xref: /linux/net/ipv4/tcp.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	tp->out_of_order_queue = RB_ROOT;
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 	minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* There's a bubble in the pipe until at least the first ACK. */
400 	tp->app_limited = ~0U;
401 
402 	/* See draft-stevens-tcpca-spec-01 for discussion of the
403 	 * initialization of these values.
404 	 */
405 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
406 	tp->snd_cwnd_clamp = ~0;
407 	tp->mss_cache = TCP_MSS_DEFAULT;
408 	u64_stats_init(&tp->syncp);
409 
410 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
411 	tcp_enable_early_retrans(tp);
412 	tcp_assign_congestion_control(sk);
413 
414 	tp->tsoffset = 0;
415 
416 	sk->sk_state = TCP_CLOSE;
417 
418 	sk->sk_write_space = sk_stream_write_space;
419 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
420 
421 	icsk->icsk_sync_mss = tcp_sync_mss;
422 
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	if (mem_cgroup_sockets_enabled)
428 		sock_update_memcg(sk);
429 	sk_sockets_allocated_inc(sk);
430 	local_bh_enable();
431 }
432 EXPORT_SYMBOL(tcp_init_sock);
433 
434 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
435 {
436 	if (tsflags) {
437 		struct skb_shared_info *shinfo = skb_shinfo(skb);
438 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
439 
440 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
441 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
442 			tcb->txstamp_ack = 1;
443 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
444 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
445 	}
446 }
447 
448 /*
449  *	Wait for a TCP event.
450  *
451  *	Note that we don't need to lock the socket, as the upper poll layers
452  *	take care of normal races (between the test and the event) and we don't
453  *	go look at any of the socket buffers directly.
454  */
455 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
456 {
457 	unsigned int mask;
458 	struct sock *sk = sock->sk;
459 	const struct tcp_sock *tp = tcp_sk(sk);
460 	int state;
461 
462 	sock_rps_record_flow(sk);
463 
464 	sock_poll_wait(file, sk_sleep(sk), wait);
465 
466 	state = sk_state_load(sk);
467 	if (state == TCP_LISTEN)
468 		return inet_csk_listen_poll(sk);
469 
470 	/* Socket is not locked. We are protected from async events
471 	 * by poll logic and correct handling of state changes
472 	 * made by other threads is impossible in any case.
473 	 */
474 
475 	mask = 0;
476 
477 	/*
478 	 * POLLHUP is certainly not done right. But poll() doesn't
479 	 * have a notion of HUP in just one direction, and for a
480 	 * socket the read side is more interesting.
481 	 *
482 	 * Some poll() documentation says that POLLHUP is incompatible
483 	 * with the POLLOUT/POLLWR flags, so somebody should check this
484 	 * all. But careful, it tends to be safer to return too many
485 	 * bits than too few, and you can easily break real applications
486 	 * if you don't tell them that something has hung up!
487 	 *
488 	 * Check-me.
489 	 *
490 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
491 	 * our fs/select.c). It means that after we received EOF,
492 	 * poll always returns immediately, making impossible poll() on write()
493 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
494 	 * if and only if shutdown has been made in both directions.
495 	 * Actually, it is interesting to look how Solaris and DUX
496 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
497 	 * then we could set it on SND_SHUTDOWN. BTW examples given
498 	 * in Stevens' books assume exactly this behaviour, it explains
499 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
500 	 *
501 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
502 	 * blocking on fresh not-connected or disconnected socket. --ANK
503 	 */
504 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
505 		mask |= POLLHUP;
506 	if (sk->sk_shutdown & RCV_SHUTDOWN)
507 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
508 
509 	/* Connected or passive Fast Open socket? */
510 	if (state != TCP_SYN_SENT &&
511 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
512 		int target = sock_rcvlowat(sk, 0, INT_MAX);
513 
514 		if (tp->urg_seq == tp->copied_seq &&
515 		    !sock_flag(sk, SOCK_URGINLINE) &&
516 		    tp->urg_data)
517 			target++;
518 
519 		if (tp->rcv_nxt - tp->copied_seq >= target)
520 			mask |= POLLIN | POLLRDNORM;
521 
522 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
523 			if (sk_stream_is_writeable(sk)) {
524 				mask |= POLLOUT | POLLWRNORM;
525 			} else {  /* send SIGIO later */
526 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
527 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
528 
529 				/* Race breaker. If space is freed after
530 				 * wspace test but before the flags are set,
531 				 * IO signal will be lost. Memory barrier
532 				 * pairs with the input side.
533 				 */
534 				smp_mb__after_atomic();
535 				if (sk_stream_is_writeable(sk))
536 					mask |= POLLOUT | POLLWRNORM;
537 			}
538 		} else
539 			mask |= POLLOUT | POLLWRNORM;
540 
541 		if (tp->urg_data & TCP_URG_VALID)
542 			mask |= POLLPRI;
543 	}
544 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
545 	smp_rmb();
546 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
547 		mask |= POLLERR;
548 
549 	return mask;
550 }
551 EXPORT_SYMBOL(tcp_poll);
552 
553 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	int answ;
557 	bool slow;
558 
559 	switch (cmd) {
560 	case SIOCINQ:
561 		if (sk->sk_state == TCP_LISTEN)
562 			return -EINVAL;
563 
564 		slow = lock_sock_fast(sk);
565 		answ = tcp_inq(sk);
566 		unlock_sock_fast(sk, slow);
567 		break;
568 	case SIOCATMARK:
569 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
570 		break;
571 	case SIOCOUTQ:
572 		if (sk->sk_state == TCP_LISTEN)
573 			return -EINVAL;
574 
575 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
576 			answ = 0;
577 		else
578 			answ = tp->write_seq - tp->snd_una;
579 		break;
580 	case SIOCOUTQNSD:
581 		if (sk->sk_state == TCP_LISTEN)
582 			return -EINVAL;
583 
584 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
585 			answ = 0;
586 		else
587 			answ = tp->write_seq - tp->snd_nxt;
588 		break;
589 	default:
590 		return -ENOIOCTLCMD;
591 	}
592 
593 	return put_user(answ, (int __user *)arg);
594 }
595 EXPORT_SYMBOL(tcp_ioctl);
596 
597 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
598 {
599 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
600 	tp->pushed_seq = tp->write_seq;
601 }
602 
603 static inline bool forced_push(const struct tcp_sock *tp)
604 {
605 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
606 }
607 
608 static void skb_entail(struct sock *sk, struct sk_buff *skb)
609 {
610 	struct tcp_sock *tp = tcp_sk(sk);
611 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
612 
613 	skb->csum    = 0;
614 	tcb->seq     = tcb->end_seq = tp->write_seq;
615 	tcb->tcp_flags = TCPHDR_ACK;
616 	tcb->sacked  = 0;
617 	__skb_header_release(skb);
618 	tcp_add_write_queue_tail(sk, skb);
619 	sk->sk_wmem_queued += skb->truesize;
620 	sk_mem_charge(sk, skb->truesize);
621 	if (tp->nonagle & TCP_NAGLE_PUSH)
622 		tp->nonagle &= ~TCP_NAGLE_PUSH;
623 
624 	tcp_slow_start_after_idle_check(sk);
625 }
626 
627 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
628 {
629 	if (flags & MSG_OOB)
630 		tp->snd_up = tp->write_seq;
631 }
632 
633 /* If a not yet filled skb is pushed, do not send it if
634  * we have data packets in Qdisc or NIC queues :
635  * Because TX completion will happen shortly, it gives a chance
636  * to coalesce future sendmsg() payload into this skb, without
637  * need for a timer, and with no latency trade off.
638  * As packets containing data payload have a bigger truesize
639  * than pure acks (dataless) packets, the last checks prevent
640  * autocorking if we only have an ACK in Qdisc/NIC queues,
641  * or if TX completion was delayed after we processed ACK packet.
642  */
643 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
644 				int size_goal)
645 {
646 	return skb->len < size_goal &&
647 	       sysctl_tcp_autocorking &&
648 	       skb != tcp_write_queue_head(sk) &&
649 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
650 }
651 
652 static void tcp_push(struct sock *sk, int flags, int mss_now,
653 		     int nonagle, int size_goal)
654 {
655 	struct tcp_sock *tp = tcp_sk(sk);
656 	struct sk_buff *skb;
657 
658 	if (!tcp_send_head(sk))
659 		return;
660 
661 	skb = tcp_write_queue_tail(sk);
662 	if (!(flags & MSG_MORE) || forced_push(tp))
663 		tcp_mark_push(tp, skb);
664 
665 	tcp_mark_urg(tp, flags);
666 
667 	if (tcp_should_autocork(sk, skb, size_goal)) {
668 
669 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
670 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
671 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
672 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
673 		}
674 		/* It is possible TX completion already happened
675 		 * before we set TSQ_THROTTLED.
676 		 */
677 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
678 			return;
679 	}
680 
681 	if (flags & MSG_MORE)
682 		nonagle = TCP_NAGLE_CORK;
683 
684 	__tcp_push_pending_frames(sk, mss_now, nonagle);
685 }
686 
687 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
688 				unsigned int offset, size_t len)
689 {
690 	struct tcp_splice_state *tss = rd_desc->arg.data;
691 	int ret;
692 
693 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
694 			      min(rd_desc->count, len), tss->flags,
695 			      skb_socket_splice);
696 	if (ret > 0)
697 		rd_desc->count -= ret;
698 	return ret;
699 }
700 
701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
702 {
703 	/* Store TCP splice context information in read_descriptor_t. */
704 	read_descriptor_t rd_desc = {
705 		.arg.data = tss,
706 		.count	  = tss->len,
707 	};
708 
709 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
710 }
711 
712 /**
713  *  tcp_splice_read - splice data from TCP socket to a pipe
714  * @sock:	socket to splice from
715  * @ppos:	position (not valid)
716  * @pipe:	pipe to splice to
717  * @len:	number of bytes to splice
718  * @flags:	splice modifier flags
719  *
720  * Description:
721  *    Will read pages from given socket and fill them into a pipe.
722  *
723  **/
724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
725 			struct pipe_inode_info *pipe, size_t len,
726 			unsigned int flags)
727 {
728 	struct sock *sk = sock->sk;
729 	struct tcp_splice_state tss = {
730 		.pipe = pipe,
731 		.len = len,
732 		.flags = flags,
733 	};
734 	long timeo;
735 	ssize_t spliced;
736 	int ret;
737 
738 	sock_rps_record_flow(sk);
739 	/*
740 	 * We can't seek on a socket input
741 	 */
742 	if (unlikely(*ppos))
743 		return -ESPIPE;
744 
745 	ret = spliced = 0;
746 
747 	lock_sock(sk);
748 
749 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
750 	while (tss.len) {
751 		ret = __tcp_splice_read(sk, &tss);
752 		if (ret < 0)
753 			break;
754 		else if (!ret) {
755 			if (spliced)
756 				break;
757 			if (sock_flag(sk, SOCK_DONE))
758 				break;
759 			if (sk->sk_err) {
760 				ret = sock_error(sk);
761 				break;
762 			}
763 			if (sk->sk_shutdown & RCV_SHUTDOWN)
764 				break;
765 			if (sk->sk_state == TCP_CLOSE) {
766 				/*
767 				 * This occurs when user tries to read
768 				 * from never connected socket.
769 				 */
770 				if (!sock_flag(sk, SOCK_DONE))
771 					ret = -ENOTCONN;
772 				break;
773 			}
774 			if (!timeo) {
775 				ret = -EAGAIN;
776 				break;
777 			}
778 			sk_wait_data(sk, &timeo, NULL);
779 			if (signal_pending(current)) {
780 				ret = sock_intr_errno(timeo);
781 				break;
782 			}
783 			continue;
784 		}
785 		tss.len -= ret;
786 		spliced += ret;
787 
788 		if (!timeo)
789 			break;
790 		release_sock(sk);
791 		lock_sock(sk);
792 
793 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
794 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
795 		    signal_pending(current))
796 			break;
797 	}
798 
799 	release_sock(sk);
800 
801 	if (spliced)
802 		return spliced;
803 
804 	return ret;
805 }
806 EXPORT_SYMBOL(tcp_splice_read);
807 
808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
809 				    bool force_schedule)
810 {
811 	struct sk_buff *skb;
812 
813 	/* The TCP header must be at least 32-bit aligned.  */
814 	size = ALIGN(size, 4);
815 
816 	if (unlikely(tcp_under_memory_pressure(sk)))
817 		sk_mem_reclaim_partial(sk);
818 
819 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
820 	if (likely(skb)) {
821 		bool mem_scheduled;
822 
823 		if (force_schedule) {
824 			mem_scheduled = true;
825 			sk_forced_mem_schedule(sk, skb->truesize);
826 		} else {
827 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
828 		}
829 		if (likely(mem_scheduled)) {
830 			skb_reserve(skb, sk->sk_prot->max_header);
831 			/*
832 			 * Make sure that we have exactly size bytes
833 			 * available to the caller, no more, no less.
834 			 */
835 			skb->reserved_tailroom = skb->end - skb->tail - size;
836 			return skb;
837 		}
838 		__kfree_skb(skb);
839 	} else {
840 		sk->sk_prot->enter_memory_pressure(sk);
841 		sk_stream_moderate_sndbuf(sk);
842 	}
843 	return NULL;
844 }
845 
846 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
847 				       int large_allowed)
848 {
849 	struct tcp_sock *tp = tcp_sk(sk);
850 	u32 new_size_goal, size_goal;
851 
852 	if (!large_allowed || !sk_can_gso(sk))
853 		return mss_now;
854 
855 	/* Note : tcp_tso_autosize() will eventually split this later */
856 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
857 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
858 
859 	/* We try hard to avoid divides here */
860 	size_goal = tp->gso_segs * mss_now;
861 	if (unlikely(new_size_goal < size_goal ||
862 		     new_size_goal >= size_goal + mss_now)) {
863 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
864 				     sk->sk_gso_max_segs);
865 		size_goal = tp->gso_segs * mss_now;
866 	}
867 
868 	return max(size_goal, mss_now);
869 }
870 
871 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
872 {
873 	int mss_now;
874 
875 	mss_now = tcp_current_mss(sk);
876 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
877 
878 	return mss_now;
879 }
880 
881 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
882 				size_t size, int flags)
883 {
884 	struct tcp_sock *tp = tcp_sk(sk);
885 	int mss_now, size_goal;
886 	int err;
887 	ssize_t copied;
888 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
889 
890 	/* Wait for a connection to finish. One exception is TCP Fast Open
891 	 * (passive side) where data is allowed to be sent before a connection
892 	 * is fully established.
893 	 */
894 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
895 	    !tcp_passive_fastopen(sk)) {
896 		err = sk_stream_wait_connect(sk, &timeo);
897 		if (err != 0)
898 			goto out_err;
899 	}
900 
901 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
902 
903 	mss_now = tcp_send_mss(sk, &size_goal, flags);
904 	copied = 0;
905 
906 	err = -EPIPE;
907 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
908 		goto out_err;
909 
910 	while (size > 0) {
911 		struct sk_buff *skb = tcp_write_queue_tail(sk);
912 		int copy, i;
913 		bool can_coalesce;
914 
915 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
916 		    !tcp_skb_can_collapse_to(skb)) {
917 new_segment:
918 			if (!sk_stream_memory_free(sk))
919 				goto wait_for_sndbuf;
920 
921 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
922 						  skb_queue_empty(&sk->sk_write_queue));
923 			if (!skb)
924 				goto wait_for_memory;
925 
926 			skb_entail(sk, skb);
927 			copy = size_goal;
928 		}
929 
930 		if (copy > size)
931 			copy = size;
932 
933 		i = skb_shinfo(skb)->nr_frags;
934 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
935 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
936 			tcp_mark_push(tp, skb);
937 			goto new_segment;
938 		}
939 		if (!sk_wmem_schedule(sk, copy))
940 			goto wait_for_memory;
941 
942 		if (can_coalesce) {
943 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
944 		} else {
945 			get_page(page);
946 			skb_fill_page_desc(skb, i, page, offset, copy);
947 		}
948 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
949 
950 		skb->len += copy;
951 		skb->data_len += copy;
952 		skb->truesize += copy;
953 		sk->sk_wmem_queued += copy;
954 		sk_mem_charge(sk, copy);
955 		skb->ip_summed = CHECKSUM_PARTIAL;
956 		tp->write_seq += copy;
957 		TCP_SKB_CB(skb)->end_seq += copy;
958 		tcp_skb_pcount_set(skb, 0);
959 
960 		if (!copied)
961 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
962 
963 		copied += copy;
964 		offset += copy;
965 		size -= copy;
966 		if (!size) {
967 			tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
968 			goto out;
969 		}
970 
971 		if (skb->len < size_goal || (flags & MSG_OOB))
972 			continue;
973 
974 		if (forced_push(tp)) {
975 			tcp_mark_push(tp, skb);
976 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
977 		} else if (skb == tcp_send_head(sk))
978 			tcp_push_one(sk, mss_now);
979 		continue;
980 
981 wait_for_sndbuf:
982 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
983 wait_for_memory:
984 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
985 			 TCP_NAGLE_PUSH, size_goal);
986 
987 		err = sk_stream_wait_memory(sk, &timeo);
988 		if (err != 0)
989 			goto do_error;
990 
991 		mss_now = tcp_send_mss(sk, &size_goal, flags);
992 	}
993 
994 out:
995 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
996 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
997 	return copied;
998 
999 do_error:
1000 	if (copied)
1001 		goto out;
1002 out_err:
1003 	/* make sure we wake any epoll edge trigger waiter */
1004 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1005 		sk->sk_write_space(sk);
1006 	return sk_stream_error(sk, flags, err);
1007 }
1008 
1009 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1010 		 size_t size, int flags)
1011 {
1012 	ssize_t res;
1013 
1014 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1015 	    !sk_check_csum_caps(sk))
1016 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1017 					flags);
1018 
1019 	lock_sock(sk);
1020 
1021 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1022 
1023 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1024 	release_sock(sk);
1025 	return res;
1026 }
1027 EXPORT_SYMBOL(tcp_sendpage);
1028 
1029 /* Do not bother using a page frag for very small frames.
1030  * But use this heuristic only for the first skb in write queue.
1031  *
1032  * Having no payload in skb->head allows better SACK shifting
1033  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1034  * write queue has less skbs.
1035  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1036  * This also speeds up tso_fragment(), since it wont fallback
1037  * to tcp_fragment().
1038  */
1039 static int linear_payload_sz(bool first_skb)
1040 {
1041 	if (first_skb)
1042 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1043 	return 0;
1044 }
1045 
1046 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1047 {
1048 	const struct tcp_sock *tp = tcp_sk(sk);
1049 	int tmp = tp->mss_cache;
1050 
1051 	if (sg) {
1052 		if (sk_can_gso(sk)) {
1053 			tmp = linear_payload_sz(first_skb);
1054 		} else {
1055 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1056 
1057 			if (tmp >= pgbreak &&
1058 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1059 				tmp = pgbreak;
1060 		}
1061 	}
1062 
1063 	return tmp;
1064 }
1065 
1066 void tcp_free_fastopen_req(struct tcp_sock *tp)
1067 {
1068 	if (tp->fastopen_req) {
1069 		kfree(tp->fastopen_req);
1070 		tp->fastopen_req = NULL;
1071 	}
1072 }
1073 
1074 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1075 				int *copied, size_t size)
1076 {
1077 	struct tcp_sock *tp = tcp_sk(sk);
1078 	int err, flags;
1079 
1080 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1081 		return -EOPNOTSUPP;
1082 	if (tp->fastopen_req)
1083 		return -EALREADY; /* Another Fast Open is in progress */
1084 
1085 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1086 				   sk->sk_allocation);
1087 	if (unlikely(!tp->fastopen_req))
1088 		return -ENOBUFS;
1089 	tp->fastopen_req->data = msg;
1090 	tp->fastopen_req->size = size;
1091 
1092 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1093 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1094 				    msg->msg_namelen, flags);
1095 	*copied = tp->fastopen_req->copied;
1096 	tcp_free_fastopen_req(tp);
1097 	return err;
1098 }
1099 
1100 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1101 {
1102 	struct tcp_sock *tp = tcp_sk(sk);
1103 	struct sk_buff *skb;
1104 	struct sockcm_cookie sockc;
1105 	int flags, err, copied = 0;
1106 	int mss_now = 0, size_goal, copied_syn = 0;
1107 	bool process_backlog = false;
1108 	bool sg;
1109 	long timeo;
1110 
1111 	lock_sock(sk);
1112 
1113 	flags = msg->msg_flags;
1114 	if (flags & MSG_FASTOPEN) {
1115 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1116 		if (err == -EINPROGRESS && copied_syn > 0)
1117 			goto out;
1118 		else if (err)
1119 			goto out_err;
1120 	}
1121 
1122 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1123 
1124 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1125 
1126 	/* Wait for a connection to finish. One exception is TCP Fast Open
1127 	 * (passive side) where data is allowed to be sent before a connection
1128 	 * is fully established.
1129 	 */
1130 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1131 	    !tcp_passive_fastopen(sk)) {
1132 		err = sk_stream_wait_connect(sk, &timeo);
1133 		if (err != 0)
1134 			goto do_error;
1135 	}
1136 
1137 	if (unlikely(tp->repair)) {
1138 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1139 			copied = tcp_send_rcvq(sk, msg, size);
1140 			goto out_nopush;
1141 		}
1142 
1143 		err = -EINVAL;
1144 		if (tp->repair_queue == TCP_NO_QUEUE)
1145 			goto out_err;
1146 
1147 		/* 'common' sending to sendq */
1148 	}
1149 
1150 	sockc.tsflags = sk->sk_tsflags;
1151 	if (msg->msg_controllen) {
1152 		err = sock_cmsg_send(sk, msg, &sockc);
1153 		if (unlikely(err)) {
1154 			err = -EINVAL;
1155 			goto out_err;
1156 		}
1157 	}
1158 
1159 	/* This should be in poll */
1160 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1161 
1162 	/* Ok commence sending. */
1163 	copied = 0;
1164 
1165 restart:
1166 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1167 
1168 	err = -EPIPE;
1169 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1170 		goto out_err;
1171 
1172 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1173 
1174 	while (msg_data_left(msg)) {
1175 		int copy = 0;
1176 		int max = size_goal;
1177 
1178 		skb = tcp_write_queue_tail(sk);
1179 		if (tcp_send_head(sk)) {
1180 			if (skb->ip_summed == CHECKSUM_NONE)
1181 				max = mss_now;
1182 			copy = max - skb->len;
1183 		}
1184 
1185 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1186 			bool first_skb;
1187 
1188 new_segment:
1189 			/* Allocate new segment. If the interface is SG,
1190 			 * allocate skb fitting to single page.
1191 			 */
1192 			if (!sk_stream_memory_free(sk))
1193 				goto wait_for_sndbuf;
1194 
1195 			if (process_backlog && sk_flush_backlog(sk)) {
1196 				process_backlog = false;
1197 				goto restart;
1198 			}
1199 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1200 			skb = sk_stream_alloc_skb(sk,
1201 						  select_size(sk, sg, first_skb),
1202 						  sk->sk_allocation,
1203 						  first_skb);
1204 			if (!skb)
1205 				goto wait_for_memory;
1206 
1207 			process_backlog = true;
1208 			/*
1209 			 * Check whether we can use HW checksum.
1210 			 */
1211 			if (sk_check_csum_caps(sk))
1212 				skb->ip_summed = CHECKSUM_PARTIAL;
1213 
1214 			skb_entail(sk, skb);
1215 			copy = size_goal;
1216 			max = size_goal;
1217 
1218 			/* All packets are restored as if they have
1219 			 * already been sent. skb_mstamp isn't set to
1220 			 * avoid wrong rtt estimation.
1221 			 */
1222 			if (tp->repair)
1223 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1224 		}
1225 
1226 		/* Try to append data to the end of skb. */
1227 		if (copy > msg_data_left(msg))
1228 			copy = msg_data_left(msg);
1229 
1230 		/* Where to copy to? */
1231 		if (skb_availroom(skb) > 0) {
1232 			/* We have some space in skb head. Superb! */
1233 			copy = min_t(int, copy, skb_availroom(skb));
1234 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1235 			if (err)
1236 				goto do_fault;
1237 		} else {
1238 			bool merge = true;
1239 			int i = skb_shinfo(skb)->nr_frags;
1240 			struct page_frag *pfrag = sk_page_frag(sk);
1241 
1242 			if (!sk_page_frag_refill(sk, pfrag))
1243 				goto wait_for_memory;
1244 
1245 			if (!skb_can_coalesce(skb, i, pfrag->page,
1246 					      pfrag->offset)) {
1247 				if (i == sysctl_max_skb_frags || !sg) {
1248 					tcp_mark_push(tp, skb);
1249 					goto new_segment;
1250 				}
1251 				merge = false;
1252 			}
1253 
1254 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1255 
1256 			if (!sk_wmem_schedule(sk, copy))
1257 				goto wait_for_memory;
1258 
1259 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1260 						       pfrag->page,
1261 						       pfrag->offset,
1262 						       copy);
1263 			if (err)
1264 				goto do_error;
1265 
1266 			/* Update the skb. */
1267 			if (merge) {
1268 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1269 			} else {
1270 				skb_fill_page_desc(skb, i, pfrag->page,
1271 						   pfrag->offset, copy);
1272 				get_page(pfrag->page);
1273 			}
1274 			pfrag->offset += copy;
1275 		}
1276 
1277 		if (!copied)
1278 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1279 
1280 		tp->write_seq += copy;
1281 		TCP_SKB_CB(skb)->end_seq += copy;
1282 		tcp_skb_pcount_set(skb, 0);
1283 
1284 		copied += copy;
1285 		if (!msg_data_left(msg)) {
1286 			tcp_tx_timestamp(sk, sockc.tsflags, skb);
1287 			if (unlikely(flags & MSG_EOR))
1288 				TCP_SKB_CB(skb)->eor = 1;
1289 			goto out;
1290 		}
1291 
1292 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1293 			continue;
1294 
1295 		if (forced_push(tp)) {
1296 			tcp_mark_push(tp, skb);
1297 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1298 		} else if (skb == tcp_send_head(sk))
1299 			tcp_push_one(sk, mss_now);
1300 		continue;
1301 
1302 wait_for_sndbuf:
1303 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1304 wait_for_memory:
1305 		if (copied)
1306 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1307 				 TCP_NAGLE_PUSH, size_goal);
1308 
1309 		err = sk_stream_wait_memory(sk, &timeo);
1310 		if (err != 0)
1311 			goto do_error;
1312 
1313 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1314 	}
1315 
1316 out:
1317 	if (copied)
1318 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1319 out_nopush:
1320 	release_sock(sk);
1321 	return copied + copied_syn;
1322 
1323 do_fault:
1324 	if (!skb->len) {
1325 		tcp_unlink_write_queue(skb, sk);
1326 		/* It is the one place in all of TCP, except connection
1327 		 * reset, where we can be unlinking the send_head.
1328 		 */
1329 		tcp_check_send_head(sk, skb);
1330 		sk_wmem_free_skb(sk, skb);
1331 	}
1332 
1333 do_error:
1334 	if (copied + copied_syn)
1335 		goto out;
1336 out_err:
1337 	err = sk_stream_error(sk, flags, err);
1338 	/* make sure we wake any epoll edge trigger waiter */
1339 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1340 		sk->sk_write_space(sk);
1341 	release_sock(sk);
1342 	return err;
1343 }
1344 EXPORT_SYMBOL(tcp_sendmsg);
1345 
1346 /*
1347  *	Handle reading urgent data. BSD has very simple semantics for
1348  *	this, no blocking and very strange errors 8)
1349  */
1350 
1351 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1352 {
1353 	struct tcp_sock *tp = tcp_sk(sk);
1354 
1355 	/* No URG data to read. */
1356 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1357 	    tp->urg_data == TCP_URG_READ)
1358 		return -EINVAL;	/* Yes this is right ! */
1359 
1360 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1361 		return -ENOTCONN;
1362 
1363 	if (tp->urg_data & TCP_URG_VALID) {
1364 		int err = 0;
1365 		char c = tp->urg_data;
1366 
1367 		if (!(flags & MSG_PEEK))
1368 			tp->urg_data = TCP_URG_READ;
1369 
1370 		/* Read urgent data. */
1371 		msg->msg_flags |= MSG_OOB;
1372 
1373 		if (len > 0) {
1374 			if (!(flags & MSG_TRUNC))
1375 				err = memcpy_to_msg(msg, &c, 1);
1376 			len = 1;
1377 		} else
1378 			msg->msg_flags |= MSG_TRUNC;
1379 
1380 		return err ? -EFAULT : len;
1381 	}
1382 
1383 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1384 		return 0;
1385 
1386 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1387 	 * the available implementations agree in this case:
1388 	 * this call should never block, independent of the
1389 	 * blocking state of the socket.
1390 	 * Mike <pall@rz.uni-karlsruhe.de>
1391 	 */
1392 	return -EAGAIN;
1393 }
1394 
1395 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1396 {
1397 	struct sk_buff *skb;
1398 	int copied = 0, err = 0;
1399 
1400 	/* XXX -- need to support SO_PEEK_OFF */
1401 
1402 	skb_queue_walk(&sk->sk_write_queue, skb) {
1403 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1404 		if (err)
1405 			break;
1406 
1407 		copied += skb->len;
1408 	}
1409 
1410 	return err ?: copied;
1411 }
1412 
1413 /* Clean up the receive buffer for full frames taken by the user,
1414  * then send an ACK if necessary.  COPIED is the number of bytes
1415  * tcp_recvmsg has given to the user so far, it speeds up the
1416  * calculation of whether or not we must ACK for the sake of
1417  * a window update.
1418  */
1419 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1420 {
1421 	struct tcp_sock *tp = tcp_sk(sk);
1422 	bool time_to_ack = false;
1423 
1424 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1425 
1426 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1427 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1428 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1429 
1430 	if (inet_csk_ack_scheduled(sk)) {
1431 		const struct inet_connection_sock *icsk = inet_csk(sk);
1432 		   /* Delayed ACKs frequently hit locked sockets during bulk
1433 		    * receive. */
1434 		if (icsk->icsk_ack.blocked ||
1435 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1436 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1437 		    /*
1438 		     * If this read emptied read buffer, we send ACK, if
1439 		     * connection is not bidirectional, user drained
1440 		     * receive buffer and there was a small segment
1441 		     * in queue.
1442 		     */
1443 		    (copied > 0 &&
1444 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1445 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1446 		       !icsk->icsk_ack.pingpong)) &&
1447 		      !atomic_read(&sk->sk_rmem_alloc)))
1448 			time_to_ack = true;
1449 	}
1450 
1451 	/* We send an ACK if we can now advertise a non-zero window
1452 	 * which has been raised "significantly".
1453 	 *
1454 	 * Even if window raised up to infinity, do not send window open ACK
1455 	 * in states, where we will not receive more. It is useless.
1456 	 */
1457 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1458 		__u32 rcv_window_now = tcp_receive_window(tp);
1459 
1460 		/* Optimize, __tcp_select_window() is not cheap. */
1461 		if (2*rcv_window_now <= tp->window_clamp) {
1462 			__u32 new_window = __tcp_select_window(sk);
1463 
1464 			/* Send ACK now, if this read freed lots of space
1465 			 * in our buffer. Certainly, new_window is new window.
1466 			 * We can advertise it now, if it is not less than current one.
1467 			 * "Lots" means "at least twice" here.
1468 			 */
1469 			if (new_window && new_window >= 2 * rcv_window_now)
1470 				time_to_ack = true;
1471 		}
1472 	}
1473 	if (time_to_ack)
1474 		tcp_send_ack(sk);
1475 }
1476 
1477 static void tcp_prequeue_process(struct sock *sk)
1478 {
1479 	struct sk_buff *skb;
1480 	struct tcp_sock *tp = tcp_sk(sk);
1481 
1482 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1483 
1484 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1485 		sk_backlog_rcv(sk, skb);
1486 
1487 	/* Clear memory counter. */
1488 	tp->ucopy.memory = 0;
1489 }
1490 
1491 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1492 {
1493 	struct sk_buff *skb;
1494 	u32 offset;
1495 
1496 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1497 		offset = seq - TCP_SKB_CB(skb)->seq;
1498 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1499 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1500 			offset--;
1501 		}
1502 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1503 			*off = offset;
1504 			return skb;
1505 		}
1506 		/* This looks weird, but this can happen if TCP collapsing
1507 		 * splitted a fat GRO packet, while we released socket lock
1508 		 * in skb_splice_bits()
1509 		 */
1510 		sk_eat_skb(sk, skb);
1511 	}
1512 	return NULL;
1513 }
1514 
1515 /*
1516  * This routine provides an alternative to tcp_recvmsg() for routines
1517  * that would like to handle copying from skbuffs directly in 'sendfile'
1518  * fashion.
1519  * Note:
1520  *	- It is assumed that the socket was locked by the caller.
1521  *	- The routine does not block.
1522  *	- At present, there is no support for reading OOB data
1523  *	  or for 'peeking' the socket using this routine
1524  *	  (although both would be easy to implement).
1525  */
1526 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1527 		  sk_read_actor_t recv_actor)
1528 {
1529 	struct sk_buff *skb;
1530 	struct tcp_sock *tp = tcp_sk(sk);
1531 	u32 seq = tp->copied_seq;
1532 	u32 offset;
1533 	int copied = 0;
1534 
1535 	if (sk->sk_state == TCP_LISTEN)
1536 		return -ENOTCONN;
1537 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1538 		if (offset < skb->len) {
1539 			int used;
1540 			size_t len;
1541 
1542 			len = skb->len - offset;
1543 			/* Stop reading if we hit a patch of urgent data */
1544 			if (tp->urg_data) {
1545 				u32 urg_offset = tp->urg_seq - seq;
1546 				if (urg_offset < len)
1547 					len = urg_offset;
1548 				if (!len)
1549 					break;
1550 			}
1551 			used = recv_actor(desc, skb, offset, len);
1552 			if (used <= 0) {
1553 				if (!copied)
1554 					copied = used;
1555 				break;
1556 			} else if (used <= len) {
1557 				seq += used;
1558 				copied += used;
1559 				offset += used;
1560 			}
1561 			/* If recv_actor drops the lock (e.g. TCP splice
1562 			 * receive) the skb pointer might be invalid when
1563 			 * getting here: tcp_collapse might have deleted it
1564 			 * while aggregating skbs from the socket queue.
1565 			 */
1566 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1567 			if (!skb)
1568 				break;
1569 			/* TCP coalescing might have appended data to the skb.
1570 			 * Try to splice more frags
1571 			 */
1572 			if (offset + 1 != skb->len)
1573 				continue;
1574 		}
1575 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1576 			sk_eat_skb(sk, skb);
1577 			++seq;
1578 			break;
1579 		}
1580 		sk_eat_skb(sk, skb);
1581 		if (!desc->count)
1582 			break;
1583 		tp->copied_seq = seq;
1584 	}
1585 	tp->copied_seq = seq;
1586 
1587 	tcp_rcv_space_adjust(sk);
1588 
1589 	/* Clean up data we have read: This will do ACK frames. */
1590 	if (copied > 0) {
1591 		tcp_recv_skb(sk, seq, &offset);
1592 		tcp_cleanup_rbuf(sk, copied);
1593 	}
1594 	return copied;
1595 }
1596 EXPORT_SYMBOL(tcp_read_sock);
1597 
1598 int tcp_peek_len(struct socket *sock)
1599 {
1600 	return tcp_inq(sock->sk);
1601 }
1602 EXPORT_SYMBOL(tcp_peek_len);
1603 
1604 /*
1605  *	This routine copies from a sock struct into the user buffer.
1606  *
1607  *	Technical note: in 2.3 we work on _locked_ socket, so that
1608  *	tricks with *seq access order and skb->users are not required.
1609  *	Probably, code can be easily improved even more.
1610  */
1611 
1612 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1613 		int flags, int *addr_len)
1614 {
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 	int copied = 0;
1617 	u32 peek_seq;
1618 	u32 *seq;
1619 	unsigned long used;
1620 	int err;
1621 	int target;		/* Read at least this many bytes */
1622 	long timeo;
1623 	struct task_struct *user_recv = NULL;
1624 	struct sk_buff *skb, *last;
1625 	u32 urg_hole = 0;
1626 
1627 	if (unlikely(flags & MSG_ERRQUEUE))
1628 		return inet_recv_error(sk, msg, len, addr_len);
1629 
1630 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1631 	    (sk->sk_state == TCP_ESTABLISHED))
1632 		sk_busy_loop(sk, nonblock);
1633 
1634 	lock_sock(sk);
1635 
1636 	err = -ENOTCONN;
1637 	if (sk->sk_state == TCP_LISTEN)
1638 		goto out;
1639 
1640 	timeo = sock_rcvtimeo(sk, nonblock);
1641 
1642 	/* Urgent data needs to be handled specially. */
1643 	if (flags & MSG_OOB)
1644 		goto recv_urg;
1645 
1646 	if (unlikely(tp->repair)) {
1647 		err = -EPERM;
1648 		if (!(flags & MSG_PEEK))
1649 			goto out;
1650 
1651 		if (tp->repair_queue == TCP_SEND_QUEUE)
1652 			goto recv_sndq;
1653 
1654 		err = -EINVAL;
1655 		if (tp->repair_queue == TCP_NO_QUEUE)
1656 			goto out;
1657 
1658 		/* 'common' recv queue MSG_PEEK-ing */
1659 	}
1660 
1661 	seq = &tp->copied_seq;
1662 	if (flags & MSG_PEEK) {
1663 		peek_seq = tp->copied_seq;
1664 		seq = &peek_seq;
1665 	}
1666 
1667 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1668 
1669 	do {
1670 		u32 offset;
1671 
1672 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1673 		if (tp->urg_data && tp->urg_seq == *seq) {
1674 			if (copied)
1675 				break;
1676 			if (signal_pending(current)) {
1677 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1678 				break;
1679 			}
1680 		}
1681 
1682 		/* Next get a buffer. */
1683 
1684 		last = skb_peek_tail(&sk->sk_receive_queue);
1685 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1686 			last = skb;
1687 			/* Now that we have two receive queues this
1688 			 * shouldn't happen.
1689 			 */
1690 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1691 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1692 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1693 				 flags))
1694 				break;
1695 
1696 			offset = *seq - TCP_SKB_CB(skb)->seq;
1697 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1698 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1699 				offset--;
1700 			}
1701 			if (offset < skb->len)
1702 				goto found_ok_skb;
1703 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1704 				goto found_fin_ok;
1705 			WARN(!(flags & MSG_PEEK),
1706 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1707 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1708 		}
1709 
1710 		/* Well, if we have backlog, try to process it now yet. */
1711 
1712 		if (copied >= target && !sk->sk_backlog.tail)
1713 			break;
1714 
1715 		if (copied) {
1716 			if (sk->sk_err ||
1717 			    sk->sk_state == TCP_CLOSE ||
1718 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1719 			    !timeo ||
1720 			    signal_pending(current))
1721 				break;
1722 		} else {
1723 			if (sock_flag(sk, SOCK_DONE))
1724 				break;
1725 
1726 			if (sk->sk_err) {
1727 				copied = sock_error(sk);
1728 				break;
1729 			}
1730 
1731 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1732 				break;
1733 
1734 			if (sk->sk_state == TCP_CLOSE) {
1735 				if (!sock_flag(sk, SOCK_DONE)) {
1736 					/* This occurs when user tries to read
1737 					 * from never connected socket.
1738 					 */
1739 					copied = -ENOTCONN;
1740 					break;
1741 				}
1742 				break;
1743 			}
1744 
1745 			if (!timeo) {
1746 				copied = -EAGAIN;
1747 				break;
1748 			}
1749 
1750 			if (signal_pending(current)) {
1751 				copied = sock_intr_errno(timeo);
1752 				break;
1753 			}
1754 		}
1755 
1756 		tcp_cleanup_rbuf(sk, copied);
1757 
1758 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1759 			/* Install new reader */
1760 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1761 				user_recv = current;
1762 				tp->ucopy.task = user_recv;
1763 				tp->ucopy.msg = msg;
1764 			}
1765 
1766 			tp->ucopy.len = len;
1767 
1768 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1769 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1770 
1771 			/* Ugly... If prequeue is not empty, we have to
1772 			 * process it before releasing socket, otherwise
1773 			 * order will be broken at second iteration.
1774 			 * More elegant solution is required!!!
1775 			 *
1776 			 * Look: we have the following (pseudo)queues:
1777 			 *
1778 			 * 1. packets in flight
1779 			 * 2. backlog
1780 			 * 3. prequeue
1781 			 * 4. receive_queue
1782 			 *
1783 			 * Each queue can be processed only if the next ones
1784 			 * are empty. At this point we have empty receive_queue.
1785 			 * But prequeue _can_ be not empty after 2nd iteration,
1786 			 * when we jumped to start of loop because backlog
1787 			 * processing added something to receive_queue.
1788 			 * We cannot release_sock(), because backlog contains
1789 			 * packets arrived _after_ prequeued ones.
1790 			 *
1791 			 * Shortly, algorithm is clear --- to process all
1792 			 * the queues in order. We could make it more directly,
1793 			 * requeueing packets from backlog to prequeue, if
1794 			 * is not empty. It is more elegant, but eats cycles,
1795 			 * unfortunately.
1796 			 */
1797 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1798 				goto do_prequeue;
1799 
1800 			/* __ Set realtime policy in scheduler __ */
1801 		}
1802 
1803 		if (copied >= target) {
1804 			/* Do not sleep, just process backlog. */
1805 			release_sock(sk);
1806 			lock_sock(sk);
1807 		} else {
1808 			sk_wait_data(sk, &timeo, last);
1809 		}
1810 
1811 		if (user_recv) {
1812 			int chunk;
1813 
1814 			/* __ Restore normal policy in scheduler __ */
1815 
1816 			chunk = len - tp->ucopy.len;
1817 			if (chunk != 0) {
1818 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1819 				len -= chunk;
1820 				copied += chunk;
1821 			}
1822 
1823 			if (tp->rcv_nxt == tp->copied_seq &&
1824 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1825 do_prequeue:
1826 				tcp_prequeue_process(sk);
1827 
1828 				chunk = len - tp->ucopy.len;
1829 				if (chunk != 0) {
1830 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1831 					len -= chunk;
1832 					copied += chunk;
1833 				}
1834 			}
1835 		}
1836 		if ((flags & MSG_PEEK) &&
1837 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1838 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1839 					    current->comm,
1840 					    task_pid_nr(current));
1841 			peek_seq = tp->copied_seq;
1842 		}
1843 		continue;
1844 
1845 	found_ok_skb:
1846 		/* Ok so how much can we use? */
1847 		used = skb->len - offset;
1848 		if (len < used)
1849 			used = len;
1850 
1851 		/* Do we have urgent data here? */
1852 		if (tp->urg_data) {
1853 			u32 urg_offset = tp->urg_seq - *seq;
1854 			if (urg_offset < used) {
1855 				if (!urg_offset) {
1856 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1857 						++*seq;
1858 						urg_hole++;
1859 						offset++;
1860 						used--;
1861 						if (!used)
1862 							goto skip_copy;
1863 					}
1864 				} else
1865 					used = urg_offset;
1866 			}
1867 		}
1868 
1869 		if (!(flags & MSG_TRUNC)) {
1870 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1871 			if (err) {
1872 				/* Exception. Bailout! */
1873 				if (!copied)
1874 					copied = -EFAULT;
1875 				break;
1876 			}
1877 		}
1878 
1879 		*seq += used;
1880 		copied += used;
1881 		len -= used;
1882 
1883 		tcp_rcv_space_adjust(sk);
1884 
1885 skip_copy:
1886 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1887 			tp->urg_data = 0;
1888 			tcp_fast_path_check(sk);
1889 		}
1890 		if (used + offset < skb->len)
1891 			continue;
1892 
1893 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1894 			goto found_fin_ok;
1895 		if (!(flags & MSG_PEEK))
1896 			sk_eat_skb(sk, skb);
1897 		continue;
1898 
1899 	found_fin_ok:
1900 		/* Process the FIN. */
1901 		++*seq;
1902 		if (!(flags & MSG_PEEK))
1903 			sk_eat_skb(sk, skb);
1904 		break;
1905 	} while (len > 0);
1906 
1907 	if (user_recv) {
1908 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1909 			int chunk;
1910 
1911 			tp->ucopy.len = copied > 0 ? len : 0;
1912 
1913 			tcp_prequeue_process(sk);
1914 
1915 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1916 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1917 				len -= chunk;
1918 				copied += chunk;
1919 			}
1920 		}
1921 
1922 		tp->ucopy.task = NULL;
1923 		tp->ucopy.len = 0;
1924 	}
1925 
1926 	/* According to UNIX98, msg_name/msg_namelen are ignored
1927 	 * on connected socket. I was just happy when found this 8) --ANK
1928 	 */
1929 
1930 	/* Clean up data we have read: This will do ACK frames. */
1931 	tcp_cleanup_rbuf(sk, copied);
1932 
1933 	release_sock(sk);
1934 	return copied;
1935 
1936 out:
1937 	release_sock(sk);
1938 	return err;
1939 
1940 recv_urg:
1941 	err = tcp_recv_urg(sk, msg, len, flags);
1942 	goto out;
1943 
1944 recv_sndq:
1945 	err = tcp_peek_sndq(sk, msg, len);
1946 	goto out;
1947 }
1948 EXPORT_SYMBOL(tcp_recvmsg);
1949 
1950 void tcp_set_state(struct sock *sk, int state)
1951 {
1952 	int oldstate = sk->sk_state;
1953 
1954 	switch (state) {
1955 	case TCP_ESTABLISHED:
1956 		if (oldstate != TCP_ESTABLISHED)
1957 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1958 		break;
1959 
1960 	case TCP_CLOSE:
1961 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1962 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1963 
1964 		sk->sk_prot->unhash(sk);
1965 		if (inet_csk(sk)->icsk_bind_hash &&
1966 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1967 			inet_put_port(sk);
1968 		/* fall through */
1969 	default:
1970 		if (oldstate == TCP_ESTABLISHED)
1971 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1972 	}
1973 
1974 	/* Change state AFTER socket is unhashed to avoid closed
1975 	 * socket sitting in hash tables.
1976 	 */
1977 	sk_state_store(sk, state);
1978 
1979 #ifdef STATE_TRACE
1980 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1981 #endif
1982 }
1983 EXPORT_SYMBOL_GPL(tcp_set_state);
1984 
1985 /*
1986  *	State processing on a close. This implements the state shift for
1987  *	sending our FIN frame. Note that we only send a FIN for some
1988  *	states. A shutdown() may have already sent the FIN, or we may be
1989  *	closed.
1990  */
1991 
1992 static const unsigned char new_state[16] = {
1993   /* current state:        new state:      action:	*/
1994   [0 /* (Invalid) */]	= TCP_CLOSE,
1995   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1996   [TCP_SYN_SENT]	= TCP_CLOSE,
1997   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1998   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1999   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2000   [TCP_TIME_WAIT]	= TCP_CLOSE,
2001   [TCP_CLOSE]		= TCP_CLOSE,
2002   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2003   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2004   [TCP_LISTEN]		= TCP_CLOSE,
2005   [TCP_CLOSING]		= TCP_CLOSING,
2006   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2007 };
2008 
2009 static int tcp_close_state(struct sock *sk)
2010 {
2011 	int next = (int)new_state[sk->sk_state];
2012 	int ns = next & TCP_STATE_MASK;
2013 
2014 	tcp_set_state(sk, ns);
2015 
2016 	return next & TCP_ACTION_FIN;
2017 }
2018 
2019 /*
2020  *	Shutdown the sending side of a connection. Much like close except
2021  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2022  */
2023 
2024 void tcp_shutdown(struct sock *sk, int how)
2025 {
2026 	/*	We need to grab some memory, and put together a FIN,
2027 	 *	and then put it into the queue to be sent.
2028 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2029 	 */
2030 	if (!(how & SEND_SHUTDOWN))
2031 		return;
2032 
2033 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2034 	if ((1 << sk->sk_state) &
2035 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2036 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2037 		/* Clear out any half completed packets.  FIN if needed. */
2038 		if (tcp_close_state(sk))
2039 			tcp_send_fin(sk);
2040 	}
2041 }
2042 EXPORT_SYMBOL(tcp_shutdown);
2043 
2044 bool tcp_check_oom(struct sock *sk, int shift)
2045 {
2046 	bool too_many_orphans, out_of_socket_memory;
2047 
2048 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2049 	out_of_socket_memory = tcp_out_of_memory(sk);
2050 
2051 	if (too_many_orphans)
2052 		net_info_ratelimited("too many orphaned sockets\n");
2053 	if (out_of_socket_memory)
2054 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2055 	return too_many_orphans || out_of_socket_memory;
2056 }
2057 
2058 void tcp_close(struct sock *sk, long timeout)
2059 {
2060 	struct sk_buff *skb;
2061 	int data_was_unread = 0;
2062 	int state;
2063 
2064 	lock_sock(sk);
2065 	sk->sk_shutdown = SHUTDOWN_MASK;
2066 
2067 	if (sk->sk_state == TCP_LISTEN) {
2068 		tcp_set_state(sk, TCP_CLOSE);
2069 
2070 		/* Special case. */
2071 		inet_csk_listen_stop(sk);
2072 
2073 		goto adjudge_to_death;
2074 	}
2075 
2076 	/*  We need to flush the recv. buffs.  We do this only on the
2077 	 *  descriptor close, not protocol-sourced closes, because the
2078 	 *  reader process may not have drained the data yet!
2079 	 */
2080 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2081 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2082 
2083 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2084 			len--;
2085 		data_was_unread += len;
2086 		__kfree_skb(skb);
2087 	}
2088 
2089 	sk_mem_reclaim(sk);
2090 
2091 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2092 	if (sk->sk_state == TCP_CLOSE)
2093 		goto adjudge_to_death;
2094 
2095 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2096 	 * data was lost. To witness the awful effects of the old behavior of
2097 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2098 	 * GET in an FTP client, suspend the process, wait for the client to
2099 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2100 	 * Note: timeout is always zero in such a case.
2101 	 */
2102 	if (unlikely(tcp_sk(sk)->repair)) {
2103 		sk->sk_prot->disconnect(sk, 0);
2104 	} else if (data_was_unread) {
2105 		/* Unread data was tossed, zap the connection. */
2106 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2107 		tcp_set_state(sk, TCP_CLOSE);
2108 		tcp_send_active_reset(sk, sk->sk_allocation);
2109 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2110 		/* Check zero linger _after_ checking for unread data. */
2111 		sk->sk_prot->disconnect(sk, 0);
2112 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2113 	} else if (tcp_close_state(sk)) {
2114 		/* We FIN if the application ate all the data before
2115 		 * zapping the connection.
2116 		 */
2117 
2118 		/* RED-PEN. Formally speaking, we have broken TCP state
2119 		 * machine. State transitions:
2120 		 *
2121 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2122 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2123 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2124 		 *
2125 		 * are legal only when FIN has been sent (i.e. in window),
2126 		 * rather than queued out of window. Purists blame.
2127 		 *
2128 		 * F.e. "RFC state" is ESTABLISHED,
2129 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2130 		 *
2131 		 * The visible declinations are that sometimes
2132 		 * we enter time-wait state, when it is not required really
2133 		 * (harmless), do not send active resets, when they are
2134 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2135 		 * they look as CLOSING or LAST_ACK for Linux)
2136 		 * Probably, I missed some more holelets.
2137 		 * 						--ANK
2138 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2139 		 * in a single packet! (May consider it later but will
2140 		 * probably need API support or TCP_CORK SYN-ACK until
2141 		 * data is written and socket is closed.)
2142 		 */
2143 		tcp_send_fin(sk);
2144 	}
2145 
2146 	sk_stream_wait_close(sk, timeout);
2147 
2148 adjudge_to_death:
2149 	state = sk->sk_state;
2150 	sock_hold(sk);
2151 	sock_orphan(sk);
2152 
2153 	/* It is the last release_sock in its life. It will remove backlog. */
2154 	release_sock(sk);
2155 
2156 
2157 	/* Now socket is owned by kernel and we acquire BH lock
2158 	   to finish close. No need to check for user refs.
2159 	 */
2160 	local_bh_disable();
2161 	bh_lock_sock(sk);
2162 	WARN_ON(sock_owned_by_user(sk));
2163 
2164 	percpu_counter_inc(sk->sk_prot->orphan_count);
2165 
2166 	/* Have we already been destroyed by a softirq or backlog? */
2167 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2168 		goto out;
2169 
2170 	/*	This is a (useful) BSD violating of the RFC. There is a
2171 	 *	problem with TCP as specified in that the other end could
2172 	 *	keep a socket open forever with no application left this end.
2173 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2174 	 *	our end. If they send after that then tough - BUT: long enough
2175 	 *	that we won't make the old 4*rto = almost no time - whoops
2176 	 *	reset mistake.
2177 	 *
2178 	 *	Nope, it was not mistake. It is really desired behaviour
2179 	 *	f.e. on http servers, when such sockets are useless, but
2180 	 *	consume significant resources. Let's do it with special
2181 	 *	linger2	option.					--ANK
2182 	 */
2183 
2184 	if (sk->sk_state == TCP_FIN_WAIT2) {
2185 		struct tcp_sock *tp = tcp_sk(sk);
2186 		if (tp->linger2 < 0) {
2187 			tcp_set_state(sk, TCP_CLOSE);
2188 			tcp_send_active_reset(sk, GFP_ATOMIC);
2189 			__NET_INC_STATS(sock_net(sk),
2190 					LINUX_MIB_TCPABORTONLINGER);
2191 		} else {
2192 			const int tmo = tcp_fin_time(sk);
2193 
2194 			if (tmo > TCP_TIMEWAIT_LEN) {
2195 				inet_csk_reset_keepalive_timer(sk,
2196 						tmo - TCP_TIMEWAIT_LEN);
2197 			} else {
2198 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2199 				goto out;
2200 			}
2201 		}
2202 	}
2203 	if (sk->sk_state != TCP_CLOSE) {
2204 		sk_mem_reclaim(sk);
2205 		if (tcp_check_oom(sk, 0)) {
2206 			tcp_set_state(sk, TCP_CLOSE);
2207 			tcp_send_active_reset(sk, GFP_ATOMIC);
2208 			__NET_INC_STATS(sock_net(sk),
2209 					LINUX_MIB_TCPABORTONMEMORY);
2210 		}
2211 	}
2212 
2213 	if (sk->sk_state == TCP_CLOSE) {
2214 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2215 		/* We could get here with a non-NULL req if the socket is
2216 		 * aborted (e.g., closed with unread data) before 3WHS
2217 		 * finishes.
2218 		 */
2219 		if (req)
2220 			reqsk_fastopen_remove(sk, req, false);
2221 		inet_csk_destroy_sock(sk);
2222 	}
2223 	/* Otherwise, socket is reprieved until protocol close. */
2224 
2225 out:
2226 	bh_unlock_sock(sk);
2227 	local_bh_enable();
2228 	sock_put(sk);
2229 }
2230 EXPORT_SYMBOL(tcp_close);
2231 
2232 /* These states need RST on ABORT according to RFC793 */
2233 
2234 static inline bool tcp_need_reset(int state)
2235 {
2236 	return (1 << state) &
2237 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2238 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2239 }
2240 
2241 int tcp_disconnect(struct sock *sk, int flags)
2242 {
2243 	struct inet_sock *inet = inet_sk(sk);
2244 	struct inet_connection_sock *icsk = inet_csk(sk);
2245 	struct tcp_sock *tp = tcp_sk(sk);
2246 	int err = 0;
2247 	int old_state = sk->sk_state;
2248 
2249 	if (old_state != TCP_CLOSE)
2250 		tcp_set_state(sk, TCP_CLOSE);
2251 
2252 	/* ABORT function of RFC793 */
2253 	if (old_state == TCP_LISTEN) {
2254 		inet_csk_listen_stop(sk);
2255 	} else if (unlikely(tp->repair)) {
2256 		sk->sk_err = ECONNABORTED;
2257 	} else if (tcp_need_reset(old_state) ||
2258 		   (tp->snd_nxt != tp->write_seq &&
2259 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2260 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2261 		 * states
2262 		 */
2263 		tcp_send_active_reset(sk, gfp_any());
2264 		sk->sk_err = ECONNRESET;
2265 	} else if (old_state == TCP_SYN_SENT)
2266 		sk->sk_err = ECONNRESET;
2267 
2268 	tcp_clear_xmit_timers(sk);
2269 	__skb_queue_purge(&sk->sk_receive_queue);
2270 	tcp_write_queue_purge(sk);
2271 	skb_rbtree_purge(&tp->out_of_order_queue);
2272 
2273 	inet->inet_dport = 0;
2274 
2275 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2276 		inet_reset_saddr(sk);
2277 
2278 	sk->sk_shutdown = 0;
2279 	sock_reset_flag(sk, SOCK_DONE);
2280 	tp->srtt_us = 0;
2281 	tp->write_seq += tp->max_window + 2;
2282 	if (tp->write_seq == 0)
2283 		tp->write_seq = 1;
2284 	icsk->icsk_backoff = 0;
2285 	tp->snd_cwnd = 2;
2286 	icsk->icsk_probes_out = 0;
2287 	tp->packets_out = 0;
2288 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2289 	tp->snd_cwnd_cnt = 0;
2290 	tp->window_clamp = 0;
2291 	tcp_set_ca_state(sk, TCP_CA_Open);
2292 	tcp_clear_retrans(tp);
2293 	inet_csk_delack_init(sk);
2294 	tcp_init_send_head(sk);
2295 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2296 	__sk_dst_reset(sk);
2297 
2298 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2299 
2300 	sk->sk_error_report(sk);
2301 	return err;
2302 }
2303 EXPORT_SYMBOL(tcp_disconnect);
2304 
2305 static inline bool tcp_can_repair_sock(const struct sock *sk)
2306 {
2307 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2308 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2309 }
2310 
2311 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2312 {
2313 	struct tcp_repair_window opt;
2314 
2315 	if (!tp->repair)
2316 		return -EPERM;
2317 
2318 	if (len != sizeof(opt))
2319 		return -EINVAL;
2320 
2321 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2322 		return -EFAULT;
2323 
2324 	if (opt.max_window < opt.snd_wnd)
2325 		return -EINVAL;
2326 
2327 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2328 		return -EINVAL;
2329 
2330 	if (after(opt.rcv_wup, tp->rcv_nxt))
2331 		return -EINVAL;
2332 
2333 	tp->snd_wl1	= opt.snd_wl1;
2334 	tp->snd_wnd	= opt.snd_wnd;
2335 	tp->max_window	= opt.max_window;
2336 
2337 	tp->rcv_wnd	= opt.rcv_wnd;
2338 	tp->rcv_wup	= opt.rcv_wup;
2339 
2340 	return 0;
2341 }
2342 
2343 static int tcp_repair_options_est(struct tcp_sock *tp,
2344 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2345 {
2346 	struct tcp_repair_opt opt;
2347 
2348 	while (len >= sizeof(opt)) {
2349 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2350 			return -EFAULT;
2351 
2352 		optbuf++;
2353 		len -= sizeof(opt);
2354 
2355 		switch (opt.opt_code) {
2356 		case TCPOPT_MSS:
2357 			tp->rx_opt.mss_clamp = opt.opt_val;
2358 			break;
2359 		case TCPOPT_WINDOW:
2360 			{
2361 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2362 				u16 rcv_wscale = opt.opt_val >> 16;
2363 
2364 				if (snd_wscale > 14 || rcv_wscale > 14)
2365 					return -EFBIG;
2366 
2367 				tp->rx_opt.snd_wscale = snd_wscale;
2368 				tp->rx_opt.rcv_wscale = rcv_wscale;
2369 				tp->rx_opt.wscale_ok = 1;
2370 			}
2371 			break;
2372 		case TCPOPT_SACK_PERM:
2373 			if (opt.opt_val != 0)
2374 				return -EINVAL;
2375 
2376 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2377 			if (sysctl_tcp_fack)
2378 				tcp_enable_fack(tp);
2379 			break;
2380 		case TCPOPT_TIMESTAMP:
2381 			if (opt.opt_val != 0)
2382 				return -EINVAL;
2383 
2384 			tp->rx_opt.tstamp_ok = 1;
2385 			break;
2386 		}
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 /*
2393  *	Socket option code for TCP.
2394  */
2395 static int do_tcp_setsockopt(struct sock *sk, int level,
2396 		int optname, char __user *optval, unsigned int optlen)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 	struct inet_connection_sock *icsk = inet_csk(sk);
2400 	struct net *net = sock_net(sk);
2401 	int val;
2402 	int err = 0;
2403 
2404 	/* These are data/string values, all the others are ints */
2405 	switch (optname) {
2406 	case TCP_CONGESTION: {
2407 		char name[TCP_CA_NAME_MAX];
2408 
2409 		if (optlen < 1)
2410 			return -EINVAL;
2411 
2412 		val = strncpy_from_user(name, optval,
2413 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2414 		if (val < 0)
2415 			return -EFAULT;
2416 		name[val] = 0;
2417 
2418 		lock_sock(sk);
2419 		err = tcp_set_congestion_control(sk, name);
2420 		release_sock(sk);
2421 		return err;
2422 	}
2423 	default:
2424 		/* fallthru */
2425 		break;
2426 	}
2427 
2428 	if (optlen < sizeof(int))
2429 		return -EINVAL;
2430 
2431 	if (get_user(val, (int __user *)optval))
2432 		return -EFAULT;
2433 
2434 	lock_sock(sk);
2435 
2436 	switch (optname) {
2437 	case TCP_MAXSEG:
2438 		/* Values greater than interface MTU won't take effect. However
2439 		 * at the point when this call is done we typically don't yet
2440 		 * know which interface is going to be used */
2441 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2442 			err = -EINVAL;
2443 			break;
2444 		}
2445 		tp->rx_opt.user_mss = val;
2446 		break;
2447 
2448 	case TCP_NODELAY:
2449 		if (val) {
2450 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2451 			 * this option on corked socket is remembered, but
2452 			 * it is not activated until cork is cleared.
2453 			 *
2454 			 * However, when TCP_NODELAY is set we make
2455 			 * an explicit push, which overrides even TCP_CORK
2456 			 * for currently queued segments.
2457 			 */
2458 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2459 			tcp_push_pending_frames(sk);
2460 		} else {
2461 			tp->nonagle &= ~TCP_NAGLE_OFF;
2462 		}
2463 		break;
2464 
2465 	case TCP_THIN_LINEAR_TIMEOUTS:
2466 		if (val < 0 || val > 1)
2467 			err = -EINVAL;
2468 		else
2469 			tp->thin_lto = val;
2470 		break;
2471 
2472 	case TCP_THIN_DUPACK:
2473 		if (val < 0 || val > 1)
2474 			err = -EINVAL;
2475 		else {
2476 			tp->thin_dupack = val;
2477 			if (tp->thin_dupack)
2478 				tcp_disable_early_retrans(tp);
2479 		}
2480 		break;
2481 
2482 	case TCP_REPAIR:
2483 		if (!tcp_can_repair_sock(sk))
2484 			err = -EPERM;
2485 		else if (val == 1) {
2486 			tp->repair = 1;
2487 			sk->sk_reuse = SK_FORCE_REUSE;
2488 			tp->repair_queue = TCP_NO_QUEUE;
2489 		} else if (val == 0) {
2490 			tp->repair = 0;
2491 			sk->sk_reuse = SK_NO_REUSE;
2492 			tcp_send_window_probe(sk);
2493 		} else
2494 			err = -EINVAL;
2495 
2496 		break;
2497 
2498 	case TCP_REPAIR_QUEUE:
2499 		if (!tp->repair)
2500 			err = -EPERM;
2501 		else if (val < TCP_QUEUES_NR)
2502 			tp->repair_queue = val;
2503 		else
2504 			err = -EINVAL;
2505 		break;
2506 
2507 	case TCP_QUEUE_SEQ:
2508 		if (sk->sk_state != TCP_CLOSE)
2509 			err = -EPERM;
2510 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2511 			tp->write_seq = val;
2512 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2513 			tp->rcv_nxt = val;
2514 		else
2515 			err = -EINVAL;
2516 		break;
2517 
2518 	case TCP_REPAIR_OPTIONS:
2519 		if (!tp->repair)
2520 			err = -EINVAL;
2521 		else if (sk->sk_state == TCP_ESTABLISHED)
2522 			err = tcp_repair_options_est(tp,
2523 					(struct tcp_repair_opt __user *)optval,
2524 					optlen);
2525 		else
2526 			err = -EPERM;
2527 		break;
2528 
2529 	case TCP_CORK:
2530 		/* When set indicates to always queue non-full frames.
2531 		 * Later the user clears this option and we transmit
2532 		 * any pending partial frames in the queue.  This is
2533 		 * meant to be used alongside sendfile() to get properly
2534 		 * filled frames when the user (for example) must write
2535 		 * out headers with a write() call first and then use
2536 		 * sendfile to send out the data parts.
2537 		 *
2538 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2539 		 * stronger than TCP_NODELAY.
2540 		 */
2541 		if (val) {
2542 			tp->nonagle |= TCP_NAGLE_CORK;
2543 		} else {
2544 			tp->nonagle &= ~TCP_NAGLE_CORK;
2545 			if (tp->nonagle&TCP_NAGLE_OFF)
2546 				tp->nonagle |= TCP_NAGLE_PUSH;
2547 			tcp_push_pending_frames(sk);
2548 		}
2549 		break;
2550 
2551 	case TCP_KEEPIDLE:
2552 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2553 			err = -EINVAL;
2554 		else {
2555 			tp->keepalive_time = val * HZ;
2556 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2557 			    !((1 << sk->sk_state) &
2558 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2559 				u32 elapsed = keepalive_time_elapsed(tp);
2560 				if (tp->keepalive_time > elapsed)
2561 					elapsed = tp->keepalive_time - elapsed;
2562 				else
2563 					elapsed = 0;
2564 				inet_csk_reset_keepalive_timer(sk, elapsed);
2565 			}
2566 		}
2567 		break;
2568 	case TCP_KEEPINTVL:
2569 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2570 			err = -EINVAL;
2571 		else
2572 			tp->keepalive_intvl = val * HZ;
2573 		break;
2574 	case TCP_KEEPCNT:
2575 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2576 			err = -EINVAL;
2577 		else
2578 			tp->keepalive_probes = val;
2579 		break;
2580 	case TCP_SYNCNT:
2581 		if (val < 1 || val > MAX_TCP_SYNCNT)
2582 			err = -EINVAL;
2583 		else
2584 			icsk->icsk_syn_retries = val;
2585 		break;
2586 
2587 	case TCP_SAVE_SYN:
2588 		if (val < 0 || val > 1)
2589 			err = -EINVAL;
2590 		else
2591 			tp->save_syn = val;
2592 		break;
2593 
2594 	case TCP_LINGER2:
2595 		if (val < 0)
2596 			tp->linger2 = -1;
2597 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2598 			tp->linger2 = 0;
2599 		else
2600 			tp->linger2 = val * HZ;
2601 		break;
2602 
2603 	case TCP_DEFER_ACCEPT:
2604 		/* Translate value in seconds to number of retransmits */
2605 		icsk->icsk_accept_queue.rskq_defer_accept =
2606 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2607 					TCP_RTO_MAX / HZ);
2608 		break;
2609 
2610 	case TCP_WINDOW_CLAMP:
2611 		if (!val) {
2612 			if (sk->sk_state != TCP_CLOSE) {
2613 				err = -EINVAL;
2614 				break;
2615 			}
2616 			tp->window_clamp = 0;
2617 		} else
2618 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2619 						SOCK_MIN_RCVBUF / 2 : val;
2620 		break;
2621 
2622 	case TCP_QUICKACK:
2623 		if (!val) {
2624 			icsk->icsk_ack.pingpong = 1;
2625 		} else {
2626 			icsk->icsk_ack.pingpong = 0;
2627 			if ((1 << sk->sk_state) &
2628 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2629 			    inet_csk_ack_scheduled(sk)) {
2630 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2631 				tcp_cleanup_rbuf(sk, 1);
2632 				if (!(val & 1))
2633 					icsk->icsk_ack.pingpong = 1;
2634 			}
2635 		}
2636 		break;
2637 
2638 #ifdef CONFIG_TCP_MD5SIG
2639 	case TCP_MD5SIG:
2640 		/* Read the IP->Key mappings from userspace */
2641 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2642 		break;
2643 #endif
2644 	case TCP_USER_TIMEOUT:
2645 		/* Cap the max time in ms TCP will retry or probe the window
2646 		 * before giving up and aborting (ETIMEDOUT) a connection.
2647 		 */
2648 		if (val < 0)
2649 			err = -EINVAL;
2650 		else
2651 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2652 		break;
2653 
2654 	case TCP_FASTOPEN:
2655 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2656 		    TCPF_LISTEN))) {
2657 			tcp_fastopen_init_key_once(true);
2658 
2659 			fastopen_queue_tune(sk, val);
2660 		} else {
2661 			err = -EINVAL;
2662 		}
2663 		break;
2664 	case TCP_TIMESTAMP:
2665 		if (!tp->repair)
2666 			err = -EPERM;
2667 		else
2668 			tp->tsoffset = val - tcp_time_stamp;
2669 		break;
2670 	case TCP_REPAIR_WINDOW:
2671 		err = tcp_repair_set_window(tp, optval, optlen);
2672 		break;
2673 	case TCP_NOTSENT_LOWAT:
2674 		tp->notsent_lowat = val;
2675 		sk->sk_write_space(sk);
2676 		break;
2677 	default:
2678 		err = -ENOPROTOOPT;
2679 		break;
2680 	}
2681 
2682 	release_sock(sk);
2683 	return err;
2684 }
2685 
2686 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2687 		   unsigned int optlen)
2688 {
2689 	const struct inet_connection_sock *icsk = inet_csk(sk);
2690 
2691 	if (level != SOL_TCP)
2692 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2693 						     optval, optlen);
2694 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2695 }
2696 EXPORT_SYMBOL(tcp_setsockopt);
2697 
2698 #ifdef CONFIG_COMPAT
2699 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2700 			  char __user *optval, unsigned int optlen)
2701 {
2702 	if (level != SOL_TCP)
2703 		return inet_csk_compat_setsockopt(sk, level, optname,
2704 						  optval, optlen);
2705 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2706 }
2707 EXPORT_SYMBOL(compat_tcp_setsockopt);
2708 #endif
2709 
2710 /* Return information about state of tcp endpoint in API format. */
2711 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2712 {
2713 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2714 	const struct inet_connection_sock *icsk = inet_csk(sk);
2715 	u32 now = tcp_time_stamp, intv;
2716 	unsigned int start;
2717 	int notsent_bytes;
2718 	u64 rate64;
2719 	u32 rate;
2720 
2721 	memset(info, 0, sizeof(*info));
2722 	if (sk->sk_type != SOCK_STREAM)
2723 		return;
2724 
2725 	info->tcpi_state = sk_state_load(sk);
2726 
2727 	info->tcpi_ca_state = icsk->icsk_ca_state;
2728 	info->tcpi_retransmits = icsk->icsk_retransmits;
2729 	info->tcpi_probes = icsk->icsk_probes_out;
2730 	info->tcpi_backoff = icsk->icsk_backoff;
2731 
2732 	if (tp->rx_opt.tstamp_ok)
2733 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2734 	if (tcp_is_sack(tp))
2735 		info->tcpi_options |= TCPI_OPT_SACK;
2736 	if (tp->rx_opt.wscale_ok) {
2737 		info->tcpi_options |= TCPI_OPT_WSCALE;
2738 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2739 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2740 	}
2741 
2742 	if (tp->ecn_flags & TCP_ECN_OK)
2743 		info->tcpi_options |= TCPI_OPT_ECN;
2744 	if (tp->ecn_flags & TCP_ECN_SEEN)
2745 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2746 	if (tp->syn_data_acked)
2747 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2748 
2749 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2750 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2751 	info->tcpi_snd_mss = tp->mss_cache;
2752 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2753 
2754 	if (info->tcpi_state == TCP_LISTEN) {
2755 		info->tcpi_unacked = sk->sk_ack_backlog;
2756 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2757 	} else {
2758 		info->tcpi_unacked = tp->packets_out;
2759 		info->tcpi_sacked = tp->sacked_out;
2760 	}
2761 	info->tcpi_lost = tp->lost_out;
2762 	info->tcpi_retrans = tp->retrans_out;
2763 	info->tcpi_fackets = tp->fackets_out;
2764 
2765 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2766 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2767 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2768 
2769 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2770 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2771 	info->tcpi_rtt = tp->srtt_us >> 3;
2772 	info->tcpi_rttvar = tp->mdev_us >> 2;
2773 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2774 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2775 	info->tcpi_advmss = tp->advmss;
2776 	info->tcpi_reordering = tp->reordering;
2777 
2778 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2779 	info->tcpi_rcv_space = tp->rcvq_space.space;
2780 
2781 	info->tcpi_total_retrans = tp->total_retrans;
2782 
2783 	rate = READ_ONCE(sk->sk_pacing_rate);
2784 	rate64 = rate != ~0U ? rate : ~0ULL;
2785 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2786 
2787 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2788 	rate64 = rate != ~0U ? rate : ~0ULL;
2789 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2790 
2791 	do {
2792 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2793 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2794 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2795 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2796 	info->tcpi_segs_out = tp->segs_out;
2797 	info->tcpi_segs_in = tp->segs_in;
2798 
2799 	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2800 	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2801 
2802 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2803 	info->tcpi_data_segs_in = tp->data_segs_in;
2804 	info->tcpi_data_segs_out = tp->data_segs_out;
2805 
2806 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2807 	rate = READ_ONCE(tp->rate_delivered);
2808 	intv = READ_ONCE(tp->rate_interval_us);
2809 	if (rate && intv) {
2810 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2811 		do_div(rate64, intv);
2812 		put_unaligned(rate64, &info->tcpi_delivery_rate);
2813 	}
2814 }
2815 EXPORT_SYMBOL_GPL(tcp_get_info);
2816 
2817 static int do_tcp_getsockopt(struct sock *sk, int level,
2818 		int optname, char __user *optval, int __user *optlen)
2819 {
2820 	struct inet_connection_sock *icsk = inet_csk(sk);
2821 	struct tcp_sock *tp = tcp_sk(sk);
2822 	struct net *net = sock_net(sk);
2823 	int val, len;
2824 
2825 	if (get_user(len, optlen))
2826 		return -EFAULT;
2827 
2828 	len = min_t(unsigned int, len, sizeof(int));
2829 
2830 	if (len < 0)
2831 		return -EINVAL;
2832 
2833 	switch (optname) {
2834 	case TCP_MAXSEG:
2835 		val = tp->mss_cache;
2836 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2837 			val = tp->rx_opt.user_mss;
2838 		if (tp->repair)
2839 			val = tp->rx_opt.mss_clamp;
2840 		break;
2841 	case TCP_NODELAY:
2842 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2843 		break;
2844 	case TCP_CORK:
2845 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2846 		break;
2847 	case TCP_KEEPIDLE:
2848 		val = keepalive_time_when(tp) / HZ;
2849 		break;
2850 	case TCP_KEEPINTVL:
2851 		val = keepalive_intvl_when(tp) / HZ;
2852 		break;
2853 	case TCP_KEEPCNT:
2854 		val = keepalive_probes(tp);
2855 		break;
2856 	case TCP_SYNCNT:
2857 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2858 		break;
2859 	case TCP_LINGER2:
2860 		val = tp->linger2;
2861 		if (val >= 0)
2862 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2863 		break;
2864 	case TCP_DEFER_ACCEPT:
2865 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2866 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2867 		break;
2868 	case TCP_WINDOW_CLAMP:
2869 		val = tp->window_clamp;
2870 		break;
2871 	case TCP_INFO: {
2872 		struct tcp_info info;
2873 
2874 		if (get_user(len, optlen))
2875 			return -EFAULT;
2876 
2877 		tcp_get_info(sk, &info);
2878 
2879 		len = min_t(unsigned int, len, sizeof(info));
2880 		if (put_user(len, optlen))
2881 			return -EFAULT;
2882 		if (copy_to_user(optval, &info, len))
2883 			return -EFAULT;
2884 		return 0;
2885 	}
2886 	case TCP_CC_INFO: {
2887 		const struct tcp_congestion_ops *ca_ops;
2888 		union tcp_cc_info info;
2889 		size_t sz = 0;
2890 		int attr;
2891 
2892 		if (get_user(len, optlen))
2893 			return -EFAULT;
2894 
2895 		ca_ops = icsk->icsk_ca_ops;
2896 		if (ca_ops && ca_ops->get_info)
2897 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2898 
2899 		len = min_t(unsigned int, len, sz);
2900 		if (put_user(len, optlen))
2901 			return -EFAULT;
2902 		if (copy_to_user(optval, &info, len))
2903 			return -EFAULT;
2904 		return 0;
2905 	}
2906 	case TCP_QUICKACK:
2907 		val = !icsk->icsk_ack.pingpong;
2908 		break;
2909 
2910 	case TCP_CONGESTION:
2911 		if (get_user(len, optlen))
2912 			return -EFAULT;
2913 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2914 		if (put_user(len, optlen))
2915 			return -EFAULT;
2916 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2917 			return -EFAULT;
2918 		return 0;
2919 
2920 	case TCP_THIN_LINEAR_TIMEOUTS:
2921 		val = tp->thin_lto;
2922 		break;
2923 	case TCP_THIN_DUPACK:
2924 		val = tp->thin_dupack;
2925 		break;
2926 
2927 	case TCP_REPAIR:
2928 		val = tp->repair;
2929 		break;
2930 
2931 	case TCP_REPAIR_QUEUE:
2932 		if (tp->repair)
2933 			val = tp->repair_queue;
2934 		else
2935 			return -EINVAL;
2936 		break;
2937 
2938 	case TCP_REPAIR_WINDOW: {
2939 		struct tcp_repair_window opt;
2940 
2941 		if (get_user(len, optlen))
2942 			return -EFAULT;
2943 
2944 		if (len != sizeof(opt))
2945 			return -EINVAL;
2946 
2947 		if (!tp->repair)
2948 			return -EPERM;
2949 
2950 		opt.snd_wl1	= tp->snd_wl1;
2951 		opt.snd_wnd	= tp->snd_wnd;
2952 		opt.max_window	= tp->max_window;
2953 		opt.rcv_wnd	= tp->rcv_wnd;
2954 		opt.rcv_wup	= tp->rcv_wup;
2955 
2956 		if (copy_to_user(optval, &opt, len))
2957 			return -EFAULT;
2958 		return 0;
2959 	}
2960 	case TCP_QUEUE_SEQ:
2961 		if (tp->repair_queue == TCP_SEND_QUEUE)
2962 			val = tp->write_seq;
2963 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2964 			val = tp->rcv_nxt;
2965 		else
2966 			return -EINVAL;
2967 		break;
2968 
2969 	case TCP_USER_TIMEOUT:
2970 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2971 		break;
2972 
2973 	case TCP_FASTOPEN:
2974 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2975 		break;
2976 
2977 	case TCP_TIMESTAMP:
2978 		val = tcp_time_stamp + tp->tsoffset;
2979 		break;
2980 	case TCP_NOTSENT_LOWAT:
2981 		val = tp->notsent_lowat;
2982 		break;
2983 	case TCP_SAVE_SYN:
2984 		val = tp->save_syn;
2985 		break;
2986 	case TCP_SAVED_SYN: {
2987 		if (get_user(len, optlen))
2988 			return -EFAULT;
2989 
2990 		lock_sock(sk);
2991 		if (tp->saved_syn) {
2992 			if (len < tp->saved_syn[0]) {
2993 				if (put_user(tp->saved_syn[0], optlen)) {
2994 					release_sock(sk);
2995 					return -EFAULT;
2996 				}
2997 				release_sock(sk);
2998 				return -EINVAL;
2999 			}
3000 			len = tp->saved_syn[0];
3001 			if (put_user(len, optlen)) {
3002 				release_sock(sk);
3003 				return -EFAULT;
3004 			}
3005 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3006 				release_sock(sk);
3007 				return -EFAULT;
3008 			}
3009 			tcp_saved_syn_free(tp);
3010 			release_sock(sk);
3011 		} else {
3012 			release_sock(sk);
3013 			len = 0;
3014 			if (put_user(len, optlen))
3015 				return -EFAULT;
3016 		}
3017 		return 0;
3018 	}
3019 	default:
3020 		return -ENOPROTOOPT;
3021 	}
3022 
3023 	if (put_user(len, optlen))
3024 		return -EFAULT;
3025 	if (copy_to_user(optval, &val, len))
3026 		return -EFAULT;
3027 	return 0;
3028 }
3029 
3030 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3031 		   int __user *optlen)
3032 {
3033 	struct inet_connection_sock *icsk = inet_csk(sk);
3034 
3035 	if (level != SOL_TCP)
3036 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3037 						     optval, optlen);
3038 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3039 }
3040 EXPORT_SYMBOL(tcp_getsockopt);
3041 
3042 #ifdef CONFIG_COMPAT
3043 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3044 			  char __user *optval, int __user *optlen)
3045 {
3046 	if (level != SOL_TCP)
3047 		return inet_csk_compat_getsockopt(sk, level, optname,
3048 						  optval, optlen);
3049 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3050 }
3051 EXPORT_SYMBOL(compat_tcp_getsockopt);
3052 #endif
3053 
3054 #ifdef CONFIG_TCP_MD5SIG
3055 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3056 static DEFINE_MUTEX(tcp_md5sig_mutex);
3057 static bool tcp_md5sig_pool_populated = false;
3058 
3059 static void __tcp_alloc_md5sig_pool(void)
3060 {
3061 	struct crypto_ahash *hash;
3062 	int cpu;
3063 
3064 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3065 	if (IS_ERR(hash))
3066 		return;
3067 
3068 	for_each_possible_cpu(cpu) {
3069 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3070 		struct ahash_request *req;
3071 
3072 		if (!scratch) {
3073 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3074 					       sizeof(struct tcphdr),
3075 					       GFP_KERNEL,
3076 					       cpu_to_node(cpu));
3077 			if (!scratch)
3078 				return;
3079 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3080 		}
3081 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3082 			continue;
3083 
3084 		req = ahash_request_alloc(hash, GFP_KERNEL);
3085 		if (!req)
3086 			return;
3087 
3088 		ahash_request_set_callback(req, 0, NULL, NULL);
3089 
3090 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3091 	}
3092 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3093 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3094 	 */
3095 	smp_wmb();
3096 	tcp_md5sig_pool_populated = true;
3097 }
3098 
3099 bool tcp_alloc_md5sig_pool(void)
3100 {
3101 	if (unlikely(!tcp_md5sig_pool_populated)) {
3102 		mutex_lock(&tcp_md5sig_mutex);
3103 
3104 		if (!tcp_md5sig_pool_populated)
3105 			__tcp_alloc_md5sig_pool();
3106 
3107 		mutex_unlock(&tcp_md5sig_mutex);
3108 	}
3109 	return tcp_md5sig_pool_populated;
3110 }
3111 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3112 
3113 
3114 /**
3115  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3116  *
3117  *	We use percpu structure, so if we succeed, we exit with preemption
3118  *	and BH disabled, to make sure another thread or softirq handling
3119  *	wont try to get same context.
3120  */
3121 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3122 {
3123 	local_bh_disable();
3124 
3125 	if (tcp_md5sig_pool_populated) {
3126 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3127 		smp_rmb();
3128 		return this_cpu_ptr(&tcp_md5sig_pool);
3129 	}
3130 	local_bh_enable();
3131 	return NULL;
3132 }
3133 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3134 
3135 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3136 			  const struct sk_buff *skb, unsigned int header_len)
3137 {
3138 	struct scatterlist sg;
3139 	const struct tcphdr *tp = tcp_hdr(skb);
3140 	struct ahash_request *req = hp->md5_req;
3141 	unsigned int i;
3142 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3143 					   skb_headlen(skb) - header_len : 0;
3144 	const struct skb_shared_info *shi = skb_shinfo(skb);
3145 	struct sk_buff *frag_iter;
3146 
3147 	sg_init_table(&sg, 1);
3148 
3149 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3150 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3151 	if (crypto_ahash_update(req))
3152 		return 1;
3153 
3154 	for (i = 0; i < shi->nr_frags; ++i) {
3155 		const struct skb_frag_struct *f = &shi->frags[i];
3156 		unsigned int offset = f->page_offset;
3157 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3158 
3159 		sg_set_page(&sg, page, skb_frag_size(f),
3160 			    offset_in_page(offset));
3161 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3162 		if (crypto_ahash_update(req))
3163 			return 1;
3164 	}
3165 
3166 	skb_walk_frags(skb, frag_iter)
3167 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3168 			return 1;
3169 
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3173 
3174 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3175 {
3176 	struct scatterlist sg;
3177 
3178 	sg_init_one(&sg, key->key, key->keylen);
3179 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3180 	return crypto_ahash_update(hp->md5_req);
3181 }
3182 EXPORT_SYMBOL(tcp_md5_hash_key);
3183 
3184 #endif
3185 
3186 void tcp_done(struct sock *sk)
3187 {
3188 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3189 
3190 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3191 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3192 
3193 	tcp_set_state(sk, TCP_CLOSE);
3194 	tcp_clear_xmit_timers(sk);
3195 	if (req)
3196 		reqsk_fastopen_remove(sk, req, false);
3197 
3198 	sk->sk_shutdown = SHUTDOWN_MASK;
3199 
3200 	if (!sock_flag(sk, SOCK_DEAD))
3201 		sk->sk_state_change(sk);
3202 	else
3203 		inet_csk_destroy_sock(sk);
3204 }
3205 EXPORT_SYMBOL_GPL(tcp_done);
3206 
3207 int tcp_abort(struct sock *sk, int err)
3208 {
3209 	if (!sk_fullsock(sk)) {
3210 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3211 			struct request_sock *req = inet_reqsk(sk);
3212 
3213 			local_bh_disable();
3214 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3215 							  req);
3216 			local_bh_enable();
3217 			return 0;
3218 		}
3219 		return -EOPNOTSUPP;
3220 	}
3221 
3222 	/* Don't race with userspace socket closes such as tcp_close. */
3223 	lock_sock(sk);
3224 
3225 	if (sk->sk_state == TCP_LISTEN) {
3226 		tcp_set_state(sk, TCP_CLOSE);
3227 		inet_csk_listen_stop(sk);
3228 	}
3229 
3230 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3231 	local_bh_disable();
3232 	bh_lock_sock(sk);
3233 
3234 	if (!sock_flag(sk, SOCK_DEAD)) {
3235 		sk->sk_err = err;
3236 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3237 		smp_wmb();
3238 		sk->sk_error_report(sk);
3239 		if (tcp_need_reset(sk->sk_state))
3240 			tcp_send_active_reset(sk, GFP_ATOMIC);
3241 		tcp_done(sk);
3242 	}
3243 
3244 	bh_unlock_sock(sk);
3245 	local_bh_enable();
3246 	release_sock(sk);
3247 	return 0;
3248 }
3249 EXPORT_SYMBOL_GPL(tcp_abort);
3250 
3251 extern struct tcp_congestion_ops tcp_reno;
3252 
3253 static __initdata unsigned long thash_entries;
3254 static int __init set_thash_entries(char *str)
3255 {
3256 	ssize_t ret;
3257 
3258 	if (!str)
3259 		return 0;
3260 
3261 	ret = kstrtoul(str, 0, &thash_entries);
3262 	if (ret)
3263 		return 0;
3264 
3265 	return 1;
3266 }
3267 __setup("thash_entries=", set_thash_entries);
3268 
3269 static void __init tcp_init_mem(void)
3270 {
3271 	unsigned long limit = nr_free_buffer_pages() / 16;
3272 
3273 	limit = max(limit, 128UL);
3274 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3275 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3276 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3277 }
3278 
3279 void __init tcp_init(void)
3280 {
3281 	int max_rshare, max_wshare, cnt;
3282 	unsigned long limit;
3283 	unsigned int i;
3284 
3285 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3286 		     FIELD_SIZEOF(struct sk_buff, cb));
3287 
3288 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3289 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3290 	tcp_hashinfo.bind_bucket_cachep =
3291 		kmem_cache_create("tcp_bind_bucket",
3292 				  sizeof(struct inet_bind_bucket), 0,
3293 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3294 
3295 	/* Size and allocate the main established and bind bucket
3296 	 * hash tables.
3297 	 *
3298 	 * The methodology is similar to that of the buffer cache.
3299 	 */
3300 	tcp_hashinfo.ehash =
3301 		alloc_large_system_hash("TCP established",
3302 					sizeof(struct inet_ehash_bucket),
3303 					thash_entries,
3304 					17, /* one slot per 128 KB of memory */
3305 					0,
3306 					NULL,
3307 					&tcp_hashinfo.ehash_mask,
3308 					0,
3309 					thash_entries ? 0 : 512 * 1024);
3310 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3311 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3312 
3313 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3314 		panic("TCP: failed to alloc ehash_locks");
3315 	tcp_hashinfo.bhash =
3316 		alloc_large_system_hash("TCP bind",
3317 					sizeof(struct inet_bind_hashbucket),
3318 					tcp_hashinfo.ehash_mask + 1,
3319 					17, /* one slot per 128 KB of memory */
3320 					0,
3321 					&tcp_hashinfo.bhash_size,
3322 					NULL,
3323 					0,
3324 					64 * 1024);
3325 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3326 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3327 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3328 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3329 	}
3330 
3331 
3332 	cnt = tcp_hashinfo.ehash_mask + 1;
3333 
3334 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3335 	sysctl_tcp_max_orphans = cnt / 2;
3336 	sysctl_max_syn_backlog = max(128, cnt / 256);
3337 
3338 	tcp_init_mem();
3339 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3340 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3341 	max_wshare = min(4UL*1024*1024, limit);
3342 	max_rshare = min(6UL*1024*1024, limit);
3343 
3344 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3345 	sysctl_tcp_wmem[1] = 16*1024;
3346 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3347 
3348 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3349 	sysctl_tcp_rmem[1] = 87380;
3350 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3351 
3352 	pr_info("Hash tables configured (established %u bind %u)\n",
3353 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3354 
3355 	tcp_metrics_init();
3356 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3357 	tcp_tasklet_init();
3358 }
3359