1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <asm/unaligned.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 tp->out_of_order_queue = RB_ROOT; 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U); 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* There's a bubble in the pipe until at least the first ACK. */ 400 tp->app_limited = ~0U; 401 402 /* See draft-stevens-tcpca-spec-01 for discussion of the 403 * initialization of these values. 404 */ 405 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 406 tp->snd_cwnd_clamp = ~0; 407 tp->mss_cache = TCP_MSS_DEFAULT; 408 u64_stats_init(&tp->syncp); 409 410 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 411 tcp_enable_early_retrans(tp); 412 tcp_assign_congestion_control(sk); 413 414 tp->tsoffset = 0; 415 416 sk->sk_state = TCP_CLOSE; 417 418 sk->sk_write_space = sk_stream_write_space; 419 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 420 421 icsk->icsk_sync_mss = tcp_sync_mss; 422 423 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 424 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 425 426 local_bh_disable(); 427 if (mem_cgroup_sockets_enabled) 428 sock_update_memcg(sk); 429 sk_sockets_allocated_inc(sk); 430 local_bh_enable(); 431 } 432 EXPORT_SYMBOL(tcp_init_sock); 433 434 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 435 { 436 if (tsflags) { 437 struct skb_shared_info *shinfo = skb_shinfo(skb); 438 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 439 440 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 441 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 442 tcb->txstamp_ack = 1; 443 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 444 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 445 } 446 } 447 448 /* 449 * Wait for a TCP event. 450 * 451 * Note that we don't need to lock the socket, as the upper poll layers 452 * take care of normal races (between the test and the event) and we don't 453 * go look at any of the socket buffers directly. 454 */ 455 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 456 { 457 unsigned int mask; 458 struct sock *sk = sock->sk; 459 const struct tcp_sock *tp = tcp_sk(sk); 460 int state; 461 462 sock_rps_record_flow(sk); 463 464 sock_poll_wait(file, sk_sleep(sk), wait); 465 466 state = sk_state_load(sk); 467 if (state == TCP_LISTEN) 468 return inet_csk_listen_poll(sk); 469 470 /* Socket is not locked. We are protected from async events 471 * by poll logic and correct handling of state changes 472 * made by other threads is impossible in any case. 473 */ 474 475 mask = 0; 476 477 /* 478 * POLLHUP is certainly not done right. But poll() doesn't 479 * have a notion of HUP in just one direction, and for a 480 * socket the read side is more interesting. 481 * 482 * Some poll() documentation says that POLLHUP is incompatible 483 * with the POLLOUT/POLLWR flags, so somebody should check this 484 * all. But careful, it tends to be safer to return too many 485 * bits than too few, and you can easily break real applications 486 * if you don't tell them that something has hung up! 487 * 488 * Check-me. 489 * 490 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 491 * our fs/select.c). It means that after we received EOF, 492 * poll always returns immediately, making impossible poll() on write() 493 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 494 * if and only if shutdown has been made in both directions. 495 * Actually, it is interesting to look how Solaris and DUX 496 * solve this dilemma. I would prefer, if POLLHUP were maskable, 497 * then we could set it on SND_SHUTDOWN. BTW examples given 498 * in Stevens' books assume exactly this behaviour, it explains 499 * why POLLHUP is incompatible with POLLOUT. --ANK 500 * 501 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 502 * blocking on fresh not-connected or disconnected socket. --ANK 503 */ 504 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 505 mask |= POLLHUP; 506 if (sk->sk_shutdown & RCV_SHUTDOWN) 507 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 508 509 /* Connected or passive Fast Open socket? */ 510 if (state != TCP_SYN_SENT && 511 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 512 int target = sock_rcvlowat(sk, 0, INT_MAX); 513 514 if (tp->urg_seq == tp->copied_seq && 515 !sock_flag(sk, SOCK_URGINLINE) && 516 tp->urg_data) 517 target++; 518 519 if (tp->rcv_nxt - tp->copied_seq >= target) 520 mask |= POLLIN | POLLRDNORM; 521 522 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 523 if (sk_stream_is_writeable(sk)) { 524 mask |= POLLOUT | POLLWRNORM; 525 } else { /* send SIGIO later */ 526 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 527 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 528 529 /* Race breaker. If space is freed after 530 * wspace test but before the flags are set, 531 * IO signal will be lost. Memory barrier 532 * pairs with the input side. 533 */ 534 smp_mb__after_atomic(); 535 if (sk_stream_is_writeable(sk)) 536 mask |= POLLOUT | POLLWRNORM; 537 } 538 } else 539 mask |= POLLOUT | POLLWRNORM; 540 541 if (tp->urg_data & TCP_URG_VALID) 542 mask |= POLLPRI; 543 } 544 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 545 smp_rmb(); 546 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 547 mask |= POLLERR; 548 549 return mask; 550 } 551 EXPORT_SYMBOL(tcp_poll); 552 553 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 554 { 555 struct tcp_sock *tp = tcp_sk(sk); 556 int answ; 557 bool slow; 558 559 switch (cmd) { 560 case SIOCINQ: 561 if (sk->sk_state == TCP_LISTEN) 562 return -EINVAL; 563 564 slow = lock_sock_fast(sk); 565 answ = tcp_inq(sk); 566 unlock_sock_fast(sk, slow); 567 break; 568 case SIOCATMARK: 569 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 570 break; 571 case SIOCOUTQ: 572 if (sk->sk_state == TCP_LISTEN) 573 return -EINVAL; 574 575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 576 answ = 0; 577 else 578 answ = tp->write_seq - tp->snd_una; 579 break; 580 case SIOCOUTQNSD: 581 if (sk->sk_state == TCP_LISTEN) 582 return -EINVAL; 583 584 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 585 answ = 0; 586 else 587 answ = tp->write_seq - tp->snd_nxt; 588 break; 589 default: 590 return -ENOIOCTLCMD; 591 } 592 593 return put_user(answ, (int __user *)arg); 594 } 595 EXPORT_SYMBOL(tcp_ioctl); 596 597 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 598 { 599 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 600 tp->pushed_seq = tp->write_seq; 601 } 602 603 static inline bool forced_push(const struct tcp_sock *tp) 604 { 605 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 606 } 607 608 static void skb_entail(struct sock *sk, struct sk_buff *skb) 609 { 610 struct tcp_sock *tp = tcp_sk(sk); 611 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 612 613 skb->csum = 0; 614 tcb->seq = tcb->end_seq = tp->write_seq; 615 tcb->tcp_flags = TCPHDR_ACK; 616 tcb->sacked = 0; 617 __skb_header_release(skb); 618 tcp_add_write_queue_tail(sk, skb); 619 sk->sk_wmem_queued += skb->truesize; 620 sk_mem_charge(sk, skb->truesize); 621 if (tp->nonagle & TCP_NAGLE_PUSH) 622 tp->nonagle &= ~TCP_NAGLE_PUSH; 623 624 tcp_slow_start_after_idle_check(sk); 625 } 626 627 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 628 { 629 if (flags & MSG_OOB) 630 tp->snd_up = tp->write_seq; 631 } 632 633 /* If a not yet filled skb is pushed, do not send it if 634 * we have data packets in Qdisc or NIC queues : 635 * Because TX completion will happen shortly, it gives a chance 636 * to coalesce future sendmsg() payload into this skb, without 637 * need for a timer, and with no latency trade off. 638 * As packets containing data payload have a bigger truesize 639 * than pure acks (dataless) packets, the last checks prevent 640 * autocorking if we only have an ACK in Qdisc/NIC queues, 641 * or if TX completion was delayed after we processed ACK packet. 642 */ 643 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 644 int size_goal) 645 { 646 return skb->len < size_goal && 647 sysctl_tcp_autocorking && 648 skb != tcp_write_queue_head(sk) && 649 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 650 } 651 652 static void tcp_push(struct sock *sk, int flags, int mss_now, 653 int nonagle, int size_goal) 654 { 655 struct tcp_sock *tp = tcp_sk(sk); 656 struct sk_buff *skb; 657 658 if (!tcp_send_head(sk)) 659 return; 660 661 skb = tcp_write_queue_tail(sk); 662 if (!(flags & MSG_MORE) || forced_push(tp)) 663 tcp_mark_push(tp, skb); 664 665 tcp_mark_urg(tp, flags); 666 667 if (tcp_should_autocork(sk, skb, size_goal)) { 668 669 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 670 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 671 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 672 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 673 } 674 /* It is possible TX completion already happened 675 * before we set TSQ_THROTTLED. 676 */ 677 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 678 return; 679 } 680 681 if (flags & MSG_MORE) 682 nonagle = TCP_NAGLE_CORK; 683 684 __tcp_push_pending_frames(sk, mss_now, nonagle); 685 } 686 687 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 688 unsigned int offset, size_t len) 689 { 690 struct tcp_splice_state *tss = rd_desc->arg.data; 691 int ret; 692 693 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 694 min(rd_desc->count, len), tss->flags, 695 skb_socket_splice); 696 if (ret > 0) 697 rd_desc->count -= ret; 698 return ret; 699 } 700 701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 702 { 703 /* Store TCP splice context information in read_descriptor_t. */ 704 read_descriptor_t rd_desc = { 705 .arg.data = tss, 706 .count = tss->len, 707 }; 708 709 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 710 } 711 712 /** 713 * tcp_splice_read - splice data from TCP socket to a pipe 714 * @sock: socket to splice from 715 * @ppos: position (not valid) 716 * @pipe: pipe to splice to 717 * @len: number of bytes to splice 718 * @flags: splice modifier flags 719 * 720 * Description: 721 * Will read pages from given socket and fill them into a pipe. 722 * 723 **/ 724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 725 struct pipe_inode_info *pipe, size_t len, 726 unsigned int flags) 727 { 728 struct sock *sk = sock->sk; 729 struct tcp_splice_state tss = { 730 .pipe = pipe, 731 .len = len, 732 .flags = flags, 733 }; 734 long timeo; 735 ssize_t spliced; 736 int ret; 737 738 sock_rps_record_flow(sk); 739 /* 740 * We can't seek on a socket input 741 */ 742 if (unlikely(*ppos)) 743 return -ESPIPE; 744 745 ret = spliced = 0; 746 747 lock_sock(sk); 748 749 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 750 while (tss.len) { 751 ret = __tcp_splice_read(sk, &tss); 752 if (ret < 0) 753 break; 754 else if (!ret) { 755 if (spliced) 756 break; 757 if (sock_flag(sk, SOCK_DONE)) 758 break; 759 if (sk->sk_err) { 760 ret = sock_error(sk); 761 break; 762 } 763 if (sk->sk_shutdown & RCV_SHUTDOWN) 764 break; 765 if (sk->sk_state == TCP_CLOSE) { 766 /* 767 * This occurs when user tries to read 768 * from never connected socket. 769 */ 770 if (!sock_flag(sk, SOCK_DONE)) 771 ret = -ENOTCONN; 772 break; 773 } 774 if (!timeo) { 775 ret = -EAGAIN; 776 break; 777 } 778 sk_wait_data(sk, &timeo, NULL); 779 if (signal_pending(current)) { 780 ret = sock_intr_errno(timeo); 781 break; 782 } 783 continue; 784 } 785 tss.len -= ret; 786 spliced += ret; 787 788 if (!timeo) 789 break; 790 release_sock(sk); 791 lock_sock(sk); 792 793 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 794 (sk->sk_shutdown & RCV_SHUTDOWN) || 795 signal_pending(current)) 796 break; 797 } 798 799 release_sock(sk); 800 801 if (spliced) 802 return spliced; 803 804 return ret; 805 } 806 EXPORT_SYMBOL(tcp_splice_read); 807 808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 809 bool force_schedule) 810 { 811 struct sk_buff *skb; 812 813 /* The TCP header must be at least 32-bit aligned. */ 814 size = ALIGN(size, 4); 815 816 if (unlikely(tcp_under_memory_pressure(sk))) 817 sk_mem_reclaim_partial(sk); 818 819 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 820 if (likely(skb)) { 821 bool mem_scheduled; 822 823 if (force_schedule) { 824 mem_scheduled = true; 825 sk_forced_mem_schedule(sk, skb->truesize); 826 } else { 827 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 828 } 829 if (likely(mem_scheduled)) { 830 skb_reserve(skb, sk->sk_prot->max_header); 831 /* 832 * Make sure that we have exactly size bytes 833 * available to the caller, no more, no less. 834 */ 835 skb->reserved_tailroom = skb->end - skb->tail - size; 836 return skb; 837 } 838 __kfree_skb(skb); 839 } else { 840 sk->sk_prot->enter_memory_pressure(sk); 841 sk_stream_moderate_sndbuf(sk); 842 } 843 return NULL; 844 } 845 846 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 847 int large_allowed) 848 { 849 struct tcp_sock *tp = tcp_sk(sk); 850 u32 new_size_goal, size_goal; 851 852 if (!large_allowed || !sk_can_gso(sk)) 853 return mss_now; 854 855 /* Note : tcp_tso_autosize() will eventually split this later */ 856 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 857 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 858 859 /* We try hard to avoid divides here */ 860 size_goal = tp->gso_segs * mss_now; 861 if (unlikely(new_size_goal < size_goal || 862 new_size_goal >= size_goal + mss_now)) { 863 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 864 sk->sk_gso_max_segs); 865 size_goal = tp->gso_segs * mss_now; 866 } 867 868 return max(size_goal, mss_now); 869 } 870 871 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 872 { 873 int mss_now; 874 875 mss_now = tcp_current_mss(sk); 876 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 877 878 return mss_now; 879 } 880 881 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 882 size_t size, int flags) 883 { 884 struct tcp_sock *tp = tcp_sk(sk); 885 int mss_now, size_goal; 886 int err; 887 ssize_t copied; 888 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 889 890 /* Wait for a connection to finish. One exception is TCP Fast Open 891 * (passive side) where data is allowed to be sent before a connection 892 * is fully established. 893 */ 894 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 895 !tcp_passive_fastopen(sk)) { 896 err = sk_stream_wait_connect(sk, &timeo); 897 if (err != 0) 898 goto out_err; 899 } 900 901 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 902 903 mss_now = tcp_send_mss(sk, &size_goal, flags); 904 copied = 0; 905 906 err = -EPIPE; 907 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 908 goto out_err; 909 910 while (size > 0) { 911 struct sk_buff *skb = tcp_write_queue_tail(sk); 912 int copy, i; 913 bool can_coalesce; 914 915 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 || 916 !tcp_skb_can_collapse_to(skb)) { 917 new_segment: 918 if (!sk_stream_memory_free(sk)) 919 goto wait_for_sndbuf; 920 921 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 922 skb_queue_empty(&sk->sk_write_queue)); 923 if (!skb) 924 goto wait_for_memory; 925 926 skb_entail(sk, skb); 927 copy = size_goal; 928 } 929 930 if (copy > size) 931 copy = size; 932 933 i = skb_shinfo(skb)->nr_frags; 934 can_coalesce = skb_can_coalesce(skb, i, page, offset); 935 if (!can_coalesce && i >= sysctl_max_skb_frags) { 936 tcp_mark_push(tp, skb); 937 goto new_segment; 938 } 939 if (!sk_wmem_schedule(sk, copy)) 940 goto wait_for_memory; 941 942 if (can_coalesce) { 943 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 944 } else { 945 get_page(page); 946 skb_fill_page_desc(skb, i, page, offset, copy); 947 } 948 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 949 950 skb->len += copy; 951 skb->data_len += copy; 952 skb->truesize += copy; 953 sk->sk_wmem_queued += copy; 954 sk_mem_charge(sk, copy); 955 skb->ip_summed = CHECKSUM_PARTIAL; 956 tp->write_seq += copy; 957 TCP_SKB_CB(skb)->end_seq += copy; 958 tcp_skb_pcount_set(skb, 0); 959 960 if (!copied) 961 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 962 963 copied += copy; 964 offset += copy; 965 size -= copy; 966 if (!size) { 967 tcp_tx_timestamp(sk, sk->sk_tsflags, skb); 968 goto out; 969 } 970 971 if (skb->len < size_goal || (flags & MSG_OOB)) 972 continue; 973 974 if (forced_push(tp)) { 975 tcp_mark_push(tp, skb); 976 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 977 } else if (skb == tcp_send_head(sk)) 978 tcp_push_one(sk, mss_now); 979 continue; 980 981 wait_for_sndbuf: 982 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 983 wait_for_memory: 984 tcp_push(sk, flags & ~MSG_MORE, mss_now, 985 TCP_NAGLE_PUSH, size_goal); 986 987 err = sk_stream_wait_memory(sk, &timeo); 988 if (err != 0) 989 goto do_error; 990 991 mss_now = tcp_send_mss(sk, &size_goal, flags); 992 } 993 994 out: 995 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 996 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 997 return copied; 998 999 do_error: 1000 if (copied) 1001 goto out; 1002 out_err: 1003 /* make sure we wake any epoll edge trigger waiter */ 1004 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1005 sk->sk_write_space(sk); 1006 return sk_stream_error(sk, flags, err); 1007 } 1008 1009 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1010 size_t size, int flags) 1011 { 1012 ssize_t res; 1013 1014 if (!(sk->sk_route_caps & NETIF_F_SG) || 1015 !sk_check_csum_caps(sk)) 1016 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1017 flags); 1018 1019 lock_sock(sk); 1020 1021 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1022 1023 res = do_tcp_sendpages(sk, page, offset, size, flags); 1024 release_sock(sk); 1025 return res; 1026 } 1027 EXPORT_SYMBOL(tcp_sendpage); 1028 1029 /* Do not bother using a page frag for very small frames. 1030 * But use this heuristic only for the first skb in write queue. 1031 * 1032 * Having no payload in skb->head allows better SACK shifting 1033 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1034 * write queue has less skbs. 1035 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1036 * This also speeds up tso_fragment(), since it wont fallback 1037 * to tcp_fragment(). 1038 */ 1039 static int linear_payload_sz(bool first_skb) 1040 { 1041 if (first_skb) 1042 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1043 return 0; 1044 } 1045 1046 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1047 { 1048 const struct tcp_sock *tp = tcp_sk(sk); 1049 int tmp = tp->mss_cache; 1050 1051 if (sg) { 1052 if (sk_can_gso(sk)) { 1053 tmp = linear_payload_sz(first_skb); 1054 } else { 1055 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1056 1057 if (tmp >= pgbreak && 1058 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1059 tmp = pgbreak; 1060 } 1061 } 1062 1063 return tmp; 1064 } 1065 1066 void tcp_free_fastopen_req(struct tcp_sock *tp) 1067 { 1068 if (tp->fastopen_req) { 1069 kfree(tp->fastopen_req); 1070 tp->fastopen_req = NULL; 1071 } 1072 } 1073 1074 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1075 int *copied, size_t size) 1076 { 1077 struct tcp_sock *tp = tcp_sk(sk); 1078 int err, flags; 1079 1080 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1081 return -EOPNOTSUPP; 1082 if (tp->fastopen_req) 1083 return -EALREADY; /* Another Fast Open is in progress */ 1084 1085 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1086 sk->sk_allocation); 1087 if (unlikely(!tp->fastopen_req)) 1088 return -ENOBUFS; 1089 tp->fastopen_req->data = msg; 1090 tp->fastopen_req->size = size; 1091 1092 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1093 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1094 msg->msg_namelen, flags); 1095 *copied = tp->fastopen_req->copied; 1096 tcp_free_fastopen_req(tp); 1097 return err; 1098 } 1099 1100 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1101 { 1102 struct tcp_sock *tp = tcp_sk(sk); 1103 struct sk_buff *skb; 1104 struct sockcm_cookie sockc; 1105 int flags, err, copied = 0; 1106 int mss_now = 0, size_goal, copied_syn = 0; 1107 bool process_backlog = false; 1108 bool sg; 1109 long timeo; 1110 1111 lock_sock(sk); 1112 1113 flags = msg->msg_flags; 1114 if (flags & MSG_FASTOPEN) { 1115 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1116 if (err == -EINPROGRESS && copied_syn > 0) 1117 goto out; 1118 else if (err) 1119 goto out_err; 1120 } 1121 1122 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1123 1124 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1125 1126 /* Wait for a connection to finish. One exception is TCP Fast Open 1127 * (passive side) where data is allowed to be sent before a connection 1128 * is fully established. 1129 */ 1130 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1131 !tcp_passive_fastopen(sk)) { 1132 err = sk_stream_wait_connect(sk, &timeo); 1133 if (err != 0) 1134 goto do_error; 1135 } 1136 1137 if (unlikely(tp->repair)) { 1138 if (tp->repair_queue == TCP_RECV_QUEUE) { 1139 copied = tcp_send_rcvq(sk, msg, size); 1140 goto out_nopush; 1141 } 1142 1143 err = -EINVAL; 1144 if (tp->repair_queue == TCP_NO_QUEUE) 1145 goto out_err; 1146 1147 /* 'common' sending to sendq */ 1148 } 1149 1150 sockc.tsflags = sk->sk_tsflags; 1151 if (msg->msg_controllen) { 1152 err = sock_cmsg_send(sk, msg, &sockc); 1153 if (unlikely(err)) { 1154 err = -EINVAL; 1155 goto out_err; 1156 } 1157 } 1158 1159 /* This should be in poll */ 1160 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1161 1162 /* Ok commence sending. */ 1163 copied = 0; 1164 1165 restart: 1166 mss_now = tcp_send_mss(sk, &size_goal, flags); 1167 1168 err = -EPIPE; 1169 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1170 goto out_err; 1171 1172 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1173 1174 while (msg_data_left(msg)) { 1175 int copy = 0; 1176 int max = size_goal; 1177 1178 skb = tcp_write_queue_tail(sk); 1179 if (tcp_send_head(sk)) { 1180 if (skb->ip_summed == CHECKSUM_NONE) 1181 max = mss_now; 1182 copy = max - skb->len; 1183 } 1184 1185 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1186 bool first_skb; 1187 1188 new_segment: 1189 /* Allocate new segment. If the interface is SG, 1190 * allocate skb fitting to single page. 1191 */ 1192 if (!sk_stream_memory_free(sk)) 1193 goto wait_for_sndbuf; 1194 1195 if (process_backlog && sk_flush_backlog(sk)) { 1196 process_backlog = false; 1197 goto restart; 1198 } 1199 first_skb = skb_queue_empty(&sk->sk_write_queue); 1200 skb = sk_stream_alloc_skb(sk, 1201 select_size(sk, sg, first_skb), 1202 sk->sk_allocation, 1203 first_skb); 1204 if (!skb) 1205 goto wait_for_memory; 1206 1207 process_backlog = true; 1208 /* 1209 * Check whether we can use HW checksum. 1210 */ 1211 if (sk_check_csum_caps(sk)) 1212 skb->ip_summed = CHECKSUM_PARTIAL; 1213 1214 skb_entail(sk, skb); 1215 copy = size_goal; 1216 max = size_goal; 1217 1218 /* All packets are restored as if they have 1219 * already been sent. skb_mstamp isn't set to 1220 * avoid wrong rtt estimation. 1221 */ 1222 if (tp->repair) 1223 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1224 } 1225 1226 /* Try to append data to the end of skb. */ 1227 if (copy > msg_data_left(msg)) 1228 copy = msg_data_left(msg); 1229 1230 /* Where to copy to? */ 1231 if (skb_availroom(skb) > 0) { 1232 /* We have some space in skb head. Superb! */ 1233 copy = min_t(int, copy, skb_availroom(skb)); 1234 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1235 if (err) 1236 goto do_fault; 1237 } else { 1238 bool merge = true; 1239 int i = skb_shinfo(skb)->nr_frags; 1240 struct page_frag *pfrag = sk_page_frag(sk); 1241 1242 if (!sk_page_frag_refill(sk, pfrag)) 1243 goto wait_for_memory; 1244 1245 if (!skb_can_coalesce(skb, i, pfrag->page, 1246 pfrag->offset)) { 1247 if (i == sysctl_max_skb_frags || !sg) { 1248 tcp_mark_push(tp, skb); 1249 goto new_segment; 1250 } 1251 merge = false; 1252 } 1253 1254 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1255 1256 if (!sk_wmem_schedule(sk, copy)) 1257 goto wait_for_memory; 1258 1259 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1260 pfrag->page, 1261 pfrag->offset, 1262 copy); 1263 if (err) 1264 goto do_error; 1265 1266 /* Update the skb. */ 1267 if (merge) { 1268 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1269 } else { 1270 skb_fill_page_desc(skb, i, pfrag->page, 1271 pfrag->offset, copy); 1272 get_page(pfrag->page); 1273 } 1274 pfrag->offset += copy; 1275 } 1276 1277 if (!copied) 1278 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1279 1280 tp->write_seq += copy; 1281 TCP_SKB_CB(skb)->end_seq += copy; 1282 tcp_skb_pcount_set(skb, 0); 1283 1284 copied += copy; 1285 if (!msg_data_left(msg)) { 1286 tcp_tx_timestamp(sk, sockc.tsflags, skb); 1287 if (unlikely(flags & MSG_EOR)) 1288 TCP_SKB_CB(skb)->eor = 1; 1289 goto out; 1290 } 1291 1292 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1293 continue; 1294 1295 if (forced_push(tp)) { 1296 tcp_mark_push(tp, skb); 1297 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1298 } else if (skb == tcp_send_head(sk)) 1299 tcp_push_one(sk, mss_now); 1300 continue; 1301 1302 wait_for_sndbuf: 1303 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1304 wait_for_memory: 1305 if (copied) 1306 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1307 TCP_NAGLE_PUSH, size_goal); 1308 1309 err = sk_stream_wait_memory(sk, &timeo); 1310 if (err != 0) 1311 goto do_error; 1312 1313 mss_now = tcp_send_mss(sk, &size_goal, flags); 1314 } 1315 1316 out: 1317 if (copied) 1318 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1319 out_nopush: 1320 release_sock(sk); 1321 return copied + copied_syn; 1322 1323 do_fault: 1324 if (!skb->len) { 1325 tcp_unlink_write_queue(skb, sk); 1326 /* It is the one place in all of TCP, except connection 1327 * reset, where we can be unlinking the send_head. 1328 */ 1329 tcp_check_send_head(sk, skb); 1330 sk_wmem_free_skb(sk, skb); 1331 } 1332 1333 do_error: 1334 if (copied + copied_syn) 1335 goto out; 1336 out_err: 1337 err = sk_stream_error(sk, flags, err); 1338 /* make sure we wake any epoll edge trigger waiter */ 1339 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1340 sk->sk_write_space(sk); 1341 release_sock(sk); 1342 return err; 1343 } 1344 EXPORT_SYMBOL(tcp_sendmsg); 1345 1346 /* 1347 * Handle reading urgent data. BSD has very simple semantics for 1348 * this, no blocking and very strange errors 8) 1349 */ 1350 1351 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1352 { 1353 struct tcp_sock *tp = tcp_sk(sk); 1354 1355 /* No URG data to read. */ 1356 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1357 tp->urg_data == TCP_URG_READ) 1358 return -EINVAL; /* Yes this is right ! */ 1359 1360 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1361 return -ENOTCONN; 1362 1363 if (tp->urg_data & TCP_URG_VALID) { 1364 int err = 0; 1365 char c = tp->urg_data; 1366 1367 if (!(flags & MSG_PEEK)) 1368 tp->urg_data = TCP_URG_READ; 1369 1370 /* Read urgent data. */ 1371 msg->msg_flags |= MSG_OOB; 1372 1373 if (len > 0) { 1374 if (!(flags & MSG_TRUNC)) 1375 err = memcpy_to_msg(msg, &c, 1); 1376 len = 1; 1377 } else 1378 msg->msg_flags |= MSG_TRUNC; 1379 1380 return err ? -EFAULT : len; 1381 } 1382 1383 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1384 return 0; 1385 1386 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1387 * the available implementations agree in this case: 1388 * this call should never block, independent of the 1389 * blocking state of the socket. 1390 * Mike <pall@rz.uni-karlsruhe.de> 1391 */ 1392 return -EAGAIN; 1393 } 1394 1395 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1396 { 1397 struct sk_buff *skb; 1398 int copied = 0, err = 0; 1399 1400 /* XXX -- need to support SO_PEEK_OFF */ 1401 1402 skb_queue_walk(&sk->sk_write_queue, skb) { 1403 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1404 if (err) 1405 break; 1406 1407 copied += skb->len; 1408 } 1409 1410 return err ?: copied; 1411 } 1412 1413 /* Clean up the receive buffer for full frames taken by the user, 1414 * then send an ACK if necessary. COPIED is the number of bytes 1415 * tcp_recvmsg has given to the user so far, it speeds up the 1416 * calculation of whether or not we must ACK for the sake of 1417 * a window update. 1418 */ 1419 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1420 { 1421 struct tcp_sock *tp = tcp_sk(sk); 1422 bool time_to_ack = false; 1423 1424 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1425 1426 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1427 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1428 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1429 1430 if (inet_csk_ack_scheduled(sk)) { 1431 const struct inet_connection_sock *icsk = inet_csk(sk); 1432 /* Delayed ACKs frequently hit locked sockets during bulk 1433 * receive. */ 1434 if (icsk->icsk_ack.blocked || 1435 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1436 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1437 /* 1438 * If this read emptied read buffer, we send ACK, if 1439 * connection is not bidirectional, user drained 1440 * receive buffer and there was a small segment 1441 * in queue. 1442 */ 1443 (copied > 0 && 1444 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1445 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1446 !icsk->icsk_ack.pingpong)) && 1447 !atomic_read(&sk->sk_rmem_alloc))) 1448 time_to_ack = true; 1449 } 1450 1451 /* We send an ACK if we can now advertise a non-zero window 1452 * which has been raised "significantly". 1453 * 1454 * Even if window raised up to infinity, do not send window open ACK 1455 * in states, where we will not receive more. It is useless. 1456 */ 1457 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1458 __u32 rcv_window_now = tcp_receive_window(tp); 1459 1460 /* Optimize, __tcp_select_window() is not cheap. */ 1461 if (2*rcv_window_now <= tp->window_clamp) { 1462 __u32 new_window = __tcp_select_window(sk); 1463 1464 /* Send ACK now, if this read freed lots of space 1465 * in our buffer. Certainly, new_window is new window. 1466 * We can advertise it now, if it is not less than current one. 1467 * "Lots" means "at least twice" here. 1468 */ 1469 if (new_window && new_window >= 2 * rcv_window_now) 1470 time_to_ack = true; 1471 } 1472 } 1473 if (time_to_ack) 1474 tcp_send_ack(sk); 1475 } 1476 1477 static void tcp_prequeue_process(struct sock *sk) 1478 { 1479 struct sk_buff *skb; 1480 struct tcp_sock *tp = tcp_sk(sk); 1481 1482 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1483 1484 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1485 sk_backlog_rcv(sk, skb); 1486 1487 /* Clear memory counter. */ 1488 tp->ucopy.memory = 0; 1489 } 1490 1491 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1492 { 1493 struct sk_buff *skb; 1494 u32 offset; 1495 1496 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1497 offset = seq - TCP_SKB_CB(skb)->seq; 1498 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1499 pr_err_once("%s: found a SYN, please report !\n", __func__); 1500 offset--; 1501 } 1502 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1503 *off = offset; 1504 return skb; 1505 } 1506 /* This looks weird, but this can happen if TCP collapsing 1507 * splitted a fat GRO packet, while we released socket lock 1508 * in skb_splice_bits() 1509 */ 1510 sk_eat_skb(sk, skb); 1511 } 1512 return NULL; 1513 } 1514 1515 /* 1516 * This routine provides an alternative to tcp_recvmsg() for routines 1517 * that would like to handle copying from skbuffs directly in 'sendfile' 1518 * fashion. 1519 * Note: 1520 * - It is assumed that the socket was locked by the caller. 1521 * - The routine does not block. 1522 * - At present, there is no support for reading OOB data 1523 * or for 'peeking' the socket using this routine 1524 * (although both would be easy to implement). 1525 */ 1526 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1527 sk_read_actor_t recv_actor) 1528 { 1529 struct sk_buff *skb; 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 u32 seq = tp->copied_seq; 1532 u32 offset; 1533 int copied = 0; 1534 1535 if (sk->sk_state == TCP_LISTEN) 1536 return -ENOTCONN; 1537 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1538 if (offset < skb->len) { 1539 int used; 1540 size_t len; 1541 1542 len = skb->len - offset; 1543 /* Stop reading if we hit a patch of urgent data */ 1544 if (tp->urg_data) { 1545 u32 urg_offset = tp->urg_seq - seq; 1546 if (urg_offset < len) 1547 len = urg_offset; 1548 if (!len) 1549 break; 1550 } 1551 used = recv_actor(desc, skb, offset, len); 1552 if (used <= 0) { 1553 if (!copied) 1554 copied = used; 1555 break; 1556 } else if (used <= len) { 1557 seq += used; 1558 copied += used; 1559 offset += used; 1560 } 1561 /* If recv_actor drops the lock (e.g. TCP splice 1562 * receive) the skb pointer might be invalid when 1563 * getting here: tcp_collapse might have deleted it 1564 * while aggregating skbs from the socket queue. 1565 */ 1566 skb = tcp_recv_skb(sk, seq - 1, &offset); 1567 if (!skb) 1568 break; 1569 /* TCP coalescing might have appended data to the skb. 1570 * Try to splice more frags 1571 */ 1572 if (offset + 1 != skb->len) 1573 continue; 1574 } 1575 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1576 sk_eat_skb(sk, skb); 1577 ++seq; 1578 break; 1579 } 1580 sk_eat_skb(sk, skb); 1581 if (!desc->count) 1582 break; 1583 tp->copied_seq = seq; 1584 } 1585 tp->copied_seq = seq; 1586 1587 tcp_rcv_space_adjust(sk); 1588 1589 /* Clean up data we have read: This will do ACK frames. */ 1590 if (copied > 0) { 1591 tcp_recv_skb(sk, seq, &offset); 1592 tcp_cleanup_rbuf(sk, copied); 1593 } 1594 return copied; 1595 } 1596 EXPORT_SYMBOL(tcp_read_sock); 1597 1598 int tcp_peek_len(struct socket *sock) 1599 { 1600 return tcp_inq(sock->sk); 1601 } 1602 EXPORT_SYMBOL(tcp_peek_len); 1603 1604 /* 1605 * This routine copies from a sock struct into the user buffer. 1606 * 1607 * Technical note: in 2.3 we work on _locked_ socket, so that 1608 * tricks with *seq access order and skb->users are not required. 1609 * Probably, code can be easily improved even more. 1610 */ 1611 1612 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1613 int flags, int *addr_len) 1614 { 1615 struct tcp_sock *tp = tcp_sk(sk); 1616 int copied = 0; 1617 u32 peek_seq; 1618 u32 *seq; 1619 unsigned long used; 1620 int err; 1621 int target; /* Read at least this many bytes */ 1622 long timeo; 1623 struct task_struct *user_recv = NULL; 1624 struct sk_buff *skb, *last; 1625 u32 urg_hole = 0; 1626 1627 if (unlikely(flags & MSG_ERRQUEUE)) 1628 return inet_recv_error(sk, msg, len, addr_len); 1629 1630 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1631 (sk->sk_state == TCP_ESTABLISHED)) 1632 sk_busy_loop(sk, nonblock); 1633 1634 lock_sock(sk); 1635 1636 err = -ENOTCONN; 1637 if (sk->sk_state == TCP_LISTEN) 1638 goto out; 1639 1640 timeo = sock_rcvtimeo(sk, nonblock); 1641 1642 /* Urgent data needs to be handled specially. */ 1643 if (flags & MSG_OOB) 1644 goto recv_urg; 1645 1646 if (unlikely(tp->repair)) { 1647 err = -EPERM; 1648 if (!(flags & MSG_PEEK)) 1649 goto out; 1650 1651 if (tp->repair_queue == TCP_SEND_QUEUE) 1652 goto recv_sndq; 1653 1654 err = -EINVAL; 1655 if (tp->repair_queue == TCP_NO_QUEUE) 1656 goto out; 1657 1658 /* 'common' recv queue MSG_PEEK-ing */ 1659 } 1660 1661 seq = &tp->copied_seq; 1662 if (flags & MSG_PEEK) { 1663 peek_seq = tp->copied_seq; 1664 seq = &peek_seq; 1665 } 1666 1667 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1668 1669 do { 1670 u32 offset; 1671 1672 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1673 if (tp->urg_data && tp->urg_seq == *seq) { 1674 if (copied) 1675 break; 1676 if (signal_pending(current)) { 1677 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1678 break; 1679 } 1680 } 1681 1682 /* Next get a buffer. */ 1683 1684 last = skb_peek_tail(&sk->sk_receive_queue); 1685 skb_queue_walk(&sk->sk_receive_queue, skb) { 1686 last = skb; 1687 /* Now that we have two receive queues this 1688 * shouldn't happen. 1689 */ 1690 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1691 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1692 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1693 flags)) 1694 break; 1695 1696 offset = *seq - TCP_SKB_CB(skb)->seq; 1697 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1698 pr_err_once("%s: found a SYN, please report !\n", __func__); 1699 offset--; 1700 } 1701 if (offset < skb->len) 1702 goto found_ok_skb; 1703 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1704 goto found_fin_ok; 1705 WARN(!(flags & MSG_PEEK), 1706 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1707 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1708 } 1709 1710 /* Well, if we have backlog, try to process it now yet. */ 1711 1712 if (copied >= target && !sk->sk_backlog.tail) 1713 break; 1714 1715 if (copied) { 1716 if (sk->sk_err || 1717 sk->sk_state == TCP_CLOSE || 1718 (sk->sk_shutdown & RCV_SHUTDOWN) || 1719 !timeo || 1720 signal_pending(current)) 1721 break; 1722 } else { 1723 if (sock_flag(sk, SOCK_DONE)) 1724 break; 1725 1726 if (sk->sk_err) { 1727 copied = sock_error(sk); 1728 break; 1729 } 1730 1731 if (sk->sk_shutdown & RCV_SHUTDOWN) 1732 break; 1733 1734 if (sk->sk_state == TCP_CLOSE) { 1735 if (!sock_flag(sk, SOCK_DONE)) { 1736 /* This occurs when user tries to read 1737 * from never connected socket. 1738 */ 1739 copied = -ENOTCONN; 1740 break; 1741 } 1742 break; 1743 } 1744 1745 if (!timeo) { 1746 copied = -EAGAIN; 1747 break; 1748 } 1749 1750 if (signal_pending(current)) { 1751 copied = sock_intr_errno(timeo); 1752 break; 1753 } 1754 } 1755 1756 tcp_cleanup_rbuf(sk, copied); 1757 1758 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1759 /* Install new reader */ 1760 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1761 user_recv = current; 1762 tp->ucopy.task = user_recv; 1763 tp->ucopy.msg = msg; 1764 } 1765 1766 tp->ucopy.len = len; 1767 1768 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1769 !(flags & (MSG_PEEK | MSG_TRUNC))); 1770 1771 /* Ugly... If prequeue is not empty, we have to 1772 * process it before releasing socket, otherwise 1773 * order will be broken at second iteration. 1774 * More elegant solution is required!!! 1775 * 1776 * Look: we have the following (pseudo)queues: 1777 * 1778 * 1. packets in flight 1779 * 2. backlog 1780 * 3. prequeue 1781 * 4. receive_queue 1782 * 1783 * Each queue can be processed only if the next ones 1784 * are empty. At this point we have empty receive_queue. 1785 * But prequeue _can_ be not empty after 2nd iteration, 1786 * when we jumped to start of loop because backlog 1787 * processing added something to receive_queue. 1788 * We cannot release_sock(), because backlog contains 1789 * packets arrived _after_ prequeued ones. 1790 * 1791 * Shortly, algorithm is clear --- to process all 1792 * the queues in order. We could make it more directly, 1793 * requeueing packets from backlog to prequeue, if 1794 * is not empty. It is more elegant, but eats cycles, 1795 * unfortunately. 1796 */ 1797 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1798 goto do_prequeue; 1799 1800 /* __ Set realtime policy in scheduler __ */ 1801 } 1802 1803 if (copied >= target) { 1804 /* Do not sleep, just process backlog. */ 1805 release_sock(sk); 1806 lock_sock(sk); 1807 } else { 1808 sk_wait_data(sk, &timeo, last); 1809 } 1810 1811 if (user_recv) { 1812 int chunk; 1813 1814 /* __ Restore normal policy in scheduler __ */ 1815 1816 chunk = len - tp->ucopy.len; 1817 if (chunk != 0) { 1818 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1819 len -= chunk; 1820 copied += chunk; 1821 } 1822 1823 if (tp->rcv_nxt == tp->copied_seq && 1824 !skb_queue_empty(&tp->ucopy.prequeue)) { 1825 do_prequeue: 1826 tcp_prequeue_process(sk); 1827 1828 chunk = len - tp->ucopy.len; 1829 if (chunk != 0) { 1830 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1831 len -= chunk; 1832 copied += chunk; 1833 } 1834 } 1835 } 1836 if ((flags & MSG_PEEK) && 1837 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1838 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1839 current->comm, 1840 task_pid_nr(current)); 1841 peek_seq = tp->copied_seq; 1842 } 1843 continue; 1844 1845 found_ok_skb: 1846 /* Ok so how much can we use? */ 1847 used = skb->len - offset; 1848 if (len < used) 1849 used = len; 1850 1851 /* Do we have urgent data here? */ 1852 if (tp->urg_data) { 1853 u32 urg_offset = tp->urg_seq - *seq; 1854 if (urg_offset < used) { 1855 if (!urg_offset) { 1856 if (!sock_flag(sk, SOCK_URGINLINE)) { 1857 ++*seq; 1858 urg_hole++; 1859 offset++; 1860 used--; 1861 if (!used) 1862 goto skip_copy; 1863 } 1864 } else 1865 used = urg_offset; 1866 } 1867 } 1868 1869 if (!(flags & MSG_TRUNC)) { 1870 err = skb_copy_datagram_msg(skb, offset, msg, used); 1871 if (err) { 1872 /* Exception. Bailout! */ 1873 if (!copied) 1874 copied = -EFAULT; 1875 break; 1876 } 1877 } 1878 1879 *seq += used; 1880 copied += used; 1881 len -= used; 1882 1883 tcp_rcv_space_adjust(sk); 1884 1885 skip_copy: 1886 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1887 tp->urg_data = 0; 1888 tcp_fast_path_check(sk); 1889 } 1890 if (used + offset < skb->len) 1891 continue; 1892 1893 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1894 goto found_fin_ok; 1895 if (!(flags & MSG_PEEK)) 1896 sk_eat_skb(sk, skb); 1897 continue; 1898 1899 found_fin_ok: 1900 /* Process the FIN. */ 1901 ++*seq; 1902 if (!(flags & MSG_PEEK)) 1903 sk_eat_skb(sk, skb); 1904 break; 1905 } while (len > 0); 1906 1907 if (user_recv) { 1908 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1909 int chunk; 1910 1911 tp->ucopy.len = copied > 0 ? len : 0; 1912 1913 tcp_prequeue_process(sk); 1914 1915 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1916 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1917 len -= chunk; 1918 copied += chunk; 1919 } 1920 } 1921 1922 tp->ucopy.task = NULL; 1923 tp->ucopy.len = 0; 1924 } 1925 1926 /* According to UNIX98, msg_name/msg_namelen are ignored 1927 * on connected socket. I was just happy when found this 8) --ANK 1928 */ 1929 1930 /* Clean up data we have read: This will do ACK frames. */ 1931 tcp_cleanup_rbuf(sk, copied); 1932 1933 release_sock(sk); 1934 return copied; 1935 1936 out: 1937 release_sock(sk); 1938 return err; 1939 1940 recv_urg: 1941 err = tcp_recv_urg(sk, msg, len, flags); 1942 goto out; 1943 1944 recv_sndq: 1945 err = tcp_peek_sndq(sk, msg, len); 1946 goto out; 1947 } 1948 EXPORT_SYMBOL(tcp_recvmsg); 1949 1950 void tcp_set_state(struct sock *sk, int state) 1951 { 1952 int oldstate = sk->sk_state; 1953 1954 switch (state) { 1955 case TCP_ESTABLISHED: 1956 if (oldstate != TCP_ESTABLISHED) 1957 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1958 break; 1959 1960 case TCP_CLOSE: 1961 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1962 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1963 1964 sk->sk_prot->unhash(sk); 1965 if (inet_csk(sk)->icsk_bind_hash && 1966 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1967 inet_put_port(sk); 1968 /* fall through */ 1969 default: 1970 if (oldstate == TCP_ESTABLISHED) 1971 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1972 } 1973 1974 /* Change state AFTER socket is unhashed to avoid closed 1975 * socket sitting in hash tables. 1976 */ 1977 sk_state_store(sk, state); 1978 1979 #ifdef STATE_TRACE 1980 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1981 #endif 1982 } 1983 EXPORT_SYMBOL_GPL(tcp_set_state); 1984 1985 /* 1986 * State processing on a close. This implements the state shift for 1987 * sending our FIN frame. Note that we only send a FIN for some 1988 * states. A shutdown() may have already sent the FIN, or we may be 1989 * closed. 1990 */ 1991 1992 static const unsigned char new_state[16] = { 1993 /* current state: new state: action: */ 1994 [0 /* (Invalid) */] = TCP_CLOSE, 1995 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1996 [TCP_SYN_SENT] = TCP_CLOSE, 1997 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1998 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1999 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2000 [TCP_TIME_WAIT] = TCP_CLOSE, 2001 [TCP_CLOSE] = TCP_CLOSE, 2002 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2003 [TCP_LAST_ACK] = TCP_LAST_ACK, 2004 [TCP_LISTEN] = TCP_CLOSE, 2005 [TCP_CLOSING] = TCP_CLOSING, 2006 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2007 }; 2008 2009 static int tcp_close_state(struct sock *sk) 2010 { 2011 int next = (int)new_state[sk->sk_state]; 2012 int ns = next & TCP_STATE_MASK; 2013 2014 tcp_set_state(sk, ns); 2015 2016 return next & TCP_ACTION_FIN; 2017 } 2018 2019 /* 2020 * Shutdown the sending side of a connection. Much like close except 2021 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2022 */ 2023 2024 void tcp_shutdown(struct sock *sk, int how) 2025 { 2026 /* We need to grab some memory, and put together a FIN, 2027 * and then put it into the queue to be sent. 2028 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2029 */ 2030 if (!(how & SEND_SHUTDOWN)) 2031 return; 2032 2033 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2034 if ((1 << sk->sk_state) & 2035 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2036 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2037 /* Clear out any half completed packets. FIN if needed. */ 2038 if (tcp_close_state(sk)) 2039 tcp_send_fin(sk); 2040 } 2041 } 2042 EXPORT_SYMBOL(tcp_shutdown); 2043 2044 bool tcp_check_oom(struct sock *sk, int shift) 2045 { 2046 bool too_many_orphans, out_of_socket_memory; 2047 2048 too_many_orphans = tcp_too_many_orphans(sk, shift); 2049 out_of_socket_memory = tcp_out_of_memory(sk); 2050 2051 if (too_many_orphans) 2052 net_info_ratelimited("too many orphaned sockets\n"); 2053 if (out_of_socket_memory) 2054 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2055 return too_many_orphans || out_of_socket_memory; 2056 } 2057 2058 void tcp_close(struct sock *sk, long timeout) 2059 { 2060 struct sk_buff *skb; 2061 int data_was_unread = 0; 2062 int state; 2063 2064 lock_sock(sk); 2065 sk->sk_shutdown = SHUTDOWN_MASK; 2066 2067 if (sk->sk_state == TCP_LISTEN) { 2068 tcp_set_state(sk, TCP_CLOSE); 2069 2070 /* Special case. */ 2071 inet_csk_listen_stop(sk); 2072 2073 goto adjudge_to_death; 2074 } 2075 2076 /* We need to flush the recv. buffs. We do this only on the 2077 * descriptor close, not protocol-sourced closes, because the 2078 * reader process may not have drained the data yet! 2079 */ 2080 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2081 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2082 2083 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2084 len--; 2085 data_was_unread += len; 2086 __kfree_skb(skb); 2087 } 2088 2089 sk_mem_reclaim(sk); 2090 2091 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2092 if (sk->sk_state == TCP_CLOSE) 2093 goto adjudge_to_death; 2094 2095 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2096 * data was lost. To witness the awful effects of the old behavior of 2097 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2098 * GET in an FTP client, suspend the process, wait for the client to 2099 * advertise a zero window, then kill -9 the FTP client, wheee... 2100 * Note: timeout is always zero in such a case. 2101 */ 2102 if (unlikely(tcp_sk(sk)->repair)) { 2103 sk->sk_prot->disconnect(sk, 0); 2104 } else if (data_was_unread) { 2105 /* Unread data was tossed, zap the connection. */ 2106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2107 tcp_set_state(sk, TCP_CLOSE); 2108 tcp_send_active_reset(sk, sk->sk_allocation); 2109 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2110 /* Check zero linger _after_ checking for unread data. */ 2111 sk->sk_prot->disconnect(sk, 0); 2112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2113 } else if (tcp_close_state(sk)) { 2114 /* We FIN if the application ate all the data before 2115 * zapping the connection. 2116 */ 2117 2118 /* RED-PEN. Formally speaking, we have broken TCP state 2119 * machine. State transitions: 2120 * 2121 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2122 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2123 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2124 * 2125 * are legal only when FIN has been sent (i.e. in window), 2126 * rather than queued out of window. Purists blame. 2127 * 2128 * F.e. "RFC state" is ESTABLISHED, 2129 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2130 * 2131 * The visible declinations are that sometimes 2132 * we enter time-wait state, when it is not required really 2133 * (harmless), do not send active resets, when they are 2134 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2135 * they look as CLOSING or LAST_ACK for Linux) 2136 * Probably, I missed some more holelets. 2137 * --ANK 2138 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2139 * in a single packet! (May consider it later but will 2140 * probably need API support or TCP_CORK SYN-ACK until 2141 * data is written and socket is closed.) 2142 */ 2143 tcp_send_fin(sk); 2144 } 2145 2146 sk_stream_wait_close(sk, timeout); 2147 2148 adjudge_to_death: 2149 state = sk->sk_state; 2150 sock_hold(sk); 2151 sock_orphan(sk); 2152 2153 /* It is the last release_sock in its life. It will remove backlog. */ 2154 release_sock(sk); 2155 2156 2157 /* Now socket is owned by kernel and we acquire BH lock 2158 to finish close. No need to check for user refs. 2159 */ 2160 local_bh_disable(); 2161 bh_lock_sock(sk); 2162 WARN_ON(sock_owned_by_user(sk)); 2163 2164 percpu_counter_inc(sk->sk_prot->orphan_count); 2165 2166 /* Have we already been destroyed by a softirq or backlog? */ 2167 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2168 goto out; 2169 2170 /* This is a (useful) BSD violating of the RFC. There is a 2171 * problem with TCP as specified in that the other end could 2172 * keep a socket open forever with no application left this end. 2173 * We use a 1 minute timeout (about the same as BSD) then kill 2174 * our end. If they send after that then tough - BUT: long enough 2175 * that we won't make the old 4*rto = almost no time - whoops 2176 * reset mistake. 2177 * 2178 * Nope, it was not mistake. It is really desired behaviour 2179 * f.e. on http servers, when such sockets are useless, but 2180 * consume significant resources. Let's do it with special 2181 * linger2 option. --ANK 2182 */ 2183 2184 if (sk->sk_state == TCP_FIN_WAIT2) { 2185 struct tcp_sock *tp = tcp_sk(sk); 2186 if (tp->linger2 < 0) { 2187 tcp_set_state(sk, TCP_CLOSE); 2188 tcp_send_active_reset(sk, GFP_ATOMIC); 2189 __NET_INC_STATS(sock_net(sk), 2190 LINUX_MIB_TCPABORTONLINGER); 2191 } else { 2192 const int tmo = tcp_fin_time(sk); 2193 2194 if (tmo > TCP_TIMEWAIT_LEN) { 2195 inet_csk_reset_keepalive_timer(sk, 2196 tmo - TCP_TIMEWAIT_LEN); 2197 } else { 2198 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2199 goto out; 2200 } 2201 } 2202 } 2203 if (sk->sk_state != TCP_CLOSE) { 2204 sk_mem_reclaim(sk); 2205 if (tcp_check_oom(sk, 0)) { 2206 tcp_set_state(sk, TCP_CLOSE); 2207 tcp_send_active_reset(sk, GFP_ATOMIC); 2208 __NET_INC_STATS(sock_net(sk), 2209 LINUX_MIB_TCPABORTONMEMORY); 2210 } 2211 } 2212 2213 if (sk->sk_state == TCP_CLOSE) { 2214 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2215 /* We could get here with a non-NULL req if the socket is 2216 * aborted (e.g., closed with unread data) before 3WHS 2217 * finishes. 2218 */ 2219 if (req) 2220 reqsk_fastopen_remove(sk, req, false); 2221 inet_csk_destroy_sock(sk); 2222 } 2223 /* Otherwise, socket is reprieved until protocol close. */ 2224 2225 out: 2226 bh_unlock_sock(sk); 2227 local_bh_enable(); 2228 sock_put(sk); 2229 } 2230 EXPORT_SYMBOL(tcp_close); 2231 2232 /* These states need RST on ABORT according to RFC793 */ 2233 2234 static inline bool tcp_need_reset(int state) 2235 { 2236 return (1 << state) & 2237 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2238 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2239 } 2240 2241 int tcp_disconnect(struct sock *sk, int flags) 2242 { 2243 struct inet_sock *inet = inet_sk(sk); 2244 struct inet_connection_sock *icsk = inet_csk(sk); 2245 struct tcp_sock *tp = tcp_sk(sk); 2246 int err = 0; 2247 int old_state = sk->sk_state; 2248 2249 if (old_state != TCP_CLOSE) 2250 tcp_set_state(sk, TCP_CLOSE); 2251 2252 /* ABORT function of RFC793 */ 2253 if (old_state == TCP_LISTEN) { 2254 inet_csk_listen_stop(sk); 2255 } else if (unlikely(tp->repair)) { 2256 sk->sk_err = ECONNABORTED; 2257 } else if (tcp_need_reset(old_state) || 2258 (tp->snd_nxt != tp->write_seq && 2259 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2260 /* The last check adjusts for discrepancy of Linux wrt. RFC 2261 * states 2262 */ 2263 tcp_send_active_reset(sk, gfp_any()); 2264 sk->sk_err = ECONNRESET; 2265 } else if (old_state == TCP_SYN_SENT) 2266 sk->sk_err = ECONNRESET; 2267 2268 tcp_clear_xmit_timers(sk); 2269 __skb_queue_purge(&sk->sk_receive_queue); 2270 tcp_write_queue_purge(sk); 2271 skb_rbtree_purge(&tp->out_of_order_queue); 2272 2273 inet->inet_dport = 0; 2274 2275 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2276 inet_reset_saddr(sk); 2277 2278 sk->sk_shutdown = 0; 2279 sock_reset_flag(sk, SOCK_DONE); 2280 tp->srtt_us = 0; 2281 tp->write_seq += tp->max_window + 2; 2282 if (tp->write_seq == 0) 2283 tp->write_seq = 1; 2284 icsk->icsk_backoff = 0; 2285 tp->snd_cwnd = 2; 2286 icsk->icsk_probes_out = 0; 2287 tp->packets_out = 0; 2288 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2289 tp->snd_cwnd_cnt = 0; 2290 tp->window_clamp = 0; 2291 tcp_set_ca_state(sk, TCP_CA_Open); 2292 tcp_clear_retrans(tp); 2293 inet_csk_delack_init(sk); 2294 tcp_init_send_head(sk); 2295 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2296 __sk_dst_reset(sk); 2297 2298 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2299 2300 sk->sk_error_report(sk); 2301 return err; 2302 } 2303 EXPORT_SYMBOL(tcp_disconnect); 2304 2305 static inline bool tcp_can_repair_sock(const struct sock *sk) 2306 { 2307 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2308 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2309 } 2310 2311 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2312 { 2313 struct tcp_repair_window opt; 2314 2315 if (!tp->repair) 2316 return -EPERM; 2317 2318 if (len != sizeof(opt)) 2319 return -EINVAL; 2320 2321 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2322 return -EFAULT; 2323 2324 if (opt.max_window < opt.snd_wnd) 2325 return -EINVAL; 2326 2327 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2328 return -EINVAL; 2329 2330 if (after(opt.rcv_wup, tp->rcv_nxt)) 2331 return -EINVAL; 2332 2333 tp->snd_wl1 = opt.snd_wl1; 2334 tp->snd_wnd = opt.snd_wnd; 2335 tp->max_window = opt.max_window; 2336 2337 tp->rcv_wnd = opt.rcv_wnd; 2338 tp->rcv_wup = opt.rcv_wup; 2339 2340 return 0; 2341 } 2342 2343 static int tcp_repair_options_est(struct tcp_sock *tp, 2344 struct tcp_repair_opt __user *optbuf, unsigned int len) 2345 { 2346 struct tcp_repair_opt opt; 2347 2348 while (len >= sizeof(opt)) { 2349 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2350 return -EFAULT; 2351 2352 optbuf++; 2353 len -= sizeof(opt); 2354 2355 switch (opt.opt_code) { 2356 case TCPOPT_MSS: 2357 tp->rx_opt.mss_clamp = opt.opt_val; 2358 break; 2359 case TCPOPT_WINDOW: 2360 { 2361 u16 snd_wscale = opt.opt_val & 0xFFFF; 2362 u16 rcv_wscale = opt.opt_val >> 16; 2363 2364 if (snd_wscale > 14 || rcv_wscale > 14) 2365 return -EFBIG; 2366 2367 tp->rx_opt.snd_wscale = snd_wscale; 2368 tp->rx_opt.rcv_wscale = rcv_wscale; 2369 tp->rx_opt.wscale_ok = 1; 2370 } 2371 break; 2372 case TCPOPT_SACK_PERM: 2373 if (opt.opt_val != 0) 2374 return -EINVAL; 2375 2376 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2377 if (sysctl_tcp_fack) 2378 tcp_enable_fack(tp); 2379 break; 2380 case TCPOPT_TIMESTAMP: 2381 if (opt.opt_val != 0) 2382 return -EINVAL; 2383 2384 tp->rx_opt.tstamp_ok = 1; 2385 break; 2386 } 2387 } 2388 2389 return 0; 2390 } 2391 2392 /* 2393 * Socket option code for TCP. 2394 */ 2395 static int do_tcp_setsockopt(struct sock *sk, int level, 2396 int optname, char __user *optval, unsigned int optlen) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 struct inet_connection_sock *icsk = inet_csk(sk); 2400 struct net *net = sock_net(sk); 2401 int val; 2402 int err = 0; 2403 2404 /* These are data/string values, all the others are ints */ 2405 switch (optname) { 2406 case TCP_CONGESTION: { 2407 char name[TCP_CA_NAME_MAX]; 2408 2409 if (optlen < 1) 2410 return -EINVAL; 2411 2412 val = strncpy_from_user(name, optval, 2413 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2414 if (val < 0) 2415 return -EFAULT; 2416 name[val] = 0; 2417 2418 lock_sock(sk); 2419 err = tcp_set_congestion_control(sk, name); 2420 release_sock(sk); 2421 return err; 2422 } 2423 default: 2424 /* fallthru */ 2425 break; 2426 } 2427 2428 if (optlen < sizeof(int)) 2429 return -EINVAL; 2430 2431 if (get_user(val, (int __user *)optval)) 2432 return -EFAULT; 2433 2434 lock_sock(sk); 2435 2436 switch (optname) { 2437 case TCP_MAXSEG: 2438 /* Values greater than interface MTU won't take effect. However 2439 * at the point when this call is done we typically don't yet 2440 * know which interface is going to be used */ 2441 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2442 err = -EINVAL; 2443 break; 2444 } 2445 tp->rx_opt.user_mss = val; 2446 break; 2447 2448 case TCP_NODELAY: 2449 if (val) { 2450 /* TCP_NODELAY is weaker than TCP_CORK, so that 2451 * this option on corked socket is remembered, but 2452 * it is not activated until cork is cleared. 2453 * 2454 * However, when TCP_NODELAY is set we make 2455 * an explicit push, which overrides even TCP_CORK 2456 * for currently queued segments. 2457 */ 2458 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2459 tcp_push_pending_frames(sk); 2460 } else { 2461 tp->nonagle &= ~TCP_NAGLE_OFF; 2462 } 2463 break; 2464 2465 case TCP_THIN_LINEAR_TIMEOUTS: 2466 if (val < 0 || val > 1) 2467 err = -EINVAL; 2468 else 2469 tp->thin_lto = val; 2470 break; 2471 2472 case TCP_THIN_DUPACK: 2473 if (val < 0 || val > 1) 2474 err = -EINVAL; 2475 else { 2476 tp->thin_dupack = val; 2477 if (tp->thin_dupack) 2478 tcp_disable_early_retrans(tp); 2479 } 2480 break; 2481 2482 case TCP_REPAIR: 2483 if (!tcp_can_repair_sock(sk)) 2484 err = -EPERM; 2485 else if (val == 1) { 2486 tp->repair = 1; 2487 sk->sk_reuse = SK_FORCE_REUSE; 2488 tp->repair_queue = TCP_NO_QUEUE; 2489 } else if (val == 0) { 2490 tp->repair = 0; 2491 sk->sk_reuse = SK_NO_REUSE; 2492 tcp_send_window_probe(sk); 2493 } else 2494 err = -EINVAL; 2495 2496 break; 2497 2498 case TCP_REPAIR_QUEUE: 2499 if (!tp->repair) 2500 err = -EPERM; 2501 else if (val < TCP_QUEUES_NR) 2502 tp->repair_queue = val; 2503 else 2504 err = -EINVAL; 2505 break; 2506 2507 case TCP_QUEUE_SEQ: 2508 if (sk->sk_state != TCP_CLOSE) 2509 err = -EPERM; 2510 else if (tp->repair_queue == TCP_SEND_QUEUE) 2511 tp->write_seq = val; 2512 else if (tp->repair_queue == TCP_RECV_QUEUE) 2513 tp->rcv_nxt = val; 2514 else 2515 err = -EINVAL; 2516 break; 2517 2518 case TCP_REPAIR_OPTIONS: 2519 if (!tp->repair) 2520 err = -EINVAL; 2521 else if (sk->sk_state == TCP_ESTABLISHED) 2522 err = tcp_repair_options_est(tp, 2523 (struct tcp_repair_opt __user *)optval, 2524 optlen); 2525 else 2526 err = -EPERM; 2527 break; 2528 2529 case TCP_CORK: 2530 /* When set indicates to always queue non-full frames. 2531 * Later the user clears this option and we transmit 2532 * any pending partial frames in the queue. This is 2533 * meant to be used alongside sendfile() to get properly 2534 * filled frames when the user (for example) must write 2535 * out headers with a write() call first and then use 2536 * sendfile to send out the data parts. 2537 * 2538 * TCP_CORK can be set together with TCP_NODELAY and it is 2539 * stronger than TCP_NODELAY. 2540 */ 2541 if (val) { 2542 tp->nonagle |= TCP_NAGLE_CORK; 2543 } else { 2544 tp->nonagle &= ~TCP_NAGLE_CORK; 2545 if (tp->nonagle&TCP_NAGLE_OFF) 2546 tp->nonagle |= TCP_NAGLE_PUSH; 2547 tcp_push_pending_frames(sk); 2548 } 2549 break; 2550 2551 case TCP_KEEPIDLE: 2552 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2553 err = -EINVAL; 2554 else { 2555 tp->keepalive_time = val * HZ; 2556 if (sock_flag(sk, SOCK_KEEPOPEN) && 2557 !((1 << sk->sk_state) & 2558 (TCPF_CLOSE | TCPF_LISTEN))) { 2559 u32 elapsed = keepalive_time_elapsed(tp); 2560 if (tp->keepalive_time > elapsed) 2561 elapsed = tp->keepalive_time - elapsed; 2562 else 2563 elapsed = 0; 2564 inet_csk_reset_keepalive_timer(sk, elapsed); 2565 } 2566 } 2567 break; 2568 case TCP_KEEPINTVL: 2569 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2570 err = -EINVAL; 2571 else 2572 tp->keepalive_intvl = val * HZ; 2573 break; 2574 case TCP_KEEPCNT: 2575 if (val < 1 || val > MAX_TCP_KEEPCNT) 2576 err = -EINVAL; 2577 else 2578 tp->keepalive_probes = val; 2579 break; 2580 case TCP_SYNCNT: 2581 if (val < 1 || val > MAX_TCP_SYNCNT) 2582 err = -EINVAL; 2583 else 2584 icsk->icsk_syn_retries = val; 2585 break; 2586 2587 case TCP_SAVE_SYN: 2588 if (val < 0 || val > 1) 2589 err = -EINVAL; 2590 else 2591 tp->save_syn = val; 2592 break; 2593 2594 case TCP_LINGER2: 2595 if (val < 0) 2596 tp->linger2 = -1; 2597 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2598 tp->linger2 = 0; 2599 else 2600 tp->linger2 = val * HZ; 2601 break; 2602 2603 case TCP_DEFER_ACCEPT: 2604 /* Translate value in seconds to number of retransmits */ 2605 icsk->icsk_accept_queue.rskq_defer_accept = 2606 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2607 TCP_RTO_MAX / HZ); 2608 break; 2609 2610 case TCP_WINDOW_CLAMP: 2611 if (!val) { 2612 if (sk->sk_state != TCP_CLOSE) { 2613 err = -EINVAL; 2614 break; 2615 } 2616 tp->window_clamp = 0; 2617 } else 2618 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2619 SOCK_MIN_RCVBUF / 2 : val; 2620 break; 2621 2622 case TCP_QUICKACK: 2623 if (!val) { 2624 icsk->icsk_ack.pingpong = 1; 2625 } else { 2626 icsk->icsk_ack.pingpong = 0; 2627 if ((1 << sk->sk_state) & 2628 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2629 inet_csk_ack_scheduled(sk)) { 2630 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2631 tcp_cleanup_rbuf(sk, 1); 2632 if (!(val & 1)) 2633 icsk->icsk_ack.pingpong = 1; 2634 } 2635 } 2636 break; 2637 2638 #ifdef CONFIG_TCP_MD5SIG 2639 case TCP_MD5SIG: 2640 /* Read the IP->Key mappings from userspace */ 2641 err = tp->af_specific->md5_parse(sk, optval, optlen); 2642 break; 2643 #endif 2644 case TCP_USER_TIMEOUT: 2645 /* Cap the max time in ms TCP will retry or probe the window 2646 * before giving up and aborting (ETIMEDOUT) a connection. 2647 */ 2648 if (val < 0) 2649 err = -EINVAL; 2650 else 2651 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2652 break; 2653 2654 case TCP_FASTOPEN: 2655 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2656 TCPF_LISTEN))) { 2657 tcp_fastopen_init_key_once(true); 2658 2659 fastopen_queue_tune(sk, val); 2660 } else { 2661 err = -EINVAL; 2662 } 2663 break; 2664 case TCP_TIMESTAMP: 2665 if (!tp->repair) 2666 err = -EPERM; 2667 else 2668 tp->tsoffset = val - tcp_time_stamp; 2669 break; 2670 case TCP_REPAIR_WINDOW: 2671 err = tcp_repair_set_window(tp, optval, optlen); 2672 break; 2673 case TCP_NOTSENT_LOWAT: 2674 tp->notsent_lowat = val; 2675 sk->sk_write_space(sk); 2676 break; 2677 default: 2678 err = -ENOPROTOOPT; 2679 break; 2680 } 2681 2682 release_sock(sk); 2683 return err; 2684 } 2685 2686 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2687 unsigned int optlen) 2688 { 2689 const struct inet_connection_sock *icsk = inet_csk(sk); 2690 2691 if (level != SOL_TCP) 2692 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2693 optval, optlen); 2694 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2695 } 2696 EXPORT_SYMBOL(tcp_setsockopt); 2697 2698 #ifdef CONFIG_COMPAT 2699 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2700 char __user *optval, unsigned int optlen) 2701 { 2702 if (level != SOL_TCP) 2703 return inet_csk_compat_setsockopt(sk, level, optname, 2704 optval, optlen); 2705 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2706 } 2707 EXPORT_SYMBOL(compat_tcp_setsockopt); 2708 #endif 2709 2710 /* Return information about state of tcp endpoint in API format. */ 2711 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2712 { 2713 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2714 const struct inet_connection_sock *icsk = inet_csk(sk); 2715 u32 now = tcp_time_stamp, intv; 2716 unsigned int start; 2717 int notsent_bytes; 2718 u64 rate64; 2719 u32 rate; 2720 2721 memset(info, 0, sizeof(*info)); 2722 if (sk->sk_type != SOCK_STREAM) 2723 return; 2724 2725 info->tcpi_state = sk_state_load(sk); 2726 2727 info->tcpi_ca_state = icsk->icsk_ca_state; 2728 info->tcpi_retransmits = icsk->icsk_retransmits; 2729 info->tcpi_probes = icsk->icsk_probes_out; 2730 info->tcpi_backoff = icsk->icsk_backoff; 2731 2732 if (tp->rx_opt.tstamp_ok) 2733 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2734 if (tcp_is_sack(tp)) 2735 info->tcpi_options |= TCPI_OPT_SACK; 2736 if (tp->rx_opt.wscale_ok) { 2737 info->tcpi_options |= TCPI_OPT_WSCALE; 2738 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2739 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2740 } 2741 2742 if (tp->ecn_flags & TCP_ECN_OK) 2743 info->tcpi_options |= TCPI_OPT_ECN; 2744 if (tp->ecn_flags & TCP_ECN_SEEN) 2745 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2746 if (tp->syn_data_acked) 2747 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2748 2749 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2750 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2751 info->tcpi_snd_mss = tp->mss_cache; 2752 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2753 2754 if (info->tcpi_state == TCP_LISTEN) { 2755 info->tcpi_unacked = sk->sk_ack_backlog; 2756 info->tcpi_sacked = sk->sk_max_ack_backlog; 2757 } else { 2758 info->tcpi_unacked = tp->packets_out; 2759 info->tcpi_sacked = tp->sacked_out; 2760 } 2761 info->tcpi_lost = tp->lost_out; 2762 info->tcpi_retrans = tp->retrans_out; 2763 info->tcpi_fackets = tp->fackets_out; 2764 2765 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2766 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2767 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2768 2769 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2770 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2771 info->tcpi_rtt = tp->srtt_us >> 3; 2772 info->tcpi_rttvar = tp->mdev_us >> 2; 2773 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2774 info->tcpi_snd_cwnd = tp->snd_cwnd; 2775 info->tcpi_advmss = tp->advmss; 2776 info->tcpi_reordering = tp->reordering; 2777 2778 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2779 info->tcpi_rcv_space = tp->rcvq_space.space; 2780 2781 info->tcpi_total_retrans = tp->total_retrans; 2782 2783 rate = READ_ONCE(sk->sk_pacing_rate); 2784 rate64 = rate != ~0U ? rate : ~0ULL; 2785 put_unaligned(rate64, &info->tcpi_pacing_rate); 2786 2787 rate = READ_ONCE(sk->sk_max_pacing_rate); 2788 rate64 = rate != ~0U ? rate : ~0ULL; 2789 put_unaligned(rate64, &info->tcpi_max_pacing_rate); 2790 2791 do { 2792 start = u64_stats_fetch_begin_irq(&tp->syncp); 2793 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked); 2794 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received); 2795 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2796 info->tcpi_segs_out = tp->segs_out; 2797 info->tcpi_segs_in = tp->segs_in; 2798 2799 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); 2800 info->tcpi_notsent_bytes = max(0, notsent_bytes); 2801 2802 info->tcpi_min_rtt = tcp_min_rtt(tp); 2803 info->tcpi_data_segs_in = tp->data_segs_in; 2804 info->tcpi_data_segs_out = tp->data_segs_out; 2805 2806 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 2807 rate = READ_ONCE(tp->rate_delivered); 2808 intv = READ_ONCE(tp->rate_interval_us); 2809 if (rate && intv) { 2810 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 2811 do_div(rate64, intv); 2812 put_unaligned(rate64, &info->tcpi_delivery_rate); 2813 } 2814 } 2815 EXPORT_SYMBOL_GPL(tcp_get_info); 2816 2817 static int do_tcp_getsockopt(struct sock *sk, int level, 2818 int optname, char __user *optval, int __user *optlen) 2819 { 2820 struct inet_connection_sock *icsk = inet_csk(sk); 2821 struct tcp_sock *tp = tcp_sk(sk); 2822 struct net *net = sock_net(sk); 2823 int val, len; 2824 2825 if (get_user(len, optlen)) 2826 return -EFAULT; 2827 2828 len = min_t(unsigned int, len, sizeof(int)); 2829 2830 if (len < 0) 2831 return -EINVAL; 2832 2833 switch (optname) { 2834 case TCP_MAXSEG: 2835 val = tp->mss_cache; 2836 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2837 val = tp->rx_opt.user_mss; 2838 if (tp->repair) 2839 val = tp->rx_opt.mss_clamp; 2840 break; 2841 case TCP_NODELAY: 2842 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2843 break; 2844 case TCP_CORK: 2845 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2846 break; 2847 case TCP_KEEPIDLE: 2848 val = keepalive_time_when(tp) / HZ; 2849 break; 2850 case TCP_KEEPINTVL: 2851 val = keepalive_intvl_when(tp) / HZ; 2852 break; 2853 case TCP_KEEPCNT: 2854 val = keepalive_probes(tp); 2855 break; 2856 case TCP_SYNCNT: 2857 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2858 break; 2859 case TCP_LINGER2: 2860 val = tp->linger2; 2861 if (val >= 0) 2862 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2863 break; 2864 case TCP_DEFER_ACCEPT: 2865 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2866 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2867 break; 2868 case TCP_WINDOW_CLAMP: 2869 val = tp->window_clamp; 2870 break; 2871 case TCP_INFO: { 2872 struct tcp_info info; 2873 2874 if (get_user(len, optlen)) 2875 return -EFAULT; 2876 2877 tcp_get_info(sk, &info); 2878 2879 len = min_t(unsigned int, len, sizeof(info)); 2880 if (put_user(len, optlen)) 2881 return -EFAULT; 2882 if (copy_to_user(optval, &info, len)) 2883 return -EFAULT; 2884 return 0; 2885 } 2886 case TCP_CC_INFO: { 2887 const struct tcp_congestion_ops *ca_ops; 2888 union tcp_cc_info info; 2889 size_t sz = 0; 2890 int attr; 2891 2892 if (get_user(len, optlen)) 2893 return -EFAULT; 2894 2895 ca_ops = icsk->icsk_ca_ops; 2896 if (ca_ops && ca_ops->get_info) 2897 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2898 2899 len = min_t(unsigned int, len, sz); 2900 if (put_user(len, optlen)) 2901 return -EFAULT; 2902 if (copy_to_user(optval, &info, len)) 2903 return -EFAULT; 2904 return 0; 2905 } 2906 case TCP_QUICKACK: 2907 val = !icsk->icsk_ack.pingpong; 2908 break; 2909 2910 case TCP_CONGESTION: 2911 if (get_user(len, optlen)) 2912 return -EFAULT; 2913 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2914 if (put_user(len, optlen)) 2915 return -EFAULT; 2916 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2917 return -EFAULT; 2918 return 0; 2919 2920 case TCP_THIN_LINEAR_TIMEOUTS: 2921 val = tp->thin_lto; 2922 break; 2923 case TCP_THIN_DUPACK: 2924 val = tp->thin_dupack; 2925 break; 2926 2927 case TCP_REPAIR: 2928 val = tp->repair; 2929 break; 2930 2931 case TCP_REPAIR_QUEUE: 2932 if (tp->repair) 2933 val = tp->repair_queue; 2934 else 2935 return -EINVAL; 2936 break; 2937 2938 case TCP_REPAIR_WINDOW: { 2939 struct tcp_repair_window opt; 2940 2941 if (get_user(len, optlen)) 2942 return -EFAULT; 2943 2944 if (len != sizeof(opt)) 2945 return -EINVAL; 2946 2947 if (!tp->repair) 2948 return -EPERM; 2949 2950 opt.snd_wl1 = tp->snd_wl1; 2951 opt.snd_wnd = tp->snd_wnd; 2952 opt.max_window = tp->max_window; 2953 opt.rcv_wnd = tp->rcv_wnd; 2954 opt.rcv_wup = tp->rcv_wup; 2955 2956 if (copy_to_user(optval, &opt, len)) 2957 return -EFAULT; 2958 return 0; 2959 } 2960 case TCP_QUEUE_SEQ: 2961 if (tp->repair_queue == TCP_SEND_QUEUE) 2962 val = tp->write_seq; 2963 else if (tp->repair_queue == TCP_RECV_QUEUE) 2964 val = tp->rcv_nxt; 2965 else 2966 return -EINVAL; 2967 break; 2968 2969 case TCP_USER_TIMEOUT: 2970 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2971 break; 2972 2973 case TCP_FASTOPEN: 2974 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2975 break; 2976 2977 case TCP_TIMESTAMP: 2978 val = tcp_time_stamp + tp->tsoffset; 2979 break; 2980 case TCP_NOTSENT_LOWAT: 2981 val = tp->notsent_lowat; 2982 break; 2983 case TCP_SAVE_SYN: 2984 val = tp->save_syn; 2985 break; 2986 case TCP_SAVED_SYN: { 2987 if (get_user(len, optlen)) 2988 return -EFAULT; 2989 2990 lock_sock(sk); 2991 if (tp->saved_syn) { 2992 if (len < tp->saved_syn[0]) { 2993 if (put_user(tp->saved_syn[0], optlen)) { 2994 release_sock(sk); 2995 return -EFAULT; 2996 } 2997 release_sock(sk); 2998 return -EINVAL; 2999 } 3000 len = tp->saved_syn[0]; 3001 if (put_user(len, optlen)) { 3002 release_sock(sk); 3003 return -EFAULT; 3004 } 3005 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3006 release_sock(sk); 3007 return -EFAULT; 3008 } 3009 tcp_saved_syn_free(tp); 3010 release_sock(sk); 3011 } else { 3012 release_sock(sk); 3013 len = 0; 3014 if (put_user(len, optlen)) 3015 return -EFAULT; 3016 } 3017 return 0; 3018 } 3019 default: 3020 return -ENOPROTOOPT; 3021 } 3022 3023 if (put_user(len, optlen)) 3024 return -EFAULT; 3025 if (copy_to_user(optval, &val, len)) 3026 return -EFAULT; 3027 return 0; 3028 } 3029 3030 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3031 int __user *optlen) 3032 { 3033 struct inet_connection_sock *icsk = inet_csk(sk); 3034 3035 if (level != SOL_TCP) 3036 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3037 optval, optlen); 3038 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3039 } 3040 EXPORT_SYMBOL(tcp_getsockopt); 3041 3042 #ifdef CONFIG_COMPAT 3043 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3044 char __user *optval, int __user *optlen) 3045 { 3046 if (level != SOL_TCP) 3047 return inet_csk_compat_getsockopt(sk, level, optname, 3048 optval, optlen); 3049 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3050 } 3051 EXPORT_SYMBOL(compat_tcp_getsockopt); 3052 #endif 3053 3054 #ifdef CONFIG_TCP_MD5SIG 3055 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3056 static DEFINE_MUTEX(tcp_md5sig_mutex); 3057 static bool tcp_md5sig_pool_populated = false; 3058 3059 static void __tcp_alloc_md5sig_pool(void) 3060 { 3061 struct crypto_ahash *hash; 3062 int cpu; 3063 3064 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3065 if (IS_ERR(hash)) 3066 return; 3067 3068 for_each_possible_cpu(cpu) { 3069 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3070 struct ahash_request *req; 3071 3072 if (!scratch) { 3073 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3074 sizeof(struct tcphdr), 3075 GFP_KERNEL, 3076 cpu_to_node(cpu)); 3077 if (!scratch) 3078 return; 3079 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3080 } 3081 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3082 continue; 3083 3084 req = ahash_request_alloc(hash, GFP_KERNEL); 3085 if (!req) 3086 return; 3087 3088 ahash_request_set_callback(req, 0, NULL, NULL); 3089 3090 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3091 } 3092 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3093 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3094 */ 3095 smp_wmb(); 3096 tcp_md5sig_pool_populated = true; 3097 } 3098 3099 bool tcp_alloc_md5sig_pool(void) 3100 { 3101 if (unlikely(!tcp_md5sig_pool_populated)) { 3102 mutex_lock(&tcp_md5sig_mutex); 3103 3104 if (!tcp_md5sig_pool_populated) 3105 __tcp_alloc_md5sig_pool(); 3106 3107 mutex_unlock(&tcp_md5sig_mutex); 3108 } 3109 return tcp_md5sig_pool_populated; 3110 } 3111 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3112 3113 3114 /** 3115 * tcp_get_md5sig_pool - get md5sig_pool for this user 3116 * 3117 * We use percpu structure, so if we succeed, we exit with preemption 3118 * and BH disabled, to make sure another thread or softirq handling 3119 * wont try to get same context. 3120 */ 3121 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3122 { 3123 local_bh_disable(); 3124 3125 if (tcp_md5sig_pool_populated) { 3126 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3127 smp_rmb(); 3128 return this_cpu_ptr(&tcp_md5sig_pool); 3129 } 3130 local_bh_enable(); 3131 return NULL; 3132 } 3133 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3134 3135 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3136 const struct sk_buff *skb, unsigned int header_len) 3137 { 3138 struct scatterlist sg; 3139 const struct tcphdr *tp = tcp_hdr(skb); 3140 struct ahash_request *req = hp->md5_req; 3141 unsigned int i; 3142 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3143 skb_headlen(skb) - header_len : 0; 3144 const struct skb_shared_info *shi = skb_shinfo(skb); 3145 struct sk_buff *frag_iter; 3146 3147 sg_init_table(&sg, 1); 3148 3149 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3150 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3151 if (crypto_ahash_update(req)) 3152 return 1; 3153 3154 for (i = 0; i < shi->nr_frags; ++i) { 3155 const struct skb_frag_struct *f = &shi->frags[i]; 3156 unsigned int offset = f->page_offset; 3157 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3158 3159 sg_set_page(&sg, page, skb_frag_size(f), 3160 offset_in_page(offset)); 3161 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3162 if (crypto_ahash_update(req)) 3163 return 1; 3164 } 3165 3166 skb_walk_frags(skb, frag_iter) 3167 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3168 return 1; 3169 3170 return 0; 3171 } 3172 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3173 3174 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3175 { 3176 struct scatterlist sg; 3177 3178 sg_init_one(&sg, key->key, key->keylen); 3179 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3180 return crypto_ahash_update(hp->md5_req); 3181 } 3182 EXPORT_SYMBOL(tcp_md5_hash_key); 3183 3184 #endif 3185 3186 void tcp_done(struct sock *sk) 3187 { 3188 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3189 3190 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3191 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3192 3193 tcp_set_state(sk, TCP_CLOSE); 3194 tcp_clear_xmit_timers(sk); 3195 if (req) 3196 reqsk_fastopen_remove(sk, req, false); 3197 3198 sk->sk_shutdown = SHUTDOWN_MASK; 3199 3200 if (!sock_flag(sk, SOCK_DEAD)) 3201 sk->sk_state_change(sk); 3202 else 3203 inet_csk_destroy_sock(sk); 3204 } 3205 EXPORT_SYMBOL_GPL(tcp_done); 3206 3207 int tcp_abort(struct sock *sk, int err) 3208 { 3209 if (!sk_fullsock(sk)) { 3210 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3211 struct request_sock *req = inet_reqsk(sk); 3212 3213 local_bh_disable(); 3214 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3215 req); 3216 local_bh_enable(); 3217 return 0; 3218 } 3219 return -EOPNOTSUPP; 3220 } 3221 3222 /* Don't race with userspace socket closes such as tcp_close. */ 3223 lock_sock(sk); 3224 3225 if (sk->sk_state == TCP_LISTEN) { 3226 tcp_set_state(sk, TCP_CLOSE); 3227 inet_csk_listen_stop(sk); 3228 } 3229 3230 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3231 local_bh_disable(); 3232 bh_lock_sock(sk); 3233 3234 if (!sock_flag(sk, SOCK_DEAD)) { 3235 sk->sk_err = err; 3236 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3237 smp_wmb(); 3238 sk->sk_error_report(sk); 3239 if (tcp_need_reset(sk->sk_state)) 3240 tcp_send_active_reset(sk, GFP_ATOMIC); 3241 tcp_done(sk); 3242 } 3243 3244 bh_unlock_sock(sk); 3245 local_bh_enable(); 3246 release_sock(sk); 3247 return 0; 3248 } 3249 EXPORT_SYMBOL_GPL(tcp_abort); 3250 3251 extern struct tcp_congestion_ops tcp_reno; 3252 3253 static __initdata unsigned long thash_entries; 3254 static int __init set_thash_entries(char *str) 3255 { 3256 ssize_t ret; 3257 3258 if (!str) 3259 return 0; 3260 3261 ret = kstrtoul(str, 0, &thash_entries); 3262 if (ret) 3263 return 0; 3264 3265 return 1; 3266 } 3267 __setup("thash_entries=", set_thash_entries); 3268 3269 static void __init tcp_init_mem(void) 3270 { 3271 unsigned long limit = nr_free_buffer_pages() / 16; 3272 3273 limit = max(limit, 128UL); 3274 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3275 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3276 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3277 } 3278 3279 void __init tcp_init(void) 3280 { 3281 int max_rshare, max_wshare, cnt; 3282 unsigned long limit; 3283 unsigned int i; 3284 3285 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3286 FIELD_SIZEOF(struct sk_buff, cb)); 3287 3288 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3289 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3290 tcp_hashinfo.bind_bucket_cachep = 3291 kmem_cache_create("tcp_bind_bucket", 3292 sizeof(struct inet_bind_bucket), 0, 3293 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3294 3295 /* Size and allocate the main established and bind bucket 3296 * hash tables. 3297 * 3298 * The methodology is similar to that of the buffer cache. 3299 */ 3300 tcp_hashinfo.ehash = 3301 alloc_large_system_hash("TCP established", 3302 sizeof(struct inet_ehash_bucket), 3303 thash_entries, 3304 17, /* one slot per 128 KB of memory */ 3305 0, 3306 NULL, 3307 &tcp_hashinfo.ehash_mask, 3308 0, 3309 thash_entries ? 0 : 512 * 1024); 3310 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3311 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3312 3313 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3314 panic("TCP: failed to alloc ehash_locks"); 3315 tcp_hashinfo.bhash = 3316 alloc_large_system_hash("TCP bind", 3317 sizeof(struct inet_bind_hashbucket), 3318 tcp_hashinfo.ehash_mask + 1, 3319 17, /* one slot per 128 KB of memory */ 3320 0, 3321 &tcp_hashinfo.bhash_size, 3322 NULL, 3323 0, 3324 64 * 1024); 3325 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3326 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3327 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3328 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3329 } 3330 3331 3332 cnt = tcp_hashinfo.ehash_mask + 1; 3333 3334 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3335 sysctl_tcp_max_orphans = cnt / 2; 3336 sysctl_max_syn_backlog = max(128, cnt / 256); 3337 3338 tcp_init_mem(); 3339 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3340 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3341 max_wshare = min(4UL*1024*1024, limit); 3342 max_rshare = min(6UL*1024*1024, limit); 3343 3344 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3345 sysctl_tcp_wmem[1] = 16*1024; 3346 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3347 3348 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3349 sysctl_tcp_rmem[1] = 87380; 3350 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3351 3352 pr_info("Hash tables configured (established %u bind %u)\n", 3353 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3354 3355 tcp_metrics_init(); 3356 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3357 tcp_tasklet_init(); 3358 } 3359