xref: /linux/net/ipv4/tcp.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290 
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  *       sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	skb_queue_head_init(&tp->out_of_order_queue);
378 	tcp_init_xmit_timers(sk);
379 	tcp_prequeue_init(tp);
380 	INIT_LIST_HEAD(&tp->tsq_node);
381 
382 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 	tp->mdev = TCP_TIMEOUT_INIT;
384 
385 	/* So many TCP implementations out there (incorrectly) count the
386 	 * initial SYN frame in their delayed-ACK and congestion control
387 	 * algorithms that we must have the following bandaid to talk
388 	 * efficiently to them.  -DaveM
389 	 */
390 	tp->snd_cwnd = TCP_INIT_CWND;
391 
392 	/* See draft-stevens-tcpca-spec-01 for discussion of the
393 	 * initialization of these values.
394 	 */
395 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 	tp->snd_cwnd_clamp = ~0;
397 	tp->mss_cache = TCP_MSS_DEFAULT;
398 
399 	tp->reordering = sysctl_tcp_reordering;
400 	tcp_enable_early_retrans(tp);
401 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402 
403 	sk->sk_state = TCP_CLOSE;
404 
405 	sk->sk_write_space = sk_stream_write_space;
406 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407 
408 	icsk->icsk_sync_mss = tcp_sync_mss;
409 
410 	/* TCP Cookie Transactions */
411 	if (sysctl_tcp_cookie_size > 0) {
412 		/* Default, cookies without s_data_payload. */
413 		tp->cookie_values =
414 			kzalloc(sizeof(*tp->cookie_values),
415 				sk->sk_allocation);
416 		if (tp->cookie_values != NULL)
417 			kref_init(&tp->cookie_values->kref);
418 	}
419 	/* Presumed zeroed, in order of appearance:
420 	 *	cookie_in_always, cookie_out_never,
421 	 *	s_data_constant, s_data_in, s_data_out
422 	 */
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sock_update_memcg(sk);
428 	sk_sockets_allocated_inc(sk);
429 	local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432 
433 /*
434  *	Wait for a TCP event.
435  *
436  *	Note that we don't need to lock the socket, as the upper poll layers
437  *	take care of normal races (between the test and the event) and we don't
438  *	go look at any of the socket buffers directly.
439  */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 	unsigned int mask;
443 	struct sock *sk = sock->sk;
444 	const struct tcp_sock *tp = tcp_sk(sk);
445 
446 	sock_poll_wait(file, sk_sleep(sk), wait);
447 	if (sk->sk_state == TCP_LISTEN)
448 		return inet_csk_listen_poll(sk);
449 
450 	/* Socket is not locked. We are protected from async events
451 	 * by poll logic and correct handling of state changes
452 	 * made by other threads is impossible in any case.
453 	 */
454 
455 	mask = 0;
456 
457 	/*
458 	 * POLLHUP is certainly not done right. But poll() doesn't
459 	 * have a notion of HUP in just one direction, and for a
460 	 * socket the read side is more interesting.
461 	 *
462 	 * Some poll() documentation says that POLLHUP is incompatible
463 	 * with the POLLOUT/POLLWR flags, so somebody should check this
464 	 * all. But careful, it tends to be safer to return too many
465 	 * bits than too few, and you can easily break real applications
466 	 * if you don't tell them that something has hung up!
467 	 *
468 	 * Check-me.
469 	 *
470 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 	 * our fs/select.c). It means that after we received EOF,
472 	 * poll always returns immediately, making impossible poll() on write()
473 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 	 * if and only if shutdown has been made in both directions.
475 	 * Actually, it is interesting to look how Solaris and DUX
476 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 	 * then we could set it on SND_SHUTDOWN. BTW examples given
478 	 * in Stevens' books assume exactly this behaviour, it explains
479 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
480 	 *
481 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 	 * blocking on fresh not-connected or disconnected socket. --ANK
483 	 */
484 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 		mask |= POLLHUP;
486 	if (sk->sk_shutdown & RCV_SHUTDOWN)
487 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488 
489 	/* Connected? */
490 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
491 		int target = sock_rcvlowat(sk, 0, INT_MAX);
492 
493 		if (tp->urg_seq == tp->copied_seq &&
494 		    !sock_flag(sk, SOCK_URGINLINE) &&
495 		    tp->urg_data)
496 			target++;
497 
498 		/* Potential race condition. If read of tp below will
499 		 * escape above sk->sk_state, we can be illegally awaken
500 		 * in SYN_* states. */
501 		if (tp->rcv_nxt - tp->copied_seq >= target)
502 			mask |= POLLIN | POLLRDNORM;
503 
504 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
505 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
506 				mask |= POLLOUT | POLLWRNORM;
507 			} else {  /* send SIGIO later */
508 				set_bit(SOCK_ASYNC_NOSPACE,
509 					&sk->sk_socket->flags);
510 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
511 
512 				/* Race breaker. If space is freed after
513 				 * wspace test but before the flags are set,
514 				 * IO signal will be lost.
515 				 */
516 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
517 					mask |= POLLOUT | POLLWRNORM;
518 			}
519 		} else
520 			mask |= POLLOUT | POLLWRNORM;
521 
522 		if (tp->urg_data & TCP_URG_VALID)
523 			mask |= POLLPRI;
524 	}
525 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
526 	smp_rmb();
527 	if (sk->sk_err)
528 		mask |= POLLERR;
529 
530 	return mask;
531 }
532 EXPORT_SYMBOL(tcp_poll);
533 
534 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
535 {
536 	struct tcp_sock *tp = tcp_sk(sk);
537 	int answ;
538 
539 	switch (cmd) {
540 	case SIOCINQ:
541 		if (sk->sk_state == TCP_LISTEN)
542 			return -EINVAL;
543 
544 		lock_sock(sk);
545 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
546 			answ = 0;
547 		else if (sock_flag(sk, SOCK_URGINLINE) ||
548 			 !tp->urg_data ||
549 			 before(tp->urg_seq, tp->copied_seq) ||
550 			 !before(tp->urg_seq, tp->rcv_nxt)) {
551 			struct sk_buff *skb;
552 
553 			answ = tp->rcv_nxt - tp->copied_seq;
554 
555 			/* Subtract 1, if FIN is in queue. */
556 			skb = skb_peek_tail(&sk->sk_receive_queue);
557 			if (answ && skb)
558 				answ -= tcp_hdr(skb)->fin;
559 		} else
560 			answ = tp->urg_seq - tp->copied_seq;
561 		release_sock(sk);
562 		break;
563 	case SIOCATMARK:
564 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 		break;
566 	case SIOCOUTQ:
567 		if (sk->sk_state == TCP_LISTEN)
568 			return -EINVAL;
569 
570 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 			answ = 0;
572 		else
573 			answ = tp->write_seq - tp->snd_una;
574 		break;
575 	case SIOCOUTQNSD:
576 		if (sk->sk_state == TCP_LISTEN)
577 			return -EINVAL;
578 
579 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 			answ = 0;
581 		else
582 			answ = tp->write_seq - tp->snd_nxt;
583 		break;
584 	default:
585 		return -ENOIOCTLCMD;
586 	}
587 
588 	return put_user(answ, (int __user *)arg);
589 }
590 EXPORT_SYMBOL(tcp_ioctl);
591 
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
593 {
594 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 	tp->pushed_seq = tp->write_seq;
596 }
597 
598 static inline bool forced_push(const struct tcp_sock *tp)
599 {
600 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601 }
602 
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
607 
608 	skb->csum    = 0;
609 	tcb->seq     = tcb->end_seq = tp->write_seq;
610 	tcb->tcp_flags = TCPHDR_ACK;
611 	tcb->sacked  = 0;
612 	skb_header_release(skb);
613 	tcp_add_write_queue_tail(sk, skb);
614 	sk->sk_wmem_queued += skb->truesize;
615 	sk_mem_charge(sk, skb->truesize);
616 	if (tp->nonagle & TCP_NAGLE_PUSH)
617 		tp->nonagle &= ~TCP_NAGLE_PUSH;
618 }
619 
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
621 {
622 	if (flags & MSG_OOB)
623 		tp->snd_up = tp->write_seq;
624 }
625 
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 			    int nonagle)
628 {
629 	if (tcp_send_head(sk)) {
630 		struct tcp_sock *tp = tcp_sk(sk);
631 
632 		if (!(flags & MSG_MORE) || forced_push(tp))
633 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
634 
635 		tcp_mark_urg(tp, flags);
636 		__tcp_push_pending_frames(sk, mss_now,
637 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
638 	}
639 }
640 
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 				unsigned int offset, size_t len)
643 {
644 	struct tcp_splice_state *tss = rd_desc->arg.data;
645 	int ret;
646 
647 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 			      tss->flags);
649 	if (ret > 0)
650 		rd_desc->count -= ret;
651 	return ret;
652 }
653 
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
655 {
656 	/* Store TCP splice context information in read_descriptor_t. */
657 	read_descriptor_t rd_desc = {
658 		.arg.data = tss,
659 		.count	  = tss->len,
660 	};
661 
662 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
663 }
664 
665 /**
666  *  tcp_splice_read - splice data from TCP socket to a pipe
667  * @sock:	socket to splice from
668  * @ppos:	position (not valid)
669  * @pipe:	pipe to splice to
670  * @len:	number of bytes to splice
671  * @flags:	splice modifier flags
672  *
673  * Description:
674  *    Will read pages from given socket and fill them into a pipe.
675  *
676  **/
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 			struct pipe_inode_info *pipe, size_t len,
679 			unsigned int flags)
680 {
681 	struct sock *sk = sock->sk;
682 	struct tcp_splice_state tss = {
683 		.pipe = pipe,
684 		.len = len,
685 		.flags = flags,
686 	};
687 	long timeo;
688 	ssize_t spliced;
689 	int ret;
690 
691 	sock_rps_record_flow(sk);
692 	/*
693 	 * We can't seek on a socket input
694 	 */
695 	if (unlikely(*ppos))
696 		return -ESPIPE;
697 
698 	ret = spliced = 0;
699 
700 	lock_sock(sk);
701 
702 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 	while (tss.len) {
704 		ret = __tcp_splice_read(sk, &tss);
705 		if (ret < 0)
706 			break;
707 		else if (!ret) {
708 			if (spliced)
709 				break;
710 			if (sock_flag(sk, SOCK_DONE))
711 				break;
712 			if (sk->sk_err) {
713 				ret = sock_error(sk);
714 				break;
715 			}
716 			if (sk->sk_shutdown & RCV_SHUTDOWN)
717 				break;
718 			if (sk->sk_state == TCP_CLOSE) {
719 				/*
720 				 * This occurs when user tries to read
721 				 * from never connected socket.
722 				 */
723 				if (!sock_flag(sk, SOCK_DONE))
724 					ret = -ENOTCONN;
725 				break;
726 			}
727 			if (!timeo) {
728 				ret = -EAGAIN;
729 				break;
730 			}
731 			sk_wait_data(sk, &timeo);
732 			if (signal_pending(current)) {
733 				ret = sock_intr_errno(timeo);
734 				break;
735 			}
736 			continue;
737 		}
738 		tss.len -= ret;
739 		spliced += ret;
740 
741 		if (!timeo)
742 			break;
743 		release_sock(sk);
744 		lock_sock(sk);
745 
746 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 		    signal_pending(current))
749 			break;
750 	}
751 
752 	release_sock(sk);
753 
754 	if (spliced)
755 		return spliced;
756 
757 	return ret;
758 }
759 EXPORT_SYMBOL(tcp_splice_read);
760 
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
762 {
763 	struct sk_buff *skb;
764 
765 	/* The TCP header must be at least 32-bit aligned.  */
766 	size = ALIGN(size, 4);
767 
768 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 	if (skb) {
770 		if (sk_wmem_schedule(sk, skb->truesize)) {
771 			skb_reserve(skb, sk->sk_prot->max_header);
772 			/*
773 			 * Make sure that we have exactly size bytes
774 			 * available to the caller, no more, no less.
775 			 */
776 			skb->avail_size = size;
777 			return skb;
778 		}
779 		__kfree_skb(skb);
780 	} else {
781 		sk->sk_prot->enter_memory_pressure(sk);
782 		sk_stream_moderate_sndbuf(sk);
783 	}
784 	return NULL;
785 }
786 
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 				       int large_allowed)
789 {
790 	struct tcp_sock *tp = tcp_sk(sk);
791 	u32 xmit_size_goal, old_size_goal;
792 
793 	xmit_size_goal = mss_now;
794 
795 	if (large_allowed && sk_can_gso(sk)) {
796 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 				  inet_csk(sk)->icsk_af_ops->net_header_len -
798 				  inet_csk(sk)->icsk_ext_hdr_len -
799 				  tp->tcp_header_len);
800 
801 		/* TSQ : try to have two TSO segments in flight */
802 		xmit_size_goal = min_t(u32, xmit_size_goal,
803 				       sysctl_tcp_limit_output_bytes >> 1);
804 
805 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
806 
807 		/* We try hard to avoid divides here */
808 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
809 
810 		if (likely(old_size_goal <= xmit_size_goal &&
811 			   old_size_goal + mss_now > xmit_size_goal)) {
812 			xmit_size_goal = old_size_goal;
813 		} else {
814 			tp->xmit_size_goal_segs =
815 				min_t(u16, xmit_size_goal / mss_now,
816 				      sk->sk_gso_max_segs);
817 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
818 		}
819 	}
820 
821 	return max(xmit_size_goal, mss_now);
822 }
823 
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
825 {
826 	int mss_now;
827 
828 	mss_now = tcp_current_mss(sk);
829 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
830 
831 	return mss_now;
832 }
833 
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
835 			 size_t psize, int flags)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	int mss_now, size_goal;
839 	int err;
840 	ssize_t copied;
841 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
842 
843 	/* Wait for a connection to finish. */
844 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
845 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
846 			goto out_err;
847 
848 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
849 
850 	mss_now = tcp_send_mss(sk, &size_goal, flags);
851 	copied = 0;
852 
853 	err = -EPIPE;
854 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
855 		goto out_err;
856 
857 	while (psize > 0) {
858 		struct sk_buff *skb = tcp_write_queue_tail(sk);
859 		struct page *page = pages[poffset / PAGE_SIZE];
860 		int copy, i;
861 		int offset = poffset % PAGE_SIZE;
862 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
863 		bool can_coalesce;
864 
865 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
866 new_segment:
867 			if (!sk_stream_memory_free(sk))
868 				goto wait_for_sndbuf;
869 
870 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
871 			if (!skb)
872 				goto wait_for_memory;
873 
874 			skb_entail(sk, skb);
875 			copy = size_goal;
876 		}
877 
878 		if (copy > size)
879 			copy = size;
880 
881 		i = skb_shinfo(skb)->nr_frags;
882 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
883 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
884 			tcp_mark_push(tp, skb);
885 			goto new_segment;
886 		}
887 		if (!sk_wmem_schedule(sk, copy))
888 			goto wait_for_memory;
889 
890 		if (can_coalesce) {
891 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
892 		} else {
893 			get_page(page);
894 			skb_fill_page_desc(skb, i, page, offset, copy);
895 		}
896 
897 		skb->len += copy;
898 		skb->data_len += copy;
899 		skb->truesize += copy;
900 		sk->sk_wmem_queued += copy;
901 		sk_mem_charge(sk, copy);
902 		skb->ip_summed = CHECKSUM_PARTIAL;
903 		tp->write_seq += copy;
904 		TCP_SKB_CB(skb)->end_seq += copy;
905 		skb_shinfo(skb)->gso_segs = 0;
906 
907 		if (!copied)
908 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
909 
910 		copied += copy;
911 		poffset += copy;
912 		if (!(psize -= copy))
913 			goto out;
914 
915 		if (skb->len < size_goal || (flags & MSG_OOB))
916 			continue;
917 
918 		if (forced_push(tp)) {
919 			tcp_mark_push(tp, skb);
920 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
921 		} else if (skb == tcp_send_head(sk))
922 			tcp_push_one(sk, mss_now);
923 		continue;
924 
925 wait_for_sndbuf:
926 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
927 wait_for_memory:
928 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
929 
930 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
931 			goto do_error;
932 
933 		mss_now = tcp_send_mss(sk, &size_goal, flags);
934 	}
935 
936 out:
937 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
938 		tcp_push(sk, flags, mss_now, tp->nonagle);
939 	return copied;
940 
941 do_error:
942 	if (copied)
943 		goto out;
944 out_err:
945 	return sk_stream_error(sk, flags, err);
946 }
947 
948 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
949 		 size_t size, int flags)
950 {
951 	ssize_t res;
952 
953 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
954 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
955 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
956 					flags);
957 
958 	lock_sock(sk);
959 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
960 	release_sock(sk);
961 	return res;
962 }
963 EXPORT_SYMBOL(tcp_sendpage);
964 
965 static inline int select_size(const struct sock *sk, bool sg)
966 {
967 	const struct tcp_sock *tp = tcp_sk(sk);
968 	int tmp = tp->mss_cache;
969 
970 	if (sg) {
971 		if (sk_can_gso(sk)) {
972 			/* Small frames wont use a full page:
973 			 * Payload will immediately follow tcp header.
974 			 */
975 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
976 		} else {
977 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
978 
979 			if (tmp >= pgbreak &&
980 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
981 				tmp = pgbreak;
982 		}
983 	}
984 
985 	return tmp;
986 }
987 
988 void tcp_free_fastopen_req(struct tcp_sock *tp)
989 {
990 	if (tp->fastopen_req != NULL) {
991 		kfree(tp->fastopen_req);
992 		tp->fastopen_req = NULL;
993 	}
994 }
995 
996 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
997 {
998 	struct tcp_sock *tp = tcp_sk(sk);
999 	int err, flags;
1000 
1001 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1002 		return -EOPNOTSUPP;
1003 	if (tp->fastopen_req != NULL)
1004 		return -EALREADY; /* Another Fast Open is in progress */
1005 
1006 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1007 				   sk->sk_allocation);
1008 	if (unlikely(tp->fastopen_req == NULL))
1009 		return -ENOBUFS;
1010 	tp->fastopen_req->data = msg;
1011 
1012 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1013 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1014 				    msg->msg_namelen, flags);
1015 	*size = tp->fastopen_req->copied;
1016 	tcp_free_fastopen_req(tp);
1017 	return err;
1018 }
1019 
1020 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1021 		size_t size)
1022 {
1023 	struct iovec *iov;
1024 	struct tcp_sock *tp = tcp_sk(sk);
1025 	struct sk_buff *skb;
1026 	int iovlen, flags, err, copied = 0;
1027 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1028 	bool sg;
1029 	long timeo;
1030 
1031 	lock_sock(sk);
1032 
1033 	flags = msg->msg_flags;
1034 	if (flags & MSG_FASTOPEN) {
1035 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1036 		if (err == -EINPROGRESS && copied_syn > 0)
1037 			goto out;
1038 		else if (err)
1039 			goto out_err;
1040 		offset = copied_syn;
1041 	}
1042 
1043 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1044 
1045 	/* Wait for a connection to finish. */
1046 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1047 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1048 			goto do_error;
1049 
1050 	if (unlikely(tp->repair)) {
1051 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1052 			copied = tcp_send_rcvq(sk, msg, size);
1053 			goto out;
1054 		}
1055 
1056 		err = -EINVAL;
1057 		if (tp->repair_queue == TCP_NO_QUEUE)
1058 			goto out_err;
1059 
1060 		/* 'common' sending to sendq */
1061 	}
1062 
1063 	/* This should be in poll */
1064 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1065 
1066 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1067 
1068 	/* Ok commence sending. */
1069 	iovlen = msg->msg_iovlen;
1070 	iov = msg->msg_iov;
1071 	copied = 0;
1072 
1073 	err = -EPIPE;
1074 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1075 		goto out_err;
1076 
1077 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1078 
1079 	while (--iovlen >= 0) {
1080 		size_t seglen = iov->iov_len;
1081 		unsigned char __user *from = iov->iov_base;
1082 
1083 		iov++;
1084 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1085 			if (offset >= seglen) {
1086 				offset -= seglen;
1087 				continue;
1088 			}
1089 			seglen -= offset;
1090 			from += offset;
1091 			offset = 0;
1092 		}
1093 
1094 		while (seglen > 0) {
1095 			int copy = 0;
1096 			int max = size_goal;
1097 
1098 			skb = tcp_write_queue_tail(sk);
1099 			if (tcp_send_head(sk)) {
1100 				if (skb->ip_summed == CHECKSUM_NONE)
1101 					max = mss_now;
1102 				copy = max - skb->len;
1103 			}
1104 
1105 			if (copy <= 0) {
1106 new_segment:
1107 				/* Allocate new segment. If the interface is SG,
1108 				 * allocate skb fitting to single page.
1109 				 */
1110 				if (!sk_stream_memory_free(sk))
1111 					goto wait_for_sndbuf;
1112 
1113 				skb = sk_stream_alloc_skb(sk,
1114 							  select_size(sk, sg),
1115 							  sk->sk_allocation);
1116 				if (!skb)
1117 					goto wait_for_memory;
1118 
1119 				/*
1120 				 * Check whether we can use HW checksum.
1121 				 */
1122 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1123 					skb->ip_summed = CHECKSUM_PARTIAL;
1124 
1125 				skb_entail(sk, skb);
1126 				copy = size_goal;
1127 				max = size_goal;
1128 			}
1129 
1130 			/* Try to append data to the end of skb. */
1131 			if (copy > seglen)
1132 				copy = seglen;
1133 
1134 			/* Where to copy to? */
1135 			if (skb_availroom(skb) > 0) {
1136 				/* We have some space in skb head. Superb! */
1137 				copy = min_t(int, copy, skb_availroom(skb));
1138 				err = skb_add_data_nocache(sk, skb, from, copy);
1139 				if (err)
1140 					goto do_fault;
1141 			} else {
1142 				bool merge = false;
1143 				int i = skb_shinfo(skb)->nr_frags;
1144 				struct page *page = sk->sk_sndmsg_page;
1145 				int off;
1146 
1147 				if (page && page_count(page) == 1)
1148 					sk->sk_sndmsg_off = 0;
1149 
1150 				off = sk->sk_sndmsg_off;
1151 
1152 				if (skb_can_coalesce(skb, i, page, off) &&
1153 				    off != PAGE_SIZE) {
1154 					/* We can extend the last page
1155 					 * fragment. */
1156 					merge = true;
1157 				} else if (i == MAX_SKB_FRAGS || !sg) {
1158 					/* Need to add new fragment and cannot
1159 					 * do this because interface is non-SG,
1160 					 * or because all the page slots are
1161 					 * busy. */
1162 					tcp_mark_push(tp, skb);
1163 					goto new_segment;
1164 				} else if (page) {
1165 					if (off == PAGE_SIZE) {
1166 						put_page(page);
1167 						sk->sk_sndmsg_page = page = NULL;
1168 						off = 0;
1169 					}
1170 				} else
1171 					off = 0;
1172 
1173 				if (copy > PAGE_SIZE - off)
1174 					copy = PAGE_SIZE - off;
1175 
1176 				if (!sk_wmem_schedule(sk, copy))
1177 					goto wait_for_memory;
1178 
1179 				if (!page) {
1180 					/* Allocate new cache page. */
1181 					if (!(page = sk_stream_alloc_page(sk)))
1182 						goto wait_for_memory;
1183 				}
1184 
1185 				/* Time to copy data. We are close to
1186 				 * the end! */
1187 				err = skb_copy_to_page_nocache(sk, from, skb,
1188 							       page, off, copy);
1189 				if (err) {
1190 					/* If this page was new, give it to the
1191 					 * socket so it does not get leaked.
1192 					 */
1193 					if (!sk->sk_sndmsg_page) {
1194 						sk->sk_sndmsg_page = page;
1195 						sk->sk_sndmsg_off = 0;
1196 					}
1197 					goto do_error;
1198 				}
1199 
1200 				/* Update the skb. */
1201 				if (merge) {
1202 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1203 				} else {
1204 					skb_fill_page_desc(skb, i, page, off, copy);
1205 					if (sk->sk_sndmsg_page) {
1206 						get_page(page);
1207 					} else if (off + copy < PAGE_SIZE) {
1208 						get_page(page);
1209 						sk->sk_sndmsg_page = page;
1210 					}
1211 				}
1212 
1213 				sk->sk_sndmsg_off = off + copy;
1214 			}
1215 
1216 			if (!copied)
1217 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1218 
1219 			tp->write_seq += copy;
1220 			TCP_SKB_CB(skb)->end_seq += copy;
1221 			skb_shinfo(skb)->gso_segs = 0;
1222 
1223 			from += copy;
1224 			copied += copy;
1225 			if ((seglen -= copy) == 0 && iovlen == 0)
1226 				goto out;
1227 
1228 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1229 				continue;
1230 
1231 			if (forced_push(tp)) {
1232 				tcp_mark_push(tp, skb);
1233 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1234 			} else if (skb == tcp_send_head(sk))
1235 				tcp_push_one(sk, mss_now);
1236 			continue;
1237 
1238 wait_for_sndbuf:
1239 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240 wait_for_memory:
1241 			if (copied && likely(!tp->repair))
1242 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1243 
1244 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1245 				goto do_error;
1246 
1247 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1248 		}
1249 	}
1250 
1251 out:
1252 	if (copied && likely(!tp->repair))
1253 		tcp_push(sk, flags, mss_now, tp->nonagle);
1254 	release_sock(sk);
1255 	return copied + copied_syn;
1256 
1257 do_fault:
1258 	if (!skb->len) {
1259 		tcp_unlink_write_queue(skb, sk);
1260 		/* It is the one place in all of TCP, except connection
1261 		 * reset, where we can be unlinking the send_head.
1262 		 */
1263 		tcp_check_send_head(sk, skb);
1264 		sk_wmem_free_skb(sk, skb);
1265 	}
1266 
1267 do_error:
1268 	if (copied + copied_syn)
1269 		goto out;
1270 out_err:
1271 	err = sk_stream_error(sk, flags, err);
1272 	release_sock(sk);
1273 	return err;
1274 }
1275 EXPORT_SYMBOL(tcp_sendmsg);
1276 
1277 /*
1278  *	Handle reading urgent data. BSD has very simple semantics for
1279  *	this, no blocking and very strange errors 8)
1280  */
1281 
1282 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1283 {
1284 	struct tcp_sock *tp = tcp_sk(sk);
1285 
1286 	/* No URG data to read. */
1287 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1288 	    tp->urg_data == TCP_URG_READ)
1289 		return -EINVAL;	/* Yes this is right ! */
1290 
1291 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1292 		return -ENOTCONN;
1293 
1294 	if (tp->urg_data & TCP_URG_VALID) {
1295 		int err = 0;
1296 		char c = tp->urg_data;
1297 
1298 		if (!(flags & MSG_PEEK))
1299 			tp->urg_data = TCP_URG_READ;
1300 
1301 		/* Read urgent data. */
1302 		msg->msg_flags |= MSG_OOB;
1303 
1304 		if (len > 0) {
1305 			if (!(flags & MSG_TRUNC))
1306 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1307 			len = 1;
1308 		} else
1309 			msg->msg_flags |= MSG_TRUNC;
1310 
1311 		return err ? -EFAULT : len;
1312 	}
1313 
1314 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1315 		return 0;
1316 
1317 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1318 	 * the available implementations agree in this case:
1319 	 * this call should never block, independent of the
1320 	 * blocking state of the socket.
1321 	 * Mike <pall@rz.uni-karlsruhe.de>
1322 	 */
1323 	return -EAGAIN;
1324 }
1325 
1326 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1327 {
1328 	struct sk_buff *skb;
1329 	int copied = 0, err = 0;
1330 
1331 	/* XXX -- need to support SO_PEEK_OFF */
1332 
1333 	skb_queue_walk(&sk->sk_write_queue, skb) {
1334 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1335 		if (err)
1336 			break;
1337 
1338 		copied += skb->len;
1339 	}
1340 
1341 	return err ?: copied;
1342 }
1343 
1344 /* Clean up the receive buffer for full frames taken by the user,
1345  * then send an ACK if necessary.  COPIED is the number of bytes
1346  * tcp_recvmsg has given to the user so far, it speeds up the
1347  * calculation of whether or not we must ACK for the sake of
1348  * a window update.
1349  */
1350 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1351 {
1352 	struct tcp_sock *tp = tcp_sk(sk);
1353 	bool time_to_ack = false;
1354 
1355 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1356 
1357 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1358 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1359 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1360 
1361 	if (inet_csk_ack_scheduled(sk)) {
1362 		const struct inet_connection_sock *icsk = inet_csk(sk);
1363 		   /* Delayed ACKs frequently hit locked sockets during bulk
1364 		    * receive. */
1365 		if (icsk->icsk_ack.blocked ||
1366 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1367 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1368 		    /*
1369 		     * If this read emptied read buffer, we send ACK, if
1370 		     * connection is not bidirectional, user drained
1371 		     * receive buffer and there was a small segment
1372 		     * in queue.
1373 		     */
1374 		    (copied > 0 &&
1375 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1376 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1377 		       !icsk->icsk_ack.pingpong)) &&
1378 		      !atomic_read(&sk->sk_rmem_alloc)))
1379 			time_to_ack = true;
1380 	}
1381 
1382 	/* We send an ACK if we can now advertise a non-zero window
1383 	 * which has been raised "significantly".
1384 	 *
1385 	 * Even if window raised up to infinity, do not send window open ACK
1386 	 * in states, where we will not receive more. It is useless.
1387 	 */
1388 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1389 		__u32 rcv_window_now = tcp_receive_window(tp);
1390 
1391 		/* Optimize, __tcp_select_window() is not cheap. */
1392 		if (2*rcv_window_now <= tp->window_clamp) {
1393 			__u32 new_window = __tcp_select_window(sk);
1394 
1395 			/* Send ACK now, if this read freed lots of space
1396 			 * in our buffer. Certainly, new_window is new window.
1397 			 * We can advertise it now, if it is not less than current one.
1398 			 * "Lots" means "at least twice" here.
1399 			 */
1400 			if (new_window && new_window >= 2 * rcv_window_now)
1401 				time_to_ack = true;
1402 		}
1403 	}
1404 	if (time_to_ack)
1405 		tcp_send_ack(sk);
1406 }
1407 
1408 static void tcp_prequeue_process(struct sock *sk)
1409 {
1410 	struct sk_buff *skb;
1411 	struct tcp_sock *tp = tcp_sk(sk);
1412 
1413 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1414 
1415 	/* RX process wants to run with disabled BHs, though it is not
1416 	 * necessary */
1417 	local_bh_disable();
1418 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1419 		sk_backlog_rcv(sk, skb);
1420 	local_bh_enable();
1421 
1422 	/* Clear memory counter. */
1423 	tp->ucopy.memory = 0;
1424 }
1425 
1426 #ifdef CONFIG_NET_DMA
1427 static void tcp_service_net_dma(struct sock *sk, bool wait)
1428 {
1429 	dma_cookie_t done, used;
1430 	dma_cookie_t last_issued;
1431 	struct tcp_sock *tp = tcp_sk(sk);
1432 
1433 	if (!tp->ucopy.dma_chan)
1434 		return;
1435 
1436 	last_issued = tp->ucopy.dma_cookie;
1437 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1438 
1439 	do {
1440 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1441 					      last_issued, &done,
1442 					      &used) == DMA_SUCCESS) {
1443 			/* Safe to free early-copied skbs now */
1444 			__skb_queue_purge(&sk->sk_async_wait_queue);
1445 			break;
1446 		} else {
1447 			struct sk_buff *skb;
1448 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1449 			       (dma_async_is_complete(skb->dma_cookie, done,
1450 						      used) == DMA_SUCCESS)) {
1451 				__skb_dequeue(&sk->sk_async_wait_queue);
1452 				kfree_skb(skb);
1453 			}
1454 		}
1455 	} while (wait);
1456 }
1457 #endif
1458 
1459 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1460 {
1461 	struct sk_buff *skb;
1462 	u32 offset;
1463 
1464 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1465 		offset = seq - TCP_SKB_CB(skb)->seq;
1466 		if (tcp_hdr(skb)->syn)
1467 			offset--;
1468 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1469 			*off = offset;
1470 			return skb;
1471 		}
1472 	}
1473 	return NULL;
1474 }
1475 
1476 /*
1477  * This routine provides an alternative to tcp_recvmsg() for routines
1478  * that would like to handle copying from skbuffs directly in 'sendfile'
1479  * fashion.
1480  * Note:
1481  *	- It is assumed that the socket was locked by the caller.
1482  *	- The routine does not block.
1483  *	- At present, there is no support for reading OOB data
1484  *	  or for 'peeking' the socket using this routine
1485  *	  (although both would be easy to implement).
1486  */
1487 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1488 		  sk_read_actor_t recv_actor)
1489 {
1490 	struct sk_buff *skb;
1491 	struct tcp_sock *tp = tcp_sk(sk);
1492 	u32 seq = tp->copied_seq;
1493 	u32 offset;
1494 	int copied = 0;
1495 
1496 	if (sk->sk_state == TCP_LISTEN)
1497 		return -ENOTCONN;
1498 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1499 		if (offset < skb->len) {
1500 			int used;
1501 			size_t len;
1502 
1503 			len = skb->len - offset;
1504 			/* Stop reading if we hit a patch of urgent data */
1505 			if (tp->urg_data) {
1506 				u32 urg_offset = tp->urg_seq - seq;
1507 				if (urg_offset < len)
1508 					len = urg_offset;
1509 				if (!len)
1510 					break;
1511 			}
1512 			used = recv_actor(desc, skb, offset, len);
1513 			if (used < 0) {
1514 				if (!copied)
1515 					copied = used;
1516 				break;
1517 			} else if (used <= len) {
1518 				seq += used;
1519 				copied += used;
1520 				offset += used;
1521 			}
1522 			/*
1523 			 * If recv_actor drops the lock (e.g. TCP splice
1524 			 * receive) the skb pointer might be invalid when
1525 			 * getting here: tcp_collapse might have deleted it
1526 			 * while aggregating skbs from the socket queue.
1527 			 */
1528 			skb = tcp_recv_skb(sk, seq-1, &offset);
1529 			if (!skb || (offset+1 != skb->len))
1530 				break;
1531 		}
1532 		if (tcp_hdr(skb)->fin) {
1533 			sk_eat_skb(sk, skb, false);
1534 			++seq;
1535 			break;
1536 		}
1537 		sk_eat_skb(sk, skb, false);
1538 		if (!desc->count)
1539 			break;
1540 		tp->copied_seq = seq;
1541 	}
1542 	tp->copied_seq = seq;
1543 
1544 	tcp_rcv_space_adjust(sk);
1545 
1546 	/* Clean up data we have read: This will do ACK frames. */
1547 	if (copied > 0)
1548 		tcp_cleanup_rbuf(sk, copied);
1549 	return copied;
1550 }
1551 EXPORT_SYMBOL(tcp_read_sock);
1552 
1553 /*
1554  *	This routine copies from a sock struct into the user buffer.
1555  *
1556  *	Technical note: in 2.3 we work on _locked_ socket, so that
1557  *	tricks with *seq access order and skb->users are not required.
1558  *	Probably, code can be easily improved even more.
1559  */
1560 
1561 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1562 		size_t len, int nonblock, int flags, int *addr_len)
1563 {
1564 	struct tcp_sock *tp = tcp_sk(sk);
1565 	int copied = 0;
1566 	u32 peek_seq;
1567 	u32 *seq;
1568 	unsigned long used;
1569 	int err;
1570 	int target;		/* Read at least this many bytes */
1571 	long timeo;
1572 	struct task_struct *user_recv = NULL;
1573 	bool copied_early = false;
1574 	struct sk_buff *skb;
1575 	u32 urg_hole = 0;
1576 
1577 	lock_sock(sk);
1578 
1579 	err = -ENOTCONN;
1580 	if (sk->sk_state == TCP_LISTEN)
1581 		goto out;
1582 
1583 	timeo = sock_rcvtimeo(sk, nonblock);
1584 
1585 	/* Urgent data needs to be handled specially. */
1586 	if (flags & MSG_OOB)
1587 		goto recv_urg;
1588 
1589 	if (unlikely(tp->repair)) {
1590 		err = -EPERM;
1591 		if (!(flags & MSG_PEEK))
1592 			goto out;
1593 
1594 		if (tp->repair_queue == TCP_SEND_QUEUE)
1595 			goto recv_sndq;
1596 
1597 		err = -EINVAL;
1598 		if (tp->repair_queue == TCP_NO_QUEUE)
1599 			goto out;
1600 
1601 		/* 'common' recv queue MSG_PEEK-ing */
1602 	}
1603 
1604 	seq = &tp->copied_seq;
1605 	if (flags & MSG_PEEK) {
1606 		peek_seq = tp->copied_seq;
1607 		seq = &peek_seq;
1608 	}
1609 
1610 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1611 
1612 #ifdef CONFIG_NET_DMA
1613 	tp->ucopy.dma_chan = NULL;
1614 	preempt_disable();
1615 	skb = skb_peek_tail(&sk->sk_receive_queue);
1616 	{
1617 		int available = 0;
1618 
1619 		if (skb)
1620 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1621 		if ((available < target) &&
1622 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1623 		    !sysctl_tcp_low_latency &&
1624 		    net_dma_find_channel()) {
1625 			preempt_enable_no_resched();
1626 			tp->ucopy.pinned_list =
1627 					dma_pin_iovec_pages(msg->msg_iov, len);
1628 		} else {
1629 			preempt_enable_no_resched();
1630 		}
1631 	}
1632 #endif
1633 
1634 	do {
1635 		u32 offset;
1636 
1637 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1638 		if (tp->urg_data && tp->urg_seq == *seq) {
1639 			if (copied)
1640 				break;
1641 			if (signal_pending(current)) {
1642 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1643 				break;
1644 			}
1645 		}
1646 
1647 		/* Next get a buffer. */
1648 
1649 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1650 			/* Now that we have two receive queues this
1651 			 * shouldn't happen.
1652 			 */
1653 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1654 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1655 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1656 				 flags))
1657 				break;
1658 
1659 			offset = *seq - TCP_SKB_CB(skb)->seq;
1660 			if (tcp_hdr(skb)->syn)
1661 				offset--;
1662 			if (offset < skb->len)
1663 				goto found_ok_skb;
1664 			if (tcp_hdr(skb)->fin)
1665 				goto found_fin_ok;
1666 			WARN(!(flags & MSG_PEEK),
1667 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1668 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1669 		}
1670 
1671 		/* Well, if we have backlog, try to process it now yet. */
1672 
1673 		if (copied >= target && !sk->sk_backlog.tail)
1674 			break;
1675 
1676 		if (copied) {
1677 			if (sk->sk_err ||
1678 			    sk->sk_state == TCP_CLOSE ||
1679 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1680 			    !timeo ||
1681 			    signal_pending(current))
1682 				break;
1683 		} else {
1684 			if (sock_flag(sk, SOCK_DONE))
1685 				break;
1686 
1687 			if (sk->sk_err) {
1688 				copied = sock_error(sk);
1689 				break;
1690 			}
1691 
1692 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1693 				break;
1694 
1695 			if (sk->sk_state == TCP_CLOSE) {
1696 				if (!sock_flag(sk, SOCK_DONE)) {
1697 					/* This occurs when user tries to read
1698 					 * from never connected socket.
1699 					 */
1700 					copied = -ENOTCONN;
1701 					break;
1702 				}
1703 				break;
1704 			}
1705 
1706 			if (!timeo) {
1707 				copied = -EAGAIN;
1708 				break;
1709 			}
1710 
1711 			if (signal_pending(current)) {
1712 				copied = sock_intr_errno(timeo);
1713 				break;
1714 			}
1715 		}
1716 
1717 		tcp_cleanup_rbuf(sk, copied);
1718 
1719 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1720 			/* Install new reader */
1721 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1722 				user_recv = current;
1723 				tp->ucopy.task = user_recv;
1724 				tp->ucopy.iov = msg->msg_iov;
1725 			}
1726 
1727 			tp->ucopy.len = len;
1728 
1729 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1730 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1731 
1732 			/* Ugly... If prequeue is not empty, we have to
1733 			 * process it before releasing socket, otherwise
1734 			 * order will be broken at second iteration.
1735 			 * More elegant solution is required!!!
1736 			 *
1737 			 * Look: we have the following (pseudo)queues:
1738 			 *
1739 			 * 1. packets in flight
1740 			 * 2. backlog
1741 			 * 3. prequeue
1742 			 * 4. receive_queue
1743 			 *
1744 			 * Each queue can be processed only if the next ones
1745 			 * are empty. At this point we have empty receive_queue.
1746 			 * But prequeue _can_ be not empty after 2nd iteration,
1747 			 * when we jumped to start of loop because backlog
1748 			 * processing added something to receive_queue.
1749 			 * We cannot release_sock(), because backlog contains
1750 			 * packets arrived _after_ prequeued ones.
1751 			 *
1752 			 * Shortly, algorithm is clear --- to process all
1753 			 * the queues in order. We could make it more directly,
1754 			 * requeueing packets from backlog to prequeue, if
1755 			 * is not empty. It is more elegant, but eats cycles,
1756 			 * unfortunately.
1757 			 */
1758 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1759 				goto do_prequeue;
1760 
1761 			/* __ Set realtime policy in scheduler __ */
1762 		}
1763 
1764 #ifdef CONFIG_NET_DMA
1765 		if (tp->ucopy.dma_chan)
1766 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1767 #endif
1768 		if (copied >= target) {
1769 			/* Do not sleep, just process backlog. */
1770 			release_sock(sk);
1771 			lock_sock(sk);
1772 		} else
1773 			sk_wait_data(sk, &timeo);
1774 
1775 #ifdef CONFIG_NET_DMA
1776 		tcp_service_net_dma(sk, false);  /* Don't block */
1777 		tp->ucopy.wakeup = 0;
1778 #endif
1779 
1780 		if (user_recv) {
1781 			int chunk;
1782 
1783 			/* __ Restore normal policy in scheduler __ */
1784 
1785 			if ((chunk = len - tp->ucopy.len) != 0) {
1786 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1787 				len -= chunk;
1788 				copied += chunk;
1789 			}
1790 
1791 			if (tp->rcv_nxt == tp->copied_seq &&
1792 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1793 do_prequeue:
1794 				tcp_prequeue_process(sk);
1795 
1796 				if ((chunk = len - tp->ucopy.len) != 0) {
1797 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1798 					len -= chunk;
1799 					copied += chunk;
1800 				}
1801 			}
1802 		}
1803 		if ((flags & MSG_PEEK) &&
1804 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1805 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1806 					    current->comm,
1807 					    task_pid_nr(current));
1808 			peek_seq = tp->copied_seq;
1809 		}
1810 		continue;
1811 
1812 	found_ok_skb:
1813 		/* Ok so how much can we use? */
1814 		used = skb->len - offset;
1815 		if (len < used)
1816 			used = len;
1817 
1818 		/* Do we have urgent data here? */
1819 		if (tp->urg_data) {
1820 			u32 urg_offset = tp->urg_seq - *seq;
1821 			if (urg_offset < used) {
1822 				if (!urg_offset) {
1823 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1824 						++*seq;
1825 						urg_hole++;
1826 						offset++;
1827 						used--;
1828 						if (!used)
1829 							goto skip_copy;
1830 					}
1831 				} else
1832 					used = urg_offset;
1833 			}
1834 		}
1835 
1836 		if (!(flags & MSG_TRUNC)) {
1837 #ifdef CONFIG_NET_DMA
1838 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1839 				tp->ucopy.dma_chan = net_dma_find_channel();
1840 
1841 			if (tp->ucopy.dma_chan) {
1842 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1843 					tp->ucopy.dma_chan, skb, offset,
1844 					msg->msg_iov, used,
1845 					tp->ucopy.pinned_list);
1846 
1847 				if (tp->ucopy.dma_cookie < 0) {
1848 
1849 					pr_alert("%s: dma_cookie < 0\n",
1850 						 __func__);
1851 
1852 					/* Exception. Bailout! */
1853 					if (!copied)
1854 						copied = -EFAULT;
1855 					break;
1856 				}
1857 
1858 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1859 
1860 				if ((offset + used) == skb->len)
1861 					copied_early = true;
1862 
1863 			} else
1864 #endif
1865 			{
1866 				err = skb_copy_datagram_iovec(skb, offset,
1867 						msg->msg_iov, used);
1868 				if (err) {
1869 					/* Exception. Bailout! */
1870 					if (!copied)
1871 						copied = -EFAULT;
1872 					break;
1873 				}
1874 			}
1875 		}
1876 
1877 		*seq += used;
1878 		copied += used;
1879 		len -= used;
1880 
1881 		tcp_rcv_space_adjust(sk);
1882 
1883 skip_copy:
1884 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1885 			tp->urg_data = 0;
1886 			tcp_fast_path_check(sk);
1887 		}
1888 		if (used + offset < skb->len)
1889 			continue;
1890 
1891 		if (tcp_hdr(skb)->fin)
1892 			goto found_fin_ok;
1893 		if (!(flags & MSG_PEEK)) {
1894 			sk_eat_skb(sk, skb, copied_early);
1895 			copied_early = false;
1896 		}
1897 		continue;
1898 
1899 	found_fin_ok:
1900 		/* Process the FIN. */
1901 		++*seq;
1902 		if (!(flags & MSG_PEEK)) {
1903 			sk_eat_skb(sk, skb, copied_early);
1904 			copied_early = false;
1905 		}
1906 		break;
1907 	} while (len > 0);
1908 
1909 	if (user_recv) {
1910 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1911 			int chunk;
1912 
1913 			tp->ucopy.len = copied > 0 ? len : 0;
1914 
1915 			tcp_prequeue_process(sk);
1916 
1917 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1918 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1919 				len -= chunk;
1920 				copied += chunk;
1921 			}
1922 		}
1923 
1924 		tp->ucopy.task = NULL;
1925 		tp->ucopy.len = 0;
1926 	}
1927 
1928 #ifdef CONFIG_NET_DMA
1929 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1930 	tp->ucopy.dma_chan = NULL;
1931 
1932 	if (tp->ucopy.pinned_list) {
1933 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1934 		tp->ucopy.pinned_list = NULL;
1935 	}
1936 #endif
1937 
1938 	/* According to UNIX98, msg_name/msg_namelen are ignored
1939 	 * on connected socket. I was just happy when found this 8) --ANK
1940 	 */
1941 
1942 	/* Clean up data we have read: This will do ACK frames. */
1943 	tcp_cleanup_rbuf(sk, copied);
1944 
1945 	release_sock(sk);
1946 	return copied;
1947 
1948 out:
1949 	release_sock(sk);
1950 	return err;
1951 
1952 recv_urg:
1953 	err = tcp_recv_urg(sk, msg, len, flags);
1954 	goto out;
1955 
1956 recv_sndq:
1957 	err = tcp_peek_sndq(sk, msg, len);
1958 	goto out;
1959 }
1960 EXPORT_SYMBOL(tcp_recvmsg);
1961 
1962 void tcp_set_state(struct sock *sk, int state)
1963 {
1964 	int oldstate = sk->sk_state;
1965 
1966 	switch (state) {
1967 	case TCP_ESTABLISHED:
1968 		if (oldstate != TCP_ESTABLISHED)
1969 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1970 		break;
1971 
1972 	case TCP_CLOSE:
1973 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1974 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1975 
1976 		sk->sk_prot->unhash(sk);
1977 		if (inet_csk(sk)->icsk_bind_hash &&
1978 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1979 			inet_put_port(sk);
1980 		/* fall through */
1981 	default:
1982 		if (oldstate == TCP_ESTABLISHED)
1983 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1984 	}
1985 
1986 	/* Change state AFTER socket is unhashed to avoid closed
1987 	 * socket sitting in hash tables.
1988 	 */
1989 	sk->sk_state = state;
1990 
1991 #ifdef STATE_TRACE
1992 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1993 #endif
1994 }
1995 EXPORT_SYMBOL_GPL(tcp_set_state);
1996 
1997 /*
1998  *	State processing on a close. This implements the state shift for
1999  *	sending our FIN frame. Note that we only send a FIN for some
2000  *	states. A shutdown() may have already sent the FIN, or we may be
2001  *	closed.
2002  */
2003 
2004 static const unsigned char new_state[16] = {
2005   /* current state:        new state:      action:	*/
2006   /* (Invalid)		*/ TCP_CLOSE,
2007   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2008   /* TCP_SYN_SENT	*/ TCP_CLOSE,
2009   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2010   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2011   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2012   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2013   /* TCP_CLOSE		*/ TCP_CLOSE,
2014   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2015   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2016   /* TCP_LISTEN		*/ TCP_CLOSE,
2017   /* TCP_CLOSING	*/ TCP_CLOSING,
2018 };
2019 
2020 static int tcp_close_state(struct sock *sk)
2021 {
2022 	int next = (int)new_state[sk->sk_state];
2023 	int ns = next & TCP_STATE_MASK;
2024 
2025 	tcp_set_state(sk, ns);
2026 
2027 	return next & TCP_ACTION_FIN;
2028 }
2029 
2030 /*
2031  *	Shutdown the sending side of a connection. Much like close except
2032  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2033  */
2034 
2035 void tcp_shutdown(struct sock *sk, int how)
2036 {
2037 	/*	We need to grab some memory, and put together a FIN,
2038 	 *	and then put it into the queue to be sent.
2039 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2040 	 */
2041 	if (!(how & SEND_SHUTDOWN))
2042 		return;
2043 
2044 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2045 	if ((1 << sk->sk_state) &
2046 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2047 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2048 		/* Clear out any half completed packets.  FIN if needed. */
2049 		if (tcp_close_state(sk))
2050 			tcp_send_fin(sk);
2051 	}
2052 }
2053 EXPORT_SYMBOL(tcp_shutdown);
2054 
2055 bool tcp_check_oom(struct sock *sk, int shift)
2056 {
2057 	bool too_many_orphans, out_of_socket_memory;
2058 
2059 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2060 	out_of_socket_memory = tcp_out_of_memory(sk);
2061 
2062 	if (too_many_orphans)
2063 		net_info_ratelimited("too many orphaned sockets\n");
2064 	if (out_of_socket_memory)
2065 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2066 	return too_many_orphans || out_of_socket_memory;
2067 }
2068 
2069 void tcp_close(struct sock *sk, long timeout)
2070 {
2071 	struct sk_buff *skb;
2072 	int data_was_unread = 0;
2073 	int state;
2074 
2075 	lock_sock(sk);
2076 	sk->sk_shutdown = SHUTDOWN_MASK;
2077 
2078 	if (sk->sk_state == TCP_LISTEN) {
2079 		tcp_set_state(sk, TCP_CLOSE);
2080 
2081 		/* Special case. */
2082 		inet_csk_listen_stop(sk);
2083 
2084 		goto adjudge_to_death;
2085 	}
2086 
2087 	/*  We need to flush the recv. buffs.  We do this only on the
2088 	 *  descriptor close, not protocol-sourced closes, because the
2089 	 *  reader process may not have drained the data yet!
2090 	 */
2091 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2092 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2093 			  tcp_hdr(skb)->fin;
2094 		data_was_unread += len;
2095 		__kfree_skb(skb);
2096 	}
2097 
2098 	sk_mem_reclaim(sk);
2099 
2100 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2101 	if (sk->sk_state == TCP_CLOSE)
2102 		goto adjudge_to_death;
2103 
2104 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2105 	 * data was lost. To witness the awful effects of the old behavior of
2106 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2107 	 * GET in an FTP client, suspend the process, wait for the client to
2108 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2109 	 * Note: timeout is always zero in such a case.
2110 	 */
2111 	if (unlikely(tcp_sk(sk)->repair)) {
2112 		sk->sk_prot->disconnect(sk, 0);
2113 	} else if (data_was_unread) {
2114 		/* Unread data was tossed, zap the connection. */
2115 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2116 		tcp_set_state(sk, TCP_CLOSE);
2117 		tcp_send_active_reset(sk, sk->sk_allocation);
2118 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2119 		/* Check zero linger _after_ checking for unread data. */
2120 		sk->sk_prot->disconnect(sk, 0);
2121 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2122 	} else if (tcp_close_state(sk)) {
2123 		/* We FIN if the application ate all the data before
2124 		 * zapping the connection.
2125 		 */
2126 
2127 		/* RED-PEN. Formally speaking, we have broken TCP state
2128 		 * machine. State transitions:
2129 		 *
2130 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2131 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2132 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2133 		 *
2134 		 * are legal only when FIN has been sent (i.e. in window),
2135 		 * rather than queued out of window. Purists blame.
2136 		 *
2137 		 * F.e. "RFC state" is ESTABLISHED,
2138 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2139 		 *
2140 		 * The visible declinations are that sometimes
2141 		 * we enter time-wait state, when it is not required really
2142 		 * (harmless), do not send active resets, when they are
2143 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2144 		 * they look as CLOSING or LAST_ACK for Linux)
2145 		 * Probably, I missed some more holelets.
2146 		 * 						--ANK
2147 		 */
2148 		tcp_send_fin(sk);
2149 	}
2150 
2151 	sk_stream_wait_close(sk, timeout);
2152 
2153 adjudge_to_death:
2154 	state = sk->sk_state;
2155 	sock_hold(sk);
2156 	sock_orphan(sk);
2157 
2158 	/* It is the last release_sock in its life. It will remove backlog. */
2159 	release_sock(sk);
2160 
2161 
2162 	/* Now socket is owned by kernel and we acquire BH lock
2163 	   to finish close. No need to check for user refs.
2164 	 */
2165 	local_bh_disable();
2166 	bh_lock_sock(sk);
2167 	WARN_ON(sock_owned_by_user(sk));
2168 
2169 	percpu_counter_inc(sk->sk_prot->orphan_count);
2170 
2171 	/* Have we already been destroyed by a softirq or backlog? */
2172 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2173 		goto out;
2174 
2175 	/*	This is a (useful) BSD violating of the RFC. There is a
2176 	 *	problem with TCP as specified in that the other end could
2177 	 *	keep a socket open forever with no application left this end.
2178 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2179 	 *	our end. If they send after that then tough - BUT: long enough
2180 	 *	that we won't make the old 4*rto = almost no time - whoops
2181 	 *	reset mistake.
2182 	 *
2183 	 *	Nope, it was not mistake. It is really desired behaviour
2184 	 *	f.e. on http servers, when such sockets are useless, but
2185 	 *	consume significant resources. Let's do it with special
2186 	 *	linger2	option.					--ANK
2187 	 */
2188 
2189 	if (sk->sk_state == TCP_FIN_WAIT2) {
2190 		struct tcp_sock *tp = tcp_sk(sk);
2191 		if (tp->linger2 < 0) {
2192 			tcp_set_state(sk, TCP_CLOSE);
2193 			tcp_send_active_reset(sk, GFP_ATOMIC);
2194 			NET_INC_STATS_BH(sock_net(sk),
2195 					LINUX_MIB_TCPABORTONLINGER);
2196 		} else {
2197 			const int tmo = tcp_fin_time(sk);
2198 
2199 			if (tmo > TCP_TIMEWAIT_LEN) {
2200 				inet_csk_reset_keepalive_timer(sk,
2201 						tmo - TCP_TIMEWAIT_LEN);
2202 			} else {
2203 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2204 				goto out;
2205 			}
2206 		}
2207 	}
2208 	if (sk->sk_state != TCP_CLOSE) {
2209 		sk_mem_reclaim(sk);
2210 		if (tcp_check_oom(sk, 0)) {
2211 			tcp_set_state(sk, TCP_CLOSE);
2212 			tcp_send_active_reset(sk, GFP_ATOMIC);
2213 			NET_INC_STATS_BH(sock_net(sk),
2214 					LINUX_MIB_TCPABORTONMEMORY);
2215 		}
2216 	}
2217 
2218 	if (sk->sk_state == TCP_CLOSE)
2219 		inet_csk_destroy_sock(sk);
2220 	/* Otherwise, socket is reprieved until protocol close. */
2221 
2222 out:
2223 	bh_unlock_sock(sk);
2224 	local_bh_enable();
2225 	sock_put(sk);
2226 }
2227 EXPORT_SYMBOL(tcp_close);
2228 
2229 /* These states need RST on ABORT according to RFC793 */
2230 
2231 static inline bool tcp_need_reset(int state)
2232 {
2233 	return (1 << state) &
2234 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2235 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2236 }
2237 
2238 int tcp_disconnect(struct sock *sk, int flags)
2239 {
2240 	struct inet_sock *inet = inet_sk(sk);
2241 	struct inet_connection_sock *icsk = inet_csk(sk);
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 	int err = 0;
2244 	int old_state = sk->sk_state;
2245 
2246 	if (old_state != TCP_CLOSE)
2247 		tcp_set_state(sk, TCP_CLOSE);
2248 
2249 	/* ABORT function of RFC793 */
2250 	if (old_state == TCP_LISTEN) {
2251 		inet_csk_listen_stop(sk);
2252 	} else if (unlikely(tp->repair)) {
2253 		sk->sk_err = ECONNABORTED;
2254 	} else if (tcp_need_reset(old_state) ||
2255 		   (tp->snd_nxt != tp->write_seq &&
2256 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2257 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2258 		 * states
2259 		 */
2260 		tcp_send_active_reset(sk, gfp_any());
2261 		sk->sk_err = ECONNRESET;
2262 	} else if (old_state == TCP_SYN_SENT)
2263 		sk->sk_err = ECONNRESET;
2264 
2265 	tcp_clear_xmit_timers(sk);
2266 	__skb_queue_purge(&sk->sk_receive_queue);
2267 	tcp_write_queue_purge(sk);
2268 	__skb_queue_purge(&tp->out_of_order_queue);
2269 #ifdef CONFIG_NET_DMA
2270 	__skb_queue_purge(&sk->sk_async_wait_queue);
2271 #endif
2272 
2273 	inet->inet_dport = 0;
2274 
2275 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2276 		inet_reset_saddr(sk);
2277 
2278 	sk->sk_shutdown = 0;
2279 	sock_reset_flag(sk, SOCK_DONE);
2280 	tp->srtt = 0;
2281 	if ((tp->write_seq += tp->max_window + 2) == 0)
2282 		tp->write_seq = 1;
2283 	icsk->icsk_backoff = 0;
2284 	tp->snd_cwnd = 2;
2285 	icsk->icsk_probes_out = 0;
2286 	tp->packets_out = 0;
2287 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2288 	tp->snd_cwnd_cnt = 0;
2289 	tp->bytes_acked = 0;
2290 	tp->window_clamp = 0;
2291 	tcp_set_ca_state(sk, TCP_CA_Open);
2292 	tcp_clear_retrans(tp);
2293 	inet_csk_delack_init(sk);
2294 	tcp_init_send_head(sk);
2295 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2296 	__sk_dst_reset(sk);
2297 
2298 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2299 
2300 	sk->sk_error_report(sk);
2301 	return err;
2302 }
2303 EXPORT_SYMBOL(tcp_disconnect);
2304 
2305 static inline bool tcp_can_repair_sock(const struct sock *sk)
2306 {
2307 	return capable(CAP_NET_ADMIN) &&
2308 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2309 }
2310 
2311 static int tcp_repair_options_est(struct tcp_sock *tp,
2312 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2313 {
2314 	struct tcp_repair_opt opt;
2315 
2316 	while (len >= sizeof(opt)) {
2317 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2318 			return -EFAULT;
2319 
2320 		optbuf++;
2321 		len -= sizeof(opt);
2322 
2323 		switch (opt.opt_code) {
2324 		case TCPOPT_MSS:
2325 			tp->rx_opt.mss_clamp = opt.opt_val;
2326 			break;
2327 		case TCPOPT_WINDOW:
2328 			if (opt.opt_val > 14)
2329 				return -EFBIG;
2330 
2331 			tp->rx_opt.snd_wscale = opt.opt_val;
2332 			break;
2333 		case TCPOPT_SACK_PERM:
2334 			if (opt.opt_val != 0)
2335 				return -EINVAL;
2336 
2337 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2338 			if (sysctl_tcp_fack)
2339 				tcp_enable_fack(tp);
2340 			break;
2341 		case TCPOPT_TIMESTAMP:
2342 			if (opt.opt_val != 0)
2343 				return -EINVAL;
2344 
2345 			tp->rx_opt.tstamp_ok = 1;
2346 			break;
2347 		}
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 /*
2354  *	Socket option code for TCP.
2355  */
2356 static int do_tcp_setsockopt(struct sock *sk, int level,
2357 		int optname, char __user *optval, unsigned int optlen)
2358 {
2359 	struct tcp_sock *tp = tcp_sk(sk);
2360 	struct inet_connection_sock *icsk = inet_csk(sk);
2361 	int val;
2362 	int err = 0;
2363 
2364 	/* These are data/string values, all the others are ints */
2365 	switch (optname) {
2366 	case TCP_CONGESTION: {
2367 		char name[TCP_CA_NAME_MAX];
2368 
2369 		if (optlen < 1)
2370 			return -EINVAL;
2371 
2372 		val = strncpy_from_user(name, optval,
2373 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2374 		if (val < 0)
2375 			return -EFAULT;
2376 		name[val] = 0;
2377 
2378 		lock_sock(sk);
2379 		err = tcp_set_congestion_control(sk, name);
2380 		release_sock(sk);
2381 		return err;
2382 	}
2383 	case TCP_COOKIE_TRANSACTIONS: {
2384 		struct tcp_cookie_transactions ctd;
2385 		struct tcp_cookie_values *cvp = NULL;
2386 
2387 		if (sizeof(ctd) > optlen)
2388 			return -EINVAL;
2389 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2390 			return -EFAULT;
2391 
2392 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2393 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2394 			return -EINVAL;
2395 
2396 		if (ctd.tcpct_cookie_desired == 0) {
2397 			/* default to global value */
2398 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2399 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2400 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2401 			return -EINVAL;
2402 		}
2403 
2404 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2405 			/* Supercedes all other values */
2406 			lock_sock(sk);
2407 			if (tp->cookie_values != NULL) {
2408 				kref_put(&tp->cookie_values->kref,
2409 					 tcp_cookie_values_release);
2410 				tp->cookie_values = NULL;
2411 			}
2412 			tp->rx_opt.cookie_in_always = 0; /* false */
2413 			tp->rx_opt.cookie_out_never = 1; /* true */
2414 			release_sock(sk);
2415 			return err;
2416 		}
2417 
2418 		/* Allocate ancillary memory before locking.
2419 		 */
2420 		if (ctd.tcpct_used > 0 ||
2421 		    (tp->cookie_values == NULL &&
2422 		     (sysctl_tcp_cookie_size > 0 ||
2423 		      ctd.tcpct_cookie_desired > 0 ||
2424 		      ctd.tcpct_s_data_desired > 0))) {
2425 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2426 				      GFP_KERNEL);
2427 			if (cvp == NULL)
2428 				return -ENOMEM;
2429 
2430 			kref_init(&cvp->kref);
2431 		}
2432 		lock_sock(sk);
2433 		tp->rx_opt.cookie_in_always =
2434 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2435 		tp->rx_opt.cookie_out_never = 0; /* false */
2436 
2437 		if (tp->cookie_values != NULL) {
2438 			if (cvp != NULL) {
2439 				/* Changed values are recorded by a changed
2440 				 * pointer, ensuring the cookie will differ,
2441 				 * without separately hashing each value later.
2442 				 */
2443 				kref_put(&tp->cookie_values->kref,
2444 					 tcp_cookie_values_release);
2445 			} else {
2446 				cvp = tp->cookie_values;
2447 			}
2448 		}
2449 
2450 		if (cvp != NULL) {
2451 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2452 
2453 			if (ctd.tcpct_used > 0) {
2454 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2455 				       ctd.tcpct_used);
2456 				cvp->s_data_desired = ctd.tcpct_used;
2457 				cvp->s_data_constant = 1; /* true */
2458 			} else {
2459 				/* No constant payload data. */
2460 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2461 				cvp->s_data_constant = 0; /* false */
2462 			}
2463 
2464 			tp->cookie_values = cvp;
2465 		}
2466 		release_sock(sk);
2467 		return err;
2468 	}
2469 	default:
2470 		/* fallthru */
2471 		break;
2472 	}
2473 
2474 	if (optlen < sizeof(int))
2475 		return -EINVAL;
2476 
2477 	if (get_user(val, (int __user *)optval))
2478 		return -EFAULT;
2479 
2480 	lock_sock(sk);
2481 
2482 	switch (optname) {
2483 	case TCP_MAXSEG:
2484 		/* Values greater than interface MTU won't take effect. However
2485 		 * at the point when this call is done we typically don't yet
2486 		 * know which interface is going to be used */
2487 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2488 			err = -EINVAL;
2489 			break;
2490 		}
2491 		tp->rx_opt.user_mss = val;
2492 		break;
2493 
2494 	case TCP_NODELAY:
2495 		if (val) {
2496 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2497 			 * this option on corked socket is remembered, but
2498 			 * it is not activated until cork is cleared.
2499 			 *
2500 			 * However, when TCP_NODELAY is set we make
2501 			 * an explicit push, which overrides even TCP_CORK
2502 			 * for currently queued segments.
2503 			 */
2504 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2505 			tcp_push_pending_frames(sk);
2506 		} else {
2507 			tp->nonagle &= ~TCP_NAGLE_OFF;
2508 		}
2509 		break;
2510 
2511 	case TCP_THIN_LINEAR_TIMEOUTS:
2512 		if (val < 0 || val > 1)
2513 			err = -EINVAL;
2514 		else
2515 			tp->thin_lto = val;
2516 		break;
2517 
2518 	case TCP_THIN_DUPACK:
2519 		if (val < 0 || val > 1)
2520 			err = -EINVAL;
2521 		else
2522 			tp->thin_dupack = val;
2523 			if (tp->thin_dupack)
2524 				tcp_disable_early_retrans(tp);
2525 		break;
2526 
2527 	case TCP_REPAIR:
2528 		if (!tcp_can_repair_sock(sk))
2529 			err = -EPERM;
2530 		else if (val == 1) {
2531 			tp->repair = 1;
2532 			sk->sk_reuse = SK_FORCE_REUSE;
2533 			tp->repair_queue = TCP_NO_QUEUE;
2534 		} else if (val == 0) {
2535 			tp->repair = 0;
2536 			sk->sk_reuse = SK_NO_REUSE;
2537 			tcp_send_window_probe(sk);
2538 		} else
2539 			err = -EINVAL;
2540 
2541 		break;
2542 
2543 	case TCP_REPAIR_QUEUE:
2544 		if (!tp->repair)
2545 			err = -EPERM;
2546 		else if (val < TCP_QUEUES_NR)
2547 			tp->repair_queue = val;
2548 		else
2549 			err = -EINVAL;
2550 		break;
2551 
2552 	case TCP_QUEUE_SEQ:
2553 		if (sk->sk_state != TCP_CLOSE)
2554 			err = -EPERM;
2555 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2556 			tp->write_seq = val;
2557 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2558 			tp->rcv_nxt = val;
2559 		else
2560 			err = -EINVAL;
2561 		break;
2562 
2563 	case TCP_REPAIR_OPTIONS:
2564 		if (!tp->repair)
2565 			err = -EINVAL;
2566 		else if (sk->sk_state == TCP_ESTABLISHED)
2567 			err = tcp_repair_options_est(tp,
2568 					(struct tcp_repair_opt __user *)optval,
2569 					optlen);
2570 		else
2571 			err = -EPERM;
2572 		break;
2573 
2574 	case TCP_CORK:
2575 		/* When set indicates to always queue non-full frames.
2576 		 * Later the user clears this option and we transmit
2577 		 * any pending partial frames in the queue.  This is
2578 		 * meant to be used alongside sendfile() to get properly
2579 		 * filled frames when the user (for example) must write
2580 		 * out headers with a write() call first and then use
2581 		 * sendfile to send out the data parts.
2582 		 *
2583 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2584 		 * stronger than TCP_NODELAY.
2585 		 */
2586 		if (val) {
2587 			tp->nonagle |= TCP_NAGLE_CORK;
2588 		} else {
2589 			tp->nonagle &= ~TCP_NAGLE_CORK;
2590 			if (tp->nonagle&TCP_NAGLE_OFF)
2591 				tp->nonagle |= TCP_NAGLE_PUSH;
2592 			tcp_push_pending_frames(sk);
2593 		}
2594 		break;
2595 
2596 	case TCP_KEEPIDLE:
2597 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2598 			err = -EINVAL;
2599 		else {
2600 			tp->keepalive_time = val * HZ;
2601 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2602 			    !((1 << sk->sk_state) &
2603 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2604 				u32 elapsed = keepalive_time_elapsed(tp);
2605 				if (tp->keepalive_time > elapsed)
2606 					elapsed = tp->keepalive_time - elapsed;
2607 				else
2608 					elapsed = 0;
2609 				inet_csk_reset_keepalive_timer(sk, elapsed);
2610 			}
2611 		}
2612 		break;
2613 	case TCP_KEEPINTVL:
2614 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2615 			err = -EINVAL;
2616 		else
2617 			tp->keepalive_intvl = val * HZ;
2618 		break;
2619 	case TCP_KEEPCNT:
2620 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2621 			err = -EINVAL;
2622 		else
2623 			tp->keepalive_probes = val;
2624 		break;
2625 	case TCP_SYNCNT:
2626 		if (val < 1 || val > MAX_TCP_SYNCNT)
2627 			err = -EINVAL;
2628 		else
2629 			icsk->icsk_syn_retries = val;
2630 		break;
2631 
2632 	case TCP_LINGER2:
2633 		if (val < 0)
2634 			tp->linger2 = -1;
2635 		else if (val > sysctl_tcp_fin_timeout / HZ)
2636 			tp->linger2 = 0;
2637 		else
2638 			tp->linger2 = val * HZ;
2639 		break;
2640 
2641 	case TCP_DEFER_ACCEPT:
2642 		/* Translate value in seconds to number of retransmits */
2643 		icsk->icsk_accept_queue.rskq_defer_accept =
2644 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2645 					TCP_RTO_MAX / HZ);
2646 		break;
2647 
2648 	case TCP_WINDOW_CLAMP:
2649 		if (!val) {
2650 			if (sk->sk_state != TCP_CLOSE) {
2651 				err = -EINVAL;
2652 				break;
2653 			}
2654 			tp->window_clamp = 0;
2655 		} else
2656 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2657 						SOCK_MIN_RCVBUF / 2 : val;
2658 		break;
2659 
2660 	case TCP_QUICKACK:
2661 		if (!val) {
2662 			icsk->icsk_ack.pingpong = 1;
2663 		} else {
2664 			icsk->icsk_ack.pingpong = 0;
2665 			if ((1 << sk->sk_state) &
2666 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2667 			    inet_csk_ack_scheduled(sk)) {
2668 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2669 				tcp_cleanup_rbuf(sk, 1);
2670 				if (!(val & 1))
2671 					icsk->icsk_ack.pingpong = 1;
2672 			}
2673 		}
2674 		break;
2675 
2676 #ifdef CONFIG_TCP_MD5SIG
2677 	case TCP_MD5SIG:
2678 		/* Read the IP->Key mappings from userspace */
2679 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2680 		break;
2681 #endif
2682 	case TCP_USER_TIMEOUT:
2683 		/* Cap the max timeout in ms TCP will retry/retrans
2684 		 * before giving up and aborting (ETIMEDOUT) a connection.
2685 		 */
2686 		if (val < 0)
2687 			err = -EINVAL;
2688 		else
2689 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2690 		break;
2691 	default:
2692 		err = -ENOPROTOOPT;
2693 		break;
2694 	}
2695 
2696 	release_sock(sk);
2697 	return err;
2698 }
2699 
2700 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2701 		   unsigned int optlen)
2702 {
2703 	const struct inet_connection_sock *icsk = inet_csk(sk);
2704 
2705 	if (level != SOL_TCP)
2706 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2707 						     optval, optlen);
2708 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2709 }
2710 EXPORT_SYMBOL(tcp_setsockopt);
2711 
2712 #ifdef CONFIG_COMPAT
2713 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2714 			  char __user *optval, unsigned int optlen)
2715 {
2716 	if (level != SOL_TCP)
2717 		return inet_csk_compat_setsockopt(sk, level, optname,
2718 						  optval, optlen);
2719 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2720 }
2721 EXPORT_SYMBOL(compat_tcp_setsockopt);
2722 #endif
2723 
2724 /* Return information about state of tcp endpoint in API format. */
2725 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2726 {
2727 	const struct tcp_sock *tp = tcp_sk(sk);
2728 	const struct inet_connection_sock *icsk = inet_csk(sk);
2729 	u32 now = tcp_time_stamp;
2730 
2731 	memset(info, 0, sizeof(*info));
2732 
2733 	info->tcpi_state = sk->sk_state;
2734 	info->tcpi_ca_state = icsk->icsk_ca_state;
2735 	info->tcpi_retransmits = icsk->icsk_retransmits;
2736 	info->tcpi_probes = icsk->icsk_probes_out;
2737 	info->tcpi_backoff = icsk->icsk_backoff;
2738 
2739 	if (tp->rx_opt.tstamp_ok)
2740 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2741 	if (tcp_is_sack(tp))
2742 		info->tcpi_options |= TCPI_OPT_SACK;
2743 	if (tp->rx_opt.wscale_ok) {
2744 		info->tcpi_options |= TCPI_OPT_WSCALE;
2745 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2746 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2747 	}
2748 
2749 	if (tp->ecn_flags & TCP_ECN_OK)
2750 		info->tcpi_options |= TCPI_OPT_ECN;
2751 	if (tp->ecn_flags & TCP_ECN_SEEN)
2752 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2753 
2754 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2755 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2756 	info->tcpi_snd_mss = tp->mss_cache;
2757 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2758 
2759 	if (sk->sk_state == TCP_LISTEN) {
2760 		info->tcpi_unacked = sk->sk_ack_backlog;
2761 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2762 	} else {
2763 		info->tcpi_unacked = tp->packets_out;
2764 		info->tcpi_sacked = tp->sacked_out;
2765 	}
2766 	info->tcpi_lost = tp->lost_out;
2767 	info->tcpi_retrans = tp->retrans_out;
2768 	info->tcpi_fackets = tp->fackets_out;
2769 
2770 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2771 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2772 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2773 
2774 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2775 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2776 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2777 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2778 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2779 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2780 	info->tcpi_advmss = tp->advmss;
2781 	info->tcpi_reordering = tp->reordering;
2782 
2783 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2784 	info->tcpi_rcv_space = tp->rcvq_space.space;
2785 
2786 	info->tcpi_total_retrans = tp->total_retrans;
2787 }
2788 EXPORT_SYMBOL_GPL(tcp_get_info);
2789 
2790 static int do_tcp_getsockopt(struct sock *sk, int level,
2791 		int optname, char __user *optval, int __user *optlen)
2792 {
2793 	struct inet_connection_sock *icsk = inet_csk(sk);
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 	int val, len;
2796 
2797 	if (get_user(len, optlen))
2798 		return -EFAULT;
2799 
2800 	len = min_t(unsigned int, len, sizeof(int));
2801 
2802 	if (len < 0)
2803 		return -EINVAL;
2804 
2805 	switch (optname) {
2806 	case TCP_MAXSEG:
2807 		val = tp->mss_cache;
2808 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2809 			val = tp->rx_opt.user_mss;
2810 		if (tp->repair)
2811 			val = tp->rx_opt.mss_clamp;
2812 		break;
2813 	case TCP_NODELAY:
2814 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2815 		break;
2816 	case TCP_CORK:
2817 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2818 		break;
2819 	case TCP_KEEPIDLE:
2820 		val = keepalive_time_when(tp) / HZ;
2821 		break;
2822 	case TCP_KEEPINTVL:
2823 		val = keepalive_intvl_when(tp) / HZ;
2824 		break;
2825 	case TCP_KEEPCNT:
2826 		val = keepalive_probes(tp);
2827 		break;
2828 	case TCP_SYNCNT:
2829 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2830 		break;
2831 	case TCP_LINGER2:
2832 		val = tp->linger2;
2833 		if (val >= 0)
2834 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2835 		break;
2836 	case TCP_DEFER_ACCEPT:
2837 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2838 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2839 		break;
2840 	case TCP_WINDOW_CLAMP:
2841 		val = tp->window_clamp;
2842 		break;
2843 	case TCP_INFO: {
2844 		struct tcp_info info;
2845 
2846 		if (get_user(len, optlen))
2847 			return -EFAULT;
2848 
2849 		tcp_get_info(sk, &info);
2850 
2851 		len = min_t(unsigned int, len, sizeof(info));
2852 		if (put_user(len, optlen))
2853 			return -EFAULT;
2854 		if (copy_to_user(optval, &info, len))
2855 			return -EFAULT;
2856 		return 0;
2857 	}
2858 	case TCP_QUICKACK:
2859 		val = !icsk->icsk_ack.pingpong;
2860 		break;
2861 
2862 	case TCP_CONGESTION:
2863 		if (get_user(len, optlen))
2864 			return -EFAULT;
2865 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2866 		if (put_user(len, optlen))
2867 			return -EFAULT;
2868 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2869 			return -EFAULT;
2870 		return 0;
2871 
2872 	case TCP_COOKIE_TRANSACTIONS: {
2873 		struct tcp_cookie_transactions ctd;
2874 		struct tcp_cookie_values *cvp = tp->cookie_values;
2875 
2876 		if (get_user(len, optlen))
2877 			return -EFAULT;
2878 		if (len < sizeof(ctd))
2879 			return -EINVAL;
2880 
2881 		memset(&ctd, 0, sizeof(ctd));
2882 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2883 				   TCP_COOKIE_IN_ALWAYS : 0)
2884 				| (tp->rx_opt.cookie_out_never ?
2885 				   TCP_COOKIE_OUT_NEVER : 0);
2886 
2887 		if (cvp != NULL) {
2888 			ctd.tcpct_flags |= (cvp->s_data_in ?
2889 					    TCP_S_DATA_IN : 0)
2890 					 | (cvp->s_data_out ?
2891 					    TCP_S_DATA_OUT : 0);
2892 
2893 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2894 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2895 
2896 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2897 			       cvp->cookie_pair_size);
2898 			ctd.tcpct_used = cvp->cookie_pair_size;
2899 		}
2900 
2901 		if (put_user(sizeof(ctd), optlen))
2902 			return -EFAULT;
2903 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2904 			return -EFAULT;
2905 		return 0;
2906 	}
2907 	case TCP_THIN_LINEAR_TIMEOUTS:
2908 		val = tp->thin_lto;
2909 		break;
2910 	case TCP_THIN_DUPACK:
2911 		val = tp->thin_dupack;
2912 		break;
2913 
2914 	case TCP_REPAIR:
2915 		val = tp->repair;
2916 		break;
2917 
2918 	case TCP_REPAIR_QUEUE:
2919 		if (tp->repair)
2920 			val = tp->repair_queue;
2921 		else
2922 			return -EINVAL;
2923 		break;
2924 
2925 	case TCP_QUEUE_SEQ:
2926 		if (tp->repair_queue == TCP_SEND_QUEUE)
2927 			val = tp->write_seq;
2928 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2929 			val = tp->rcv_nxt;
2930 		else
2931 			return -EINVAL;
2932 		break;
2933 
2934 	case TCP_USER_TIMEOUT:
2935 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2936 		break;
2937 	default:
2938 		return -ENOPROTOOPT;
2939 	}
2940 
2941 	if (put_user(len, optlen))
2942 		return -EFAULT;
2943 	if (copy_to_user(optval, &val, len))
2944 		return -EFAULT;
2945 	return 0;
2946 }
2947 
2948 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2949 		   int __user *optlen)
2950 {
2951 	struct inet_connection_sock *icsk = inet_csk(sk);
2952 
2953 	if (level != SOL_TCP)
2954 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2955 						     optval, optlen);
2956 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2957 }
2958 EXPORT_SYMBOL(tcp_getsockopt);
2959 
2960 #ifdef CONFIG_COMPAT
2961 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2962 			  char __user *optval, int __user *optlen)
2963 {
2964 	if (level != SOL_TCP)
2965 		return inet_csk_compat_getsockopt(sk, level, optname,
2966 						  optval, optlen);
2967 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2968 }
2969 EXPORT_SYMBOL(compat_tcp_getsockopt);
2970 #endif
2971 
2972 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2973 	netdev_features_t features)
2974 {
2975 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2976 	struct tcphdr *th;
2977 	unsigned int thlen;
2978 	unsigned int seq;
2979 	__be32 delta;
2980 	unsigned int oldlen;
2981 	unsigned int mss;
2982 
2983 	if (!pskb_may_pull(skb, sizeof(*th)))
2984 		goto out;
2985 
2986 	th = tcp_hdr(skb);
2987 	thlen = th->doff * 4;
2988 	if (thlen < sizeof(*th))
2989 		goto out;
2990 
2991 	if (!pskb_may_pull(skb, thlen))
2992 		goto out;
2993 
2994 	oldlen = (u16)~skb->len;
2995 	__skb_pull(skb, thlen);
2996 
2997 	mss = skb_shinfo(skb)->gso_size;
2998 	if (unlikely(skb->len <= mss))
2999 		goto out;
3000 
3001 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3002 		/* Packet is from an untrusted source, reset gso_segs. */
3003 		int type = skb_shinfo(skb)->gso_type;
3004 
3005 		if (unlikely(type &
3006 			     ~(SKB_GSO_TCPV4 |
3007 			       SKB_GSO_DODGY |
3008 			       SKB_GSO_TCP_ECN |
3009 			       SKB_GSO_TCPV6 |
3010 			       0) ||
3011 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3012 			goto out;
3013 
3014 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3015 
3016 		segs = NULL;
3017 		goto out;
3018 	}
3019 
3020 	segs = skb_segment(skb, features);
3021 	if (IS_ERR(segs))
3022 		goto out;
3023 
3024 	delta = htonl(oldlen + (thlen + mss));
3025 
3026 	skb = segs;
3027 	th = tcp_hdr(skb);
3028 	seq = ntohl(th->seq);
3029 
3030 	do {
3031 		th->fin = th->psh = 0;
3032 
3033 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3034 				       (__force u32)delta));
3035 		if (skb->ip_summed != CHECKSUM_PARTIAL)
3036 			th->check =
3037 			     csum_fold(csum_partial(skb_transport_header(skb),
3038 						    thlen, skb->csum));
3039 
3040 		seq += mss;
3041 		skb = skb->next;
3042 		th = tcp_hdr(skb);
3043 
3044 		th->seq = htonl(seq);
3045 		th->cwr = 0;
3046 	} while (skb->next);
3047 
3048 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3049 		      skb->data_len);
3050 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3051 				(__force u32)delta));
3052 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3053 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3054 						   thlen, skb->csum));
3055 
3056 out:
3057 	return segs;
3058 }
3059 EXPORT_SYMBOL(tcp_tso_segment);
3060 
3061 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3062 {
3063 	struct sk_buff **pp = NULL;
3064 	struct sk_buff *p;
3065 	struct tcphdr *th;
3066 	struct tcphdr *th2;
3067 	unsigned int len;
3068 	unsigned int thlen;
3069 	__be32 flags;
3070 	unsigned int mss = 1;
3071 	unsigned int hlen;
3072 	unsigned int off;
3073 	int flush = 1;
3074 	int i;
3075 
3076 	off = skb_gro_offset(skb);
3077 	hlen = off + sizeof(*th);
3078 	th = skb_gro_header_fast(skb, off);
3079 	if (skb_gro_header_hard(skb, hlen)) {
3080 		th = skb_gro_header_slow(skb, hlen, off);
3081 		if (unlikely(!th))
3082 			goto out;
3083 	}
3084 
3085 	thlen = th->doff * 4;
3086 	if (thlen < sizeof(*th))
3087 		goto out;
3088 
3089 	hlen = off + thlen;
3090 	if (skb_gro_header_hard(skb, hlen)) {
3091 		th = skb_gro_header_slow(skb, hlen, off);
3092 		if (unlikely(!th))
3093 			goto out;
3094 	}
3095 
3096 	skb_gro_pull(skb, thlen);
3097 
3098 	len = skb_gro_len(skb);
3099 	flags = tcp_flag_word(th);
3100 
3101 	for (; (p = *head); head = &p->next) {
3102 		if (!NAPI_GRO_CB(p)->same_flow)
3103 			continue;
3104 
3105 		th2 = tcp_hdr(p);
3106 
3107 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3108 			NAPI_GRO_CB(p)->same_flow = 0;
3109 			continue;
3110 		}
3111 
3112 		goto found;
3113 	}
3114 
3115 	goto out_check_final;
3116 
3117 found:
3118 	flush = NAPI_GRO_CB(p)->flush;
3119 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3120 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3121 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3122 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3123 	for (i = sizeof(*th); i < thlen; i += 4)
3124 		flush |= *(u32 *)((u8 *)th + i) ^
3125 			 *(u32 *)((u8 *)th2 + i);
3126 
3127 	mss = skb_shinfo(p)->gso_size;
3128 
3129 	flush |= (len - 1) >= mss;
3130 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3131 
3132 	if (flush || skb_gro_receive(head, skb)) {
3133 		mss = 1;
3134 		goto out_check_final;
3135 	}
3136 
3137 	p = *head;
3138 	th2 = tcp_hdr(p);
3139 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3140 
3141 out_check_final:
3142 	flush = len < mss;
3143 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3144 					TCP_FLAG_RST | TCP_FLAG_SYN |
3145 					TCP_FLAG_FIN));
3146 
3147 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3148 		pp = head;
3149 
3150 out:
3151 	NAPI_GRO_CB(skb)->flush |= flush;
3152 
3153 	return pp;
3154 }
3155 EXPORT_SYMBOL(tcp_gro_receive);
3156 
3157 int tcp_gro_complete(struct sk_buff *skb)
3158 {
3159 	struct tcphdr *th = tcp_hdr(skb);
3160 
3161 	skb->csum_start = skb_transport_header(skb) - skb->head;
3162 	skb->csum_offset = offsetof(struct tcphdr, check);
3163 	skb->ip_summed = CHECKSUM_PARTIAL;
3164 
3165 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3166 
3167 	if (th->cwr)
3168 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3169 
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL(tcp_gro_complete);
3173 
3174 #ifdef CONFIG_TCP_MD5SIG
3175 static unsigned long tcp_md5sig_users;
3176 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3177 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3178 
3179 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3180 {
3181 	int cpu;
3182 
3183 	for_each_possible_cpu(cpu) {
3184 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3185 
3186 		if (p->md5_desc.tfm)
3187 			crypto_free_hash(p->md5_desc.tfm);
3188 	}
3189 	free_percpu(pool);
3190 }
3191 
3192 void tcp_free_md5sig_pool(void)
3193 {
3194 	struct tcp_md5sig_pool __percpu *pool = NULL;
3195 
3196 	spin_lock_bh(&tcp_md5sig_pool_lock);
3197 	if (--tcp_md5sig_users == 0) {
3198 		pool = tcp_md5sig_pool;
3199 		tcp_md5sig_pool = NULL;
3200 	}
3201 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3202 	if (pool)
3203 		__tcp_free_md5sig_pool(pool);
3204 }
3205 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3206 
3207 static struct tcp_md5sig_pool __percpu *
3208 __tcp_alloc_md5sig_pool(struct sock *sk)
3209 {
3210 	int cpu;
3211 	struct tcp_md5sig_pool __percpu *pool;
3212 
3213 	pool = alloc_percpu(struct tcp_md5sig_pool);
3214 	if (!pool)
3215 		return NULL;
3216 
3217 	for_each_possible_cpu(cpu) {
3218 		struct crypto_hash *hash;
3219 
3220 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3221 		if (!hash || IS_ERR(hash))
3222 			goto out_free;
3223 
3224 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3225 	}
3226 	return pool;
3227 out_free:
3228 	__tcp_free_md5sig_pool(pool);
3229 	return NULL;
3230 }
3231 
3232 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3233 {
3234 	struct tcp_md5sig_pool __percpu *pool;
3235 	bool alloc = false;
3236 
3237 retry:
3238 	spin_lock_bh(&tcp_md5sig_pool_lock);
3239 	pool = tcp_md5sig_pool;
3240 	if (tcp_md5sig_users++ == 0) {
3241 		alloc = true;
3242 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3243 	} else if (!pool) {
3244 		tcp_md5sig_users--;
3245 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3246 		cpu_relax();
3247 		goto retry;
3248 	} else
3249 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3250 
3251 	if (alloc) {
3252 		/* we cannot hold spinlock here because this may sleep. */
3253 		struct tcp_md5sig_pool __percpu *p;
3254 
3255 		p = __tcp_alloc_md5sig_pool(sk);
3256 		spin_lock_bh(&tcp_md5sig_pool_lock);
3257 		if (!p) {
3258 			tcp_md5sig_users--;
3259 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3260 			return NULL;
3261 		}
3262 		pool = tcp_md5sig_pool;
3263 		if (pool) {
3264 			/* oops, it has already been assigned. */
3265 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3266 			__tcp_free_md5sig_pool(p);
3267 		} else {
3268 			tcp_md5sig_pool = pool = p;
3269 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3270 		}
3271 	}
3272 	return pool;
3273 }
3274 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3275 
3276 
3277 /**
3278  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3279  *
3280  *	We use percpu structure, so if we succeed, we exit with preemption
3281  *	and BH disabled, to make sure another thread or softirq handling
3282  *	wont try to get same context.
3283  */
3284 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3285 {
3286 	struct tcp_md5sig_pool __percpu *p;
3287 
3288 	local_bh_disable();
3289 
3290 	spin_lock(&tcp_md5sig_pool_lock);
3291 	p = tcp_md5sig_pool;
3292 	if (p)
3293 		tcp_md5sig_users++;
3294 	spin_unlock(&tcp_md5sig_pool_lock);
3295 
3296 	if (p)
3297 		return this_cpu_ptr(p);
3298 
3299 	local_bh_enable();
3300 	return NULL;
3301 }
3302 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3303 
3304 void tcp_put_md5sig_pool(void)
3305 {
3306 	local_bh_enable();
3307 	tcp_free_md5sig_pool();
3308 }
3309 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3310 
3311 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3312 			const struct tcphdr *th)
3313 {
3314 	struct scatterlist sg;
3315 	struct tcphdr hdr;
3316 	int err;
3317 
3318 	/* We are not allowed to change tcphdr, make a local copy */
3319 	memcpy(&hdr, th, sizeof(hdr));
3320 	hdr.check = 0;
3321 
3322 	/* options aren't included in the hash */
3323 	sg_init_one(&sg, &hdr, sizeof(hdr));
3324 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3325 	return err;
3326 }
3327 EXPORT_SYMBOL(tcp_md5_hash_header);
3328 
3329 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3330 			  const struct sk_buff *skb, unsigned int header_len)
3331 {
3332 	struct scatterlist sg;
3333 	const struct tcphdr *tp = tcp_hdr(skb);
3334 	struct hash_desc *desc = &hp->md5_desc;
3335 	unsigned int i;
3336 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3337 					   skb_headlen(skb) - header_len : 0;
3338 	const struct skb_shared_info *shi = skb_shinfo(skb);
3339 	struct sk_buff *frag_iter;
3340 
3341 	sg_init_table(&sg, 1);
3342 
3343 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3344 	if (crypto_hash_update(desc, &sg, head_data_len))
3345 		return 1;
3346 
3347 	for (i = 0; i < shi->nr_frags; ++i) {
3348 		const struct skb_frag_struct *f = &shi->frags[i];
3349 		struct page *page = skb_frag_page(f);
3350 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3351 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3352 			return 1;
3353 	}
3354 
3355 	skb_walk_frags(skb, frag_iter)
3356 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3357 			return 1;
3358 
3359 	return 0;
3360 }
3361 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3362 
3363 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3364 {
3365 	struct scatterlist sg;
3366 
3367 	sg_init_one(&sg, key->key, key->keylen);
3368 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3369 }
3370 EXPORT_SYMBOL(tcp_md5_hash_key);
3371 
3372 #endif
3373 
3374 /* Each Responder maintains up to two secret values concurrently for
3375  * efficient secret rollover.  Each secret value has 4 states:
3376  *
3377  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3378  *    Generates new Responder-Cookies, but not yet used for primary
3379  *    verification.  This is a short-term state, typically lasting only
3380  *    one round trip time (RTT).
3381  *
3382  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3383  *    Used both for generation and primary verification.
3384  *
3385  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3386  *    Used for verification, until the first failure that can be
3387  *    verified by the newer Generating secret.  At that time, this
3388  *    cookie's state is changed to Secondary, and the Generating
3389  *    cookie's state is changed to Primary.  This is a short-term state,
3390  *    typically lasting only one round trip time (RTT).
3391  *
3392  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3393  *    Used for secondary verification, after primary verification
3394  *    failures.  This state lasts no more than twice the Maximum Segment
3395  *    Lifetime (2MSL).  Then, the secret is discarded.
3396  */
3397 struct tcp_cookie_secret {
3398 	/* The secret is divided into two parts.  The digest part is the
3399 	 * equivalent of previously hashing a secret and saving the state,
3400 	 * and serves as an initialization vector (IV).  The message part
3401 	 * serves as the trailing secret.
3402 	 */
3403 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3404 	unsigned long			expires;
3405 };
3406 
3407 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3408 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3409 #define TCP_SECRET_LIFE (HZ * 600)
3410 
3411 static struct tcp_cookie_secret tcp_secret_one;
3412 static struct tcp_cookie_secret tcp_secret_two;
3413 
3414 /* Essentially a circular list, without dynamic allocation. */
3415 static struct tcp_cookie_secret *tcp_secret_generating;
3416 static struct tcp_cookie_secret *tcp_secret_primary;
3417 static struct tcp_cookie_secret *tcp_secret_retiring;
3418 static struct tcp_cookie_secret *tcp_secret_secondary;
3419 
3420 static DEFINE_SPINLOCK(tcp_secret_locker);
3421 
3422 /* Select a pseudo-random word in the cookie workspace.
3423  */
3424 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3425 {
3426 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3427 }
3428 
3429 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3430  * Called in softirq context.
3431  * Returns: 0 for success.
3432  */
3433 int tcp_cookie_generator(u32 *bakery)
3434 {
3435 	unsigned long jiffy = jiffies;
3436 
3437 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3438 		spin_lock_bh(&tcp_secret_locker);
3439 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3440 			/* refreshed by another */
3441 			memcpy(bakery,
3442 			       &tcp_secret_generating->secrets[0],
3443 			       COOKIE_WORKSPACE_WORDS);
3444 		} else {
3445 			/* still needs refreshing */
3446 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3447 
3448 			/* The first time, paranoia assumes that the
3449 			 * randomization function isn't as strong.  But,
3450 			 * this secret initialization is delayed until
3451 			 * the last possible moment (packet arrival).
3452 			 * Although that time is observable, it is
3453 			 * unpredictably variable.  Mash in the most
3454 			 * volatile clock bits available, and expire the
3455 			 * secret extra quickly.
3456 			 */
3457 			if (unlikely(tcp_secret_primary->expires ==
3458 				     tcp_secret_secondary->expires)) {
3459 				struct timespec tv;
3460 
3461 				getnstimeofday(&tv);
3462 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3463 					(u32)tv.tv_nsec;
3464 
3465 				tcp_secret_secondary->expires = jiffy
3466 					+ TCP_SECRET_1MSL
3467 					+ (0x0f & tcp_cookie_work(bakery, 0));
3468 			} else {
3469 				tcp_secret_secondary->expires = jiffy
3470 					+ TCP_SECRET_LIFE
3471 					+ (0xff & tcp_cookie_work(bakery, 1));
3472 				tcp_secret_primary->expires = jiffy
3473 					+ TCP_SECRET_2MSL
3474 					+ (0x1f & tcp_cookie_work(bakery, 2));
3475 			}
3476 			memcpy(&tcp_secret_secondary->secrets[0],
3477 			       bakery, COOKIE_WORKSPACE_WORDS);
3478 
3479 			rcu_assign_pointer(tcp_secret_generating,
3480 					   tcp_secret_secondary);
3481 			rcu_assign_pointer(tcp_secret_retiring,
3482 					   tcp_secret_primary);
3483 			/*
3484 			 * Neither call_rcu() nor synchronize_rcu() needed.
3485 			 * Retiring data is not freed.  It is replaced after
3486 			 * further (locked) pointer updates, and a quiet time
3487 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3488 			 */
3489 		}
3490 		spin_unlock_bh(&tcp_secret_locker);
3491 	} else {
3492 		rcu_read_lock_bh();
3493 		memcpy(bakery,
3494 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3495 		       COOKIE_WORKSPACE_WORDS);
3496 		rcu_read_unlock_bh();
3497 	}
3498 	return 0;
3499 }
3500 EXPORT_SYMBOL(tcp_cookie_generator);
3501 
3502 void tcp_done(struct sock *sk)
3503 {
3504 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3505 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3506 
3507 	tcp_set_state(sk, TCP_CLOSE);
3508 	tcp_clear_xmit_timers(sk);
3509 
3510 	sk->sk_shutdown = SHUTDOWN_MASK;
3511 
3512 	if (!sock_flag(sk, SOCK_DEAD))
3513 		sk->sk_state_change(sk);
3514 	else
3515 		inet_csk_destroy_sock(sk);
3516 }
3517 EXPORT_SYMBOL_GPL(tcp_done);
3518 
3519 extern struct tcp_congestion_ops tcp_reno;
3520 
3521 static __initdata unsigned long thash_entries;
3522 static int __init set_thash_entries(char *str)
3523 {
3524 	ssize_t ret;
3525 
3526 	if (!str)
3527 		return 0;
3528 
3529 	ret = kstrtoul(str, 0, &thash_entries);
3530 	if (ret)
3531 		return 0;
3532 
3533 	return 1;
3534 }
3535 __setup("thash_entries=", set_thash_entries);
3536 
3537 void tcp_init_mem(struct net *net)
3538 {
3539 	unsigned long limit = nr_free_buffer_pages() / 8;
3540 	limit = max(limit, 128UL);
3541 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3542 	net->ipv4.sysctl_tcp_mem[1] = limit;
3543 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3544 }
3545 
3546 void __init tcp_init(void)
3547 {
3548 	struct sk_buff *skb = NULL;
3549 	unsigned long limit;
3550 	int max_rshare, max_wshare, cnt;
3551 	unsigned int i;
3552 	unsigned long jiffy = jiffies;
3553 
3554 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3555 
3556 	percpu_counter_init(&tcp_sockets_allocated, 0);
3557 	percpu_counter_init(&tcp_orphan_count, 0);
3558 	tcp_hashinfo.bind_bucket_cachep =
3559 		kmem_cache_create("tcp_bind_bucket",
3560 				  sizeof(struct inet_bind_bucket), 0,
3561 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3562 
3563 	/* Size and allocate the main established and bind bucket
3564 	 * hash tables.
3565 	 *
3566 	 * The methodology is similar to that of the buffer cache.
3567 	 */
3568 	tcp_hashinfo.ehash =
3569 		alloc_large_system_hash("TCP established",
3570 					sizeof(struct inet_ehash_bucket),
3571 					thash_entries,
3572 					(totalram_pages >= 128 * 1024) ?
3573 					13 : 15,
3574 					0,
3575 					NULL,
3576 					&tcp_hashinfo.ehash_mask,
3577 					0,
3578 					thash_entries ? 0 : 512 * 1024);
3579 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3580 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3581 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3582 	}
3583 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3584 		panic("TCP: failed to alloc ehash_locks");
3585 	tcp_hashinfo.bhash =
3586 		alloc_large_system_hash("TCP bind",
3587 					sizeof(struct inet_bind_hashbucket),
3588 					tcp_hashinfo.ehash_mask + 1,
3589 					(totalram_pages >= 128 * 1024) ?
3590 					13 : 15,
3591 					0,
3592 					&tcp_hashinfo.bhash_size,
3593 					NULL,
3594 					0,
3595 					64 * 1024);
3596 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3597 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3598 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3599 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3600 	}
3601 
3602 
3603 	cnt = tcp_hashinfo.ehash_mask + 1;
3604 
3605 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3606 	sysctl_tcp_max_orphans = cnt / 2;
3607 	sysctl_max_syn_backlog = max(128, cnt / 256);
3608 
3609 	tcp_init_mem(&init_net);
3610 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3611 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3612 	max_wshare = min(4UL*1024*1024, limit);
3613 	max_rshare = min(6UL*1024*1024, limit);
3614 
3615 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3616 	sysctl_tcp_wmem[1] = 16*1024;
3617 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3618 
3619 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3620 	sysctl_tcp_rmem[1] = 87380;
3621 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3622 
3623 	pr_info("Hash tables configured (established %u bind %u)\n",
3624 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3625 
3626 	tcp_metrics_init();
3627 
3628 	tcp_register_congestion_control(&tcp_reno);
3629 
3630 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3631 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3632 	tcp_secret_one.expires = jiffy; /* past due */
3633 	tcp_secret_two.expires = jiffy; /* past due */
3634 	tcp_secret_generating = &tcp_secret_one;
3635 	tcp_secret_primary = &tcp_secret_one;
3636 	tcp_secret_retiring = &tcp_secret_two;
3637 	tcp_secret_secondary = &tcp_secret_two;
3638 	tcp_tasklet_init();
3639 }
3640