1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/memblock.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sock, wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 /* The TCP header must be at least 32-bit aligned. */ 869 size = ALIGN(size, 4); 870 871 if (unlikely(tcp_under_memory_pressure(sk))) 872 sk_mem_reclaim_partial(sk); 873 874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 875 if (likely(skb)) { 876 bool mem_scheduled; 877 878 if (force_schedule) { 879 mem_scheduled = true; 880 sk_forced_mem_schedule(sk, skb->truesize); 881 } else { 882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 883 } 884 if (likely(mem_scheduled)) { 885 skb_reserve(skb, sk->sk_prot->max_header); 886 /* 887 * Make sure that we have exactly size bytes 888 * available to the caller, no more, no less. 889 */ 890 skb->reserved_tailroom = skb->end - skb->tail - size; 891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 892 return skb; 893 } 894 __kfree_skb(skb); 895 } else { 896 sk->sk_prot->enter_memory_pressure(sk); 897 sk_stream_moderate_sndbuf(sk); 898 } 899 return NULL; 900 } 901 902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 903 int large_allowed) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 u32 new_size_goal, size_goal; 907 908 if (!large_allowed) 909 return mss_now; 910 911 /* Note : tcp_tso_autosize() will eventually split this later */ 912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 914 915 /* We try hard to avoid divides here */ 916 size_goal = tp->gso_segs * mss_now; 917 if (unlikely(new_size_goal < size_goal || 918 new_size_goal >= size_goal + mss_now)) { 919 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 920 sk->sk_gso_max_segs); 921 size_goal = tp->gso_segs * mss_now; 922 } 923 924 return max(size_goal, mss_now); 925 } 926 927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 928 { 929 int mss_now; 930 931 mss_now = tcp_current_mss(sk); 932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 933 934 return mss_now; 935 } 936 937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 938 size_t size, int flags) 939 { 940 struct tcp_sock *tp = tcp_sk(sk); 941 int mss_now, size_goal; 942 int err; 943 ssize_t copied; 944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 945 946 /* Wait for a connection to finish. One exception is TCP Fast Open 947 * (passive side) where data is allowed to be sent before a connection 948 * is fully established. 949 */ 950 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 951 !tcp_passive_fastopen(sk)) { 952 err = sk_stream_wait_connect(sk, &timeo); 953 if (err != 0) 954 goto out_err; 955 } 956 957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 958 959 mss_now = tcp_send_mss(sk, &size_goal, flags); 960 copied = 0; 961 962 err = -EPIPE; 963 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 964 goto out_err; 965 966 while (size > 0) { 967 struct sk_buff *skb = tcp_write_queue_tail(sk); 968 int copy, i; 969 bool can_coalesce; 970 971 if (!skb || (copy = size_goal - skb->len) <= 0 || 972 !tcp_skb_can_collapse_to(skb)) { 973 new_segment: 974 if (!sk_stream_memory_free(sk)) 975 goto wait_for_sndbuf; 976 977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 978 tcp_rtx_and_write_queues_empty(sk)); 979 if (!skb) 980 goto wait_for_memory; 981 982 skb_entail(sk, skb); 983 copy = size_goal; 984 } 985 986 if (copy > size) 987 copy = size; 988 989 i = skb_shinfo(skb)->nr_frags; 990 can_coalesce = skb_can_coalesce(skb, i, page, offset); 991 if (!can_coalesce && i >= sysctl_max_skb_frags) { 992 tcp_mark_push(tp, skb); 993 goto new_segment; 994 } 995 if (!sk_wmem_schedule(sk, copy)) 996 goto wait_for_memory; 997 998 if (can_coalesce) { 999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1000 } else { 1001 get_page(page); 1002 skb_fill_page_desc(skb, i, page, offset, copy); 1003 } 1004 1005 if (!(flags & MSG_NO_SHARED_FRAGS)) 1006 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1007 1008 skb->len += copy; 1009 skb->data_len += copy; 1010 skb->truesize += copy; 1011 sk->sk_wmem_queued += copy; 1012 sk_mem_charge(sk, copy); 1013 skb->ip_summed = CHECKSUM_PARTIAL; 1014 tp->write_seq += copy; 1015 TCP_SKB_CB(skb)->end_seq += copy; 1016 tcp_skb_pcount_set(skb, 0); 1017 1018 if (!copied) 1019 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1020 1021 copied += copy; 1022 offset += copy; 1023 size -= copy; 1024 if (!size) 1025 goto out; 1026 1027 if (skb->len < size_goal || (flags & MSG_OOB)) 1028 continue; 1029 1030 if (forced_push(tp)) { 1031 tcp_mark_push(tp, skb); 1032 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1033 } else if (skb == tcp_send_head(sk)) 1034 tcp_push_one(sk, mss_now); 1035 continue; 1036 1037 wait_for_sndbuf: 1038 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1039 wait_for_memory: 1040 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1041 TCP_NAGLE_PUSH, size_goal); 1042 1043 err = sk_stream_wait_memory(sk, &timeo); 1044 if (err != 0) 1045 goto do_error; 1046 1047 mss_now = tcp_send_mss(sk, &size_goal, flags); 1048 } 1049 1050 out: 1051 if (copied) { 1052 tcp_tx_timestamp(sk, sk->sk_tsflags); 1053 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1054 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1055 } 1056 return copied; 1057 1058 do_error: 1059 if (copied) 1060 goto out; 1061 out_err: 1062 /* make sure we wake any epoll edge trigger waiter */ 1063 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1064 err == -EAGAIN)) { 1065 sk->sk_write_space(sk); 1066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1067 } 1068 return sk_stream_error(sk, flags, err); 1069 } 1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1071 1072 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1073 size_t size, int flags) 1074 { 1075 if (!(sk->sk_route_caps & NETIF_F_SG)) 1076 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1077 1078 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1079 1080 return do_tcp_sendpages(sk, page, offset, size, flags); 1081 } 1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1083 1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1085 size_t size, int flags) 1086 { 1087 int ret; 1088 1089 lock_sock(sk); 1090 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1091 release_sock(sk); 1092 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(tcp_sendpage); 1096 1097 /* Do not bother using a page frag for very small frames. 1098 * But use this heuristic only for the first skb in write queue. 1099 * 1100 * Having no payload in skb->head allows better SACK shifting 1101 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1102 * write queue has less skbs. 1103 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1104 * This also speeds up tso_fragment(), since it wont fallback 1105 * to tcp_fragment(). 1106 */ 1107 static int linear_payload_sz(bool first_skb) 1108 { 1109 if (first_skb) 1110 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1111 return 0; 1112 } 1113 1114 static int select_size(bool first_skb, bool zc) 1115 { 1116 if (zc) 1117 return 0; 1118 return linear_payload_sz(first_skb); 1119 } 1120 1121 void tcp_free_fastopen_req(struct tcp_sock *tp) 1122 { 1123 if (tp->fastopen_req) { 1124 kfree(tp->fastopen_req); 1125 tp->fastopen_req = NULL; 1126 } 1127 } 1128 1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1130 int *copied, size_t size, 1131 struct ubuf_info *uarg) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 tp->fastopen_req->uarg = uarg; 1152 1153 if (inet->defer_connect) { 1154 err = tcp_connect(sk); 1155 /* Same failure procedure as in tcp_v4/6_connect */ 1156 if (err) { 1157 tcp_set_state(sk, TCP_CLOSE); 1158 inet->inet_dport = 0; 1159 sk->sk_route_caps = 0; 1160 } 1161 } 1162 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1163 err = __inet_stream_connect(sk->sk_socket, uaddr, 1164 msg->msg_namelen, flags, 1); 1165 /* fastopen_req could already be freed in __inet_stream_connect 1166 * if the connection times out or gets rst 1167 */ 1168 if (tp->fastopen_req) { 1169 *copied = tp->fastopen_req->copied; 1170 tcp_free_fastopen_req(tp); 1171 inet->defer_connect = 0; 1172 } 1173 return err; 1174 } 1175 1176 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 struct ubuf_info *uarg = NULL; 1180 struct sk_buff *skb; 1181 struct sockcm_cookie sockc; 1182 int flags, err, copied = 0; 1183 int mss_now = 0, size_goal, copied_syn = 0; 1184 bool process_backlog = false; 1185 bool zc = false; 1186 long timeo; 1187 1188 flags = msg->msg_flags; 1189 1190 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1191 skb = tcp_write_queue_tail(sk); 1192 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1193 if (!uarg) { 1194 err = -ENOBUFS; 1195 goto out_err; 1196 } 1197 1198 zc = sk->sk_route_caps & NETIF_F_SG; 1199 if (!zc) 1200 uarg->zerocopy = 0; 1201 } 1202 1203 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1204 !tp->repair) { 1205 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1206 if (err == -EINPROGRESS && copied_syn > 0) 1207 goto out; 1208 else if (err) 1209 goto out_err; 1210 } 1211 1212 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1213 1214 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1215 1216 /* Wait for a connection to finish. One exception is TCP Fast Open 1217 * (passive side) where data is allowed to be sent before a connection 1218 * is fully established. 1219 */ 1220 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1221 !tcp_passive_fastopen(sk)) { 1222 err = sk_stream_wait_connect(sk, &timeo); 1223 if (err != 0) 1224 goto do_error; 1225 } 1226 1227 if (unlikely(tp->repair)) { 1228 if (tp->repair_queue == TCP_RECV_QUEUE) { 1229 copied = tcp_send_rcvq(sk, msg, size); 1230 goto out_nopush; 1231 } 1232 1233 err = -EINVAL; 1234 if (tp->repair_queue == TCP_NO_QUEUE) 1235 goto out_err; 1236 1237 /* 'common' sending to sendq */ 1238 } 1239 1240 sockcm_init(&sockc, sk); 1241 if (msg->msg_controllen) { 1242 err = sock_cmsg_send(sk, msg, &sockc); 1243 if (unlikely(err)) { 1244 err = -EINVAL; 1245 goto out_err; 1246 } 1247 } 1248 1249 /* This should be in poll */ 1250 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1251 1252 /* Ok commence sending. */ 1253 copied = 0; 1254 1255 restart: 1256 mss_now = tcp_send_mss(sk, &size_goal, flags); 1257 1258 err = -EPIPE; 1259 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1260 goto do_error; 1261 1262 while (msg_data_left(msg)) { 1263 int copy = 0; 1264 1265 skb = tcp_write_queue_tail(sk); 1266 if (skb) 1267 copy = size_goal - skb->len; 1268 1269 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1270 bool first_skb; 1271 int linear; 1272 1273 new_segment: 1274 if (!sk_stream_memory_free(sk)) 1275 goto wait_for_sndbuf; 1276 1277 if (process_backlog && sk_flush_backlog(sk)) { 1278 process_backlog = false; 1279 goto restart; 1280 } 1281 first_skb = tcp_rtx_and_write_queues_empty(sk); 1282 linear = select_size(first_skb, zc); 1283 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1284 first_skb); 1285 if (!skb) 1286 goto wait_for_memory; 1287 1288 process_backlog = true; 1289 skb->ip_summed = CHECKSUM_PARTIAL; 1290 1291 skb_entail(sk, skb); 1292 copy = size_goal; 1293 1294 /* All packets are restored as if they have 1295 * already been sent. skb_mstamp_ns isn't set to 1296 * avoid wrong rtt estimation. 1297 */ 1298 if (tp->repair) 1299 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1300 } 1301 1302 /* Try to append data to the end of skb. */ 1303 if (copy > msg_data_left(msg)) 1304 copy = msg_data_left(msg); 1305 1306 /* Where to copy to? */ 1307 if (skb_availroom(skb) > 0 && !zc) { 1308 /* We have some space in skb head. Superb! */ 1309 copy = min_t(int, copy, skb_availroom(skb)); 1310 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1311 if (err) 1312 goto do_fault; 1313 } else if (!zc) { 1314 bool merge = true; 1315 int i = skb_shinfo(skb)->nr_frags; 1316 struct page_frag *pfrag = sk_page_frag(sk); 1317 1318 if (!sk_page_frag_refill(sk, pfrag)) 1319 goto wait_for_memory; 1320 1321 if (!skb_can_coalesce(skb, i, pfrag->page, 1322 pfrag->offset)) { 1323 if (i >= sysctl_max_skb_frags) { 1324 tcp_mark_push(tp, skb); 1325 goto new_segment; 1326 } 1327 merge = false; 1328 } 1329 1330 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1331 1332 if (!sk_wmem_schedule(sk, copy)) 1333 goto wait_for_memory; 1334 1335 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1336 pfrag->page, 1337 pfrag->offset, 1338 copy); 1339 if (err) 1340 goto do_error; 1341 1342 /* Update the skb. */ 1343 if (merge) { 1344 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1345 } else { 1346 skb_fill_page_desc(skb, i, pfrag->page, 1347 pfrag->offset, copy); 1348 page_ref_inc(pfrag->page); 1349 } 1350 pfrag->offset += copy; 1351 } else { 1352 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1353 if (err == -EMSGSIZE || err == -EEXIST) { 1354 tcp_mark_push(tp, skb); 1355 goto new_segment; 1356 } 1357 if (err < 0) 1358 goto do_error; 1359 copy = err; 1360 } 1361 1362 if (!copied) 1363 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1364 1365 tp->write_seq += copy; 1366 TCP_SKB_CB(skb)->end_seq += copy; 1367 tcp_skb_pcount_set(skb, 0); 1368 1369 copied += copy; 1370 if (!msg_data_left(msg)) { 1371 if (unlikely(flags & MSG_EOR)) 1372 TCP_SKB_CB(skb)->eor = 1; 1373 goto out; 1374 } 1375 1376 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1377 continue; 1378 1379 if (forced_push(tp)) { 1380 tcp_mark_push(tp, skb); 1381 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1382 } else if (skb == tcp_send_head(sk)) 1383 tcp_push_one(sk, mss_now); 1384 continue; 1385 1386 wait_for_sndbuf: 1387 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1388 wait_for_memory: 1389 if (copied) 1390 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1391 TCP_NAGLE_PUSH, size_goal); 1392 1393 err = sk_stream_wait_memory(sk, &timeo); 1394 if (err != 0) 1395 goto do_error; 1396 1397 mss_now = tcp_send_mss(sk, &size_goal, flags); 1398 } 1399 1400 out: 1401 if (copied) { 1402 tcp_tx_timestamp(sk, sockc.tsflags); 1403 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1404 } 1405 out_nopush: 1406 sock_zerocopy_put(uarg); 1407 return copied + copied_syn; 1408 1409 do_fault: 1410 if (!skb->len) { 1411 tcp_unlink_write_queue(skb, sk); 1412 /* It is the one place in all of TCP, except connection 1413 * reset, where we can be unlinking the send_head. 1414 */ 1415 if (tcp_write_queue_empty(sk)) 1416 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1417 sk_wmem_free_skb(sk, skb); 1418 } 1419 1420 do_error: 1421 if (copied + copied_syn) 1422 goto out; 1423 out_err: 1424 sock_zerocopy_put_abort(uarg, true); 1425 err = sk_stream_error(sk, flags, err); 1426 /* make sure we wake any epoll edge trigger waiter */ 1427 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1428 err == -EAGAIN)) { 1429 sk->sk_write_space(sk); 1430 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1431 } 1432 return err; 1433 } 1434 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1435 1436 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1437 { 1438 int ret; 1439 1440 lock_sock(sk); 1441 ret = tcp_sendmsg_locked(sk, msg, size); 1442 release_sock(sk); 1443 1444 return ret; 1445 } 1446 EXPORT_SYMBOL(tcp_sendmsg); 1447 1448 /* 1449 * Handle reading urgent data. BSD has very simple semantics for 1450 * this, no blocking and very strange errors 8) 1451 */ 1452 1453 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1454 { 1455 struct tcp_sock *tp = tcp_sk(sk); 1456 1457 /* No URG data to read. */ 1458 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1459 tp->urg_data == TCP_URG_READ) 1460 return -EINVAL; /* Yes this is right ! */ 1461 1462 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1463 return -ENOTCONN; 1464 1465 if (tp->urg_data & TCP_URG_VALID) { 1466 int err = 0; 1467 char c = tp->urg_data; 1468 1469 if (!(flags & MSG_PEEK)) 1470 tp->urg_data = TCP_URG_READ; 1471 1472 /* Read urgent data. */ 1473 msg->msg_flags |= MSG_OOB; 1474 1475 if (len > 0) { 1476 if (!(flags & MSG_TRUNC)) 1477 err = memcpy_to_msg(msg, &c, 1); 1478 len = 1; 1479 } else 1480 msg->msg_flags |= MSG_TRUNC; 1481 1482 return err ? -EFAULT : len; 1483 } 1484 1485 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1486 return 0; 1487 1488 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1489 * the available implementations agree in this case: 1490 * this call should never block, independent of the 1491 * blocking state of the socket. 1492 * Mike <pall@rz.uni-karlsruhe.de> 1493 */ 1494 return -EAGAIN; 1495 } 1496 1497 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1498 { 1499 struct sk_buff *skb; 1500 int copied = 0, err = 0; 1501 1502 /* XXX -- need to support SO_PEEK_OFF */ 1503 1504 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1506 if (err) 1507 return err; 1508 copied += skb->len; 1509 } 1510 1511 skb_queue_walk(&sk->sk_write_queue, skb) { 1512 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1513 if (err) 1514 break; 1515 1516 copied += skb->len; 1517 } 1518 1519 return err ?: copied; 1520 } 1521 1522 /* Clean up the receive buffer for full frames taken by the user, 1523 * then send an ACK if necessary. COPIED is the number of bytes 1524 * tcp_recvmsg has given to the user so far, it speeds up the 1525 * calculation of whether or not we must ACK for the sake of 1526 * a window update. 1527 */ 1528 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 bool time_to_ack = false; 1532 1533 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1534 1535 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1536 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1537 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1538 1539 if (inet_csk_ack_scheduled(sk)) { 1540 const struct inet_connection_sock *icsk = inet_csk(sk); 1541 /* Delayed ACKs frequently hit locked sockets during bulk 1542 * receive. */ 1543 if (icsk->icsk_ack.blocked || 1544 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1545 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1546 /* 1547 * If this read emptied read buffer, we send ACK, if 1548 * connection is not bidirectional, user drained 1549 * receive buffer and there was a small segment 1550 * in queue. 1551 */ 1552 (copied > 0 && 1553 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1555 !inet_csk_in_pingpong_mode(sk))) && 1556 !atomic_read(&sk->sk_rmem_alloc))) 1557 time_to_ack = true; 1558 } 1559 1560 /* We send an ACK if we can now advertise a non-zero window 1561 * which has been raised "significantly". 1562 * 1563 * Even if window raised up to infinity, do not send window open ACK 1564 * in states, where we will not receive more. It is useless. 1565 */ 1566 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1567 __u32 rcv_window_now = tcp_receive_window(tp); 1568 1569 /* Optimize, __tcp_select_window() is not cheap. */ 1570 if (2*rcv_window_now <= tp->window_clamp) { 1571 __u32 new_window = __tcp_select_window(sk); 1572 1573 /* Send ACK now, if this read freed lots of space 1574 * in our buffer. Certainly, new_window is new window. 1575 * We can advertise it now, if it is not less than current one. 1576 * "Lots" means "at least twice" here. 1577 */ 1578 if (new_window && new_window >= 2 * rcv_window_now) 1579 time_to_ack = true; 1580 } 1581 } 1582 if (time_to_ack) 1583 tcp_send_ack(sk); 1584 } 1585 1586 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1587 { 1588 struct sk_buff *skb; 1589 u32 offset; 1590 1591 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1592 offset = seq - TCP_SKB_CB(skb)->seq; 1593 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1594 pr_err_once("%s: found a SYN, please report !\n", __func__); 1595 offset--; 1596 } 1597 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1598 *off = offset; 1599 return skb; 1600 } 1601 /* This looks weird, but this can happen if TCP collapsing 1602 * splitted a fat GRO packet, while we released socket lock 1603 * in skb_splice_bits() 1604 */ 1605 sk_eat_skb(sk, skb); 1606 } 1607 return NULL; 1608 } 1609 1610 /* 1611 * This routine provides an alternative to tcp_recvmsg() for routines 1612 * that would like to handle copying from skbuffs directly in 'sendfile' 1613 * fashion. 1614 * Note: 1615 * - It is assumed that the socket was locked by the caller. 1616 * - The routine does not block. 1617 * - At present, there is no support for reading OOB data 1618 * or for 'peeking' the socket using this routine 1619 * (although both would be easy to implement). 1620 */ 1621 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1622 sk_read_actor_t recv_actor) 1623 { 1624 struct sk_buff *skb; 1625 struct tcp_sock *tp = tcp_sk(sk); 1626 u32 seq = tp->copied_seq; 1627 u32 offset; 1628 int copied = 0; 1629 1630 if (sk->sk_state == TCP_LISTEN) 1631 return -ENOTCONN; 1632 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1633 if (offset < skb->len) { 1634 int used; 1635 size_t len; 1636 1637 len = skb->len - offset; 1638 /* Stop reading if we hit a patch of urgent data */ 1639 if (tp->urg_data) { 1640 u32 urg_offset = tp->urg_seq - seq; 1641 if (urg_offset < len) 1642 len = urg_offset; 1643 if (!len) 1644 break; 1645 } 1646 used = recv_actor(desc, skb, offset, len); 1647 if (used <= 0) { 1648 if (!copied) 1649 copied = used; 1650 break; 1651 } else if (used <= len) { 1652 seq += used; 1653 copied += used; 1654 offset += used; 1655 } 1656 /* If recv_actor drops the lock (e.g. TCP splice 1657 * receive) the skb pointer might be invalid when 1658 * getting here: tcp_collapse might have deleted it 1659 * while aggregating skbs from the socket queue. 1660 */ 1661 skb = tcp_recv_skb(sk, seq - 1, &offset); 1662 if (!skb) 1663 break; 1664 /* TCP coalescing might have appended data to the skb. 1665 * Try to splice more frags 1666 */ 1667 if (offset + 1 != skb->len) 1668 continue; 1669 } 1670 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1671 sk_eat_skb(sk, skb); 1672 ++seq; 1673 break; 1674 } 1675 sk_eat_skb(sk, skb); 1676 if (!desc->count) 1677 break; 1678 tp->copied_seq = seq; 1679 } 1680 tp->copied_seq = seq; 1681 1682 tcp_rcv_space_adjust(sk); 1683 1684 /* Clean up data we have read: This will do ACK frames. */ 1685 if (copied > 0) { 1686 tcp_recv_skb(sk, seq, &offset); 1687 tcp_cleanup_rbuf(sk, copied); 1688 } 1689 return copied; 1690 } 1691 EXPORT_SYMBOL(tcp_read_sock); 1692 1693 int tcp_peek_len(struct socket *sock) 1694 { 1695 return tcp_inq(sock->sk); 1696 } 1697 EXPORT_SYMBOL(tcp_peek_len); 1698 1699 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1700 int tcp_set_rcvlowat(struct sock *sk, int val) 1701 { 1702 int cap; 1703 1704 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1705 cap = sk->sk_rcvbuf >> 1; 1706 else 1707 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1708 val = min(val, cap); 1709 sk->sk_rcvlowat = val ? : 1; 1710 1711 /* Check if we need to signal EPOLLIN right now */ 1712 tcp_data_ready(sk); 1713 1714 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1715 return 0; 1716 1717 val <<= 1; 1718 if (val > sk->sk_rcvbuf) { 1719 sk->sk_rcvbuf = val; 1720 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1721 } 1722 return 0; 1723 } 1724 EXPORT_SYMBOL(tcp_set_rcvlowat); 1725 1726 #ifdef CONFIG_MMU 1727 static const struct vm_operations_struct tcp_vm_ops = { 1728 }; 1729 1730 int tcp_mmap(struct file *file, struct socket *sock, 1731 struct vm_area_struct *vma) 1732 { 1733 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1734 return -EPERM; 1735 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1736 1737 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1738 vma->vm_flags |= VM_MIXEDMAP; 1739 1740 vma->vm_ops = &tcp_vm_ops; 1741 return 0; 1742 } 1743 EXPORT_SYMBOL(tcp_mmap); 1744 1745 static int tcp_zerocopy_receive(struct sock *sk, 1746 struct tcp_zerocopy_receive *zc) 1747 { 1748 unsigned long address = (unsigned long)zc->address; 1749 const skb_frag_t *frags = NULL; 1750 u32 length = 0, seq, offset; 1751 struct vm_area_struct *vma; 1752 struct sk_buff *skb = NULL; 1753 struct tcp_sock *tp; 1754 int inq; 1755 int ret; 1756 1757 if (address & (PAGE_SIZE - 1) || address != zc->address) 1758 return -EINVAL; 1759 1760 if (sk->sk_state == TCP_LISTEN) 1761 return -ENOTCONN; 1762 1763 sock_rps_record_flow(sk); 1764 1765 down_read(¤t->mm->mmap_sem); 1766 1767 ret = -EINVAL; 1768 vma = find_vma(current->mm, address); 1769 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1770 goto out; 1771 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1772 1773 tp = tcp_sk(sk); 1774 seq = tp->copied_seq; 1775 inq = tcp_inq(sk); 1776 zc->length = min_t(u32, zc->length, inq); 1777 zc->length &= ~(PAGE_SIZE - 1); 1778 if (zc->length) { 1779 zap_page_range(vma, address, zc->length); 1780 zc->recv_skip_hint = 0; 1781 } else { 1782 zc->recv_skip_hint = inq; 1783 } 1784 ret = 0; 1785 while (length + PAGE_SIZE <= zc->length) { 1786 if (zc->recv_skip_hint < PAGE_SIZE) { 1787 if (skb) { 1788 skb = skb->next; 1789 offset = seq - TCP_SKB_CB(skb)->seq; 1790 } else { 1791 skb = tcp_recv_skb(sk, seq, &offset); 1792 } 1793 1794 zc->recv_skip_hint = skb->len - offset; 1795 offset -= skb_headlen(skb); 1796 if ((int)offset < 0 || skb_has_frag_list(skb)) 1797 break; 1798 frags = skb_shinfo(skb)->frags; 1799 while (offset) { 1800 if (frags->size > offset) 1801 goto out; 1802 offset -= frags->size; 1803 frags++; 1804 } 1805 } 1806 if (frags->size != PAGE_SIZE || frags->page_offset) { 1807 int remaining = zc->recv_skip_hint; 1808 1809 while (remaining && (frags->size != PAGE_SIZE || 1810 frags->page_offset)) { 1811 remaining -= frags->size; 1812 frags++; 1813 } 1814 zc->recv_skip_hint -= remaining; 1815 break; 1816 } 1817 ret = vm_insert_page(vma, address + length, 1818 skb_frag_page(frags)); 1819 if (ret) 1820 break; 1821 length += PAGE_SIZE; 1822 seq += PAGE_SIZE; 1823 zc->recv_skip_hint -= PAGE_SIZE; 1824 frags++; 1825 } 1826 out: 1827 up_read(¤t->mm->mmap_sem); 1828 if (length) { 1829 tp->copied_seq = seq; 1830 tcp_rcv_space_adjust(sk); 1831 1832 /* Clean up data we have read: This will do ACK frames. */ 1833 tcp_recv_skb(sk, seq, &offset); 1834 tcp_cleanup_rbuf(sk, length); 1835 ret = 0; 1836 if (length == zc->length) 1837 zc->recv_skip_hint = 0; 1838 } else { 1839 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1840 ret = -EIO; 1841 } 1842 zc->length = length; 1843 return ret; 1844 } 1845 #endif 1846 1847 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1848 struct scm_timestamping_internal *tss) 1849 { 1850 if (skb->tstamp) 1851 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1852 else 1853 tss->ts[0] = (struct timespec64) {0}; 1854 1855 if (skb_hwtstamps(skb)->hwtstamp) 1856 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1857 else 1858 tss->ts[2] = (struct timespec64) {0}; 1859 } 1860 1861 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1862 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1863 struct scm_timestamping_internal *tss) 1864 { 1865 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1866 bool has_timestamping = false; 1867 1868 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1869 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1870 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1871 if (new_tstamp) { 1872 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1873 1874 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1875 sizeof(kts), &kts); 1876 } else { 1877 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1878 1879 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1880 sizeof(ts_old), &ts_old); 1881 } 1882 } else { 1883 if (new_tstamp) { 1884 struct __kernel_sock_timeval stv; 1885 1886 stv.tv_sec = tss->ts[0].tv_sec; 1887 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1889 sizeof(stv), &stv); 1890 } else { 1891 struct __kernel_old_timeval tv; 1892 1893 tv.tv_sec = tss->ts[0].tv_sec; 1894 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1896 sizeof(tv), &tv); 1897 } 1898 } 1899 } 1900 1901 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1902 has_timestamping = true; 1903 else 1904 tss->ts[0] = (struct timespec64) {0}; 1905 } 1906 1907 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1908 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1909 has_timestamping = true; 1910 else 1911 tss->ts[2] = (struct timespec64) {0}; 1912 } 1913 1914 if (has_timestamping) { 1915 tss->ts[1] = (struct timespec64) {0}; 1916 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1917 put_cmsg_scm_timestamping64(msg, tss); 1918 else 1919 put_cmsg_scm_timestamping(msg, tss); 1920 } 1921 } 1922 1923 static int tcp_inq_hint(struct sock *sk) 1924 { 1925 const struct tcp_sock *tp = tcp_sk(sk); 1926 u32 copied_seq = READ_ONCE(tp->copied_seq); 1927 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1928 int inq; 1929 1930 inq = rcv_nxt - copied_seq; 1931 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1932 lock_sock(sk); 1933 inq = tp->rcv_nxt - tp->copied_seq; 1934 release_sock(sk); 1935 } 1936 return inq; 1937 } 1938 1939 /* 1940 * This routine copies from a sock struct into the user buffer. 1941 * 1942 * Technical note: in 2.3 we work on _locked_ socket, so that 1943 * tricks with *seq access order and skb->users are not required. 1944 * Probably, code can be easily improved even more. 1945 */ 1946 1947 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1948 int flags, int *addr_len) 1949 { 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 int copied = 0; 1952 u32 peek_seq; 1953 u32 *seq; 1954 unsigned long used; 1955 int err, inq; 1956 int target; /* Read at least this many bytes */ 1957 long timeo; 1958 struct sk_buff *skb, *last; 1959 u32 urg_hole = 0; 1960 struct scm_timestamping_internal tss; 1961 bool has_tss = false; 1962 bool has_cmsg; 1963 1964 if (unlikely(flags & MSG_ERRQUEUE)) 1965 return inet_recv_error(sk, msg, len, addr_len); 1966 1967 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1968 (sk->sk_state == TCP_ESTABLISHED)) 1969 sk_busy_loop(sk, nonblock); 1970 1971 lock_sock(sk); 1972 1973 err = -ENOTCONN; 1974 if (sk->sk_state == TCP_LISTEN) 1975 goto out; 1976 1977 has_cmsg = tp->recvmsg_inq; 1978 timeo = sock_rcvtimeo(sk, nonblock); 1979 1980 /* Urgent data needs to be handled specially. */ 1981 if (flags & MSG_OOB) 1982 goto recv_urg; 1983 1984 if (unlikely(tp->repair)) { 1985 err = -EPERM; 1986 if (!(flags & MSG_PEEK)) 1987 goto out; 1988 1989 if (tp->repair_queue == TCP_SEND_QUEUE) 1990 goto recv_sndq; 1991 1992 err = -EINVAL; 1993 if (tp->repair_queue == TCP_NO_QUEUE) 1994 goto out; 1995 1996 /* 'common' recv queue MSG_PEEK-ing */ 1997 } 1998 1999 seq = &tp->copied_seq; 2000 if (flags & MSG_PEEK) { 2001 peek_seq = tp->copied_seq; 2002 seq = &peek_seq; 2003 } 2004 2005 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2006 2007 do { 2008 u32 offset; 2009 2010 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2011 if (tp->urg_data && tp->urg_seq == *seq) { 2012 if (copied) 2013 break; 2014 if (signal_pending(current)) { 2015 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2016 break; 2017 } 2018 } 2019 2020 /* Next get a buffer. */ 2021 2022 last = skb_peek_tail(&sk->sk_receive_queue); 2023 skb_queue_walk(&sk->sk_receive_queue, skb) { 2024 last = skb; 2025 /* Now that we have two receive queues this 2026 * shouldn't happen. 2027 */ 2028 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2029 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2030 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2031 flags)) 2032 break; 2033 2034 offset = *seq - TCP_SKB_CB(skb)->seq; 2035 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2036 pr_err_once("%s: found a SYN, please report !\n", __func__); 2037 offset--; 2038 } 2039 if (offset < skb->len) 2040 goto found_ok_skb; 2041 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2042 goto found_fin_ok; 2043 WARN(!(flags & MSG_PEEK), 2044 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2045 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2046 } 2047 2048 /* Well, if we have backlog, try to process it now yet. */ 2049 2050 if (copied >= target && !sk->sk_backlog.tail) 2051 break; 2052 2053 if (copied) { 2054 if (sk->sk_err || 2055 sk->sk_state == TCP_CLOSE || 2056 (sk->sk_shutdown & RCV_SHUTDOWN) || 2057 !timeo || 2058 signal_pending(current)) 2059 break; 2060 } else { 2061 if (sock_flag(sk, SOCK_DONE)) 2062 break; 2063 2064 if (sk->sk_err) { 2065 copied = sock_error(sk); 2066 break; 2067 } 2068 2069 if (sk->sk_shutdown & RCV_SHUTDOWN) 2070 break; 2071 2072 if (sk->sk_state == TCP_CLOSE) { 2073 /* This occurs when user tries to read 2074 * from never connected socket. 2075 */ 2076 copied = -ENOTCONN; 2077 break; 2078 } 2079 2080 if (!timeo) { 2081 copied = -EAGAIN; 2082 break; 2083 } 2084 2085 if (signal_pending(current)) { 2086 copied = sock_intr_errno(timeo); 2087 break; 2088 } 2089 } 2090 2091 tcp_cleanup_rbuf(sk, copied); 2092 2093 if (copied >= target) { 2094 /* Do not sleep, just process backlog. */ 2095 release_sock(sk); 2096 lock_sock(sk); 2097 } else { 2098 sk_wait_data(sk, &timeo, last); 2099 } 2100 2101 if ((flags & MSG_PEEK) && 2102 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2103 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2104 current->comm, 2105 task_pid_nr(current)); 2106 peek_seq = tp->copied_seq; 2107 } 2108 continue; 2109 2110 found_ok_skb: 2111 /* Ok so how much can we use? */ 2112 used = skb->len - offset; 2113 if (len < used) 2114 used = len; 2115 2116 /* Do we have urgent data here? */ 2117 if (tp->urg_data) { 2118 u32 urg_offset = tp->urg_seq - *seq; 2119 if (urg_offset < used) { 2120 if (!urg_offset) { 2121 if (!sock_flag(sk, SOCK_URGINLINE)) { 2122 ++*seq; 2123 urg_hole++; 2124 offset++; 2125 used--; 2126 if (!used) 2127 goto skip_copy; 2128 } 2129 } else 2130 used = urg_offset; 2131 } 2132 } 2133 2134 if (!(flags & MSG_TRUNC)) { 2135 err = skb_copy_datagram_msg(skb, offset, msg, used); 2136 if (err) { 2137 /* Exception. Bailout! */ 2138 if (!copied) 2139 copied = -EFAULT; 2140 break; 2141 } 2142 } 2143 2144 *seq += used; 2145 copied += used; 2146 len -= used; 2147 2148 tcp_rcv_space_adjust(sk); 2149 2150 skip_copy: 2151 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2152 tp->urg_data = 0; 2153 tcp_fast_path_check(sk); 2154 } 2155 if (used + offset < skb->len) 2156 continue; 2157 2158 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2159 tcp_update_recv_tstamps(skb, &tss); 2160 has_tss = true; 2161 has_cmsg = true; 2162 } 2163 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2164 goto found_fin_ok; 2165 if (!(flags & MSG_PEEK)) 2166 sk_eat_skb(sk, skb); 2167 continue; 2168 2169 found_fin_ok: 2170 /* Process the FIN. */ 2171 ++*seq; 2172 if (!(flags & MSG_PEEK)) 2173 sk_eat_skb(sk, skb); 2174 break; 2175 } while (len > 0); 2176 2177 /* According to UNIX98, msg_name/msg_namelen are ignored 2178 * on connected socket. I was just happy when found this 8) --ANK 2179 */ 2180 2181 /* Clean up data we have read: This will do ACK frames. */ 2182 tcp_cleanup_rbuf(sk, copied); 2183 2184 release_sock(sk); 2185 2186 if (has_cmsg) { 2187 if (has_tss) 2188 tcp_recv_timestamp(msg, sk, &tss); 2189 if (tp->recvmsg_inq) { 2190 inq = tcp_inq_hint(sk); 2191 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2192 } 2193 } 2194 2195 return copied; 2196 2197 out: 2198 release_sock(sk); 2199 return err; 2200 2201 recv_urg: 2202 err = tcp_recv_urg(sk, msg, len, flags); 2203 goto out; 2204 2205 recv_sndq: 2206 err = tcp_peek_sndq(sk, msg, len); 2207 goto out; 2208 } 2209 EXPORT_SYMBOL(tcp_recvmsg); 2210 2211 void tcp_set_state(struct sock *sk, int state) 2212 { 2213 int oldstate = sk->sk_state; 2214 2215 /* We defined a new enum for TCP states that are exported in BPF 2216 * so as not force the internal TCP states to be frozen. The 2217 * following checks will detect if an internal state value ever 2218 * differs from the BPF value. If this ever happens, then we will 2219 * need to remap the internal value to the BPF value before calling 2220 * tcp_call_bpf_2arg. 2221 */ 2222 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2223 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2224 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2225 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2226 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2227 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2228 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2229 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2230 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2231 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2232 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2233 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2234 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2235 2236 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2237 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2238 2239 switch (state) { 2240 case TCP_ESTABLISHED: 2241 if (oldstate != TCP_ESTABLISHED) 2242 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2243 break; 2244 2245 case TCP_CLOSE: 2246 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2247 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2248 2249 sk->sk_prot->unhash(sk); 2250 if (inet_csk(sk)->icsk_bind_hash && 2251 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2252 inet_put_port(sk); 2253 /* fall through */ 2254 default: 2255 if (oldstate == TCP_ESTABLISHED) 2256 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2257 } 2258 2259 /* Change state AFTER socket is unhashed to avoid closed 2260 * socket sitting in hash tables. 2261 */ 2262 inet_sk_state_store(sk, state); 2263 } 2264 EXPORT_SYMBOL_GPL(tcp_set_state); 2265 2266 /* 2267 * State processing on a close. This implements the state shift for 2268 * sending our FIN frame. Note that we only send a FIN for some 2269 * states. A shutdown() may have already sent the FIN, or we may be 2270 * closed. 2271 */ 2272 2273 static const unsigned char new_state[16] = { 2274 /* current state: new state: action: */ 2275 [0 /* (Invalid) */] = TCP_CLOSE, 2276 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2277 [TCP_SYN_SENT] = TCP_CLOSE, 2278 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2279 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2280 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2281 [TCP_TIME_WAIT] = TCP_CLOSE, 2282 [TCP_CLOSE] = TCP_CLOSE, 2283 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2284 [TCP_LAST_ACK] = TCP_LAST_ACK, 2285 [TCP_LISTEN] = TCP_CLOSE, 2286 [TCP_CLOSING] = TCP_CLOSING, 2287 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2288 }; 2289 2290 static int tcp_close_state(struct sock *sk) 2291 { 2292 int next = (int)new_state[sk->sk_state]; 2293 int ns = next & TCP_STATE_MASK; 2294 2295 tcp_set_state(sk, ns); 2296 2297 return next & TCP_ACTION_FIN; 2298 } 2299 2300 /* 2301 * Shutdown the sending side of a connection. Much like close except 2302 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2303 */ 2304 2305 void tcp_shutdown(struct sock *sk, int how) 2306 { 2307 /* We need to grab some memory, and put together a FIN, 2308 * and then put it into the queue to be sent. 2309 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2310 */ 2311 if (!(how & SEND_SHUTDOWN)) 2312 return; 2313 2314 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2315 if ((1 << sk->sk_state) & 2316 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2317 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2318 /* Clear out any half completed packets. FIN if needed. */ 2319 if (tcp_close_state(sk)) 2320 tcp_send_fin(sk); 2321 } 2322 } 2323 EXPORT_SYMBOL(tcp_shutdown); 2324 2325 bool tcp_check_oom(struct sock *sk, int shift) 2326 { 2327 bool too_many_orphans, out_of_socket_memory; 2328 2329 too_many_orphans = tcp_too_many_orphans(sk, shift); 2330 out_of_socket_memory = tcp_out_of_memory(sk); 2331 2332 if (too_many_orphans) 2333 net_info_ratelimited("too many orphaned sockets\n"); 2334 if (out_of_socket_memory) 2335 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2336 return too_many_orphans || out_of_socket_memory; 2337 } 2338 2339 void tcp_close(struct sock *sk, long timeout) 2340 { 2341 struct sk_buff *skb; 2342 int data_was_unread = 0; 2343 int state; 2344 2345 lock_sock(sk); 2346 sk->sk_shutdown = SHUTDOWN_MASK; 2347 2348 if (sk->sk_state == TCP_LISTEN) { 2349 tcp_set_state(sk, TCP_CLOSE); 2350 2351 /* Special case. */ 2352 inet_csk_listen_stop(sk); 2353 2354 goto adjudge_to_death; 2355 } 2356 2357 /* We need to flush the recv. buffs. We do this only on the 2358 * descriptor close, not protocol-sourced closes, because the 2359 * reader process may not have drained the data yet! 2360 */ 2361 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2362 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2363 2364 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2365 len--; 2366 data_was_unread += len; 2367 __kfree_skb(skb); 2368 } 2369 2370 sk_mem_reclaim(sk); 2371 2372 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2373 if (sk->sk_state == TCP_CLOSE) 2374 goto adjudge_to_death; 2375 2376 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2377 * data was lost. To witness the awful effects of the old behavior of 2378 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2379 * GET in an FTP client, suspend the process, wait for the client to 2380 * advertise a zero window, then kill -9 the FTP client, wheee... 2381 * Note: timeout is always zero in such a case. 2382 */ 2383 if (unlikely(tcp_sk(sk)->repair)) { 2384 sk->sk_prot->disconnect(sk, 0); 2385 } else if (data_was_unread) { 2386 /* Unread data was tossed, zap the connection. */ 2387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2388 tcp_set_state(sk, TCP_CLOSE); 2389 tcp_send_active_reset(sk, sk->sk_allocation); 2390 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2391 /* Check zero linger _after_ checking for unread data. */ 2392 sk->sk_prot->disconnect(sk, 0); 2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2394 } else if (tcp_close_state(sk)) { 2395 /* We FIN if the application ate all the data before 2396 * zapping the connection. 2397 */ 2398 2399 /* RED-PEN. Formally speaking, we have broken TCP state 2400 * machine. State transitions: 2401 * 2402 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2403 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2404 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2405 * 2406 * are legal only when FIN has been sent (i.e. in window), 2407 * rather than queued out of window. Purists blame. 2408 * 2409 * F.e. "RFC state" is ESTABLISHED, 2410 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2411 * 2412 * The visible declinations are that sometimes 2413 * we enter time-wait state, when it is not required really 2414 * (harmless), do not send active resets, when they are 2415 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2416 * they look as CLOSING or LAST_ACK for Linux) 2417 * Probably, I missed some more holelets. 2418 * --ANK 2419 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2420 * in a single packet! (May consider it later but will 2421 * probably need API support or TCP_CORK SYN-ACK until 2422 * data is written and socket is closed.) 2423 */ 2424 tcp_send_fin(sk); 2425 } 2426 2427 sk_stream_wait_close(sk, timeout); 2428 2429 adjudge_to_death: 2430 state = sk->sk_state; 2431 sock_hold(sk); 2432 sock_orphan(sk); 2433 2434 local_bh_disable(); 2435 bh_lock_sock(sk); 2436 /* remove backlog if any, without releasing ownership. */ 2437 __release_sock(sk); 2438 2439 percpu_counter_inc(sk->sk_prot->orphan_count); 2440 2441 /* Have we already been destroyed by a softirq or backlog? */ 2442 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2443 goto out; 2444 2445 /* This is a (useful) BSD violating of the RFC. There is a 2446 * problem with TCP as specified in that the other end could 2447 * keep a socket open forever with no application left this end. 2448 * We use a 1 minute timeout (about the same as BSD) then kill 2449 * our end. If they send after that then tough - BUT: long enough 2450 * that we won't make the old 4*rto = almost no time - whoops 2451 * reset mistake. 2452 * 2453 * Nope, it was not mistake. It is really desired behaviour 2454 * f.e. on http servers, when such sockets are useless, but 2455 * consume significant resources. Let's do it with special 2456 * linger2 option. --ANK 2457 */ 2458 2459 if (sk->sk_state == TCP_FIN_WAIT2) { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 if (tp->linger2 < 0) { 2462 tcp_set_state(sk, TCP_CLOSE); 2463 tcp_send_active_reset(sk, GFP_ATOMIC); 2464 __NET_INC_STATS(sock_net(sk), 2465 LINUX_MIB_TCPABORTONLINGER); 2466 } else { 2467 const int tmo = tcp_fin_time(sk); 2468 2469 if (tmo > TCP_TIMEWAIT_LEN) { 2470 inet_csk_reset_keepalive_timer(sk, 2471 tmo - TCP_TIMEWAIT_LEN); 2472 } else { 2473 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2474 goto out; 2475 } 2476 } 2477 } 2478 if (sk->sk_state != TCP_CLOSE) { 2479 sk_mem_reclaim(sk); 2480 if (tcp_check_oom(sk, 0)) { 2481 tcp_set_state(sk, TCP_CLOSE); 2482 tcp_send_active_reset(sk, GFP_ATOMIC); 2483 __NET_INC_STATS(sock_net(sk), 2484 LINUX_MIB_TCPABORTONMEMORY); 2485 } else if (!check_net(sock_net(sk))) { 2486 /* Not possible to send reset; just close */ 2487 tcp_set_state(sk, TCP_CLOSE); 2488 } 2489 } 2490 2491 if (sk->sk_state == TCP_CLOSE) { 2492 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2493 /* We could get here with a non-NULL req if the socket is 2494 * aborted (e.g., closed with unread data) before 3WHS 2495 * finishes. 2496 */ 2497 if (req) 2498 reqsk_fastopen_remove(sk, req, false); 2499 inet_csk_destroy_sock(sk); 2500 } 2501 /* Otherwise, socket is reprieved until protocol close. */ 2502 2503 out: 2504 bh_unlock_sock(sk); 2505 local_bh_enable(); 2506 release_sock(sk); 2507 sock_put(sk); 2508 } 2509 EXPORT_SYMBOL(tcp_close); 2510 2511 /* These states need RST on ABORT according to RFC793 */ 2512 2513 static inline bool tcp_need_reset(int state) 2514 { 2515 return (1 << state) & 2516 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2517 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2518 } 2519 2520 static void tcp_rtx_queue_purge(struct sock *sk) 2521 { 2522 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2523 2524 while (p) { 2525 struct sk_buff *skb = rb_to_skb(p); 2526 2527 p = rb_next(p); 2528 /* Since we are deleting whole queue, no need to 2529 * list_del(&skb->tcp_tsorted_anchor) 2530 */ 2531 tcp_rtx_queue_unlink(skb, sk); 2532 sk_wmem_free_skb(sk, skb); 2533 } 2534 } 2535 2536 void tcp_write_queue_purge(struct sock *sk) 2537 { 2538 struct sk_buff *skb; 2539 2540 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2541 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2542 tcp_skb_tsorted_anchor_cleanup(skb); 2543 sk_wmem_free_skb(sk, skb); 2544 } 2545 tcp_rtx_queue_purge(sk); 2546 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2547 sk_mem_reclaim(sk); 2548 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2549 tcp_sk(sk)->packets_out = 0; 2550 inet_csk(sk)->icsk_backoff = 0; 2551 } 2552 2553 int tcp_disconnect(struct sock *sk, int flags) 2554 { 2555 struct inet_sock *inet = inet_sk(sk); 2556 struct inet_connection_sock *icsk = inet_csk(sk); 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 int old_state = sk->sk_state; 2559 2560 if (old_state != TCP_CLOSE) 2561 tcp_set_state(sk, TCP_CLOSE); 2562 2563 /* ABORT function of RFC793 */ 2564 if (old_state == TCP_LISTEN) { 2565 inet_csk_listen_stop(sk); 2566 } else if (unlikely(tp->repair)) { 2567 sk->sk_err = ECONNABORTED; 2568 } else if (tcp_need_reset(old_state) || 2569 (tp->snd_nxt != tp->write_seq && 2570 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2571 /* The last check adjusts for discrepancy of Linux wrt. RFC 2572 * states 2573 */ 2574 tcp_send_active_reset(sk, gfp_any()); 2575 sk->sk_err = ECONNRESET; 2576 } else if (old_state == TCP_SYN_SENT) 2577 sk->sk_err = ECONNRESET; 2578 2579 tcp_clear_xmit_timers(sk); 2580 __skb_queue_purge(&sk->sk_receive_queue); 2581 tp->copied_seq = tp->rcv_nxt; 2582 tp->urg_data = 0; 2583 tcp_write_queue_purge(sk); 2584 tcp_fastopen_active_disable_ofo_check(sk); 2585 skb_rbtree_purge(&tp->out_of_order_queue); 2586 2587 inet->inet_dport = 0; 2588 2589 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2590 inet_reset_saddr(sk); 2591 2592 sk->sk_shutdown = 0; 2593 sock_reset_flag(sk, SOCK_DONE); 2594 tp->srtt_us = 0; 2595 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2596 tp->rcv_rtt_last_tsecr = 0; 2597 tp->write_seq += tp->max_window + 2; 2598 if (tp->write_seq == 0) 2599 tp->write_seq = 1; 2600 icsk->icsk_backoff = 0; 2601 tp->snd_cwnd = 2; 2602 icsk->icsk_probes_out = 0; 2603 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2604 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2605 tp->snd_cwnd = TCP_INIT_CWND; 2606 tp->snd_cwnd_cnt = 0; 2607 tp->window_clamp = 0; 2608 tp->delivered_ce = 0; 2609 tcp_set_ca_state(sk, TCP_CA_Open); 2610 tp->is_sack_reneg = 0; 2611 tcp_clear_retrans(tp); 2612 inet_csk_delack_init(sk); 2613 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2614 * issue in __tcp_select_window() 2615 */ 2616 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2617 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2618 __sk_dst_reset(sk); 2619 dst_release(sk->sk_rx_dst); 2620 sk->sk_rx_dst = NULL; 2621 tcp_saved_syn_free(tp); 2622 tp->compressed_ack = 0; 2623 tp->bytes_sent = 0; 2624 tp->bytes_retrans = 0; 2625 tp->duplicate_sack[0].start_seq = 0; 2626 tp->duplicate_sack[0].end_seq = 0; 2627 tp->dsack_dups = 0; 2628 tp->reord_seen = 0; 2629 tp->retrans_out = 0; 2630 tp->sacked_out = 0; 2631 tp->tlp_high_seq = 0; 2632 tp->last_oow_ack_time = 0; 2633 /* There's a bubble in the pipe until at least the first ACK. */ 2634 tp->app_limited = ~0U; 2635 tp->rack.mstamp = 0; 2636 tp->rack.advanced = 0; 2637 tp->rack.reo_wnd_steps = 1; 2638 tp->rack.last_delivered = 0; 2639 tp->rack.reo_wnd_persist = 0; 2640 tp->rack.dsack_seen = 0; 2641 tp->syn_data_acked = 0; 2642 tp->rx_opt.saw_tstamp = 0; 2643 tp->rx_opt.dsack = 0; 2644 tp->rx_opt.num_sacks = 0; 2645 2646 2647 /* Clean up fastopen related fields */ 2648 tcp_free_fastopen_req(tp); 2649 inet->defer_connect = 0; 2650 2651 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2652 2653 if (sk->sk_frag.page) { 2654 put_page(sk->sk_frag.page); 2655 sk->sk_frag.page = NULL; 2656 sk->sk_frag.offset = 0; 2657 } 2658 2659 sk->sk_error_report(sk); 2660 return 0; 2661 } 2662 EXPORT_SYMBOL(tcp_disconnect); 2663 2664 static inline bool tcp_can_repair_sock(const struct sock *sk) 2665 { 2666 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2667 (sk->sk_state != TCP_LISTEN); 2668 } 2669 2670 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2671 { 2672 struct tcp_repair_window opt; 2673 2674 if (!tp->repair) 2675 return -EPERM; 2676 2677 if (len != sizeof(opt)) 2678 return -EINVAL; 2679 2680 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2681 return -EFAULT; 2682 2683 if (opt.max_window < opt.snd_wnd) 2684 return -EINVAL; 2685 2686 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2687 return -EINVAL; 2688 2689 if (after(opt.rcv_wup, tp->rcv_nxt)) 2690 return -EINVAL; 2691 2692 tp->snd_wl1 = opt.snd_wl1; 2693 tp->snd_wnd = opt.snd_wnd; 2694 tp->max_window = opt.max_window; 2695 2696 tp->rcv_wnd = opt.rcv_wnd; 2697 tp->rcv_wup = opt.rcv_wup; 2698 2699 return 0; 2700 } 2701 2702 static int tcp_repair_options_est(struct sock *sk, 2703 struct tcp_repair_opt __user *optbuf, unsigned int len) 2704 { 2705 struct tcp_sock *tp = tcp_sk(sk); 2706 struct tcp_repair_opt opt; 2707 2708 while (len >= sizeof(opt)) { 2709 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2710 return -EFAULT; 2711 2712 optbuf++; 2713 len -= sizeof(opt); 2714 2715 switch (opt.opt_code) { 2716 case TCPOPT_MSS: 2717 tp->rx_opt.mss_clamp = opt.opt_val; 2718 tcp_mtup_init(sk); 2719 break; 2720 case TCPOPT_WINDOW: 2721 { 2722 u16 snd_wscale = opt.opt_val & 0xFFFF; 2723 u16 rcv_wscale = opt.opt_val >> 16; 2724 2725 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2726 return -EFBIG; 2727 2728 tp->rx_opt.snd_wscale = snd_wscale; 2729 tp->rx_opt.rcv_wscale = rcv_wscale; 2730 tp->rx_opt.wscale_ok = 1; 2731 } 2732 break; 2733 case TCPOPT_SACK_PERM: 2734 if (opt.opt_val != 0) 2735 return -EINVAL; 2736 2737 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2738 break; 2739 case TCPOPT_TIMESTAMP: 2740 if (opt.opt_val != 0) 2741 return -EINVAL; 2742 2743 tp->rx_opt.tstamp_ok = 1; 2744 break; 2745 } 2746 } 2747 2748 return 0; 2749 } 2750 2751 /* 2752 * Socket option code for TCP. 2753 */ 2754 static int do_tcp_setsockopt(struct sock *sk, int level, 2755 int optname, char __user *optval, unsigned int optlen) 2756 { 2757 struct tcp_sock *tp = tcp_sk(sk); 2758 struct inet_connection_sock *icsk = inet_csk(sk); 2759 struct net *net = sock_net(sk); 2760 int val; 2761 int err = 0; 2762 2763 /* These are data/string values, all the others are ints */ 2764 switch (optname) { 2765 case TCP_CONGESTION: { 2766 char name[TCP_CA_NAME_MAX]; 2767 2768 if (optlen < 1) 2769 return -EINVAL; 2770 2771 val = strncpy_from_user(name, optval, 2772 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2773 if (val < 0) 2774 return -EFAULT; 2775 name[val] = 0; 2776 2777 lock_sock(sk); 2778 err = tcp_set_congestion_control(sk, name, true, true); 2779 release_sock(sk); 2780 return err; 2781 } 2782 case TCP_ULP: { 2783 char name[TCP_ULP_NAME_MAX]; 2784 2785 if (optlen < 1) 2786 return -EINVAL; 2787 2788 val = strncpy_from_user(name, optval, 2789 min_t(long, TCP_ULP_NAME_MAX - 1, 2790 optlen)); 2791 if (val < 0) 2792 return -EFAULT; 2793 name[val] = 0; 2794 2795 lock_sock(sk); 2796 err = tcp_set_ulp(sk, name); 2797 release_sock(sk); 2798 return err; 2799 } 2800 case TCP_FASTOPEN_KEY: { 2801 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2802 2803 if (optlen != sizeof(key)) 2804 return -EINVAL; 2805 2806 if (copy_from_user(key, optval, optlen)) 2807 return -EFAULT; 2808 2809 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2810 } 2811 default: 2812 /* fallthru */ 2813 break; 2814 } 2815 2816 if (optlen < sizeof(int)) 2817 return -EINVAL; 2818 2819 if (get_user(val, (int __user *)optval)) 2820 return -EFAULT; 2821 2822 lock_sock(sk); 2823 2824 switch (optname) { 2825 case TCP_MAXSEG: 2826 /* Values greater than interface MTU won't take effect. However 2827 * at the point when this call is done we typically don't yet 2828 * know which interface is going to be used 2829 */ 2830 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2831 err = -EINVAL; 2832 break; 2833 } 2834 tp->rx_opt.user_mss = val; 2835 break; 2836 2837 case TCP_NODELAY: 2838 if (val) { 2839 /* TCP_NODELAY is weaker than TCP_CORK, so that 2840 * this option on corked socket is remembered, but 2841 * it is not activated until cork is cleared. 2842 * 2843 * However, when TCP_NODELAY is set we make 2844 * an explicit push, which overrides even TCP_CORK 2845 * for currently queued segments. 2846 */ 2847 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2848 tcp_push_pending_frames(sk); 2849 } else { 2850 tp->nonagle &= ~TCP_NAGLE_OFF; 2851 } 2852 break; 2853 2854 case TCP_THIN_LINEAR_TIMEOUTS: 2855 if (val < 0 || val > 1) 2856 err = -EINVAL; 2857 else 2858 tp->thin_lto = val; 2859 break; 2860 2861 case TCP_THIN_DUPACK: 2862 if (val < 0 || val > 1) 2863 err = -EINVAL; 2864 break; 2865 2866 case TCP_REPAIR: 2867 if (!tcp_can_repair_sock(sk)) 2868 err = -EPERM; 2869 else if (val == TCP_REPAIR_ON) { 2870 tp->repair = 1; 2871 sk->sk_reuse = SK_FORCE_REUSE; 2872 tp->repair_queue = TCP_NO_QUEUE; 2873 } else if (val == TCP_REPAIR_OFF) { 2874 tp->repair = 0; 2875 sk->sk_reuse = SK_NO_REUSE; 2876 tcp_send_window_probe(sk); 2877 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2878 tp->repair = 0; 2879 sk->sk_reuse = SK_NO_REUSE; 2880 } else 2881 err = -EINVAL; 2882 2883 break; 2884 2885 case TCP_REPAIR_QUEUE: 2886 if (!tp->repair) 2887 err = -EPERM; 2888 else if ((unsigned int)val < TCP_QUEUES_NR) 2889 tp->repair_queue = val; 2890 else 2891 err = -EINVAL; 2892 break; 2893 2894 case TCP_QUEUE_SEQ: 2895 if (sk->sk_state != TCP_CLOSE) 2896 err = -EPERM; 2897 else if (tp->repair_queue == TCP_SEND_QUEUE) 2898 tp->write_seq = val; 2899 else if (tp->repair_queue == TCP_RECV_QUEUE) 2900 tp->rcv_nxt = val; 2901 else 2902 err = -EINVAL; 2903 break; 2904 2905 case TCP_REPAIR_OPTIONS: 2906 if (!tp->repair) 2907 err = -EINVAL; 2908 else if (sk->sk_state == TCP_ESTABLISHED) 2909 err = tcp_repair_options_est(sk, 2910 (struct tcp_repair_opt __user *)optval, 2911 optlen); 2912 else 2913 err = -EPERM; 2914 break; 2915 2916 case TCP_CORK: 2917 /* When set indicates to always queue non-full frames. 2918 * Later the user clears this option and we transmit 2919 * any pending partial frames in the queue. This is 2920 * meant to be used alongside sendfile() to get properly 2921 * filled frames when the user (for example) must write 2922 * out headers with a write() call first and then use 2923 * sendfile to send out the data parts. 2924 * 2925 * TCP_CORK can be set together with TCP_NODELAY and it is 2926 * stronger than TCP_NODELAY. 2927 */ 2928 if (val) { 2929 tp->nonagle |= TCP_NAGLE_CORK; 2930 } else { 2931 tp->nonagle &= ~TCP_NAGLE_CORK; 2932 if (tp->nonagle&TCP_NAGLE_OFF) 2933 tp->nonagle |= TCP_NAGLE_PUSH; 2934 tcp_push_pending_frames(sk); 2935 } 2936 break; 2937 2938 case TCP_KEEPIDLE: 2939 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2940 err = -EINVAL; 2941 else { 2942 tp->keepalive_time = val * HZ; 2943 if (sock_flag(sk, SOCK_KEEPOPEN) && 2944 !((1 << sk->sk_state) & 2945 (TCPF_CLOSE | TCPF_LISTEN))) { 2946 u32 elapsed = keepalive_time_elapsed(tp); 2947 if (tp->keepalive_time > elapsed) 2948 elapsed = tp->keepalive_time - elapsed; 2949 else 2950 elapsed = 0; 2951 inet_csk_reset_keepalive_timer(sk, elapsed); 2952 } 2953 } 2954 break; 2955 case TCP_KEEPINTVL: 2956 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2957 err = -EINVAL; 2958 else 2959 tp->keepalive_intvl = val * HZ; 2960 break; 2961 case TCP_KEEPCNT: 2962 if (val < 1 || val > MAX_TCP_KEEPCNT) 2963 err = -EINVAL; 2964 else 2965 tp->keepalive_probes = val; 2966 break; 2967 case TCP_SYNCNT: 2968 if (val < 1 || val > MAX_TCP_SYNCNT) 2969 err = -EINVAL; 2970 else 2971 icsk->icsk_syn_retries = val; 2972 break; 2973 2974 case TCP_SAVE_SYN: 2975 if (val < 0 || val > 1) 2976 err = -EINVAL; 2977 else 2978 tp->save_syn = val; 2979 break; 2980 2981 case TCP_LINGER2: 2982 if (val < 0) 2983 tp->linger2 = -1; 2984 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2985 tp->linger2 = 0; 2986 else 2987 tp->linger2 = val * HZ; 2988 break; 2989 2990 case TCP_DEFER_ACCEPT: 2991 /* Translate value in seconds to number of retransmits */ 2992 icsk->icsk_accept_queue.rskq_defer_accept = 2993 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2994 TCP_RTO_MAX / HZ); 2995 break; 2996 2997 case TCP_WINDOW_CLAMP: 2998 if (!val) { 2999 if (sk->sk_state != TCP_CLOSE) { 3000 err = -EINVAL; 3001 break; 3002 } 3003 tp->window_clamp = 0; 3004 } else 3005 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3006 SOCK_MIN_RCVBUF / 2 : val; 3007 break; 3008 3009 case TCP_QUICKACK: 3010 if (!val) { 3011 inet_csk_enter_pingpong_mode(sk); 3012 } else { 3013 inet_csk_exit_pingpong_mode(sk); 3014 if ((1 << sk->sk_state) & 3015 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3016 inet_csk_ack_scheduled(sk)) { 3017 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3018 tcp_cleanup_rbuf(sk, 1); 3019 if (!(val & 1)) 3020 inet_csk_enter_pingpong_mode(sk); 3021 } 3022 } 3023 break; 3024 3025 #ifdef CONFIG_TCP_MD5SIG 3026 case TCP_MD5SIG: 3027 case TCP_MD5SIG_EXT: 3028 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3029 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3030 else 3031 err = -EINVAL; 3032 break; 3033 #endif 3034 case TCP_USER_TIMEOUT: 3035 /* Cap the max time in ms TCP will retry or probe the window 3036 * before giving up and aborting (ETIMEDOUT) a connection. 3037 */ 3038 if (val < 0) 3039 err = -EINVAL; 3040 else 3041 icsk->icsk_user_timeout = val; 3042 break; 3043 3044 case TCP_FASTOPEN: 3045 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3046 TCPF_LISTEN))) { 3047 tcp_fastopen_init_key_once(net); 3048 3049 fastopen_queue_tune(sk, val); 3050 } else { 3051 err = -EINVAL; 3052 } 3053 break; 3054 case TCP_FASTOPEN_CONNECT: 3055 if (val > 1 || val < 0) { 3056 err = -EINVAL; 3057 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3058 if (sk->sk_state == TCP_CLOSE) 3059 tp->fastopen_connect = val; 3060 else 3061 err = -EINVAL; 3062 } else { 3063 err = -EOPNOTSUPP; 3064 } 3065 break; 3066 case TCP_FASTOPEN_NO_COOKIE: 3067 if (val > 1 || val < 0) 3068 err = -EINVAL; 3069 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3070 err = -EINVAL; 3071 else 3072 tp->fastopen_no_cookie = val; 3073 break; 3074 case TCP_TIMESTAMP: 3075 if (!tp->repair) 3076 err = -EPERM; 3077 else 3078 tp->tsoffset = val - tcp_time_stamp_raw(); 3079 break; 3080 case TCP_REPAIR_WINDOW: 3081 err = tcp_repair_set_window(tp, optval, optlen); 3082 break; 3083 case TCP_NOTSENT_LOWAT: 3084 tp->notsent_lowat = val; 3085 sk->sk_write_space(sk); 3086 break; 3087 case TCP_INQ: 3088 if (val > 1 || val < 0) 3089 err = -EINVAL; 3090 else 3091 tp->recvmsg_inq = val; 3092 break; 3093 default: 3094 err = -ENOPROTOOPT; 3095 break; 3096 } 3097 3098 release_sock(sk); 3099 return err; 3100 } 3101 3102 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3103 unsigned int optlen) 3104 { 3105 const struct inet_connection_sock *icsk = inet_csk(sk); 3106 3107 if (level != SOL_TCP) 3108 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3109 optval, optlen); 3110 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3111 } 3112 EXPORT_SYMBOL(tcp_setsockopt); 3113 3114 #ifdef CONFIG_COMPAT 3115 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3116 char __user *optval, unsigned int optlen) 3117 { 3118 if (level != SOL_TCP) 3119 return inet_csk_compat_setsockopt(sk, level, optname, 3120 optval, optlen); 3121 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3122 } 3123 EXPORT_SYMBOL(compat_tcp_setsockopt); 3124 #endif 3125 3126 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3127 struct tcp_info *info) 3128 { 3129 u64 stats[__TCP_CHRONO_MAX], total = 0; 3130 enum tcp_chrono i; 3131 3132 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3133 stats[i] = tp->chrono_stat[i - 1]; 3134 if (i == tp->chrono_type) 3135 stats[i] += tcp_jiffies32 - tp->chrono_start; 3136 stats[i] *= USEC_PER_SEC / HZ; 3137 total += stats[i]; 3138 } 3139 3140 info->tcpi_busy_time = total; 3141 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3142 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3143 } 3144 3145 /* Return information about state of tcp endpoint in API format. */ 3146 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3147 { 3148 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3149 const struct inet_connection_sock *icsk = inet_csk(sk); 3150 unsigned long rate; 3151 u32 now; 3152 u64 rate64; 3153 bool slow; 3154 3155 memset(info, 0, sizeof(*info)); 3156 if (sk->sk_type != SOCK_STREAM) 3157 return; 3158 3159 info->tcpi_state = inet_sk_state_load(sk); 3160 3161 /* Report meaningful fields for all TCP states, including listeners */ 3162 rate = READ_ONCE(sk->sk_pacing_rate); 3163 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3164 info->tcpi_pacing_rate = rate64; 3165 3166 rate = READ_ONCE(sk->sk_max_pacing_rate); 3167 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3168 info->tcpi_max_pacing_rate = rate64; 3169 3170 info->tcpi_reordering = tp->reordering; 3171 info->tcpi_snd_cwnd = tp->snd_cwnd; 3172 3173 if (info->tcpi_state == TCP_LISTEN) { 3174 /* listeners aliased fields : 3175 * tcpi_unacked -> Number of children ready for accept() 3176 * tcpi_sacked -> max backlog 3177 */ 3178 info->tcpi_unacked = sk->sk_ack_backlog; 3179 info->tcpi_sacked = sk->sk_max_ack_backlog; 3180 return; 3181 } 3182 3183 slow = lock_sock_fast(sk); 3184 3185 info->tcpi_ca_state = icsk->icsk_ca_state; 3186 info->tcpi_retransmits = icsk->icsk_retransmits; 3187 info->tcpi_probes = icsk->icsk_probes_out; 3188 info->tcpi_backoff = icsk->icsk_backoff; 3189 3190 if (tp->rx_opt.tstamp_ok) 3191 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3192 if (tcp_is_sack(tp)) 3193 info->tcpi_options |= TCPI_OPT_SACK; 3194 if (tp->rx_opt.wscale_ok) { 3195 info->tcpi_options |= TCPI_OPT_WSCALE; 3196 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3197 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3198 } 3199 3200 if (tp->ecn_flags & TCP_ECN_OK) 3201 info->tcpi_options |= TCPI_OPT_ECN; 3202 if (tp->ecn_flags & TCP_ECN_SEEN) 3203 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3204 if (tp->syn_data_acked) 3205 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3206 3207 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3208 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3209 info->tcpi_snd_mss = tp->mss_cache; 3210 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3211 3212 info->tcpi_unacked = tp->packets_out; 3213 info->tcpi_sacked = tp->sacked_out; 3214 3215 info->tcpi_lost = tp->lost_out; 3216 info->tcpi_retrans = tp->retrans_out; 3217 3218 now = tcp_jiffies32; 3219 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3220 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3221 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3222 3223 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3224 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3225 info->tcpi_rtt = tp->srtt_us >> 3; 3226 info->tcpi_rttvar = tp->mdev_us >> 2; 3227 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3228 info->tcpi_advmss = tp->advmss; 3229 3230 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3231 info->tcpi_rcv_space = tp->rcvq_space.space; 3232 3233 info->tcpi_total_retrans = tp->total_retrans; 3234 3235 info->tcpi_bytes_acked = tp->bytes_acked; 3236 info->tcpi_bytes_received = tp->bytes_received; 3237 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3238 tcp_get_info_chrono_stats(tp, info); 3239 3240 info->tcpi_segs_out = tp->segs_out; 3241 info->tcpi_segs_in = tp->segs_in; 3242 3243 info->tcpi_min_rtt = tcp_min_rtt(tp); 3244 info->tcpi_data_segs_in = tp->data_segs_in; 3245 info->tcpi_data_segs_out = tp->data_segs_out; 3246 3247 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3248 rate64 = tcp_compute_delivery_rate(tp); 3249 if (rate64) 3250 info->tcpi_delivery_rate = rate64; 3251 info->tcpi_delivered = tp->delivered; 3252 info->tcpi_delivered_ce = tp->delivered_ce; 3253 info->tcpi_bytes_sent = tp->bytes_sent; 3254 info->tcpi_bytes_retrans = tp->bytes_retrans; 3255 info->tcpi_dsack_dups = tp->dsack_dups; 3256 info->tcpi_reord_seen = tp->reord_seen; 3257 unlock_sock_fast(sk, slow); 3258 } 3259 EXPORT_SYMBOL_GPL(tcp_get_info); 3260 3261 static size_t tcp_opt_stats_get_size(void) 3262 { 3263 return 3264 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3265 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3266 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3267 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3268 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3272 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3273 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3274 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3275 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3276 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3277 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3278 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3279 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3280 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3281 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3282 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3283 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3284 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3285 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3286 0; 3287 } 3288 3289 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3290 { 3291 const struct tcp_sock *tp = tcp_sk(sk); 3292 struct sk_buff *stats; 3293 struct tcp_info info; 3294 unsigned long rate; 3295 u64 rate64; 3296 3297 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3298 if (!stats) 3299 return NULL; 3300 3301 tcp_get_info_chrono_stats(tp, &info); 3302 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3303 info.tcpi_busy_time, TCP_NLA_PAD); 3304 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3305 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3306 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3307 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3308 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3309 tp->data_segs_out, TCP_NLA_PAD); 3310 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3311 tp->total_retrans, TCP_NLA_PAD); 3312 3313 rate = READ_ONCE(sk->sk_pacing_rate); 3314 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3315 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3316 3317 rate64 = tcp_compute_delivery_rate(tp); 3318 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3319 3320 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3321 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3322 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3323 3324 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3325 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3326 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3327 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3328 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3329 3330 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3331 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3332 3333 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3334 TCP_NLA_PAD); 3335 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3336 TCP_NLA_PAD); 3337 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3338 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3339 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3340 3341 return stats; 3342 } 3343 3344 static int do_tcp_getsockopt(struct sock *sk, int level, 3345 int optname, char __user *optval, int __user *optlen) 3346 { 3347 struct inet_connection_sock *icsk = inet_csk(sk); 3348 struct tcp_sock *tp = tcp_sk(sk); 3349 struct net *net = sock_net(sk); 3350 int val, len; 3351 3352 if (get_user(len, optlen)) 3353 return -EFAULT; 3354 3355 len = min_t(unsigned int, len, sizeof(int)); 3356 3357 if (len < 0) 3358 return -EINVAL; 3359 3360 switch (optname) { 3361 case TCP_MAXSEG: 3362 val = tp->mss_cache; 3363 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3364 val = tp->rx_opt.user_mss; 3365 if (tp->repair) 3366 val = tp->rx_opt.mss_clamp; 3367 break; 3368 case TCP_NODELAY: 3369 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3370 break; 3371 case TCP_CORK: 3372 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3373 break; 3374 case TCP_KEEPIDLE: 3375 val = keepalive_time_when(tp) / HZ; 3376 break; 3377 case TCP_KEEPINTVL: 3378 val = keepalive_intvl_when(tp) / HZ; 3379 break; 3380 case TCP_KEEPCNT: 3381 val = keepalive_probes(tp); 3382 break; 3383 case TCP_SYNCNT: 3384 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3385 break; 3386 case TCP_LINGER2: 3387 val = tp->linger2; 3388 if (val >= 0) 3389 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3390 break; 3391 case TCP_DEFER_ACCEPT: 3392 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3393 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3394 break; 3395 case TCP_WINDOW_CLAMP: 3396 val = tp->window_clamp; 3397 break; 3398 case TCP_INFO: { 3399 struct tcp_info info; 3400 3401 if (get_user(len, optlen)) 3402 return -EFAULT; 3403 3404 tcp_get_info(sk, &info); 3405 3406 len = min_t(unsigned int, len, sizeof(info)); 3407 if (put_user(len, optlen)) 3408 return -EFAULT; 3409 if (copy_to_user(optval, &info, len)) 3410 return -EFAULT; 3411 return 0; 3412 } 3413 case TCP_CC_INFO: { 3414 const struct tcp_congestion_ops *ca_ops; 3415 union tcp_cc_info info; 3416 size_t sz = 0; 3417 int attr; 3418 3419 if (get_user(len, optlen)) 3420 return -EFAULT; 3421 3422 ca_ops = icsk->icsk_ca_ops; 3423 if (ca_ops && ca_ops->get_info) 3424 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3425 3426 len = min_t(unsigned int, len, sz); 3427 if (put_user(len, optlen)) 3428 return -EFAULT; 3429 if (copy_to_user(optval, &info, len)) 3430 return -EFAULT; 3431 return 0; 3432 } 3433 case TCP_QUICKACK: 3434 val = !inet_csk_in_pingpong_mode(sk); 3435 break; 3436 3437 case TCP_CONGESTION: 3438 if (get_user(len, optlen)) 3439 return -EFAULT; 3440 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3441 if (put_user(len, optlen)) 3442 return -EFAULT; 3443 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3444 return -EFAULT; 3445 return 0; 3446 3447 case TCP_ULP: 3448 if (get_user(len, optlen)) 3449 return -EFAULT; 3450 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3451 if (!icsk->icsk_ulp_ops) { 3452 if (put_user(0, optlen)) 3453 return -EFAULT; 3454 return 0; 3455 } 3456 if (put_user(len, optlen)) 3457 return -EFAULT; 3458 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3459 return -EFAULT; 3460 return 0; 3461 3462 case TCP_FASTOPEN_KEY: { 3463 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3464 struct tcp_fastopen_context *ctx; 3465 3466 if (get_user(len, optlen)) 3467 return -EFAULT; 3468 3469 rcu_read_lock(); 3470 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3471 if (ctx) 3472 memcpy(key, ctx->key, sizeof(key)); 3473 else 3474 len = 0; 3475 rcu_read_unlock(); 3476 3477 len = min_t(unsigned int, len, sizeof(key)); 3478 if (put_user(len, optlen)) 3479 return -EFAULT; 3480 if (copy_to_user(optval, key, len)) 3481 return -EFAULT; 3482 return 0; 3483 } 3484 case TCP_THIN_LINEAR_TIMEOUTS: 3485 val = tp->thin_lto; 3486 break; 3487 3488 case TCP_THIN_DUPACK: 3489 val = 0; 3490 break; 3491 3492 case TCP_REPAIR: 3493 val = tp->repair; 3494 break; 3495 3496 case TCP_REPAIR_QUEUE: 3497 if (tp->repair) 3498 val = tp->repair_queue; 3499 else 3500 return -EINVAL; 3501 break; 3502 3503 case TCP_REPAIR_WINDOW: { 3504 struct tcp_repair_window opt; 3505 3506 if (get_user(len, optlen)) 3507 return -EFAULT; 3508 3509 if (len != sizeof(opt)) 3510 return -EINVAL; 3511 3512 if (!tp->repair) 3513 return -EPERM; 3514 3515 opt.snd_wl1 = tp->snd_wl1; 3516 opt.snd_wnd = tp->snd_wnd; 3517 opt.max_window = tp->max_window; 3518 opt.rcv_wnd = tp->rcv_wnd; 3519 opt.rcv_wup = tp->rcv_wup; 3520 3521 if (copy_to_user(optval, &opt, len)) 3522 return -EFAULT; 3523 return 0; 3524 } 3525 case TCP_QUEUE_SEQ: 3526 if (tp->repair_queue == TCP_SEND_QUEUE) 3527 val = tp->write_seq; 3528 else if (tp->repair_queue == TCP_RECV_QUEUE) 3529 val = tp->rcv_nxt; 3530 else 3531 return -EINVAL; 3532 break; 3533 3534 case TCP_USER_TIMEOUT: 3535 val = icsk->icsk_user_timeout; 3536 break; 3537 3538 case TCP_FASTOPEN: 3539 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3540 break; 3541 3542 case TCP_FASTOPEN_CONNECT: 3543 val = tp->fastopen_connect; 3544 break; 3545 3546 case TCP_FASTOPEN_NO_COOKIE: 3547 val = tp->fastopen_no_cookie; 3548 break; 3549 3550 case TCP_TIMESTAMP: 3551 val = tcp_time_stamp_raw() + tp->tsoffset; 3552 break; 3553 case TCP_NOTSENT_LOWAT: 3554 val = tp->notsent_lowat; 3555 break; 3556 case TCP_INQ: 3557 val = tp->recvmsg_inq; 3558 break; 3559 case TCP_SAVE_SYN: 3560 val = tp->save_syn; 3561 break; 3562 case TCP_SAVED_SYN: { 3563 if (get_user(len, optlen)) 3564 return -EFAULT; 3565 3566 lock_sock(sk); 3567 if (tp->saved_syn) { 3568 if (len < tp->saved_syn[0]) { 3569 if (put_user(tp->saved_syn[0], optlen)) { 3570 release_sock(sk); 3571 return -EFAULT; 3572 } 3573 release_sock(sk); 3574 return -EINVAL; 3575 } 3576 len = tp->saved_syn[0]; 3577 if (put_user(len, optlen)) { 3578 release_sock(sk); 3579 return -EFAULT; 3580 } 3581 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3582 release_sock(sk); 3583 return -EFAULT; 3584 } 3585 tcp_saved_syn_free(tp); 3586 release_sock(sk); 3587 } else { 3588 release_sock(sk); 3589 len = 0; 3590 if (put_user(len, optlen)) 3591 return -EFAULT; 3592 } 3593 return 0; 3594 } 3595 #ifdef CONFIG_MMU 3596 case TCP_ZEROCOPY_RECEIVE: { 3597 struct tcp_zerocopy_receive zc; 3598 int err; 3599 3600 if (get_user(len, optlen)) 3601 return -EFAULT; 3602 if (len != sizeof(zc)) 3603 return -EINVAL; 3604 if (copy_from_user(&zc, optval, len)) 3605 return -EFAULT; 3606 lock_sock(sk); 3607 err = tcp_zerocopy_receive(sk, &zc); 3608 release_sock(sk); 3609 if (!err && copy_to_user(optval, &zc, len)) 3610 err = -EFAULT; 3611 return err; 3612 } 3613 #endif 3614 default: 3615 return -ENOPROTOOPT; 3616 } 3617 3618 if (put_user(len, optlen)) 3619 return -EFAULT; 3620 if (copy_to_user(optval, &val, len)) 3621 return -EFAULT; 3622 return 0; 3623 } 3624 3625 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3626 int __user *optlen) 3627 { 3628 struct inet_connection_sock *icsk = inet_csk(sk); 3629 3630 if (level != SOL_TCP) 3631 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3632 optval, optlen); 3633 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3634 } 3635 EXPORT_SYMBOL(tcp_getsockopt); 3636 3637 #ifdef CONFIG_COMPAT 3638 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3639 char __user *optval, int __user *optlen) 3640 { 3641 if (level != SOL_TCP) 3642 return inet_csk_compat_getsockopt(sk, level, optname, 3643 optval, optlen); 3644 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3645 } 3646 EXPORT_SYMBOL(compat_tcp_getsockopt); 3647 #endif 3648 3649 #ifdef CONFIG_TCP_MD5SIG 3650 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3651 static DEFINE_MUTEX(tcp_md5sig_mutex); 3652 static bool tcp_md5sig_pool_populated = false; 3653 3654 static void __tcp_alloc_md5sig_pool(void) 3655 { 3656 struct crypto_ahash *hash; 3657 int cpu; 3658 3659 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3660 if (IS_ERR(hash)) 3661 return; 3662 3663 for_each_possible_cpu(cpu) { 3664 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3665 struct ahash_request *req; 3666 3667 if (!scratch) { 3668 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3669 sizeof(struct tcphdr), 3670 GFP_KERNEL, 3671 cpu_to_node(cpu)); 3672 if (!scratch) 3673 return; 3674 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3675 } 3676 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3677 continue; 3678 3679 req = ahash_request_alloc(hash, GFP_KERNEL); 3680 if (!req) 3681 return; 3682 3683 ahash_request_set_callback(req, 0, NULL, NULL); 3684 3685 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3686 } 3687 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3688 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3689 */ 3690 smp_wmb(); 3691 tcp_md5sig_pool_populated = true; 3692 } 3693 3694 bool tcp_alloc_md5sig_pool(void) 3695 { 3696 if (unlikely(!tcp_md5sig_pool_populated)) { 3697 mutex_lock(&tcp_md5sig_mutex); 3698 3699 if (!tcp_md5sig_pool_populated) { 3700 __tcp_alloc_md5sig_pool(); 3701 if (tcp_md5sig_pool_populated) 3702 static_branch_inc(&tcp_md5_needed); 3703 } 3704 3705 mutex_unlock(&tcp_md5sig_mutex); 3706 } 3707 return tcp_md5sig_pool_populated; 3708 } 3709 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3710 3711 3712 /** 3713 * tcp_get_md5sig_pool - get md5sig_pool for this user 3714 * 3715 * We use percpu structure, so if we succeed, we exit with preemption 3716 * and BH disabled, to make sure another thread or softirq handling 3717 * wont try to get same context. 3718 */ 3719 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3720 { 3721 local_bh_disable(); 3722 3723 if (tcp_md5sig_pool_populated) { 3724 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3725 smp_rmb(); 3726 return this_cpu_ptr(&tcp_md5sig_pool); 3727 } 3728 local_bh_enable(); 3729 return NULL; 3730 } 3731 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3732 3733 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3734 const struct sk_buff *skb, unsigned int header_len) 3735 { 3736 struct scatterlist sg; 3737 const struct tcphdr *tp = tcp_hdr(skb); 3738 struct ahash_request *req = hp->md5_req; 3739 unsigned int i; 3740 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3741 skb_headlen(skb) - header_len : 0; 3742 const struct skb_shared_info *shi = skb_shinfo(skb); 3743 struct sk_buff *frag_iter; 3744 3745 sg_init_table(&sg, 1); 3746 3747 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3748 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3749 if (crypto_ahash_update(req)) 3750 return 1; 3751 3752 for (i = 0; i < shi->nr_frags; ++i) { 3753 const struct skb_frag_struct *f = &shi->frags[i]; 3754 unsigned int offset = f->page_offset; 3755 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3756 3757 sg_set_page(&sg, page, skb_frag_size(f), 3758 offset_in_page(offset)); 3759 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3760 if (crypto_ahash_update(req)) 3761 return 1; 3762 } 3763 3764 skb_walk_frags(skb, frag_iter) 3765 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3766 return 1; 3767 3768 return 0; 3769 } 3770 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3771 3772 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3773 { 3774 struct scatterlist sg; 3775 3776 sg_init_one(&sg, key->key, key->keylen); 3777 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3778 return crypto_ahash_update(hp->md5_req); 3779 } 3780 EXPORT_SYMBOL(tcp_md5_hash_key); 3781 3782 #endif 3783 3784 void tcp_done(struct sock *sk) 3785 { 3786 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3787 3788 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3789 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3790 3791 tcp_set_state(sk, TCP_CLOSE); 3792 tcp_clear_xmit_timers(sk); 3793 if (req) 3794 reqsk_fastopen_remove(sk, req, false); 3795 3796 sk->sk_shutdown = SHUTDOWN_MASK; 3797 3798 if (!sock_flag(sk, SOCK_DEAD)) 3799 sk->sk_state_change(sk); 3800 else 3801 inet_csk_destroy_sock(sk); 3802 } 3803 EXPORT_SYMBOL_GPL(tcp_done); 3804 3805 int tcp_abort(struct sock *sk, int err) 3806 { 3807 if (!sk_fullsock(sk)) { 3808 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3809 struct request_sock *req = inet_reqsk(sk); 3810 3811 local_bh_disable(); 3812 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3813 local_bh_enable(); 3814 return 0; 3815 } 3816 return -EOPNOTSUPP; 3817 } 3818 3819 /* Don't race with userspace socket closes such as tcp_close. */ 3820 lock_sock(sk); 3821 3822 if (sk->sk_state == TCP_LISTEN) { 3823 tcp_set_state(sk, TCP_CLOSE); 3824 inet_csk_listen_stop(sk); 3825 } 3826 3827 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3828 local_bh_disable(); 3829 bh_lock_sock(sk); 3830 3831 if (!sock_flag(sk, SOCK_DEAD)) { 3832 sk->sk_err = err; 3833 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3834 smp_wmb(); 3835 sk->sk_error_report(sk); 3836 if (tcp_need_reset(sk->sk_state)) 3837 tcp_send_active_reset(sk, GFP_ATOMIC); 3838 tcp_done(sk); 3839 } 3840 3841 bh_unlock_sock(sk); 3842 local_bh_enable(); 3843 tcp_write_queue_purge(sk); 3844 release_sock(sk); 3845 return 0; 3846 } 3847 EXPORT_SYMBOL_GPL(tcp_abort); 3848 3849 extern struct tcp_congestion_ops tcp_reno; 3850 3851 static __initdata unsigned long thash_entries; 3852 static int __init set_thash_entries(char *str) 3853 { 3854 ssize_t ret; 3855 3856 if (!str) 3857 return 0; 3858 3859 ret = kstrtoul(str, 0, &thash_entries); 3860 if (ret) 3861 return 0; 3862 3863 return 1; 3864 } 3865 __setup("thash_entries=", set_thash_entries); 3866 3867 static void __init tcp_init_mem(void) 3868 { 3869 unsigned long limit = nr_free_buffer_pages() / 16; 3870 3871 limit = max(limit, 128UL); 3872 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3873 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3874 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3875 } 3876 3877 void __init tcp_init(void) 3878 { 3879 int max_rshare, max_wshare, cnt; 3880 unsigned long limit; 3881 unsigned int i; 3882 3883 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3884 FIELD_SIZEOF(struct sk_buff, cb)); 3885 3886 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3887 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3888 inet_hashinfo_init(&tcp_hashinfo); 3889 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3890 thash_entries, 21, /* one slot per 2 MB*/ 3891 0, 64 * 1024); 3892 tcp_hashinfo.bind_bucket_cachep = 3893 kmem_cache_create("tcp_bind_bucket", 3894 sizeof(struct inet_bind_bucket), 0, 3895 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3896 3897 /* Size and allocate the main established and bind bucket 3898 * hash tables. 3899 * 3900 * The methodology is similar to that of the buffer cache. 3901 */ 3902 tcp_hashinfo.ehash = 3903 alloc_large_system_hash("TCP established", 3904 sizeof(struct inet_ehash_bucket), 3905 thash_entries, 3906 17, /* one slot per 128 KB of memory */ 3907 0, 3908 NULL, 3909 &tcp_hashinfo.ehash_mask, 3910 0, 3911 thash_entries ? 0 : 512 * 1024); 3912 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3913 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3914 3915 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3916 panic("TCP: failed to alloc ehash_locks"); 3917 tcp_hashinfo.bhash = 3918 alloc_large_system_hash("TCP bind", 3919 sizeof(struct inet_bind_hashbucket), 3920 tcp_hashinfo.ehash_mask + 1, 3921 17, /* one slot per 128 KB of memory */ 3922 0, 3923 &tcp_hashinfo.bhash_size, 3924 NULL, 3925 0, 3926 64 * 1024); 3927 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3928 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3929 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3930 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3931 } 3932 3933 3934 cnt = tcp_hashinfo.ehash_mask + 1; 3935 sysctl_tcp_max_orphans = cnt / 2; 3936 3937 tcp_init_mem(); 3938 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3939 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3940 max_wshare = min(4UL*1024*1024, limit); 3941 max_rshare = min(6UL*1024*1024, limit); 3942 3943 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3944 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3945 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3946 3947 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3948 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3949 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3950 3951 pr_info("Hash tables configured (established %u bind %u)\n", 3952 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3953 3954 tcp_v4_init(); 3955 tcp_metrics_init(); 3956 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3957 tcp_tasklet_init(); 3958 } 3959