1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 284 285 struct percpu_counter tcp_orphan_count; 286 EXPORT_SYMBOL_GPL(tcp_orphan_count); 287 288 int sysctl_tcp_wmem[3] __read_mostly; 289 int sysctl_tcp_rmem[3] __read_mostly; 290 291 EXPORT_SYMBOL(sysctl_tcp_rmem); 292 EXPORT_SYMBOL(sysctl_tcp_wmem); 293 294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 295 EXPORT_SYMBOL(tcp_memory_allocated); 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 int tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL(tcp_memory_pressure); 320 321 void tcp_enter_memory_pressure(struct sock *sk) 322 { 323 if (!tcp_memory_pressure) { 324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 325 tcp_memory_pressure = 1; 326 } 327 } 328 EXPORT_SYMBOL(tcp_enter_memory_pressure); 329 330 /* Convert seconds to retransmits based on initial and max timeout */ 331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 332 { 333 u8 res = 0; 334 335 if (seconds > 0) { 336 int period = timeout; 337 338 res = 1; 339 while (seconds > period && res < 255) { 340 res++; 341 timeout <<= 1; 342 if (timeout > rto_max) 343 timeout = rto_max; 344 period += timeout; 345 } 346 } 347 return res; 348 } 349 350 /* Convert retransmits to seconds based on initial and max timeout */ 351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 352 { 353 int period = 0; 354 355 if (retrans > 0) { 356 period = timeout; 357 while (--retrans) { 358 timeout <<= 1; 359 if (timeout > rto_max) 360 timeout = rto_max; 361 period += timeout; 362 } 363 } 364 return period; 365 } 366 367 /* Address-family independent initialization for a tcp_sock. 368 * 369 * NOTE: A lot of things set to zero explicitly by call to 370 * sk_alloc() so need not be done here. 371 */ 372 void tcp_init_sock(struct sock *sk) 373 { 374 struct inet_connection_sock *icsk = inet_csk(sk); 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 skb_queue_head_init(&tp->out_of_order_queue); 378 tcp_init_xmit_timers(sk); 379 tcp_prequeue_init(tp); 380 INIT_LIST_HEAD(&tp->tsq_node); 381 382 icsk->icsk_rto = TCP_TIMEOUT_INIT; 383 tp->mdev = TCP_TIMEOUT_INIT; 384 385 /* So many TCP implementations out there (incorrectly) count the 386 * initial SYN frame in their delayed-ACK and congestion control 387 * algorithms that we must have the following bandaid to talk 388 * efficiently to them. -DaveM 389 */ 390 tp->snd_cwnd = TCP_INIT_CWND; 391 392 /* See draft-stevens-tcpca-spec-01 for discussion of the 393 * initialization of these values. 394 */ 395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 396 tp->snd_cwnd_clamp = ~0; 397 tp->mss_cache = TCP_MSS_DEFAULT; 398 399 tp->reordering = sysctl_tcp_reordering; 400 tcp_enable_early_retrans(tp); 401 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 402 403 sk->sk_state = TCP_CLOSE; 404 405 sk->sk_write_space = sk_stream_write_space; 406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 407 408 icsk->icsk_sync_mss = tcp_sync_mss; 409 410 /* TCP Cookie Transactions */ 411 if (sysctl_tcp_cookie_size > 0) { 412 /* Default, cookies without s_data_payload. */ 413 tp->cookie_values = 414 kzalloc(sizeof(*tp->cookie_values), 415 sk->sk_allocation); 416 if (tp->cookie_values != NULL) 417 kref_init(&tp->cookie_values->kref); 418 } 419 /* Presumed zeroed, in order of appearance: 420 * cookie_in_always, cookie_out_never, 421 * s_data_constant, s_data_in, s_data_out 422 */ 423 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 424 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 425 426 local_bh_disable(); 427 sock_update_memcg(sk); 428 sk_sockets_allocated_inc(sk); 429 local_bh_enable(); 430 } 431 EXPORT_SYMBOL(tcp_init_sock); 432 433 /* 434 * Wait for a TCP event. 435 * 436 * Note that we don't need to lock the socket, as the upper poll layers 437 * take care of normal races (between the test and the event) and we don't 438 * go look at any of the socket buffers directly. 439 */ 440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 441 { 442 unsigned int mask; 443 struct sock *sk = sock->sk; 444 const struct tcp_sock *tp = tcp_sk(sk); 445 446 sock_poll_wait(file, sk_sleep(sk), wait); 447 if (sk->sk_state == TCP_LISTEN) 448 return inet_csk_listen_poll(sk); 449 450 /* Socket is not locked. We are protected from async events 451 * by poll logic and correct handling of state changes 452 * made by other threads is impossible in any case. 453 */ 454 455 mask = 0; 456 457 /* 458 * POLLHUP is certainly not done right. But poll() doesn't 459 * have a notion of HUP in just one direction, and for a 460 * socket the read side is more interesting. 461 * 462 * Some poll() documentation says that POLLHUP is incompatible 463 * with the POLLOUT/POLLWR flags, so somebody should check this 464 * all. But careful, it tends to be safer to return too many 465 * bits than too few, and you can easily break real applications 466 * if you don't tell them that something has hung up! 467 * 468 * Check-me. 469 * 470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 471 * our fs/select.c). It means that after we received EOF, 472 * poll always returns immediately, making impossible poll() on write() 473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 474 * if and only if shutdown has been made in both directions. 475 * Actually, it is interesting to look how Solaris and DUX 476 * solve this dilemma. I would prefer, if POLLHUP were maskable, 477 * then we could set it on SND_SHUTDOWN. BTW examples given 478 * in Stevens' books assume exactly this behaviour, it explains 479 * why POLLHUP is incompatible with POLLOUT. --ANK 480 * 481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 482 * blocking on fresh not-connected or disconnected socket. --ANK 483 */ 484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 485 mask |= POLLHUP; 486 if (sk->sk_shutdown & RCV_SHUTDOWN) 487 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 488 489 /* Connected? */ 490 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 491 int target = sock_rcvlowat(sk, 0, INT_MAX); 492 493 if (tp->urg_seq == tp->copied_seq && 494 !sock_flag(sk, SOCK_URGINLINE) && 495 tp->urg_data) 496 target++; 497 498 /* Potential race condition. If read of tp below will 499 * escape above sk->sk_state, we can be illegally awaken 500 * in SYN_* states. */ 501 if (tp->rcv_nxt - tp->copied_seq >= target) 502 mask |= POLLIN | POLLRDNORM; 503 504 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 505 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 506 mask |= POLLOUT | POLLWRNORM; 507 } else { /* send SIGIO later */ 508 set_bit(SOCK_ASYNC_NOSPACE, 509 &sk->sk_socket->flags); 510 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 511 512 /* Race breaker. If space is freed after 513 * wspace test but before the flags are set, 514 * IO signal will be lost. 515 */ 516 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 517 mask |= POLLOUT | POLLWRNORM; 518 } 519 } else 520 mask |= POLLOUT | POLLWRNORM; 521 522 if (tp->urg_data & TCP_URG_VALID) 523 mask |= POLLPRI; 524 } 525 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 526 smp_rmb(); 527 if (sk->sk_err) 528 mask |= POLLERR; 529 530 return mask; 531 } 532 EXPORT_SYMBOL(tcp_poll); 533 534 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 535 { 536 struct tcp_sock *tp = tcp_sk(sk); 537 int answ; 538 539 switch (cmd) { 540 case SIOCINQ: 541 if (sk->sk_state == TCP_LISTEN) 542 return -EINVAL; 543 544 lock_sock(sk); 545 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 546 answ = 0; 547 else if (sock_flag(sk, SOCK_URGINLINE) || 548 !tp->urg_data || 549 before(tp->urg_seq, tp->copied_seq) || 550 !before(tp->urg_seq, tp->rcv_nxt)) { 551 struct sk_buff *skb; 552 553 answ = tp->rcv_nxt - tp->copied_seq; 554 555 /* Subtract 1, if FIN is in queue. */ 556 skb = skb_peek_tail(&sk->sk_receive_queue); 557 if (answ && skb) 558 answ -= tcp_hdr(skb)->fin; 559 } else 560 answ = tp->urg_seq - tp->copied_seq; 561 release_sock(sk); 562 break; 563 case SIOCATMARK: 564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 565 break; 566 case SIOCOUTQ: 567 if (sk->sk_state == TCP_LISTEN) 568 return -EINVAL; 569 570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 571 answ = 0; 572 else 573 answ = tp->write_seq - tp->snd_una; 574 break; 575 case SIOCOUTQNSD: 576 if (sk->sk_state == TCP_LISTEN) 577 return -EINVAL; 578 579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 580 answ = 0; 581 else 582 answ = tp->write_seq - tp->snd_nxt; 583 break; 584 default: 585 return -ENOIOCTLCMD; 586 } 587 588 return put_user(answ, (int __user *)arg); 589 } 590 EXPORT_SYMBOL(tcp_ioctl); 591 592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 593 { 594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 595 tp->pushed_seq = tp->write_seq; 596 } 597 598 static inline bool forced_push(const struct tcp_sock *tp) 599 { 600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 601 } 602 603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 607 608 skb->csum = 0; 609 tcb->seq = tcb->end_seq = tp->write_seq; 610 tcb->tcp_flags = TCPHDR_ACK; 611 tcb->sacked = 0; 612 skb_header_release(skb); 613 tcp_add_write_queue_tail(sk, skb); 614 sk->sk_wmem_queued += skb->truesize; 615 sk_mem_charge(sk, skb->truesize); 616 if (tp->nonagle & TCP_NAGLE_PUSH) 617 tp->nonagle &= ~TCP_NAGLE_PUSH; 618 } 619 620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 621 { 622 if (flags & MSG_OOB) 623 tp->snd_up = tp->write_seq; 624 } 625 626 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 627 int nonagle) 628 { 629 if (tcp_send_head(sk)) { 630 struct tcp_sock *tp = tcp_sk(sk); 631 632 if (!(flags & MSG_MORE) || forced_push(tp)) 633 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 634 635 tcp_mark_urg(tp, flags); 636 __tcp_push_pending_frames(sk, mss_now, 637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 638 } 639 } 640 641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 642 unsigned int offset, size_t len) 643 { 644 struct tcp_splice_state *tss = rd_desc->arg.data; 645 int ret; 646 647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 648 tss->flags); 649 if (ret > 0) 650 rd_desc->count -= ret; 651 return ret; 652 } 653 654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 655 { 656 /* Store TCP splice context information in read_descriptor_t. */ 657 read_descriptor_t rd_desc = { 658 .arg.data = tss, 659 .count = tss->len, 660 }; 661 662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 663 } 664 665 /** 666 * tcp_splice_read - splice data from TCP socket to a pipe 667 * @sock: socket to splice from 668 * @ppos: position (not valid) 669 * @pipe: pipe to splice to 670 * @len: number of bytes to splice 671 * @flags: splice modifier flags 672 * 673 * Description: 674 * Will read pages from given socket and fill them into a pipe. 675 * 676 **/ 677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 678 struct pipe_inode_info *pipe, size_t len, 679 unsigned int flags) 680 { 681 struct sock *sk = sock->sk; 682 struct tcp_splice_state tss = { 683 .pipe = pipe, 684 .len = len, 685 .flags = flags, 686 }; 687 long timeo; 688 ssize_t spliced; 689 int ret; 690 691 sock_rps_record_flow(sk); 692 /* 693 * We can't seek on a socket input 694 */ 695 if (unlikely(*ppos)) 696 return -ESPIPE; 697 698 ret = spliced = 0; 699 700 lock_sock(sk); 701 702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 703 while (tss.len) { 704 ret = __tcp_splice_read(sk, &tss); 705 if (ret < 0) 706 break; 707 else if (!ret) { 708 if (spliced) 709 break; 710 if (sock_flag(sk, SOCK_DONE)) 711 break; 712 if (sk->sk_err) { 713 ret = sock_error(sk); 714 break; 715 } 716 if (sk->sk_shutdown & RCV_SHUTDOWN) 717 break; 718 if (sk->sk_state == TCP_CLOSE) { 719 /* 720 * This occurs when user tries to read 721 * from never connected socket. 722 */ 723 if (!sock_flag(sk, SOCK_DONE)) 724 ret = -ENOTCONN; 725 break; 726 } 727 if (!timeo) { 728 ret = -EAGAIN; 729 break; 730 } 731 sk_wait_data(sk, &timeo); 732 if (signal_pending(current)) { 733 ret = sock_intr_errno(timeo); 734 break; 735 } 736 continue; 737 } 738 tss.len -= ret; 739 spliced += ret; 740 741 if (!timeo) 742 break; 743 release_sock(sk); 744 lock_sock(sk); 745 746 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 747 (sk->sk_shutdown & RCV_SHUTDOWN) || 748 signal_pending(current)) 749 break; 750 } 751 752 release_sock(sk); 753 754 if (spliced) 755 return spliced; 756 757 return ret; 758 } 759 EXPORT_SYMBOL(tcp_splice_read); 760 761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 762 { 763 struct sk_buff *skb; 764 765 /* The TCP header must be at least 32-bit aligned. */ 766 size = ALIGN(size, 4); 767 768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 769 if (skb) { 770 if (sk_wmem_schedule(sk, skb->truesize)) { 771 skb_reserve(skb, sk->sk_prot->max_header); 772 /* 773 * Make sure that we have exactly size bytes 774 * available to the caller, no more, no less. 775 */ 776 skb->avail_size = size; 777 return skb; 778 } 779 __kfree_skb(skb); 780 } else { 781 sk->sk_prot->enter_memory_pressure(sk); 782 sk_stream_moderate_sndbuf(sk); 783 } 784 return NULL; 785 } 786 787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 788 int large_allowed) 789 { 790 struct tcp_sock *tp = tcp_sk(sk); 791 u32 xmit_size_goal, old_size_goal; 792 793 xmit_size_goal = mss_now; 794 795 if (large_allowed && sk_can_gso(sk)) { 796 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 797 inet_csk(sk)->icsk_af_ops->net_header_len - 798 inet_csk(sk)->icsk_ext_hdr_len - 799 tp->tcp_header_len); 800 801 /* TSQ : try to have two TSO segments in flight */ 802 xmit_size_goal = min_t(u32, xmit_size_goal, 803 sysctl_tcp_limit_output_bytes >> 1); 804 805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 806 807 /* We try hard to avoid divides here */ 808 old_size_goal = tp->xmit_size_goal_segs * mss_now; 809 810 if (likely(old_size_goal <= xmit_size_goal && 811 old_size_goal + mss_now > xmit_size_goal)) { 812 xmit_size_goal = old_size_goal; 813 } else { 814 tp->xmit_size_goal_segs = 815 min_t(u16, xmit_size_goal / mss_now, 816 sk->sk_gso_max_segs); 817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 818 } 819 } 820 821 return max(xmit_size_goal, mss_now); 822 } 823 824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 825 { 826 int mss_now; 827 828 mss_now = tcp_current_mss(sk); 829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 830 831 return mss_now; 832 } 833 834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 835 size_t psize, int flags) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 int mss_now, size_goal; 839 int err; 840 ssize_t copied; 841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 842 843 /* Wait for a connection to finish. */ 844 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 845 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 846 goto out_err; 847 848 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 849 850 mss_now = tcp_send_mss(sk, &size_goal, flags); 851 copied = 0; 852 853 err = -EPIPE; 854 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 855 goto out_err; 856 857 while (psize > 0) { 858 struct sk_buff *skb = tcp_write_queue_tail(sk); 859 struct page *page = pages[poffset / PAGE_SIZE]; 860 int copy, i; 861 int offset = poffset % PAGE_SIZE; 862 int size = min_t(size_t, psize, PAGE_SIZE - offset); 863 bool can_coalesce; 864 865 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 866 new_segment: 867 if (!sk_stream_memory_free(sk)) 868 goto wait_for_sndbuf; 869 870 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 871 if (!skb) 872 goto wait_for_memory; 873 874 skb_entail(sk, skb); 875 copy = size_goal; 876 } 877 878 if (copy > size) 879 copy = size; 880 881 i = skb_shinfo(skb)->nr_frags; 882 can_coalesce = skb_can_coalesce(skb, i, page, offset); 883 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 884 tcp_mark_push(tp, skb); 885 goto new_segment; 886 } 887 if (!sk_wmem_schedule(sk, copy)) 888 goto wait_for_memory; 889 890 if (can_coalesce) { 891 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 892 } else { 893 get_page(page); 894 skb_fill_page_desc(skb, i, page, offset, copy); 895 } 896 897 skb->len += copy; 898 skb->data_len += copy; 899 skb->truesize += copy; 900 sk->sk_wmem_queued += copy; 901 sk_mem_charge(sk, copy); 902 skb->ip_summed = CHECKSUM_PARTIAL; 903 tp->write_seq += copy; 904 TCP_SKB_CB(skb)->end_seq += copy; 905 skb_shinfo(skb)->gso_segs = 0; 906 907 if (!copied) 908 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 909 910 copied += copy; 911 poffset += copy; 912 if (!(psize -= copy)) 913 goto out; 914 915 if (skb->len < size_goal || (flags & MSG_OOB)) 916 continue; 917 918 if (forced_push(tp)) { 919 tcp_mark_push(tp, skb); 920 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 921 } else if (skb == tcp_send_head(sk)) 922 tcp_push_one(sk, mss_now); 923 continue; 924 925 wait_for_sndbuf: 926 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 927 wait_for_memory: 928 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 929 930 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 931 goto do_error; 932 933 mss_now = tcp_send_mss(sk, &size_goal, flags); 934 } 935 936 out: 937 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 938 tcp_push(sk, flags, mss_now, tp->nonagle); 939 return copied; 940 941 do_error: 942 if (copied) 943 goto out; 944 out_err: 945 return sk_stream_error(sk, flags, err); 946 } 947 948 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 949 size_t size, int flags) 950 { 951 ssize_t res; 952 953 if (!(sk->sk_route_caps & NETIF_F_SG) || 954 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 955 return sock_no_sendpage(sk->sk_socket, page, offset, size, 956 flags); 957 958 lock_sock(sk); 959 res = do_tcp_sendpages(sk, &page, offset, size, flags); 960 release_sock(sk); 961 return res; 962 } 963 EXPORT_SYMBOL(tcp_sendpage); 964 965 static inline int select_size(const struct sock *sk, bool sg) 966 { 967 const struct tcp_sock *tp = tcp_sk(sk); 968 int tmp = tp->mss_cache; 969 970 if (sg) { 971 if (sk_can_gso(sk)) { 972 /* Small frames wont use a full page: 973 * Payload will immediately follow tcp header. 974 */ 975 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 976 } else { 977 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 978 979 if (tmp >= pgbreak && 980 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 981 tmp = pgbreak; 982 } 983 } 984 985 return tmp; 986 } 987 988 void tcp_free_fastopen_req(struct tcp_sock *tp) 989 { 990 if (tp->fastopen_req != NULL) { 991 kfree(tp->fastopen_req); 992 tp->fastopen_req = NULL; 993 } 994 } 995 996 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 997 { 998 struct tcp_sock *tp = tcp_sk(sk); 999 int err, flags; 1000 1001 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1002 return -EOPNOTSUPP; 1003 if (tp->fastopen_req != NULL) 1004 return -EALREADY; /* Another Fast Open is in progress */ 1005 1006 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1007 sk->sk_allocation); 1008 if (unlikely(tp->fastopen_req == NULL)) 1009 return -ENOBUFS; 1010 tp->fastopen_req->data = msg; 1011 1012 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1013 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1014 msg->msg_namelen, flags); 1015 *size = tp->fastopen_req->copied; 1016 tcp_free_fastopen_req(tp); 1017 return err; 1018 } 1019 1020 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1021 size_t size) 1022 { 1023 struct iovec *iov; 1024 struct tcp_sock *tp = tcp_sk(sk); 1025 struct sk_buff *skb; 1026 int iovlen, flags, err, copied = 0; 1027 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1028 bool sg; 1029 long timeo; 1030 1031 lock_sock(sk); 1032 1033 flags = msg->msg_flags; 1034 if (flags & MSG_FASTOPEN) { 1035 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1036 if (err == -EINPROGRESS && copied_syn > 0) 1037 goto out; 1038 else if (err) 1039 goto out_err; 1040 offset = copied_syn; 1041 } 1042 1043 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1044 1045 /* Wait for a connection to finish. */ 1046 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1047 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1048 goto do_error; 1049 1050 if (unlikely(tp->repair)) { 1051 if (tp->repair_queue == TCP_RECV_QUEUE) { 1052 copied = tcp_send_rcvq(sk, msg, size); 1053 goto out; 1054 } 1055 1056 err = -EINVAL; 1057 if (tp->repair_queue == TCP_NO_QUEUE) 1058 goto out_err; 1059 1060 /* 'common' sending to sendq */ 1061 } 1062 1063 /* This should be in poll */ 1064 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1065 1066 mss_now = tcp_send_mss(sk, &size_goal, flags); 1067 1068 /* Ok commence sending. */ 1069 iovlen = msg->msg_iovlen; 1070 iov = msg->msg_iov; 1071 copied = 0; 1072 1073 err = -EPIPE; 1074 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1075 goto out_err; 1076 1077 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1078 1079 while (--iovlen >= 0) { 1080 size_t seglen = iov->iov_len; 1081 unsigned char __user *from = iov->iov_base; 1082 1083 iov++; 1084 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1085 if (offset >= seglen) { 1086 offset -= seglen; 1087 continue; 1088 } 1089 seglen -= offset; 1090 from += offset; 1091 offset = 0; 1092 } 1093 1094 while (seglen > 0) { 1095 int copy = 0; 1096 int max = size_goal; 1097 1098 skb = tcp_write_queue_tail(sk); 1099 if (tcp_send_head(sk)) { 1100 if (skb->ip_summed == CHECKSUM_NONE) 1101 max = mss_now; 1102 copy = max - skb->len; 1103 } 1104 1105 if (copy <= 0) { 1106 new_segment: 1107 /* Allocate new segment. If the interface is SG, 1108 * allocate skb fitting to single page. 1109 */ 1110 if (!sk_stream_memory_free(sk)) 1111 goto wait_for_sndbuf; 1112 1113 skb = sk_stream_alloc_skb(sk, 1114 select_size(sk, sg), 1115 sk->sk_allocation); 1116 if (!skb) 1117 goto wait_for_memory; 1118 1119 /* 1120 * Check whether we can use HW checksum. 1121 */ 1122 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1123 skb->ip_summed = CHECKSUM_PARTIAL; 1124 1125 skb_entail(sk, skb); 1126 copy = size_goal; 1127 max = size_goal; 1128 } 1129 1130 /* Try to append data to the end of skb. */ 1131 if (copy > seglen) 1132 copy = seglen; 1133 1134 /* Where to copy to? */ 1135 if (skb_availroom(skb) > 0) { 1136 /* We have some space in skb head. Superb! */ 1137 copy = min_t(int, copy, skb_availroom(skb)); 1138 err = skb_add_data_nocache(sk, skb, from, copy); 1139 if (err) 1140 goto do_fault; 1141 } else { 1142 bool merge = false; 1143 int i = skb_shinfo(skb)->nr_frags; 1144 struct page *page = sk->sk_sndmsg_page; 1145 int off; 1146 1147 if (page && page_count(page) == 1) 1148 sk->sk_sndmsg_off = 0; 1149 1150 off = sk->sk_sndmsg_off; 1151 1152 if (skb_can_coalesce(skb, i, page, off) && 1153 off != PAGE_SIZE) { 1154 /* We can extend the last page 1155 * fragment. */ 1156 merge = true; 1157 } else if (i == MAX_SKB_FRAGS || !sg) { 1158 /* Need to add new fragment and cannot 1159 * do this because interface is non-SG, 1160 * or because all the page slots are 1161 * busy. */ 1162 tcp_mark_push(tp, skb); 1163 goto new_segment; 1164 } else if (page) { 1165 if (off == PAGE_SIZE) { 1166 put_page(page); 1167 sk->sk_sndmsg_page = page = NULL; 1168 off = 0; 1169 } 1170 } else 1171 off = 0; 1172 1173 if (copy > PAGE_SIZE - off) 1174 copy = PAGE_SIZE - off; 1175 1176 if (!sk_wmem_schedule(sk, copy)) 1177 goto wait_for_memory; 1178 1179 if (!page) { 1180 /* Allocate new cache page. */ 1181 if (!(page = sk_stream_alloc_page(sk))) 1182 goto wait_for_memory; 1183 } 1184 1185 /* Time to copy data. We are close to 1186 * the end! */ 1187 err = skb_copy_to_page_nocache(sk, from, skb, 1188 page, off, copy); 1189 if (err) { 1190 /* If this page was new, give it to the 1191 * socket so it does not get leaked. 1192 */ 1193 if (!sk->sk_sndmsg_page) { 1194 sk->sk_sndmsg_page = page; 1195 sk->sk_sndmsg_off = 0; 1196 } 1197 goto do_error; 1198 } 1199 1200 /* Update the skb. */ 1201 if (merge) { 1202 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1203 } else { 1204 skb_fill_page_desc(skb, i, page, off, copy); 1205 if (sk->sk_sndmsg_page) { 1206 get_page(page); 1207 } else if (off + copy < PAGE_SIZE) { 1208 get_page(page); 1209 sk->sk_sndmsg_page = page; 1210 } 1211 } 1212 1213 sk->sk_sndmsg_off = off + copy; 1214 } 1215 1216 if (!copied) 1217 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1218 1219 tp->write_seq += copy; 1220 TCP_SKB_CB(skb)->end_seq += copy; 1221 skb_shinfo(skb)->gso_segs = 0; 1222 1223 from += copy; 1224 copied += copy; 1225 if ((seglen -= copy) == 0 && iovlen == 0) 1226 goto out; 1227 1228 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1229 continue; 1230 1231 if (forced_push(tp)) { 1232 tcp_mark_push(tp, skb); 1233 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1234 } else if (skb == tcp_send_head(sk)) 1235 tcp_push_one(sk, mss_now); 1236 continue; 1237 1238 wait_for_sndbuf: 1239 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1240 wait_for_memory: 1241 if (copied && likely(!tp->repair)) 1242 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1243 1244 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1245 goto do_error; 1246 1247 mss_now = tcp_send_mss(sk, &size_goal, flags); 1248 } 1249 } 1250 1251 out: 1252 if (copied && likely(!tp->repair)) 1253 tcp_push(sk, flags, mss_now, tp->nonagle); 1254 release_sock(sk); 1255 return copied + copied_syn; 1256 1257 do_fault: 1258 if (!skb->len) { 1259 tcp_unlink_write_queue(skb, sk); 1260 /* It is the one place in all of TCP, except connection 1261 * reset, where we can be unlinking the send_head. 1262 */ 1263 tcp_check_send_head(sk, skb); 1264 sk_wmem_free_skb(sk, skb); 1265 } 1266 1267 do_error: 1268 if (copied + copied_syn) 1269 goto out; 1270 out_err: 1271 err = sk_stream_error(sk, flags, err); 1272 release_sock(sk); 1273 return err; 1274 } 1275 EXPORT_SYMBOL(tcp_sendmsg); 1276 1277 /* 1278 * Handle reading urgent data. BSD has very simple semantics for 1279 * this, no blocking and very strange errors 8) 1280 */ 1281 1282 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1283 { 1284 struct tcp_sock *tp = tcp_sk(sk); 1285 1286 /* No URG data to read. */ 1287 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1288 tp->urg_data == TCP_URG_READ) 1289 return -EINVAL; /* Yes this is right ! */ 1290 1291 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1292 return -ENOTCONN; 1293 1294 if (tp->urg_data & TCP_URG_VALID) { 1295 int err = 0; 1296 char c = tp->urg_data; 1297 1298 if (!(flags & MSG_PEEK)) 1299 tp->urg_data = TCP_URG_READ; 1300 1301 /* Read urgent data. */ 1302 msg->msg_flags |= MSG_OOB; 1303 1304 if (len > 0) { 1305 if (!(flags & MSG_TRUNC)) 1306 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1307 len = 1; 1308 } else 1309 msg->msg_flags |= MSG_TRUNC; 1310 1311 return err ? -EFAULT : len; 1312 } 1313 1314 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1315 return 0; 1316 1317 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1318 * the available implementations agree in this case: 1319 * this call should never block, independent of the 1320 * blocking state of the socket. 1321 * Mike <pall@rz.uni-karlsruhe.de> 1322 */ 1323 return -EAGAIN; 1324 } 1325 1326 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1327 { 1328 struct sk_buff *skb; 1329 int copied = 0, err = 0; 1330 1331 /* XXX -- need to support SO_PEEK_OFF */ 1332 1333 skb_queue_walk(&sk->sk_write_queue, skb) { 1334 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1335 if (err) 1336 break; 1337 1338 copied += skb->len; 1339 } 1340 1341 return err ?: copied; 1342 } 1343 1344 /* Clean up the receive buffer for full frames taken by the user, 1345 * then send an ACK if necessary. COPIED is the number of bytes 1346 * tcp_recvmsg has given to the user so far, it speeds up the 1347 * calculation of whether or not we must ACK for the sake of 1348 * a window update. 1349 */ 1350 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1351 { 1352 struct tcp_sock *tp = tcp_sk(sk); 1353 bool time_to_ack = false; 1354 1355 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1356 1357 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1358 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1359 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1360 1361 if (inet_csk_ack_scheduled(sk)) { 1362 const struct inet_connection_sock *icsk = inet_csk(sk); 1363 /* Delayed ACKs frequently hit locked sockets during bulk 1364 * receive. */ 1365 if (icsk->icsk_ack.blocked || 1366 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1367 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1368 /* 1369 * If this read emptied read buffer, we send ACK, if 1370 * connection is not bidirectional, user drained 1371 * receive buffer and there was a small segment 1372 * in queue. 1373 */ 1374 (copied > 0 && 1375 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1376 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1377 !icsk->icsk_ack.pingpong)) && 1378 !atomic_read(&sk->sk_rmem_alloc))) 1379 time_to_ack = true; 1380 } 1381 1382 /* We send an ACK if we can now advertise a non-zero window 1383 * which has been raised "significantly". 1384 * 1385 * Even if window raised up to infinity, do not send window open ACK 1386 * in states, where we will not receive more. It is useless. 1387 */ 1388 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1389 __u32 rcv_window_now = tcp_receive_window(tp); 1390 1391 /* Optimize, __tcp_select_window() is not cheap. */ 1392 if (2*rcv_window_now <= tp->window_clamp) { 1393 __u32 new_window = __tcp_select_window(sk); 1394 1395 /* Send ACK now, if this read freed lots of space 1396 * in our buffer. Certainly, new_window is new window. 1397 * We can advertise it now, if it is not less than current one. 1398 * "Lots" means "at least twice" here. 1399 */ 1400 if (new_window && new_window >= 2 * rcv_window_now) 1401 time_to_ack = true; 1402 } 1403 } 1404 if (time_to_ack) 1405 tcp_send_ack(sk); 1406 } 1407 1408 static void tcp_prequeue_process(struct sock *sk) 1409 { 1410 struct sk_buff *skb; 1411 struct tcp_sock *tp = tcp_sk(sk); 1412 1413 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1414 1415 /* RX process wants to run with disabled BHs, though it is not 1416 * necessary */ 1417 local_bh_disable(); 1418 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1419 sk_backlog_rcv(sk, skb); 1420 local_bh_enable(); 1421 1422 /* Clear memory counter. */ 1423 tp->ucopy.memory = 0; 1424 } 1425 1426 #ifdef CONFIG_NET_DMA 1427 static void tcp_service_net_dma(struct sock *sk, bool wait) 1428 { 1429 dma_cookie_t done, used; 1430 dma_cookie_t last_issued; 1431 struct tcp_sock *tp = tcp_sk(sk); 1432 1433 if (!tp->ucopy.dma_chan) 1434 return; 1435 1436 last_issued = tp->ucopy.dma_cookie; 1437 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1438 1439 do { 1440 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1441 last_issued, &done, 1442 &used) == DMA_SUCCESS) { 1443 /* Safe to free early-copied skbs now */ 1444 __skb_queue_purge(&sk->sk_async_wait_queue); 1445 break; 1446 } else { 1447 struct sk_buff *skb; 1448 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1449 (dma_async_is_complete(skb->dma_cookie, done, 1450 used) == DMA_SUCCESS)) { 1451 __skb_dequeue(&sk->sk_async_wait_queue); 1452 kfree_skb(skb); 1453 } 1454 } 1455 } while (wait); 1456 } 1457 #endif 1458 1459 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1460 { 1461 struct sk_buff *skb; 1462 u32 offset; 1463 1464 skb_queue_walk(&sk->sk_receive_queue, skb) { 1465 offset = seq - TCP_SKB_CB(skb)->seq; 1466 if (tcp_hdr(skb)->syn) 1467 offset--; 1468 if (offset < skb->len || tcp_hdr(skb)->fin) { 1469 *off = offset; 1470 return skb; 1471 } 1472 } 1473 return NULL; 1474 } 1475 1476 /* 1477 * This routine provides an alternative to tcp_recvmsg() for routines 1478 * that would like to handle copying from skbuffs directly in 'sendfile' 1479 * fashion. 1480 * Note: 1481 * - It is assumed that the socket was locked by the caller. 1482 * - The routine does not block. 1483 * - At present, there is no support for reading OOB data 1484 * or for 'peeking' the socket using this routine 1485 * (although both would be easy to implement). 1486 */ 1487 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1488 sk_read_actor_t recv_actor) 1489 { 1490 struct sk_buff *skb; 1491 struct tcp_sock *tp = tcp_sk(sk); 1492 u32 seq = tp->copied_seq; 1493 u32 offset; 1494 int copied = 0; 1495 1496 if (sk->sk_state == TCP_LISTEN) 1497 return -ENOTCONN; 1498 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1499 if (offset < skb->len) { 1500 int used; 1501 size_t len; 1502 1503 len = skb->len - offset; 1504 /* Stop reading if we hit a patch of urgent data */ 1505 if (tp->urg_data) { 1506 u32 urg_offset = tp->urg_seq - seq; 1507 if (urg_offset < len) 1508 len = urg_offset; 1509 if (!len) 1510 break; 1511 } 1512 used = recv_actor(desc, skb, offset, len); 1513 if (used < 0) { 1514 if (!copied) 1515 copied = used; 1516 break; 1517 } else if (used <= len) { 1518 seq += used; 1519 copied += used; 1520 offset += used; 1521 } 1522 /* 1523 * If recv_actor drops the lock (e.g. TCP splice 1524 * receive) the skb pointer might be invalid when 1525 * getting here: tcp_collapse might have deleted it 1526 * while aggregating skbs from the socket queue. 1527 */ 1528 skb = tcp_recv_skb(sk, seq-1, &offset); 1529 if (!skb || (offset+1 != skb->len)) 1530 break; 1531 } 1532 if (tcp_hdr(skb)->fin) { 1533 sk_eat_skb(sk, skb, false); 1534 ++seq; 1535 break; 1536 } 1537 sk_eat_skb(sk, skb, false); 1538 if (!desc->count) 1539 break; 1540 tp->copied_seq = seq; 1541 } 1542 tp->copied_seq = seq; 1543 1544 tcp_rcv_space_adjust(sk); 1545 1546 /* Clean up data we have read: This will do ACK frames. */ 1547 if (copied > 0) 1548 tcp_cleanup_rbuf(sk, copied); 1549 return copied; 1550 } 1551 EXPORT_SYMBOL(tcp_read_sock); 1552 1553 /* 1554 * This routine copies from a sock struct into the user buffer. 1555 * 1556 * Technical note: in 2.3 we work on _locked_ socket, so that 1557 * tricks with *seq access order and skb->users are not required. 1558 * Probably, code can be easily improved even more. 1559 */ 1560 1561 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1562 size_t len, int nonblock, int flags, int *addr_len) 1563 { 1564 struct tcp_sock *tp = tcp_sk(sk); 1565 int copied = 0; 1566 u32 peek_seq; 1567 u32 *seq; 1568 unsigned long used; 1569 int err; 1570 int target; /* Read at least this many bytes */ 1571 long timeo; 1572 struct task_struct *user_recv = NULL; 1573 bool copied_early = false; 1574 struct sk_buff *skb; 1575 u32 urg_hole = 0; 1576 1577 lock_sock(sk); 1578 1579 err = -ENOTCONN; 1580 if (sk->sk_state == TCP_LISTEN) 1581 goto out; 1582 1583 timeo = sock_rcvtimeo(sk, nonblock); 1584 1585 /* Urgent data needs to be handled specially. */ 1586 if (flags & MSG_OOB) 1587 goto recv_urg; 1588 1589 if (unlikely(tp->repair)) { 1590 err = -EPERM; 1591 if (!(flags & MSG_PEEK)) 1592 goto out; 1593 1594 if (tp->repair_queue == TCP_SEND_QUEUE) 1595 goto recv_sndq; 1596 1597 err = -EINVAL; 1598 if (tp->repair_queue == TCP_NO_QUEUE) 1599 goto out; 1600 1601 /* 'common' recv queue MSG_PEEK-ing */ 1602 } 1603 1604 seq = &tp->copied_seq; 1605 if (flags & MSG_PEEK) { 1606 peek_seq = tp->copied_seq; 1607 seq = &peek_seq; 1608 } 1609 1610 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1611 1612 #ifdef CONFIG_NET_DMA 1613 tp->ucopy.dma_chan = NULL; 1614 preempt_disable(); 1615 skb = skb_peek_tail(&sk->sk_receive_queue); 1616 { 1617 int available = 0; 1618 1619 if (skb) 1620 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1621 if ((available < target) && 1622 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1623 !sysctl_tcp_low_latency && 1624 net_dma_find_channel()) { 1625 preempt_enable_no_resched(); 1626 tp->ucopy.pinned_list = 1627 dma_pin_iovec_pages(msg->msg_iov, len); 1628 } else { 1629 preempt_enable_no_resched(); 1630 } 1631 } 1632 #endif 1633 1634 do { 1635 u32 offset; 1636 1637 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1638 if (tp->urg_data && tp->urg_seq == *seq) { 1639 if (copied) 1640 break; 1641 if (signal_pending(current)) { 1642 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1643 break; 1644 } 1645 } 1646 1647 /* Next get a buffer. */ 1648 1649 skb_queue_walk(&sk->sk_receive_queue, skb) { 1650 /* Now that we have two receive queues this 1651 * shouldn't happen. 1652 */ 1653 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1654 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1655 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1656 flags)) 1657 break; 1658 1659 offset = *seq - TCP_SKB_CB(skb)->seq; 1660 if (tcp_hdr(skb)->syn) 1661 offset--; 1662 if (offset < skb->len) 1663 goto found_ok_skb; 1664 if (tcp_hdr(skb)->fin) 1665 goto found_fin_ok; 1666 WARN(!(flags & MSG_PEEK), 1667 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1668 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1669 } 1670 1671 /* Well, if we have backlog, try to process it now yet. */ 1672 1673 if (copied >= target && !sk->sk_backlog.tail) 1674 break; 1675 1676 if (copied) { 1677 if (sk->sk_err || 1678 sk->sk_state == TCP_CLOSE || 1679 (sk->sk_shutdown & RCV_SHUTDOWN) || 1680 !timeo || 1681 signal_pending(current)) 1682 break; 1683 } else { 1684 if (sock_flag(sk, SOCK_DONE)) 1685 break; 1686 1687 if (sk->sk_err) { 1688 copied = sock_error(sk); 1689 break; 1690 } 1691 1692 if (sk->sk_shutdown & RCV_SHUTDOWN) 1693 break; 1694 1695 if (sk->sk_state == TCP_CLOSE) { 1696 if (!sock_flag(sk, SOCK_DONE)) { 1697 /* This occurs when user tries to read 1698 * from never connected socket. 1699 */ 1700 copied = -ENOTCONN; 1701 break; 1702 } 1703 break; 1704 } 1705 1706 if (!timeo) { 1707 copied = -EAGAIN; 1708 break; 1709 } 1710 1711 if (signal_pending(current)) { 1712 copied = sock_intr_errno(timeo); 1713 break; 1714 } 1715 } 1716 1717 tcp_cleanup_rbuf(sk, copied); 1718 1719 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1720 /* Install new reader */ 1721 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1722 user_recv = current; 1723 tp->ucopy.task = user_recv; 1724 tp->ucopy.iov = msg->msg_iov; 1725 } 1726 1727 tp->ucopy.len = len; 1728 1729 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1730 !(flags & (MSG_PEEK | MSG_TRUNC))); 1731 1732 /* Ugly... If prequeue is not empty, we have to 1733 * process it before releasing socket, otherwise 1734 * order will be broken at second iteration. 1735 * More elegant solution is required!!! 1736 * 1737 * Look: we have the following (pseudo)queues: 1738 * 1739 * 1. packets in flight 1740 * 2. backlog 1741 * 3. prequeue 1742 * 4. receive_queue 1743 * 1744 * Each queue can be processed only if the next ones 1745 * are empty. At this point we have empty receive_queue. 1746 * But prequeue _can_ be not empty after 2nd iteration, 1747 * when we jumped to start of loop because backlog 1748 * processing added something to receive_queue. 1749 * We cannot release_sock(), because backlog contains 1750 * packets arrived _after_ prequeued ones. 1751 * 1752 * Shortly, algorithm is clear --- to process all 1753 * the queues in order. We could make it more directly, 1754 * requeueing packets from backlog to prequeue, if 1755 * is not empty. It is more elegant, but eats cycles, 1756 * unfortunately. 1757 */ 1758 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1759 goto do_prequeue; 1760 1761 /* __ Set realtime policy in scheduler __ */ 1762 } 1763 1764 #ifdef CONFIG_NET_DMA 1765 if (tp->ucopy.dma_chan) 1766 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1767 #endif 1768 if (copied >= target) { 1769 /* Do not sleep, just process backlog. */ 1770 release_sock(sk); 1771 lock_sock(sk); 1772 } else 1773 sk_wait_data(sk, &timeo); 1774 1775 #ifdef CONFIG_NET_DMA 1776 tcp_service_net_dma(sk, false); /* Don't block */ 1777 tp->ucopy.wakeup = 0; 1778 #endif 1779 1780 if (user_recv) { 1781 int chunk; 1782 1783 /* __ Restore normal policy in scheduler __ */ 1784 1785 if ((chunk = len - tp->ucopy.len) != 0) { 1786 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1787 len -= chunk; 1788 copied += chunk; 1789 } 1790 1791 if (tp->rcv_nxt == tp->copied_seq && 1792 !skb_queue_empty(&tp->ucopy.prequeue)) { 1793 do_prequeue: 1794 tcp_prequeue_process(sk); 1795 1796 if ((chunk = len - tp->ucopy.len) != 0) { 1797 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1798 len -= chunk; 1799 copied += chunk; 1800 } 1801 } 1802 } 1803 if ((flags & MSG_PEEK) && 1804 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1805 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1806 current->comm, 1807 task_pid_nr(current)); 1808 peek_seq = tp->copied_seq; 1809 } 1810 continue; 1811 1812 found_ok_skb: 1813 /* Ok so how much can we use? */ 1814 used = skb->len - offset; 1815 if (len < used) 1816 used = len; 1817 1818 /* Do we have urgent data here? */ 1819 if (tp->urg_data) { 1820 u32 urg_offset = tp->urg_seq - *seq; 1821 if (urg_offset < used) { 1822 if (!urg_offset) { 1823 if (!sock_flag(sk, SOCK_URGINLINE)) { 1824 ++*seq; 1825 urg_hole++; 1826 offset++; 1827 used--; 1828 if (!used) 1829 goto skip_copy; 1830 } 1831 } else 1832 used = urg_offset; 1833 } 1834 } 1835 1836 if (!(flags & MSG_TRUNC)) { 1837 #ifdef CONFIG_NET_DMA 1838 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1839 tp->ucopy.dma_chan = net_dma_find_channel(); 1840 1841 if (tp->ucopy.dma_chan) { 1842 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1843 tp->ucopy.dma_chan, skb, offset, 1844 msg->msg_iov, used, 1845 tp->ucopy.pinned_list); 1846 1847 if (tp->ucopy.dma_cookie < 0) { 1848 1849 pr_alert("%s: dma_cookie < 0\n", 1850 __func__); 1851 1852 /* Exception. Bailout! */ 1853 if (!copied) 1854 copied = -EFAULT; 1855 break; 1856 } 1857 1858 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1859 1860 if ((offset + used) == skb->len) 1861 copied_early = true; 1862 1863 } else 1864 #endif 1865 { 1866 err = skb_copy_datagram_iovec(skb, offset, 1867 msg->msg_iov, used); 1868 if (err) { 1869 /* Exception. Bailout! */ 1870 if (!copied) 1871 copied = -EFAULT; 1872 break; 1873 } 1874 } 1875 } 1876 1877 *seq += used; 1878 copied += used; 1879 len -= used; 1880 1881 tcp_rcv_space_adjust(sk); 1882 1883 skip_copy: 1884 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1885 tp->urg_data = 0; 1886 tcp_fast_path_check(sk); 1887 } 1888 if (used + offset < skb->len) 1889 continue; 1890 1891 if (tcp_hdr(skb)->fin) 1892 goto found_fin_ok; 1893 if (!(flags & MSG_PEEK)) { 1894 sk_eat_skb(sk, skb, copied_early); 1895 copied_early = false; 1896 } 1897 continue; 1898 1899 found_fin_ok: 1900 /* Process the FIN. */ 1901 ++*seq; 1902 if (!(flags & MSG_PEEK)) { 1903 sk_eat_skb(sk, skb, copied_early); 1904 copied_early = false; 1905 } 1906 break; 1907 } while (len > 0); 1908 1909 if (user_recv) { 1910 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1911 int chunk; 1912 1913 tp->ucopy.len = copied > 0 ? len : 0; 1914 1915 tcp_prequeue_process(sk); 1916 1917 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1918 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1919 len -= chunk; 1920 copied += chunk; 1921 } 1922 } 1923 1924 tp->ucopy.task = NULL; 1925 tp->ucopy.len = 0; 1926 } 1927 1928 #ifdef CONFIG_NET_DMA 1929 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1930 tp->ucopy.dma_chan = NULL; 1931 1932 if (tp->ucopy.pinned_list) { 1933 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1934 tp->ucopy.pinned_list = NULL; 1935 } 1936 #endif 1937 1938 /* According to UNIX98, msg_name/msg_namelen are ignored 1939 * on connected socket. I was just happy when found this 8) --ANK 1940 */ 1941 1942 /* Clean up data we have read: This will do ACK frames. */ 1943 tcp_cleanup_rbuf(sk, copied); 1944 1945 release_sock(sk); 1946 return copied; 1947 1948 out: 1949 release_sock(sk); 1950 return err; 1951 1952 recv_urg: 1953 err = tcp_recv_urg(sk, msg, len, flags); 1954 goto out; 1955 1956 recv_sndq: 1957 err = tcp_peek_sndq(sk, msg, len); 1958 goto out; 1959 } 1960 EXPORT_SYMBOL(tcp_recvmsg); 1961 1962 void tcp_set_state(struct sock *sk, int state) 1963 { 1964 int oldstate = sk->sk_state; 1965 1966 switch (state) { 1967 case TCP_ESTABLISHED: 1968 if (oldstate != TCP_ESTABLISHED) 1969 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1970 break; 1971 1972 case TCP_CLOSE: 1973 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1974 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1975 1976 sk->sk_prot->unhash(sk); 1977 if (inet_csk(sk)->icsk_bind_hash && 1978 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1979 inet_put_port(sk); 1980 /* fall through */ 1981 default: 1982 if (oldstate == TCP_ESTABLISHED) 1983 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1984 } 1985 1986 /* Change state AFTER socket is unhashed to avoid closed 1987 * socket sitting in hash tables. 1988 */ 1989 sk->sk_state = state; 1990 1991 #ifdef STATE_TRACE 1992 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1993 #endif 1994 } 1995 EXPORT_SYMBOL_GPL(tcp_set_state); 1996 1997 /* 1998 * State processing on a close. This implements the state shift for 1999 * sending our FIN frame. Note that we only send a FIN for some 2000 * states. A shutdown() may have already sent the FIN, or we may be 2001 * closed. 2002 */ 2003 2004 static const unsigned char new_state[16] = { 2005 /* current state: new state: action: */ 2006 /* (Invalid) */ TCP_CLOSE, 2007 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2008 /* TCP_SYN_SENT */ TCP_CLOSE, 2009 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2010 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2011 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2012 /* TCP_TIME_WAIT */ TCP_CLOSE, 2013 /* TCP_CLOSE */ TCP_CLOSE, 2014 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2015 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2016 /* TCP_LISTEN */ TCP_CLOSE, 2017 /* TCP_CLOSING */ TCP_CLOSING, 2018 }; 2019 2020 static int tcp_close_state(struct sock *sk) 2021 { 2022 int next = (int)new_state[sk->sk_state]; 2023 int ns = next & TCP_STATE_MASK; 2024 2025 tcp_set_state(sk, ns); 2026 2027 return next & TCP_ACTION_FIN; 2028 } 2029 2030 /* 2031 * Shutdown the sending side of a connection. Much like close except 2032 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2033 */ 2034 2035 void tcp_shutdown(struct sock *sk, int how) 2036 { 2037 /* We need to grab some memory, and put together a FIN, 2038 * and then put it into the queue to be sent. 2039 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2040 */ 2041 if (!(how & SEND_SHUTDOWN)) 2042 return; 2043 2044 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2045 if ((1 << sk->sk_state) & 2046 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2047 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2048 /* Clear out any half completed packets. FIN if needed. */ 2049 if (tcp_close_state(sk)) 2050 tcp_send_fin(sk); 2051 } 2052 } 2053 EXPORT_SYMBOL(tcp_shutdown); 2054 2055 bool tcp_check_oom(struct sock *sk, int shift) 2056 { 2057 bool too_many_orphans, out_of_socket_memory; 2058 2059 too_many_orphans = tcp_too_many_orphans(sk, shift); 2060 out_of_socket_memory = tcp_out_of_memory(sk); 2061 2062 if (too_many_orphans) 2063 net_info_ratelimited("too many orphaned sockets\n"); 2064 if (out_of_socket_memory) 2065 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2066 return too_many_orphans || out_of_socket_memory; 2067 } 2068 2069 void tcp_close(struct sock *sk, long timeout) 2070 { 2071 struct sk_buff *skb; 2072 int data_was_unread = 0; 2073 int state; 2074 2075 lock_sock(sk); 2076 sk->sk_shutdown = SHUTDOWN_MASK; 2077 2078 if (sk->sk_state == TCP_LISTEN) { 2079 tcp_set_state(sk, TCP_CLOSE); 2080 2081 /* Special case. */ 2082 inet_csk_listen_stop(sk); 2083 2084 goto adjudge_to_death; 2085 } 2086 2087 /* We need to flush the recv. buffs. We do this only on the 2088 * descriptor close, not protocol-sourced closes, because the 2089 * reader process may not have drained the data yet! 2090 */ 2091 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2092 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2093 tcp_hdr(skb)->fin; 2094 data_was_unread += len; 2095 __kfree_skb(skb); 2096 } 2097 2098 sk_mem_reclaim(sk); 2099 2100 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2101 if (sk->sk_state == TCP_CLOSE) 2102 goto adjudge_to_death; 2103 2104 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2105 * data was lost. To witness the awful effects of the old behavior of 2106 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2107 * GET in an FTP client, suspend the process, wait for the client to 2108 * advertise a zero window, then kill -9 the FTP client, wheee... 2109 * Note: timeout is always zero in such a case. 2110 */ 2111 if (unlikely(tcp_sk(sk)->repair)) { 2112 sk->sk_prot->disconnect(sk, 0); 2113 } else if (data_was_unread) { 2114 /* Unread data was tossed, zap the connection. */ 2115 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2116 tcp_set_state(sk, TCP_CLOSE); 2117 tcp_send_active_reset(sk, sk->sk_allocation); 2118 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2119 /* Check zero linger _after_ checking for unread data. */ 2120 sk->sk_prot->disconnect(sk, 0); 2121 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2122 } else if (tcp_close_state(sk)) { 2123 /* We FIN if the application ate all the data before 2124 * zapping the connection. 2125 */ 2126 2127 /* RED-PEN. Formally speaking, we have broken TCP state 2128 * machine. State transitions: 2129 * 2130 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2131 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2132 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2133 * 2134 * are legal only when FIN has been sent (i.e. in window), 2135 * rather than queued out of window. Purists blame. 2136 * 2137 * F.e. "RFC state" is ESTABLISHED, 2138 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2139 * 2140 * The visible declinations are that sometimes 2141 * we enter time-wait state, when it is not required really 2142 * (harmless), do not send active resets, when they are 2143 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2144 * they look as CLOSING or LAST_ACK for Linux) 2145 * Probably, I missed some more holelets. 2146 * --ANK 2147 */ 2148 tcp_send_fin(sk); 2149 } 2150 2151 sk_stream_wait_close(sk, timeout); 2152 2153 adjudge_to_death: 2154 state = sk->sk_state; 2155 sock_hold(sk); 2156 sock_orphan(sk); 2157 2158 /* It is the last release_sock in its life. It will remove backlog. */ 2159 release_sock(sk); 2160 2161 2162 /* Now socket is owned by kernel and we acquire BH lock 2163 to finish close. No need to check for user refs. 2164 */ 2165 local_bh_disable(); 2166 bh_lock_sock(sk); 2167 WARN_ON(sock_owned_by_user(sk)); 2168 2169 percpu_counter_inc(sk->sk_prot->orphan_count); 2170 2171 /* Have we already been destroyed by a softirq or backlog? */ 2172 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2173 goto out; 2174 2175 /* This is a (useful) BSD violating of the RFC. There is a 2176 * problem with TCP as specified in that the other end could 2177 * keep a socket open forever with no application left this end. 2178 * We use a 3 minute timeout (about the same as BSD) then kill 2179 * our end. If they send after that then tough - BUT: long enough 2180 * that we won't make the old 4*rto = almost no time - whoops 2181 * reset mistake. 2182 * 2183 * Nope, it was not mistake. It is really desired behaviour 2184 * f.e. on http servers, when such sockets are useless, but 2185 * consume significant resources. Let's do it with special 2186 * linger2 option. --ANK 2187 */ 2188 2189 if (sk->sk_state == TCP_FIN_WAIT2) { 2190 struct tcp_sock *tp = tcp_sk(sk); 2191 if (tp->linger2 < 0) { 2192 tcp_set_state(sk, TCP_CLOSE); 2193 tcp_send_active_reset(sk, GFP_ATOMIC); 2194 NET_INC_STATS_BH(sock_net(sk), 2195 LINUX_MIB_TCPABORTONLINGER); 2196 } else { 2197 const int tmo = tcp_fin_time(sk); 2198 2199 if (tmo > TCP_TIMEWAIT_LEN) { 2200 inet_csk_reset_keepalive_timer(sk, 2201 tmo - TCP_TIMEWAIT_LEN); 2202 } else { 2203 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2204 goto out; 2205 } 2206 } 2207 } 2208 if (sk->sk_state != TCP_CLOSE) { 2209 sk_mem_reclaim(sk); 2210 if (tcp_check_oom(sk, 0)) { 2211 tcp_set_state(sk, TCP_CLOSE); 2212 tcp_send_active_reset(sk, GFP_ATOMIC); 2213 NET_INC_STATS_BH(sock_net(sk), 2214 LINUX_MIB_TCPABORTONMEMORY); 2215 } 2216 } 2217 2218 if (sk->sk_state == TCP_CLOSE) 2219 inet_csk_destroy_sock(sk); 2220 /* Otherwise, socket is reprieved until protocol close. */ 2221 2222 out: 2223 bh_unlock_sock(sk); 2224 local_bh_enable(); 2225 sock_put(sk); 2226 } 2227 EXPORT_SYMBOL(tcp_close); 2228 2229 /* These states need RST on ABORT according to RFC793 */ 2230 2231 static inline bool tcp_need_reset(int state) 2232 { 2233 return (1 << state) & 2234 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2235 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2236 } 2237 2238 int tcp_disconnect(struct sock *sk, int flags) 2239 { 2240 struct inet_sock *inet = inet_sk(sk); 2241 struct inet_connection_sock *icsk = inet_csk(sk); 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 int err = 0; 2244 int old_state = sk->sk_state; 2245 2246 if (old_state != TCP_CLOSE) 2247 tcp_set_state(sk, TCP_CLOSE); 2248 2249 /* ABORT function of RFC793 */ 2250 if (old_state == TCP_LISTEN) { 2251 inet_csk_listen_stop(sk); 2252 } else if (unlikely(tp->repair)) { 2253 sk->sk_err = ECONNABORTED; 2254 } else if (tcp_need_reset(old_state) || 2255 (tp->snd_nxt != tp->write_seq && 2256 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2257 /* The last check adjusts for discrepancy of Linux wrt. RFC 2258 * states 2259 */ 2260 tcp_send_active_reset(sk, gfp_any()); 2261 sk->sk_err = ECONNRESET; 2262 } else if (old_state == TCP_SYN_SENT) 2263 sk->sk_err = ECONNRESET; 2264 2265 tcp_clear_xmit_timers(sk); 2266 __skb_queue_purge(&sk->sk_receive_queue); 2267 tcp_write_queue_purge(sk); 2268 __skb_queue_purge(&tp->out_of_order_queue); 2269 #ifdef CONFIG_NET_DMA 2270 __skb_queue_purge(&sk->sk_async_wait_queue); 2271 #endif 2272 2273 inet->inet_dport = 0; 2274 2275 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2276 inet_reset_saddr(sk); 2277 2278 sk->sk_shutdown = 0; 2279 sock_reset_flag(sk, SOCK_DONE); 2280 tp->srtt = 0; 2281 if ((tp->write_seq += tp->max_window + 2) == 0) 2282 tp->write_seq = 1; 2283 icsk->icsk_backoff = 0; 2284 tp->snd_cwnd = 2; 2285 icsk->icsk_probes_out = 0; 2286 tp->packets_out = 0; 2287 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2288 tp->snd_cwnd_cnt = 0; 2289 tp->bytes_acked = 0; 2290 tp->window_clamp = 0; 2291 tcp_set_ca_state(sk, TCP_CA_Open); 2292 tcp_clear_retrans(tp); 2293 inet_csk_delack_init(sk); 2294 tcp_init_send_head(sk); 2295 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2296 __sk_dst_reset(sk); 2297 2298 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2299 2300 sk->sk_error_report(sk); 2301 return err; 2302 } 2303 EXPORT_SYMBOL(tcp_disconnect); 2304 2305 static inline bool tcp_can_repair_sock(const struct sock *sk) 2306 { 2307 return capable(CAP_NET_ADMIN) && 2308 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2309 } 2310 2311 static int tcp_repair_options_est(struct tcp_sock *tp, 2312 struct tcp_repair_opt __user *optbuf, unsigned int len) 2313 { 2314 struct tcp_repair_opt opt; 2315 2316 while (len >= sizeof(opt)) { 2317 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2318 return -EFAULT; 2319 2320 optbuf++; 2321 len -= sizeof(opt); 2322 2323 switch (opt.opt_code) { 2324 case TCPOPT_MSS: 2325 tp->rx_opt.mss_clamp = opt.opt_val; 2326 break; 2327 case TCPOPT_WINDOW: 2328 if (opt.opt_val > 14) 2329 return -EFBIG; 2330 2331 tp->rx_opt.snd_wscale = opt.opt_val; 2332 break; 2333 case TCPOPT_SACK_PERM: 2334 if (opt.opt_val != 0) 2335 return -EINVAL; 2336 2337 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2338 if (sysctl_tcp_fack) 2339 tcp_enable_fack(tp); 2340 break; 2341 case TCPOPT_TIMESTAMP: 2342 if (opt.opt_val != 0) 2343 return -EINVAL; 2344 2345 tp->rx_opt.tstamp_ok = 1; 2346 break; 2347 } 2348 } 2349 2350 return 0; 2351 } 2352 2353 /* 2354 * Socket option code for TCP. 2355 */ 2356 static int do_tcp_setsockopt(struct sock *sk, int level, 2357 int optname, char __user *optval, unsigned int optlen) 2358 { 2359 struct tcp_sock *tp = tcp_sk(sk); 2360 struct inet_connection_sock *icsk = inet_csk(sk); 2361 int val; 2362 int err = 0; 2363 2364 /* These are data/string values, all the others are ints */ 2365 switch (optname) { 2366 case TCP_CONGESTION: { 2367 char name[TCP_CA_NAME_MAX]; 2368 2369 if (optlen < 1) 2370 return -EINVAL; 2371 2372 val = strncpy_from_user(name, optval, 2373 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2374 if (val < 0) 2375 return -EFAULT; 2376 name[val] = 0; 2377 2378 lock_sock(sk); 2379 err = tcp_set_congestion_control(sk, name); 2380 release_sock(sk); 2381 return err; 2382 } 2383 case TCP_COOKIE_TRANSACTIONS: { 2384 struct tcp_cookie_transactions ctd; 2385 struct tcp_cookie_values *cvp = NULL; 2386 2387 if (sizeof(ctd) > optlen) 2388 return -EINVAL; 2389 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2390 return -EFAULT; 2391 2392 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2393 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2394 return -EINVAL; 2395 2396 if (ctd.tcpct_cookie_desired == 0) { 2397 /* default to global value */ 2398 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2399 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2400 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2401 return -EINVAL; 2402 } 2403 2404 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2405 /* Supercedes all other values */ 2406 lock_sock(sk); 2407 if (tp->cookie_values != NULL) { 2408 kref_put(&tp->cookie_values->kref, 2409 tcp_cookie_values_release); 2410 tp->cookie_values = NULL; 2411 } 2412 tp->rx_opt.cookie_in_always = 0; /* false */ 2413 tp->rx_opt.cookie_out_never = 1; /* true */ 2414 release_sock(sk); 2415 return err; 2416 } 2417 2418 /* Allocate ancillary memory before locking. 2419 */ 2420 if (ctd.tcpct_used > 0 || 2421 (tp->cookie_values == NULL && 2422 (sysctl_tcp_cookie_size > 0 || 2423 ctd.tcpct_cookie_desired > 0 || 2424 ctd.tcpct_s_data_desired > 0))) { 2425 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2426 GFP_KERNEL); 2427 if (cvp == NULL) 2428 return -ENOMEM; 2429 2430 kref_init(&cvp->kref); 2431 } 2432 lock_sock(sk); 2433 tp->rx_opt.cookie_in_always = 2434 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2435 tp->rx_opt.cookie_out_never = 0; /* false */ 2436 2437 if (tp->cookie_values != NULL) { 2438 if (cvp != NULL) { 2439 /* Changed values are recorded by a changed 2440 * pointer, ensuring the cookie will differ, 2441 * without separately hashing each value later. 2442 */ 2443 kref_put(&tp->cookie_values->kref, 2444 tcp_cookie_values_release); 2445 } else { 2446 cvp = tp->cookie_values; 2447 } 2448 } 2449 2450 if (cvp != NULL) { 2451 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2452 2453 if (ctd.tcpct_used > 0) { 2454 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2455 ctd.tcpct_used); 2456 cvp->s_data_desired = ctd.tcpct_used; 2457 cvp->s_data_constant = 1; /* true */ 2458 } else { 2459 /* No constant payload data. */ 2460 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2461 cvp->s_data_constant = 0; /* false */ 2462 } 2463 2464 tp->cookie_values = cvp; 2465 } 2466 release_sock(sk); 2467 return err; 2468 } 2469 default: 2470 /* fallthru */ 2471 break; 2472 } 2473 2474 if (optlen < sizeof(int)) 2475 return -EINVAL; 2476 2477 if (get_user(val, (int __user *)optval)) 2478 return -EFAULT; 2479 2480 lock_sock(sk); 2481 2482 switch (optname) { 2483 case TCP_MAXSEG: 2484 /* Values greater than interface MTU won't take effect. However 2485 * at the point when this call is done we typically don't yet 2486 * know which interface is going to be used */ 2487 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2488 err = -EINVAL; 2489 break; 2490 } 2491 tp->rx_opt.user_mss = val; 2492 break; 2493 2494 case TCP_NODELAY: 2495 if (val) { 2496 /* TCP_NODELAY is weaker than TCP_CORK, so that 2497 * this option on corked socket is remembered, but 2498 * it is not activated until cork is cleared. 2499 * 2500 * However, when TCP_NODELAY is set we make 2501 * an explicit push, which overrides even TCP_CORK 2502 * for currently queued segments. 2503 */ 2504 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2505 tcp_push_pending_frames(sk); 2506 } else { 2507 tp->nonagle &= ~TCP_NAGLE_OFF; 2508 } 2509 break; 2510 2511 case TCP_THIN_LINEAR_TIMEOUTS: 2512 if (val < 0 || val > 1) 2513 err = -EINVAL; 2514 else 2515 tp->thin_lto = val; 2516 break; 2517 2518 case TCP_THIN_DUPACK: 2519 if (val < 0 || val > 1) 2520 err = -EINVAL; 2521 else 2522 tp->thin_dupack = val; 2523 if (tp->thin_dupack) 2524 tcp_disable_early_retrans(tp); 2525 break; 2526 2527 case TCP_REPAIR: 2528 if (!tcp_can_repair_sock(sk)) 2529 err = -EPERM; 2530 else if (val == 1) { 2531 tp->repair = 1; 2532 sk->sk_reuse = SK_FORCE_REUSE; 2533 tp->repair_queue = TCP_NO_QUEUE; 2534 } else if (val == 0) { 2535 tp->repair = 0; 2536 sk->sk_reuse = SK_NO_REUSE; 2537 tcp_send_window_probe(sk); 2538 } else 2539 err = -EINVAL; 2540 2541 break; 2542 2543 case TCP_REPAIR_QUEUE: 2544 if (!tp->repair) 2545 err = -EPERM; 2546 else if (val < TCP_QUEUES_NR) 2547 tp->repair_queue = val; 2548 else 2549 err = -EINVAL; 2550 break; 2551 2552 case TCP_QUEUE_SEQ: 2553 if (sk->sk_state != TCP_CLOSE) 2554 err = -EPERM; 2555 else if (tp->repair_queue == TCP_SEND_QUEUE) 2556 tp->write_seq = val; 2557 else if (tp->repair_queue == TCP_RECV_QUEUE) 2558 tp->rcv_nxt = val; 2559 else 2560 err = -EINVAL; 2561 break; 2562 2563 case TCP_REPAIR_OPTIONS: 2564 if (!tp->repair) 2565 err = -EINVAL; 2566 else if (sk->sk_state == TCP_ESTABLISHED) 2567 err = tcp_repair_options_est(tp, 2568 (struct tcp_repair_opt __user *)optval, 2569 optlen); 2570 else 2571 err = -EPERM; 2572 break; 2573 2574 case TCP_CORK: 2575 /* When set indicates to always queue non-full frames. 2576 * Later the user clears this option and we transmit 2577 * any pending partial frames in the queue. This is 2578 * meant to be used alongside sendfile() to get properly 2579 * filled frames when the user (for example) must write 2580 * out headers with a write() call first and then use 2581 * sendfile to send out the data parts. 2582 * 2583 * TCP_CORK can be set together with TCP_NODELAY and it is 2584 * stronger than TCP_NODELAY. 2585 */ 2586 if (val) { 2587 tp->nonagle |= TCP_NAGLE_CORK; 2588 } else { 2589 tp->nonagle &= ~TCP_NAGLE_CORK; 2590 if (tp->nonagle&TCP_NAGLE_OFF) 2591 tp->nonagle |= TCP_NAGLE_PUSH; 2592 tcp_push_pending_frames(sk); 2593 } 2594 break; 2595 2596 case TCP_KEEPIDLE: 2597 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2598 err = -EINVAL; 2599 else { 2600 tp->keepalive_time = val * HZ; 2601 if (sock_flag(sk, SOCK_KEEPOPEN) && 2602 !((1 << sk->sk_state) & 2603 (TCPF_CLOSE | TCPF_LISTEN))) { 2604 u32 elapsed = keepalive_time_elapsed(tp); 2605 if (tp->keepalive_time > elapsed) 2606 elapsed = tp->keepalive_time - elapsed; 2607 else 2608 elapsed = 0; 2609 inet_csk_reset_keepalive_timer(sk, elapsed); 2610 } 2611 } 2612 break; 2613 case TCP_KEEPINTVL: 2614 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2615 err = -EINVAL; 2616 else 2617 tp->keepalive_intvl = val * HZ; 2618 break; 2619 case TCP_KEEPCNT: 2620 if (val < 1 || val > MAX_TCP_KEEPCNT) 2621 err = -EINVAL; 2622 else 2623 tp->keepalive_probes = val; 2624 break; 2625 case TCP_SYNCNT: 2626 if (val < 1 || val > MAX_TCP_SYNCNT) 2627 err = -EINVAL; 2628 else 2629 icsk->icsk_syn_retries = val; 2630 break; 2631 2632 case TCP_LINGER2: 2633 if (val < 0) 2634 tp->linger2 = -1; 2635 else if (val > sysctl_tcp_fin_timeout / HZ) 2636 tp->linger2 = 0; 2637 else 2638 tp->linger2 = val * HZ; 2639 break; 2640 2641 case TCP_DEFER_ACCEPT: 2642 /* Translate value in seconds to number of retransmits */ 2643 icsk->icsk_accept_queue.rskq_defer_accept = 2644 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2645 TCP_RTO_MAX / HZ); 2646 break; 2647 2648 case TCP_WINDOW_CLAMP: 2649 if (!val) { 2650 if (sk->sk_state != TCP_CLOSE) { 2651 err = -EINVAL; 2652 break; 2653 } 2654 tp->window_clamp = 0; 2655 } else 2656 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2657 SOCK_MIN_RCVBUF / 2 : val; 2658 break; 2659 2660 case TCP_QUICKACK: 2661 if (!val) { 2662 icsk->icsk_ack.pingpong = 1; 2663 } else { 2664 icsk->icsk_ack.pingpong = 0; 2665 if ((1 << sk->sk_state) & 2666 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2667 inet_csk_ack_scheduled(sk)) { 2668 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2669 tcp_cleanup_rbuf(sk, 1); 2670 if (!(val & 1)) 2671 icsk->icsk_ack.pingpong = 1; 2672 } 2673 } 2674 break; 2675 2676 #ifdef CONFIG_TCP_MD5SIG 2677 case TCP_MD5SIG: 2678 /* Read the IP->Key mappings from userspace */ 2679 err = tp->af_specific->md5_parse(sk, optval, optlen); 2680 break; 2681 #endif 2682 case TCP_USER_TIMEOUT: 2683 /* Cap the max timeout in ms TCP will retry/retrans 2684 * before giving up and aborting (ETIMEDOUT) a connection. 2685 */ 2686 if (val < 0) 2687 err = -EINVAL; 2688 else 2689 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2690 break; 2691 default: 2692 err = -ENOPROTOOPT; 2693 break; 2694 } 2695 2696 release_sock(sk); 2697 return err; 2698 } 2699 2700 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2701 unsigned int optlen) 2702 { 2703 const struct inet_connection_sock *icsk = inet_csk(sk); 2704 2705 if (level != SOL_TCP) 2706 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2707 optval, optlen); 2708 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2709 } 2710 EXPORT_SYMBOL(tcp_setsockopt); 2711 2712 #ifdef CONFIG_COMPAT 2713 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2714 char __user *optval, unsigned int optlen) 2715 { 2716 if (level != SOL_TCP) 2717 return inet_csk_compat_setsockopt(sk, level, optname, 2718 optval, optlen); 2719 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2720 } 2721 EXPORT_SYMBOL(compat_tcp_setsockopt); 2722 #endif 2723 2724 /* Return information about state of tcp endpoint in API format. */ 2725 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2726 { 2727 const struct tcp_sock *tp = tcp_sk(sk); 2728 const struct inet_connection_sock *icsk = inet_csk(sk); 2729 u32 now = tcp_time_stamp; 2730 2731 memset(info, 0, sizeof(*info)); 2732 2733 info->tcpi_state = sk->sk_state; 2734 info->tcpi_ca_state = icsk->icsk_ca_state; 2735 info->tcpi_retransmits = icsk->icsk_retransmits; 2736 info->tcpi_probes = icsk->icsk_probes_out; 2737 info->tcpi_backoff = icsk->icsk_backoff; 2738 2739 if (tp->rx_opt.tstamp_ok) 2740 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2741 if (tcp_is_sack(tp)) 2742 info->tcpi_options |= TCPI_OPT_SACK; 2743 if (tp->rx_opt.wscale_ok) { 2744 info->tcpi_options |= TCPI_OPT_WSCALE; 2745 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2746 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2747 } 2748 2749 if (tp->ecn_flags & TCP_ECN_OK) 2750 info->tcpi_options |= TCPI_OPT_ECN; 2751 if (tp->ecn_flags & TCP_ECN_SEEN) 2752 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2753 2754 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2755 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2756 info->tcpi_snd_mss = tp->mss_cache; 2757 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2758 2759 if (sk->sk_state == TCP_LISTEN) { 2760 info->tcpi_unacked = sk->sk_ack_backlog; 2761 info->tcpi_sacked = sk->sk_max_ack_backlog; 2762 } else { 2763 info->tcpi_unacked = tp->packets_out; 2764 info->tcpi_sacked = tp->sacked_out; 2765 } 2766 info->tcpi_lost = tp->lost_out; 2767 info->tcpi_retrans = tp->retrans_out; 2768 info->tcpi_fackets = tp->fackets_out; 2769 2770 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2771 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2772 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2773 2774 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2775 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2776 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2777 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2778 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2779 info->tcpi_snd_cwnd = tp->snd_cwnd; 2780 info->tcpi_advmss = tp->advmss; 2781 info->tcpi_reordering = tp->reordering; 2782 2783 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2784 info->tcpi_rcv_space = tp->rcvq_space.space; 2785 2786 info->tcpi_total_retrans = tp->total_retrans; 2787 } 2788 EXPORT_SYMBOL_GPL(tcp_get_info); 2789 2790 static int do_tcp_getsockopt(struct sock *sk, int level, 2791 int optname, char __user *optval, int __user *optlen) 2792 { 2793 struct inet_connection_sock *icsk = inet_csk(sk); 2794 struct tcp_sock *tp = tcp_sk(sk); 2795 int val, len; 2796 2797 if (get_user(len, optlen)) 2798 return -EFAULT; 2799 2800 len = min_t(unsigned int, len, sizeof(int)); 2801 2802 if (len < 0) 2803 return -EINVAL; 2804 2805 switch (optname) { 2806 case TCP_MAXSEG: 2807 val = tp->mss_cache; 2808 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2809 val = tp->rx_opt.user_mss; 2810 if (tp->repair) 2811 val = tp->rx_opt.mss_clamp; 2812 break; 2813 case TCP_NODELAY: 2814 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2815 break; 2816 case TCP_CORK: 2817 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2818 break; 2819 case TCP_KEEPIDLE: 2820 val = keepalive_time_when(tp) / HZ; 2821 break; 2822 case TCP_KEEPINTVL: 2823 val = keepalive_intvl_when(tp) / HZ; 2824 break; 2825 case TCP_KEEPCNT: 2826 val = keepalive_probes(tp); 2827 break; 2828 case TCP_SYNCNT: 2829 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2830 break; 2831 case TCP_LINGER2: 2832 val = tp->linger2; 2833 if (val >= 0) 2834 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2835 break; 2836 case TCP_DEFER_ACCEPT: 2837 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2838 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2839 break; 2840 case TCP_WINDOW_CLAMP: 2841 val = tp->window_clamp; 2842 break; 2843 case TCP_INFO: { 2844 struct tcp_info info; 2845 2846 if (get_user(len, optlen)) 2847 return -EFAULT; 2848 2849 tcp_get_info(sk, &info); 2850 2851 len = min_t(unsigned int, len, sizeof(info)); 2852 if (put_user(len, optlen)) 2853 return -EFAULT; 2854 if (copy_to_user(optval, &info, len)) 2855 return -EFAULT; 2856 return 0; 2857 } 2858 case TCP_QUICKACK: 2859 val = !icsk->icsk_ack.pingpong; 2860 break; 2861 2862 case TCP_CONGESTION: 2863 if (get_user(len, optlen)) 2864 return -EFAULT; 2865 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2866 if (put_user(len, optlen)) 2867 return -EFAULT; 2868 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2869 return -EFAULT; 2870 return 0; 2871 2872 case TCP_COOKIE_TRANSACTIONS: { 2873 struct tcp_cookie_transactions ctd; 2874 struct tcp_cookie_values *cvp = tp->cookie_values; 2875 2876 if (get_user(len, optlen)) 2877 return -EFAULT; 2878 if (len < sizeof(ctd)) 2879 return -EINVAL; 2880 2881 memset(&ctd, 0, sizeof(ctd)); 2882 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2883 TCP_COOKIE_IN_ALWAYS : 0) 2884 | (tp->rx_opt.cookie_out_never ? 2885 TCP_COOKIE_OUT_NEVER : 0); 2886 2887 if (cvp != NULL) { 2888 ctd.tcpct_flags |= (cvp->s_data_in ? 2889 TCP_S_DATA_IN : 0) 2890 | (cvp->s_data_out ? 2891 TCP_S_DATA_OUT : 0); 2892 2893 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2894 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2895 2896 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2897 cvp->cookie_pair_size); 2898 ctd.tcpct_used = cvp->cookie_pair_size; 2899 } 2900 2901 if (put_user(sizeof(ctd), optlen)) 2902 return -EFAULT; 2903 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2904 return -EFAULT; 2905 return 0; 2906 } 2907 case TCP_THIN_LINEAR_TIMEOUTS: 2908 val = tp->thin_lto; 2909 break; 2910 case TCP_THIN_DUPACK: 2911 val = tp->thin_dupack; 2912 break; 2913 2914 case TCP_REPAIR: 2915 val = tp->repair; 2916 break; 2917 2918 case TCP_REPAIR_QUEUE: 2919 if (tp->repair) 2920 val = tp->repair_queue; 2921 else 2922 return -EINVAL; 2923 break; 2924 2925 case TCP_QUEUE_SEQ: 2926 if (tp->repair_queue == TCP_SEND_QUEUE) 2927 val = tp->write_seq; 2928 else if (tp->repair_queue == TCP_RECV_QUEUE) 2929 val = tp->rcv_nxt; 2930 else 2931 return -EINVAL; 2932 break; 2933 2934 case TCP_USER_TIMEOUT: 2935 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2936 break; 2937 default: 2938 return -ENOPROTOOPT; 2939 } 2940 2941 if (put_user(len, optlen)) 2942 return -EFAULT; 2943 if (copy_to_user(optval, &val, len)) 2944 return -EFAULT; 2945 return 0; 2946 } 2947 2948 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2949 int __user *optlen) 2950 { 2951 struct inet_connection_sock *icsk = inet_csk(sk); 2952 2953 if (level != SOL_TCP) 2954 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2955 optval, optlen); 2956 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2957 } 2958 EXPORT_SYMBOL(tcp_getsockopt); 2959 2960 #ifdef CONFIG_COMPAT 2961 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2962 char __user *optval, int __user *optlen) 2963 { 2964 if (level != SOL_TCP) 2965 return inet_csk_compat_getsockopt(sk, level, optname, 2966 optval, optlen); 2967 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2968 } 2969 EXPORT_SYMBOL(compat_tcp_getsockopt); 2970 #endif 2971 2972 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 2973 netdev_features_t features) 2974 { 2975 struct sk_buff *segs = ERR_PTR(-EINVAL); 2976 struct tcphdr *th; 2977 unsigned int thlen; 2978 unsigned int seq; 2979 __be32 delta; 2980 unsigned int oldlen; 2981 unsigned int mss; 2982 2983 if (!pskb_may_pull(skb, sizeof(*th))) 2984 goto out; 2985 2986 th = tcp_hdr(skb); 2987 thlen = th->doff * 4; 2988 if (thlen < sizeof(*th)) 2989 goto out; 2990 2991 if (!pskb_may_pull(skb, thlen)) 2992 goto out; 2993 2994 oldlen = (u16)~skb->len; 2995 __skb_pull(skb, thlen); 2996 2997 mss = skb_shinfo(skb)->gso_size; 2998 if (unlikely(skb->len <= mss)) 2999 goto out; 3000 3001 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 3002 /* Packet is from an untrusted source, reset gso_segs. */ 3003 int type = skb_shinfo(skb)->gso_type; 3004 3005 if (unlikely(type & 3006 ~(SKB_GSO_TCPV4 | 3007 SKB_GSO_DODGY | 3008 SKB_GSO_TCP_ECN | 3009 SKB_GSO_TCPV6 | 3010 0) || 3011 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 3012 goto out; 3013 3014 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 3015 3016 segs = NULL; 3017 goto out; 3018 } 3019 3020 segs = skb_segment(skb, features); 3021 if (IS_ERR(segs)) 3022 goto out; 3023 3024 delta = htonl(oldlen + (thlen + mss)); 3025 3026 skb = segs; 3027 th = tcp_hdr(skb); 3028 seq = ntohl(th->seq); 3029 3030 do { 3031 th->fin = th->psh = 0; 3032 3033 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 3034 (__force u32)delta)); 3035 if (skb->ip_summed != CHECKSUM_PARTIAL) 3036 th->check = 3037 csum_fold(csum_partial(skb_transport_header(skb), 3038 thlen, skb->csum)); 3039 3040 seq += mss; 3041 skb = skb->next; 3042 th = tcp_hdr(skb); 3043 3044 th->seq = htonl(seq); 3045 th->cwr = 0; 3046 } while (skb->next); 3047 3048 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 3049 skb->data_len); 3050 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 3051 (__force u32)delta)); 3052 if (skb->ip_summed != CHECKSUM_PARTIAL) 3053 th->check = csum_fold(csum_partial(skb_transport_header(skb), 3054 thlen, skb->csum)); 3055 3056 out: 3057 return segs; 3058 } 3059 EXPORT_SYMBOL(tcp_tso_segment); 3060 3061 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3062 { 3063 struct sk_buff **pp = NULL; 3064 struct sk_buff *p; 3065 struct tcphdr *th; 3066 struct tcphdr *th2; 3067 unsigned int len; 3068 unsigned int thlen; 3069 __be32 flags; 3070 unsigned int mss = 1; 3071 unsigned int hlen; 3072 unsigned int off; 3073 int flush = 1; 3074 int i; 3075 3076 off = skb_gro_offset(skb); 3077 hlen = off + sizeof(*th); 3078 th = skb_gro_header_fast(skb, off); 3079 if (skb_gro_header_hard(skb, hlen)) { 3080 th = skb_gro_header_slow(skb, hlen, off); 3081 if (unlikely(!th)) 3082 goto out; 3083 } 3084 3085 thlen = th->doff * 4; 3086 if (thlen < sizeof(*th)) 3087 goto out; 3088 3089 hlen = off + thlen; 3090 if (skb_gro_header_hard(skb, hlen)) { 3091 th = skb_gro_header_slow(skb, hlen, off); 3092 if (unlikely(!th)) 3093 goto out; 3094 } 3095 3096 skb_gro_pull(skb, thlen); 3097 3098 len = skb_gro_len(skb); 3099 flags = tcp_flag_word(th); 3100 3101 for (; (p = *head); head = &p->next) { 3102 if (!NAPI_GRO_CB(p)->same_flow) 3103 continue; 3104 3105 th2 = tcp_hdr(p); 3106 3107 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 3108 NAPI_GRO_CB(p)->same_flow = 0; 3109 continue; 3110 } 3111 3112 goto found; 3113 } 3114 3115 goto out_check_final; 3116 3117 found: 3118 flush = NAPI_GRO_CB(p)->flush; 3119 flush |= (__force int)(flags & TCP_FLAG_CWR); 3120 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 3121 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 3122 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 3123 for (i = sizeof(*th); i < thlen; i += 4) 3124 flush |= *(u32 *)((u8 *)th + i) ^ 3125 *(u32 *)((u8 *)th2 + i); 3126 3127 mss = skb_shinfo(p)->gso_size; 3128 3129 flush |= (len - 1) >= mss; 3130 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 3131 3132 if (flush || skb_gro_receive(head, skb)) { 3133 mss = 1; 3134 goto out_check_final; 3135 } 3136 3137 p = *head; 3138 th2 = tcp_hdr(p); 3139 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 3140 3141 out_check_final: 3142 flush = len < mss; 3143 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 3144 TCP_FLAG_RST | TCP_FLAG_SYN | 3145 TCP_FLAG_FIN)); 3146 3147 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 3148 pp = head; 3149 3150 out: 3151 NAPI_GRO_CB(skb)->flush |= flush; 3152 3153 return pp; 3154 } 3155 EXPORT_SYMBOL(tcp_gro_receive); 3156 3157 int tcp_gro_complete(struct sk_buff *skb) 3158 { 3159 struct tcphdr *th = tcp_hdr(skb); 3160 3161 skb->csum_start = skb_transport_header(skb) - skb->head; 3162 skb->csum_offset = offsetof(struct tcphdr, check); 3163 skb->ip_summed = CHECKSUM_PARTIAL; 3164 3165 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3166 3167 if (th->cwr) 3168 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3169 3170 return 0; 3171 } 3172 EXPORT_SYMBOL(tcp_gro_complete); 3173 3174 #ifdef CONFIG_TCP_MD5SIG 3175 static unsigned long tcp_md5sig_users; 3176 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 3177 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 3178 3179 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 3180 { 3181 int cpu; 3182 3183 for_each_possible_cpu(cpu) { 3184 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 3185 3186 if (p->md5_desc.tfm) 3187 crypto_free_hash(p->md5_desc.tfm); 3188 } 3189 free_percpu(pool); 3190 } 3191 3192 void tcp_free_md5sig_pool(void) 3193 { 3194 struct tcp_md5sig_pool __percpu *pool = NULL; 3195 3196 spin_lock_bh(&tcp_md5sig_pool_lock); 3197 if (--tcp_md5sig_users == 0) { 3198 pool = tcp_md5sig_pool; 3199 tcp_md5sig_pool = NULL; 3200 } 3201 spin_unlock_bh(&tcp_md5sig_pool_lock); 3202 if (pool) 3203 __tcp_free_md5sig_pool(pool); 3204 } 3205 EXPORT_SYMBOL(tcp_free_md5sig_pool); 3206 3207 static struct tcp_md5sig_pool __percpu * 3208 __tcp_alloc_md5sig_pool(struct sock *sk) 3209 { 3210 int cpu; 3211 struct tcp_md5sig_pool __percpu *pool; 3212 3213 pool = alloc_percpu(struct tcp_md5sig_pool); 3214 if (!pool) 3215 return NULL; 3216 3217 for_each_possible_cpu(cpu) { 3218 struct crypto_hash *hash; 3219 3220 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 3221 if (!hash || IS_ERR(hash)) 3222 goto out_free; 3223 3224 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 3225 } 3226 return pool; 3227 out_free: 3228 __tcp_free_md5sig_pool(pool); 3229 return NULL; 3230 } 3231 3232 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 3233 { 3234 struct tcp_md5sig_pool __percpu *pool; 3235 bool alloc = false; 3236 3237 retry: 3238 spin_lock_bh(&tcp_md5sig_pool_lock); 3239 pool = tcp_md5sig_pool; 3240 if (tcp_md5sig_users++ == 0) { 3241 alloc = true; 3242 spin_unlock_bh(&tcp_md5sig_pool_lock); 3243 } else if (!pool) { 3244 tcp_md5sig_users--; 3245 spin_unlock_bh(&tcp_md5sig_pool_lock); 3246 cpu_relax(); 3247 goto retry; 3248 } else 3249 spin_unlock_bh(&tcp_md5sig_pool_lock); 3250 3251 if (alloc) { 3252 /* we cannot hold spinlock here because this may sleep. */ 3253 struct tcp_md5sig_pool __percpu *p; 3254 3255 p = __tcp_alloc_md5sig_pool(sk); 3256 spin_lock_bh(&tcp_md5sig_pool_lock); 3257 if (!p) { 3258 tcp_md5sig_users--; 3259 spin_unlock_bh(&tcp_md5sig_pool_lock); 3260 return NULL; 3261 } 3262 pool = tcp_md5sig_pool; 3263 if (pool) { 3264 /* oops, it has already been assigned. */ 3265 spin_unlock_bh(&tcp_md5sig_pool_lock); 3266 __tcp_free_md5sig_pool(p); 3267 } else { 3268 tcp_md5sig_pool = pool = p; 3269 spin_unlock_bh(&tcp_md5sig_pool_lock); 3270 } 3271 } 3272 return pool; 3273 } 3274 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3275 3276 3277 /** 3278 * tcp_get_md5sig_pool - get md5sig_pool for this user 3279 * 3280 * We use percpu structure, so if we succeed, we exit with preemption 3281 * and BH disabled, to make sure another thread or softirq handling 3282 * wont try to get same context. 3283 */ 3284 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3285 { 3286 struct tcp_md5sig_pool __percpu *p; 3287 3288 local_bh_disable(); 3289 3290 spin_lock(&tcp_md5sig_pool_lock); 3291 p = tcp_md5sig_pool; 3292 if (p) 3293 tcp_md5sig_users++; 3294 spin_unlock(&tcp_md5sig_pool_lock); 3295 3296 if (p) 3297 return this_cpu_ptr(p); 3298 3299 local_bh_enable(); 3300 return NULL; 3301 } 3302 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3303 3304 void tcp_put_md5sig_pool(void) 3305 { 3306 local_bh_enable(); 3307 tcp_free_md5sig_pool(); 3308 } 3309 EXPORT_SYMBOL(tcp_put_md5sig_pool); 3310 3311 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3312 const struct tcphdr *th) 3313 { 3314 struct scatterlist sg; 3315 struct tcphdr hdr; 3316 int err; 3317 3318 /* We are not allowed to change tcphdr, make a local copy */ 3319 memcpy(&hdr, th, sizeof(hdr)); 3320 hdr.check = 0; 3321 3322 /* options aren't included in the hash */ 3323 sg_init_one(&sg, &hdr, sizeof(hdr)); 3324 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3325 return err; 3326 } 3327 EXPORT_SYMBOL(tcp_md5_hash_header); 3328 3329 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3330 const struct sk_buff *skb, unsigned int header_len) 3331 { 3332 struct scatterlist sg; 3333 const struct tcphdr *tp = tcp_hdr(skb); 3334 struct hash_desc *desc = &hp->md5_desc; 3335 unsigned int i; 3336 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3337 skb_headlen(skb) - header_len : 0; 3338 const struct skb_shared_info *shi = skb_shinfo(skb); 3339 struct sk_buff *frag_iter; 3340 3341 sg_init_table(&sg, 1); 3342 3343 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3344 if (crypto_hash_update(desc, &sg, head_data_len)) 3345 return 1; 3346 3347 for (i = 0; i < shi->nr_frags; ++i) { 3348 const struct skb_frag_struct *f = &shi->frags[i]; 3349 struct page *page = skb_frag_page(f); 3350 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3351 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3352 return 1; 3353 } 3354 3355 skb_walk_frags(skb, frag_iter) 3356 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3357 return 1; 3358 3359 return 0; 3360 } 3361 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3362 3363 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3364 { 3365 struct scatterlist sg; 3366 3367 sg_init_one(&sg, key->key, key->keylen); 3368 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3369 } 3370 EXPORT_SYMBOL(tcp_md5_hash_key); 3371 3372 #endif 3373 3374 /* Each Responder maintains up to two secret values concurrently for 3375 * efficient secret rollover. Each secret value has 4 states: 3376 * 3377 * Generating. (tcp_secret_generating != tcp_secret_primary) 3378 * Generates new Responder-Cookies, but not yet used for primary 3379 * verification. This is a short-term state, typically lasting only 3380 * one round trip time (RTT). 3381 * 3382 * Primary. (tcp_secret_generating == tcp_secret_primary) 3383 * Used both for generation and primary verification. 3384 * 3385 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3386 * Used for verification, until the first failure that can be 3387 * verified by the newer Generating secret. At that time, this 3388 * cookie's state is changed to Secondary, and the Generating 3389 * cookie's state is changed to Primary. This is a short-term state, 3390 * typically lasting only one round trip time (RTT). 3391 * 3392 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3393 * Used for secondary verification, after primary verification 3394 * failures. This state lasts no more than twice the Maximum Segment 3395 * Lifetime (2MSL). Then, the secret is discarded. 3396 */ 3397 struct tcp_cookie_secret { 3398 /* The secret is divided into two parts. The digest part is the 3399 * equivalent of previously hashing a secret and saving the state, 3400 * and serves as an initialization vector (IV). The message part 3401 * serves as the trailing secret. 3402 */ 3403 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3404 unsigned long expires; 3405 }; 3406 3407 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3408 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3409 #define TCP_SECRET_LIFE (HZ * 600) 3410 3411 static struct tcp_cookie_secret tcp_secret_one; 3412 static struct tcp_cookie_secret tcp_secret_two; 3413 3414 /* Essentially a circular list, without dynamic allocation. */ 3415 static struct tcp_cookie_secret *tcp_secret_generating; 3416 static struct tcp_cookie_secret *tcp_secret_primary; 3417 static struct tcp_cookie_secret *tcp_secret_retiring; 3418 static struct tcp_cookie_secret *tcp_secret_secondary; 3419 3420 static DEFINE_SPINLOCK(tcp_secret_locker); 3421 3422 /* Select a pseudo-random word in the cookie workspace. 3423 */ 3424 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3425 { 3426 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3427 } 3428 3429 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3430 * Called in softirq context. 3431 * Returns: 0 for success. 3432 */ 3433 int tcp_cookie_generator(u32 *bakery) 3434 { 3435 unsigned long jiffy = jiffies; 3436 3437 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3438 spin_lock_bh(&tcp_secret_locker); 3439 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3440 /* refreshed by another */ 3441 memcpy(bakery, 3442 &tcp_secret_generating->secrets[0], 3443 COOKIE_WORKSPACE_WORDS); 3444 } else { 3445 /* still needs refreshing */ 3446 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3447 3448 /* The first time, paranoia assumes that the 3449 * randomization function isn't as strong. But, 3450 * this secret initialization is delayed until 3451 * the last possible moment (packet arrival). 3452 * Although that time is observable, it is 3453 * unpredictably variable. Mash in the most 3454 * volatile clock bits available, and expire the 3455 * secret extra quickly. 3456 */ 3457 if (unlikely(tcp_secret_primary->expires == 3458 tcp_secret_secondary->expires)) { 3459 struct timespec tv; 3460 3461 getnstimeofday(&tv); 3462 bakery[COOKIE_DIGEST_WORDS+0] ^= 3463 (u32)tv.tv_nsec; 3464 3465 tcp_secret_secondary->expires = jiffy 3466 + TCP_SECRET_1MSL 3467 + (0x0f & tcp_cookie_work(bakery, 0)); 3468 } else { 3469 tcp_secret_secondary->expires = jiffy 3470 + TCP_SECRET_LIFE 3471 + (0xff & tcp_cookie_work(bakery, 1)); 3472 tcp_secret_primary->expires = jiffy 3473 + TCP_SECRET_2MSL 3474 + (0x1f & tcp_cookie_work(bakery, 2)); 3475 } 3476 memcpy(&tcp_secret_secondary->secrets[0], 3477 bakery, COOKIE_WORKSPACE_WORDS); 3478 3479 rcu_assign_pointer(tcp_secret_generating, 3480 tcp_secret_secondary); 3481 rcu_assign_pointer(tcp_secret_retiring, 3482 tcp_secret_primary); 3483 /* 3484 * Neither call_rcu() nor synchronize_rcu() needed. 3485 * Retiring data is not freed. It is replaced after 3486 * further (locked) pointer updates, and a quiet time 3487 * (minimum 1MSL, maximum LIFE - 2MSL). 3488 */ 3489 } 3490 spin_unlock_bh(&tcp_secret_locker); 3491 } else { 3492 rcu_read_lock_bh(); 3493 memcpy(bakery, 3494 &rcu_dereference(tcp_secret_generating)->secrets[0], 3495 COOKIE_WORKSPACE_WORDS); 3496 rcu_read_unlock_bh(); 3497 } 3498 return 0; 3499 } 3500 EXPORT_SYMBOL(tcp_cookie_generator); 3501 3502 void tcp_done(struct sock *sk) 3503 { 3504 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3505 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3506 3507 tcp_set_state(sk, TCP_CLOSE); 3508 tcp_clear_xmit_timers(sk); 3509 3510 sk->sk_shutdown = SHUTDOWN_MASK; 3511 3512 if (!sock_flag(sk, SOCK_DEAD)) 3513 sk->sk_state_change(sk); 3514 else 3515 inet_csk_destroy_sock(sk); 3516 } 3517 EXPORT_SYMBOL_GPL(tcp_done); 3518 3519 extern struct tcp_congestion_ops tcp_reno; 3520 3521 static __initdata unsigned long thash_entries; 3522 static int __init set_thash_entries(char *str) 3523 { 3524 ssize_t ret; 3525 3526 if (!str) 3527 return 0; 3528 3529 ret = kstrtoul(str, 0, &thash_entries); 3530 if (ret) 3531 return 0; 3532 3533 return 1; 3534 } 3535 __setup("thash_entries=", set_thash_entries); 3536 3537 void tcp_init_mem(struct net *net) 3538 { 3539 unsigned long limit = nr_free_buffer_pages() / 8; 3540 limit = max(limit, 128UL); 3541 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3542 net->ipv4.sysctl_tcp_mem[1] = limit; 3543 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3544 } 3545 3546 void __init tcp_init(void) 3547 { 3548 struct sk_buff *skb = NULL; 3549 unsigned long limit; 3550 int max_rshare, max_wshare, cnt; 3551 unsigned int i; 3552 unsigned long jiffy = jiffies; 3553 3554 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3555 3556 percpu_counter_init(&tcp_sockets_allocated, 0); 3557 percpu_counter_init(&tcp_orphan_count, 0); 3558 tcp_hashinfo.bind_bucket_cachep = 3559 kmem_cache_create("tcp_bind_bucket", 3560 sizeof(struct inet_bind_bucket), 0, 3561 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3562 3563 /* Size and allocate the main established and bind bucket 3564 * hash tables. 3565 * 3566 * The methodology is similar to that of the buffer cache. 3567 */ 3568 tcp_hashinfo.ehash = 3569 alloc_large_system_hash("TCP established", 3570 sizeof(struct inet_ehash_bucket), 3571 thash_entries, 3572 (totalram_pages >= 128 * 1024) ? 3573 13 : 15, 3574 0, 3575 NULL, 3576 &tcp_hashinfo.ehash_mask, 3577 0, 3578 thash_entries ? 0 : 512 * 1024); 3579 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3580 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3581 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3582 } 3583 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3584 panic("TCP: failed to alloc ehash_locks"); 3585 tcp_hashinfo.bhash = 3586 alloc_large_system_hash("TCP bind", 3587 sizeof(struct inet_bind_hashbucket), 3588 tcp_hashinfo.ehash_mask + 1, 3589 (totalram_pages >= 128 * 1024) ? 3590 13 : 15, 3591 0, 3592 &tcp_hashinfo.bhash_size, 3593 NULL, 3594 0, 3595 64 * 1024); 3596 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3597 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3598 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3599 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3600 } 3601 3602 3603 cnt = tcp_hashinfo.ehash_mask + 1; 3604 3605 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3606 sysctl_tcp_max_orphans = cnt / 2; 3607 sysctl_max_syn_backlog = max(128, cnt / 256); 3608 3609 tcp_init_mem(&init_net); 3610 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3611 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3612 max_wshare = min(4UL*1024*1024, limit); 3613 max_rshare = min(6UL*1024*1024, limit); 3614 3615 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3616 sysctl_tcp_wmem[1] = 16*1024; 3617 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3618 3619 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3620 sysctl_tcp_rmem[1] = 87380; 3621 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3622 3623 pr_info("Hash tables configured (established %u bind %u)\n", 3624 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3625 3626 tcp_metrics_init(); 3627 3628 tcp_register_congestion_control(&tcp_reno); 3629 3630 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3631 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3632 tcp_secret_one.expires = jiffy; /* past due */ 3633 tcp_secret_two.expires = jiffy; /* past due */ 3634 tcp_secret_generating = &tcp_secret_one; 3635 tcp_secret_primary = &tcp_secret_one; 3636 tcp_secret_retiring = &tcp_secret_two; 3637 tcp_secret_secondary = &tcp_secret_two; 3638 tcp_tasklet_init(); 3639 } 3640