1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sk_sleep(sk), wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 skb != tcp_write_queue_head(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 if (!sock_flag(sk, SOCK_DONE)) 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 939 size_t size, int flags) 940 { 941 struct tcp_sock *tp = tcp_sk(sk); 942 int mss_now, size_goal; 943 int err; 944 ssize_t copied; 945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 946 947 /* Wait for a connection to finish. One exception is TCP Fast Open 948 * (passive side) where data is allowed to be sent before a connection 949 * is fully established. 950 */ 951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 952 !tcp_passive_fastopen(sk)) { 953 err = sk_stream_wait_connect(sk, &timeo); 954 if (err != 0) 955 goto out_err; 956 } 957 958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 959 960 mss_now = tcp_send_mss(sk, &size_goal, flags); 961 copied = 0; 962 963 err = -EPIPE; 964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 965 goto out_err; 966 967 while (size > 0) { 968 struct sk_buff *skb = tcp_write_queue_tail(sk); 969 int copy, i; 970 bool can_coalesce; 971 972 if (!skb || (copy = size_goal - skb->len) <= 0 || 973 !tcp_skb_can_collapse_to(skb)) { 974 new_segment: 975 if (!sk_stream_memory_free(sk)) 976 goto wait_for_sndbuf; 977 978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 979 tcp_rtx_and_write_queues_empty(sk)); 980 if (!skb) 981 goto wait_for_memory; 982 983 skb_entail(sk, skb); 984 copy = size_goal; 985 } 986 987 if (copy > size) 988 copy = size; 989 990 i = skb_shinfo(skb)->nr_frags; 991 can_coalesce = skb_can_coalesce(skb, i, page, offset); 992 if (!can_coalesce && i >= sysctl_max_skb_frags) { 993 tcp_mark_push(tp, skb); 994 goto new_segment; 995 } 996 if (!sk_wmem_schedule(sk, copy)) 997 goto wait_for_memory; 998 999 if (can_coalesce) { 1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1001 } else { 1002 get_page(page); 1003 skb_fill_page_desc(skb, i, page, offset, copy); 1004 } 1005 1006 if (!(flags & MSG_NO_SHARED_FRAGS)) 1007 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1008 1009 skb->len += copy; 1010 skb->data_len += copy; 1011 skb->truesize += copy; 1012 sk->sk_wmem_queued += copy; 1013 sk_mem_charge(sk, copy); 1014 skb->ip_summed = CHECKSUM_PARTIAL; 1015 tp->write_seq += copy; 1016 TCP_SKB_CB(skb)->end_seq += copy; 1017 tcp_skb_pcount_set(skb, 0); 1018 1019 if (!copied) 1020 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1021 1022 copied += copy; 1023 offset += copy; 1024 size -= copy; 1025 if (!size) 1026 goto out; 1027 1028 if (skb->len < size_goal || (flags & MSG_OOB)) 1029 continue; 1030 1031 if (forced_push(tp)) { 1032 tcp_mark_push(tp, skb); 1033 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1034 } else if (skb == tcp_send_head(sk)) 1035 tcp_push_one(sk, mss_now); 1036 continue; 1037 1038 wait_for_sndbuf: 1039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1040 wait_for_memory: 1041 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1042 TCP_NAGLE_PUSH, size_goal); 1043 1044 err = sk_stream_wait_memory(sk, &timeo); 1045 if (err != 0) 1046 goto do_error; 1047 1048 mss_now = tcp_send_mss(sk, &size_goal, flags); 1049 } 1050 1051 out: 1052 if (copied) { 1053 tcp_tx_timestamp(sk, sk->sk_tsflags); 1054 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1055 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1056 } 1057 return copied; 1058 1059 do_error: 1060 if (copied) 1061 goto out; 1062 out_err: 1063 /* make sure we wake any epoll edge trigger waiter */ 1064 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1065 err == -EAGAIN)) { 1066 sk->sk_write_space(sk); 1067 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1068 } 1069 return sk_stream_error(sk, flags, err); 1070 } 1071 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1072 1073 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1074 size_t size, int flags) 1075 { 1076 if (!(sk->sk_route_caps & NETIF_F_SG)) 1077 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1078 1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1080 1081 return do_tcp_sendpages(sk, page, offset, size, flags); 1082 } 1083 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1084 1085 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1086 size_t size, int flags) 1087 { 1088 int ret; 1089 1090 lock_sock(sk); 1091 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1092 release_sock(sk); 1093 1094 return ret; 1095 } 1096 EXPORT_SYMBOL(tcp_sendpage); 1097 1098 /* Do not bother using a page frag for very small frames. 1099 * But use this heuristic only for the first skb in write queue. 1100 * 1101 * Having no payload in skb->head allows better SACK shifting 1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1103 * write queue has less skbs. 1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1105 * This also speeds up tso_fragment(), since it wont fallback 1106 * to tcp_fragment(). 1107 */ 1108 static int linear_payload_sz(bool first_skb) 1109 { 1110 if (first_skb) 1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1112 return 0; 1113 } 1114 1115 static int select_size(bool first_skb, bool zc) 1116 { 1117 if (zc) 1118 return 0; 1119 return linear_payload_sz(first_skb); 1120 } 1121 1122 void tcp_free_fastopen_req(struct tcp_sock *tp) 1123 { 1124 if (tp->fastopen_req) { 1125 kfree(tp->fastopen_req); 1126 tp->fastopen_req = NULL; 1127 } 1128 } 1129 1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1131 int *copied, size_t size) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 bool process_backlog = false; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size) { 1190 if (sk->sk_state != TCP_ESTABLISHED) { 1191 err = -EINVAL; 1192 goto out_err; 1193 } 1194 1195 skb = tcp_write_queue_tail(sk); 1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1197 if (!uarg) { 1198 err = -ENOBUFS; 1199 goto out_err; 1200 } 1201 1202 zc = sk->sk_route_caps & NETIF_F_SG; 1203 if (!zc) 1204 uarg->zerocopy = 0; 1205 } 1206 1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1208 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1209 if (err == -EINPROGRESS && copied_syn > 0) 1210 goto out; 1211 else if (err) 1212 goto out_err; 1213 } 1214 1215 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1216 1217 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1218 1219 /* Wait for a connection to finish. One exception is TCP Fast Open 1220 * (passive side) where data is allowed to be sent before a connection 1221 * is fully established. 1222 */ 1223 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1224 !tcp_passive_fastopen(sk)) { 1225 err = sk_stream_wait_connect(sk, &timeo); 1226 if (err != 0) 1227 goto do_error; 1228 } 1229 1230 if (unlikely(tp->repair)) { 1231 if (tp->repair_queue == TCP_RECV_QUEUE) { 1232 copied = tcp_send_rcvq(sk, msg, size); 1233 goto out_nopush; 1234 } 1235 1236 err = -EINVAL; 1237 if (tp->repair_queue == TCP_NO_QUEUE) 1238 goto out_err; 1239 1240 /* 'common' sending to sendq */ 1241 } 1242 1243 sockc.tsflags = sk->sk_tsflags; 1244 if (msg->msg_controllen) { 1245 err = sock_cmsg_send(sk, msg, &sockc); 1246 if (unlikely(err)) { 1247 err = -EINVAL; 1248 goto out_err; 1249 } 1250 } 1251 1252 /* This should be in poll */ 1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1254 1255 /* Ok commence sending. */ 1256 copied = 0; 1257 1258 restart: 1259 mss_now = tcp_send_mss(sk, &size_goal, flags); 1260 1261 err = -EPIPE; 1262 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1263 goto do_error; 1264 1265 while (msg_data_left(msg)) { 1266 int copy = 0; 1267 1268 skb = tcp_write_queue_tail(sk); 1269 if (skb) 1270 copy = size_goal - skb->len; 1271 1272 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1273 bool first_skb; 1274 int linear; 1275 1276 new_segment: 1277 /* Allocate new segment. If the interface is SG, 1278 * allocate skb fitting to single page. 1279 */ 1280 if (!sk_stream_memory_free(sk)) 1281 goto wait_for_sndbuf; 1282 1283 if (process_backlog && sk_flush_backlog(sk)) { 1284 process_backlog = false; 1285 goto restart; 1286 } 1287 first_skb = tcp_rtx_and_write_queues_empty(sk); 1288 linear = select_size(first_skb, zc); 1289 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1290 first_skb); 1291 if (!skb) 1292 goto wait_for_memory; 1293 1294 process_backlog = true; 1295 skb->ip_summed = CHECKSUM_PARTIAL; 1296 1297 skb_entail(sk, skb); 1298 copy = size_goal; 1299 1300 /* All packets are restored as if they have 1301 * already been sent. skb_mstamp isn't set to 1302 * avoid wrong rtt estimation. 1303 */ 1304 if (tp->repair) 1305 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1306 } 1307 1308 /* Try to append data to the end of skb. */ 1309 if (copy > msg_data_left(msg)) 1310 copy = msg_data_left(msg); 1311 1312 /* Where to copy to? */ 1313 if (skb_availroom(skb) > 0 && !zc) { 1314 /* We have some space in skb head. Superb! */ 1315 copy = min_t(int, copy, skb_availroom(skb)); 1316 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1317 if (err) 1318 goto do_fault; 1319 } else if (!zc) { 1320 bool merge = true; 1321 int i = skb_shinfo(skb)->nr_frags; 1322 struct page_frag *pfrag = sk_page_frag(sk); 1323 1324 if (!sk_page_frag_refill(sk, pfrag)) 1325 goto wait_for_memory; 1326 1327 if (!skb_can_coalesce(skb, i, pfrag->page, 1328 pfrag->offset)) { 1329 if (i >= sysctl_max_skb_frags) { 1330 tcp_mark_push(tp, skb); 1331 goto new_segment; 1332 } 1333 merge = false; 1334 } 1335 1336 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1337 1338 if (!sk_wmem_schedule(sk, copy)) 1339 goto wait_for_memory; 1340 1341 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1342 pfrag->page, 1343 pfrag->offset, 1344 copy); 1345 if (err) 1346 goto do_error; 1347 1348 /* Update the skb. */ 1349 if (merge) { 1350 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1351 } else { 1352 skb_fill_page_desc(skb, i, pfrag->page, 1353 pfrag->offset, copy); 1354 page_ref_inc(pfrag->page); 1355 } 1356 pfrag->offset += copy; 1357 } else { 1358 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1359 if (err == -EMSGSIZE || err == -EEXIST) { 1360 tcp_mark_push(tp, skb); 1361 goto new_segment; 1362 } 1363 if (err < 0) 1364 goto do_error; 1365 copy = err; 1366 } 1367 1368 if (!copied) 1369 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1370 1371 tp->write_seq += copy; 1372 TCP_SKB_CB(skb)->end_seq += copy; 1373 tcp_skb_pcount_set(skb, 0); 1374 1375 copied += copy; 1376 if (!msg_data_left(msg)) { 1377 if (unlikely(flags & MSG_EOR)) 1378 TCP_SKB_CB(skb)->eor = 1; 1379 goto out; 1380 } 1381 1382 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1383 continue; 1384 1385 if (forced_push(tp)) { 1386 tcp_mark_push(tp, skb); 1387 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1388 } else if (skb == tcp_send_head(sk)) 1389 tcp_push_one(sk, mss_now); 1390 continue; 1391 1392 wait_for_sndbuf: 1393 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1394 wait_for_memory: 1395 if (copied) 1396 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1397 TCP_NAGLE_PUSH, size_goal); 1398 1399 err = sk_stream_wait_memory(sk, &timeo); 1400 if (err != 0) 1401 goto do_error; 1402 1403 mss_now = tcp_send_mss(sk, &size_goal, flags); 1404 } 1405 1406 out: 1407 if (copied) { 1408 tcp_tx_timestamp(sk, sockc.tsflags); 1409 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1410 } 1411 out_nopush: 1412 sock_zerocopy_put(uarg); 1413 return copied + copied_syn; 1414 1415 do_fault: 1416 if (!skb->len) { 1417 tcp_unlink_write_queue(skb, sk); 1418 /* It is the one place in all of TCP, except connection 1419 * reset, where we can be unlinking the send_head. 1420 */ 1421 tcp_check_send_head(sk, skb); 1422 sk_wmem_free_skb(sk, skb); 1423 } 1424 1425 do_error: 1426 if (copied + copied_syn) 1427 goto out; 1428 out_err: 1429 sock_zerocopy_put_abort(uarg); 1430 err = sk_stream_error(sk, flags, err); 1431 /* make sure we wake any epoll edge trigger waiter */ 1432 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1433 err == -EAGAIN)) { 1434 sk->sk_write_space(sk); 1435 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1436 } 1437 return err; 1438 } 1439 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1440 1441 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1442 { 1443 int ret; 1444 1445 lock_sock(sk); 1446 ret = tcp_sendmsg_locked(sk, msg, size); 1447 release_sock(sk); 1448 1449 return ret; 1450 } 1451 EXPORT_SYMBOL(tcp_sendmsg); 1452 1453 /* 1454 * Handle reading urgent data. BSD has very simple semantics for 1455 * this, no blocking and very strange errors 8) 1456 */ 1457 1458 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 1462 /* No URG data to read. */ 1463 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1464 tp->urg_data == TCP_URG_READ) 1465 return -EINVAL; /* Yes this is right ! */ 1466 1467 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1468 return -ENOTCONN; 1469 1470 if (tp->urg_data & TCP_URG_VALID) { 1471 int err = 0; 1472 char c = tp->urg_data; 1473 1474 if (!(flags & MSG_PEEK)) 1475 tp->urg_data = TCP_URG_READ; 1476 1477 /* Read urgent data. */ 1478 msg->msg_flags |= MSG_OOB; 1479 1480 if (len > 0) { 1481 if (!(flags & MSG_TRUNC)) 1482 err = memcpy_to_msg(msg, &c, 1); 1483 len = 1; 1484 } else 1485 msg->msg_flags |= MSG_TRUNC; 1486 1487 return err ? -EFAULT : len; 1488 } 1489 1490 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1491 return 0; 1492 1493 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1494 * the available implementations agree in this case: 1495 * this call should never block, independent of the 1496 * blocking state of the socket. 1497 * Mike <pall@rz.uni-karlsruhe.de> 1498 */ 1499 return -EAGAIN; 1500 } 1501 1502 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1503 { 1504 struct sk_buff *skb; 1505 int copied = 0, err = 0; 1506 1507 /* XXX -- need to support SO_PEEK_OFF */ 1508 1509 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1510 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1511 if (err) 1512 return err; 1513 copied += skb->len; 1514 } 1515 1516 skb_queue_walk(&sk->sk_write_queue, skb) { 1517 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1518 if (err) 1519 break; 1520 1521 copied += skb->len; 1522 } 1523 1524 return err ?: copied; 1525 } 1526 1527 /* Clean up the receive buffer for full frames taken by the user, 1528 * then send an ACK if necessary. COPIED is the number of bytes 1529 * tcp_recvmsg has given to the user so far, it speeds up the 1530 * calculation of whether or not we must ACK for the sake of 1531 * a window update. 1532 */ 1533 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1534 { 1535 struct tcp_sock *tp = tcp_sk(sk); 1536 bool time_to_ack = false; 1537 1538 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1539 1540 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1541 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1542 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1543 1544 if (inet_csk_ack_scheduled(sk)) { 1545 const struct inet_connection_sock *icsk = inet_csk(sk); 1546 /* Delayed ACKs frequently hit locked sockets during bulk 1547 * receive. */ 1548 if (icsk->icsk_ack.blocked || 1549 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1550 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1551 /* 1552 * If this read emptied read buffer, we send ACK, if 1553 * connection is not bidirectional, user drained 1554 * receive buffer and there was a small segment 1555 * in queue. 1556 */ 1557 (copied > 0 && 1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1560 !icsk->icsk_ack.pingpong)) && 1561 !atomic_read(&sk->sk_rmem_alloc))) 1562 time_to_ack = true; 1563 } 1564 1565 /* We send an ACK if we can now advertise a non-zero window 1566 * which has been raised "significantly". 1567 * 1568 * Even if window raised up to infinity, do not send window open ACK 1569 * in states, where we will not receive more. It is useless. 1570 */ 1571 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1572 __u32 rcv_window_now = tcp_receive_window(tp); 1573 1574 /* Optimize, __tcp_select_window() is not cheap. */ 1575 if (2*rcv_window_now <= tp->window_clamp) { 1576 __u32 new_window = __tcp_select_window(sk); 1577 1578 /* Send ACK now, if this read freed lots of space 1579 * in our buffer. Certainly, new_window is new window. 1580 * We can advertise it now, if it is not less than current one. 1581 * "Lots" means "at least twice" here. 1582 */ 1583 if (new_window && new_window >= 2 * rcv_window_now) 1584 time_to_ack = true; 1585 } 1586 } 1587 if (time_to_ack) 1588 tcp_send_ack(sk); 1589 } 1590 1591 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1592 { 1593 struct sk_buff *skb; 1594 u32 offset; 1595 1596 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1597 offset = seq - TCP_SKB_CB(skb)->seq; 1598 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1599 pr_err_once("%s: found a SYN, please report !\n", __func__); 1600 offset--; 1601 } 1602 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1603 *off = offset; 1604 return skb; 1605 } 1606 /* This looks weird, but this can happen if TCP collapsing 1607 * splitted a fat GRO packet, while we released socket lock 1608 * in skb_splice_bits() 1609 */ 1610 sk_eat_skb(sk, skb); 1611 } 1612 return NULL; 1613 } 1614 1615 /* 1616 * This routine provides an alternative to tcp_recvmsg() for routines 1617 * that would like to handle copying from skbuffs directly in 'sendfile' 1618 * fashion. 1619 * Note: 1620 * - It is assumed that the socket was locked by the caller. 1621 * - The routine does not block. 1622 * - At present, there is no support for reading OOB data 1623 * or for 'peeking' the socket using this routine 1624 * (although both would be easy to implement). 1625 */ 1626 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1627 sk_read_actor_t recv_actor) 1628 { 1629 struct sk_buff *skb; 1630 struct tcp_sock *tp = tcp_sk(sk); 1631 u32 seq = tp->copied_seq; 1632 u32 offset; 1633 int copied = 0; 1634 1635 if (sk->sk_state == TCP_LISTEN) 1636 return -ENOTCONN; 1637 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1638 if (offset < skb->len) { 1639 int used; 1640 size_t len; 1641 1642 len = skb->len - offset; 1643 /* Stop reading if we hit a patch of urgent data */ 1644 if (tp->urg_data) { 1645 u32 urg_offset = tp->urg_seq - seq; 1646 if (urg_offset < len) 1647 len = urg_offset; 1648 if (!len) 1649 break; 1650 } 1651 used = recv_actor(desc, skb, offset, len); 1652 if (used <= 0) { 1653 if (!copied) 1654 copied = used; 1655 break; 1656 } else if (used <= len) { 1657 seq += used; 1658 copied += used; 1659 offset += used; 1660 } 1661 /* If recv_actor drops the lock (e.g. TCP splice 1662 * receive) the skb pointer might be invalid when 1663 * getting here: tcp_collapse might have deleted it 1664 * while aggregating skbs from the socket queue. 1665 */ 1666 skb = tcp_recv_skb(sk, seq - 1, &offset); 1667 if (!skb) 1668 break; 1669 /* TCP coalescing might have appended data to the skb. 1670 * Try to splice more frags 1671 */ 1672 if (offset + 1 != skb->len) 1673 continue; 1674 } 1675 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1676 sk_eat_skb(sk, skb); 1677 ++seq; 1678 break; 1679 } 1680 sk_eat_skb(sk, skb); 1681 if (!desc->count) 1682 break; 1683 tp->copied_seq = seq; 1684 } 1685 tp->copied_seq = seq; 1686 1687 tcp_rcv_space_adjust(sk); 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 if (copied > 0) { 1691 tcp_recv_skb(sk, seq, &offset); 1692 tcp_cleanup_rbuf(sk, copied); 1693 } 1694 return copied; 1695 } 1696 EXPORT_SYMBOL(tcp_read_sock); 1697 1698 int tcp_peek_len(struct socket *sock) 1699 { 1700 return tcp_inq(sock->sk); 1701 } 1702 EXPORT_SYMBOL(tcp_peek_len); 1703 1704 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1705 struct scm_timestamping *tss) 1706 { 1707 if (skb->tstamp) 1708 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1709 else 1710 tss->ts[0] = (struct timespec) {0}; 1711 1712 if (skb_hwtstamps(skb)->hwtstamp) 1713 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1714 else 1715 tss->ts[2] = (struct timespec) {0}; 1716 } 1717 1718 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1719 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1720 struct scm_timestamping *tss) 1721 { 1722 struct timeval tv; 1723 bool has_timestamping = false; 1724 1725 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1726 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1727 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1728 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1729 sizeof(tss->ts[0]), &tss->ts[0]); 1730 } else { 1731 tv.tv_sec = tss->ts[0].tv_sec; 1732 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1733 1734 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1735 sizeof(tv), &tv); 1736 } 1737 } 1738 1739 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1740 has_timestamping = true; 1741 else 1742 tss->ts[0] = (struct timespec) {0}; 1743 } 1744 1745 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1746 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1747 has_timestamping = true; 1748 else 1749 tss->ts[2] = (struct timespec) {0}; 1750 } 1751 1752 if (has_timestamping) { 1753 tss->ts[1] = (struct timespec) {0}; 1754 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1755 sizeof(*tss), tss); 1756 } 1757 } 1758 1759 /* 1760 * This routine copies from a sock struct into the user buffer. 1761 * 1762 * Technical note: in 2.3 we work on _locked_ socket, so that 1763 * tricks with *seq access order and skb->users are not required. 1764 * Probably, code can be easily improved even more. 1765 */ 1766 1767 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1768 int flags, int *addr_len) 1769 { 1770 struct tcp_sock *tp = tcp_sk(sk); 1771 int copied = 0; 1772 u32 peek_seq; 1773 u32 *seq; 1774 unsigned long used; 1775 int err; 1776 int target; /* Read at least this many bytes */ 1777 long timeo; 1778 struct sk_buff *skb, *last; 1779 u32 urg_hole = 0; 1780 struct scm_timestamping tss; 1781 bool has_tss = false; 1782 1783 if (unlikely(flags & MSG_ERRQUEUE)) 1784 return inet_recv_error(sk, msg, len, addr_len); 1785 1786 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1787 (sk->sk_state == TCP_ESTABLISHED)) 1788 sk_busy_loop(sk, nonblock); 1789 1790 lock_sock(sk); 1791 1792 err = -ENOTCONN; 1793 if (sk->sk_state == TCP_LISTEN) 1794 goto out; 1795 1796 timeo = sock_rcvtimeo(sk, nonblock); 1797 1798 /* Urgent data needs to be handled specially. */ 1799 if (flags & MSG_OOB) 1800 goto recv_urg; 1801 1802 if (unlikely(tp->repair)) { 1803 err = -EPERM; 1804 if (!(flags & MSG_PEEK)) 1805 goto out; 1806 1807 if (tp->repair_queue == TCP_SEND_QUEUE) 1808 goto recv_sndq; 1809 1810 err = -EINVAL; 1811 if (tp->repair_queue == TCP_NO_QUEUE) 1812 goto out; 1813 1814 /* 'common' recv queue MSG_PEEK-ing */ 1815 } 1816 1817 seq = &tp->copied_seq; 1818 if (flags & MSG_PEEK) { 1819 peek_seq = tp->copied_seq; 1820 seq = &peek_seq; 1821 } 1822 1823 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1824 1825 do { 1826 u32 offset; 1827 1828 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1829 if (tp->urg_data && tp->urg_seq == *seq) { 1830 if (copied) 1831 break; 1832 if (signal_pending(current)) { 1833 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1834 break; 1835 } 1836 } 1837 1838 /* Next get a buffer. */ 1839 1840 last = skb_peek_tail(&sk->sk_receive_queue); 1841 skb_queue_walk(&sk->sk_receive_queue, skb) { 1842 last = skb; 1843 /* Now that we have two receive queues this 1844 * shouldn't happen. 1845 */ 1846 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1847 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1848 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1849 flags)) 1850 break; 1851 1852 offset = *seq - TCP_SKB_CB(skb)->seq; 1853 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1854 pr_err_once("%s: found a SYN, please report !\n", __func__); 1855 offset--; 1856 } 1857 if (offset < skb->len) 1858 goto found_ok_skb; 1859 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1860 goto found_fin_ok; 1861 WARN(!(flags & MSG_PEEK), 1862 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1863 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1864 } 1865 1866 /* Well, if we have backlog, try to process it now yet. */ 1867 1868 if (copied >= target && !sk->sk_backlog.tail) 1869 break; 1870 1871 if (copied) { 1872 if (sk->sk_err || 1873 sk->sk_state == TCP_CLOSE || 1874 (sk->sk_shutdown & RCV_SHUTDOWN) || 1875 !timeo || 1876 signal_pending(current)) 1877 break; 1878 } else { 1879 if (sock_flag(sk, SOCK_DONE)) 1880 break; 1881 1882 if (sk->sk_err) { 1883 copied = sock_error(sk); 1884 break; 1885 } 1886 1887 if (sk->sk_shutdown & RCV_SHUTDOWN) 1888 break; 1889 1890 if (sk->sk_state == TCP_CLOSE) { 1891 if (!sock_flag(sk, SOCK_DONE)) { 1892 /* This occurs when user tries to read 1893 * from never connected socket. 1894 */ 1895 copied = -ENOTCONN; 1896 break; 1897 } 1898 break; 1899 } 1900 1901 if (!timeo) { 1902 copied = -EAGAIN; 1903 break; 1904 } 1905 1906 if (signal_pending(current)) { 1907 copied = sock_intr_errno(timeo); 1908 break; 1909 } 1910 } 1911 1912 tcp_cleanup_rbuf(sk, copied); 1913 1914 if (copied >= target) { 1915 /* Do not sleep, just process backlog. */ 1916 release_sock(sk); 1917 lock_sock(sk); 1918 } else { 1919 sk_wait_data(sk, &timeo, last); 1920 } 1921 1922 if ((flags & MSG_PEEK) && 1923 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1924 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1925 current->comm, 1926 task_pid_nr(current)); 1927 peek_seq = tp->copied_seq; 1928 } 1929 continue; 1930 1931 found_ok_skb: 1932 /* Ok so how much can we use? */ 1933 used = skb->len - offset; 1934 if (len < used) 1935 used = len; 1936 1937 /* Do we have urgent data here? */ 1938 if (tp->urg_data) { 1939 u32 urg_offset = tp->urg_seq - *seq; 1940 if (urg_offset < used) { 1941 if (!urg_offset) { 1942 if (!sock_flag(sk, SOCK_URGINLINE)) { 1943 ++*seq; 1944 urg_hole++; 1945 offset++; 1946 used--; 1947 if (!used) 1948 goto skip_copy; 1949 } 1950 } else 1951 used = urg_offset; 1952 } 1953 } 1954 1955 if (!(flags & MSG_TRUNC)) { 1956 err = skb_copy_datagram_msg(skb, offset, msg, used); 1957 if (err) { 1958 /* Exception. Bailout! */ 1959 if (!copied) 1960 copied = -EFAULT; 1961 break; 1962 } 1963 } 1964 1965 *seq += used; 1966 copied += used; 1967 len -= used; 1968 1969 tcp_rcv_space_adjust(sk); 1970 1971 skip_copy: 1972 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1973 tp->urg_data = 0; 1974 tcp_fast_path_check(sk); 1975 } 1976 if (used + offset < skb->len) 1977 continue; 1978 1979 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1980 tcp_update_recv_tstamps(skb, &tss); 1981 has_tss = true; 1982 } 1983 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1984 goto found_fin_ok; 1985 if (!(flags & MSG_PEEK)) 1986 sk_eat_skb(sk, skb); 1987 continue; 1988 1989 found_fin_ok: 1990 /* Process the FIN. */ 1991 ++*seq; 1992 if (!(flags & MSG_PEEK)) 1993 sk_eat_skb(sk, skb); 1994 break; 1995 } while (len > 0); 1996 1997 /* According to UNIX98, msg_name/msg_namelen are ignored 1998 * on connected socket. I was just happy when found this 8) --ANK 1999 */ 2000 2001 if (has_tss) 2002 tcp_recv_timestamp(msg, sk, &tss); 2003 2004 /* Clean up data we have read: This will do ACK frames. */ 2005 tcp_cleanup_rbuf(sk, copied); 2006 2007 release_sock(sk); 2008 return copied; 2009 2010 out: 2011 release_sock(sk); 2012 return err; 2013 2014 recv_urg: 2015 err = tcp_recv_urg(sk, msg, len, flags); 2016 goto out; 2017 2018 recv_sndq: 2019 err = tcp_peek_sndq(sk, msg, len); 2020 goto out; 2021 } 2022 EXPORT_SYMBOL(tcp_recvmsg); 2023 2024 void tcp_set_state(struct sock *sk, int state) 2025 { 2026 int oldstate = sk->sk_state; 2027 2028 /* We defined a new enum for TCP states that are exported in BPF 2029 * so as not force the internal TCP states to be frozen. The 2030 * following checks will detect if an internal state value ever 2031 * differs from the BPF value. If this ever happens, then we will 2032 * need to remap the internal value to the BPF value before calling 2033 * tcp_call_bpf_2arg. 2034 */ 2035 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2036 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2037 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2038 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2039 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2040 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2041 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2042 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2043 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2044 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2045 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2046 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2047 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2048 2049 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2050 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2051 2052 switch (state) { 2053 case TCP_ESTABLISHED: 2054 if (oldstate != TCP_ESTABLISHED) 2055 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2056 break; 2057 2058 case TCP_CLOSE: 2059 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2060 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2061 2062 sk->sk_prot->unhash(sk); 2063 if (inet_csk(sk)->icsk_bind_hash && 2064 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2065 inet_put_port(sk); 2066 /* fall through */ 2067 default: 2068 if (oldstate == TCP_ESTABLISHED) 2069 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2070 } 2071 2072 /* Change state AFTER socket is unhashed to avoid closed 2073 * socket sitting in hash tables. 2074 */ 2075 inet_sk_state_store(sk, state); 2076 2077 #ifdef STATE_TRACE 2078 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2079 #endif 2080 } 2081 EXPORT_SYMBOL_GPL(tcp_set_state); 2082 2083 /* 2084 * State processing on a close. This implements the state shift for 2085 * sending our FIN frame. Note that we only send a FIN for some 2086 * states. A shutdown() may have already sent the FIN, or we may be 2087 * closed. 2088 */ 2089 2090 static const unsigned char new_state[16] = { 2091 /* current state: new state: action: */ 2092 [0 /* (Invalid) */] = TCP_CLOSE, 2093 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2094 [TCP_SYN_SENT] = TCP_CLOSE, 2095 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2096 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2097 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2098 [TCP_TIME_WAIT] = TCP_CLOSE, 2099 [TCP_CLOSE] = TCP_CLOSE, 2100 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2101 [TCP_LAST_ACK] = TCP_LAST_ACK, 2102 [TCP_LISTEN] = TCP_CLOSE, 2103 [TCP_CLOSING] = TCP_CLOSING, 2104 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2105 }; 2106 2107 static int tcp_close_state(struct sock *sk) 2108 { 2109 int next = (int)new_state[sk->sk_state]; 2110 int ns = next & TCP_STATE_MASK; 2111 2112 tcp_set_state(sk, ns); 2113 2114 return next & TCP_ACTION_FIN; 2115 } 2116 2117 /* 2118 * Shutdown the sending side of a connection. Much like close except 2119 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2120 */ 2121 2122 void tcp_shutdown(struct sock *sk, int how) 2123 { 2124 /* We need to grab some memory, and put together a FIN, 2125 * and then put it into the queue to be sent. 2126 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2127 */ 2128 if (!(how & SEND_SHUTDOWN)) 2129 return; 2130 2131 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2132 if ((1 << sk->sk_state) & 2133 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2134 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2135 /* Clear out any half completed packets. FIN if needed. */ 2136 if (tcp_close_state(sk)) 2137 tcp_send_fin(sk); 2138 } 2139 } 2140 EXPORT_SYMBOL(tcp_shutdown); 2141 2142 bool tcp_check_oom(struct sock *sk, int shift) 2143 { 2144 bool too_many_orphans, out_of_socket_memory; 2145 2146 too_many_orphans = tcp_too_many_orphans(sk, shift); 2147 out_of_socket_memory = tcp_out_of_memory(sk); 2148 2149 if (too_many_orphans) 2150 net_info_ratelimited("too many orphaned sockets\n"); 2151 if (out_of_socket_memory) 2152 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2153 return too_many_orphans || out_of_socket_memory; 2154 } 2155 2156 void tcp_close(struct sock *sk, long timeout) 2157 { 2158 struct sk_buff *skb; 2159 int data_was_unread = 0; 2160 int state; 2161 2162 lock_sock(sk); 2163 sk->sk_shutdown = SHUTDOWN_MASK; 2164 2165 if (sk->sk_state == TCP_LISTEN) { 2166 tcp_set_state(sk, TCP_CLOSE); 2167 2168 /* Special case. */ 2169 inet_csk_listen_stop(sk); 2170 2171 goto adjudge_to_death; 2172 } 2173 2174 /* We need to flush the recv. buffs. We do this only on the 2175 * descriptor close, not protocol-sourced closes, because the 2176 * reader process may not have drained the data yet! 2177 */ 2178 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2179 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2180 2181 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2182 len--; 2183 data_was_unread += len; 2184 __kfree_skb(skb); 2185 } 2186 2187 sk_mem_reclaim(sk); 2188 2189 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2190 if (sk->sk_state == TCP_CLOSE) 2191 goto adjudge_to_death; 2192 2193 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2194 * data was lost. To witness the awful effects of the old behavior of 2195 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2196 * GET in an FTP client, suspend the process, wait for the client to 2197 * advertise a zero window, then kill -9 the FTP client, wheee... 2198 * Note: timeout is always zero in such a case. 2199 */ 2200 if (unlikely(tcp_sk(sk)->repair)) { 2201 sk->sk_prot->disconnect(sk, 0); 2202 } else if (data_was_unread) { 2203 /* Unread data was tossed, zap the connection. */ 2204 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2205 tcp_set_state(sk, TCP_CLOSE); 2206 tcp_send_active_reset(sk, sk->sk_allocation); 2207 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2208 /* Check zero linger _after_ checking for unread data. */ 2209 sk->sk_prot->disconnect(sk, 0); 2210 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2211 } else if (tcp_close_state(sk)) { 2212 /* We FIN if the application ate all the data before 2213 * zapping the connection. 2214 */ 2215 2216 /* RED-PEN. Formally speaking, we have broken TCP state 2217 * machine. State transitions: 2218 * 2219 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2220 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2221 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2222 * 2223 * are legal only when FIN has been sent (i.e. in window), 2224 * rather than queued out of window. Purists blame. 2225 * 2226 * F.e. "RFC state" is ESTABLISHED, 2227 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2228 * 2229 * The visible declinations are that sometimes 2230 * we enter time-wait state, when it is not required really 2231 * (harmless), do not send active resets, when they are 2232 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2233 * they look as CLOSING or LAST_ACK for Linux) 2234 * Probably, I missed some more holelets. 2235 * --ANK 2236 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2237 * in a single packet! (May consider it later but will 2238 * probably need API support or TCP_CORK SYN-ACK until 2239 * data is written and socket is closed.) 2240 */ 2241 tcp_send_fin(sk); 2242 } 2243 2244 sk_stream_wait_close(sk, timeout); 2245 2246 adjudge_to_death: 2247 state = sk->sk_state; 2248 sock_hold(sk); 2249 sock_orphan(sk); 2250 2251 /* It is the last release_sock in its life. It will remove backlog. */ 2252 release_sock(sk); 2253 2254 2255 /* Now socket is owned by kernel and we acquire BH lock 2256 * to finish close. No need to check for user refs. 2257 */ 2258 local_bh_disable(); 2259 bh_lock_sock(sk); 2260 WARN_ON(sock_owned_by_user(sk)); 2261 2262 percpu_counter_inc(sk->sk_prot->orphan_count); 2263 2264 /* Have we already been destroyed by a softirq or backlog? */ 2265 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2266 goto out; 2267 2268 /* This is a (useful) BSD violating of the RFC. There is a 2269 * problem with TCP as specified in that the other end could 2270 * keep a socket open forever with no application left this end. 2271 * We use a 1 minute timeout (about the same as BSD) then kill 2272 * our end. If they send after that then tough - BUT: long enough 2273 * that we won't make the old 4*rto = almost no time - whoops 2274 * reset mistake. 2275 * 2276 * Nope, it was not mistake. It is really desired behaviour 2277 * f.e. on http servers, when such sockets are useless, but 2278 * consume significant resources. Let's do it with special 2279 * linger2 option. --ANK 2280 */ 2281 2282 if (sk->sk_state == TCP_FIN_WAIT2) { 2283 struct tcp_sock *tp = tcp_sk(sk); 2284 if (tp->linger2 < 0) { 2285 tcp_set_state(sk, TCP_CLOSE); 2286 tcp_send_active_reset(sk, GFP_ATOMIC); 2287 __NET_INC_STATS(sock_net(sk), 2288 LINUX_MIB_TCPABORTONLINGER); 2289 } else { 2290 const int tmo = tcp_fin_time(sk); 2291 2292 if (tmo > TCP_TIMEWAIT_LEN) { 2293 inet_csk_reset_keepalive_timer(sk, 2294 tmo - TCP_TIMEWAIT_LEN); 2295 } else { 2296 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2297 goto out; 2298 } 2299 } 2300 } 2301 if (sk->sk_state != TCP_CLOSE) { 2302 sk_mem_reclaim(sk); 2303 if (tcp_check_oom(sk, 0)) { 2304 tcp_set_state(sk, TCP_CLOSE); 2305 tcp_send_active_reset(sk, GFP_ATOMIC); 2306 __NET_INC_STATS(sock_net(sk), 2307 LINUX_MIB_TCPABORTONMEMORY); 2308 } else if (!check_net(sock_net(sk))) { 2309 /* Not possible to send reset; just close */ 2310 tcp_set_state(sk, TCP_CLOSE); 2311 } 2312 } 2313 2314 if (sk->sk_state == TCP_CLOSE) { 2315 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2316 /* We could get here with a non-NULL req if the socket is 2317 * aborted (e.g., closed with unread data) before 3WHS 2318 * finishes. 2319 */ 2320 if (req) 2321 reqsk_fastopen_remove(sk, req, false); 2322 inet_csk_destroy_sock(sk); 2323 } 2324 /* Otherwise, socket is reprieved until protocol close. */ 2325 2326 out: 2327 bh_unlock_sock(sk); 2328 local_bh_enable(); 2329 sock_put(sk); 2330 } 2331 EXPORT_SYMBOL(tcp_close); 2332 2333 /* These states need RST on ABORT according to RFC793 */ 2334 2335 static inline bool tcp_need_reset(int state) 2336 { 2337 return (1 << state) & 2338 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2339 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2340 } 2341 2342 static void tcp_rtx_queue_purge(struct sock *sk) 2343 { 2344 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2345 2346 while (p) { 2347 struct sk_buff *skb = rb_to_skb(p); 2348 2349 p = rb_next(p); 2350 /* Since we are deleting whole queue, no need to 2351 * list_del(&skb->tcp_tsorted_anchor) 2352 */ 2353 tcp_rtx_queue_unlink(skb, sk); 2354 sk_wmem_free_skb(sk, skb); 2355 } 2356 } 2357 2358 void tcp_write_queue_purge(struct sock *sk) 2359 { 2360 struct sk_buff *skb; 2361 2362 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2363 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2364 tcp_skb_tsorted_anchor_cleanup(skb); 2365 sk_wmem_free_skb(sk, skb); 2366 } 2367 tcp_rtx_queue_purge(sk); 2368 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2369 sk_mem_reclaim(sk); 2370 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2371 } 2372 2373 int tcp_disconnect(struct sock *sk, int flags) 2374 { 2375 struct inet_sock *inet = inet_sk(sk); 2376 struct inet_connection_sock *icsk = inet_csk(sk); 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 int err = 0; 2379 int old_state = sk->sk_state; 2380 2381 if (old_state != TCP_CLOSE) 2382 tcp_set_state(sk, TCP_CLOSE); 2383 2384 /* ABORT function of RFC793 */ 2385 if (old_state == TCP_LISTEN) { 2386 inet_csk_listen_stop(sk); 2387 } else if (unlikely(tp->repair)) { 2388 sk->sk_err = ECONNABORTED; 2389 } else if (tcp_need_reset(old_state) || 2390 (tp->snd_nxt != tp->write_seq && 2391 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2392 /* The last check adjusts for discrepancy of Linux wrt. RFC 2393 * states 2394 */ 2395 tcp_send_active_reset(sk, gfp_any()); 2396 sk->sk_err = ECONNRESET; 2397 } else if (old_state == TCP_SYN_SENT) 2398 sk->sk_err = ECONNRESET; 2399 2400 tcp_clear_xmit_timers(sk); 2401 __skb_queue_purge(&sk->sk_receive_queue); 2402 tcp_write_queue_purge(sk); 2403 tcp_fastopen_active_disable_ofo_check(sk); 2404 skb_rbtree_purge(&tp->out_of_order_queue); 2405 2406 inet->inet_dport = 0; 2407 2408 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2409 inet_reset_saddr(sk); 2410 2411 sk->sk_shutdown = 0; 2412 sock_reset_flag(sk, SOCK_DONE); 2413 tp->srtt_us = 0; 2414 tp->write_seq += tp->max_window + 2; 2415 if (tp->write_seq == 0) 2416 tp->write_seq = 1; 2417 icsk->icsk_backoff = 0; 2418 tp->snd_cwnd = 2; 2419 icsk->icsk_probes_out = 0; 2420 tp->packets_out = 0; 2421 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2422 tp->snd_cwnd_cnt = 0; 2423 tp->window_clamp = 0; 2424 tcp_set_ca_state(sk, TCP_CA_Open); 2425 tp->is_sack_reneg = 0; 2426 tcp_clear_retrans(tp); 2427 inet_csk_delack_init(sk); 2428 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2429 * issue in __tcp_select_window() 2430 */ 2431 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2432 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2433 __sk_dst_reset(sk); 2434 dst_release(sk->sk_rx_dst); 2435 sk->sk_rx_dst = NULL; 2436 tcp_saved_syn_free(tp); 2437 2438 /* Clean up fastopen related fields */ 2439 tcp_free_fastopen_req(tp); 2440 inet->defer_connect = 0; 2441 2442 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2443 2444 if (sk->sk_frag.page) { 2445 put_page(sk->sk_frag.page); 2446 sk->sk_frag.page = NULL; 2447 sk->sk_frag.offset = 0; 2448 } 2449 2450 sk->sk_error_report(sk); 2451 return err; 2452 } 2453 EXPORT_SYMBOL(tcp_disconnect); 2454 2455 static inline bool tcp_can_repair_sock(const struct sock *sk) 2456 { 2457 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2458 (sk->sk_state != TCP_LISTEN); 2459 } 2460 2461 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2462 { 2463 struct tcp_repair_window opt; 2464 2465 if (!tp->repair) 2466 return -EPERM; 2467 2468 if (len != sizeof(opt)) 2469 return -EINVAL; 2470 2471 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2472 return -EFAULT; 2473 2474 if (opt.max_window < opt.snd_wnd) 2475 return -EINVAL; 2476 2477 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2478 return -EINVAL; 2479 2480 if (after(opt.rcv_wup, tp->rcv_nxt)) 2481 return -EINVAL; 2482 2483 tp->snd_wl1 = opt.snd_wl1; 2484 tp->snd_wnd = opt.snd_wnd; 2485 tp->max_window = opt.max_window; 2486 2487 tp->rcv_wnd = opt.rcv_wnd; 2488 tp->rcv_wup = opt.rcv_wup; 2489 2490 return 0; 2491 } 2492 2493 static int tcp_repair_options_est(struct sock *sk, 2494 struct tcp_repair_opt __user *optbuf, unsigned int len) 2495 { 2496 struct tcp_sock *tp = tcp_sk(sk); 2497 struct tcp_repair_opt opt; 2498 2499 while (len >= sizeof(opt)) { 2500 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2501 return -EFAULT; 2502 2503 optbuf++; 2504 len -= sizeof(opt); 2505 2506 switch (opt.opt_code) { 2507 case TCPOPT_MSS: 2508 tp->rx_opt.mss_clamp = opt.opt_val; 2509 tcp_mtup_init(sk); 2510 break; 2511 case TCPOPT_WINDOW: 2512 { 2513 u16 snd_wscale = opt.opt_val & 0xFFFF; 2514 u16 rcv_wscale = opt.opt_val >> 16; 2515 2516 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2517 return -EFBIG; 2518 2519 tp->rx_opt.snd_wscale = snd_wscale; 2520 tp->rx_opt.rcv_wscale = rcv_wscale; 2521 tp->rx_opt.wscale_ok = 1; 2522 } 2523 break; 2524 case TCPOPT_SACK_PERM: 2525 if (opt.opt_val != 0) 2526 return -EINVAL; 2527 2528 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2529 break; 2530 case TCPOPT_TIMESTAMP: 2531 if (opt.opt_val != 0) 2532 return -EINVAL; 2533 2534 tp->rx_opt.tstamp_ok = 1; 2535 break; 2536 } 2537 } 2538 2539 return 0; 2540 } 2541 2542 /* 2543 * Socket option code for TCP. 2544 */ 2545 static int do_tcp_setsockopt(struct sock *sk, int level, 2546 int optname, char __user *optval, unsigned int optlen) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 struct inet_connection_sock *icsk = inet_csk(sk); 2550 struct net *net = sock_net(sk); 2551 int val; 2552 int err = 0; 2553 2554 /* These are data/string values, all the others are ints */ 2555 switch (optname) { 2556 case TCP_CONGESTION: { 2557 char name[TCP_CA_NAME_MAX]; 2558 2559 if (optlen < 1) 2560 return -EINVAL; 2561 2562 val = strncpy_from_user(name, optval, 2563 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2564 if (val < 0) 2565 return -EFAULT; 2566 name[val] = 0; 2567 2568 lock_sock(sk); 2569 err = tcp_set_congestion_control(sk, name, true, true); 2570 release_sock(sk); 2571 return err; 2572 } 2573 case TCP_ULP: { 2574 char name[TCP_ULP_NAME_MAX]; 2575 2576 if (optlen < 1) 2577 return -EINVAL; 2578 2579 val = strncpy_from_user(name, optval, 2580 min_t(long, TCP_ULP_NAME_MAX - 1, 2581 optlen)); 2582 if (val < 0) 2583 return -EFAULT; 2584 name[val] = 0; 2585 2586 lock_sock(sk); 2587 err = tcp_set_ulp(sk, name); 2588 release_sock(sk); 2589 return err; 2590 } 2591 case TCP_FASTOPEN_KEY: { 2592 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2593 2594 if (optlen != sizeof(key)) 2595 return -EINVAL; 2596 2597 if (copy_from_user(key, optval, optlen)) 2598 return -EFAULT; 2599 2600 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2601 } 2602 default: 2603 /* fallthru */ 2604 break; 2605 } 2606 2607 if (optlen < sizeof(int)) 2608 return -EINVAL; 2609 2610 if (get_user(val, (int __user *)optval)) 2611 return -EFAULT; 2612 2613 lock_sock(sk); 2614 2615 switch (optname) { 2616 case TCP_MAXSEG: 2617 /* Values greater than interface MTU won't take effect. However 2618 * at the point when this call is done we typically don't yet 2619 * know which interface is going to be used 2620 */ 2621 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2622 err = -EINVAL; 2623 break; 2624 } 2625 tp->rx_opt.user_mss = val; 2626 break; 2627 2628 case TCP_NODELAY: 2629 if (val) { 2630 /* TCP_NODELAY is weaker than TCP_CORK, so that 2631 * this option on corked socket is remembered, but 2632 * it is not activated until cork is cleared. 2633 * 2634 * However, when TCP_NODELAY is set we make 2635 * an explicit push, which overrides even TCP_CORK 2636 * for currently queued segments. 2637 */ 2638 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2639 tcp_push_pending_frames(sk); 2640 } else { 2641 tp->nonagle &= ~TCP_NAGLE_OFF; 2642 } 2643 break; 2644 2645 case TCP_THIN_LINEAR_TIMEOUTS: 2646 if (val < 0 || val > 1) 2647 err = -EINVAL; 2648 else 2649 tp->thin_lto = val; 2650 break; 2651 2652 case TCP_THIN_DUPACK: 2653 if (val < 0 || val > 1) 2654 err = -EINVAL; 2655 break; 2656 2657 case TCP_REPAIR: 2658 if (!tcp_can_repair_sock(sk)) 2659 err = -EPERM; 2660 else if (val == 1) { 2661 tp->repair = 1; 2662 sk->sk_reuse = SK_FORCE_REUSE; 2663 tp->repair_queue = TCP_NO_QUEUE; 2664 } else if (val == 0) { 2665 tp->repair = 0; 2666 sk->sk_reuse = SK_NO_REUSE; 2667 tcp_send_window_probe(sk); 2668 } else 2669 err = -EINVAL; 2670 2671 break; 2672 2673 case TCP_REPAIR_QUEUE: 2674 if (!tp->repair) 2675 err = -EPERM; 2676 else if (val < TCP_QUEUES_NR) 2677 tp->repair_queue = val; 2678 else 2679 err = -EINVAL; 2680 break; 2681 2682 case TCP_QUEUE_SEQ: 2683 if (sk->sk_state != TCP_CLOSE) 2684 err = -EPERM; 2685 else if (tp->repair_queue == TCP_SEND_QUEUE) 2686 tp->write_seq = val; 2687 else if (tp->repair_queue == TCP_RECV_QUEUE) 2688 tp->rcv_nxt = val; 2689 else 2690 err = -EINVAL; 2691 break; 2692 2693 case TCP_REPAIR_OPTIONS: 2694 if (!tp->repair) 2695 err = -EINVAL; 2696 else if (sk->sk_state == TCP_ESTABLISHED) 2697 err = tcp_repair_options_est(sk, 2698 (struct tcp_repair_opt __user *)optval, 2699 optlen); 2700 else 2701 err = -EPERM; 2702 break; 2703 2704 case TCP_CORK: 2705 /* When set indicates to always queue non-full frames. 2706 * Later the user clears this option and we transmit 2707 * any pending partial frames in the queue. This is 2708 * meant to be used alongside sendfile() to get properly 2709 * filled frames when the user (for example) must write 2710 * out headers with a write() call first and then use 2711 * sendfile to send out the data parts. 2712 * 2713 * TCP_CORK can be set together with TCP_NODELAY and it is 2714 * stronger than TCP_NODELAY. 2715 */ 2716 if (val) { 2717 tp->nonagle |= TCP_NAGLE_CORK; 2718 } else { 2719 tp->nonagle &= ~TCP_NAGLE_CORK; 2720 if (tp->nonagle&TCP_NAGLE_OFF) 2721 tp->nonagle |= TCP_NAGLE_PUSH; 2722 tcp_push_pending_frames(sk); 2723 } 2724 break; 2725 2726 case TCP_KEEPIDLE: 2727 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2728 err = -EINVAL; 2729 else { 2730 tp->keepalive_time = val * HZ; 2731 if (sock_flag(sk, SOCK_KEEPOPEN) && 2732 !((1 << sk->sk_state) & 2733 (TCPF_CLOSE | TCPF_LISTEN))) { 2734 u32 elapsed = keepalive_time_elapsed(tp); 2735 if (tp->keepalive_time > elapsed) 2736 elapsed = tp->keepalive_time - elapsed; 2737 else 2738 elapsed = 0; 2739 inet_csk_reset_keepalive_timer(sk, elapsed); 2740 } 2741 } 2742 break; 2743 case TCP_KEEPINTVL: 2744 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2745 err = -EINVAL; 2746 else 2747 tp->keepalive_intvl = val * HZ; 2748 break; 2749 case TCP_KEEPCNT: 2750 if (val < 1 || val > MAX_TCP_KEEPCNT) 2751 err = -EINVAL; 2752 else 2753 tp->keepalive_probes = val; 2754 break; 2755 case TCP_SYNCNT: 2756 if (val < 1 || val > MAX_TCP_SYNCNT) 2757 err = -EINVAL; 2758 else 2759 icsk->icsk_syn_retries = val; 2760 break; 2761 2762 case TCP_SAVE_SYN: 2763 if (val < 0 || val > 1) 2764 err = -EINVAL; 2765 else 2766 tp->save_syn = val; 2767 break; 2768 2769 case TCP_LINGER2: 2770 if (val < 0) 2771 tp->linger2 = -1; 2772 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2773 tp->linger2 = 0; 2774 else 2775 tp->linger2 = val * HZ; 2776 break; 2777 2778 case TCP_DEFER_ACCEPT: 2779 /* Translate value in seconds to number of retransmits */ 2780 icsk->icsk_accept_queue.rskq_defer_accept = 2781 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2782 TCP_RTO_MAX / HZ); 2783 break; 2784 2785 case TCP_WINDOW_CLAMP: 2786 if (!val) { 2787 if (sk->sk_state != TCP_CLOSE) { 2788 err = -EINVAL; 2789 break; 2790 } 2791 tp->window_clamp = 0; 2792 } else 2793 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2794 SOCK_MIN_RCVBUF / 2 : val; 2795 break; 2796 2797 case TCP_QUICKACK: 2798 if (!val) { 2799 icsk->icsk_ack.pingpong = 1; 2800 } else { 2801 icsk->icsk_ack.pingpong = 0; 2802 if ((1 << sk->sk_state) & 2803 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2804 inet_csk_ack_scheduled(sk)) { 2805 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2806 tcp_cleanup_rbuf(sk, 1); 2807 if (!(val & 1)) 2808 icsk->icsk_ack.pingpong = 1; 2809 } 2810 } 2811 break; 2812 2813 #ifdef CONFIG_TCP_MD5SIG 2814 case TCP_MD5SIG: 2815 case TCP_MD5SIG_EXT: 2816 /* Read the IP->Key mappings from userspace */ 2817 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2818 break; 2819 #endif 2820 case TCP_USER_TIMEOUT: 2821 /* Cap the max time in ms TCP will retry or probe the window 2822 * before giving up and aborting (ETIMEDOUT) a connection. 2823 */ 2824 if (val < 0) 2825 err = -EINVAL; 2826 else 2827 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2828 break; 2829 2830 case TCP_FASTOPEN: 2831 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2832 TCPF_LISTEN))) { 2833 tcp_fastopen_init_key_once(net); 2834 2835 fastopen_queue_tune(sk, val); 2836 } else { 2837 err = -EINVAL; 2838 } 2839 break; 2840 case TCP_FASTOPEN_CONNECT: 2841 if (val > 1 || val < 0) { 2842 err = -EINVAL; 2843 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2844 if (sk->sk_state == TCP_CLOSE) 2845 tp->fastopen_connect = val; 2846 else 2847 err = -EINVAL; 2848 } else { 2849 err = -EOPNOTSUPP; 2850 } 2851 break; 2852 case TCP_FASTOPEN_NO_COOKIE: 2853 if (val > 1 || val < 0) 2854 err = -EINVAL; 2855 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2856 err = -EINVAL; 2857 else 2858 tp->fastopen_no_cookie = val; 2859 break; 2860 case TCP_TIMESTAMP: 2861 if (!tp->repair) 2862 err = -EPERM; 2863 else 2864 tp->tsoffset = val - tcp_time_stamp_raw(); 2865 break; 2866 case TCP_REPAIR_WINDOW: 2867 err = tcp_repair_set_window(tp, optval, optlen); 2868 break; 2869 case TCP_NOTSENT_LOWAT: 2870 tp->notsent_lowat = val; 2871 sk->sk_write_space(sk); 2872 break; 2873 default: 2874 err = -ENOPROTOOPT; 2875 break; 2876 } 2877 2878 release_sock(sk); 2879 return err; 2880 } 2881 2882 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2883 unsigned int optlen) 2884 { 2885 const struct inet_connection_sock *icsk = inet_csk(sk); 2886 2887 if (level != SOL_TCP) 2888 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2889 optval, optlen); 2890 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2891 } 2892 EXPORT_SYMBOL(tcp_setsockopt); 2893 2894 #ifdef CONFIG_COMPAT 2895 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2896 char __user *optval, unsigned int optlen) 2897 { 2898 if (level != SOL_TCP) 2899 return inet_csk_compat_setsockopt(sk, level, optname, 2900 optval, optlen); 2901 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2902 } 2903 EXPORT_SYMBOL(compat_tcp_setsockopt); 2904 #endif 2905 2906 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2907 struct tcp_info *info) 2908 { 2909 u64 stats[__TCP_CHRONO_MAX], total = 0; 2910 enum tcp_chrono i; 2911 2912 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2913 stats[i] = tp->chrono_stat[i - 1]; 2914 if (i == tp->chrono_type) 2915 stats[i] += tcp_jiffies32 - tp->chrono_start; 2916 stats[i] *= USEC_PER_SEC / HZ; 2917 total += stats[i]; 2918 } 2919 2920 info->tcpi_busy_time = total; 2921 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2922 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2923 } 2924 2925 /* Return information about state of tcp endpoint in API format. */ 2926 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2927 { 2928 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2929 const struct inet_connection_sock *icsk = inet_csk(sk); 2930 u32 now; 2931 u64 rate64; 2932 bool slow; 2933 u32 rate; 2934 2935 memset(info, 0, sizeof(*info)); 2936 if (sk->sk_type != SOCK_STREAM) 2937 return; 2938 2939 info->tcpi_state = inet_sk_state_load(sk); 2940 2941 /* Report meaningful fields for all TCP states, including listeners */ 2942 rate = READ_ONCE(sk->sk_pacing_rate); 2943 rate64 = rate != ~0U ? rate : ~0ULL; 2944 info->tcpi_pacing_rate = rate64; 2945 2946 rate = READ_ONCE(sk->sk_max_pacing_rate); 2947 rate64 = rate != ~0U ? rate : ~0ULL; 2948 info->tcpi_max_pacing_rate = rate64; 2949 2950 info->tcpi_reordering = tp->reordering; 2951 info->tcpi_snd_cwnd = tp->snd_cwnd; 2952 2953 if (info->tcpi_state == TCP_LISTEN) { 2954 /* listeners aliased fields : 2955 * tcpi_unacked -> Number of children ready for accept() 2956 * tcpi_sacked -> max backlog 2957 */ 2958 info->tcpi_unacked = sk->sk_ack_backlog; 2959 info->tcpi_sacked = sk->sk_max_ack_backlog; 2960 return; 2961 } 2962 2963 slow = lock_sock_fast(sk); 2964 2965 info->tcpi_ca_state = icsk->icsk_ca_state; 2966 info->tcpi_retransmits = icsk->icsk_retransmits; 2967 info->tcpi_probes = icsk->icsk_probes_out; 2968 info->tcpi_backoff = icsk->icsk_backoff; 2969 2970 if (tp->rx_opt.tstamp_ok) 2971 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2972 if (tcp_is_sack(tp)) 2973 info->tcpi_options |= TCPI_OPT_SACK; 2974 if (tp->rx_opt.wscale_ok) { 2975 info->tcpi_options |= TCPI_OPT_WSCALE; 2976 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2977 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2978 } 2979 2980 if (tp->ecn_flags & TCP_ECN_OK) 2981 info->tcpi_options |= TCPI_OPT_ECN; 2982 if (tp->ecn_flags & TCP_ECN_SEEN) 2983 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2984 if (tp->syn_data_acked) 2985 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2986 2987 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2988 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2989 info->tcpi_snd_mss = tp->mss_cache; 2990 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2991 2992 info->tcpi_unacked = tp->packets_out; 2993 info->tcpi_sacked = tp->sacked_out; 2994 2995 info->tcpi_lost = tp->lost_out; 2996 info->tcpi_retrans = tp->retrans_out; 2997 2998 now = tcp_jiffies32; 2999 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3000 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3001 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3002 3003 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3004 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3005 info->tcpi_rtt = tp->srtt_us >> 3; 3006 info->tcpi_rttvar = tp->mdev_us >> 2; 3007 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3008 info->tcpi_advmss = tp->advmss; 3009 3010 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3011 info->tcpi_rcv_space = tp->rcvq_space.space; 3012 3013 info->tcpi_total_retrans = tp->total_retrans; 3014 3015 info->tcpi_bytes_acked = tp->bytes_acked; 3016 info->tcpi_bytes_received = tp->bytes_received; 3017 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3018 tcp_get_info_chrono_stats(tp, info); 3019 3020 info->tcpi_segs_out = tp->segs_out; 3021 info->tcpi_segs_in = tp->segs_in; 3022 3023 info->tcpi_min_rtt = tcp_min_rtt(tp); 3024 info->tcpi_data_segs_in = tp->data_segs_in; 3025 info->tcpi_data_segs_out = tp->data_segs_out; 3026 3027 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3028 rate64 = tcp_compute_delivery_rate(tp); 3029 if (rate64) 3030 info->tcpi_delivery_rate = rate64; 3031 unlock_sock_fast(sk, slow); 3032 } 3033 EXPORT_SYMBOL_GPL(tcp_get_info); 3034 3035 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3036 { 3037 const struct tcp_sock *tp = tcp_sk(sk); 3038 struct sk_buff *stats; 3039 struct tcp_info info; 3040 u64 rate64; 3041 u32 rate; 3042 3043 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3044 5 * nla_total_size(sizeof(u32)) + 3045 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3046 if (!stats) 3047 return NULL; 3048 3049 tcp_get_info_chrono_stats(tp, &info); 3050 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3051 info.tcpi_busy_time, TCP_NLA_PAD); 3052 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3053 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3054 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3055 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3056 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3057 tp->data_segs_out, TCP_NLA_PAD); 3058 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3059 tp->total_retrans, TCP_NLA_PAD); 3060 3061 rate = READ_ONCE(sk->sk_pacing_rate); 3062 rate64 = rate != ~0U ? rate : ~0ULL; 3063 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3064 3065 rate64 = tcp_compute_delivery_rate(tp); 3066 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3067 3068 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3069 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3070 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3071 3072 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3073 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3074 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3075 3076 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3077 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3078 return stats; 3079 } 3080 3081 static int do_tcp_getsockopt(struct sock *sk, int level, 3082 int optname, char __user *optval, int __user *optlen) 3083 { 3084 struct inet_connection_sock *icsk = inet_csk(sk); 3085 struct tcp_sock *tp = tcp_sk(sk); 3086 struct net *net = sock_net(sk); 3087 int val, len; 3088 3089 if (get_user(len, optlen)) 3090 return -EFAULT; 3091 3092 len = min_t(unsigned int, len, sizeof(int)); 3093 3094 if (len < 0) 3095 return -EINVAL; 3096 3097 switch (optname) { 3098 case TCP_MAXSEG: 3099 val = tp->mss_cache; 3100 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3101 val = tp->rx_opt.user_mss; 3102 if (tp->repair) 3103 val = tp->rx_opt.mss_clamp; 3104 break; 3105 case TCP_NODELAY: 3106 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3107 break; 3108 case TCP_CORK: 3109 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3110 break; 3111 case TCP_KEEPIDLE: 3112 val = keepalive_time_when(tp) / HZ; 3113 break; 3114 case TCP_KEEPINTVL: 3115 val = keepalive_intvl_when(tp) / HZ; 3116 break; 3117 case TCP_KEEPCNT: 3118 val = keepalive_probes(tp); 3119 break; 3120 case TCP_SYNCNT: 3121 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3122 break; 3123 case TCP_LINGER2: 3124 val = tp->linger2; 3125 if (val >= 0) 3126 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3127 break; 3128 case TCP_DEFER_ACCEPT: 3129 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3130 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3131 break; 3132 case TCP_WINDOW_CLAMP: 3133 val = tp->window_clamp; 3134 break; 3135 case TCP_INFO: { 3136 struct tcp_info info; 3137 3138 if (get_user(len, optlen)) 3139 return -EFAULT; 3140 3141 tcp_get_info(sk, &info); 3142 3143 len = min_t(unsigned int, len, sizeof(info)); 3144 if (put_user(len, optlen)) 3145 return -EFAULT; 3146 if (copy_to_user(optval, &info, len)) 3147 return -EFAULT; 3148 return 0; 3149 } 3150 case TCP_CC_INFO: { 3151 const struct tcp_congestion_ops *ca_ops; 3152 union tcp_cc_info info; 3153 size_t sz = 0; 3154 int attr; 3155 3156 if (get_user(len, optlen)) 3157 return -EFAULT; 3158 3159 ca_ops = icsk->icsk_ca_ops; 3160 if (ca_ops && ca_ops->get_info) 3161 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3162 3163 len = min_t(unsigned int, len, sz); 3164 if (put_user(len, optlen)) 3165 return -EFAULT; 3166 if (copy_to_user(optval, &info, len)) 3167 return -EFAULT; 3168 return 0; 3169 } 3170 case TCP_QUICKACK: 3171 val = !icsk->icsk_ack.pingpong; 3172 break; 3173 3174 case TCP_CONGESTION: 3175 if (get_user(len, optlen)) 3176 return -EFAULT; 3177 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3178 if (put_user(len, optlen)) 3179 return -EFAULT; 3180 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3181 return -EFAULT; 3182 return 0; 3183 3184 case TCP_ULP: 3185 if (get_user(len, optlen)) 3186 return -EFAULT; 3187 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3188 if (!icsk->icsk_ulp_ops) { 3189 if (put_user(0, optlen)) 3190 return -EFAULT; 3191 return 0; 3192 } 3193 if (put_user(len, optlen)) 3194 return -EFAULT; 3195 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3196 return -EFAULT; 3197 return 0; 3198 3199 case TCP_FASTOPEN_KEY: { 3200 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3201 struct tcp_fastopen_context *ctx; 3202 3203 if (get_user(len, optlen)) 3204 return -EFAULT; 3205 3206 rcu_read_lock(); 3207 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3208 if (ctx) 3209 memcpy(key, ctx->key, sizeof(key)); 3210 else 3211 len = 0; 3212 rcu_read_unlock(); 3213 3214 len = min_t(unsigned int, len, sizeof(key)); 3215 if (put_user(len, optlen)) 3216 return -EFAULT; 3217 if (copy_to_user(optval, key, len)) 3218 return -EFAULT; 3219 return 0; 3220 } 3221 case TCP_THIN_LINEAR_TIMEOUTS: 3222 val = tp->thin_lto; 3223 break; 3224 3225 case TCP_THIN_DUPACK: 3226 val = 0; 3227 break; 3228 3229 case TCP_REPAIR: 3230 val = tp->repair; 3231 break; 3232 3233 case TCP_REPAIR_QUEUE: 3234 if (tp->repair) 3235 val = tp->repair_queue; 3236 else 3237 return -EINVAL; 3238 break; 3239 3240 case TCP_REPAIR_WINDOW: { 3241 struct tcp_repair_window opt; 3242 3243 if (get_user(len, optlen)) 3244 return -EFAULT; 3245 3246 if (len != sizeof(opt)) 3247 return -EINVAL; 3248 3249 if (!tp->repair) 3250 return -EPERM; 3251 3252 opt.snd_wl1 = tp->snd_wl1; 3253 opt.snd_wnd = tp->snd_wnd; 3254 opt.max_window = tp->max_window; 3255 opt.rcv_wnd = tp->rcv_wnd; 3256 opt.rcv_wup = tp->rcv_wup; 3257 3258 if (copy_to_user(optval, &opt, len)) 3259 return -EFAULT; 3260 return 0; 3261 } 3262 case TCP_QUEUE_SEQ: 3263 if (tp->repair_queue == TCP_SEND_QUEUE) 3264 val = tp->write_seq; 3265 else if (tp->repair_queue == TCP_RECV_QUEUE) 3266 val = tp->rcv_nxt; 3267 else 3268 return -EINVAL; 3269 break; 3270 3271 case TCP_USER_TIMEOUT: 3272 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3273 break; 3274 3275 case TCP_FASTOPEN: 3276 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3277 break; 3278 3279 case TCP_FASTOPEN_CONNECT: 3280 val = tp->fastopen_connect; 3281 break; 3282 3283 case TCP_FASTOPEN_NO_COOKIE: 3284 val = tp->fastopen_no_cookie; 3285 break; 3286 3287 case TCP_TIMESTAMP: 3288 val = tcp_time_stamp_raw() + tp->tsoffset; 3289 break; 3290 case TCP_NOTSENT_LOWAT: 3291 val = tp->notsent_lowat; 3292 break; 3293 case TCP_SAVE_SYN: 3294 val = tp->save_syn; 3295 break; 3296 case TCP_SAVED_SYN: { 3297 if (get_user(len, optlen)) 3298 return -EFAULT; 3299 3300 lock_sock(sk); 3301 if (tp->saved_syn) { 3302 if (len < tp->saved_syn[0]) { 3303 if (put_user(tp->saved_syn[0], optlen)) { 3304 release_sock(sk); 3305 return -EFAULT; 3306 } 3307 release_sock(sk); 3308 return -EINVAL; 3309 } 3310 len = tp->saved_syn[0]; 3311 if (put_user(len, optlen)) { 3312 release_sock(sk); 3313 return -EFAULT; 3314 } 3315 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3316 release_sock(sk); 3317 return -EFAULT; 3318 } 3319 tcp_saved_syn_free(tp); 3320 release_sock(sk); 3321 } else { 3322 release_sock(sk); 3323 len = 0; 3324 if (put_user(len, optlen)) 3325 return -EFAULT; 3326 } 3327 return 0; 3328 } 3329 default: 3330 return -ENOPROTOOPT; 3331 } 3332 3333 if (put_user(len, optlen)) 3334 return -EFAULT; 3335 if (copy_to_user(optval, &val, len)) 3336 return -EFAULT; 3337 return 0; 3338 } 3339 3340 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3341 int __user *optlen) 3342 { 3343 struct inet_connection_sock *icsk = inet_csk(sk); 3344 3345 if (level != SOL_TCP) 3346 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3347 optval, optlen); 3348 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3349 } 3350 EXPORT_SYMBOL(tcp_getsockopt); 3351 3352 #ifdef CONFIG_COMPAT 3353 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3354 char __user *optval, int __user *optlen) 3355 { 3356 if (level != SOL_TCP) 3357 return inet_csk_compat_getsockopt(sk, level, optname, 3358 optval, optlen); 3359 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3360 } 3361 EXPORT_SYMBOL(compat_tcp_getsockopt); 3362 #endif 3363 3364 #ifdef CONFIG_TCP_MD5SIG 3365 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3366 static DEFINE_MUTEX(tcp_md5sig_mutex); 3367 static bool tcp_md5sig_pool_populated = false; 3368 3369 static void __tcp_alloc_md5sig_pool(void) 3370 { 3371 struct crypto_ahash *hash; 3372 int cpu; 3373 3374 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3375 if (IS_ERR(hash)) 3376 return; 3377 3378 for_each_possible_cpu(cpu) { 3379 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3380 struct ahash_request *req; 3381 3382 if (!scratch) { 3383 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3384 sizeof(struct tcphdr), 3385 GFP_KERNEL, 3386 cpu_to_node(cpu)); 3387 if (!scratch) 3388 return; 3389 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3390 } 3391 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3392 continue; 3393 3394 req = ahash_request_alloc(hash, GFP_KERNEL); 3395 if (!req) 3396 return; 3397 3398 ahash_request_set_callback(req, 0, NULL, NULL); 3399 3400 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3401 } 3402 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3403 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3404 */ 3405 smp_wmb(); 3406 tcp_md5sig_pool_populated = true; 3407 } 3408 3409 bool tcp_alloc_md5sig_pool(void) 3410 { 3411 if (unlikely(!tcp_md5sig_pool_populated)) { 3412 mutex_lock(&tcp_md5sig_mutex); 3413 3414 if (!tcp_md5sig_pool_populated) 3415 __tcp_alloc_md5sig_pool(); 3416 3417 mutex_unlock(&tcp_md5sig_mutex); 3418 } 3419 return tcp_md5sig_pool_populated; 3420 } 3421 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3422 3423 3424 /** 3425 * tcp_get_md5sig_pool - get md5sig_pool for this user 3426 * 3427 * We use percpu structure, so if we succeed, we exit with preemption 3428 * and BH disabled, to make sure another thread or softirq handling 3429 * wont try to get same context. 3430 */ 3431 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3432 { 3433 local_bh_disable(); 3434 3435 if (tcp_md5sig_pool_populated) { 3436 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3437 smp_rmb(); 3438 return this_cpu_ptr(&tcp_md5sig_pool); 3439 } 3440 local_bh_enable(); 3441 return NULL; 3442 } 3443 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3444 3445 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3446 const struct sk_buff *skb, unsigned int header_len) 3447 { 3448 struct scatterlist sg; 3449 const struct tcphdr *tp = tcp_hdr(skb); 3450 struct ahash_request *req = hp->md5_req; 3451 unsigned int i; 3452 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3453 skb_headlen(skb) - header_len : 0; 3454 const struct skb_shared_info *shi = skb_shinfo(skb); 3455 struct sk_buff *frag_iter; 3456 3457 sg_init_table(&sg, 1); 3458 3459 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3460 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3461 if (crypto_ahash_update(req)) 3462 return 1; 3463 3464 for (i = 0; i < shi->nr_frags; ++i) { 3465 const struct skb_frag_struct *f = &shi->frags[i]; 3466 unsigned int offset = f->page_offset; 3467 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3468 3469 sg_set_page(&sg, page, skb_frag_size(f), 3470 offset_in_page(offset)); 3471 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3472 if (crypto_ahash_update(req)) 3473 return 1; 3474 } 3475 3476 skb_walk_frags(skb, frag_iter) 3477 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3478 return 1; 3479 3480 return 0; 3481 } 3482 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3483 3484 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3485 { 3486 struct scatterlist sg; 3487 3488 sg_init_one(&sg, key->key, key->keylen); 3489 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3490 return crypto_ahash_update(hp->md5_req); 3491 } 3492 EXPORT_SYMBOL(tcp_md5_hash_key); 3493 3494 #endif 3495 3496 void tcp_done(struct sock *sk) 3497 { 3498 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3499 3500 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3501 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3502 3503 tcp_set_state(sk, TCP_CLOSE); 3504 tcp_clear_xmit_timers(sk); 3505 if (req) 3506 reqsk_fastopen_remove(sk, req, false); 3507 3508 sk->sk_shutdown = SHUTDOWN_MASK; 3509 3510 if (!sock_flag(sk, SOCK_DEAD)) 3511 sk->sk_state_change(sk); 3512 else 3513 inet_csk_destroy_sock(sk); 3514 } 3515 EXPORT_SYMBOL_GPL(tcp_done); 3516 3517 int tcp_abort(struct sock *sk, int err) 3518 { 3519 if (!sk_fullsock(sk)) { 3520 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3521 struct request_sock *req = inet_reqsk(sk); 3522 3523 local_bh_disable(); 3524 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3525 req); 3526 local_bh_enable(); 3527 return 0; 3528 } 3529 return -EOPNOTSUPP; 3530 } 3531 3532 /* Don't race with userspace socket closes such as tcp_close. */ 3533 lock_sock(sk); 3534 3535 if (sk->sk_state == TCP_LISTEN) { 3536 tcp_set_state(sk, TCP_CLOSE); 3537 inet_csk_listen_stop(sk); 3538 } 3539 3540 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3541 local_bh_disable(); 3542 bh_lock_sock(sk); 3543 3544 if (!sock_flag(sk, SOCK_DEAD)) { 3545 sk->sk_err = err; 3546 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3547 smp_wmb(); 3548 sk->sk_error_report(sk); 3549 if (tcp_need_reset(sk->sk_state)) 3550 tcp_send_active_reset(sk, GFP_ATOMIC); 3551 tcp_done(sk); 3552 } 3553 3554 bh_unlock_sock(sk); 3555 local_bh_enable(); 3556 tcp_write_queue_purge(sk); 3557 release_sock(sk); 3558 return 0; 3559 } 3560 EXPORT_SYMBOL_GPL(tcp_abort); 3561 3562 extern struct tcp_congestion_ops tcp_reno; 3563 3564 static __initdata unsigned long thash_entries; 3565 static int __init set_thash_entries(char *str) 3566 { 3567 ssize_t ret; 3568 3569 if (!str) 3570 return 0; 3571 3572 ret = kstrtoul(str, 0, &thash_entries); 3573 if (ret) 3574 return 0; 3575 3576 return 1; 3577 } 3578 __setup("thash_entries=", set_thash_entries); 3579 3580 static void __init tcp_init_mem(void) 3581 { 3582 unsigned long limit = nr_free_buffer_pages() / 16; 3583 3584 limit = max(limit, 128UL); 3585 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3586 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3587 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3588 } 3589 3590 void __init tcp_init(void) 3591 { 3592 int max_rshare, max_wshare, cnt; 3593 unsigned long limit; 3594 unsigned int i; 3595 3596 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3597 FIELD_SIZEOF(struct sk_buff, cb)); 3598 3599 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3600 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3601 inet_hashinfo_init(&tcp_hashinfo); 3602 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3603 thash_entries, 21, /* one slot per 2 MB*/ 3604 0, 64 * 1024); 3605 tcp_hashinfo.bind_bucket_cachep = 3606 kmem_cache_create("tcp_bind_bucket", 3607 sizeof(struct inet_bind_bucket), 0, 3608 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3609 3610 /* Size and allocate the main established and bind bucket 3611 * hash tables. 3612 * 3613 * The methodology is similar to that of the buffer cache. 3614 */ 3615 tcp_hashinfo.ehash = 3616 alloc_large_system_hash("TCP established", 3617 sizeof(struct inet_ehash_bucket), 3618 thash_entries, 3619 17, /* one slot per 128 KB of memory */ 3620 0, 3621 NULL, 3622 &tcp_hashinfo.ehash_mask, 3623 0, 3624 thash_entries ? 0 : 512 * 1024); 3625 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3626 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3627 3628 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3629 panic("TCP: failed to alloc ehash_locks"); 3630 tcp_hashinfo.bhash = 3631 alloc_large_system_hash("TCP bind", 3632 sizeof(struct inet_bind_hashbucket), 3633 tcp_hashinfo.ehash_mask + 1, 3634 17, /* one slot per 128 KB of memory */ 3635 0, 3636 &tcp_hashinfo.bhash_size, 3637 NULL, 3638 0, 3639 64 * 1024); 3640 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3641 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3642 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3643 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3644 } 3645 3646 3647 cnt = tcp_hashinfo.ehash_mask + 1; 3648 sysctl_tcp_max_orphans = cnt / 2; 3649 3650 tcp_init_mem(); 3651 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3652 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3653 max_wshare = min(4UL*1024*1024, limit); 3654 max_rshare = min(6UL*1024*1024, limit); 3655 3656 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3657 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3658 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3659 3660 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3661 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3662 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3663 3664 pr_info("Hash tables configured (established %u bind %u)\n", 3665 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3666 3667 tcp_v4_init(); 3668 tcp_metrics_init(); 3669 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3670 tcp_tasklet_init(); 3671 } 3672