 */ 3333 if (val < 0) 3334 return -EINVAL; 3335 3336 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3337 return 0; 3338 } 3339 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3340 3341 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3342 { 3343 struct tcp_sock *tp = tcp_sk(sk); 3344 3345 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3346 return -EINVAL; 3347 3348 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3349 WRITE_ONCE(tp->keepalive_time, val * HZ); 3350 if (sock_flag(sk, SOCK_KEEPOPEN) && 3351 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3352 u32 elapsed = keepalive_time_elapsed(tp); 3353 3354 if (tp->keepalive_time > elapsed) 3355 elapsed = tp->keepalive_time - elapsed; 3356 else 3357 elapsed = 0; 3358 inet_csk_reset_keepalive_timer(sk, elapsed); 3359 } 3360 3361 return 0; 3362 } 3363 3364 int tcp_sock_set_keepidle(struct sock *sk, int val) 3365 { 3366 int err; 3367 3368 lock_sock(sk); 3369 err = tcp_sock_set_keepidle_locked(sk, val); 3370 release_sock(sk); 3371 return err; 3372 } 3373 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3374 3375 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3376 { 3377 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3378 return -EINVAL; 3379 3380 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3381 return 0; 3382 } 3383 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3384 3385 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3386 { 3387 if (val < 1 || val > MAX_TCP_KEEPCNT) 3388 return -EINVAL; 3389 3390 /* Paired with READ_ONCE() in keepalive_probes() */ 3391 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3392 return 0; 3393 } 3394 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3395 3396 int tcp_set_window_clamp(struct sock *sk, int val) 3397 { 3398 struct tcp_sock *tp = tcp_sk(sk); 3399 3400 if (!val) { 3401 if (sk->sk_state != TCP_CLOSE) 3402 return -EINVAL; 3403 WRITE_ONCE(tp->window_clamp, 0); 3404 } else { 3405 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3406 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3407 SOCK_MIN_RCVBUF / 2 : val; 3408 3409 if (new_window_clamp == old_window_clamp) 3410 return 0; 3411 3412 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3413 if (new_window_clamp < old_window_clamp) { 3414 /* need to apply the reserved mem provisioning only 3415 * when shrinking the window clamp 3416 */ 3417 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3418 3419 } else { 3420 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3421 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3422 tp->rcv_ssthresh); 3423 } 3424 } 3425 return 0; 3426 } 3427 3428 /* 3429 * Socket option code for TCP. 3430 */ 3431 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3432 sockptr_t optval, unsigned int optlen) 3433 { 3434 struct tcp_sock *tp = tcp_sk(sk); 3435 struct inet_connection_sock *icsk = inet_csk(sk); 3436 struct net *net = sock_net(sk); 3437 int val; 3438 int err = 0; 3439 3440 /* These are data/string values, all the others are ints */ 3441 switch (optname) { 3442 case TCP_CONGESTION: { 3443 char name[TCP_CA_NAME_MAX]; 3444 3445 if (optlen < 1) 3446 return -EINVAL; 3447 3448 val = strncpy_from_sockptr(name, optval, 3449 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3450 if (val < 0) 3451 return -EFAULT; 3452 name[val] = 0; 3453 3454 sockopt_lock_sock(sk); 3455 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3456 sockopt_ns_capable(sock_net(sk)->user_ns, 3457 CAP_NET_ADMIN)); 3458 sockopt_release_sock(sk); 3459 return err; 3460 } 3461 case TCP_ULP: { 3462 char name[TCP_ULP_NAME_MAX]; 3463 3464 if (optlen < 1) 3465 return -EINVAL; 3466 3467 val = strncpy_from_sockptr(name, optval, 3468 min_t(long, TCP_ULP_NAME_MAX - 1, 3469 optlen)); 3470 if (val < 0) 3471 return -EFAULT; 3472 name[val] = 0; 3473 3474 sockopt_lock_sock(sk); 3475 err = tcp_set_ulp(sk, name); 3476 sockopt_release_sock(sk); 3477 return err; 3478 } 3479 case TCP_FASTOPEN_KEY: { 3480 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3481 __u8 *backup_key = NULL; 3482 3483 /* Allow a backup key as well to facilitate key rotation 3484 * First key is the active one. 3485 */ 3486 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3487 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3488 return -EINVAL; 3489 3490 if (copy_from_sockptr(key, optval, optlen)) 3491 return -EFAULT; 3492 3493 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3494 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3495 3496 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3497 } 3498 default: 3499 /* fallthru */ 3500 break; 3501 } 3502 3503 if (optlen < sizeof(int)) 3504 return -EINVAL; 3505 3506 if (copy_from_sockptr(&val, optval, sizeof(val))) 3507 return -EFAULT; 3508 3509 /* Handle options that can be set without locking the socket. */ 3510 switch (optname) { 3511 case TCP_SYNCNT: 3512 return tcp_sock_set_syncnt(sk, val); 3513 case TCP_USER_TIMEOUT: 3514 return tcp_sock_set_user_timeout(sk, val); 3515 case TCP_KEEPINTVL: 3516 return tcp_sock_set_keepintvl(sk, val); 3517 case TCP_KEEPCNT: 3518 return tcp_sock_set_keepcnt(sk, val); 3519 case TCP_LINGER2: 3520 if (val < 0) 3521 WRITE_ONCE(tp->linger2, -1); 3522 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3523 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3524 else 3525 WRITE_ONCE(tp->linger2, val * HZ); 3526 return 0; 3527 case TCP_DEFER_ACCEPT: 3528 /* Translate value in seconds to number of retransmits */ 3529 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3530 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3531 TCP_RTO_MAX / HZ)); 3532 return 0; 3533 } 3534 3535 sockopt_lock_sock(sk); 3536 3537 switch (optname) { 3538 case TCP_MAXSEG: 3539 /* Values greater than interface MTU won't take effect. However 3540 * at the point when this call is done we typically don't yet 3541 * know which interface is going to be used 3542 */ 3543 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3544 err = -EINVAL; 3545 break; 3546 } 3547 tp->rx_opt.user_mss = val; 3548 break; 3549 3550 case TCP_NODELAY: 3551 __tcp_sock_set_nodelay(sk, val); 3552 break; 3553 3554 case TCP_THIN_LINEAR_TIMEOUTS: 3555 if (val < 0 || val > 1) 3556 err = -EINVAL; 3557 else 3558 tp->thin_lto = val; 3559 break; 3560 3561 case TCP_THIN_DUPACK: 3562 if (val < 0 || val > 1) 3563 err = -EINVAL; 3564 break; 3565 3566 case TCP_REPAIR: 3567 if (!tcp_can_repair_sock(sk)) 3568 err = -EPERM; 3569 else if (val == TCP_REPAIR_ON) { 3570 tp->repair = 1; 3571 sk->sk_reuse = SK_FORCE_REUSE; 3572 tp->repair_queue = TCP_NO_QUEUE; 3573 } else if (val == TCP_REPAIR_OFF) { 3574 tp->repair = 0; 3575 sk->sk_reuse = SK_NO_REUSE; 3576 tcp_send_window_probe(sk); 3577 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3578 tp->repair = 0; 3579 sk->sk_reuse = SK_NO_REUSE; 3580 } else 3581 err = -EINVAL; 3582 3583 break; 3584 3585 case TCP_REPAIR_QUEUE: 3586 if (!tp->repair) 3587 err = -EPERM; 3588 else if ((unsigned int)val < TCP_QUEUES_NR) 3589 tp->repair_queue = val; 3590 else 3591 err = -EINVAL; 3592 break; 3593 3594 case TCP_QUEUE_SEQ: 3595 if (sk->sk_state != TCP_CLOSE) { 3596 err = -EPERM; 3597 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3598 if (!tcp_rtx_queue_empty(sk)) 3599 err = -EPERM; 3600 else 3601 WRITE_ONCE(tp->write_seq, val); 3602 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3603 if (tp->rcv_nxt != tp->copied_seq) { 3604 err = -EPERM; 3605 } else { 3606 WRITE_ONCE(tp->rcv_nxt, val); 3607 WRITE_ONCE(tp->copied_seq, val); 3608 } 3609 } else { 3610 err = -EINVAL; 3611 } 3612 break; 3613 3614 case TCP_REPAIR_OPTIONS: 3615 if (!tp->repair) 3616 err = -EINVAL; 3617 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3618 err = tcp_repair_options_est(sk, optval, optlen); 3619 else 3620 err = -EPERM; 3621 break; 3622 3623 case TCP_CORK: 3624 __tcp_sock_set_cork(sk, val); 3625 break; 3626 3627 case TCP_KEEPIDLE: 3628 err = tcp_sock_set_keepidle_locked(sk, val); 3629 break; 3630 case TCP_SAVE_SYN: 3631 /* 0: disable, 1: enable, 2: start from ether_header */ 3632 if (val < 0 || val > 2) 3633 err = -EINVAL; 3634 else 3635 tp->save_syn = val; 3636 break; 3637 3638 case TCP_WINDOW_CLAMP: 3639 err = tcp_set_window_clamp(sk, val); 3640 break; 3641 3642 case TCP_QUICKACK: 3643 __tcp_sock_set_quickack(sk, val); 3644 break; 3645 3646 case TCP_AO_REPAIR: 3647 if (!tcp_can_repair_sock(sk)) { 3648 err = -EPERM; 3649 break; 3650 } 3651 err = tcp_ao_set_repair(sk, optval, optlen); 3652 break; 3653 #ifdef CONFIG_TCP_AO 3654 case TCP_AO_ADD_KEY: 3655 case TCP_AO_DEL_KEY: 3656 case TCP_AO_INFO: { 3657 /* If this is the first TCP-AO setsockopt() on the socket, 3658 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3659 * in any state. 3660 */ 3661 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3662 goto ao_parse; 3663 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3664 lockdep_sock_is_held(sk))) 3665 goto ao_parse; 3666 if (tp->repair) 3667 goto ao_parse; 3668 err = -EISCONN; 3669 break; 3670 ao_parse: 3671 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3672 break; 3673 } 3674 #endif 3675 #ifdef CONFIG_TCP_MD5SIG 3676 case TCP_MD5SIG: 3677 case TCP_MD5SIG_EXT: 3678 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3679 break; 3680 #endif 3681 case TCP_FASTOPEN: 3682 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3683 TCPF_LISTEN))) { 3684 tcp_fastopen_init_key_once(net); 3685 3686 fastopen_queue_tune(sk, val); 3687 } else { 3688 err = -EINVAL; 3689 } 3690 break; 3691 case TCP_FASTOPEN_CONNECT: 3692 if (val > 1 || val < 0) { 3693 err = -EINVAL; 3694 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3695 TFO_CLIENT_ENABLE) { 3696 if (sk->sk_state == TCP_CLOSE) 3697 tp->fastopen_connect = val; 3698 else 3699 err = -EINVAL; 3700 } else { 3701 err = -EOPNOTSUPP; 3702 } 3703 break; 3704 case TCP_FASTOPEN_NO_COOKIE: 3705 if (val > 1 || val < 0) 3706 err = -EINVAL; 3707 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3708 err = -EINVAL; 3709 else 3710 tp->fastopen_no_cookie = val; 3711 break; 3712 case TCP_TIMESTAMP: 3713 if (!tp->repair) { 3714 err = -EPERM; 3715 break; 3716 } 3717 /* val is an opaque field, 3718 * and low order bit contains usec_ts enable bit. 3719 * Its a best effort, and we do not care if user makes an error. 3720 */ 3721 tp->tcp_usec_ts = val & 1; 3722 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3723 break; 3724 case TCP_REPAIR_WINDOW: 3725 err = tcp_repair_set_window(tp, optval, optlen); 3726 break; 3727 case TCP_NOTSENT_LOWAT: 3728 WRITE_ONCE(tp->notsent_lowat, val); 3729 sk->sk_write_space(sk); 3730 break; 3731 case TCP_INQ: 3732 if (val > 1 || val < 0) 3733 err = -EINVAL; 3734 else 3735 tp->recvmsg_inq = val; 3736 break; 3737 case TCP_TX_DELAY: 3738 if (val) 3739 tcp_enable_tx_delay(); 3740 WRITE_ONCE(tp->tcp_tx_delay, val); 3741 break; 3742 default: 3743 err = -ENOPROTOOPT; 3744 break; 3745 } 3746 3747 sockopt_release_sock(sk); 3748 return err; 3749 } 3750 3751 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3752 unsigned int optlen) 3753 { 3754 const struct inet_connection_sock *icsk = inet_csk(sk); 3755 3756 if (level != SOL_TCP) 3757 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3758 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3759 optval, optlen); 3760 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3761 } 3762 EXPORT_SYMBOL(tcp_setsockopt); 3763 3764 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3765 struct tcp_info *info) 3766 { 3767 u64 stats[__TCP_CHRONO_MAX], total = 0; 3768 enum tcp_chrono i; 3769 3770 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3771 stats[i] = tp->chrono_stat[i - 1]; 3772 if (i == tp->chrono_type) 3773 stats[i] += tcp_jiffies32 - tp->chrono_start; 3774 stats[i] *= USEC_PER_SEC / HZ; 3775 total += stats[i]; 3776 } 3777 3778 info->tcpi_busy_time = total; 3779 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3780 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3781 } 3782 3783 /* Return information about state of tcp endpoint in API format. */ 3784 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3785 { 3786 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3787 const struct inet_connection_sock *icsk = inet_csk(sk); 3788 unsigned long rate; 3789 u32 now; 3790 u64 rate64; 3791 bool slow; 3792 3793 memset(info, 0, sizeof(*info)); 3794 if (sk->sk_type != SOCK_STREAM) 3795 return; 3796 3797 info->tcpi_state = inet_sk_state_load(sk); 3798 3799 /* Report meaningful fields for all TCP states, including listeners */ 3800 rate = READ_ONCE(sk->sk_pacing_rate); 3801 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3802 info->tcpi_pacing_rate = rate64; 3803 3804 rate = READ_ONCE(sk->sk_max_pacing_rate); 3805 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3806 info->tcpi_max_pacing_rate = rate64; 3807 3808 info->tcpi_reordering = tp->reordering; 3809 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3810 3811 if (info->tcpi_state == TCP_LISTEN) { 3812 /* listeners aliased fields : 3813 * tcpi_unacked -> Number of children ready for accept() 3814 * tcpi_sacked -> max backlog 3815 */ 3816 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3817 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3818 return; 3819 } 3820 3821 slow = lock_sock_fast(sk); 3822 3823 info->tcpi_ca_state = icsk->icsk_ca_state; 3824 info->tcpi_retransmits = icsk->icsk_retransmits; 3825 info->tcpi_probes = icsk->icsk_probes_out; 3826 info->tcpi_backoff = icsk->icsk_backoff; 3827 3828 if (tp->rx_opt.tstamp_ok) 3829 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3830 if (tcp_is_sack(tp)) 3831 info->tcpi_options |= TCPI_OPT_SACK; 3832 if (tp->rx_opt.wscale_ok) { 3833 info->tcpi_options |= TCPI_OPT_WSCALE; 3834 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3835 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3836 } 3837 3838 if (tp->ecn_flags & TCP_ECN_OK) 3839 info->tcpi_options |= TCPI_OPT_ECN; 3840 if (tp->ecn_flags & TCP_ECN_SEEN) 3841 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3842 if (tp->syn_data_acked) 3843 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3844 if (tp->tcp_usec_ts) 3845 info->tcpi_options |= TCPI_OPT_USEC_TS; 3846 3847 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3848 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3849 tcp_delack_max(sk))); 3850 info->tcpi_snd_mss = tp->mss_cache; 3851 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3852 3853 info->tcpi_unacked = tp->packets_out; 3854 info->tcpi_sacked = tp->sacked_out; 3855 3856 info->tcpi_lost = tp->lost_out; 3857 info->tcpi_retrans = tp->retrans_out; 3858 3859 now = tcp_jiffies32; 3860 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3861 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3862 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3863 3864 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3865 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3866 info->tcpi_rtt = tp->srtt_us >> 3; 3867 info->tcpi_rttvar = tp->mdev_us >> 2; 3868 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3869 info->tcpi_advmss = tp->advmss; 3870 3871 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3872 info->tcpi_rcv_space = tp->rcvq_space.space; 3873 3874 info->tcpi_total_retrans = tp->total_retrans; 3875 3876 info->tcpi_bytes_acked = tp->bytes_acked; 3877 info->tcpi_bytes_received = tp->bytes_received; 3878 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3879 tcp_get_info_chrono_stats(tp, info); 3880 3881 info->tcpi_segs_out = tp->segs_out; 3882 3883 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3884 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3885 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3886 3887 info->tcpi_min_rtt = tcp_min_rtt(tp); 3888 info->tcpi_data_segs_out = tp->data_segs_out; 3889 3890 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3891 rate64 = tcp_compute_delivery_rate(tp); 3892 if (rate64) 3893 info->tcpi_delivery_rate = rate64; 3894 info->tcpi_delivered = tp->delivered; 3895 info->tcpi_delivered_ce = tp->delivered_ce; 3896 info->tcpi_bytes_sent = tp->bytes_sent; 3897 info->tcpi_bytes_retrans = tp->bytes_retrans; 3898 info->tcpi_dsack_dups = tp->dsack_dups; 3899 info->tcpi_reord_seen = tp->reord_seen; 3900 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3901 info->tcpi_snd_wnd = tp->snd_wnd; 3902 info->tcpi_rcv_wnd = tp->rcv_wnd; 3903 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3904 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3905 3906 info->tcpi_total_rto = tp->total_rto; 3907 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3908 info->tcpi_total_rto_time = tp->total_rto_time; 3909 if (tp->rto_stamp) 3910 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3911 3912 unlock_sock_fast(sk, slow); 3913 } 3914 EXPORT_SYMBOL_GPL(tcp_get_info); 3915 3916 static size_t tcp_opt_stats_get_size(void) 3917 { 3918 return 3919 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3920 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3921 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3922 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3923 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3924 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3925 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3926 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3927 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3928 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3929 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3930 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3931 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3932 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3933 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3934 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3935 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3936 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3937 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3938 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3939 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3940 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3941 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3942 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3943 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3944 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3945 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3946 0; 3947 } 3948 3949 /* Returns TTL or hop limit of an incoming packet from skb. */ 3950 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3951 { 3952 if (skb->protocol == htons(ETH_P_IP)) 3953 return ip_hdr(skb)->ttl; 3954 else if (skb->protocol == htons(ETH_P_IPV6)) 3955 return ipv6_hdr(skb)->hop_limit; 3956 else 3957 return 0; 3958 } 3959 3960 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3961 const struct sk_buff *orig_skb, 3962 const struct sk_buff *ack_skb) 3963 { 3964 const struct tcp_sock *tp = tcp_sk(sk); 3965 struct sk_buff *stats; 3966 struct tcp_info info; 3967 unsigned long rate; 3968 u64 rate64; 3969 3970 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3971 if (!stats) 3972 return NULL; 3973 3974 tcp_get_info_chrono_stats(tp, &info); 3975 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3976 info.tcpi_busy_time, TCP_NLA_PAD); 3977 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3978 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3979 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3980 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3981 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3982 tp->data_segs_out, TCP_NLA_PAD); 3983 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3984 tp->total_retrans, TCP_NLA_PAD); 3985 3986 rate = READ_ONCE(sk->sk_pacing_rate); 3987 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3988 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3989 3990 rate64 = tcp_compute_delivery_rate(tp); 3991 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3992 3993 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3994 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3995 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3996 3997 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3998 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3999 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4000 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4001 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4002 4003 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4004 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4005 4006 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4007 TCP_NLA_PAD); 4008 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4009 TCP_NLA_PAD); 4010 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4011 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4012 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4013 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4014 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4015 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4016 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4017 TCP_NLA_PAD); 4018 if (ack_skb) 4019 nla_put_u8(stats, TCP_NLA_TTL, 4020 tcp_skb_ttl_or_hop_limit(ack_skb)); 4021 4022 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4023 return stats; 4024 } 4025 4026 int do_tcp_getsockopt(struct sock *sk, int level, 4027 int optname, sockptr_t optval, sockptr_t optlen) 4028 { 4029 struct inet_connection_sock *icsk = inet_csk(sk); 4030 struct tcp_sock *tp = tcp_sk(sk); 4031 struct net *net = sock_net(sk); 4032 int val, len; 4033 4034 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4035 return -EFAULT; 4036 4037 if (len < 0) 4038 return -EINVAL; 4039 4040 len = min_t(unsigned int, len, sizeof(int)); 4041 4042 switch (optname) { 4043 case TCP_MAXSEG: 4044 val = tp->mss_cache; 4045 if (tp->rx_opt.user_mss && 4046 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4047 val = tp->rx_opt.user_mss; 4048 if (tp->repair) 4049 val = tp->rx_opt.mss_clamp; 4050 break; 4051 case TCP_NODELAY: 4052 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4053 break; 4054 case TCP_CORK: 4055 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4056 break; 4057 case TCP_KEEPIDLE: 4058 val = keepalive_time_when(tp) / HZ; 4059 break; 4060 case TCP_KEEPINTVL: 4061 val = keepalive_intvl_when(tp) / HZ; 4062 break; 4063 case TCP_KEEPCNT: 4064 val = keepalive_probes(tp); 4065 break; 4066 case TCP_SYNCNT: 4067 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4068 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4069 break; 4070 case TCP_LINGER2: 4071 val = READ_ONCE(tp->linger2); 4072 if (val >= 0) 4073 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4074 break; 4075 case TCP_DEFER_ACCEPT: 4076 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4077 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4078 TCP_RTO_MAX / HZ); 4079 break; 4080 case TCP_WINDOW_CLAMP: 4081 val = READ_ONCE(tp->window_clamp); 4082 break; 4083 case TCP_INFO: { 4084 struct tcp_info info; 4085 4086 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4087 return -EFAULT; 4088 4089 tcp_get_info(sk, &info); 4090 4091 len = min_t(unsigned int, len, sizeof(info)); 4092 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4093 return -EFAULT; 4094 if (copy_to_sockptr(optval, &info, len)) 4095 return -EFAULT; 4096 return 0; 4097 } 4098 case TCP_CC_INFO: { 4099 const struct tcp_congestion_ops *ca_ops; 4100 union tcp_cc_info info; 4101 size_t sz = 0; 4102 int attr; 4103 4104 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4105 return -EFAULT; 4106 4107 ca_ops = icsk->icsk_ca_ops; 4108 if (ca_ops && ca_ops->get_info) 4109 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4110 4111 len = min_t(unsigned int, len, sz); 4112 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4113 return -EFAULT; 4114 if (copy_to_sockptr(optval, &info, len)) 4115 return -EFAULT; 4116 return 0; 4117 } 4118 case TCP_QUICKACK: 4119 val = !inet_csk_in_pingpong_mode(sk); 4120 break; 4121 4122 case TCP_CONGESTION: 4123 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4124 return -EFAULT; 4125 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4126 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4127 return -EFAULT; 4128 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4129 return -EFAULT; 4130 return 0; 4131 4132 case TCP_ULP: 4133 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4134 return -EFAULT; 4135 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4136 if (!icsk->icsk_ulp_ops) { 4137 len = 0; 4138 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4139 return -EFAULT; 4140 return 0; 4141 } 4142 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4143 return -EFAULT; 4144 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4145 return -EFAULT; 4146 return 0; 4147 4148 case TCP_FASTOPEN_KEY: { 4149 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4150 unsigned int key_len; 4151 4152 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4153 return -EFAULT; 4154 4155 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4156 TCP_FASTOPEN_KEY_LENGTH; 4157 len = min_t(unsigned int, len, key_len); 4158 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4159 return -EFAULT; 4160 if (copy_to_sockptr(optval, key, len)) 4161 return -EFAULT; 4162 return 0; 4163 } 4164 case TCP_THIN_LINEAR_TIMEOUTS: 4165 val = tp->thin_lto; 4166 break; 4167 4168 case TCP_THIN_DUPACK: 4169 val = 0; 4170 break; 4171 4172 case TCP_REPAIR: 4173 val = tp->repair; 4174 break; 4175 4176 case TCP_REPAIR_QUEUE: 4177 if (tp->repair) 4178 val = tp->repair_queue; 4179 else 4180 return -EINVAL; 4181 break; 4182 4183 case TCP_REPAIR_WINDOW: { 4184 struct tcp_repair_window opt; 4185 4186 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4187 return -EFAULT; 4188 4189 if (len != sizeof(opt)) 4190 return -EINVAL; 4191 4192 if (!tp->repair) 4193 return -EPERM; 4194 4195 opt.snd_wl1 = tp->snd_wl1; 4196 opt.snd_wnd = tp->snd_wnd; 4197 opt.max_window = tp->max_window; 4198 opt.rcv_wnd = tp->rcv_wnd; 4199 opt.rcv_wup = tp->rcv_wup; 4200 4201 if (copy_to_sockptr(optval, &opt, len)) 4202 return -EFAULT; 4203 return 0; 4204 } 4205 case TCP_QUEUE_SEQ: 4206 if (tp->repair_queue == TCP_SEND_QUEUE) 4207 val = tp->write_seq; 4208 else if (tp->repair_queue == TCP_RECV_QUEUE) 4209 val = tp->rcv_nxt; 4210 else 4211 return -EINVAL; 4212 break; 4213 4214 case TCP_USER_TIMEOUT: 4215 val = READ_ONCE(icsk->icsk_user_timeout); 4216 break; 4217 4218 case TCP_FASTOPEN: 4219 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4220 break; 4221 4222 case TCP_FASTOPEN_CONNECT: 4223 val = tp->fastopen_connect; 4224 break; 4225 4226 case TCP_FASTOPEN_NO_COOKIE: 4227 val = tp->fastopen_no_cookie; 4228 break; 4229 4230 case TCP_TX_DELAY: 4231 val = READ_ONCE(tp->tcp_tx_delay); 4232 break; 4233 4234 case TCP_TIMESTAMP: 4235 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4236 if (tp->tcp_usec_ts) 4237 val |= 1; 4238 else 4239 val &= ~1; 4240 break; 4241 case TCP_NOTSENT_LOWAT: 4242 val = READ_ONCE(tp->notsent_lowat); 4243 break; 4244 case TCP_INQ: 4245 val = tp->recvmsg_inq; 4246 break; 4247 case TCP_SAVE_SYN: 4248 val = tp->save_syn; 4249 break; 4250 case TCP_SAVED_SYN: { 4251 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4252 return -EFAULT; 4253 4254 sockopt_lock_sock(sk); 4255 if (tp->saved_syn) { 4256 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4257 len = tcp_saved_syn_len(tp->saved_syn); 4258 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4259 sockopt_release_sock(sk); 4260 return -EFAULT; 4261 } 4262 sockopt_release_sock(sk); 4263 return -EINVAL; 4264 } 4265 len = tcp_saved_syn_len(tp->saved_syn); 4266 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4267 sockopt_release_sock(sk); 4268 return -EFAULT; 4269 } 4270 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4271 sockopt_release_sock(sk); 4272 return -EFAULT; 4273 } 4274 tcp_saved_syn_free(tp); 4275 sockopt_release_sock(sk); 4276 } else { 4277 sockopt_release_sock(sk); 4278 len = 0; 4279 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4280 return -EFAULT; 4281 } 4282 return 0; 4283 } 4284 #ifdef CONFIG_MMU 4285 case TCP_ZEROCOPY_RECEIVE: { 4286 struct scm_timestamping_internal tss; 4287 struct tcp_zerocopy_receive zc = {}; 4288 int err; 4289 4290 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4291 return -EFAULT; 4292 if (len < 0 || 4293 len < offsetofend(struct tcp_zerocopy_receive, length)) 4294 return -EINVAL; 4295 if (unlikely(len > sizeof(zc))) { 4296 err = check_zeroed_sockptr(optval, sizeof(zc), 4297 len - sizeof(zc)); 4298 if (err < 1) 4299 return err == 0 ? -EINVAL : err; 4300 len = sizeof(zc); 4301 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4302 return -EFAULT; 4303 } 4304 if (copy_from_sockptr(&zc, optval, len)) 4305 return -EFAULT; 4306 if (zc.reserved) 4307 return -EINVAL; 4308 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4309 return -EINVAL; 4310 sockopt_lock_sock(sk); 4311 err = tcp_zerocopy_receive(sk, &zc, &tss); 4312 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4313 &zc, &len, err); 4314 sockopt_release_sock(sk); 4315 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4316 goto zerocopy_rcv_cmsg; 4317 switch (len) { 4318 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4319 goto zerocopy_rcv_cmsg; 4320 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4321 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4322 case offsetofend(struct tcp_zerocopy_receive, flags): 4323 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4324 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4325 case offsetofend(struct tcp_zerocopy_receive, err): 4326 goto zerocopy_rcv_sk_err; 4327 case offsetofend(struct tcp_zerocopy_receive, inq): 4328 goto zerocopy_rcv_inq; 4329 case offsetofend(struct tcp_zerocopy_receive, length): 4330 default: 4331 goto zerocopy_rcv_out; 4332 } 4333 zerocopy_rcv_cmsg: 4334 if (zc.msg_flags & TCP_CMSG_TS) 4335 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4336 else 4337 zc.msg_flags = 0; 4338 zerocopy_rcv_sk_err: 4339 if (!err) 4340 zc.err = sock_error(sk); 4341 zerocopy_rcv_inq: 4342 zc.inq = tcp_inq_hint(sk); 4343 zerocopy_rcv_out: 4344 if (!err && copy_to_sockptr(optval, &zc, len)) 4345 err = -EFAULT; 4346 return err; 4347 } 4348 #endif 4349 case TCP_AO_REPAIR: 4350 if (!tcp_can_repair_sock(sk)) 4351 return -EPERM; 4352 return tcp_ao_get_repair(sk, optval, optlen); 4353 case TCP_AO_GET_KEYS: 4354 case TCP_AO_INFO: { 4355 int err; 4356 4357 sockopt_lock_sock(sk); 4358 if (optname == TCP_AO_GET_KEYS) 4359 err = tcp_ao_get_mkts(sk, optval, optlen); 4360 else 4361 err = tcp_ao_get_sock_info(sk, optval, optlen); 4362 sockopt_release_sock(sk); 4363 4364 return err; 4365 } 4366 case TCP_IS_MPTCP: 4367 val = 0; 4368 break; 4369 default: 4370 return -ENOPROTOOPT; 4371 } 4372 4373 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4374 return -EFAULT; 4375 if (copy_to_sockptr(optval, &val, len)) 4376 return -EFAULT; 4377 return 0; 4378 } 4379 4380 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4381 { 4382 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4383 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4384 */ 4385 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4386 return true; 4387 4388 return false; 4389 } 4390 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4391 4392 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4393 int __user *optlen) 4394 { 4395 struct inet_connection_sock *icsk = inet_csk(sk); 4396 4397 if (level != SOL_TCP) 4398 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4399 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4400 optval, optlen); 4401 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4402 USER_SOCKPTR(optlen)); 4403 } 4404 EXPORT_SYMBOL(tcp_getsockopt); 4405 4406 #ifdef CONFIG_TCP_MD5SIG 4407 int tcp_md5_sigpool_id = -1; 4408 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4409 4410 int tcp_md5_alloc_sigpool(void) 4411 { 4412 size_t scratch_size; 4413 int ret; 4414 4415 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4416 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4417 if (ret >= 0) { 4418 /* As long as any md5 sigpool was allocated, the return 4419 * id would stay the same. Re-write the id only for the case 4420 * when previously all MD5 keys were deleted and this call 4421 * allocates the first MD5 key, which may return a different 4422 * sigpool id than was used previously. 4423 */ 4424 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4425 return 0; 4426 } 4427 return ret; 4428 } 4429 4430 void tcp_md5_release_sigpool(void) 4431 { 4432 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4433 } 4434 4435 void tcp_md5_add_sigpool(void) 4436 { 4437 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4438 } 4439 4440 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4441 const struct tcp_md5sig_key *key) 4442 { 4443 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4444 struct scatterlist sg; 4445 4446 sg_init_one(&sg, key->key, keylen); 4447 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4448 4449 /* We use data_race() because tcp_md5_do_add() might change 4450 * key->key under us 4451 */ 4452 return data_race(crypto_ahash_update(hp->req)); 4453 } 4454 EXPORT_SYMBOL(tcp_md5_hash_key); 4455 4456 /* Called with rcu_read_lock() */ 4457 enum skb_drop_reason 4458 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4459 const void *saddr, const void *daddr, 4460 int family, int l3index, const __u8 *hash_location) 4461 { 4462 /* This gets called for each TCP segment that has TCP-MD5 option. 4463 * We have 3 drop cases: 4464 * o No MD5 hash and one expected. 4465 * o MD5 hash and we're not expecting one. 4466 * o MD5 hash and its wrong. 4467 */ 4468 const struct tcp_sock *tp = tcp_sk(sk); 4469 struct tcp_md5sig_key *key; 4470 u8 newhash[16]; 4471 int genhash; 4472 4473 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4474 4475 if (!key && hash_location) { 4476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4477 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4478 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4479 } 4480 4481 /* Check the signature. 4482 * To support dual stack listeners, we need to handle 4483 * IPv4-mapped case. 4484 */ 4485 if (family == AF_INET) 4486 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4487 else 4488 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4489 NULL, skb); 4490 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4491 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4492 if (family == AF_INET) { 4493 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4494 genhash ? "tcp_v4_calc_md5_hash failed" 4495 : "", l3index); 4496 } else { 4497 if (genhash) { 4498 tcp_hash_fail("MD5 Hash failed", 4499 AF_INET6, skb, "L3 index %d", 4500 l3index); 4501 } else { 4502 tcp_hash_fail("MD5 Hash mismatch", 4503 AF_INET6, skb, "L3 index %d", 4504 l3index); 4505 } 4506 } 4507 return SKB_DROP_REASON_TCP_MD5FAILURE; 4508 } 4509 return SKB_NOT_DROPPED_YET; 4510 } 4511 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4512 4513 #endif 4514 4515 void tcp_done(struct sock *sk) 4516 { 4517 struct request_sock *req; 4518 4519 /* We might be called with a new socket, after 4520 * inet_csk_prepare_forced_close() has been called 4521 * so we can not use lockdep_sock_is_held(sk) 4522 */ 4523 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4524 4525 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4526 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4527 4528 tcp_set_state(sk, TCP_CLOSE); 4529 tcp_clear_xmit_timers(sk); 4530 if (req) 4531 reqsk_fastopen_remove(sk, req, false); 4532 4533 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4534 4535 if (!sock_flag(sk, SOCK_DEAD)) 4536 sk->sk_state_change(sk); 4537 else 4538 inet_csk_destroy_sock(sk); 4539 } 4540 EXPORT_SYMBOL_GPL(tcp_done); 4541 4542 int tcp_abort(struct sock *sk, int err) 4543 { 4544 int state = inet_sk_state_load(sk); 4545 4546 if (state == TCP_NEW_SYN_RECV) { 4547 struct request_sock *req = inet_reqsk(sk); 4548 4549 local_bh_disable(); 4550 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4551 local_bh_enable(); 4552 return 0; 4553 } 4554 if (state == TCP_TIME_WAIT) { 4555 struct inet_timewait_sock *tw = inet_twsk(sk); 4556 4557 refcount_inc(&tw->tw_refcnt); 4558 local_bh_disable(); 4559 inet_twsk_deschedule_put(tw); 4560 local_bh_enable(); 4561 return 0; 4562 } 4563 4564 /* BPF context ensures sock locking. */ 4565 if (!has_current_bpf_ctx()) 4566 /* Don't race with userspace socket closes such as tcp_close. */ 4567 lock_sock(sk); 4568 4569 if (sk->sk_state == TCP_LISTEN) { 4570 tcp_set_state(sk, TCP_CLOSE); 4571 inet_csk_listen_stop(sk); 4572 } 4573 4574 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4575 local_bh_disable(); 4576 bh_lock_sock(sk); 4577 4578 if (!sock_flag(sk, SOCK_DEAD)) { 4579 WRITE_ONCE(sk->sk_err, err); 4580 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4581 smp_wmb(); 4582 sk_error_report(sk); 4583 if (tcp_need_reset(sk->sk_state)) 4584 tcp_send_active_reset(sk, GFP_ATOMIC, 4585 SK_RST_REASON_NOT_SPECIFIED); 4586 tcp_done(sk); 4587 } 4588 4589 bh_unlock_sock(sk); 4590 local_bh_enable(); 4591 tcp_write_queue_purge(sk); 4592 if (!has_current_bpf_ctx()) 4593 release_sock(sk); 4594 return 0; 4595 } 4596 EXPORT_SYMBOL_GPL(tcp_abort); 4597 4598 extern struct tcp_congestion_ops tcp_reno; 4599 4600 static __initdata unsigned long thash_entries; 4601 static int __init set_thash_entries(char *str) 4602 { 4603 ssize_t ret; 4604 4605 if (!str) 4606 return 0; 4607 4608 ret = kstrtoul(str, 0, &thash_entries); 4609 if (ret) 4610 return 0; 4611 4612 return 1; 4613 } 4614 __setup("thash_entries=", set_thash_entries); 4615 4616 static void __init tcp_init_mem(void) 4617 { 4618 unsigned long limit = nr_free_buffer_pages() / 16; 4619 4620 limit = max(limit, 128UL); 4621 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4622 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4623 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4624 } 4625 4626 static void __init tcp_struct_check(void) 4627 { 4628 /* TX read-mostly hotpath cache lines */ 4629 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4630 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4631 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4632 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4633 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4636 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4637 4638 /* TXRX read-mostly hotpath cache lines */ 4639 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4641 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4642 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4643 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4644 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4645 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4647 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4648 4649 /* RX read-mostly hotpath cache lines */ 4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4652 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4654 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4658 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4659 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4660 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4661 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4662 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4663 4664 /* TX read-write hotpath cache lines */ 4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4667 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4669 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4675 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4676 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4677 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4678 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4679 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4680 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 4681 4682 /* TXRX read-write hotpath cache lines */ 4683 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4684 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 4685 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 4686 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4687 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4688 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4689 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4690 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4691 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4692 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4693 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4694 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4695 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4696 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4697 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4698 4699 /* 32bit arches with 8byte alignment on u64 fields might need padding 4700 * before tcp_clock_cache. 4701 */ 4702 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 4703 4704 /* RX read-write hotpath cache lines */ 4705 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4706 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4707 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4708 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4709 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4710 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4711 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4712 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4713 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4714 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4715 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4716 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4717 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4718 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4719 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4720 } 4721 4722 void __init tcp_init(void) 4723 { 4724 int max_rshare, max_wshare, cnt; 4725 unsigned long limit; 4726 unsigned int i; 4727 4728 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4729 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4730 sizeof_field(struct sk_buff, cb)); 4731 4732 tcp_struct_check(); 4733 4734 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4735 4736 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4737 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4738 4739 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4740 thash_entries, 21, /* one slot per 2 MB*/ 4741 0, 64 * 1024); 4742 tcp_hashinfo.bind_bucket_cachep = 4743 kmem_cache_create("tcp_bind_bucket", 4744 sizeof(struct inet_bind_bucket), 0, 4745 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4746 SLAB_ACCOUNT, 4747 NULL); 4748 tcp_hashinfo.bind2_bucket_cachep = 4749 kmem_cache_create("tcp_bind2_bucket", 4750 sizeof(struct inet_bind2_bucket), 0, 4751 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4752 SLAB_ACCOUNT, 4753 NULL); 4754 4755 /* Size and allocate the main established and bind bucket 4756 * hash tables. 4757 * 4758 * The methodology is similar to that of the buffer cache. 4759 */ 4760 tcp_hashinfo.ehash = 4761 alloc_large_system_hash("TCP established", 4762 sizeof(struct inet_ehash_bucket), 4763 thash_entries, 4764 17, /* one slot per 128 KB of memory */ 4765 0, 4766 NULL, 4767 &tcp_hashinfo.ehash_mask, 4768 0, 4769 thash_entries ? 0 : 512 * 1024); 4770 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4771 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4772 4773 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4774 panic("TCP: failed to alloc ehash_locks"); 4775 tcp_hashinfo.bhash = 4776 alloc_large_system_hash("TCP bind", 4777 2 * sizeof(struct inet_bind_hashbucket), 4778 tcp_hashinfo.ehash_mask + 1, 4779 17, /* one slot per 128 KB of memory */ 4780 0, 4781 &tcp_hashinfo.bhash_size, 4782 NULL, 4783 0, 4784 64 * 1024); 4785 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4786 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4787 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4788 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4789 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4790 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4791 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4792 } 4793 4794 tcp_hashinfo.pernet = false; 4795 4796 cnt = tcp_hashinfo.ehash_mask + 1; 4797 sysctl_tcp_max_orphans = cnt / 2; 4798 4799 tcp_init_mem(); 4800 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4801 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4802 max_wshare = min(4UL*1024*1024, limit); 4803 max_rshare = min(6UL*1024*1024, limit); 4804 4805 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4806 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4807 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4808 4809 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4810 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4811 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4812 4813 pr_info("Hash tables configured (established %u bind %u)\n", 4814 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4815 4816 tcp_v4_init(); 4817 tcp_metrics_init(); 4818 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4819 tcp_tasklet_init(); 4820 mptcp_init(); 4821 } 4822