1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 #include <trace/events/tcp.h> 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 int sysctl_tcp_wmem[3] __read_mostly; 293 int sysctl_tcp_rmem[3] __read_mostly; 294 295 EXPORT_SYMBOL(sysctl_tcp_mem); 296 EXPORT_SYMBOL(sysctl_tcp_rmem); 297 EXPORT_SYMBOL(sysctl_tcp_wmem); 298 299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 300 EXPORT_SYMBOL(tcp_memory_allocated); 301 302 #if IS_ENABLED(CONFIG_SMC) 303 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 304 EXPORT_SYMBOL(tcp_have_smc); 305 #endif 306 307 /* 308 * Current number of TCP sockets. 309 */ 310 struct percpu_counter tcp_sockets_allocated; 311 EXPORT_SYMBOL(tcp_sockets_allocated); 312 313 /* 314 * TCP splice context 315 */ 316 struct tcp_splice_state { 317 struct pipe_inode_info *pipe; 318 size_t len; 319 unsigned int flags; 320 }; 321 322 /* 323 * Pressure flag: try to collapse. 324 * Technical note: it is used by multiple contexts non atomically. 325 * All the __sk_mem_schedule() is of this nature: accounting 326 * is strict, actions are advisory and have some latency. 327 */ 328 unsigned long tcp_memory_pressure __read_mostly; 329 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 330 331 void tcp_enter_memory_pressure(struct sock *sk) 332 { 333 unsigned long val; 334 335 if (tcp_memory_pressure) 336 return; 337 val = jiffies; 338 339 if (!val) 340 val--; 341 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 342 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 343 } 344 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 345 346 void tcp_leave_memory_pressure(struct sock *sk) 347 { 348 unsigned long val; 349 350 if (!tcp_memory_pressure) 351 return; 352 val = xchg(&tcp_memory_pressure, 0); 353 if (val) 354 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 355 jiffies_to_msecs(jiffies - val)); 356 } 357 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 358 359 /* Convert seconds to retransmits based on initial and max timeout */ 360 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 361 { 362 u8 res = 0; 363 364 if (seconds > 0) { 365 int period = timeout; 366 367 res = 1; 368 while (seconds > period && res < 255) { 369 res++; 370 timeout <<= 1; 371 if (timeout > rto_max) 372 timeout = rto_max; 373 period += timeout; 374 } 375 } 376 return res; 377 } 378 379 /* Convert retransmits to seconds based on initial and max timeout */ 380 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 381 { 382 int period = 0; 383 384 if (retrans > 0) { 385 period = timeout; 386 while (--retrans) { 387 timeout <<= 1; 388 if (timeout > rto_max) 389 timeout = rto_max; 390 period += timeout; 391 } 392 } 393 return period; 394 } 395 396 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 397 { 398 u32 rate = READ_ONCE(tp->rate_delivered); 399 u32 intv = READ_ONCE(tp->rate_interval_us); 400 u64 rate64 = 0; 401 402 if (rate && intv) { 403 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 404 do_div(rate64, intv); 405 } 406 return rate64; 407 } 408 409 /* Address-family independent initialization for a tcp_sock. 410 * 411 * NOTE: A lot of things set to zero explicitly by call to 412 * sk_alloc() so need not be done here. 413 */ 414 void tcp_init_sock(struct sock *sk) 415 { 416 struct inet_connection_sock *icsk = inet_csk(sk); 417 struct tcp_sock *tp = tcp_sk(sk); 418 419 tp->out_of_order_queue = RB_ROOT; 420 sk->tcp_rtx_queue = RB_ROOT; 421 tcp_init_xmit_timers(sk); 422 INIT_LIST_HEAD(&tp->tsq_node); 423 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 424 425 icsk->icsk_rto = TCP_TIMEOUT_INIT; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tp->snd_cwnd = TCP_INIT_CWND; 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 451 sk->sk_state = TCP_CLOSE; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 459 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 460 461 sk_sockets_allocated_inc(sk); 462 } 463 EXPORT_SYMBOL(tcp_init_sock); 464 465 void tcp_init_transfer(struct sock *sk, int bpf_op) 466 { 467 struct inet_connection_sock *icsk = inet_csk(sk); 468 469 tcp_mtup_init(sk); 470 icsk->icsk_af_ops->rebuild_header(sk); 471 tcp_init_metrics(sk); 472 tcp_call_bpf(sk, bpf_op); 473 tcp_init_congestion_control(sk); 474 tcp_init_buffer_space(sk); 475 } 476 477 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 478 { 479 struct sk_buff *skb = tcp_write_queue_tail(sk); 480 481 if (tsflags && skb) { 482 struct skb_shared_info *shinfo = skb_shinfo(skb); 483 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 484 485 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 486 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 487 tcb->txstamp_ack = 1; 488 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 489 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 490 } 491 } 492 493 /* 494 * Wait for a TCP event. 495 * 496 * Note that we don't need to lock the socket, as the upper poll layers 497 * take care of normal races (between the test and the event) and we don't 498 * go look at any of the socket buffers directly. 499 */ 500 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 501 { 502 unsigned int mask; 503 struct sock *sk = sock->sk; 504 const struct tcp_sock *tp = tcp_sk(sk); 505 int state; 506 507 sock_rps_record_flow(sk); 508 509 sock_poll_wait(file, sk_sleep(sk), wait); 510 511 state = sk_state_load(sk); 512 if (state == TCP_LISTEN) 513 return inet_csk_listen_poll(sk); 514 515 /* Socket is not locked. We are protected from async events 516 * by poll logic and correct handling of state changes 517 * made by other threads is impossible in any case. 518 */ 519 520 mask = 0; 521 522 /* 523 * POLLHUP is certainly not done right. But poll() doesn't 524 * have a notion of HUP in just one direction, and for a 525 * socket the read side is more interesting. 526 * 527 * Some poll() documentation says that POLLHUP is incompatible 528 * with the POLLOUT/POLLWR flags, so somebody should check this 529 * all. But careful, it tends to be safer to return too many 530 * bits than too few, and you can easily break real applications 531 * if you don't tell them that something has hung up! 532 * 533 * Check-me. 534 * 535 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 536 * our fs/select.c). It means that after we received EOF, 537 * poll always returns immediately, making impossible poll() on write() 538 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 539 * if and only if shutdown has been made in both directions. 540 * Actually, it is interesting to look how Solaris and DUX 541 * solve this dilemma. I would prefer, if POLLHUP were maskable, 542 * then we could set it on SND_SHUTDOWN. BTW examples given 543 * in Stevens' books assume exactly this behaviour, it explains 544 * why POLLHUP is incompatible with POLLOUT. --ANK 545 * 546 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 547 * blocking on fresh not-connected or disconnected socket. --ANK 548 */ 549 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 550 mask |= POLLHUP; 551 if (sk->sk_shutdown & RCV_SHUTDOWN) 552 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 553 554 /* Connected or passive Fast Open socket? */ 555 if (state != TCP_SYN_SENT && 556 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 557 int target = sock_rcvlowat(sk, 0, INT_MAX); 558 559 if (tp->urg_seq == tp->copied_seq && 560 !sock_flag(sk, SOCK_URGINLINE) && 561 tp->urg_data) 562 target++; 563 564 if (tp->rcv_nxt - tp->copied_seq >= target) 565 mask |= POLLIN | POLLRDNORM; 566 567 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 568 if (sk_stream_is_writeable(sk)) { 569 mask |= POLLOUT | POLLWRNORM; 570 } else { /* send SIGIO later */ 571 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 572 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 573 574 /* Race breaker. If space is freed after 575 * wspace test but before the flags are set, 576 * IO signal will be lost. Memory barrier 577 * pairs with the input side. 578 */ 579 smp_mb__after_atomic(); 580 if (sk_stream_is_writeable(sk)) 581 mask |= POLLOUT | POLLWRNORM; 582 } 583 } else 584 mask |= POLLOUT | POLLWRNORM; 585 586 if (tp->urg_data & TCP_URG_VALID) 587 mask |= POLLPRI; 588 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 589 /* Active TCP fastopen socket with defer_connect 590 * Return POLLOUT so application can call write() 591 * in order for kernel to generate SYN+data 592 */ 593 mask |= POLLOUT | POLLWRNORM; 594 } 595 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 596 smp_rmb(); 597 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 598 mask |= POLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 621 break; 622 case SIOCOUTQ: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = tp->write_seq - tp->snd_una; 630 break; 631 case SIOCOUTQNSD: 632 if (sk->sk_state == TCP_LISTEN) 633 return -EINVAL; 634 635 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 636 answ = 0; 637 else 638 answ = tp->write_seq - tp->snd_nxt; 639 break; 640 default: 641 return -ENOIOCTLCMD; 642 } 643 644 return put_user(answ, (int __user *)arg); 645 } 646 EXPORT_SYMBOL(tcp_ioctl); 647 648 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 649 { 650 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 651 tp->pushed_seq = tp->write_seq; 652 } 653 654 static inline bool forced_push(const struct tcp_sock *tp) 655 { 656 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 657 } 658 659 static void skb_entail(struct sock *sk, struct sk_buff *skb) 660 { 661 struct tcp_sock *tp = tcp_sk(sk); 662 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 663 664 skb->csum = 0; 665 tcb->seq = tcb->end_seq = tp->write_seq; 666 tcb->tcp_flags = TCPHDR_ACK; 667 tcb->sacked = 0; 668 __skb_header_release(skb); 669 tcp_add_write_queue_tail(sk, skb); 670 sk->sk_wmem_queued += skb->truesize; 671 sk_mem_charge(sk, skb->truesize); 672 if (tp->nonagle & TCP_NAGLE_PUSH) 673 tp->nonagle &= ~TCP_NAGLE_PUSH; 674 675 tcp_slow_start_after_idle_check(sk); 676 } 677 678 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 679 { 680 if (flags & MSG_OOB) 681 tp->snd_up = tp->write_seq; 682 } 683 684 /* If a not yet filled skb is pushed, do not send it if 685 * we have data packets in Qdisc or NIC queues : 686 * Because TX completion will happen shortly, it gives a chance 687 * to coalesce future sendmsg() payload into this skb, without 688 * need for a timer, and with no latency trade off. 689 * As packets containing data payload have a bigger truesize 690 * than pure acks (dataless) packets, the last checks prevent 691 * autocorking if we only have an ACK in Qdisc/NIC queues, 692 * or if TX completion was delayed after we processed ACK packet. 693 */ 694 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 695 int size_goal) 696 { 697 return skb->len < size_goal && 698 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 699 skb != tcp_write_queue_head(sk) && 700 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 701 } 702 703 static void tcp_push(struct sock *sk, int flags, int mss_now, 704 int nonagle, int size_goal) 705 { 706 struct tcp_sock *tp = tcp_sk(sk); 707 struct sk_buff *skb; 708 709 skb = tcp_write_queue_tail(sk); 710 if (!skb) 711 return; 712 if (!(flags & MSG_MORE) || forced_push(tp)) 713 tcp_mark_push(tp, skb); 714 715 tcp_mark_urg(tp, flags); 716 717 if (tcp_should_autocork(sk, skb, size_goal)) { 718 719 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 720 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 722 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 723 } 724 /* It is possible TX completion already happened 725 * before we set TSQ_THROTTLED. 726 */ 727 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 728 return; 729 } 730 731 if (flags & MSG_MORE) 732 nonagle = TCP_NAGLE_CORK; 733 734 __tcp_push_pending_frames(sk, mss_now, nonagle); 735 } 736 737 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 738 unsigned int offset, size_t len) 739 { 740 struct tcp_splice_state *tss = rd_desc->arg.data; 741 int ret; 742 743 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 744 min(rd_desc->count, len), tss->flags); 745 if (ret > 0) 746 rd_desc->count -= ret; 747 return ret; 748 } 749 750 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 751 { 752 /* Store TCP splice context information in read_descriptor_t. */ 753 read_descriptor_t rd_desc = { 754 .arg.data = tss, 755 .count = tss->len, 756 }; 757 758 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 759 } 760 761 /** 762 * tcp_splice_read - splice data from TCP socket to a pipe 763 * @sock: socket to splice from 764 * @ppos: position (not valid) 765 * @pipe: pipe to splice to 766 * @len: number of bytes to splice 767 * @flags: splice modifier flags 768 * 769 * Description: 770 * Will read pages from given socket and fill them into a pipe. 771 * 772 **/ 773 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 774 struct pipe_inode_info *pipe, size_t len, 775 unsigned int flags) 776 { 777 struct sock *sk = sock->sk; 778 struct tcp_splice_state tss = { 779 .pipe = pipe, 780 .len = len, 781 .flags = flags, 782 }; 783 long timeo; 784 ssize_t spliced; 785 int ret; 786 787 sock_rps_record_flow(sk); 788 /* 789 * We can't seek on a socket input 790 */ 791 if (unlikely(*ppos)) 792 return -ESPIPE; 793 794 ret = spliced = 0; 795 796 lock_sock(sk); 797 798 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 799 while (tss.len) { 800 ret = __tcp_splice_read(sk, &tss); 801 if (ret < 0) 802 break; 803 else if (!ret) { 804 if (spliced) 805 break; 806 if (sock_flag(sk, SOCK_DONE)) 807 break; 808 if (sk->sk_err) { 809 ret = sock_error(sk); 810 break; 811 } 812 if (sk->sk_shutdown & RCV_SHUTDOWN) 813 break; 814 if (sk->sk_state == TCP_CLOSE) { 815 /* 816 * This occurs when user tries to read 817 * from never connected socket. 818 */ 819 if (!sock_flag(sk, SOCK_DONE)) 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 /* The TCP header must be at least 32-bit aligned. */ 869 size = ALIGN(size, 4); 870 871 if (unlikely(tcp_under_memory_pressure(sk))) 872 sk_mem_reclaim_partial(sk); 873 874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 875 if (likely(skb)) { 876 bool mem_scheduled; 877 878 if (force_schedule) { 879 mem_scheduled = true; 880 sk_forced_mem_schedule(sk, skb->truesize); 881 } else { 882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 883 } 884 if (likely(mem_scheduled)) { 885 skb_reserve(skb, sk->sk_prot->max_header); 886 /* 887 * Make sure that we have exactly size bytes 888 * available to the caller, no more, no less. 889 */ 890 skb->reserved_tailroom = skb->end - skb->tail - size; 891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 892 return skb; 893 } 894 __kfree_skb(skb); 895 } else { 896 sk->sk_prot->enter_memory_pressure(sk); 897 sk_stream_moderate_sndbuf(sk); 898 } 899 return NULL; 900 } 901 902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 903 int large_allowed) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 u32 new_size_goal, size_goal; 907 908 if (!large_allowed || !sk_can_gso(sk)) 909 return mss_now; 910 911 /* Note : tcp_tso_autosize() will eventually split this later */ 912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 914 915 /* We try hard to avoid divides here */ 916 size_goal = tp->gso_segs * mss_now; 917 if (unlikely(new_size_goal < size_goal || 918 new_size_goal >= size_goal + mss_now)) { 919 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 920 sk->sk_gso_max_segs); 921 size_goal = tp->gso_segs * mss_now; 922 } 923 924 return max(size_goal, mss_now); 925 } 926 927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 928 { 929 int mss_now; 930 931 mss_now = tcp_current_mss(sk); 932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 933 934 return mss_now; 935 } 936 937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 938 size_t size, int flags) 939 { 940 struct tcp_sock *tp = tcp_sk(sk); 941 int mss_now, size_goal; 942 int err; 943 ssize_t copied; 944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 945 946 /* Wait for a connection to finish. One exception is TCP Fast Open 947 * (passive side) where data is allowed to be sent before a connection 948 * is fully established. 949 */ 950 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 951 !tcp_passive_fastopen(sk)) { 952 err = sk_stream_wait_connect(sk, &timeo); 953 if (err != 0) 954 goto out_err; 955 } 956 957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 958 959 mss_now = tcp_send_mss(sk, &size_goal, flags); 960 copied = 0; 961 962 err = -EPIPE; 963 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 964 goto out_err; 965 966 while (size > 0) { 967 struct sk_buff *skb = tcp_write_queue_tail(sk); 968 int copy, i; 969 bool can_coalesce; 970 971 if (!skb || (copy = size_goal - skb->len) <= 0 || 972 !tcp_skb_can_collapse_to(skb)) { 973 new_segment: 974 if (!sk_stream_memory_free(sk)) 975 goto wait_for_sndbuf; 976 977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 978 tcp_rtx_and_write_queues_empty(sk)); 979 if (!skb) 980 goto wait_for_memory; 981 982 skb_entail(sk, skb); 983 copy = size_goal; 984 } 985 986 if (copy > size) 987 copy = size; 988 989 i = skb_shinfo(skb)->nr_frags; 990 can_coalesce = skb_can_coalesce(skb, i, page, offset); 991 if (!can_coalesce && i >= sysctl_max_skb_frags) { 992 tcp_mark_push(tp, skb); 993 goto new_segment; 994 } 995 if (!sk_wmem_schedule(sk, copy)) 996 goto wait_for_memory; 997 998 if (can_coalesce) { 999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1000 } else { 1001 get_page(page); 1002 skb_fill_page_desc(skb, i, page, offset, copy); 1003 } 1004 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1005 1006 skb->len += copy; 1007 skb->data_len += copy; 1008 skb->truesize += copy; 1009 sk->sk_wmem_queued += copy; 1010 sk_mem_charge(sk, copy); 1011 skb->ip_summed = CHECKSUM_PARTIAL; 1012 tp->write_seq += copy; 1013 TCP_SKB_CB(skb)->end_seq += copy; 1014 tcp_skb_pcount_set(skb, 0); 1015 1016 if (!copied) 1017 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1018 1019 copied += copy; 1020 offset += copy; 1021 size -= copy; 1022 if (!size) 1023 goto out; 1024 1025 if (skb->len < size_goal || (flags & MSG_OOB)) 1026 continue; 1027 1028 if (forced_push(tp)) { 1029 tcp_mark_push(tp, skb); 1030 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1031 } else if (skb == tcp_send_head(sk)) 1032 tcp_push_one(sk, mss_now); 1033 continue; 1034 1035 wait_for_sndbuf: 1036 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1037 wait_for_memory: 1038 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1039 TCP_NAGLE_PUSH, size_goal); 1040 1041 err = sk_stream_wait_memory(sk, &timeo); 1042 if (err != 0) 1043 goto do_error; 1044 1045 mss_now = tcp_send_mss(sk, &size_goal, flags); 1046 } 1047 1048 out: 1049 if (copied) { 1050 tcp_tx_timestamp(sk, sk->sk_tsflags); 1051 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1052 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1053 } 1054 return copied; 1055 1056 do_error: 1057 if (copied) 1058 goto out; 1059 out_err: 1060 /* make sure we wake any epoll edge trigger waiter */ 1061 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1062 err == -EAGAIN)) { 1063 sk->sk_write_space(sk); 1064 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1065 } 1066 return sk_stream_error(sk, flags, err); 1067 } 1068 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1069 1070 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1071 size_t size, int flags) 1072 { 1073 if (!(sk->sk_route_caps & NETIF_F_SG) || 1074 !sk_check_csum_caps(sk)) 1075 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1076 1077 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1078 1079 return do_tcp_sendpages(sk, page, offset, size, flags); 1080 } 1081 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1082 1083 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1084 size_t size, int flags) 1085 { 1086 int ret; 1087 1088 lock_sock(sk); 1089 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1090 release_sock(sk); 1091 1092 return ret; 1093 } 1094 EXPORT_SYMBOL(tcp_sendpage); 1095 1096 /* Do not bother using a page frag for very small frames. 1097 * But use this heuristic only for the first skb in write queue. 1098 * 1099 * Having no payload in skb->head allows better SACK shifting 1100 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1101 * write queue has less skbs. 1102 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1103 * This also speeds up tso_fragment(), since it wont fallback 1104 * to tcp_fragment(). 1105 */ 1106 static int linear_payload_sz(bool first_skb) 1107 { 1108 if (first_skb) 1109 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1110 return 0; 1111 } 1112 1113 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1114 { 1115 const struct tcp_sock *tp = tcp_sk(sk); 1116 int tmp = tp->mss_cache; 1117 1118 if (sg) { 1119 if (sk_can_gso(sk)) { 1120 tmp = linear_payload_sz(first_skb); 1121 } else { 1122 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1123 1124 if (tmp >= pgbreak && 1125 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1126 tmp = pgbreak; 1127 } 1128 } 1129 1130 return tmp; 1131 } 1132 1133 void tcp_free_fastopen_req(struct tcp_sock *tp) 1134 { 1135 if (tp->fastopen_req) { 1136 kfree(tp->fastopen_req); 1137 tp->fastopen_req = NULL; 1138 } 1139 } 1140 1141 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1142 int *copied, size_t size) 1143 { 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 struct inet_sock *inet = inet_sk(sk); 1146 struct sockaddr *uaddr = msg->msg_name; 1147 int err, flags; 1148 1149 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1150 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1151 uaddr->sa_family == AF_UNSPEC)) 1152 return -EOPNOTSUPP; 1153 if (tp->fastopen_req) 1154 return -EALREADY; /* Another Fast Open is in progress */ 1155 1156 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1157 sk->sk_allocation); 1158 if (unlikely(!tp->fastopen_req)) 1159 return -ENOBUFS; 1160 tp->fastopen_req->data = msg; 1161 tp->fastopen_req->size = size; 1162 1163 if (inet->defer_connect) { 1164 err = tcp_connect(sk); 1165 /* Same failure procedure as in tcp_v4/6_connect */ 1166 if (err) { 1167 tcp_set_state(sk, TCP_CLOSE); 1168 inet->inet_dport = 0; 1169 sk->sk_route_caps = 0; 1170 } 1171 } 1172 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1173 err = __inet_stream_connect(sk->sk_socket, uaddr, 1174 msg->msg_namelen, flags, 1); 1175 /* fastopen_req could already be freed in __inet_stream_connect 1176 * if the connection times out or gets rst 1177 */ 1178 if (tp->fastopen_req) { 1179 *copied = tp->fastopen_req->copied; 1180 tcp_free_fastopen_req(tp); 1181 inet->defer_connect = 0; 1182 } 1183 return err; 1184 } 1185 1186 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1187 { 1188 struct tcp_sock *tp = tcp_sk(sk); 1189 struct ubuf_info *uarg = NULL; 1190 struct sk_buff *skb; 1191 struct sockcm_cookie sockc; 1192 int flags, err, copied = 0; 1193 int mss_now = 0, size_goal, copied_syn = 0; 1194 bool process_backlog = false; 1195 bool sg; 1196 long timeo; 1197 1198 flags = msg->msg_flags; 1199 1200 if (flags & MSG_ZEROCOPY && size) { 1201 if (sk->sk_state != TCP_ESTABLISHED) { 1202 err = -EINVAL; 1203 goto out_err; 1204 } 1205 1206 skb = tcp_write_queue_tail(sk); 1207 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1208 if (!uarg) { 1209 err = -ENOBUFS; 1210 goto out_err; 1211 } 1212 1213 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG)) 1214 uarg->zerocopy = 0; 1215 } 1216 1217 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1218 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1219 if (err == -EINPROGRESS && copied_syn > 0) 1220 goto out; 1221 else if (err) 1222 goto out_err; 1223 } 1224 1225 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1226 1227 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1228 1229 /* Wait for a connection to finish. One exception is TCP Fast Open 1230 * (passive side) where data is allowed to be sent before a connection 1231 * is fully established. 1232 */ 1233 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1234 !tcp_passive_fastopen(sk)) { 1235 err = sk_stream_wait_connect(sk, &timeo); 1236 if (err != 0) 1237 goto do_error; 1238 } 1239 1240 if (unlikely(tp->repair)) { 1241 if (tp->repair_queue == TCP_RECV_QUEUE) { 1242 copied = tcp_send_rcvq(sk, msg, size); 1243 goto out_nopush; 1244 } 1245 1246 err = -EINVAL; 1247 if (tp->repair_queue == TCP_NO_QUEUE) 1248 goto out_err; 1249 1250 /* 'common' sending to sendq */ 1251 } 1252 1253 sockc.tsflags = sk->sk_tsflags; 1254 if (msg->msg_controllen) { 1255 err = sock_cmsg_send(sk, msg, &sockc); 1256 if (unlikely(err)) { 1257 err = -EINVAL; 1258 goto out_err; 1259 } 1260 } 1261 1262 /* This should be in poll */ 1263 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1264 1265 /* Ok commence sending. */ 1266 copied = 0; 1267 1268 restart: 1269 mss_now = tcp_send_mss(sk, &size_goal, flags); 1270 1271 err = -EPIPE; 1272 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1273 goto do_error; 1274 1275 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1276 1277 while (msg_data_left(msg)) { 1278 int copy = 0; 1279 int max = size_goal; 1280 1281 skb = tcp_write_queue_tail(sk); 1282 if (skb) { 1283 if (skb->ip_summed == CHECKSUM_NONE) 1284 max = mss_now; 1285 copy = max - skb->len; 1286 } 1287 1288 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1289 bool first_skb; 1290 1291 new_segment: 1292 /* Allocate new segment. If the interface is SG, 1293 * allocate skb fitting to single page. 1294 */ 1295 if (!sk_stream_memory_free(sk)) 1296 goto wait_for_sndbuf; 1297 1298 if (process_backlog && sk_flush_backlog(sk)) { 1299 process_backlog = false; 1300 goto restart; 1301 } 1302 first_skb = tcp_rtx_and_write_queues_empty(sk); 1303 skb = sk_stream_alloc_skb(sk, 1304 select_size(sk, sg, first_skb), 1305 sk->sk_allocation, 1306 first_skb); 1307 if (!skb) 1308 goto wait_for_memory; 1309 1310 process_backlog = true; 1311 /* 1312 * Check whether we can use HW checksum. 1313 */ 1314 if (sk_check_csum_caps(sk)) 1315 skb->ip_summed = CHECKSUM_PARTIAL; 1316 1317 skb_entail(sk, skb); 1318 copy = size_goal; 1319 max = size_goal; 1320 1321 /* All packets are restored as if they have 1322 * already been sent. skb_mstamp isn't set to 1323 * avoid wrong rtt estimation. 1324 */ 1325 if (tp->repair) 1326 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1327 } 1328 1329 /* Try to append data to the end of skb. */ 1330 if (copy > msg_data_left(msg)) 1331 copy = msg_data_left(msg); 1332 1333 /* Where to copy to? */ 1334 if (skb_availroom(skb) > 0) { 1335 /* We have some space in skb head. Superb! */ 1336 copy = min_t(int, copy, skb_availroom(skb)); 1337 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1338 if (err) 1339 goto do_fault; 1340 } else if (!uarg || !uarg->zerocopy) { 1341 bool merge = true; 1342 int i = skb_shinfo(skb)->nr_frags; 1343 struct page_frag *pfrag = sk_page_frag(sk); 1344 1345 if (!sk_page_frag_refill(sk, pfrag)) 1346 goto wait_for_memory; 1347 1348 if (!skb_can_coalesce(skb, i, pfrag->page, 1349 pfrag->offset)) { 1350 if (i >= sysctl_max_skb_frags || !sg) { 1351 tcp_mark_push(tp, skb); 1352 goto new_segment; 1353 } 1354 merge = false; 1355 } 1356 1357 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1358 1359 if (!sk_wmem_schedule(sk, copy)) 1360 goto wait_for_memory; 1361 1362 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1363 pfrag->page, 1364 pfrag->offset, 1365 copy); 1366 if (err) 1367 goto do_error; 1368 1369 /* Update the skb. */ 1370 if (merge) { 1371 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1372 } else { 1373 skb_fill_page_desc(skb, i, pfrag->page, 1374 pfrag->offset, copy); 1375 page_ref_inc(pfrag->page); 1376 } 1377 pfrag->offset += copy; 1378 } else { 1379 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1380 if (err == -EMSGSIZE || err == -EEXIST) 1381 goto new_segment; 1382 if (err < 0) 1383 goto do_error; 1384 copy = err; 1385 } 1386 1387 if (!copied) 1388 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1389 1390 tp->write_seq += copy; 1391 TCP_SKB_CB(skb)->end_seq += copy; 1392 tcp_skb_pcount_set(skb, 0); 1393 1394 copied += copy; 1395 if (!msg_data_left(msg)) { 1396 if (unlikely(flags & MSG_EOR)) 1397 TCP_SKB_CB(skb)->eor = 1; 1398 goto out; 1399 } 1400 1401 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1402 continue; 1403 1404 if (forced_push(tp)) { 1405 tcp_mark_push(tp, skb); 1406 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1407 } else if (skb == tcp_send_head(sk)) 1408 tcp_push_one(sk, mss_now); 1409 continue; 1410 1411 wait_for_sndbuf: 1412 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1413 wait_for_memory: 1414 if (copied) 1415 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1416 TCP_NAGLE_PUSH, size_goal); 1417 1418 err = sk_stream_wait_memory(sk, &timeo); 1419 if (err != 0) 1420 goto do_error; 1421 1422 mss_now = tcp_send_mss(sk, &size_goal, flags); 1423 } 1424 1425 out: 1426 if (copied) { 1427 tcp_tx_timestamp(sk, sockc.tsflags); 1428 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1429 } 1430 out_nopush: 1431 sock_zerocopy_put(uarg); 1432 return copied + copied_syn; 1433 1434 do_fault: 1435 if (!skb->len) { 1436 tcp_unlink_write_queue(skb, sk); 1437 /* It is the one place in all of TCP, except connection 1438 * reset, where we can be unlinking the send_head. 1439 */ 1440 tcp_check_send_head(sk, skb); 1441 sk_wmem_free_skb(sk, skb); 1442 } 1443 1444 do_error: 1445 if (copied + copied_syn) 1446 goto out; 1447 out_err: 1448 sock_zerocopy_put_abort(uarg); 1449 err = sk_stream_error(sk, flags, err); 1450 /* make sure we wake any epoll edge trigger waiter */ 1451 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1452 err == -EAGAIN)) { 1453 sk->sk_write_space(sk); 1454 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1455 } 1456 return err; 1457 } 1458 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1459 1460 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1461 { 1462 int ret; 1463 1464 lock_sock(sk); 1465 ret = tcp_sendmsg_locked(sk, msg, size); 1466 release_sock(sk); 1467 1468 return ret; 1469 } 1470 EXPORT_SYMBOL(tcp_sendmsg); 1471 1472 /* 1473 * Handle reading urgent data. BSD has very simple semantics for 1474 * this, no blocking and very strange errors 8) 1475 */ 1476 1477 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1478 { 1479 struct tcp_sock *tp = tcp_sk(sk); 1480 1481 /* No URG data to read. */ 1482 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1483 tp->urg_data == TCP_URG_READ) 1484 return -EINVAL; /* Yes this is right ! */ 1485 1486 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1487 return -ENOTCONN; 1488 1489 if (tp->urg_data & TCP_URG_VALID) { 1490 int err = 0; 1491 char c = tp->urg_data; 1492 1493 if (!(flags & MSG_PEEK)) 1494 tp->urg_data = TCP_URG_READ; 1495 1496 /* Read urgent data. */ 1497 msg->msg_flags |= MSG_OOB; 1498 1499 if (len > 0) { 1500 if (!(flags & MSG_TRUNC)) 1501 err = memcpy_to_msg(msg, &c, 1); 1502 len = 1; 1503 } else 1504 msg->msg_flags |= MSG_TRUNC; 1505 1506 return err ? -EFAULT : len; 1507 } 1508 1509 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1510 return 0; 1511 1512 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1513 * the available implementations agree in this case: 1514 * this call should never block, independent of the 1515 * blocking state of the socket. 1516 * Mike <pall@rz.uni-karlsruhe.de> 1517 */ 1518 return -EAGAIN; 1519 } 1520 1521 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1522 { 1523 struct sk_buff *skb; 1524 int copied = 0, err = 0; 1525 1526 /* XXX -- need to support SO_PEEK_OFF */ 1527 1528 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1530 if (err) 1531 return err; 1532 copied += skb->len; 1533 } 1534 1535 skb_queue_walk(&sk->sk_write_queue, skb) { 1536 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1537 if (err) 1538 break; 1539 1540 copied += skb->len; 1541 } 1542 1543 return err ?: copied; 1544 } 1545 1546 /* Clean up the receive buffer for full frames taken by the user, 1547 * then send an ACK if necessary. COPIED is the number of bytes 1548 * tcp_recvmsg has given to the user so far, it speeds up the 1549 * calculation of whether or not we must ACK for the sake of 1550 * a window update. 1551 */ 1552 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1553 { 1554 struct tcp_sock *tp = tcp_sk(sk); 1555 bool time_to_ack = false; 1556 1557 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1558 1559 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1560 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1561 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1562 1563 if (inet_csk_ack_scheduled(sk)) { 1564 const struct inet_connection_sock *icsk = inet_csk(sk); 1565 /* Delayed ACKs frequently hit locked sockets during bulk 1566 * receive. */ 1567 if (icsk->icsk_ack.blocked || 1568 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1569 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1570 /* 1571 * If this read emptied read buffer, we send ACK, if 1572 * connection is not bidirectional, user drained 1573 * receive buffer and there was a small segment 1574 * in queue. 1575 */ 1576 (copied > 0 && 1577 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1578 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1579 !icsk->icsk_ack.pingpong)) && 1580 !atomic_read(&sk->sk_rmem_alloc))) 1581 time_to_ack = true; 1582 } 1583 1584 /* We send an ACK if we can now advertise a non-zero window 1585 * which has been raised "significantly". 1586 * 1587 * Even if window raised up to infinity, do not send window open ACK 1588 * in states, where we will not receive more. It is useless. 1589 */ 1590 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1591 __u32 rcv_window_now = tcp_receive_window(tp); 1592 1593 /* Optimize, __tcp_select_window() is not cheap. */ 1594 if (2*rcv_window_now <= tp->window_clamp) { 1595 __u32 new_window = __tcp_select_window(sk); 1596 1597 /* Send ACK now, if this read freed lots of space 1598 * in our buffer. Certainly, new_window is new window. 1599 * We can advertise it now, if it is not less than current one. 1600 * "Lots" means "at least twice" here. 1601 */ 1602 if (new_window && new_window >= 2 * rcv_window_now) 1603 time_to_ack = true; 1604 } 1605 } 1606 if (time_to_ack) 1607 tcp_send_ack(sk); 1608 } 1609 1610 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1611 { 1612 struct sk_buff *skb; 1613 u32 offset; 1614 1615 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1616 offset = seq - TCP_SKB_CB(skb)->seq; 1617 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1618 pr_err_once("%s: found a SYN, please report !\n", __func__); 1619 offset--; 1620 } 1621 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1622 *off = offset; 1623 return skb; 1624 } 1625 /* This looks weird, but this can happen if TCP collapsing 1626 * splitted a fat GRO packet, while we released socket lock 1627 * in skb_splice_bits() 1628 */ 1629 sk_eat_skb(sk, skb); 1630 } 1631 return NULL; 1632 } 1633 1634 /* 1635 * This routine provides an alternative to tcp_recvmsg() for routines 1636 * that would like to handle copying from skbuffs directly in 'sendfile' 1637 * fashion. 1638 * Note: 1639 * - It is assumed that the socket was locked by the caller. 1640 * - The routine does not block. 1641 * - At present, there is no support for reading OOB data 1642 * or for 'peeking' the socket using this routine 1643 * (although both would be easy to implement). 1644 */ 1645 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1646 sk_read_actor_t recv_actor) 1647 { 1648 struct sk_buff *skb; 1649 struct tcp_sock *tp = tcp_sk(sk); 1650 u32 seq = tp->copied_seq; 1651 u32 offset; 1652 int copied = 0; 1653 1654 if (sk->sk_state == TCP_LISTEN) 1655 return -ENOTCONN; 1656 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1657 if (offset < skb->len) { 1658 int used; 1659 size_t len; 1660 1661 len = skb->len - offset; 1662 /* Stop reading if we hit a patch of urgent data */ 1663 if (tp->urg_data) { 1664 u32 urg_offset = tp->urg_seq - seq; 1665 if (urg_offset < len) 1666 len = urg_offset; 1667 if (!len) 1668 break; 1669 } 1670 used = recv_actor(desc, skb, offset, len); 1671 if (used <= 0) { 1672 if (!copied) 1673 copied = used; 1674 break; 1675 } else if (used <= len) { 1676 seq += used; 1677 copied += used; 1678 offset += used; 1679 } 1680 /* If recv_actor drops the lock (e.g. TCP splice 1681 * receive) the skb pointer might be invalid when 1682 * getting here: tcp_collapse might have deleted it 1683 * while aggregating skbs from the socket queue. 1684 */ 1685 skb = tcp_recv_skb(sk, seq - 1, &offset); 1686 if (!skb) 1687 break; 1688 /* TCP coalescing might have appended data to the skb. 1689 * Try to splice more frags 1690 */ 1691 if (offset + 1 != skb->len) 1692 continue; 1693 } 1694 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1695 sk_eat_skb(sk, skb); 1696 ++seq; 1697 break; 1698 } 1699 sk_eat_skb(sk, skb); 1700 if (!desc->count) 1701 break; 1702 tp->copied_seq = seq; 1703 } 1704 tp->copied_seq = seq; 1705 1706 tcp_rcv_space_adjust(sk); 1707 1708 /* Clean up data we have read: This will do ACK frames. */ 1709 if (copied > 0) { 1710 tcp_recv_skb(sk, seq, &offset); 1711 tcp_cleanup_rbuf(sk, copied); 1712 } 1713 return copied; 1714 } 1715 EXPORT_SYMBOL(tcp_read_sock); 1716 1717 int tcp_peek_len(struct socket *sock) 1718 { 1719 return tcp_inq(sock->sk); 1720 } 1721 EXPORT_SYMBOL(tcp_peek_len); 1722 1723 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1724 struct scm_timestamping *tss) 1725 { 1726 if (skb->tstamp) 1727 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1728 else 1729 tss->ts[0] = (struct timespec) {0}; 1730 1731 if (skb_hwtstamps(skb)->hwtstamp) 1732 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1733 else 1734 tss->ts[2] = (struct timespec) {0}; 1735 } 1736 1737 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1738 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1739 struct scm_timestamping *tss) 1740 { 1741 struct timeval tv; 1742 bool has_timestamping = false; 1743 1744 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1745 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1746 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1747 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1748 sizeof(tss->ts[0]), &tss->ts[0]); 1749 } else { 1750 tv.tv_sec = tss->ts[0].tv_sec; 1751 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1752 1753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1754 sizeof(tv), &tv); 1755 } 1756 } 1757 1758 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1759 has_timestamping = true; 1760 else 1761 tss->ts[0] = (struct timespec) {0}; 1762 } 1763 1764 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1765 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1766 has_timestamping = true; 1767 else 1768 tss->ts[2] = (struct timespec) {0}; 1769 } 1770 1771 if (has_timestamping) { 1772 tss->ts[1] = (struct timespec) {0}; 1773 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1774 sizeof(*tss), tss); 1775 } 1776 } 1777 1778 /* 1779 * This routine copies from a sock struct into the user buffer. 1780 * 1781 * Technical note: in 2.3 we work on _locked_ socket, so that 1782 * tricks with *seq access order and skb->users are not required. 1783 * Probably, code can be easily improved even more. 1784 */ 1785 1786 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1787 int flags, int *addr_len) 1788 { 1789 struct tcp_sock *tp = tcp_sk(sk); 1790 int copied = 0; 1791 u32 peek_seq; 1792 u32 *seq; 1793 unsigned long used; 1794 int err; 1795 int target; /* Read at least this many bytes */ 1796 long timeo; 1797 struct sk_buff *skb, *last; 1798 u32 urg_hole = 0; 1799 struct scm_timestamping tss; 1800 bool has_tss = false; 1801 1802 if (unlikely(flags & MSG_ERRQUEUE)) 1803 return inet_recv_error(sk, msg, len, addr_len); 1804 1805 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1806 (sk->sk_state == TCP_ESTABLISHED)) 1807 sk_busy_loop(sk, nonblock); 1808 1809 lock_sock(sk); 1810 1811 err = -ENOTCONN; 1812 if (sk->sk_state == TCP_LISTEN) 1813 goto out; 1814 1815 timeo = sock_rcvtimeo(sk, nonblock); 1816 1817 /* Urgent data needs to be handled specially. */ 1818 if (flags & MSG_OOB) 1819 goto recv_urg; 1820 1821 if (unlikely(tp->repair)) { 1822 err = -EPERM; 1823 if (!(flags & MSG_PEEK)) 1824 goto out; 1825 1826 if (tp->repair_queue == TCP_SEND_QUEUE) 1827 goto recv_sndq; 1828 1829 err = -EINVAL; 1830 if (tp->repair_queue == TCP_NO_QUEUE) 1831 goto out; 1832 1833 /* 'common' recv queue MSG_PEEK-ing */ 1834 } 1835 1836 seq = &tp->copied_seq; 1837 if (flags & MSG_PEEK) { 1838 peek_seq = tp->copied_seq; 1839 seq = &peek_seq; 1840 } 1841 1842 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1843 1844 do { 1845 u32 offset; 1846 1847 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1848 if (tp->urg_data && tp->urg_seq == *seq) { 1849 if (copied) 1850 break; 1851 if (signal_pending(current)) { 1852 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1853 break; 1854 } 1855 } 1856 1857 /* Next get a buffer. */ 1858 1859 last = skb_peek_tail(&sk->sk_receive_queue); 1860 skb_queue_walk(&sk->sk_receive_queue, skb) { 1861 last = skb; 1862 /* Now that we have two receive queues this 1863 * shouldn't happen. 1864 */ 1865 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1866 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1867 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1868 flags)) 1869 break; 1870 1871 offset = *seq - TCP_SKB_CB(skb)->seq; 1872 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1873 pr_err_once("%s: found a SYN, please report !\n", __func__); 1874 offset--; 1875 } 1876 if (offset < skb->len) 1877 goto found_ok_skb; 1878 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1879 goto found_fin_ok; 1880 WARN(!(flags & MSG_PEEK), 1881 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1882 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1883 } 1884 1885 /* Well, if we have backlog, try to process it now yet. */ 1886 1887 if (copied >= target && !sk->sk_backlog.tail) 1888 break; 1889 1890 if (copied) { 1891 if (sk->sk_err || 1892 sk->sk_state == TCP_CLOSE || 1893 (sk->sk_shutdown & RCV_SHUTDOWN) || 1894 !timeo || 1895 signal_pending(current)) 1896 break; 1897 } else { 1898 if (sock_flag(sk, SOCK_DONE)) 1899 break; 1900 1901 if (sk->sk_err) { 1902 copied = sock_error(sk); 1903 break; 1904 } 1905 1906 if (sk->sk_shutdown & RCV_SHUTDOWN) 1907 break; 1908 1909 if (sk->sk_state == TCP_CLOSE) { 1910 if (!sock_flag(sk, SOCK_DONE)) { 1911 /* This occurs when user tries to read 1912 * from never connected socket. 1913 */ 1914 copied = -ENOTCONN; 1915 break; 1916 } 1917 break; 1918 } 1919 1920 if (!timeo) { 1921 copied = -EAGAIN; 1922 break; 1923 } 1924 1925 if (signal_pending(current)) { 1926 copied = sock_intr_errno(timeo); 1927 break; 1928 } 1929 } 1930 1931 tcp_cleanup_rbuf(sk, copied); 1932 1933 if (copied >= target) { 1934 /* Do not sleep, just process backlog. */ 1935 release_sock(sk); 1936 lock_sock(sk); 1937 } else { 1938 sk_wait_data(sk, &timeo, last); 1939 } 1940 1941 if ((flags & MSG_PEEK) && 1942 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1943 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1944 current->comm, 1945 task_pid_nr(current)); 1946 peek_seq = tp->copied_seq; 1947 } 1948 continue; 1949 1950 found_ok_skb: 1951 /* Ok so how much can we use? */ 1952 used = skb->len - offset; 1953 if (len < used) 1954 used = len; 1955 1956 /* Do we have urgent data here? */ 1957 if (tp->urg_data) { 1958 u32 urg_offset = tp->urg_seq - *seq; 1959 if (urg_offset < used) { 1960 if (!urg_offset) { 1961 if (!sock_flag(sk, SOCK_URGINLINE)) { 1962 ++*seq; 1963 urg_hole++; 1964 offset++; 1965 used--; 1966 if (!used) 1967 goto skip_copy; 1968 } 1969 } else 1970 used = urg_offset; 1971 } 1972 } 1973 1974 if (!(flags & MSG_TRUNC)) { 1975 err = skb_copy_datagram_msg(skb, offset, msg, used); 1976 if (err) { 1977 /* Exception. Bailout! */ 1978 if (!copied) 1979 copied = -EFAULT; 1980 break; 1981 } 1982 } 1983 1984 *seq += used; 1985 copied += used; 1986 len -= used; 1987 1988 tcp_rcv_space_adjust(sk); 1989 1990 skip_copy: 1991 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1992 tp->urg_data = 0; 1993 tcp_fast_path_check(sk); 1994 } 1995 if (used + offset < skb->len) 1996 continue; 1997 1998 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1999 tcp_update_recv_tstamps(skb, &tss); 2000 has_tss = true; 2001 } 2002 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2003 goto found_fin_ok; 2004 if (!(flags & MSG_PEEK)) 2005 sk_eat_skb(sk, skb); 2006 continue; 2007 2008 found_fin_ok: 2009 /* Process the FIN. */ 2010 ++*seq; 2011 if (!(flags & MSG_PEEK)) 2012 sk_eat_skb(sk, skb); 2013 break; 2014 } while (len > 0); 2015 2016 /* According to UNIX98, msg_name/msg_namelen are ignored 2017 * on connected socket. I was just happy when found this 8) --ANK 2018 */ 2019 2020 if (has_tss) 2021 tcp_recv_timestamp(msg, sk, &tss); 2022 2023 /* Clean up data we have read: This will do ACK frames. */ 2024 tcp_cleanup_rbuf(sk, copied); 2025 2026 release_sock(sk); 2027 return copied; 2028 2029 out: 2030 release_sock(sk); 2031 return err; 2032 2033 recv_urg: 2034 err = tcp_recv_urg(sk, msg, len, flags); 2035 goto out; 2036 2037 recv_sndq: 2038 err = tcp_peek_sndq(sk, msg, len); 2039 goto out; 2040 } 2041 EXPORT_SYMBOL(tcp_recvmsg); 2042 2043 void tcp_set_state(struct sock *sk, int state) 2044 { 2045 int oldstate = sk->sk_state; 2046 2047 trace_tcp_set_state(sk, oldstate, state); 2048 2049 switch (state) { 2050 case TCP_ESTABLISHED: 2051 if (oldstate != TCP_ESTABLISHED) 2052 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2053 break; 2054 2055 case TCP_CLOSE: 2056 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2057 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2058 2059 sk->sk_prot->unhash(sk); 2060 if (inet_csk(sk)->icsk_bind_hash && 2061 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2062 inet_put_port(sk); 2063 /* fall through */ 2064 default: 2065 if (oldstate == TCP_ESTABLISHED) 2066 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2067 } 2068 2069 /* Change state AFTER socket is unhashed to avoid closed 2070 * socket sitting in hash tables. 2071 */ 2072 sk_state_store(sk, state); 2073 2074 #ifdef STATE_TRACE 2075 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2076 #endif 2077 } 2078 EXPORT_SYMBOL_GPL(tcp_set_state); 2079 2080 /* 2081 * State processing on a close. This implements the state shift for 2082 * sending our FIN frame. Note that we only send a FIN for some 2083 * states. A shutdown() may have already sent the FIN, or we may be 2084 * closed. 2085 */ 2086 2087 static const unsigned char new_state[16] = { 2088 /* current state: new state: action: */ 2089 [0 /* (Invalid) */] = TCP_CLOSE, 2090 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2091 [TCP_SYN_SENT] = TCP_CLOSE, 2092 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2093 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2094 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2095 [TCP_TIME_WAIT] = TCP_CLOSE, 2096 [TCP_CLOSE] = TCP_CLOSE, 2097 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2098 [TCP_LAST_ACK] = TCP_LAST_ACK, 2099 [TCP_LISTEN] = TCP_CLOSE, 2100 [TCP_CLOSING] = TCP_CLOSING, 2101 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2102 }; 2103 2104 static int tcp_close_state(struct sock *sk) 2105 { 2106 int next = (int)new_state[sk->sk_state]; 2107 int ns = next & TCP_STATE_MASK; 2108 2109 tcp_set_state(sk, ns); 2110 2111 return next & TCP_ACTION_FIN; 2112 } 2113 2114 /* 2115 * Shutdown the sending side of a connection. Much like close except 2116 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2117 */ 2118 2119 void tcp_shutdown(struct sock *sk, int how) 2120 { 2121 /* We need to grab some memory, and put together a FIN, 2122 * and then put it into the queue to be sent. 2123 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2124 */ 2125 if (!(how & SEND_SHUTDOWN)) 2126 return; 2127 2128 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2129 if ((1 << sk->sk_state) & 2130 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2131 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2132 /* Clear out any half completed packets. FIN if needed. */ 2133 if (tcp_close_state(sk)) 2134 tcp_send_fin(sk); 2135 } 2136 } 2137 EXPORT_SYMBOL(tcp_shutdown); 2138 2139 bool tcp_check_oom(struct sock *sk, int shift) 2140 { 2141 bool too_many_orphans, out_of_socket_memory; 2142 2143 too_many_orphans = tcp_too_many_orphans(sk, shift); 2144 out_of_socket_memory = tcp_out_of_memory(sk); 2145 2146 if (too_many_orphans) 2147 net_info_ratelimited("too many orphaned sockets\n"); 2148 if (out_of_socket_memory) 2149 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2150 return too_many_orphans || out_of_socket_memory; 2151 } 2152 2153 void tcp_close(struct sock *sk, long timeout) 2154 { 2155 struct sk_buff *skb; 2156 int data_was_unread = 0; 2157 int state; 2158 2159 lock_sock(sk); 2160 sk->sk_shutdown = SHUTDOWN_MASK; 2161 2162 if (sk->sk_state == TCP_LISTEN) { 2163 tcp_set_state(sk, TCP_CLOSE); 2164 2165 /* Special case. */ 2166 inet_csk_listen_stop(sk); 2167 2168 goto adjudge_to_death; 2169 } 2170 2171 /* We need to flush the recv. buffs. We do this only on the 2172 * descriptor close, not protocol-sourced closes, because the 2173 * reader process may not have drained the data yet! 2174 */ 2175 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2176 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2177 2178 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2179 len--; 2180 data_was_unread += len; 2181 __kfree_skb(skb); 2182 } 2183 2184 sk_mem_reclaim(sk); 2185 2186 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2187 if (sk->sk_state == TCP_CLOSE) 2188 goto adjudge_to_death; 2189 2190 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2191 * data was lost. To witness the awful effects of the old behavior of 2192 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2193 * GET in an FTP client, suspend the process, wait for the client to 2194 * advertise a zero window, then kill -9 the FTP client, wheee... 2195 * Note: timeout is always zero in such a case. 2196 */ 2197 if (unlikely(tcp_sk(sk)->repair)) { 2198 sk->sk_prot->disconnect(sk, 0); 2199 } else if (data_was_unread) { 2200 /* Unread data was tossed, zap the connection. */ 2201 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2202 tcp_set_state(sk, TCP_CLOSE); 2203 tcp_send_active_reset(sk, sk->sk_allocation); 2204 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2205 /* Check zero linger _after_ checking for unread data. */ 2206 sk->sk_prot->disconnect(sk, 0); 2207 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2208 } else if (tcp_close_state(sk)) { 2209 /* We FIN if the application ate all the data before 2210 * zapping the connection. 2211 */ 2212 2213 /* RED-PEN. Formally speaking, we have broken TCP state 2214 * machine. State transitions: 2215 * 2216 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2217 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2218 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2219 * 2220 * are legal only when FIN has been sent (i.e. in window), 2221 * rather than queued out of window. Purists blame. 2222 * 2223 * F.e. "RFC state" is ESTABLISHED, 2224 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2225 * 2226 * The visible declinations are that sometimes 2227 * we enter time-wait state, when it is not required really 2228 * (harmless), do not send active resets, when they are 2229 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2230 * they look as CLOSING or LAST_ACK for Linux) 2231 * Probably, I missed some more holelets. 2232 * --ANK 2233 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2234 * in a single packet! (May consider it later but will 2235 * probably need API support or TCP_CORK SYN-ACK until 2236 * data is written and socket is closed.) 2237 */ 2238 tcp_send_fin(sk); 2239 } 2240 2241 sk_stream_wait_close(sk, timeout); 2242 2243 adjudge_to_death: 2244 state = sk->sk_state; 2245 sock_hold(sk); 2246 sock_orphan(sk); 2247 2248 /* It is the last release_sock in its life. It will remove backlog. */ 2249 release_sock(sk); 2250 2251 2252 /* Now socket is owned by kernel and we acquire BH lock 2253 * to finish close. No need to check for user refs. 2254 */ 2255 local_bh_disable(); 2256 bh_lock_sock(sk); 2257 WARN_ON(sock_owned_by_user(sk)); 2258 2259 percpu_counter_inc(sk->sk_prot->orphan_count); 2260 2261 /* Have we already been destroyed by a softirq or backlog? */ 2262 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2263 goto out; 2264 2265 /* This is a (useful) BSD violating of the RFC. There is a 2266 * problem with TCP as specified in that the other end could 2267 * keep a socket open forever with no application left this end. 2268 * We use a 1 minute timeout (about the same as BSD) then kill 2269 * our end. If they send after that then tough - BUT: long enough 2270 * that we won't make the old 4*rto = almost no time - whoops 2271 * reset mistake. 2272 * 2273 * Nope, it was not mistake. It is really desired behaviour 2274 * f.e. on http servers, when such sockets are useless, but 2275 * consume significant resources. Let's do it with special 2276 * linger2 option. --ANK 2277 */ 2278 2279 if (sk->sk_state == TCP_FIN_WAIT2) { 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 if (tp->linger2 < 0) { 2282 tcp_set_state(sk, TCP_CLOSE); 2283 tcp_send_active_reset(sk, GFP_ATOMIC); 2284 __NET_INC_STATS(sock_net(sk), 2285 LINUX_MIB_TCPABORTONLINGER); 2286 } else { 2287 const int tmo = tcp_fin_time(sk); 2288 2289 if (tmo > TCP_TIMEWAIT_LEN) { 2290 inet_csk_reset_keepalive_timer(sk, 2291 tmo - TCP_TIMEWAIT_LEN); 2292 } else { 2293 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2294 goto out; 2295 } 2296 } 2297 } 2298 if (sk->sk_state != TCP_CLOSE) { 2299 sk_mem_reclaim(sk); 2300 if (tcp_check_oom(sk, 0)) { 2301 tcp_set_state(sk, TCP_CLOSE); 2302 tcp_send_active_reset(sk, GFP_ATOMIC); 2303 __NET_INC_STATS(sock_net(sk), 2304 LINUX_MIB_TCPABORTONMEMORY); 2305 } 2306 } 2307 2308 if (sk->sk_state == TCP_CLOSE) { 2309 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2310 /* We could get here with a non-NULL req if the socket is 2311 * aborted (e.g., closed with unread data) before 3WHS 2312 * finishes. 2313 */ 2314 if (req) 2315 reqsk_fastopen_remove(sk, req, false); 2316 inet_csk_destroy_sock(sk); 2317 } 2318 /* Otherwise, socket is reprieved until protocol close. */ 2319 2320 out: 2321 bh_unlock_sock(sk); 2322 local_bh_enable(); 2323 sock_put(sk); 2324 } 2325 EXPORT_SYMBOL(tcp_close); 2326 2327 /* These states need RST on ABORT according to RFC793 */ 2328 2329 static inline bool tcp_need_reset(int state) 2330 { 2331 return (1 << state) & 2332 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2333 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2334 } 2335 2336 static void tcp_rtx_queue_purge(struct sock *sk) 2337 { 2338 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2339 2340 while (p) { 2341 struct sk_buff *skb = rb_to_skb(p); 2342 2343 p = rb_next(p); 2344 /* Since we are deleting whole queue, no need to 2345 * list_del(&skb->tcp_tsorted_anchor) 2346 */ 2347 tcp_rtx_queue_unlink(skb, sk); 2348 sk_wmem_free_skb(sk, skb); 2349 } 2350 } 2351 2352 void tcp_write_queue_purge(struct sock *sk) 2353 { 2354 struct sk_buff *skb; 2355 2356 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2357 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2358 tcp_skb_tsorted_anchor_cleanup(skb); 2359 sk_wmem_free_skb(sk, skb); 2360 } 2361 tcp_rtx_queue_purge(sk); 2362 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2363 sk_mem_reclaim(sk); 2364 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2365 } 2366 2367 int tcp_disconnect(struct sock *sk, int flags) 2368 { 2369 struct inet_sock *inet = inet_sk(sk); 2370 struct inet_connection_sock *icsk = inet_csk(sk); 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 int err = 0; 2373 int old_state = sk->sk_state; 2374 2375 if (old_state != TCP_CLOSE) 2376 tcp_set_state(sk, TCP_CLOSE); 2377 2378 /* ABORT function of RFC793 */ 2379 if (old_state == TCP_LISTEN) { 2380 inet_csk_listen_stop(sk); 2381 } else if (unlikely(tp->repair)) { 2382 sk->sk_err = ECONNABORTED; 2383 } else if (tcp_need_reset(old_state) || 2384 (tp->snd_nxt != tp->write_seq && 2385 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2386 /* The last check adjusts for discrepancy of Linux wrt. RFC 2387 * states 2388 */ 2389 tcp_send_active_reset(sk, gfp_any()); 2390 sk->sk_err = ECONNRESET; 2391 } else if (old_state == TCP_SYN_SENT) 2392 sk->sk_err = ECONNRESET; 2393 2394 tcp_clear_xmit_timers(sk); 2395 __skb_queue_purge(&sk->sk_receive_queue); 2396 tcp_write_queue_purge(sk); 2397 tcp_fastopen_active_disable_ofo_check(sk); 2398 skb_rbtree_purge(&tp->out_of_order_queue); 2399 2400 inet->inet_dport = 0; 2401 2402 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2403 inet_reset_saddr(sk); 2404 2405 sk->sk_shutdown = 0; 2406 sock_reset_flag(sk, SOCK_DONE); 2407 tp->srtt_us = 0; 2408 tp->write_seq += tp->max_window + 2; 2409 if (tp->write_seq == 0) 2410 tp->write_seq = 1; 2411 icsk->icsk_backoff = 0; 2412 tp->snd_cwnd = 2; 2413 icsk->icsk_probes_out = 0; 2414 tp->packets_out = 0; 2415 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2416 tp->snd_cwnd_cnt = 0; 2417 tp->window_clamp = 0; 2418 tcp_set_ca_state(sk, TCP_CA_Open); 2419 tcp_clear_retrans(tp); 2420 inet_csk_delack_init(sk); 2421 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2422 * issue in __tcp_select_window() 2423 */ 2424 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2425 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2426 __sk_dst_reset(sk); 2427 dst_release(sk->sk_rx_dst); 2428 sk->sk_rx_dst = NULL; 2429 tcp_saved_syn_free(tp); 2430 2431 /* Clean up fastopen related fields */ 2432 tcp_free_fastopen_req(tp); 2433 inet->defer_connect = 0; 2434 2435 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2436 2437 sk->sk_error_report(sk); 2438 return err; 2439 } 2440 EXPORT_SYMBOL(tcp_disconnect); 2441 2442 static inline bool tcp_can_repair_sock(const struct sock *sk) 2443 { 2444 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2445 (sk->sk_state != TCP_LISTEN); 2446 } 2447 2448 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2449 { 2450 struct tcp_repair_window opt; 2451 2452 if (!tp->repair) 2453 return -EPERM; 2454 2455 if (len != sizeof(opt)) 2456 return -EINVAL; 2457 2458 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2459 return -EFAULT; 2460 2461 if (opt.max_window < opt.snd_wnd) 2462 return -EINVAL; 2463 2464 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2465 return -EINVAL; 2466 2467 if (after(opt.rcv_wup, tp->rcv_nxt)) 2468 return -EINVAL; 2469 2470 tp->snd_wl1 = opt.snd_wl1; 2471 tp->snd_wnd = opt.snd_wnd; 2472 tp->max_window = opt.max_window; 2473 2474 tp->rcv_wnd = opt.rcv_wnd; 2475 tp->rcv_wup = opt.rcv_wup; 2476 2477 return 0; 2478 } 2479 2480 static int tcp_repair_options_est(struct sock *sk, 2481 struct tcp_repair_opt __user *optbuf, unsigned int len) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 struct tcp_repair_opt opt; 2485 2486 while (len >= sizeof(opt)) { 2487 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2488 return -EFAULT; 2489 2490 optbuf++; 2491 len -= sizeof(opt); 2492 2493 switch (opt.opt_code) { 2494 case TCPOPT_MSS: 2495 tp->rx_opt.mss_clamp = opt.opt_val; 2496 tcp_mtup_init(sk); 2497 break; 2498 case TCPOPT_WINDOW: 2499 { 2500 u16 snd_wscale = opt.opt_val & 0xFFFF; 2501 u16 rcv_wscale = opt.opt_val >> 16; 2502 2503 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2504 return -EFBIG; 2505 2506 tp->rx_opt.snd_wscale = snd_wscale; 2507 tp->rx_opt.rcv_wscale = rcv_wscale; 2508 tp->rx_opt.wscale_ok = 1; 2509 } 2510 break; 2511 case TCPOPT_SACK_PERM: 2512 if (opt.opt_val != 0) 2513 return -EINVAL; 2514 2515 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2516 if (sock_net(sk)->ipv4.sysctl_tcp_fack) 2517 tcp_enable_fack(tp); 2518 break; 2519 case TCPOPT_TIMESTAMP: 2520 if (opt.opt_val != 0) 2521 return -EINVAL; 2522 2523 tp->rx_opt.tstamp_ok = 1; 2524 break; 2525 } 2526 } 2527 2528 return 0; 2529 } 2530 2531 /* 2532 * Socket option code for TCP. 2533 */ 2534 static int do_tcp_setsockopt(struct sock *sk, int level, 2535 int optname, char __user *optval, unsigned int optlen) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 struct inet_connection_sock *icsk = inet_csk(sk); 2539 struct net *net = sock_net(sk); 2540 int val; 2541 int err = 0; 2542 2543 /* These are data/string values, all the others are ints */ 2544 switch (optname) { 2545 case TCP_CONGESTION: { 2546 char name[TCP_CA_NAME_MAX]; 2547 2548 if (optlen < 1) 2549 return -EINVAL; 2550 2551 val = strncpy_from_user(name, optval, 2552 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2553 if (val < 0) 2554 return -EFAULT; 2555 name[val] = 0; 2556 2557 lock_sock(sk); 2558 err = tcp_set_congestion_control(sk, name, true, true); 2559 release_sock(sk); 2560 return err; 2561 } 2562 case TCP_ULP: { 2563 char name[TCP_ULP_NAME_MAX]; 2564 2565 if (optlen < 1) 2566 return -EINVAL; 2567 2568 val = strncpy_from_user(name, optval, 2569 min_t(long, TCP_ULP_NAME_MAX - 1, 2570 optlen)); 2571 if (val < 0) 2572 return -EFAULT; 2573 name[val] = 0; 2574 2575 lock_sock(sk); 2576 err = tcp_set_ulp(sk, name); 2577 release_sock(sk); 2578 return err; 2579 } 2580 case TCP_FASTOPEN_KEY: { 2581 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2582 2583 if (optlen != sizeof(key)) 2584 return -EINVAL; 2585 2586 if (copy_from_user(key, optval, optlen)) 2587 return -EFAULT; 2588 2589 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2590 } 2591 default: 2592 /* fallthru */ 2593 break; 2594 } 2595 2596 if (optlen < sizeof(int)) 2597 return -EINVAL; 2598 2599 if (get_user(val, (int __user *)optval)) 2600 return -EFAULT; 2601 2602 lock_sock(sk); 2603 2604 switch (optname) { 2605 case TCP_MAXSEG: 2606 /* Values greater than interface MTU won't take effect. However 2607 * at the point when this call is done we typically don't yet 2608 * know which interface is going to be used 2609 */ 2610 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2611 err = -EINVAL; 2612 break; 2613 } 2614 tp->rx_opt.user_mss = val; 2615 break; 2616 2617 case TCP_NODELAY: 2618 if (val) { 2619 /* TCP_NODELAY is weaker than TCP_CORK, so that 2620 * this option on corked socket is remembered, but 2621 * it is not activated until cork is cleared. 2622 * 2623 * However, when TCP_NODELAY is set we make 2624 * an explicit push, which overrides even TCP_CORK 2625 * for currently queued segments. 2626 */ 2627 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2628 tcp_push_pending_frames(sk); 2629 } else { 2630 tp->nonagle &= ~TCP_NAGLE_OFF; 2631 } 2632 break; 2633 2634 case TCP_THIN_LINEAR_TIMEOUTS: 2635 if (val < 0 || val > 1) 2636 err = -EINVAL; 2637 else 2638 tp->thin_lto = val; 2639 break; 2640 2641 case TCP_THIN_DUPACK: 2642 if (val < 0 || val > 1) 2643 err = -EINVAL; 2644 break; 2645 2646 case TCP_REPAIR: 2647 if (!tcp_can_repair_sock(sk)) 2648 err = -EPERM; 2649 else if (val == 1) { 2650 tp->repair = 1; 2651 sk->sk_reuse = SK_FORCE_REUSE; 2652 tp->repair_queue = TCP_NO_QUEUE; 2653 } else if (val == 0) { 2654 tp->repair = 0; 2655 sk->sk_reuse = SK_NO_REUSE; 2656 tcp_send_window_probe(sk); 2657 } else 2658 err = -EINVAL; 2659 2660 break; 2661 2662 case TCP_REPAIR_QUEUE: 2663 if (!tp->repair) 2664 err = -EPERM; 2665 else if (val < TCP_QUEUES_NR) 2666 tp->repair_queue = val; 2667 else 2668 err = -EINVAL; 2669 break; 2670 2671 case TCP_QUEUE_SEQ: 2672 if (sk->sk_state != TCP_CLOSE) 2673 err = -EPERM; 2674 else if (tp->repair_queue == TCP_SEND_QUEUE) 2675 tp->write_seq = val; 2676 else if (tp->repair_queue == TCP_RECV_QUEUE) 2677 tp->rcv_nxt = val; 2678 else 2679 err = -EINVAL; 2680 break; 2681 2682 case TCP_REPAIR_OPTIONS: 2683 if (!tp->repair) 2684 err = -EINVAL; 2685 else if (sk->sk_state == TCP_ESTABLISHED) 2686 err = tcp_repair_options_est(sk, 2687 (struct tcp_repair_opt __user *)optval, 2688 optlen); 2689 else 2690 err = -EPERM; 2691 break; 2692 2693 case TCP_CORK: 2694 /* When set indicates to always queue non-full frames. 2695 * Later the user clears this option and we transmit 2696 * any pending partial frames in the queue. This is 2697 * meant to be used alongside sendfile() to get properly 2698 * filled frames when the user (for example) must write 2699 * out headers with a write() call first and then use 2700 * sendfile to send out the data parts. 2701 * 2702 * TCP_CORK can be set together with TCP_NODELAY and it is 2703 * stronger than TCP_NODELAY. 2704 */ 2705 if (val) { 2706 tp->nonagle |= TCP_NAGLE_CORK; 2707 } else { 2708 tp->nonagle &= ~TCP_NAGLE_CORK; 2709 if (tp->nonagle&TCP_NAGLE_OFF) 2710 tp->nonagle |= TCP_NAGLE_PUSH; 2711 tcp_push_pending_frames(sk); 2712 } 2713 break; 2714 2715 case TCP_KEEPIDLE: 2716 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2717 err = -EINVAL; 2718 else { 2719 tp->keepalive_time = val * HZ; 2720 if (sock_flag(sk, SOCK_KEEPOPEN) && 2721 !((1 << sk->sk_state) & 2722 (TCPF_CLOSE | TCPF_LISTEN))) { 2723 u32 elapsed = keepalive_time_elapsed(tp); 2724 if (tp->keepalive_time > elapsed) 2725 elapsed = tp->keepalive_time - elapsed; 2726 else 2727 elapsed = 0; 2728 inet_csk_reset_keepalive_timer(sk, elapsed); 2729 } 2730 } 2731 break; 2732 case TCP_KEEPINTVL: 2733 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2734 err = -EINVAL; 2735 else 2736 tp->keepalive_intvl = val * HZ; 2737 break; 2738 case TCP_KEEPCNT: 2739 if (val < 1 || val > MAX_TCP_KEEPCNT) 2740 err = -EINVAL; 2741 else 2742 tp->keepalive_probes = val; 2743 break; 2744 case TCP_SYNCNT: 2745 if (val < 1 || val > MAX_TCP_SYNCNT) 2746 err = -EINVAL; 2747 else 2748 icsk->icsk_syn_retries = val; 2749 break; 2750 2751 case TCP_SAVE_SYN: 2752 if (val < 0 || val > 1) 2753 err = -EINVAL; 2754 else 2755 tp->save_syn = val; 2756 break; 2757 2758 case TCP_LINGER2: 2759 if (val < 0) 2760 tp->linger2 = -1; 2761 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2762 tp->linger2 = 0; 2763 else 2764 tp->linger2 = val * HZ; 2765 break; 2766 2767 case TCP_DEFER_ACCEPT: 2768 /* Translate value in seconds to number of retransmits */ 2769 icsk->icsk_accept_queue.rskq_defer_accept = 2770 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2771 TCP_RTO_MAX / HZ); 2772 break; 2773 2774 case TCP_WINDOW_CLAMP: 2775 if (!val) { 2776 if (sk->sk_state != TCP_CLOSE) { 2777 err = -EINVAL; 2778 break; 2779 } 2780 tp->window_clamp = 0; 2781 } else 2782 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2783 SOCK_MIN_RCVBUF / 2 : val; 2784 break; 2785 2786 case TCP_QUICKACK: 2787 if (!val) { 2788 icsk->icsk_ack.pingpong = 1; 2789 } else { 2790 icsk->icsk_ack.pingpong = 0; 2791 if ((1 << sk->sk_state) & 2792 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2793 inet_csk_ack_scheduled(sk)) { 2794 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2795 tcp_cleanup_rbuf(sk, 1); 2796 if (!(val & 1)) 2797 icsk->icsk_ack.pingpong = 1; 2798 } 2799 } 2800 break; 2801 2802 #ifdef CONFIG_TCP_MD5SIG 2803 case TCP_MD5SIG: 2804 case TCP_MD5SIG_EXT: 2805 /* Read the IP->Key mappings from userspace */ 2806 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2807 break; 2808 #endif 2809 case TCP_USER_TIMEOUT: 2810 /* Cap the max time in ms TCP will retry or probe the window 2811 * before giving up and aborting (ETIMEDOUT) a connection. 2812 */ 2813 if (val < 0) 2814 err = -EINVAL; 2815 else 2816 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2817 break; 2818 2819 case TCP_FASTOPEN: 2820 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2821 TCPF_LISTEN))) { 2822 tcp_fastopen_init_key_once(net); 2823 2824 fastopen_queue_tune(sk, val); 2825 } else { 2826 err = -EINVAL; 2827 } 2828 break; 2829 case TCP_FASTOPEN_CONNECT: 2830 if (val > 1 || val < 0) { 2831 err = -EINVAL; 2832 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2833 if (sk->sk_state == TCP_CLOSE) 2834 tp->fastopen_connect = val; 2835 else 2836 err = -EINVAL; 2837 } else { 2838 err = -EOPNOTSUPP; 2839 } 2840 break; 2841 case TCP_FASTOPEN_NO_COOKIE: 2842 if (val > 1 || val < 0) 2843 err = -EINVAL; 2844 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2845 err = -EINVAL; 2846 else 2847 tp->fastopen_no_cookie = val; 2848 break; 2849 case TCP_TIMESTAMP: 2850 if (!tp->repair) 2851 err = -EPERM; 2852 else 2853 tp->tsoffset = val - tcp_time_stamp_raw(); 2854 break; 2855 case TCP_REPAIR_WINDOW: 2856 err = tcp_repair_set_window(tp, optval, optlen); 2857 break; 2858 case TCP_NOTSENT_LOWAT: 2859 tp->notsent_lowat = val; 2860 sk->sk_write_space(sk); 2861 break; 2862 default: 2863 err = -ENOPROTOOPT; 2864 break; 2865 } 2866 2867 release_sock(sk); 2868 return err; 2869 } 2870 2871 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2872 unsigned int optlen) 2873 { 2874 const struct inet_connection_sock *icsk = inet_csk(sk); 2875 2876 if (level != SOL_TCP) 2877 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2878 optval, optlen); 2879 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2880 } 2881 EXPORT_SYMBOL(tcp_setsockopt); 2882 2883 #ifdef CONFIG_COMPAT 2884 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2885 char __user *optval, unsigned int optlen) 2886 { 2887 if (level != SOL_TCP) 2888 return inet_csk_compat_setsockopt(sk, level, optname, 2889 optval, optlen); 2890 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2891 } 2892 EXPORT_SYMBOL(compat_tcp_setsockopt); 2893 #endif 2894 2895 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2896 struct tcp_info *info) 2897 { 2898 u64 stats[__TCP_CHRONO_MAX], total = 0; 2899 enum tcp_chrono i; 2900 2901 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2902 stats[i] = tp->chrono_stat[i - 1]; 2903 if (i == tp->chrono_type) 2904 stats[i] += tcp_jiffies32 - tp->chrono_start; 2905 stats[i] *= USEC_PER_SEC / HZ; 2906 total += stats[i]; 2907 } 2908 2909 info->tcpi_busy_time = total; 2910 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2911 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2912 } 2913 2914 /* Return information about state of tcp endpoint in API format. */ 2915 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2916 { 2917 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2918 const struct inet_connection_sock *icsk = inet_csk(sk); 2919 u32 now; 2920 u64 rate64; 2921 bool slow; 2922 u32 rate; 2923 2924 memset(info, 0, sizeof(*info)); 2925 if (sk->sk_type != SOCK_STREAM) 2926 return; 2927 2928 info->tcpi_state = sk_state_load(sk); 2929 2930 /* Report meaningful fields for all TCP states, including listeners */ 2931 rate = READ_ONCE(sk->sk_pacing_rate); 2932 rate64 = rate != ~0U ? rate : ~0ULL; 2933 info->tcpi_pacing_rate = rate64; 2934 2935 rate = READ_ONCE(sk->sk_max_pacing_rate); 2936 rate64 = rate != ~0U ? rate : ~0ULL; 2937 info->tcpi_max_pacing_rate = rate64; 2938 2939 info->tcpi_reordering = tp->reordering; 2940 info->tcpi_snd_cwnd = tp->snd_cwnd; 2941 2942 if (info->tcpi_state == TCP_LISTEN) { 2943 /* listeners aliased fields : 2944 * tcpi_unacked -> Number of children ready for accept() 2945 * tcpi_sacked -> max backlog 2946 */ 2947 info->tcpi_unacked = sk->sk_ack_backlog; 2948 info->tcpi_sacked = sk->sk_max_ack_backlog; 2949 return; 2950 } 2951 2952 slow = lock_sock_fast(sk); 2953 2954 info->tcpi_ca_state = icsk->icsk_ca_state; 2955 info->tcpi_retransmits = icsk->icsk_retransmits; 2956 info->tcpi_probes = icsk->icsk_probes_out; 2957 info->tcpi_backoff = icsk->icsk_backoff; 2958 2959 if (tp->rx_opt.tstamp_ok) 2960 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2961 if (tcp_is_sack(tp)) 2962 info->tcpi_options |= TCPI_OPT_SACK; 2963 if (tp->rx_opt.wscale_ok) { 2964 info->tcpi_options |= TCPI_OPT_WSCALE; 2965 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2966 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2967 } 2968 2969 if (tp->ecn_flags & TCP_ECN_OK) 2970 info->tcpi_options |= TCPI_OPT_ECN; 2971 if (tp->ecn_flags & TCP_ECN_SEEN) 2972 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2973 if (tp->syn_data_acked) 2974 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2975 2976 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2977 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2978 info->tcpi_snd_mss = tp->mss_cache; 2979 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2980 2981 info->tcpi_unacked = tp->packets_out; 2982 info->tcpi_sacked = tp->sacked_out; 2983 2984 info->tcpi_lost = tp->lost_out; 2985 info->tcpi_retrans = tp->retrans_out; 2986 info->tcpi_fackets = tp->fackets_out; 2987 2988 now = tcp_jiffies32; 2989 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2990 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2991 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2992 2993 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2994 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2995 info->tcpi_rtt = tp->srtt_us >> 3; 2996 info->tcpi_rttvar = tp->mdev_us >> 2; 2997 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2998 info->tcpi_advmss = tp->advmss; 2999 3000 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3001 info->tcpi_rcv_space = tp->rcvq_space.space; 3002 3003 info->tcpi_total_retrans = tp->total_retrans; 3004 3005 info->tcpi_bytes_acked = tp->bytes_acked; 3006 info->tcpi_bytes_received = tp->bytes_received; 3007 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3008 tcp_get_info_chrono_stats(tp, info); 3009 3010 info->tcpi_segs_out = tp->segs_out; 3011 info->tcpi_segs_in = tp->segs_in; 3012 3013 info->tcpi_min_rtt = tcp_min_rtt(tp); 3014 info->tcpi_data_segs_in = tp->data_segs_in; 3015 info->tcpi_data_segs_out = tp->data_segs_out; 3016 3017 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3018 rate64 = tcp_compute_delivery_rate(tp); 3019 if (rate64) 3020 info->tcpi_delivery_rate = rate64; 3021 unlock_sock_fast(sk, slow); 3022 } 3023 EXPORT_SYMBOL_GPL(tcp_get_info); 3024 3025 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3026 { 3027 const struct tcp_sock *tp = tcp_sk(sk); 3028 struct sk_buff *stats; 3029 struct tcp_info info; 3030 u64 rate64; 3031 u32 rate; 3032 3033 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3034 3 * nla_total_size(sizeof(u32)) + 3035 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3036 if (!stats) 3037 return NULL; 3038 3039 tcp_get_info_chrono_stats(tp, &info); 3040 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3041 info.tcpi_busy_time, TCP_NLA_PAD); 3042 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3043 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3044 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3045 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3046 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3047 tp->data_segs_out, TCP_NLA_PAD); 3048 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3049 tp->total_retrans, TCP_NLA_PAD); 3050 3051 rate = READ_ONCE(sk->sk_pacing_rate); 3052 rate64 = rate != ~0U ? rate : ~0ULL; 3053 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3054 3055 rate64 = tcp_compute_delivery_rate(tp); 3056 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3057 3058 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3059 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3060 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3061 3062 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3063 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3064 return stats; 3065 } 3066 3067 static int do_tcp_getsockopt(struct sock *sk, int level, 3068 int optname, char __user *optval, int __user *optlen) 3069 { 3070 struct inet_connection_sock *icsk = inet_csk(sk); 3071 struct tcp_sock *tp = tcp_sk(sk); 3072 struct net *net = sock_net(sk); 3073 int val, len; 3074 3075 if (get_user(len, optlen)) 3076 return -EFAULT; 3077 3078 len = min_t(unsigned int, len, sizeof(int)); 3079 3080 if (len < 0) 3081 return -EINVAL; 3082 3083 switch (optname) { 3084 case TCP_MAXSEG: 3085 val = tp->mss_cache; 3086 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3087 val = tp->rx_opt.user_mss; 3088 if (tp->repair) 3089 val = tp->rx_opt.mss_clamp; 3090 break; 3091 case TCP_NODELAY: 3092 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3093 break; 3094 case TCP_CORK: 3095 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3096 break; 3097 case TCP_KEEPIDLE: 3098 val = keepalive_time_when(tp) / HZ; 3099 break; 3100 case TCP_KEEPINTVL: 3101 val = keepalive_intvl_when(tp) / HZ; 3102 break; 3103 case TCP_KEEPCNT: 3104 val = keepalive_probes(tp); 3105 break; 3106 case TCP_SYNCNT: 3107 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3108 break; 3109 case TCP_LINGER2: 3110 val = tp->linger2; 3111 if (val >= 0) 3112 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3113 break; 3114 case TCP_DEFER_ACCEPT: 3115 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3116 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3117 break; 3118 case TCP_WINDOW_CLAMP: 3119 val = tp->window_clamp; 3120 break; 3121 case TCP_INFO: { 3122 struct tcp_info info; 3123 3124 if (get_user(len, optlen)) 3125 return -EFAULT; 3126 3127 tcp_get_info(sk, &info); 3128 3129 len = min_t(unsigned int, len, sizeof(info)); 3130 if (put_user(len, optlen)) 3131 return -EFAULT; 3132 if (copy_to_user(optval, &info, len)) 3133 return -EFAULT; 3134 return 0; 3135 } 3136 case TCP_CC_INFO: { 3137 const struct tcp_congestion_ops *ca_ops; 3138 union tcp_cc_info info; 3139 size_t sz = 0; 3140 int attr; 3141 3142 if (get_user(len, optlen)) 3143 return -EFAULT; 3144 3145 ca_ops = icsk->icsk_ca_ops; 3146 if (ca_ops && ca_ops->get_info) 3147 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3148 3149 len = min_t(unsigned int, len, sz); 3150 if (put_user(len, optlen)) 3151 return -EFAULT; 3152 if (copy_to_user(optval, &info, len)) 3153 return -EFAULT; 3154 return 0; 3155 } 3156 case TCP_QUICKACK: 3157 val = !icsk->icsk_ack.pingpong; 3158 break; 3159 3160 case TCP_CONGESTION: 3161 if (get_user(len, optlen)) 3162 return -EFAULT; 3163 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3164 if (put_user(len, optlen)) 3165 return -EFAULT; 3166 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3167 return -EFAULT; 3168 return 0; 3169 3170 case TCP_ULP: 3171 if (get_user(len, optlen)) 3172 return -EFAULT; 3173 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3174 if (!icsk->icsk_ulp_ops) { 3175 if (put_user(0, optlen)) 3176 return -EFAULT; 3177 return 0; 3178 } 3179 if (put_user(len, optlen)) 3180 return -EFAULT; 3181 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3182 return -EFAULT; 3183 return 0; 3184 3185 case TCP_FASTOPEN_KEY: { 3186 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3187 struct tcp_fastopen_context *ctx; 3188 3189 if (get_user(len, optlen)) 3190 return -EFAULT; 3191 3192 rcu_read_lock(); 3193 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3194 if (ctx) 3195 memcpy(key, ctx->key, sizeof(key)); 3196 else 3197 len = 0; 3198 rcu_read_unlock(); 3199 3200 len = min_t(unsigned int, len, sizeof(key)); 3201 if (put_user(len, optlen)) 3202 return -EFAULT; 3203 if (copy_to_user(optval, key, len)) 3204 return -EFAULT; 3205 return 0; 3206 } 3207 case TCP_THIN_LINEAR_TIMEOUTS: 3208 val = tp->thin_lto; 3209 break; 3210 3211 case TCP_THIN_DUPACK: 3212 val = 0; 3213 break; 3214 3215 case TCP_REPAIR: 3216 val = tp->repair; 3217 break; 3218 3219 case TCP_REPAIR_QUEUE: 3220 if (tp->repair) 3221 val = tp->repair_queue; 3222 else 3223 return -EINVAL; 3224 break; 3225 3226 case TCP_REPAIR_WINDOW: { 3227 struct tcp_repair_window opt; 3228 3229 if (get_user(len, optlen)) 3230 return -EFAULT; 3231 3232 if (len != sizeof(opt)) 3233 return -EINVAL; 3234 3235 if (!tp->repair) 3236 return -EPERM; 3237 3238 opt.snd_wl1 = tp->snd_wl1; 3239 opt.snd_wnd = tp->snd_wnd; 3240 opt.max_window = tp->max_window; 3241 opt.rcv_wnd = tp->rcv_wnd; 3242 opt.rcv_wup = tp->rcv_wup; 3243 3244 if (copy_to_user(optval, &opt, len)) 3245 return -EFAULT; 3246 return 0; 3247 } 3248 case TCP_QUEUE_SEQ: 3249 if (tp->repair_queue == TCP_SEND_QUEUE) 3250 val = tp->write_seq; 3251 else if (tp->repair_queue == TCP_RECV_QUEUE) 3252 val = tp->rcv_nxt; 3253 else 3254 return -EINVAL; 3255 break; 3256 3257 case TCP_USER_TIMEOUT: 3258 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3259 break; 3260 3261 case TCP_FASTOPEN: 3262 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3263 break; 3264 3265 case TCP_FASTOPEN_CONNECT: 3266 val = tp->fastopen_connect; 3267 break; 3268 3269 case TCP_FASTOPEN_NO_COOKIE: 3270 val = tp->fastopen_no_cookie; 3271 break; 3272 3273 case TCP_TIMESTAMP: 3274 val = tcp_time_stamp_raw() + tp->tsoffset; 3275 break; 3276 case TCP_NOTSENT_LOWAT: 3277 val = tp->notsent_lowat; 3278 break; 3279 case TCP_SAVE_SYN: 3280 val = tp->save_syn; 3281 break; 3282 case TCP_SAVED_SYN: { 3283 if (get_user(len, optlen)) 3284 return -EFAULT; 3285 3286 lock_sock(sk); 3287 if (tp->saved_syn) { 3288 if (len < tp->saved_syn[0]) { 3289 if (put_user(tp->saved_syn[0], optlen)) { 3290 release_sock(sk); 3291 return -EFAULT; 3292 } 3293 release_sock(sk); 3294 return -EINVAL; 3295 } 3296 len = tp->saved_syn[0]; 3297 if (put_user(len, optlen)) { 3298 release_sock(sk); 3299 return -EFAULT; 3300 } 3301 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3302 release_sock(sk); 3303 return -EFAULT; 3304 } 3305 tcp_saved_syn_free(tp); 3306 release_sock(sk); 3307 } else { 3308 release_sock(sk); 3309 len = 0; 3310 if (put_user(len, optlen)) 3311 return -EFAULT; 3312 } 3313 return 0; 3314 } 3315 default: 3316 return -ENOPROTOOPT; 3317 } 3318 3319 if (put_user(len, optlen)) 3320 return -EFAULT; 3321 if (copy_to_user(optval, &val, len)) 3322 return -EFAULT; 3323 return 0; 3324 } 3325 3326 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3327 int __user *optlen) 3328 { 3329 struct inet_connection_sock *icsk = inet_csk(sk); 3330 3331 if (level != SOL_TCP) 3332 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3333 optval, optlen); 3334 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3335 } 3336 EXPORT_SYMBOL(tcp_getsockopt); 3337 3338 #ifdef CONFIG_COMPAT 3339 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3340 char __user *optval, int __user *optlen) 3341 { 3342 if (level != SOL_TCP) 3343 return inet_csk_compat_getsockopt(sk, level, optname, 3344 optval, optlen); 3345 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3346 } 3347 EXPORT_SYMBOL(compat_tcp_getsockopt); 3348 #endif 3349 3350 #ifdef CONFIG_TCP_MD5SIG 3351 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3352 static DEFINE_MUTEX(tcp_md5sig_mutex); 3353 static bool tcp_md5sig_pool_populated = false; 3354 3355 static void __tcp_alloc_md5sig_pool(void) 3356 { 3357 struct crypto_ahash *hash; 3358 int cpu; 3359 3360 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3361 if (IS_ERR(hash)) 3362 return; 3363 3364 for_each_possible_cpu(cpu) { 3365 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3366 struct ahash_request *req; 3367 3368 if (!scratch) { 3369 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3370 sizeof(struct tcphdr), 3371 GFP_KERNEL, 3372 cpu_to_node(cpu)); 3373 if (!scratch) 3374 return; 3375 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3376 } 3377 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3378 continue; 3379 3380 req = ahash_request_alloc(hash, GFP_KERNEL); 3381 if (!req) 3382 return; 3383 3384 ahash_request_set_callback(req, 0, NULL, NULL); 3385 3386 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3387 } 3388 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3389 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3390 */ 3391 smp_wmb(); 3392 tcp_md5sig_pool_populated = true; 3393 } 3394 3395 bool tcp_alloc_md5sig_pool(void) 3396 { 3397 if (unlikely(!tcp_md5sig_pool_populated)) { 3398 mutex_lock(&tcp_md5sig_mutex); 3399 3400 if (!tcp_md5sig_pool_populated) 3401 __tcp_alloc_md5sig_pool(); 3402 3403 mutex_unlock(&tcp_md5sig_mutex); 3404 } 3405 return tcp_md5sig_pool_populated; 3406 } 3407 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3408 3409 3410 /** 3411 * tcp_get_md5sig_pool - get md5sig_pool for this user 3412 * 3413 * We use percpu structure, so if we succeed, we exit with preemption 3414 * and BH disabled, to make sure another thread or softirq handling 3415 * wont try to get same context. 3416 */ 3417 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3418 { 3419 local_bh_disable(); 3420 3421 if (tcp_md5sig_pool_populated) { 3422 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3423 smp_rmb(); 3424 return this_cpu_ptr(&tcp_md5sig_pool); 3425 } 3426 local_bh_enable(); 3427 return NULL; 3428 } 3429 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3430 3431 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3432 const struct sk_buff *skb, unsigned int header_len) 3433 { 3434 struct scatterlist sg; 3435 const struct tcphdr *tp = tcp_hdr(skb); 3436 struct ahash_request *req = hp->md5_req; 3437 unsigned int i; 3438 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3439 skb_headlen(skb) - header_len : 0; 3440 const struct skb_shared_info *shi = skb_shinfo(skb); 3441 struct sk_buff *frag_iter; 3442 3443 sg_init_table(&sg, 1); 3444 3445 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3446 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3447 if (crypto_ahash_update(req)) 3448 return 1; 3449 3450 for (i = 0; i < shi->nr_frags; ++i) { 3451 const struct skb_frag_struct *f = &shi->frags[i]; 3452 unsigned int offset = f->page_offset; 3453 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3454 3455 sg_set_page(&sg, page, skb_frag_size(f), 3456 offset_in_page(offset)); 3457 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3458 if (crypto_ahash_update(req)) 3459 return 1; 3460 } 3461 3462 skb_walk_frags(skb, frag_iter) 3463 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3464 return 1; 3465 3466 return 0; 3467 } 3468 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3469 3470 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3471 { 3472 struct scatterlist sg; 3473 3474 sg_init_one(&sg, key->key, key->keylen); 3475 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3476 return crypto_ahash_update(hp->md5_req); 3477 } 3478 EXPORT_SYMBOL(tcp_md5_hash_key); 3479 3480 #endif 3481 3482 void tcp_done(struct sock *sk) 3483 { 3484 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3485 3486 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3487 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3488 3489 tcp_set_state(sk, TCP_CLOSE); 3490 tcp_clear_xmit_timers(sk); 3491 if (req) 3492 reqsk_fastopen_remove(sk, req, false); 3493 3494 sk->sk_shutdown = SHUTDOWN_MASK; 3495 3496 if (!sock_flag(sk, SOCK_DEAD)) 3497 sk->sk_state_change(sk); 3498 else 3499 inet_csk_destroy_sock(sk); 3500 } 3501 EXPORT_SYMBOL_GPL(tcp_done); 3502 3503 int tcp_abort(struct sock *sk, int err) 3504 { 3505 if (!sk_fullsock(sk)) { 3506 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3507 struct request_sock *req = inet_reqsk(sk); 3508 3509 local_bh_disable(); 3510 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3511 req); 3512 local_bh_enable(); 3513 return 0; 3514 } 3515 return -EOPNOTSUPP; 3516 } 3517 3518 /* Don't race with userspace socket closes such as tcp_close. */ 3519 lock_sock(sk); 3520 3521 if (sk->sk_state == TCP_LISTEN) { 3522 tcp_set_state(sk, TCP_CLOSE); 3523 inet_csk_listen_stop(sk); 3524 } 3525 3526 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3527 local_bh_disable(); 3528 bh_lock_sock(sk); 3529 3530 if (!sock_flag(sk, SOCK_DEAD)) { 3531 sk->sk_err = err; 3532 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3533 smp_wmb(); 3534 sk->sk_error_report(sk); 3535 if (tcp_need_reset(sk->sk_state)) 3536 tcp_send_active_reset(sk, GFP_ATOMIC); 3537 tcp_done(sk); 3538 } 3539 3540 bh_unlock_sock(sk); 3541 local_bh_enable(); 3542 release_sock(sk); 3543 return 0; 3544 } 3545 EXPORT_SYMBOL_GPL(tcp_abort); 3546 3547 extern struct tcp_congestion_ops tcp_reno; 3548 3549 static __initdata unsigned long thash_entries; 3550 static int __init set_thash_entries(char *str) 3551 { 3552 ssize_t ret; 3553 3554 if (!str) 3555 return 0; 3556 3557 ret = kstrtoul(str, 0, &thash_entries); 3558 if (ret) 3559 return 0; 3560 3561 return 1; 3562 } 3563 __setup("thash_entries=", set_thash_entries); 3564 3565 static void __init tcp_init_mem(void) 3566 { 3567 unsigned long limit = nr_free_buffer_pages() / 16; 3568 3569 limit = max(limit, 128UL); 3570 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3571 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3572 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3573 } 3574 3575 void __init tcp_init(void) 3576 { 3577 int max_rshare, max_wshare, cnt; 3578 unsigned long limit; 3579 unsigned int i; 3580 3581 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3582 FIELD_SIZEOF(struct sk_buff, cb)); 3583 3584 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3585 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3586 inet_hashinfo_init(&tcp_hashinfo); 3587 tcp_hashinfo.bind_bucket_cachep = 3588 kmem_cache_create("tcp_bind_bucket", 3589 sizeof(struct inet_bind_bucket), 0, 3590 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3591 3592 /* Size and allocate the main established and bind bucket 3593 * hash tables. 3594 * 3595 * The methodology is similar to that of the buffer cache. 3596 */ 3597 tcp_hashinfo.ehash = 3598 alloc_large_system_hash("TCP established", 3599 sizeof(struct inet_ehash_bucket), 3600 thash_entries, 3601 17, /* one slot per 128 KB of memory */ 3602 0, 3603 NULL, 3604 &tcp_hashinfo.ehash_mask, 3605 0, 3606 thash_entries ? 0 : 512 * 1024); 3607 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3608 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3609 3610 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3611 panic("TCP: failed to alloc ehash_locks"); 3612 tcp_hashinfo.bhash = 3613 alloc_large_system_hash("TCP bind", 3614 sizeof(struct inet_bind_hashbucket), 3615 tcp_hashinfo.ehash_mask + 1, 3616 17, /* one slot per 128 KB of memory */ 3617 0, 3618 &tcp_hashinfo.bhash_size, 3619 NULL, 3620 0, 3621 64 * 1024); 3622 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3623 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3624 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3625 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3626 } 3627 3628 3629 cnt = tcp_hashinfo.ehash_mask + 1; 3630 sysctl_tcp_max_orphans = cnt / 2; 3631 3632 tcp_init_mem(); 3633 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3634 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3635 max_wshare = min(4UL*1024*1024, limit); 3636 max_rshare = min(6UL*1024*1024, limit); 3637 3638 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3639 sysctl_tcp_wmem[1] = 16*1024; 3640 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3641 3642 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3643 sysctl_tcp_rmem[1] = 87380; 3644 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3645 3646 pr_info("Hash tables configured (established %u bind %u)\n", 3647 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3648 3649 tcp_v4_init(); 3650 tcp_metrics_init(); 3651 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3652 tcp_tasklet_init(); 3653 } 3654