1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 #include <linux/btf.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/mptcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 /* Track pending CMSGs. */ 285 enum { 286 TCP_CMSG_INQ = 1, 287 TCP_CMSG_TS = 2 288 }; 289 290 struct percpu_counter tcp_orphan_count; 291 EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 EXPORT_SYMBOL(sysctl_tcp_mem); 295 296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 297 EXPORT_SYMBOL(tcp_memory_allocated); 298 299 #if IS_ENABLED(CONFIG_SMC) 300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 301 EXPORT_SYMBOL(tcp_have_smc); 302 #endif 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 unsigned long tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 327 328 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 329 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 330 331 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 332 333 void tcp_enter_memory_pressure(struct sock *sk) 334 { 335 unsigned long val; 336 337 if (READ_ONCE(tcp_memory_pressure)) 338 return; 339 val = jiffies; 340 341 if (!val) 342 val--; 343 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 345 } 346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 347 348 void tcp_leave_memory_pressure(struct sock *sk) 349 { 350 unsigned long val; 351 352 if (!READ_ONCE(tcp_memory_pressure)) 353 return; 354 val = xchg(&tcp_memory_pressure, 0); 355 if (val) 356 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 357 jiffies_to_msecs(jiffies - val)); 358 } 359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 360 361 /* Convert seconds to retransmits based on initial and max timeout */ 362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 363 { 364 u8 res = 0; 365 366 if (seconds > 0) { 367 int period = timeout; 368 369 res = 1; 370 while (seconds > period && res < 255) { 371 res++; 372 timeout <<= 1; 373 if (timeout > rto_max) 374 timeout = rto_max; 375 period += timeout; 376 } 377 } 378 return res; 379 } 380 381 /* Convert retransmits to seconds based on initial and max timeout */ 382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 383 { 384 int period = 0; 385 386 if (retrans > 0) { 387 period = timeout; 388 while (--retrans) { 389 timeout <<= 1; 390 if (timeout > rto_max) 391 timeout = rto_max; 392 period += timeout; 393 } 394 } 395 return period; 396 } 397 398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 399 { 400 u32 rate = READ_ONCE(tp->rate_delivered); 401 u32 intv = READ_ONCE(tp->rate_interval_us); 402 u64 rate64 = 0; 403 404 if (rate && intv) { 405 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 406 do_div(rate64, intv); 407 } 408 return rate64; 409 } 410 411 /* Address-family independent initialization for a tcp_sock. 412 * 413 * NOTE: A lot of things set to zero explicitly by call to 414 * sk_alloc() so need not be done here. 415 */ 416 void tcp_init_sock(struct sock *sk) 417 { 418 struct inet_connection_sock *icsk = inet_csk(sk); 419 struct tcp_sock *tp = tcp_sk(sk); 420 421 tp->out_of_order_queue = RB_ROOT; 422 sk->tcp_rtx_queue = RB_ROOT; 423 tcp_init_xmit_timers(sk); 424 INIT_LIST_HEAD(&tp->tsq_node); 425 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 426 427 icsk->icsk_rto = TCP_TIMEOUT_INIT; 428 icsk->icsk_rto_min = TCP_RTO_MIN; 429 icsk->icsk_delack_max = TCP_DELACK_MAX; 430 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 431 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 432 433 /* So many TCP implementations out there (incorrectly) count the 434 * initial SYN frame in their delayed-ACK and congestion control 435 * algorithms that we must have the following bandaid to talk 436 * efficiently to them. -DaveM 437 */ 438 tp->snd_cwnd = TCP_INIT_CWND; 439 440 /* There's a bubble in the pipe until at least the first ACK. */ 441 tp->app_limited = ~0U; 442 443 /* See draft-stevens-tcpca-spec-01 for discussion of the 444 * initialization of these values. 445 */ 446 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 447 tp->snd_cwnd_clamp = ~0; 448 tp->mss_cache = TCP_MSS_DEFAULT; 449 450 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 451 tcp_assign_congestion_control(sk); 452 453 tp->tsoffset = 0; 454 tp->rack.reo_wnd_steps = 1; 455 456 sk->sk_write_space = sk_stream_write_space; 457 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 458 459 icsk->icsk_sync_mss = tcp_sync_mss; 460 461 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 462 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 463 464 sk_sockets_allocated_inc(sk); 465 sk->sk_route_forced_caps = NETIF_F_GSO; 466 } 467 EXPORT_SYMBOL(tcp_init_sock); 468 469 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 470 { 471 struct sk_buff *skb = tcp_write_queue_tail(sk); 472 473 if (tsflags && skb) { 474 struct skb_shared_info *shinfo = skb_shinfo(skb); 475 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 476 477 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 478 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 479 tcb->txstamp_ack = 1; 480 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 481 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 482 } 483 } 484 485 static bool tcp_stream_is_readable(struct sock *sk, int target) 486 { 487 if (tcp_epollin_ready(sk, target)) 488 return true; 489 490 if (sk->sk_prot->stream_memory_read) 491 return sk->sk_prot->stream_memory_read(sk); 492 return false; 493 } 494 495 /* 496 * Wait for a TCP event. 497 * 498 * Note that we don't need to lock the socket, as the upper poll layers 499 * take care of normal races (between the test and the event) and we don't 500 * go look at any of the socket buffers directly. 501 */ 502 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 503 { 504 __poll_t mask; 505 struct sock *sk = sock->sk; 506 const struct tcp_sock *tp = tcp_sk(sk); 507 int state; 508 509 sock_poll_wait(file, sock, wait); 510 511 state = inet_sk_state_load(sk); 512 if (state == TCP_LISTEN) 513 return inet_csk_listen_poll(sk); 514 515 /* Socket is not locked. We are protected from async events 516 * by poll logic and correct handling of state changes 517 * made by other threads is impossible in any case. 518 */ 519 520 mask = 0; 521 522 /* 523 * EPOLLHUP is certainly not done right. But poll() doesn't 524 * have a notion of HUP in just one direction, and for a 525 * socket the read side is more interesting. 526 * 527 * Some poll() documentation says that EPOLLHUP is incompatible 528 * with the EPOLLOUT/POLLWR flags, so somebody should check this 529 * all. But careful, it tends to be safer to return too many 530 * bits than too few, and you can easily break real applications 531 * if you don't tell them that something has hung up! 532 * 533 * Check-me. 534 * 535 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 536 * our fs/select.c). It means that after we received EOF, 537 * poll always returns immediately, making impossible poll() on write() 538 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 539 * if and only if shutdown has been made in both directions. 540 * Actually, it is interesting to look how Solaris and DUX 541 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 542 * then we could set it on SND_SHUTDOWN. BTW examples given 543 * in Stevens' books assume exactly this behaviour, it explains 544 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 545 * 546 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 547 * blocking on fresh not-connected or disconnected socket. --ANK 548 */ 549 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 550 mask |= EPOLLHUP; 551 if (sk->sk_shutdown & RCV_SHUTDOWN) 552 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 553 554 /* Connected or passive Fast Open socket? */ 555 if (state != TCP_SYN_SENT && 556 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 557 int target = sock_rcvlowat(sk, 0, INT_MAX); 558 559 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 560 !sock_flag(sk, SOCK_URGINLINE) && 561 tp->urg_data) 562 target++; 563 564 if (tcp_stream_is_readable(sk, target)) 565 mask |= EPOLLIN | EPOLLRDNORM; 566 567 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 568 if (__sk_stream_is_writeable(sk, 1)) { 569 mask |= EPOLLOUT | EPOLLWRNORM; 570 } else { /* send SIGIO later */ 571 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 572 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 573 574 /* Race breaker. If space is freed after 575 * wspace test but before the flags are set, 576 * IO signal will be lost. Memory barrier 577 * pairs with the input side. 578 */ 579 smp_mb__after_atomic(); 580 if (__sk_stream_is_writeable(sk, 1)) 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 } 583 } else 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 586 if (tp->urg_data & TCP_URG_VALID) 587 mask |= EPOLLPRI; 588 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 589 /* Active TCP fastopen socket with defer_connect 590 * Return EPOLLOUT so application can call write() 591 * in order for kernel to generate SYN+data 592 */ 593 mask |= EPOLLOUT | EPOLLWRNORM; 594 } 595 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 596 smp_rmb(); 597 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = tp->urg_data && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 return put_user(answ, (int __user *)arg); 647 } 648 EXPORT_SYMBOL(tcp_ioctl); 649 650 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 651 { 652 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 653 tp->pushed_seq = tp->write_seq; 654 } 655 656 static inline bool forced_push(const struct tcp_sock *tp) 657 { 658 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 659 } 660 661 static void skb_entail(struct sock *sk, struct sk_buff *skb) 662 { 663 struct tcp_sock *tp = tcp_sk(sk); 664 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 665 666 skb->csum = 0; 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 tcb->sacked = 0; 670 __skb_header_release(skb); 671 tcp_add_write_queue_tail(sk, skb); 672 sk_wmem_queued_add(sk, skb->truesize); 673 sk_mem_charge(sk, skb->truesize); 674 if (tp->nonagle & TCP_NAGLE_PUSH) 675 tp->nonagle &= ~TCP_NAGLE_PUSH; 676 677 tcp_slow_start_after_idle_check(sk); 678 } 679 680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 681 { 682 if (flags & MSG_OOB) 683 tp->snd_up = tp->write_seq; 684 } 685 686 /* If a not yet filled skb is pushed, do not send it if 687 * we have data packets in Qdisc or NIC queues : 688 * Because TX completion will happen shortly, it gives a chance 689 * to coalesce future sendmsg() payload into this skb, without 690 * need for a timer, and with no latency trade off. 691 * As packets containing data payload have a bigger truesize 692 * than pure acks (dataless) packets, the last checks prevent 693 * autocorking if we only have an ACK in Qdisc/NIC queues, 694 * or if TX completion was delayed after we processed ACK packet. 695 */ 696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 697 int size_goal) 698 { 699 return skb->len < size_goal && 700 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 701 !tcp_rtx_queue_empty(sk) && 702 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 } 726 /* It is possible TX completion already happened 727 * before we set TSQ_THROTTLED. 728 */ 729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 730 return; 731 } 732 733 if (flags & MSG_MORE) 734 nonagle = TCP_NAGLE_CORK; 735 736 __tcp_push_pending_frames(sk, mss_now, nonagle); 737 } 738 739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 740 unsigned int offset, size_t len) 741 { 742 struct tcp_splice_state *tss = rd_desc->arg.data; 743 int ret; 744 745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 746 min(rd_desc->count, len), tss->flags); 747 if (ret > 0) 748 rd_desc->count -= ret; 749 return ret; 750 } 751 752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 753 { 754 /* Store TCP splice context information in read_descriptor_t. */ 755 read_descriptor_t rd_desc = { 756 .arg.data = tss, 757 .count = tss->len, 758 }; 759 760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 761 } 762 763 /** 764 * tcp_splice_read - splice data from TCP socket to a pipe 765 * @sock: socket to splice from 766 * @ppos: position (not valid) 767 * @pipe: pipe to splice to 768 * @len: number of bytes to splice 769 * @flags: splice modifier flags 770 * 771 * Description: 772 * Will read pages from given socket and fill them into a pipe. 773 * 774 **/ 775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 776 struct pipe_inode_info *pipe, size_t len, 777 unsigned int flags) 778 { 779 struct sock *sk = sock->sk; 780 struct tcp_splice_state tss = { 781 .pipe = pipe, 782 .len = len, 783 .flags = flags, 784 }; 785 long timeo; 786 ssize_t spliced; 787 int ret; 788 789 sock_rps_record_flow(sk); 790 /* 791 * We can't seek on a socket input 792 */ 793 if (unlikely(*ppos)) 794 return -ESPIPE; 795 796 ret = spliced = 0; 797 798 lock_sock(sk); 799 800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 801 while (tss.len) { 802 ret = __tcp_splice_read(sk, &tss); 803 if (ret < 0) 804 break; 805 else if (!ret) { 806 if (spliced) 807 break; 808 if (sock_flag(sk, SOCK_DONE)) 809 break; 810 if (sk->sk_err) { 811 ret = sock_error(sk); 812 break; 813 } 814 if (sk->sk_shutdown & RCV_SHUTDOWN) 815 break; 816 if (sk->sk_state == TCP_CLOSE) { 817 /* 818 * This occurs when user tries to read 819 * from never connected socket. 820 */ 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 if (likely(!size)) { 870 skb = sk->sk_tx_skb_cache; 871 if (skb) { 872 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 873 sk->sk_tx_skb_cache = NULL; 874 pskb_trim(skb, 0); 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 skb_shinfo(skb)->tx_flags = 0; 877 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 878 return skb; 879 } 880 } 881 /* The TCP header must be at least 32-bit aligned. */ 882 size = ALIGN(size, 4); 883 884 if (unlikely(tcp_under_memory_pressure(sk))) 885 sk_mem_reclaim_partial(sk); 886 887 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 888 if (likely(skb)) { 889 bool mem_scheduled; 890 891 if (force_schedule) { 892 mem_scheduled = true; 893 sk_forced_mem_schedule(sk, skb->truesize); 894 } else { 895 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 896 } 897 if (likely(mem_scheduled)) { 898 skb_reserve(skb, sk->sk_prot->max_header); 899 /* 900 * Make sure that we have exactly size bytes 901 * available to the caller, no more, no less. 902 */ 903 skb->reserved_tailroom = skb->end - skb->tail - size; 904 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 905 return skb; 906 } 907 __kfree_skb(skb); 908 } else { 909 sk->sk_prot->enter_memory_pressure(sk); 910 sk_stream_moderate_sndbuf(sk); 911 } 912 return NULL; 913 } 914 915 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 916 int large_allowed) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 u32 new_size_goal, size_goal; 920 921 if (!large_allowed) 922 return mss_now; 923 924 /* Note : tcp_tso_autosize() will eventually split this later */ 925 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 926 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 927 928 /* We try hard to avoid divides here */ 929 size_goal = tp->gso_segs * mss_now; 930 if (unlikely(new_size_goal < size_goal || 931 new_size_goal >= size_goal + mss_now)) { 932 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 933 sk->sk_gso_max_segs); 934 size_goal = tp->gso_segs * mss_now; 935 } 936 937 return max(size_goal, mss_now); 938 } 939 940 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 941 { 942 int mss_now; 943 944 mss_now = tcp_current_mss(sk); 945 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 946 947 return mss_now; 948 } 949 950 /* In some cases, both sendpage() and sendmsg() could have added 951 * an skb to the write queue, but failed adding payload on it. 952 * We need to remove it to consume less memory, but more 953 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 954 * users. 955 */ 956 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 957 { 958 if (skb && !skb->len) { 959 tcp_unlink_write_queue(skb, sk); 960 if (tcp_write_queue_empty(sk)) 961 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 962 sk_wmem_free_skb(sk, skb); 963 } 964 } 965 966 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 967 struct page *page, int offset, size_t *size) 968 { 969 struct sk_buff *skb = tcp_write_queue_tail(sk); 970 struct tcp_sock *tp = tcp_sk(sk); 971 bool can_coalesce; 972 int copy, i; 973 974 if (!skb || (copy = size_goal - skb->len) <= 0 || 975 !tcp_skb_can_collapse_to(skb)) { 976 new_segment: 977 if (!sk_stream_memory_free(sk)) 978 return NULL; 979 980 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 981 tcp_rtx_and_write_queues_empty(sk)); 982 if (!skb) 983 return NULL; 984 985 #ifdef CONFIG_TLS_DEVICE 986 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 987 #endif 988 skb_entail(sk, skb); 989 copy = size_goal; 990 } 991 992 if (copy > *size) 993 copy = *size; 994 995 i = skb_shinfo(skb)->nr_frags; 996 can_coalesce = skb_can_coalesce(skb, i, page, offset); 997 if (!can_coalesce && i >= sysctl_max_skb_frags) { 998 tcp_mark_push(tp, skb); 999 goto new_segment; 1000 } 1001 if (!sk_wmem_schedule(sk, copy)) 1002 return NULL; 1003 1004 if (can_coalesce) { 1005 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1006 } else { 1007 get_page(page); 1008 skb_fill_page_desc(skb, i, page, offset, copy); 1009 } 1010 1011 if (!(flags & MSG_NO_SHARED_FRAGS)) 1012 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1013 1014 skb->len += copy; 1015 skb->data_len += copy; 1016 skb->truesize += copy; 1017 sk_wmem_queued_add(sk, copy); 1018 sk_mem_charge(sk, copy); 1019 skb->ip_summed = CHECKSUM_PARTIAL; 1020 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1021 TCP_SKB_CB(skb)->end_seq += copy; 1022 tcp_skb_pcount_set(skb, 0); 1023 1024 *size = copy; 1025 return skb; 1026 } 1027 1028 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1029 size_t size, int flags) 1030 { 1031 struct tcp_sock *tp = tcp_sk(sk); 1032 int mss_now, size_goal; 1033 int err; 1034 ssize_t copied; 1035 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1036 1037 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1038 WARN_ONCE(!sendpage_ok(page), 1039 "page must not be a Slab one and have page_count > 0")) 1040 return -EINVAL; 1041 1042 /* Wait for a connection to finish. One exception is TCP Fast Open 1043 * (passive side) where data is allowed to be sent before a connection 1044 * is fully established. 1045 */ 1046 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1047 !tcp_passive_fastopen(sk)) { 1048 err = sk_stream_wait_connect(sk, &timeo); 1049 if (err != 0) 1050 goto out_err; 1051 } 1052 1053 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1054 1055 mss_now = tcp_send_mss(sk, &size_goal, flags); 1056 copied = 0; 1057 1058 err = -EPIPE; 1059 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1060 goto out_err; 1061 1062 while (size > 0) { 1063 struct sk_buff *skb; 1064 size_t copy = size; 1065 1066 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1067 if (!skb) 1068 goto wait_for_space; 1069 1070 if (!copied) 1071 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1072 1073 copied += copy; 1074 offset += copy; 1075 size -= copy; 1076 if (!size) 1077 goto out; 1078 1079 if (skb->len < size_goal || (flags & MSG_OOB)) 1080 continue; 1081 1082 if (forced_push(tp)) { 1083 tcp_mark_push(tp, skb); 1084 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1085 } else if (skb == tcp_send_head(sk)) 1086 tcp_push_one(sk, mss_now); 1087 continue; 1088 1089 wait_for_space: 1090 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1091 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1092 TCP_NAGLE_PUSH, size_goal); 1093 1094 err = sk_stream_wait_memory(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 1098 mss_now = tcp_send_mss(sk, &size_goal, flags); 1099 } 1100 1101 out: 1102 if (copied) { 1103 tcp_tx_timestamp(sk, sk->sk_tsflags); 1104 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1105 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1106 } 1107 return copied; 1108 1109 do_error: 1110 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1111 if (copied) 1112 goto out; 1113 out_err: 1114 /* make sure we wake any epoll edge trigger waiter */ 1115 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1116 sk->sk_write_space(sk); 1117 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1118 } 1119 return sk_stream_error(sk, flags, err); 1120 } 1121 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1122 1123 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1124 size_t size, int flags) 1125 { 1126 if (!(sk->sk_route_caps & NETIF_F_SG)) 1127 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1128 1129 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1130 1131 return do_tcp_sendpages(sk, page, offset, size, flags); 1132 } 1133 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1134 1135 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1136 size_t size, int flags) 1137 { 1138 int ret; 1139 1140 lock_sock(sk); 1141 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1142 release_sock(sk); 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(tcp_sendpage); 1147 1148 void tcp_free_fastopen_req(struct tcp_sock *tp) 1149 { 1150 if (tp->fastopen_req) { 1151 kfree(tp->fastopen_req); 1152 tp->fastopen_req = NULL; 1153 } 1154 } 1155 1156 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1157 int *copied, size_t size, 1158 struct ubuf_info *uarg) 1159 { 1160 struct tcp_sock *tp = tcp_sk(sk); 1161 struct inet_sock *inet = inet_sk(sk); 1162 struct sockaddr *uaddr = msg->msg_name; 1163 int err, flags; 1164 1165 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1166 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1167 uaddr->sa_family == AF_UNSPEC)) 1168 return -EOPNOTSUPP; 1169 if (tp->fastopen_req) 1170 return -EALREADY; /* Another Fast Open is in progress */ 1171 1172 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1173 sk->sk_allocation); 1174 if (unlikely(!tp->fastopen_req)) 1175 return -ENOBUFS; 1176 tp->fastopen_req->data = msg; 1177 tp->fastopen_req->size = size; 1178 tp->fastopen_req->uarg = uarg; 1179 1180 if (inet->defer_connect) { 1181 err = tcp_connect(sk); 1182 /* Same failure procedure as in tcp_v4/6_connect */ 1183 if (err) { 1184 tcp_set_state(sk, TCP_CLOSE); 1185 inet->inet_dport = 0; 1186 sk->sk_route_caps = 0; 1187 } 1188 } 1189 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1190 err = __inet_stream_connect(sk->sk_socket, uaddr, 1191 msg->msg_namelen, flags, 1); 1192 /* fastopen_req could already be freed in __inet_stream_connect 1193 * if the connection times out or gets rst 1194 */ 1195 if (tp->fastopen_req) { 1196 *copied = tp->fastopen_req->copied; 1197 tcp_free_fastopen_req(tp); 1198 inet->defer_connect = 0; 1199 } 1200 return err; 1201 } 1202 1203 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 struct ubuf_info *uarg = NULL; 1207 struct sk_buff *skb; 1208 struct sockcm_cookie sockc; 1209 int flags, err, copied = 0; 1210 int mss_now = 0, size_goal, copied_syn = 0; 1211 int process_backlog = 0; 1212 bool zc = false; 1213 long timeo; 1214 1215 flags = msg->msg_flags; 1216 1217 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1218 skb = tcp_write_queue_tail(sk); 1219 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1220 if (!uarg) { 1221 err = -ENOBUFS; 1222 goto out_err; 1223 } 1224 1225 zc = sk->sk_route_caps & NETIF_F_SG; 1226 if (!zc) 1227 uarg->zerocopy = 0; 1228 } 1229 1230 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1231 !tp->repair) { 1232 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1233 if (err == -EINPROGRESS && copied_syn > 0) 1234 goto out; 1235 else if (err) 1236 goto out_err; 1237 } 1238 1239 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1240 1241 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1242 1243 /* Wait for a connection to finish. One exception is TCP Fast Open 1244 * (passive side) where data is allowed to be sent before a connection 1245 * is fully established. 1246 */ 1247 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1248 !tcp_passive_fastopen(sk)) { 1249 err = sk_stream_wait_connect(sk, &timeo); 1250 if (err != 0) 1251 goto do_error; 1252 } 1253 1254 if (unlikely(tp->repair)) { 1255 if (tp->repair_queue == TCP_RECV_QUEUE) { 1256 copied = tcp_send_rcvq(sk, msg, size); 1257 goto out_nopush; 1258 } 1259 1260 err = -EINVAL; 1261 if (tp->repair_queue == TCP_NO_QUEUE) 1262 goto out_err; 1263 1264 /* 'common' sending to sendq */ 1265 } 1266 1267 sockcm_init(&sockc, sk); 1268 if (msg->msg_controllen) { 1269 err = sock_cmsg_send(sk, msg, &sockc); 1270 if (unlikely(err)) { 1271 err = -EINVAL; 1272 goto out_err; 1273 } 1274 } 1275 1276 /* This should be in poll */ 1277 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1278 1279 /* Ok commence sending. */ 1280 copied = 0; 1281 1282 restart: 1283 mss_now = tcp_send_mss(sk, &size_goal, flags); 1284 1285 err = -EPIPE; 1286 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1287 goto do_error; 1288 1289 while (msg_data_left(msg)) { 1290 int copy = 0; 1291 1292 skb = tcp_write_queue_tail(sk); 1293 if (skb) 1294 copy = size_goal - skb->len; 1295 1296 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1297 bool first_skb; 1298 1299 new_segment: 1300 if (!sk_stream_memory_free(sk)) 1301 goto wait_for_space; 1302 1303 if (unlikely(process_backlog >= 16)) { 1304 process_backlog = 0; 1305 if (sk_flush_backlog(sk)) 1306 goto restart; 1307 } 1308 first_skb = tcp_rtx_and_write_queues_empty(sk); 1309 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1310 first_skb); 1311 if (!skb) 1312 goto wait_for_space; 1313 1314 process_backlog++; 1315 skb->ip_summed = CHECKSUM_PARTIAL; 1316 1317 skb_entail(sk, skb); 1318 copy = size_goal; 1319 1320 /* All packets are restored as if they have 1321 * already been sent. skb_mstamp_ns isn't set to 1322 * avoid wrong rtt estimation. 1323 */ 1324 if (tp->repair) 1325 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1326 } 1327 1328 /* Try to append data to the end of skb. */ 1329 if (copy > msg_data_left(msg)) 1330 copy = msg_data_left(msg); 1331 1332 /* Where to copy to? */ 1333 if (skb_availroom(skb) > 0 && !zc) { 1334 /* We have some space in skb head. Superb! */ 1335 copy = min_t(int, copy, skb_availroom(skb)); 1336 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1337 if (err) 1338 goto do_fault; 1339 } else if (!zc) { 1340 bool merge = true; 1341 int i = skb_shinfo(skb)->nr_frags; 1342 struct page_frag *pfrag = sk_page_frag(sk); 1343 1344 if (!sk_page_frag_refill(sk, pfrag)) 1345 goto wait_for_space; 1346 1347 if (!skb_can_coalesce(skb, i, pfrag->page, 1348 pfrag->offset)) { 1349 if (i >= sysctl_max_skb_frags) { 1350 tcp_mark_push(tp, skb); 1351 goto new_segment; 1352 } 1353 merge = false; 1354 } 1355 1356 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1357 1358 if (!sk_wmem_schedule(sk, copy)) 1359 goto wait_for_space; 1360 1361 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1362 pfrag->page, 1363 pfrag->offset, 1364 copy); 1365 if (err) 1366 goto do_error; 1367 1368 /* Update the skb. */ 1369 if (merge) { 1370 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1371 } else { 1372 skb_fill_page_desc(skb, i, pfrag->page, 1373 pfrag->offset, copy); 1374 page_ref_inc(pfrag->page); 1375 } 1376 pfrag->offset += copy; 1377 } else { 1378 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1379 if (err == -EMSGSIZE || err == -EEXIST) { 1380 tcp_mark_push(tp, skb); 1381 goto new_segment; 1382 } 1383 if (err < 0) 1384 goto do_error; 1385 copy = err; 1386 } 1387 1388 if (!copied) 1389 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1390 1391 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1392 TCP_SKB_CB(skb)->end_seq += copy; 1393 tcp_skb_pcount_set(skb, 0); 1394 1395 copied += copy; 1396 if (!msg_data_left(msg)) { 1397 if (unlikely(flags & MSG_EOR)) 1398 TCP_SKB_CB(skb)->eor = 1; 1399 goto out; 1400 } 1401 1402 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1403 continue; 1404 1405 if (forced_push(tp)) { 1406 tcp_mark_push(tp, skb); 1407 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1408 } else if (skb == tcp_send_head(sk)) 1409 tcp_push_one(sk, mss_now); 1410 continue; 1411 1412 wait_for_space: 1413 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1414 if (copied) 1415 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1416 TCP_NAGLE_PUSH, size_goal); 1417 1418 err = sk_stream_wait_memory(sk, &timeo); 1419 if (err != 0) 1420 goto do_error; 1421 1422 mss_now = tcp_send_mss(sk, &size_goal, flags); 1423 } 1424 1425 out: 1426 if (copied) { 1427 tcp_tx_timestamp(sk, sockc.tsflags); 1428 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1429 } 1430 out_nopush: 1431 net_zcopy_put(uarg); 1432 return copied + copied_syn; 1433 1434 do_error: 1435 skb = tcp_write_queue_tail(sk); 1436 do_fault: 1437 tcp_remove_empty_skb(sk, skb); 1438 1439 if (copied + copied_syn) 1440 goto out; 1441 out_err: 1442 net_zcopy_put_abort(uarg, true); 1443 err = sk_stream_error(sk, flags, err); 1444 /* make sure we wake any epoll edge trigger waiter */ 1445 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1446 sk->sk_write_space(sk); 1447 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1448 } 1449 return err; 1450 } 1451 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1452 1453 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1454 { 1455 int ret; 1456 1457 lock_sock(sk); 1458 ret = tcp_sendmsg_locked(sk, msg, size); 1459 release_sock(sk); 1460 1461 return ret; 1462 } 1463 EXPORT_SYMBOL(tcp_sendmsg); 1464 1465 /* 1466 * Handle reading urgent data. BSD has very simple semantics for 1467 * this, no blocking and very strange errors 8) 1468 */ 1469 1470 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1471 { 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 1474 /* No URG data to read. */ 1475 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1476 tp->urg_data == TCP_URG_READ) 1477 return -EINVAL; /* Yes this is right ! */ 1478 1479 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1480 return -ENOTCONN; 1481 1482 if (tp->urg_data & TCP_URG_VALID) { 1483 int err = 0; 1484 char c = tp->urg_data; 1485 1486 if (!(flags & MSG_PEEK)) 1487 tp->urg_data = TCP_URG_READ; 1488 1489 /* Read urgent data. */ 1490 msg->msg_flags |= MSG_OOB; 1491 1492 if (len > 0) { 1493 if (!(flags & MSG_TRUNC)) 1494 err = memcpy_to_msg(msg, &c, 1); 1495 len = 1; 1496 } else 1497 msg->msg_flags |= MSG_TRUNC; 1498 1499 return err ? -EFAULT : len; 1500 } 1501 1502 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1503 return 0; 1504 1505 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1506 * the available implementations agree in this case: 1507 * this call should never block, independent of the 1508 * blocking state of the socket. 1509 * Mike <pall@rz.uni-karlsruhe.de> 1510 */ 1511 return -EAGAIN; 1512 } 1513 1514 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1515 { 1516 struct sk_buff *skb; 1517 int copied = 0, err = 0; 1518 1519 /* XXX -- need to support SO_PEEK_OFF */ 1520 1521 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1522 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1523 if (err) 1524 return err; 1525 copied += skb->len; 1526 } 1527 1528 skb_queue_walk(&sk->sk_write_queue, skb) { 1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1530 if (err) 1531 break; 1532 1533 copied += skb->len; 1534 } 1535 1536 return err ?: copied; 1537 } 1538 1539 /* Clean up the receive buffer for full frames taken by the user, 1540 * then send an ACK if necessary. COPIED is the number of bytes 1541 * tcp_recvmsg has given to the user so far, it speeds up the 1542 * calculation of whether or not we must ACK for the sake of 1543 * a window update. 1544 */ 1545 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1546 { 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 bool time_to_ack = false; 1549 1550 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1551 1552 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1554 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1555 1556 if (inet_csk_ack_scheduled(sk)) { 1557 const struct inet_connection_sock *icsk = inet_csk(sk); 1558 1559 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1560 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1561 /* 1562 * If this read emptied read buffer, we send ACK, if 1563 * connection is not bidirectional, user drained 1564 * receive buffer and there was a small segment 1565 * in queue. 1566 */ 1567 (copied > 0 && 1568 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1569 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1570 !inet_csk_in_pingpong_mode(sk))) && 1571 !atomic_read(&sk->sk_rmem_alloc))) 1572 time_to_ack = true; 1573 } 1574 1575 /* We send an ACK if we can now advertise a non-zero window 1576 * which has been raised "significantly". 1577 * 1578 * Even if window raised up to infinity, do not send window open ACK 1579 * in states, where we will not receive more. It is useless. 1580 */ 1581 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1582 __u32 rcv_window_now = tcp_receive_window(tp); 1583 1584 /* Optimize, __tcp_select_window() is not cheap. */ 1585 if (2*rcv_window_now <= tp->window_clamp) { 1586 __u32 new_window = __tcp_select_window(sk); 1587 1588 /* Send ACK now, if this read freed lots of space 1589 * in our buffer. Certainly, new_window is new window. 1590 * We can advertise it now, if it is not less than current one. 1591 * "Lots" means "at least twice" here. 1592 */ 1593 if (new_window && new_window >= 2 * rcv_window_now) 1594 time_to_ack = true; 1595 } 1596 } 1597 if (time_to_ack) 1598 tcp_send_ack(sk); 1599 } 1600 1601 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1602 { 1603 struct sk_buff *skb; 1604 u32 offset; 1605 1606 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1607 offset = seq - TCP_SKB_CB(skb)->seq; 1608 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1609 pr_err_once("%s: found a SYN, please report !\n", __func__); 1610 offset--; 1611 } 1612 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1613 *off = offset; 1614 return skb; 1615 } 1616 /* This looks weird, but this can happen if TCP collapsing 1617 * splitted a fat GRO packet, while we released socket lock 1618 * in skb_splice_bits() 1619 */ 1620 sk_eat_skb(sk, skb); 1621 } 1622 return NULL; 1623 } 1624 1625 /* 1626 * This routine provides an alternative to tcp_recvmsg() for routines 1627 * that would like to handle copying from skbuffs directly in 'sendfile' 1628 * fashion. 1629 * Note: 1630 * - It is assumed that the socket was locked by the caller. 1631 * - The routine does not block. 1632 * - At present, there is no support for reading OOB data 1633 * or for 'peeking' the socket using this routine 1634 * (although both would be easy to implement). 1635 */ 1636 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1637 sk_read_actor_t recv_actor) 1638 { 1639 struct sk_buff *skb; 1640 struct tcp_sock *tp = tcp_sk(sk); 1641 u32 seq = tp->copied_seq; 1642 u32 offset; 1643 int copied = 0; 1644 1645 if (sk->sk_state == TCP_LISTEN) 1646 return -ENOTCONN; 1647 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1648 if (offset < skb->len) { 1649 int used; 1650 size_t len; 1651 1652 len = skb->len - offset; 1653 /* Stop reading if we hit a patch of urgent data */ 1654 if (tp->urg_data) { 1655 u32 urg_offset = tp->urg_seq - seq; 1656 if (urg_offset < len) 1657 len = urg_offset; 1658 if (!len) 1659 break; 1660 } 1661 used = recv_actor(desc, skb, offset, len); 1662 if (used <= 0) { 1663 if (!copied) 1664 copied = used; 1665 break; 1666 } else if (used <= len) { 1667 seq += used; 1668 copied += used; 1669 offset += used; 1670 } 1671 /* If recv_actor drops the lock (e.g. TCP splice 1672 * receive) the skb pointer might be invalid when 1673 * getting here: tcp_collapse might have deleted it 1674 * while aggregating skbs from the socket queue. 1675 */ 1676 skb = tcp_recv_skb(sk, seq - 1, &offset); 1677 if (!skb) 1678 break; 1679 /* TCP coalescing might have appended data to the skb. 1680 * Try to splice more frags 1681 */ 1682 if (offset + 1 != skb->len) 1683 continue; 1684 } 1685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1686 sk_eat_skb(sk, skb); 1687 ++seq; 1688 break; 1689 } 1690 sk_eat_skb(sk, skb); 1691 if (!desc->count) 1692 break; 1693 WRITE_ONCE(tp->copied_seq, seq); 1694 } 1695 WRITE_ONCE(tp->copied_seq, seq); 1696 1697 tcp_rcv_space_adjust(sk); 1698 1699 /* Clean up data we have read: This will do ACK frames. */ 1700 if (copied > 0) { 1701 tcp_recv_skb(sk, seq, &offset); 1702 tcp_cleanup_rbuf(sk, copied); 1703 } 1704 return copied; 1705 } 1706 EXPORT_SYMBOL(tcp_read_sock); 1707 1708 int tcp_peek_len(struct socket *sock) 1709 { 1710 return tcp_inq(sock->sk); 1711 } 1712 EXPORT_SYMBOL(tcp_peek_len); 1713 1714 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1715 int tcp_set_rcvlowat(struct sock *sk, int val) 1716 { 1717 int cap; 1718 1719 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1720 cap = sk->sk_rcvbuf >> 1; 1721 else 1722 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1723 val = min(val, cap); 1724 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1725 1726 /* Check if we need to signal EPOLLIN right now */ 1727 tcp_data_ready(sk); 1728 1729 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1730 return 0; 1731 1732 val <<= 1; 1733 if (val > sk->sk_rcvbuf) { 1734 WRITE_ONCE(sk->sk_rcvbuf, val); 1735 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1736 } 1737 return 0; 1738 } 1739 EXPORT_SYMBOL(tcp_set_rcvlowat); 1740 1741 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1742 struct scm_timestamping_internal *tss) 1743 { 1744 if (skb->tstamp) 1745 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1746 else 1747 tss->ts[0] = (struct timespec64) {0}; 1748 1749 if (skb_hwtstamps(skb)->hwtstamp) 1750 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1751 else 1752 tss->ts[2] = (struct timespec64) {0}; 1753 } 1754 1755 #ifdef CONFIG_MMU 1756 static const struct vm_operations_struct tcp_vm_ops = { 1757 }; 1758 1759 int tcp_mmap(struct file *file, struct socket *sock, 1760 struct vm_area_struct *vma) 1761 { 1762 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1763 return -EPERM; 1764 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1765 1766 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1767 vma->vm_flags |= VM_MIXEDMAP; 1768 1769 vma->vm_ops = &tcp_vm_ops; 1770 return 0; 1771 } 1772 EXPORT_SYMBOL(tcp_mmap); 1773 1774 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1775 u32 *offset_frag) 1776 { 1777 skb_frag_t *frag; 1778 1779 offset_skb -= skb_headlen(skb); 1780 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1781 return NULL; 1782 1783 frag = skb_shinfo(skb)->frags; 1784 while (offset_skb) { 1785 if (skb_frag_size(frag) > offset_skb) { 1786 *offset_frag = offset_skb; 1787 return frag; 1788 } 1789 offset_skb -= skb_frag_size(frag); 1790 ++frag; 1791 } 1792 *offset_frag = 0; 1793 return frag; 1794 } 1795 1796 static bool can_map_frag(const skb_frag_t *frag) 1797 { 1798 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1799 } 1800 1801 static int find_next_mappable_frag(const skb_frag_t *frag, 1802 int remaining_in_skb) 1803 { 1804 int offset = 0; 1805 1806 if (likely(can_map_frag(frag))) 1807 return 0; 1808 1809 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1810 offset += skb_frag_size(frag); 1811 ++frag; 1812 } 1813 return offset; 1814 } 1815 1816 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1817 struct tcp_zerocopy_receive *zc, 1818 struct sk_buff *skb, u32 offset) 1819 { 1820 u32 frag_offset, partial_frag_remainder = 0; 1821 int mappable_offset; 1822 skb_frag_t *frag; 1823 1824 /* worst case: skip to next skb. try to improve on this case below */ 1825 zc->recv_skip_hint = skb->len - offset; 1826 1827 /* Find the frag containing this offset (and how far into that frag) */ 1828 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1829 if (!frag) 1830 return; 1831 1832 if (frag_offset) { 1833 struct skb_shared_info *info = skb_shinfo(skb); 1834 1835 /* We read part of the last frag, must recvmsg() rest of skb. */ 1836 if (frag == &info->frags[info->nr_frags - 1]) 1837 return; 1838 1839 /* Else, we must at least read the remainder in this frag. */ 1840 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1841 zc->recv_skip_hint -= partial_frag_remainder; 1842 ++frag; 1843 } 1844 1845 /* partial_frag_remainder: If part way through a frag, must read rest. 1846 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1847 * in partial_frag_remainder. 1848 */ 1849 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1850 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1851 } 1852 1853 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1854 int nonblock, int flags, 1855 struct scm_timestamping_internal *tss, 1856 int *cmsg_flags); 1857 static int receive_fallback_to_copy(struct sock *sk, 1858 struct tcp_zerocopy_receive *zc, int inq, 1859 struct scm_timestamping_internal *tss) 1860 { 1861 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1862 struct msghdr msg = {}; 1863 struct iovec iov; 1864 int err; 1865 1866 zc->length = 0; 1867 zc->recv_skip_hint = 0; 1868 1869 if (copy_address != zc->copybuf_address) 1870 return -EINVAL; 1871 1872 err = import_single_range(READ, (void __user *)copy_address, 1873 inq, &iov, &msg.msg_iter); 1874 if (err) 1875 return err; 1876 1877 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1878 tss, &zc->msg_flags); 1879 if (err < 0) 1880 return err; 1881 1882 zc->copybuf_len = err; 1883 if (likely(zc->copybuf_len)) { 1884 struct sk_buff *skb; 1885 u32 offset; 1886 1887 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1888 if (skb) 1889 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1890 } 1891 return 0; 1892 } 1893 1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1895 struct sk_buff *skb, u32 copylen, 1896 u32 *offset, u32 *seq) 1897 { 1898 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1899 struct msghdr msg = {}; 1900 struct iovec iov; 1901 int err; 1902 1903 if (copy_address != zc->copybuf_address) 1904 return -EINVAL; 1905 1906 err = import_single_range(READ, (void __user *)copy_address, 1907 copylen, &iov, &msg.msg_iter); 1908 if (err) 1909 return err; 1910 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1911 if (err) 1912 return err; 1913 zc->recv_skip_hint -= copylen; 1914 *offset += copylen; 1915 *seq += copylen; 1916 return (__s32)copylen; 1917 } 1918 1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1920 struct sock *sk, 1921 struct sk_buff *skb, 1922 u32 *seq, 1923 s32 copybuf_len, 1924 struct scm_timestamping_internal *tss) 1925 { 1926 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1927 1928 if (!copylen) 1929 return 0; 1930 /* skb is null if inq < PAGE_SIZE. */ 1931 if (skb) { 1932 offset = *seq - TCP_SKB_CB(skb)->seq; 1933 } else { 1934 skb = tcp_recv_skb(sk, *seq, &offset); 1935 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1936 tcp_update_recv_tstamps(skb, tss); 1937 zc->msg_flags |= TCP_CMSG_TS; 1938 } 1939 } 1940 1941 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1942 seq); 1943 return zc->copybuf_len < 0 ? 0 : copylen; 1944 } 1945 1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1947 struct page **pending_pages, 1948 unsigned long pages_remaining, 1949 unsigned long *address, 1950 u32 *length, 1951 u32 *seq, 1952 struct tcp_zerocopy_receive *zc, 1953 u32 total_bytes_to_map, 1954 int err) 1955 { 1956 /* At least one page did not map. Try zapping if we skipped earlier. */ 1957 if (err == -EBUSY && 1958 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1959 u32 maybe_zap_len; 1960 1961 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1962 *length + /* Mapped or pending */ 1963 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1964 zap_page_range(vma, *address, maybe_zap_len); 1965 err = 0; 1966 } 1967 1968 if (!err) { 1969 unsigned long leftover_pages = pages_remaining; 1970 int bytes_mapped; 1971 1972 /* We called zap_page_range, try to reinsert. */ 1973 err = vm_insert_pages(vma, *address, 1974 pending_pages, 1975 &pages_remaining); 1976 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1977 *seq += bytes_mapped; 1978 *address += bytes_mapped; 1979 } 1980 if (err) { 1981 /* Either we were unable to zap, OR we zapped, retried an 1982 * insert, and still had an issue. Either ways, pages_remaining 1983 * is the number of pages we were unable to map, and we unroll 1984 * some state we speculatively touched before. 1985 */ 1986 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1987 1988 *length -= bytes_not_mapped; 1989 zc->recv_skip_hint += bytes_not_mapped; 1990 } 1991 return err; 1992 } 1993 1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1995 struct page **pages, 1996 unsigned int pages_to_map, 1997 unsigned long *address, 1998 u32 *length, 1999 u32 *seq, 2000 struct tcp_zerocopy_receive *zc, 2001 u32 total_bytes_to_map) 2002 { 2003 unsigned long pages_remaining = pages_to_map; 2004 unsigned int pages_mapped; 2005 unsigned int bytes_mapped; 2006 int err; 2007 2008 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2009 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2010 bytes_mapped = PAGE_SIZE * pages_mapped; 2011 /* Even if vm_insert_pages fails, it may have partially succeeded in 2012 * mapping (some but not all of the pages). 2013 */ 2014 *seq += bytes_mapped; 2015 *address += bytes_mapped; 2016 2017 if (likely(!err)) 2018 return 0; 2019 2020 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2021 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2022 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2023 err); 2024 } 2025 2026 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2027 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2028 struct scm_timestamping_internal *tss); 2029 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2030 struct tcp_zerocopy_receive *zc, 2031 struct scm_timestamping_internal *tss) 2032 { 2033 unsigned long msg_control_addr; 2034 struct msghdr cmsg_dummy; 2035 2036 msg_control_addr = (unsigned long)zc->msg_control; 2037 cmsg_dummy.msg_control = (void *)msg_control_addr; 2038 cmsg_dummy.msg_controllen = 2039 (__kernel_size_t)zc->msg_controllen; 2040 cmsg_dummy.msg_flags = in_compat_syscall() 2041 ? MSG_CMSG_COMPAT : 0; 2042 cmsg_dummy.msg_control_is_user = true; 2043 zc->msg_flags = 0; 2044 if (zc->msg_control == msg_control_addr && 2045 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2046 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2047 zc->msg_control = (__u64) 2048 ((uintptr_t)cmsg_dummy.msg_control); 2049 zc->msg_controllen = 2050 (__u64)cmsg_dummy.msg_controllen; 2051 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2052 } 2053 } 2054 2055 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2056 static int tcp_zerocopy_receive(struct sock *sk, 2057 struct tcp_zerocopy_receive *zc, 2058 struct scm_timestamping_internal *tss) 2059 { 2060 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2061 unsigned long address = (unsigned long)zc->address; 2062 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2063 s32 copybuf_len = zc->copybuf_len; 2064 struct tcp_sock *tp = tcp_sk(sk); 2065 const skb_frag_t *frags = NULL; 2066 unsigned int pages_to_map = 0; 2067 struct vm_area_struct *vma; 2068 struct sk_buff *skb = NULL; 2069 u32 seq = tp->copied_seq; 2070 u32 total_bytes_to_map; 2071 int inq = tcp_inq(sk); 2072 int ret; 2073 2074 zc->copybuf_len = 0; 2075 zc->msg_flags = 0; 2076 2077 if (address & (PAGE_SIZE - 1) || address != zc->address) 2078 return -EINVAL; 2079 2080 if (sk->sk_state == TCP_LISTEN) 2081 return -ENOTCONN; 2082 2083 sock_rps_record_flow(sk); 2084 2085 if (inq && inq <= copybuf_len) 2086 return receive_fallback_to_copy(sk, zc, inq, tss); 2087 2088 if (inq < PAGE_SIZE) { 2089 zc->length = 0; 2090 zc->recv_skip_hint = inq; 2091 if (!inq && sock_flag(sk, SOCK_DONE)) 2092 return -EIO; 2093 return 0; 2094 } 2095 2096 mmap_read_lock(current->mm); 2097 2098 vma = find_vma(current->mm, address); 2099 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 2100 mmap_read_unlock(current->mm); 2101 return -EINVAL; 2102 } 2103 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2104 avail_len = min_t(u32, vma_len, inq); 2105 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2106 if (total_bytes_to_map) { 2107 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2108 zap_page_range(vma, address, total_bytes_to_map); 2109 zc->length = total_bytes_to_map; 2110 zc->recv_skip_hint = 0; 2111 } else { 2112 zc->length = avail_len; 2113 zc->recv_skip_hint = avail_len; 2114 } 2115 ret = 0; 2116 while (length + PAGE_SIZE <= zc->length) { 2117 int mappable_offset; 2118 struct page *page; 2119 2120 if (zc->recv_skip_hint < PAGE_SIZE) { 2121 u32 offset_frag; 2122 2123 if (skb) { 2124 if (zc->recv_skip_hint > 0) 2125 break; 2126 skb = skb->next; 2127 offset = seq - TCP_SKB_CB(skb)->seq; 2128 } else { 2129 skb = tcp_recv_skb(sk, seq, &offset); 2130 } 2131 2132 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2133 tcp_update_recv_tstamps(skb, tss); 2134 zc->msg_flags |= TCP_CMSG_TS; 2135 } 2136 zc->recv_skip_hint = skb->len - offset; 2137 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2138 if (!frags || offset_frag) 2139 break; 2140 } 2141 2142 mappable_offset = find_next_mappable_frag(frags, 2143 zc->recv_skip_hint); 2144 if (mappable_offset) { 2145 zc->recv_skip_hint = mappable_offset; 2146 break; 2147 } 2148 page = skb_frag_page(frags); 2149 prefetchw(page); 2150 pages[pages_to_map++] = page; 2151 length += PAGE_SIZE; 2152 zc->recv_skip_hint -= PAGE_SIZE; 2153 frags++; 2154 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2155 zc->recv_skip_hint < PAGE_SIZE) { 2156 /* Either full batch, or we're about to go to next skb 2157 * (and we cannot unroll failed ops across skbs). 2158 */ 2159 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2160 pages_to_map, 2161 &address, &length, 2162 &seq, zc, 2163 total_bytes_to_map); 2164 if (ret) 2165 goto out; 2166 pages_to_map = 0; 2167 } 2168 } 2169 if (pages_to_map) { 2170 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2171 &address, &length, &seq, 2172 zc, total_bytes_to_map); 2173 } 2174 out: 2175 mmap_read_unlock(current->mm); 2176 /* Try to copy straggler data. */ 2177 if (!ret) 2178 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2179 2180 if (length + copylen) { 2181 WRITE_ONCE(tp->copied_seq, seq); 2182 tcp_rcv_space_adjust(sk); 2183 2184 /* Clean up data we have read: This will do ACK frames. */ 2185 tcp_recv_skb(sk, seq, &offset); 2186 tcp_cleanup_rbuf(sk, length + copylen); 2187 ret = 0; 2188 if (length == zc->length) 2189 zc->recv_skip_hint = 0; 2190 } else { 2191 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2192 ret = -EIO; 2193 } 2194 zc->length = length; 2195 return ret; 2196 } 2197 #endif 2198 2199 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2200 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2201 struct scm_timestamping_internal *tss) 2202 { 2203 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2204 bool has_timestamping = false; 2205 2206 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2207 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2208 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2209 if (new_tstamp) { 2210 struct __kernel_timespec kts = { 2211 .tv_sec = tss->ts[0].tv_sec, 2212 .tv_nsec = tss->ts[0].tv_nsec, 2213 }; 2214 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2215 sizeof(kts), &kts); 2216 } else { 2217 struct __kernel_old_timespec ts_old = { 2218 .tv_sec = tss->ts[0].tv_sec, 2219 .tv_nsec = tss->ts[0].tv_nsec, 2220 }; 2221 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2222 sizeof(ts_old), &ts_old); 2223 } 2224 } else { 2225 if (new_tstamp) { 2226 struct __kernel_sock_timeval stv = { 2227 .tv_sec = tss->ts[0].tv_sec, 2228 .tv_usec = tss->ts[0].tv_nsec / 1000, 2229 }; 2230 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2231 sizeof(stv), &stv); 2232 } else { 2233 struct __kernel_old_timeval tv = { 2234 .tv_sec = tss->ts[0].tv_sec, 2235 .tv_usec = tss->ts[0].tv_nsec / 1000, 2236 }; 2237 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2238 sizeof(tv), &tv); 2239 } 2240 } 2241 } 2242 2243 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2244 has_timestamping = true; 2245 else 2246 tss->ts[0] = (struct timespec64) {0}; 2247 } 2248 2249 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2250 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2251 has_timestamping = true; 2252 else 2253 tss->ts[2] = (struct timespec64) {0}; 2254 } 2255 2256 if (has_timestamping) { 2257 tss->ts[1] = (struct timespec64) {0}; 2258 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2259 put_cmsg_scm_timestamping64(msg, tss); 2260 else 2261 put_cmsg_scm_timestamping(msg, tss); 2262 } 2263 } 2264 2265 static int tcp_inq_hint(struct sock *sk) 2266 { 2267 const struct tcp_sock *tp = tcp_sk(sk); 2268 u32 copied_seq = READ_ONCE(tp->copied_seq); 2269 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2270 int inq; 2271 2272 inq = rcv_nxt - copied_seq; 2273 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2274 lock_sock(sk); 2275 inq = tp->rcv_nxt - tp->copied_seq; 2276 release_sock(sk); 2277 } 2278 /* After receiving a FIN, tell the user-space to continue reading 2279 * by returning a non-zero inq. 2280 */ 2281 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2282 inq = 1; 2283 return inq; 2284 } 2285 2286 /* 2287 * This routine copies from a sock struct into the user buffer. 2288 * 2289 * Technical note: in 2.3 we work on _locked_ socket, so that 2290 * tricks with *seq access order and skb->users are not required. 2291 * Probably, code can be easily improved even more. 2292 */ 2293 2294 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2295 int nonblock, int flags, 2296 struct scm_timestamping_internal *tss, 2297 int *cmsg_flags) 2298 { 2299 struct tcp_sock *tp = tcp_sk(sk); 2300 int copied = 0; 2301 u32 peek_seq; 2302 u32 *seq; 2303 unsigned long used; 2304 int err; 2305 int target; /* Read at least this many bytes */ 2306 long timeo; 2307 struct sk_buff *skb, *last; 2308 u32 urg_hole = 0; 2309 2310 err = -ENOTCONN; 2311 if (sk->sk_state == TCP_LISTEN) 2312 goto out; 2313 2314 if (tp->recvmsg_inq) 2315 *cmsg_flags = TCP_CMSG_INQ; 2316 timeo = sock_rcvtimeo(sk, nonblock); 2317 2318 /* Urgent data needs to be handled specially. */ 2319 if (flags & MSG_OOB) 2320 goto recv_urg; 2321 2322 if (unlikely(tp->repair)) { 2323 err = -EPERM; 2324 if (!(flags & MSG_PEEK)) 2325 goto out; 2326 2327 if (tp->repair_queue == TCP_SEND_QUEUE) 2328 goto recv_sndq; 2329 2330 err = -EINVAL; 2331 if (tp->repair_queue == TCP_NO_QUEUE) 2332 goto out; 2333 2334 /* 'common' recv queue MSG_PEEK-ing */ 2335 } 2336 2337 seq = &tp->copied_seq; 2338 if (flags & MSG_PEEK) { 2339 peek_seq = tp->copied_seq; 2340 seq = &peek_seq; 2341 } 2342 2343 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2344 2345 do { 2346 u32 offset; 2347 2348 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2349 if (tp->urg_data && tp->urg_seq == *seq) { 2350 if (copied) 2351 break; 2352 if (signal_pending(current)) { 2353 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2354 break; 2355 } 2356 } 2357 2358 /* Next get a buffer. */ 2359 2360 last = skb_peek_tail(&sk->sk_receive_queue); 2361 skb_queue_walk(&sk->sk_receive_queue, skb) { 2362 last = skb; 2363 /* Now that we have two receive queues this 2364 * shouldn't happen. 2365 */ 2366 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2367 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2368 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2369 flags)) 2370 break; 2371 2372 offset = *seq - TCP_SKB_CB(skb)->seq; 2373 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2374 pr_err_once("%s: found a SYN, please report !\n", __func__); 2375 offset--; 2376 } 2377 if (offset < skb->len) 2378 goto found_ok_skb; 2379 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2380 goto found_fin_ok; 2381 WARN(!(flags & MSG_PEEK), 2382 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2383 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2384 } 2385 2386 /* Well, if we have backlog, try to process it now yet. */ 2387 2388 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2389 break; 2390 2391 if (copied) { 2392 if (sk->sk_err || 2393 sk->sk_state == TCP_CLOSE || 2394 (sk->sk_shutdown & RCV_SHUTDOWN) || 2395 !timeo || 2396 signal_pending(current)) 2397 break; 2398 } else { 2399 if (sock_flag(sk, SOCK_DONE)) 2400 break; 2401 2402 if (sk->sk_err) { 2403 copied = sock_error(sk); 2404 break; 2405 } 2406 2407 if (sk->sk_shutdown & RCV_SHUTDOWN) 2408 break; 2409 2410 if (sk->sk_state == TCP_CLOSE) { 2411 /* This occurs when user tries to read 2412 * from never connected socket. 2413 */ 2414 copied = -ENOTCONN; 2415 break; 2416 } 2417 2418 if (!timeo) { 2419 copied = -EAGAIN; 2420 break; 2421 } 2422 2423 if (signal_pending(current)) { 2424 copied = sock_intr_errno(timeo); 2425 break; 2426 } 2427 } 2428 2429 tcp_cleanup_rbuf(sk, copied); 2430 2431 if (copied >= target) { 2432 /* Do not sleep, just process backlog. */ 2433 release_sock(sk); 2434 lock_sock(sk); 2435 } else { 2436 sk_wait_data(sk, &timeo, last); 2437 } 2438 2439 if ((flags & MSG_PEEK) && 2440 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2441 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2442 current->comm, 2443 task_pid_nr(current)); 2444 peek_seq = tp->copied_seq; 2445 } 2446 continue; 2447 2448 found_ok_skb: 2449 /* Ok so how much can we use? */ 2450 used = skb->len - offset; 2451 if (len < used) 2452 used = len; 2453 2454 /* Do we have urgent data here? */ 2455 if (tp->urg_data) { 2456 u32 urg_offset = tp->urg_seq - *seq; 2457 if (urg_offset < used) { 2458 if (!urg_offset) { 2459 if (!sock_flag(sk, SOCK_URGINLINE)) { 2460 WRITE_ONCE(*seq, *seq + 1); 2461 urg_hole++; 2462 offset++; 2463 used--; 2464 if (!used) 2465 goto skip_copy; 2466 } 2467 } else 2468 used = urg_offset; 2469 } 2470 } 2471 2472 if (!(flags & MSG_TRUNC)) { 2473 err = skb_copy_datagram_msg(skb, offset, msg, used); 2474 if (err) { 2475 /* Exception. Bailout! */ 2476 if (!copied) 2477 copied = -EFAULT; 2478 break; 2479 } 2480 } 2481 2482 WRITE_ONCE(*seq, *seq + used); 2483 copied += used; 2484 len -= used; 2485 2486 tcp_rcv_space_adjust(sk); 2487 2488 skip_copy: 2489 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2490 tp->urg_data = 0; 2491 tcp_fast_path_check(sk); 2492 } 2493 2494 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2495 tcp_update_recv_tstamps(skb, tss); 2496 *cmsg_flags |= TCP_CMSG_TS; 2497 } 2498 2499 if (used + offset < skb->len) 2500 continue; 2501 2502 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2503 goto found_fin_ok; 2504 if (!(flags & MSG_PEEK)) 2505 sk_eat_skb(sk, skb); 2506 continue; 2507 2508 found_fin_ok: 2509 /* Process the FIN. */ 2510 WRITE_ONCE(*seq, *seq + 1); 2511 if (!(flags & MSG_PEEK)) 2512 sk_eat_skb(sk, skb); 2513 break; 2514 } while (len > 0); 2515 2516 /* According to UNIX98, msg_name/msg_namelen are ignored 2517 * on connected socket. I was just happy when found this 8) --ANK 2518 */ 2519 2520 /* Clean up data we have read: This will do ACK frames. */ 2521 tcp_cleanup_rbuf(sk, copied); 2522 return copied; 2523 2524 out: 2525 return err; 2526 2527 recv_urg: 2528 err = tcp_recv_urg(sk, msg, len, flags); 2529 goto out; 2530 2531 recv_sndq: 2532 err = tcp_peek_sndq(sk, msg, len); 2533 goto out; 2534 } 2535 2536 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2537 int flags, int *addr_len) 2538 { 2539 int cmsg_flags = 0, ret, inq; 2540 struct scm_timestamping_internal tss; 2541 2542 if (unlikely(flags & MSG_ERRQUEUE)) 2543 return inet_recv_error(sk, msg, len, addr_len); 2544 2545 if (sk_can_busy_loop(sk) && 2546 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2547 sk->sk_state == TCP_ESTABLISHED) 2548 sk_busy_loop(sk, nonblock); 2549 2550 lock_sock(sk); 2551 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2552 &cmsg_flags); 2553 release_sock(sk); 2554 2555 if (cmsg_flags && ret >= 0) { 2556 if (cmsg_flags & TCP_CMSG_TS) 2557 tcp_recv_timestamp(msg, sk, &tss); 2558 if (cmsg_flags & TCP_CMSG_INQ) { 2559 inq = tcp_inq_hint(sk); 2560 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2561 } 2562 } 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(tcp_recvmsg); 2566 2567 void tcp_set_state(struct sock *sk, int state) 2568 { 2569 int oldstate = sk->sk_state; 2570 2571 /* We defined a new enum for TCP states that are exported in BPF 2572 * so as not force the internal TCP states to be frozen. The 2573 * following checks will detect if an internal state value ever 2574 * differs from the BPF value. If this ever happens, then we will 2575 * need to remap the internal value to the BPF value before calling 2576 * tcp_call_bpf_2arg. 2577 */ 2578 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2579 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2580 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2581 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2582 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2583 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2584 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2585 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2586 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2587 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2588 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2589 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2590 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2591 2592 /* bpf uapi header bpf.h defines an anonymous enum with values 2593 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2594 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2595 * But clang built vmlinux does not have this enum in DWARF 2596 * since clang removes the above code before generating IR/debuginfo. 2597 * Let us explicitly emit the type debuginfo to ensure the 2598 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2599 * regardless of which compiler is used. 2600 */ 2601 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2602 2603 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2604 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2605 2606 switch (state) { 2607 case TCP_ESTABLISHED: 2608 if (oldstate != TCP_ESTABLISHED) 2609 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2610 break; 2611 2612 case TCP_CLOSE: 2613 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2614 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2615 2616 sk->sk_prot->unhash(sk); 2617 if (inet_csk(sk)->icsk_bind_hash && 2618 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2619 inet_put_port(sk); 2620 fallthrough; 2621 default: 2622 if (oldstate == TCP_ESTABLISHED) 2623 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2624 } 2625 2626 /* Change state AFTER socket is unhashed to avoid closed 2627 * socket sitting in hash tables. 2628 */ 2629 inet_sk_state_store(sk, state); 2630 } 2631 EXPORT_SYMBOL_GPL(tcp_set_state); 2632 2633 /* 2634 * State processing on a close. This implements the state shift for 2635 * sending our FIN frame. Note that we only send a FIN for some 2636 * states. A shutdown() may have already sent the FIN, or we may be 2637 * closed. 2638 */ 2639 2640 static const unsigned char new_state[16] = { 2641 /* current state: new state: action: */ 2642 [0 /* (Invalid) */] = TCP_CLOSE, 2643 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2644 [TCP_SYN_SENT] = TCP_CLOSE, 2645 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2646 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2647 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2648 [TCP_TIME_WAIT] = TCP_CLOSE, 2649 [TCP_CLOSE] = TCP_CLOSE, 2650 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2651 [TCP_LAST_ACK] = TCP_LAST_ACK, 2652 [TCP_LISTEN] = TCP_CLOSE, 2653 [TCP_CLOSING] = TCP_CLOSING, 2654 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2655 }; 2656 2657 static int tcp_close_state(struct sock *sk) 2658 { 2659 int next = (int)new_state[sk->sk_state]; 2660 int ns = next & TCP_STATE_MASK; 2661 2662 tcp_set_state(sk, ns); 2663 2664 return next & TCP_ACTION_FIN; 2665 } 2666 2667 /* 2668 * Shutdown the sending side of a connection. Much like close except 2669 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2670 */ 2671 2672 void tcp_shutdown(struct sock *sk, int how) 2673 { 2674 /* We need to grab some memory, and put together a FIN, 2675 * and then put it into the queue to be sent. 2676 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2677 */ 2678 if (!(how & SEND_SHUTDOWN)) 2679 return; 2680 2681 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2682 if ((1 << sk->sk_state) & 2683 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2684 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2685 /* Clear out any half completed packets. FIN if needed. */ 2686 if (tcp_close_state(sk)) 2687 tcp_send_fin(sk); 2688 } 2689 } 2690 EXPORT_SYMBOL(tcp_shutdown); 2691 2692 bool tcp_check_oom(struct sock *sk, int shift) 2693 { 2694 bool too_many_orphans, out_of_socket_memory; 2695 2696 too_many_orphans = tcp_too_many_orphans(sk, shift); 2697 out_of_socket_memory = tcp_out_of_memory(sk); 2698 2699 if (too_many_orphans) 2700 net_info_ratelimited("too many orphaned sockets\n"); 2701 if (out_of_socket_memory) 2702 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2703 return too_many_orphans || out_of_socket_memory; 2704 } 2705 2706 void __tcp_close(struct sock *sk, long timeout) 2707 { 2708 struct sk_buff *skb; 2709 int data_was_unread = 0; 2710 int state; 2711 2712 sk->sk_shutdown = SHUTDOWN_MASK; 2713 2714 if (sk->sk_state == TCP_LISTEN) { 2715 tcp_set_state(sk, TCP_CLOSE); 2716 2717 /* Special case. */ 2718 inet_csk_listen_stop(sk); 2719 2720 goto adjudge_to_death; 2721 } 2722 2723 /* We need to flush the recv. buffs. We do this only on the 2724 * descriptor close, not protocol-sourced closes, because the 2725 * reader process may not have drained the data yet! 2726 */ 2727 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2728 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2729 2730 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2731 len--; 2732 data_was_unread += len; 2733 __kfree_skb(skb); 2734 } 2735 2736 sk_mem_reclaim(sk); 2737 2738 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2739 if (sk->sk_state == TCP_CLOSE) 2740 goto adjudge_to_death; 2741 2742 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2743 * data was lost. To witness the awful effects of the old behavior of 2744 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2745 * GET in an FTP client, suspend the process, wait for the client to 2746 * advertise a zero window, then kill -9 the FTP client, wheee... 2747 * Note: timeout is always zero in such a case. 2748 */ 2749 if (unlikely(tcp_sk(sk)->repair)) { 2750 sk->sk_prot->disconnect(sk, 0); 2751 } else if (data_was_unread) { 2752 /* Unread data was tossed, zap the connection. */ 2753 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2754 tcp_set_state(sk, TCP_CLOSE); 2755 tcp_send_active_reset(sk, sk->sk_allocation); 2756 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2757 /* Check zero linger _after_ checking for unread data. */ 2758 sk->sk_prot->disconnect(sk, 0); 2759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2760 } else if (tcp_close_state(sk)) { 2761 /* We FIN if the application ate all the data before 2762 * zapping the connection. 2763 */ 2764 2765 /* RED-PEN. Formally speaking, we have broken TCP state 2766 * machine. State transitions: 2767 * 2768 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2769 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2770 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2771 * 2772 * are legal only when FIN has been sent (i.e. in window), 2773 * rather than queued out of window. Purists blame. 2774 * 2775 * F.e. "RFC state" is ESTABLISHED, 2776 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2777 * 2778 * The visible declinations are that sometimes 2779 * we enter time-wait state, when it is not required really 2780 * (harmless), do not send active resets, when they are 2781 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2782 * they look as CLOSING or LAST_ACK for Linux) 2783 * Probably, I missed some more holelets. 2784 * --ANK 2785 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2786 * in a single packet! (May consider it later but will 2787 * probably need API support or TCP_CORK SYN-ACK until 2788 * data is written and socket is closed.) 2789 */ 2790 tcp_send_fin(sk); 2791 } 2792 2793 sk_stream_wait_close(sk, timeout); 2794 2795 adjudge_to_death: 2796 state = sk->sk_state; 2797 sock_hold(sk); 2798 sock_orphan(sk); 2799 2800 local_bh_disable(); 2801 bh_lock_sock(sk); 2802 /* remove backlog if any, without releasing ownership. */ 2803 __release_sock(sk); 2804 2805 percpu_counter_inc(sk->sk_prot->orphan_count); 2806 2807 /* Have we already been destroyed by a softirq or backlog? */ 2808 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2809 goto out; 2810 2811 /* This is a (useful) BSD violating of the RFC. There is a 2812 * problem with TCP as specified in that the other end could 2813 * keep a socket open forever with no application left this end. 2814 * We use a 1 minute timeout (about the same as BSD) then kill 2815 * our end. If they send after that then tough - BUT: long enough 2816 * that we won't make the old 4*rto = almost no time - whoops 2817 * reset mistake. 2818 * 2819 * Nope, it was not mistake. It is really desired behaviour 2820 * f.e. on http servers, when such sockets are useless, but 2821 * consume significant resources. Let's do it with special 2822 * linger2 option. --ANK 2823 */ 2824 2825 if (sk->sk_state == TCP_FIN_WAIT2) { 2826 struct tcp_sock *tp = tcp_sk(sk); 2827 if (tp->linger2 < 0) { 2828 tcp_set_state(sk, TCP_CLOSE); 2829 tcp_send_active_reset(sk, GFP_ATOMIC); 2830 __NET_INC_STATS(sock_net(sk), 2831 LINUX_MIB_TCPABORTONLINGER); 2832 } else { 2833 const int tmo = tcp_fin_time(sk); 2834 2835 if (tmo > TCP_TIMEWAIT_LEN) { 2836 inet_csk_reset_keepalive_timer(sk, 2837 tmo - TCP_TIMEWAIT_LEN); 2838 } else { 2839 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2840 goto out; 2841 } 2842 } 2843 } 2844 if (sk->sk_state != TCP_CLOSE) { 2845 sk_mem_reclaim(sk); 2846 if (tcp_check_oom(sk, 0)) { 2847 tcp_set_state(sk, TCP_CLOSE); 2848 tcp_send_active_reset(sk, GFP_ATOMIC); 2849 __NET_INC_STATS(sock_net(sk), 2850 LINUX_MIB_TCPABORTONMEMORY); 2851 } else if (!check_net(sock_net(sk))) { 2852 /* Not possible to send reset; just close */ 2853 tcp_set_state(sk, TCP_CLOSE); 2854 } 2855 } 2856 2857 if (sk->sk_state == TCP_CLOSE) { 2858 struct request_sock *req; 2859 2860 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2861 lockdep_sock_is_held(sk)); 2862 /* We could get here with a non-NULL req if the socket is 2863 * aborted (e.g., closed with unread data) before 3WHS 2864 * finishes. 2865 */ 2866 if (req) 2867 reqsk_fastopen_remove(sk, req, false); 2868 inet_csk_destroy_sock(sk); 2869 } 2870 /* Otherwise, socket is reprieved until protocol close. */ 2871 2872 out: 2873 bh_unlock_sock(sk); 2874 local_bh_enable(); 2875 } 2876 2877 void tcp_close(struct sock *sk, long timeout) 2878 { 2879 lock_sock(sk); 2880 __tcp_close(sk, timeout); 2881 release_sock(sk); 2882 sock_put(sk); 2883 } 2884 EXPORT_SYMBOL(tcp_close); 2885 2886 /* These states need RST on ABORT according to RFC793 */ 2887 2888 static inline bool tcp_need_reset(int state) 2889 { 2890 return (1 << state) & 2891 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2892 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2893 } 2894 2895 static void tcp_rtx_queue_purge(struct sock *sk) 2896 { 2897 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2898 2899 tcp_sk(sk)->highest_sack = NULL; 2900 while (p) { 2901 struct sk_buff *skb = rb_to_skb(p); 2902 2903 p = rb_next(p); 2904 /* Since we are deleting whole queue, no need to 2905 * list_del(&skb->tcp_tsorted_anchor) 2906 */ 2907 tcp_rtx_queue_unlink(skb, sk); 2908 sk_wmem_free_skb(sk, skb); 2909 } 2910 } 2911 2912 void tcp_write_queue_purge(struct sock *sk) 2913 { 2914 struct sk_buff *skb; 2915 2916 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2917 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2918 tcp_skb_tsorted_anchor_cleanup(skb); 2919 sk_wmem_free_skb(sk, skb); 2920 } 2921 tcp_rtx_queue_purge(sk); 2922 skb = sk->sk_tx_skb_cache; 2923 if (skb) { 2924 __kfree_skb(skb); 2925 sk->sk_tx_skb_cache = NULL; 2926 } 2927 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2928 sk_mem_reclaim(sk); 2929 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2930 tcp_sk(sk)->packets_out = 0; 2931 inet_csk(sk)->icsk_backoff = 0; 2932 } 2933 2934 int tcp_disconnect(struct sock *sk, int flags) 2935 { 2936 struct inet_sock *inet = inet_sk(sk); 2937 struct inet_connection_sock *icsk = inet_csk(sk); 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 int old_state = sk->sk_state; 2940 u32 seq; 2941 2942 if (old_state != TCP_CLOSE) 2943 tcp_set_state(sk, TCP_CLOSE); 2944 2945 /* ABORT function of RFC793 */ 2946 if (old_state == TCP_LISTEN) { 2947 inet_csk_listen_stop(sk); 2948 } else if (unlikely(tp->repair)) { 2949 sk->sk_err = ECONNABORTED; 2950 } else if (tcp_need_reset(old_state) || 2951 (tp->snd_nxt != tp->write_seq && 2952 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2953 /* The last check adjusts for discrepancy of Linux wrt. RFC 2954 * states 2955 */ 2956 tcp_send_active_reset(sk, gfp_any()); 2957 sk->sk_err = ECONNRESET; 2958 } else if (old_state == TCP_SYN_SENT) 2959 sk->sk_err = ECONNRESET; 2960 2961 tcp_clear_xmit_timers(sk); 2962 __skb_queue_purge(&sk->sk_receive_queue); 2963 if (sk->sk_rx_skb_cache) { 2964 __kfree_skb(sk->sk_rx_skb_cache); 2965 sk->sk_rx_skb_cache = NULL; 2966 } 2967 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2968 tp->urg_data = 0; 2969 tcp_write_queue_purge(sk); 2970 tcp_fastopen_active_disable_ofo_check(sk); 2971 skb_rbtree_purge(&tp->out_of_order_queue); 2972 2973 inet->inet_dport = 0; 2974 2975 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2976 inet_reset_saddr(sk); 2977 2978 sk->sk_shutdown = 0; 2979 sock_reset_flag(sk, SOCK_DONE); 2980 tp->srtt_us = 0; 2981 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2982 tp->rcv_rtt_last_tsecr = 0; 2983 2984 seq = tp->write_seq + tp->max_window + 2; 2985 if (!seq) 2986 seq = 1; 2987 WRITE_ONCE(tp->write_seq, seq); 2988 2989 icsk->icsk_backoff = 0; 2990 icsk->icsk_probes_out = 0; 2991 icsk->icsk_probes_tstamp = 0; 2992 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2993 icsk->icsk_rto_min = TCP_RTO_MIN; 2994 icsk->icsk_delack_max = TCP_DELACK_MAX; 2995 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2996 tp->snd_cwnd = TCP_INIT_CWND; 2997 tp->snd_cwnd_cnt = 0; 2998 tp->window_clamp = 0; 2999 tp->delivered = 0; 3000 tp->delivered_ce = 0; 3001 if (icsk->icsk_ca_ops->release) 3002 icsk->icsk_ca_ops->release(sk); 3003 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3004 icsk->icsk_ca_initialized = 0; 3005 tcp_set_ca_state(sk, TCP_CA_Open); 3006 tp->is_sack_reneg = 0; 3007 tcp_clear_retrans(tp); 3008 tp->total_retrans = 0; 3009 inet_csk_delack_init(sk); 3010 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3011 * issue in __tcp_select_window() 3012 */ 3013 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3014 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3015 __sk_dst_reset(sk); 3016 dst_release(sk->sk_rx_dst); 3017 sk->sk_rx_dst = NULL; 3018 tcp_saved_syn_free(tp); 3019 tp->compressed_ack = 0; 3020 tp->segs_in = 0; 3021 tp->segs_out = 0; 3022 tp->bytes_sent = 0; 3023 tp->bytes_acked = 0; 3024 tp->bytes_received = 0; 3025 tp->bytes_retrans = 0; 3026 tp->data_segs_in = 0; 3027 tp->data_segs_out = 0; 3028 tp->duplicate_sack[0].start_seq = 0; 3029 tp->duplicate_sack[0].end_seq = 0; 3030 tp->dsack_dups = 0; 3031 tp->reord_seen = 0; 3032 tp->retrans_out = 0; 3033 tp->sacked_out = 0; 3034 tp->tlp_high_seq = 0; 3035 tp->last_oow_ack_time = 0; 3036 /* There's a bubble in the pipe until at least the first ACK. */ 3037 tp->app_limited = ~0U; 3038 tp->rack.mstamp = 0; 3039 tp->rack.advanced = 0; 3040 tp->rack.reo_wnd_steps = 1; 3041 tp->rack.last_delivered = 0; 3042 tp->rack.reo_wnd_persist = 0; 3043 tp->rack.dsack_seen = 0; 3044 tp->syn_data_acked = 0; 3045 tp->rx_opt.saw_tstamp = 0; 3046 tp->rx_opt.dsack = 0; 3047 tp->rx_opt.num_sacks = 0; 3048 tp->rcv_ooopack = 0; 3049 3050 3051 /* Clean up fastopen related fields */ 3052 tcp_free_fastopen_req(tp); 3053 inet->defer_connect = 0; 3054 tp->fastopen_client_fail = 0; 3055 3056 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3057 3058 if (sk->sk_frag.page) { 3059 put_page(sk->sk_frag.page); 3060 sk->sk_frag.page = NULL; 3061 sk->sk_frag.offset = 0; 3062 } 3063 3064 sk->sk_error_report(sk); 3065 return 0; 3066 } 3067 EXPORT_SYMBOL(tcp_disconnect); 3068 3069 static inline bool tcp_can_repair_sock(const struct sock *sk) 3070 { 3071 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3072 (sk->sk_state != TCP_LISTEN); 3073 } 3074 3075 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3076 { 3077 struct tcp_repair_window opt; 3078 3079 if (!tp->repair) 3080 return -EPERM; 3081 3082 if (len != sizeof(opt)) 3083 return -EINVAL; 3084 3085 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3086 return -EFAULT; 3087 3088 if (opt.max_window < opt.snd_wnd) 3089 return -EINVAL; 3090 3091 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3092 return -EINVAL; 3093 3094 if (after(opt.rcv_wup, tp->rcv_nxt)) 3095 return -EINVAL; 3096 3097 tp->snd_wl1 = opt.snd_wl1; 3098 tp->snd_wnd = opt.snd_wnd; 3099 tp->max_window = opt.max_window; 3100 3101 tp->rcv_wnd = opt.rcv_wnd; 3102 tp->rcv_wup = opt.rcv_wup; 3103 3104 return 0; 3105 } 3106 3107 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3108 unsigned int len) 3109 { 3110 struct tcp_sock *tp = tcp_sk(sk); 3111 struct tcp_repair_opt opt; 3112 size_t offset = 0; 3113 3114 while (len >= sizeof(opt)) { 3115 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3116 return -EFAULT; 3117 3118 offset += sizeof(opt); 3119 len -= sizeof(opt); 3120 3121 switch (opt.opt_code) { 3122 case TCPOPT_MSS: 3123 tp->rx_opt.mss_clamp = opt.opt_val; 3124 tcp_mtup_init(sk); 3125 break; 3126 case TCPOPT_WINDOW: 3127 { 3128 u16 snd_wscale = opt.opt_val & 0xFFFF; 3129 u16 rcv_wscale = opt.opt_val >> 16; 3130 3131 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3132 return -EFBIG; 3133 3134 tp->rx_opt.snd_wscale = snd_wscale; 3135 tp->rx_opt.rcv_wscale = rcv_wscale; 3136 tp->rx_opt.wscale_ok = 1; 3137 } 3138 break; 3139 case TCPOPT_SACK_PERM: 3140 if (opt.opt_val != 0) 3141 return -EINVAL; 3142 3143 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3144 break; 3145 case TCPOPT_TIMESTAMP: 3146 if (opt.opt_val != 0) 3147 return -EINVAL; 3148 3149 tp->rx_opt.tstamp_ok = 1; 3150 break; 3151 } 3152 } 3153 3154 return 0; 3155 } 3156 3157 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3158 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3159 3160 static void tcp_enable_tx_delay(void) 3161 { 3162 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3163 static int __tcp_tx_delay_enabled = 0; 3164 3165 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3166 static_branch_enable(&tcp_tx_delay_enabled); 3167 pr_info("TCP_TX_DELAY enabled\n"); 3168 } 3169 } 3170 } 3171 3172 /* When set indicates to always queue non-full frames. Later the user clears 3173 * this option and we transmit any pending partial frames in the queue. This is 3174 * meant to be used alongside sendfile() to get properly filled frames when the 3175 * user (for example) must write out headers with a write() call first and then 3176 * use sendfile to send out the data parts. 3177 * 3178 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3179 * TCP_NODELAY. 3180 */ 3181 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3182 { 3183 struct tcp_sock *tp = tcp_sk(sk); 3184 3185 if (on) { 3186 tp->nonagle |= TCP_NAGLE_CORK; 3187 } else { 3188 tp->nonagle &= ~TCP_NAGLE_CORK; 3189 if (tp->nonagle & TCP_NAGLE_OFF) 3190 tp->nonagle |= TCP_NAGLE_PUSH; 3191 tcp_push_pending_frames(sk); 3192 } 3193 } 3194 3195 void tcp_sock_set_cork(struct sock *sk, bool on) 3196 { 3197 lock_sock(sk); 3198 __tcp_sock_set_cork(sk, on); 3199 release_sock(sk); 3200 } 3201 EXPORT_SYMBOL(tcp_sock_set_cork); 3202 3203 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3204 * remembered, but it is not activated until cork is cleared. 3205 * 3206 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3207 * even TCP_CORK for currently queued segments. 3208 */ 3209 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3210 { 3211 if (on) { 3212 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3213 tcp_push_pending_frames(sk); 3214 } else { 3215 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3216 } 3217 } 3218 3219 void tcp_sock_set_nodelay(struct sock *sk) 3220 { 3221 lock_sock(sk); 3222 __tcp_sock_set_nodelay(sk, true); 3223 release_sock(sk); 3224 } 3225 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3226 3227 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3228 { 3229 if (!val) { 3230 inet_csk_enter_pingpong_mode(sk); 3231 return; 3232 } 3233 3234 inet_csk_exit_pingpong_mode(sk); 3235 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3236 inet_csk_ack_scheduled(sk)) { 3237 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3238 tcp_cleanup_rbuf(sk, 1); 3239 if (!(val & 1)) 3240 inet_csk_enter_pingpong_mode(sk); 3241 } 3242 } 3243 3244 void tcp_sock_set_quickack(struct sock *sk, int val) 3245 { 3246 lock_sock(sk); 3247 __tcp_sock_set_quickack(sk, val); 3248 release_sock(sk); 3249 } 3250 EXPORT_SYMBOL(tcp_sock_set_quickack); 3251 3252 int tcp_sock_set_syncnt(struct sock *sk, int val) 3253 { 3254 if (val < 1 || val > MAX_TCP_SYNCNT) 3255 return -EINVAL; 3256 3257 lock_sock(sk); 3258 inet_csk(sk)->icsk_syn_retries = val; 3259 release_sock(sk); 3260 return 0; 3261 } 3262 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3263 3264 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3265 { 3266 lock_sock(sk); 3267 inet_csk(sk)->icsk_user_timeout = val; 3268 release_sock(sk); 3269 } 3270 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3271 3272 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3273 { 3274 struct tcp_sock *tp = tcp_sk(sk); 3275 3276 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3277 return -EINVAL; 3278 3279 tp->keepalive_time = val * HZ; 3280 if (sock_flag(sk, SOCK_KEEPOPEN) && 3281 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3282 u32 elapsed = keepalive_time_elapsed(tp); 3283 3284 if (tp->keepalive_time > elapsed) 3285 elapsed = tp->keepalive_time - elapsed; 3286 else 3287 elapsed = 0; 3288 inet_csk_reset_keepalive_timer(sk, elapsed); 3289 } 3290 3291 return 0; 3292 } 3293 3294 int tcp_sock_set_keepidle(struct sock *sk, int val) 3295 { 3296 int err; 3297 3298 lock_sock(sk); 3299 err = tcp_sock_set_keepidle_locked(sk, val); 3300 release_sock(sk); 3301 return err; 3302 } 3303 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3304 3305 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3306 { 3307 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3308 return -EINVAL; 3309 3310 lock_sock(sk); 3311 tcp_sk(sk)->keepalive_intvl = val * HZ; 3312 release_sock(sk); 3313 return 0; 3314 } 3315 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3316 3317 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3318 { 3319 if (val < 1 || val > MAX_TCP_KEEPCNT) 3320 return -EINVAL; 3321 3322 lock_sock(sk); 3323 tcp_sk(sk)->keepalive_probes = val; 3324 release_sock(sk); 3325 return 0; 3326 } 3327 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3328 3329 int tcp_set_window_clamp(struct sock *sk, int val) 3330 { 3331 struct tcp_sock *tp = tcp_sk(sk); 3332 3333 if (!val) { 3334 if (sk->sk_state != TCP_CLOSE) 3335 return -EINVAL; 3336 tp->window_clamp = 0; 3337 } else { 3338 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3339 SOCK_MIN_RCVBUF / 2 : val; 3340 } 3341 return 0; 3342 } 3343 3344 /* 3345 * Socket option code for TCP. 3346 */ 3347 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3348 sockptr_t optval, unsigned int optlen) 3349 { 3350 struct tcp_sock *tp = tcp_sk(sk); 3351 struct inet_connection_sock *icsk = inet_csk(sk); 3352 struct net *net = sock_net(sk); 3353 int val; 3354 int err = 0; 3355 3356 /* These are data/string values, all the others are ints */ 3357 switch (optname) { 3358 case TCP_CONGESTION: { 3359 char name[TCP_CA_NAME_MAX]; 3360 3361 if (optlen < 1) 3362 return -EINVAL; 3363 3364 val = strncpy_from_sockptr(name, optval, 3365 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3366 if (val < 0) 3367 return -EFAULT; 3368 name[val] = 0; 3369 3370 lock_sock(sk); 3371 err = tcp_set_congestion_control(sk, name, true, 3372 ns_capable(sock_net(sk)->user_ns, 3373 CAP_NET_ADMIN)); 3374 release_sock(sk); 3375 return err; 3376 } 3377 case TCP_ULP: { 3378 char name[TCP_ULP_NAME_MAX]; 3379 3380 if (optlen < 1) 3381 return -EINVAL; 3382 3383 val = strncpy_from_sockptr(name, optval, 3384 min_t(long, TCP_ULP_NAME_MAX - 1, 3385 optlen)); 3386 if (val < 0) 3387 return -EFAULT; 3388 name[val] = 0; 3389 3390 lock_sock(sk); 3391 err = tcp_set_ulp(sk, name); 3392 release_sock(sk); 3393 return err; 3394 } 3395 case TCP_FASTOPEN_KEY: { 3396 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3397 __u8 *backup_key = NULL; 3398 3399 /* Allow a backup key as well to facilitate key rotation 3400 * First key is the active one. 3401 */ 3402 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3403 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3404 return -EINVAL; 3405 3406 if (copy_from_sockptr(key, optval, optlen)) 3407 return -EFAULT; 3408 3409 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3410 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3411 3412 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3413 } 3414 default: 3415 /* fallthru */ 3416 break; 3417 } 3418 3419 if (optlen < sizeof(int)) 3420 return -EINVAL; 3421 3422 if (copy_from_sockptr(&val, optval, sizeof(val))) 3423 return -EFAULT; 3424 3425 lock_sock(sk); 3426 3427 switch (optname) { 3428 case TCP_MAXSEG: 3429 /* Values greater than interface MTU won't take effect. However 3430 * at the point when this call is done we typically don't yet 3431 * know which interface is going to be used 3432 */ 3433 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3434 err = -EINVAL; 3435 break; 3436 } 3437 tp->rx_opt.user_mss = val; 3438 break; 3439 3440 case TCP_NODELAY: 3441 __tcp_sock_set_nodelay(sk, val); 3442 break; 3443 3444 case TCP_THIN_LINEAR_TIMEOUTS: 3445 if (val < 0 || val > 1) 3446 err = -EINVAL; 3447 else 3448 tp->thin_lto = val; 3449 break; 3450 3451 case TCP_THIN_DUPACK: 3452 if (val < 0 || val > 1) 3453 err = -EINVAL; 3454 break; 3455 3456 case TCP_REPAIR: 3457 if (!tcp_can_repair_sock(sk)) 3458 err = -EPERM; 3459 else if (val == TCP_REPAIR_ON) { 3460 tp->repair = 1; 3461 sk->sk_reuse = SK_FORCE_REUSE; 3462 tp->repair_queue = TCP_NO_QUEUE; 3463 } else if (val == TCP_REPAIR_OFF) { 3464 tp->repair = 0; 3465 sk->sk_reuse = SK_NO_REUSE; 3466 tcp_send_window_probe(sk); 3467 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3468 tp->repair = 0; 3469 sk->sk_reuse = SK_NO_REUSE; 3470 } else 3471 err = -EINVAL; 3472 3473 break; 3474 3475 case TCP_REPAIR_QUEUE: 3476 if (!tp->repair) 3477 err = -EPERM; 3478 else if ((unsigned int)val < TCP_QUEUES_NR) 3479 tp->repair_queue = val; 3480 else 3481 err = -EINVAL; 3482 break; 3483 3484 case TCP_QUEUE_SEQ: 3485 if (sk->sk_state != TCP_CLOSE) { 3486 err = -EPERM; 3487 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3488 if (!tcp_rtx_queue_empty(sk)) 3489 err = -EPERM; 3490 else 3491 WRITE_ONCE(tp->write_seq, val); 3492 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3493 if (tp->rcv_nxt != tp->copied_seq) { 3494 err = -EPERM; 3495 } else { 3496 WRITE_ONCE(tp->rcv_nxt, val); 3497 WRITE_ONCE(tp->copied_seq, val); 3498 } 3499 } else { 3500 err = -EINVAL; 3501 } 3502 break; 3503 3504 case TCP_REPAIR_OPTIONS: 3505 if (!tp->repair) 3506 err = -EINVAL; 3507 else if (sk->sk_state == TCP_ESTABLISHED) 3508 err = tcp_repair_options_est(sk, optval, optlen); 3509 else 3510 err = -EPERM; 3511 break; 3512 3513 case TCP_CORK: 3514 __tcp_sock_set_cork(sk, val); 3515 break; 3516 3517 case TCP_KEEPIDLE: 3518 err = tcp_sock_set_keepidle_locked(sk, val); 3519 break; 3520 case TCP_KEEPINTVL: 3521 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3522 err = -EINVAL; 3523 else 3524 tp->keepalive_intvl = val * HZ; 3525 break; 3526 case TCP_KEEPCNT: 3527 if (val < 1 || val > MAX_TCP_KEEPCNT) 3528 err = -EINVAL; 3529 else 3530 tp->keepalive_probes = val; 3531 break; 3532 case TCP_SYNCNT: 3533 if (val < 1 || val > MAX_TCP_SYNCNT) 3534 err = -EINVAL; 3535 else 3536 icsk->icsk_syn_retries = val; 3537 break; 3538 3539 case TCP_SAVE_SYN: 3540 /* 0: disable, 1: enable, 2: start from ether_header */ 3541 if (val < 0 || val > 2) 3542 err = -EINVAL; 3543 else 3544 tp->save_syn = val; 3545 break; 3546 3547 case TCP_LINGER2: 3548 if (val < 0) 3549 tp->linger2 = -1; 3550 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3551 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3552 else 3553 tp->linger2 = val * HZ; 3554 break; 3555 3556 case TCP_DEFER_ACCEPT: 3557 /* Translate value in seconds to number of retransmits */ 3558 icsk->icsk_accept_queue.rskq_defer_accept = 3559 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3560 TCP_RTO_MAX / HZ); 3561 break; 3562 3563 case TCP_WINDOW_CLAMP: 3564 err = tcp_set_window_clamp(sk, val); 3565 break; 3566 3567 case TCP_QUICKACK: 3568 __tcp_sock_set_quickack(sk, val); 3569 break; 3570 3571 #ifdef CONFIG_TCP_MD5SIG 3572 case TCP_MD5SIG: 3573 case TCP_MD5SIG_EXT: 3574 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3575 break; 3576 #endif 3577 case TCP_USER_TIMEOUT: 3578 /* Cap the max time in ms TCP will retry or probe the window 3579 * before giving up and aborting (ETIMEDOUT) a connection. 3580 */ 3581 if (val < 0) 3582 err = -EINVAL; 3583 else 3584 icsk->icsk_user_timeout = val; 3585 break; 3586 3587 case TCP_FASTOPEN: 3588 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3589 TCPF_LISTEN))) { 3590 tcp_fastopen_init_key_once(net); 3591 3592 fastopen_queue_tune(sk, val); 3593 } else { 3594 err = -EINVAL; 3595 } 3596 break; 3597 case TCP_FASTOPEN_CONNECT: 3598 if (val > 1 || val < 0) { 3599 err = -EINVAL; 3600 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3601 if (sk->sk_state == TCP_CLOSE) 3602 tp->fastopen_connect = val; 3603 else 3604 err = -EINVAL; 3605 } else { 3606 err = -EOPNOTSUPP; 3607 } 3608 break; 3609 case TCP_FASTOPEN_NO_COOKIE: 3610 if (val > 1 || val < 0) 3611 err = -EINVAL; 3612 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3613 err = -EINVAL; 3614 else 3615 tp->fastopen_no_cookie = val; 3616 break; 3617 case TCP_TIMESTAMP: 3618 if (!tp->repair) 3619 err = -EPERM; 3620 else 3621 tp->tsoffset = val - tcp_time_stamp_raw(); 3622 break; 3623 case TCP_REPAIR_WINDOW: 3624 err = tcp_repair_set_window(tp, optval, optlen); 3625 break; 3626 case TCP_NOTSENT_LOWAT: 3627 tp->notsent_lowat = val; 3628 sk->sk_write_space(sk); 3629 break; 3630 case TCP_INQ: 3631 if (val > 1 || val < 0) 3632 err = -EINVAL; 3633 else 3634 tp->recvmsg_inq = val; 3635 break; 3636 case TCP_TX_DELAY: 3637 if (val) 3638 tcp_enable_tx_delay(); 3639 tp->tcp_tx_delay = val; 3640 break; 3641 default: 3642 err = -ENOPROTOOPT; 3643 break; 3644 } 3645 3646 release_sock(sk); 3647 return err; 3648 } 3649 3650 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3651 unsigned int optlen) 3652 { 3653 const struct inet_connection_sock *icsk = inet_csk(sk); 3654 3655 if (level != SOL_TCP) 3656 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3657 optval, optlen); 3658 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3659 } 3660 EXPORT_SYMBOL(tcp_setsockopt); 3661 3662 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3663 struct tcp_info *info) 3664 { 3665 u64 stats[__TCP_CHRONO_MAX], total = 0; 3666 enum tcp_chrono i; 3667 3668 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3669 stats[i] = tp->chrono_stat[i - 1]; 3670 if (i == tp->chrono_type) 3671 stats[i] += tcp_jiffies32 - tp->chrono_start; 3672 stats[i] *= USEC_PER_SEC / HZ; 3673 total += stats[i]; 3674 } 3675 3676 info->tcpi_busy_time = total; 3677 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3678 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3679 } 3680 3681 /* Return information about state of tcp endpoint in API format. */ 3682 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3683 { 3684 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3685 const struct inet_connection_sock *icsk = inet_csk(sk); 3686 unsigned long rate; 3687 u32 now; 3688 u64 rate64; 3689 bool slow; 3690 3691 memset(info, 0, sizeof(*info)); 3692 if (sk->sk_type != SOCK_STREAM) 3693 return; 3694 3695 info->tcpi_state = inet_sk_state_load(sk); 3696 3697 /* Report meaningful fields for all TCP states, including listeners */ 3698 rate = READ_ONCE(sk->sk_pacing_rate); 3699 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3700 info->tcpi_pacing_rate = rate64; 3701 3702 rate = READ_ONCE(sk->sk_max_pacing_rate); 3703 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3704 info->tcpi_max_pacing_rate = rate64; 3705 3706 info->tcpi_reordering = tp->reordering; 3707 info->tcpi_snd_cwnd = tp->snd_cwnd; 3708 3709 if (info->tcpi_state == TCP_LISTEN) { 3710 /* listeners aliased fields : 3711 * tcpi_unacked -> Number of children ready for accept() 3712 * tcpi_sacked -> max backlog 3713 */ 3714 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3715 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3716 return; 3717 } 3718 3719 slow = lock_sock_fast(sk); 3720 3721 info->tcpi_ca_state = icsk->icsk_ca_state; 3722 info->tcpi_retransmits = icsk->icsk_retransmits; 3723 info->tcpi_probes = icsk->icsk_probes_out; 3724 info->tcpi_backoff = icsk->icsk_backoff; 3725 3726 if (tp->rx_opt.tstamp_ok) 3727 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3728 if (tcp_is_sack(tp)) 3729 info->tcpi_options |= TCPI_OPT_SACK; 3730 if (tp->rx_opt.wscale_ok) { 3731 info->tcpi_options |= TCPI_OPT_WSCALE; 3732 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3733 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3734 } 3735 3736 if (tp->ecn_flags & TCP_ECN_OK) 3737 info->tcpi_options |= TCPI_OPT_ECN; 3738 if (tp->ecn_flags & TCP_ECN_SEEN) 3739 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3740 if (tp->syn_data_acked) 3741 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3742 3743 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3744 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3745 info->tcpi_snd_mss = tp->mss_cache; 3746 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3747 3748 info->tcpi_unacked = tp->packets_out; 3749 info->tcpi_sacked = tp->sacked_out; 3750 3751 info->tcpi_lost = tp->lost_out; 3752 info->tcpi_retrans = tp->retrans_out; 3753 3754 now = tcp_jiffies32; 3755 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3756 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3757 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3758 3759 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3760 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3761 info->tcpi_rtt = tp->srtt_us >> 3; 3762 info->tcpi_rttvar = tp->mdev_us >> 2; 3763 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3764 info->tcpi_advmss = tp->advmss; 3765 3766 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3767 info->tcpi_rcv_space = tp->rcvq_space.space; 3768 3769 info->tcpi_total_retrans = tp->total_retrans; 3770 3771 info->tcpi_bytes_acked = tp->bytes_acked; 3772 info->tcpi_bytes_received = tp->bytes_received; 3773 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3774 tcp_get_info_chrono_stats(tp, info); 3775 3776 info->tcpi_segs_out = tp->segs_out; 3777 info->tcpi_segs_in = tp->segs_in; 3778 3779 info->tcpi_min_rtt = tcp_min_rtt(tp); 3780 info->tcpi_data_segs_in = tp->data_segs_in; 3781 info->tcpi_data_segs_out = tp->data_segs_out; 3782 3783 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3784 rate64 = tcp_compute_delivery_rate(tp); 3785 if (rate64) 3786 info->tcpi_delivery_rate = rate64; 3787 info->tcpi_delivered = tp->delivered; 3788 info->tcpi_delivered_ce = tp->delivered_ce; 3789 info->tcpi_bytes_sent = tp->bytes_sent; 3790 info->tcpi_bytes_retrans = tp->bytes_retrans; 3791 info->tcpi_dsack_dups = tp->dsack_dups; 3792 info->tcpi_reord_seen = tp->reord_seen; 3793 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3794 info->tcpi_snd_wnd = tp->snd_wnd; 3795 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3796 unlock_sock_fast(sk, slow); 3797 } 3798 EXPORT_SYMBOL_GPL(tcp_get_info); 3799 3800 static size_t tcp_opt_stats_get_size(void) 3801 { 3802 return 3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3809 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3812 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3813 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3814 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3815 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3816 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3817 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3818 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3819 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3820 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3821 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3822 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3824 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3825 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3826 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3827 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3828 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3829 0; 3830 } 3831 3832 /* Returns TTL or hop limit of an incoming packet from skb. */ 3833 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3834 { 3835 if (skb->protocol == htons(ETH_P_IP)) 3836 return ip_hdr(skb)->ttl; 3837 else if (skb->protocol == htons(ETH_P_IPV6)) 3838 return ipv6_hdr(skb)->hop_limit; 3839 else 3840 return 0; 3841 } 3842 3843 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3844 const struct sk_buff *orig_skb, 3845 const struct sk_buff *ack_skb) 3846 { 3847 const struct tcp_sock *tp = tcp_sk(sk); 3848 struct sk_buff *stats; 3849 struct tcp_info info; 3850 unsigned long rate; 3851 u64 rate64; 3852 3853 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3854 if (!stats) 3855 return NULL; 3856 3857 tcp_get_info_chrono_stats(tp, &info); 3858 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3859 info.tcpi_busy_time, TCP_NLA_PAD); 3860 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3861 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3862 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3863 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3864 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3865 tp->data_segs_out, TCP_NLA_PAD); 3866 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3867 tp->total_retrans, TCP_NLA_PAD); 3868 3869 rate = READ_ONCE(sk->sk_pacing_rate); 3870 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3871 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3872 3873 rate64 = tcp_compute_delivery_rate(tp); 3874 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3875 3876 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3877 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3878 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3879 3880 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3881 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3882 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3883 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3884 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3885 3886 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3887 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3888 3889 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3890 TCP_NLA_PAD); 3891 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3892 TCP_NLA_PAD); 3893 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3894 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3895 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3896 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3897 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3898 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3899 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3900 TCP_NLA_PAD); 3901 if (ack_skb) 3902 nla_put_u8(stats, TCP_NLA_TTL, 3903 tcp_skb_ttl_or_hop_limit(ack_skb)); 3904 3905 return stats; 3906 } 3907 3908 static int do_tcp_getsockopt(struct sock *sk, int level, 3909 int optname, char __user *optval, int __user *optlen) 3910 { 3911 struct inet_connection_sock *icsk = inet_csk(sk); 3912 struct tcp_sock *tp = tcp_sk(sk); 3913 struct net *net = sock_net(sk); 3914 int val, len; 3915 3916 if (get_user(len, optlen)) 3917 return -EFAULT; 3918 3919 len = min_t(unsigned int, len, sizeof(int)); 3920 3921 if (len < 0) 3922 return -EINVAL; 3923 3924 switch (optname) { 3925 case TCP_MAXSEG: 3926 val = tp->mss_cache; 3927 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3928 val = tp->rx_opt.user_mss; 3929 if (tp->repair) 3930 val = tp->rx_opt.mss_clamp; 3931 break; 3932 case TCP_NODELAY: 3933 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3934 break; 3935 case TCP_CORK: 3936 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3937 break; 3938 case TCP_KEEPIDLE: 3939 val = keepalive_time_when(tp) / HZ; 3940 break; 3941 case TCP_KEEPINTVL: 3942 val = keepalive_intvl_when(tp) / HZ; 3943 break; 3944 case TCP_KEEPCNT: 3945 val = keepalive_probes(tp); 3946 break; 3947 case TCP_SYNCNT: 3948 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3949 break; 3950 case TCP_LINGER2: 3951 val = tp->linger2; 3952 if (val >= 0) 3953 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3954 break; 3955 case TCP_DEFER_ACCEPT: 3956 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3957 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3958 break; 3959 case TCP_WINDOW_CLAMP: 3960 val = tp->window_clamp; 3961 break; 3962 case TCP_INFO: { 3963 struct tcp_info info; 3964 3965 if (get_user(len, optlen)) 3966 return -EFAULT; 3967 3968 tcp_get_info(sk, &info); 3969 3970 len = min_t(unsigned int, len, sizeof(info)); 3971 if (put_user(len, optlen)) 3972 return -EFAULT; 3973 if (copy_to_user(optval, &info, len)) 3974 return -EFAULT; 3975 return 0; 3976 } 3977 case TCP_CC_INFO: { 3978 const struct tcp_congestion_ops *ca_ops; 3979 union tcp_cc_info info; 3980 size_t sz = 0; 3981 int attr; 3982 3983 if (get_user(len, optlen)) 3984 return -EFAULT; 3985 3986 ca_ops = icsk->icsk_ca_ops; 3987 if (ca_ops && ca_ops->get_info) 3988 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3989 3990 len = min_t(unsigned int, len, sz); 3991 if (put_user(len, optlen)) 3992 return -EFAULT; 3993 if (copy_to_user(optval, &info, len)) 3994 return -EFAULT; 3995 return 0; 3996 } 3997 case TCP_QUICKACK: 3998 val = !inet_csk_in_pingpong_mode(sk); 3999 break; 4000 4001 case TCP_CONGESTION: 4002 if (get_user(len, optlen)) 4003 return -EFAULT; 4004 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4005 if (put_user(len, optlen)) 4006 return -EFAULT; 4007 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4008 return -EFAULT; 4009 return 0; 4010 4011 case TCP_ULP: 4012 if (get_user(len, optlen)) 4013 return -EFAULT; 4014 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4015 if (!icsk->icsk_ulp_ops) { 4016 if (put_user(0, optlen)) 4017 return -EFAULT; 4018 return 0; 4019 } 4020 if (put_user(len, optlen)) 4021 return -EFAULT; 4022 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4023 return -EFAULT; 4024 return 0; 4025 4026 case TCP_FASTOPEN_KEY: { 4027 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4028 unsigned int key_len; 4029 4030 if (get_user(len, optlen)) 4031 return -EFAULT; 4032 4033 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4034 TCP_FASTOPEN_KEY_LENGTH; 4035 len = min_t(unsigned int, len, key_len); 4036 if (put_user(len, optlen)) 4037 return -EFAULT; 4038 if (copy_to_user(optval, key, len)) 4039 return -EFAULT; 4040 return 0; 4041 } 4042 case TCP_THIN_LINEAR_TIMEOUTS: 4043 val = tp->thin_lto; 4044 break; 4045 4046 case TCP_THIN_DUPACK: 4047 val = 0; 4048 break; 4049 4050 case TCP_REPAIR: 4051 val = tp->repair; 4052 break; 4053 4054 case TCP_REPAIR_QUEUE: 4055 if (tp->repair) 4056 val = tp->repair_queue; 4057 else 4058 return -EINVAL; 4059 break; 4060 4061 case TCP_REPAIR_WINDOW: { 4062 struct tcp_repair_window opt; 4063 4064 if (get_user(len, optlen)) 4065 return -EFAULT; 4066 4067 if (len != sizeof(opt)) 4068 return -EINVAL; 4069 4070 if (!tp->repair) 4071 return -EPERM; 4072 4073 opt.snd_wl1 = tp->snd_wl1; 4074 opt.snd_wnd = tp->snd_wnd; 4075 opt.max_window = tp->max_window; 4076 opt.rcv_wnd = tp->rcv_wnd; 4077 opt.rcv_wup = tp->rcv_wup; 4078 4079 if (copy_to_user(optval, &opt, len)) 4080 return -EFAULT; 4081 return 0; 4082 } 4083 case TCP_QUEUE_SEQ: 4084 if (tp->repair_queue == TCP_SEND_QUEUE) 4085 val = tp->write_seq; 4086 else if (tp->repair_queue == TCP_RECV_QUEUE) 4087 val = tp->rcv_nxt; 4088 else 4089 return -EINVAL; 4090 break; 4091 4092 case TCP_USER_TIMEOUT: 4093 val = icsk->icsk_user_timeout; 4094 break; 4095 4096 case TCP_FASTOPEN: 4097 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4098 break; 4099 4100 case TCP_FASTOPEN_CONNECT: 4101 val = tp->fastopen_connect; 4102 break; 4103 4104 case TCP_FASTOPEN_NO_COOKIE: 4105 val = tp->fastopen_no_cookie; 4106 break; 4107 4108 case TCP_TX_DELAY: 4109 val = tp->tcp_tx_delay; 4110 break; 4111 4112 case TCP_TIMESTAMP: 4113 val = tcp_time_stamp_raw() + tp->tsoffset; 4114 break; 4115 case TCP_NOTSENT_LOWAT: 4116 val = tp->notsent_lowat; 4117 break; 4118 case TCP_INQ: 4119 val = tp->recvmsg_inq; 4120 break; 4121 case TCP_SAVE_SYN: 4122 val = tp->save_syn; 4123 break; 4124 case TCP_SAVED_SYN: { 4125 if (get_user(len, optlen)) 4126 return -EFAULT; 4127 4128 lock_sock(sk); 4129 if (tp->saved_syn) { 4130 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4131 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4132 optlen)) { 4133 release_sock(sk); 4134 return -EFAULT; 4135 } 4136 release_sock(sk); 4137 return -EINVAL; 4138 } 4139 len = tcp_saved_syn_len(tp->saved_syn); 4140 if (put_user(len, optlen)) { 4141 release_sock(sk); 4142 return -EFAULT; 4143 } 4144 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4145 release_sock(sk); 4146 return -EFAULT; 4147 } 4148 tcp_saved_syn_free(tp); 4149 release_sock(sk); 4150 } else { 4151 release_sock(sk); 4152 len = 0; 4153 if (put_user(len, optlen)) 4154 return -EFAULT; 4155 } 4156 return 0; 4157 } 4158 #ifdef CONFIG_MMU 4159 case TCP_ZEROCOPY_RECEIVE: { 4160 struct scm_timestamping_internal tss; 4161 struct tcp_zerocopy_receive zc = {}; 4162 int err; 4163 4164 if (get_user(len, optlen)) 4165 return -EFAULT; 4166 if (len < 0 || 4167 len < offsetofend(struct tcp_zerocopy_receive, length)) 4168 return -EINVAL; 4169 if (unlikely(len > sizeof(zc))) { 4170 err = check_zeroed_user(optval + sizeof(zc), 4171 len - sizeof(zc)); 4172 if (err < 1) 4173 return err == 0 ? -EINVAL : err; 4174 len = sizeof(zc); 4175 if (put_user(len, optlen)) 4176 return -EFAULT; 4177 } 4178 if (copy_from_user(&zc, optval, len)) 4179 return -EFAULT; 4180 if (zc.reserved) 4181 return -EINVAL; 4182 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4183 return -EINVAL; 4184 lock_sock(sk); 4185 err = tcp_zerocopy_receive(sk, &zc, &tss); 4186 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4187 &zc, &len, err); 4188 release_sock(sk); 4189 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4190 goto zerocopy_rcv_cmsg; 4191 switch (len) { 4192 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4193 goto zerocopy_rcv_cmsg; 4194 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4195 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4196 case offsetofend(struct tcp_zerocopy_receive, flags): 4197 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4198 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4199 case offsetofend(struct tcp_zerocopy_receive, err): 4200 goto zerocopy_rcv_sk_err; 4201 case offsetofend(struct tcp_zerocopy_receive, inq): 4202 goto zerocopy_rcv_inq; 4203 case offsetofend(struct tcp_zerocopy_receive, length): 4204 default: 4205 goto zerocopy_rcv_out; 4206 } 4207 zerocopy_rcv_cmsg: 4208 if (zc.msg_flags & TCP_CMSG_TS) 4209 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4210 else 4211 zc.msg_flags = 0; 4212 zerocopy_rcv_sk_err: 4213 if (!err) 4214 zc.err = sock_error(sk); 4215 zerocopy_rcv_inq: 4216 zc.inq = tcp_inq_hint(sk); 4217 zerocopy_rcv_out: 4218 if (!err && copy_to_user(optval, &zc, len)) 4219 err = -EFAULT; 4220 return err; 4221 } 4222 #endif 4223 default: 4224 return -ENOPROTOOPT; 4225 } 4226 4227 if (put_user(len, optlen)) 4228 return -EFAULT; 4229 if (copy_to_user(optval, &val, len)) 4230 return -EFAULT; 4231 return 0; 4232 } 4233 4234 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4235 { 4236 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4237 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4238 */ 4239 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4240 return true; 4241 4242 return false; 4243 } 4244 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4245 4246 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4247 int __user *optlen) 4248 { 4249 struct inet_connection_sock *icsk = inet_csk(sk); 4250 4251 if (level != SOL_TCP) 4252 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4253 optval, optlen); 4254 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4255 } 4256 EXPORT_SYMBOL(tcp_getsockopt); 4257 4258 #ifdef CONFIG_TCP_MD5SIG 4259 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4260 static DEFINE_MUTEX(tcp_md5sig_mutex); 4261 static bool tcp_md5sig_pool_populated = false; 4262 4263 static void __tcp_alloc_md5sig_pool(void) 4264 { 4265 struct crypto_ahash *hash; 4266 int cpu; 4267 4268 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4269 if (IS_ERR(hash)) 4270 return; 4271 4272 for_each_possible_cpu(cpu) { 4273 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4274 struct ahash_request *req; 4275 4276 if (!scratch) { 4277 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4278 sizeof(struct tcphdr), 4279 GFP_KERNEL, 4280 cpu_to_node(cpu)); 4281 if (!scratch) 4282 return; 4283 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4284 } 4285 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4286 continue; 4287 4288 req = ahash_request_alloc(hash, GFP_KERNEL); 4289 if (!req) 4290 return; 4291 4292 ahash_request_set_callback(req, 0, NULL, NULL); 4293 4294 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4295 } 4296 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4297 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4298 */ 4299 smp_wmb(); 4300 tcp_md5sig_pool_populated = true; 4301 } 4302 4303 bool tcp_alloc_md5sig_pool(void) 4304 { 4305 if (unlikely(!tcp_md5sig_pool_populated)) { 4306 mutex_lock(&tcp_md5sig_mutex); 4307 4308 if (!tcp_md5sig_pool_populated) { 4309 __tcp_alloc_md5sig_pool(); 4310 if (tcp_md5sig_pool_populated) 4311 static_branch_inc(&tcp_md5_needed); 4312 } 4313 4314 mutex_unlock(&tcp_md5sig_mutex); 4315 } 4316 return tcp_md5sig_pool_populated; 4317 } 4318 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4319 4320 4321 /** 4322 * tcp_get_md5sig_pool - get md5sig_pool for this user 4323 * 4324 * We use percpu structure, so if we succeed, we exit with preemption 4325 * and BH disabled, to make sure another thread or softirq handling 4326 * wont try to get same context. 4327 */ 4328 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4329 { 4330 local_bh_disable(); 4331 4332 if (tcp_md5sig_pool_populated) { 4333 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4334 smp_rmb(); 4335 return this_cpu_ptr(&tcp_md5sig_pool); 4336 } 4337 local_bh_enable(); 4338 return NULL; 4339 } 4340 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4341 4342 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4343 const struct sk_buff *skb, unsigned int header_len) 4344 { 4345 struct scatterlist sg; 4346 const struct tcphdr *tp = tcp_hdr(skb); 4347 struct ahash_request *req = hp->md5_req; 4348 unsigned int i; 4349 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4350 skb_headlen(skb) - header_len : 0; 4351 const struct skb_shared_info *shi = skb_shinfo(skb); 4352 struct sk_buff *frag_iter; 4353 4354 sg_init_table(&sg, 1); 4355 4356 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4357 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4358 if (crypto_ahash_update(req)) 4359 return 1; 4360 4361 for (i = 0; i < shi->nr_frags; ++i) { 4362 const skb_frag_t *f = &shi->frags[i]; 4363 unsigned int offset = skb_frag_off(f); 4364 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4365 4366 sg_set_page(&sg, page, skb_frag_size(f), 4367 offset_in_page(offset)); 4368 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4369 if (crypto_ahash_update(req)) 4370 return 1; 4371 } 4372 4373 skb_walk_frags(skb, frag_iter) 4374 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4375 return 1; 4376 4377 return 0; 4378 } 4379 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4380 4381 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4382 { 4383 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4384 struct scatterlist sg; 4385 4386 sg_init_one(&sg, key->key, keylen); 4387 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4388 4389 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4390 return data_race(crypto_ahash_update(hp->md5_req)); 4391 } 4392 EXPORT_SYMBOL(tcp_md5_hash_key); 4393 4394 #endif 4395 4396 void tcp_done(struct sock *sk) 4397 { 4398 struct request_sock *req; 4399 4400 /* We might be called with a new socket, after 4401 * inet_csk_prepare_forced_close() has been called 4402 * so we can not use lockdep_sock_is_held(sk) 4403 */ 4404 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4405 4406 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4407 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4408 4409 tcp_set_state(sk, TCP_CLOSE); 4410 tcp_clear_xmit_timers(sk); 4411 if (req) 4412 reqsk_fastopen_remove(sk, req, false); 4413 4414 sk->sk_shutdown = SHUTDOWN_MASK; 4415 4416 if (!sock_flag(sk, SOCK_DEAD)) 4417 sk->sk_state_change(sk); 4418 else 4419 inet_csk_destroy_sock(sk); 4420 } 4421 EXPORT_SYMBOL_GPL(tcp_done); 4422 4423 int tcp_abort(struct sock *sk, int err) 4424 { 4425 if (!sk_fullsock(sk)) { 4426 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4427 struct request_sock *req = inet_reqsk(sk); 4428 4429 local_bh_disable(); 4430 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4431 local_bh_enable(); 4432 return 0; 4433 } 4434 return -EOPNOTSUPP; 4435 } 4436 4437 /* Don't race with userspace socket closes such as tcp_close. */ 4438 lock_sock(sk); 4439 4440 if (sk->sk_state == TCP_LISTEN) { 4441 tcp_set_state(sk, TCP_CLOSE); 4442 inet_csk_listen_stop(sk); 4443 } 4444 4445 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4446 local_bh_disable(); 4447 bh_lock_sock(sk); 4448 4449 if (!sock_flag(sk, SOCK_DEAD)) { 4450 sk->sk_err = err; 4451 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4452 smp_wmb(); 4453 sk->sk_error_report(sk); 4454 if (tcp_need_reset(sk->sk_state)) 4455 tcp_send_active_reset(sk, GFP_ATOMIC); 4456 tcp_done(sk); 4457 } 4458 4459 bh_unlock_sock(sk); 4460 local_bh_enable(); 4461 tcp_write_queue_purge(sk); 4462 release_sock(sk); 4463 return 0; 4464 } 4465 EXPORT_SYMBOL_GPL(tcp_abort); 4466 4467 extern struct tcp_congestion_ops tcp_reno; 4468 4469 static __initdata unsigned long thash_entries; 4470 static int __init set_thash_entries(char *str) 4471 { 4472 ssize_t ret; 4473 4474 if (!str) 4475 return 0; 4476 4477 ret = kstrtoul(str, 0, &thash_entries); 4478 if (ret) 4479 return 0; 4480 4481 return 1; 4482 } 4483 __setup("thash_entries=", set_thash_entries); 4484 4485 static void __init tcp_init_mem(void) 4486 { 4487 unsigned long limit = nr_free_buffer_pages() / 16; 4488 4489 limit = max(limit, 128UL); 4490 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4491 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4492 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4493 } 4494 4495 void __init tcp_init(void) 4496 { 4497 int max_rshare, max_wshare, cnt; 4498 unsigned long limit; 4499 unsigned int i; 4500 4501 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4502 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4503 sizeof_field(struct sk_buff, cb)); 4504 4505 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4506 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4507 inet_hashinfo_init(&tcp_hashinfo); 4508 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4509 thash_entries, 21, /* one slot per 2 MB*/ 4510 0, 64 * 1024); 4511 tcp_hashinfo.bind_bucket_cachep = 4512 kmem_cache_create("tcp_bind_bucket", 4513 sizeof(struct inet_bind_bucket), 0, 4514 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4515 4516 /* Size and allocate the main established and bind bucket 4517 * hash tables. 4518 * 4519 * The methodology is similar to that of the buffer cache. 4520 */ 4521 tcp_hashinfo.ehash = 4522 alloc_large_system_hash("TCP established", 4523 sizeof(struct inet_ehash_bucket), 4524 thash_entries, 4525 17, /* one slot per 128 KB of memory */ 4526 0, 4527 NULL, 4528 &tcp_hashinfo.ehash_mask, 4529 0, 4530 thash_entries ? 0 : 512 * 1024); 4531 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4532 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4533 4534 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4535 panic("TCP: failed to alloc ehash_locks"); 4536 tcp_hashinfo.bhash = 4537 alloc_large_system_hash("TCP bind", 4538 sizeof(struct inet_bind_hashbucket), 4539 tcp_hashinfo.ehash_mask + 1, 4540 17, /* one slot per 128 KB of memory */ 4541 0, 4542 &tcp_hashinfo.bhash_size, 4543 NULL, 4544 0, 4545 64 * 1024); 4546 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4547 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4548 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4549 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4550 } 4551 4552 4553 cnt = tcp_hashinfo.ehash_mask + 1; 4554 sysctl_tcp_max_orphans = cnt / 2; 4555 4556 tcp_init_mem(); 4557 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4558 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4559 max_wshare = min(4UL*1024*1024, limit); 4560 max_rshare = min(6UL*1024*1024, limit); 4561 4562 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4563 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4564 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4565 4566 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4567 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4568 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4569 4570 pr_info("Hash tables configured (established %u bind %u)\n", 4571 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4572 4573 tcp_v4_init(); 4574 tcp_metrics_init(); 4575 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4576 tcp_tasklet_init(); 4577 mptcp_init(); 4578 } 4579