1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 284 285 struct percpu_counter tcp_orphan_count; 286 EXPORT_SYMBOL_GPL(tcp_orphan_count); 287 288 int sysctl_tcp_wmem[3] __read_mostly; 289 int sysctl_tcp_rmem[3] __read_mostly; 290 291 EXPORT_SYMBOL(sysctl_tcp_rmem); 292 EXPORT_SYMBOL(sysctl_tcp_wmem); 293 294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 295 EXPORT_SYMBOL(tcp_memory_allocated); 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 int tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL(tcp_memory_pressure); 320 321 void tcp_enter_memory_pressure(struct sock *sk) 322 { 323 if (!tcp_memory_pressure) { 324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 325 tcp_memory_pressure = 1; 326 } 327 } 328 EXPORT_SYMBOL(tcp_enter_memory_pressure); 329 330 /* Convert seconds to retransmits based on initial and max timeout */ 331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 332 { 333 u8 res = 0; 334 335 if (seconds > 0) { 336 int period = timeout; 337 338 res = 1; 339 while (seconds > period && res < 255) { 340 res++; 341 timeout <<= 1; 342 if (timeout > rto_max) 343 timeout = rto_max; 344 period += timeout; 345 } 346 } 347 return res; 348 } 349 350 /* Convert retransmits to seconds based on initial and max timeout */ 351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 352 { 353 int period = 0; 354 355 if (retrans > 0) { 356 period = timeout; 357 while (--retrans) { 358 timeout <<= 1; 359 if (timeout > rto_max) 360 timeout = rto_max; 361 period += timeout; 362 } 363 } 364 return period; 365 } 366 367 /* Address-family independent initialization for a tcp_sock. 368 * 369 * NOTE: A lot of things set to zero explicitly by call to 370 * sk_alloc() so need not be done here. 371 */ 372 void tcp_init_sock(struct sock *sk) 373 { 374 struct inet_connection_sock *icsk = inet_csk(sk); 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 skb_queue_head_init(&tp->out_of_order_queue); 378 tcp_init_xmit_timers(sk); 379 tcp_prequeue_init(tp); 380 INIT_LIST_HEAD(&tp->tsq_node); 381 382 icsk->icsk_rto = TCP_TIMEOUT_INIT; 383 tp->mdev = TCP_TIMEOUT_INIT; 384 385 /* So many TCP implementations out there (incorrectly) count the 386 * initial SYN frame in their delayed-ACK and congestion control 387 * algorithms that we must have the following bandaid to talk 388 * efficiently to them. -DaveM 389 */ 390 tp->snd_cwnd = TCP_INIT_CWND; 391 392 /* See draft-stevens-tcpca-spec-01 for discussion of the 393 * initialization of these values. 394 */ 395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 396 tp->snd_cwnd_clamp = ~0; 397 tp->mss_cache = TCP_MSS_DEFAULT; 398 399 tp->reordering = sysctl_tcp_reordering; 400 tcp_enable_early_retrans(tp); 401 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 402 403 tp->tsoffset = 0; 404 405 sk->sk_state = TCP_CLOSE; 406 407 sk->sk_write_space = sk_stream_write_space; 408 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 409 410 icsk->icsk_sync_mss = tcp_sync_mss; 411 412 /* TCP Cookie Transactions */ 413 if (sysctl_tcp_cookie_size > 0) { 414 /* Default, cookies without s_data_payload. */ 415 tp->cookie_values = 416 kzalloc(sizeof(*tp->cookie_values), 417 sk->sk_allocation); 418 if (tp->cookie_values != NULL) 419 kref_init(&tp->cookie_values->kref); 420 } 421 /* Presumed zeroed, in order of appearance: 422 * cookie_in_always, cookie_out_never, 423 * s_data_constant, s_data_in, s_data_out 424 */ 425 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 426 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 427 428 local_bh_disable(); 429 sock_update_memcg(sk); 430 sk_sockets_allocated_inc(sk); 431 local_bh_enable(); 432 } 433 EXPORT_SYMBOL(tcp_init_sock); 434 435 /* 436 * Wait for a TCP event. 437 * 438 * Note that we don't need to lock the socket, as the upper poll layers 439 * take care of normal races (between the test and the event) and we don't 440 * go look at any of the socket buffers directly. 441 */ 442 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 443 { 444 unsigned int mask; 445 struct sock *sk = sock->sk; 446 const struct tcp_sock *tp = tcp_sk(sk); 447 448 sock_poll_wait(file, sk_sleep(sk), wait); 449 if (sk->sk_state == TCP_LISTEN) 450 return inet_csk_listen_poll(sk); 451 452 /* Socket is not locked. We are protected from async events 453 * by poll logic and correct handling of state changes 454 * made by other threads is impossible in any case. 455 */ 456 457 mask = 0; 458 459 /* 460 * POLLHUP is certainly not done right. But poll() doesn't 461 * have a notion of HUP in just one direction, and for a 462 * socket the read side is more interesting. 463 * 464 * Some poll() documentation says that POLLHUP is incompatible 465 * with the POLLOUT/POLLWR flags, so somebody should check this 466 * all. But careful, it tends to be safer to return too many 467 * bits than too few, and you can easily break real applications 468 * if you don't tell them that something has hung up! 469 * 470 * Check-me. 471 * 472 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 473 * our fs/select.c). It means that after we received EOF, 474 * poll always returns immediately, making impossible poll() on write() 475 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 476 * if and only if shutdown has been made in both directions. 477 * Actually, it is interesting to look how Solaris and DUX 478 * solve this dilemma. I would prefer, if POLLHUP were maskable, 479 * then we could set it on SND_SHUTDOWN. BTW examples given 480 * in Stevens' books assume exactly this behaviour, it explains 481 * why POLLHUP is incompatible with POLLOUT. --ANK 482 * 483 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 484 * blocking on fresh not-connected or disconnected socket. --ANK 485 */ 486 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 487 mask |= POLLHUP; 488 if (sk->sk_shutdown & RCV_SHUTDOWN) 489 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 490 491 /* Connected or passive Fast Open socket? */ 492 if (sk->sk_state != TCP_SYN_SENT && 493 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 494 int target = sock_rcvlowat(sk, 0, INT_MAX); 495 496 if (tp->urg_seq == tp->copied_seq && 497 !sock_flag(sk, SOCK_URGINLINE) && 498 tp->urg_data) 499 target++; 500 501 /* Potential race condition. If read of tp below will 502 * escape above sk->sk_state, we can be illegally awaken 503 * in SYN_* states. */ 504 if (tp->rcv_nxt - tp->copied_seq >= target) 505 mask |= POLLIN | POLLRDNORM; 506 507 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 508 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 509 mask |= POLLOUT | POLLWRNORM; 510 } else { /* send SIGIO later */ 511 set_bit(SOCK_ASYNC_NOSPACE, 512 &sk->sk_socket->flags); 513 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 514 515 /* Race breaker. If space is freed after 516 * wspace test but before the flags are set, 517 * IO signal will be lost. 518 */ 519 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 520 mask |= POLLOUT | POLLWRNORM; 521 } 522 } else 523 mask |= POLLOUT | POLLWRNORM; 524 525 if (tp->urg_data & TCP_URG_VALID) 526 mask |= POLLPRI; 527 } 528 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 529 smp_rmb(); 530 if (sk->sk_err) 531 mask |= POLLERR; 532 533 return mask; 534 } 535 EXPORT_SYMBOL(tcp_poll); 536 537 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 538 { 539 struct tcp_sock *tp = tcp_sk(sk); 540 int answ; 541 bool slow; 542 543 switch (cmd) { 544 case SIOCINQ: 545 if (sk->sk_state == TCP_LISTEN) 546 return -EINVAL; 547 548 slow = lock_sock_fast(sk); 549 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 550 answ = 0; 551 else if (sock_flag(sk, SOCK_URGINLINE) || 552 !tp->urg_data || 553 before(tp->urg_seq, tp->copied_seq) || 554 !before(tp->urg_seq, tp->rcv_nxt)) { 555 556 answ = tp->rcv_nxt - tp->copied_seq; 557 558 /* Subtract 1, if FIN was received */ 559 if (answ && sock_flag(sk, SOCK_DONE)) 560 answ--; 561 } else 562 answ = tp->urg_seq - tp->copied_seq; 563 unlock_sock_fast(sk, slow); 564 break; 565 case SIOCATMARK: 566 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 567 break; 568 case SIOCOUTQ: 569 if (sk->sk_state == TCP_LISTEN) 570 return -EINVAL; 571 572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 573 answ = 0; 574 else 575 answ = tp->write_seq - tp->snd_una; 576 break; 577 case SIOCOUTQNSD: 578 if (sk->sk_state == TCP_LISTEN) 579 return -EINVAL; 580 581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 582 answ = 0; 583 else 584 answ = tp->write_seq - tp->snd_nxt; 585 break; 586 default: 587 return -ENOIOCTLCMD; 588 } 589 590 return put_user(answ, (int __user *)arg); 591 } 592 EXPORT_SYMBOL(tcp_ioctl); 593 594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 595 { 596 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 597 tp->pushed_seq = tp->write_seq; 598 } 599 600 static inline bool forced_push(const struct tcp_sock *tp) 601 { 602 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 603 } 604 605 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 609 610 skb->csum = 0; 611 tcb->seq = tcb->end_seq = tp->write_seq; 612 tcb->tcp_flags = TCPHDR_ACK; 613 tcb->sacked = 0; 614 skb_header_release(skb); 615 tcp_add_write_queue_tail(sk, skb); 616 sk->sk_wmem_queued += skb->truesize; 617 sk_mem_charge(sk, skb->truesize); 618 if (tp->nonagle & TCP_NAGLE_PUSH) 619 tp->nonagle &= ~TCP_NAGLE_PUSH; 620 } 621 622 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 623 { 624 if (flags & MSG_OOB) 625 tp->snd_up = tp->write_seq; 626 } 627 628 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 629 int nonagle) 630 { 631 if (tcp_send_head(sk)) { 632 struct tcp_sock *tp = tcp_sk(sk); 633 634 if (!(flags & MSG_MORE) || forced_push(tp)) 635 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 636 637 tcp_mark_urg(tp, flags); 638 __tcp_push_pending_frames(sk, mss_now, 639 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 640 } 641 } 642 643 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 644 unsigned int offset, size_t len) 645 { 646 struct tcp_splice_state *tss = rd_desc->arg.data; 647 int ret; 648 649 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 650 tss->flags); 651 if (ret > 0) 652 rd_desc->count -= ret; 653 return ret; 654 } 655 656 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 657 { 658 /* Store TCP splice context information in read_descriptor_t. */ 659 read_descriptor_t rd_desc = { 660 .arg.data = tss, 661 .count = tss->len, 662 }; 663 664 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 665 } 666 667 /** 668 * tcp_splice_read - splice data from TCP socket to a pipe 669 * @sock: socket to splice from 670 * @ppos: position (not valid) 671 * @pipe: pipe to splice to 672 * @len: number of bytes to splice 673 * @flags: splice modifier flags 674 * 675 * Description: 676 * Will read pages from given socket and fill them into a pipe. 677 * 678 **/ 679 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 680 struct pipe_inode_info *pipe, size_t len, 681 unsigned int flags) 682 { 683 struct sock *sk = sock->sk; 684 struct tcp_splice_state tss = { 685 .pipe = pipe, 686 .len = len, 687 .flags = flags, 688 }; 689 long timeo; 690 ssize_t spliced; 691 int ret; 692 693 sock_rps_record_flow(sk); 694 /* 695 * We can't seek on a socket input 696 */ 697 if (unlikely(*ppos)) 698 return -ESPIPE; 699 700 ret = spliced = 0; 701 702 lock_sock(sk); 703 704 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 705 while (tss.len) { 706 ret = __tcp_splice_read(sk, &tss); 707 if (ret < 0) 708 break; 709 else if (!ret) { 710 if (spliced) 711 break; 712 if (sock_flag(sk, SOCK_DONE)) 713 break; 714 if (sk->sk_err) { 715 ret = sock_error(sk); 716 break; 717 } 718 if (sk->sk_shutdown & RCV_SHUTDOWN) 719 break; 720 if (sk->sk_state == TCP_CLOSE) { 721 /* 722 * This occurs when user tries to read 723 * from never connected socket. 724 */ 725 if (!sock_flag(sk, SOCK_DONE)) 726 ret = -ENOTCONN; 727 break; 728 } 729 if (!timeo) { 730 ret = -EAGAIN; 731 break; 732 } 733 sk_wait_data(sk, &timeo); 734 if (signal_pending(current)) { 735 ret = sock_intr_errno(timeo); 736 break; 737 } 738 continue; 739 } 740 tss.len -= ret; 741 spliced += ret; 742 743 if (!timeo) 744 break; 745 release_sock(sk); 746 lock_sock(sk); 747 748 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 749 (sk->sk_shutdown & RCV_SHUTDOWN) || 750 signal_pending(current)) 751 break; 752 } 753 754 release_sock(sk); 755 756 if (spliced) 757 return spliced; 758 759 return ret; 760 } 761 EXPORT_SYMBOL(tcp_splice_read); 762 763 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 764 { 765 struct sk_buff *skb; 766 767 /* The TCP header must be at least 32-bit aligned. */ 768 size = ALIGN(size, 4); 769 770 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 771 if (skb) { 772 if (sk_wmem_schedule(sk, skb->truesize)) { 773 skb_reserve(skb, sk->sk_prot->max_header); 774 /* 775 * Make sure that we have exactly size bytes 776 * available to the caller, no more, no less. 777 */ 778 skb->reserved_tailroom = skb->end - skb->tail - size; 779 return skb; 780 } 781 __kfree_skb(skb); 782 } else { 783 sk->sk_prot->enter_memory_pressure(sk); 784 sk_stream_moderate_sndbuf(sk); 785 } 786 return NULL; 787 } 788 789 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 790 int large_allowed) 791 { 792 struct tcp_sock *tp = tcp_sk(sk); 793 u32 xmit_size_goal, old_size_goal; 794 795 xmit_size_goal = mss_now; 796 797 if (large_allowed && sk_can_gso(sk)) { 798 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 799 inet_csk(sk)->icsk_af_ops->net_header_len - 800 inet_csk(sk)->icsk_ext_hdr_len - 801 tp->tcp_header_len); 802 803 /* TSQ : try to have two TSO segments in flight */ 804 xmit_size_goal = min_t(u32, xmit_size_goal, 805 sysctl_tcp_limit_output_bytes >> 1); 806 807 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 808 809 /* We try hard to avoid divides here */ 810 old_size_goal = tp->xmit_size_goal_segs * mss_now; 811 812 if (likely(old_size_goal <= xmit_size_goal && 813 old_size_goal + mss_now > xmit_size_goal)) { 814 xmit_size_goal = old_size_goal; 815 } else { 816 tp->xmit_size_goal_segs = 817 min_t(u16, xmit_size_goal / mss_now, 818 sk->sk_gso_max_segs); 819 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 820 } 821 } 822 823 return max(xmit_size_goal, mss_now); 824 } 825 826 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 827 { 828 int mss_now; 829 830 mss_now = tcp_current_mss(sk); 831 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 832 833 return mss_now; 834 } 835 836 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 837 size_t size, int flags) 838 { 839 struct tcp_sock *tp = tcp_sk(sk); 840 int mss_now, size_goal; 841 int err; 842 ssize_t copied; 843 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 844 845 /* Wait for a connection to finish. One exception is TCP Fast Open 846 * (passive side) where data is allowed to be sent before a connection 847 * is fully established. 848 */ 849 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 850 !tcp_passive_fastopen(sk)) { 851 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 852 goto out_err; 853 } 854 855 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 856 857 mss_now = tcp_send_mss(sk, &size_goal, flags); 858 copied = 0; 859 860 err = -EPIPE; 861 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 862 goto out_err; 863 864 while (size > 0) { 865 struct sk_buff *skb = tcp_write_queue_tail(sk); 866 int copy, i; 867 bool can_coalesce; 868 869 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 870 new_segment: 871 if (!sk_stream_memory_free(sk)) 872 goto wait_for_sndbuf; 873 874 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 875 if (!skb) 876 goto wait_for_memory; 877 878 skb_entail(sk, skb); 879 copy = size_goal; 880 } 881 882 if (copy > size) 883 copy = size; 884 885 i = skb_shinfo(skb)->nr_frags; 886 can_coalesce = skb_can_coalesce(skb, i, page, offset); 887 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 888 tcp_mark_push(tp, skb); 889 goto new_segment; 890 } 891 if (!sk_wmem_schedule(sk, copy)) 892 goto wait_for_memory; 893 894 if (can_coalesce) { 895 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 896 } else { 897 get_page(page); 898 skb_fill_page_desc(skb, i, page, offset, copy); 899 } 900 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 901 902 skb->len += copy; 903 skb->data_len += copy; 904 skb->truesize += copy; 905 sk->sk_wmem_queued += copy; 906 sk_mem_charge(sk, copy); 907 skb->ip_summed = CHECKSUM_PARTIAL; 908 tp->write_seq += copy; 909 TCP_SKB_CB(skb)->end_seq += copy; 910 skb_shinfo(skb)->gso_segs = 0; 911 912 if (!copied) 913 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 914 915 copied += copy; 916 offset += copy; 917 if (!(size -= copy)) 918 goto out; 919 920 if (skb->len < size_goal || (flags & MSG_OOB)) 921 continue; 922 923 if (forced_push(tp)) { 924 tcp_mark_push(tp, skb); 925 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 926 } else if (skb == tcp_send_head(sk)) 927 tcp_push_one(sk, mss_now); 928 continue; 929 930 wait_for_sndbuf: 931 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 932 wait_for_memory: 933 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 934 935 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 936 goto do_error; 937 938 mss_now = tcp_send_mss(sk, &size_goal, flags); 939 } 940 941 out: 942 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 943 tcp_push(sk, flags, mss_now, tp->nonagle); 944 return copied; 945 946 do_error: 947 if (copied) 948 goto out; 949 out_err: 950 return sk_stream_error(sk, flags, err); 951 } 952 953 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 954 size_t size, int flags) 955 { 956 ssize_t res; 957 958 if (!(sk->sk_route_caps & NETIF_F_SG) || 959 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 960 return sock_no_sendpage(sk->sk_socket, page, offset, size, 961 flags); 962 963 lock_sock(sk); 964 res = do_tcp_sendpages(sk, page, offset, size, flags); 965 release_sock(sk); 966 return res; 967 } 968 EXPORT_SYMBOL(tcp_sendpage); 969 970 static inline int select_size(const struct sock *sk, bool sg) 971 { 972 const struct tcp_sock *tp = tcp_sk(sk); 973 int tmp = tp->mss_cache; 974 975 if (sg) { 976 if (sk_can_gso(sk)) { 977 /* Small frames wont use a full page: 978 * Payload will immediately follow tcp header. 979 */ 980 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 981 } else { 982 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 983 984 if (tmp >= pgbreak && 985 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 986 tmp = pgbreak; 987 } 988 } 989 990 return tmp; 991 } 992 993 void tcp_free_fastopen_req(struct tcp_sock *tp) 994 { 995 if (tp->fastopen_req != NULL) { 996 kfree(tp->fastopen_req); 997 tp->fastopen_req = NULL; 998 } 999 } 1000 1001 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 int err, flags; 1005 1006 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1007 return -EOPNOTSUPP; 1008 if (tp->fastopen_req != NULL) 1009 return -EALREADY; /* Another Fast Open is in progress */ 1010 1011 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1012 sk->sk_allocation); 1013 if (unlikely(tp->fastopen_req == NULL)) 1014 return -ENOBUFS; 1015 tp->fastopen_req->data = msg; 1016 1017 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1018 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1019 msg->msg_namelen, flags); 1020 *size = tp->fastopen_req->copied; 1021 tcp_free_fastopen_req(tp); 1022 return err; 1023 } 1024 1025 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1026 size_t size) 1027 { 1028 struct iovec *iov; 1029 struct tcp_sock *tp = tcp_sk(sk); 1030 struct sk_buff *skb; 1031 int iovlen, flags, err, copied = 0; 1032 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1033 bool sg; 1034 long timeo; 1035 1036 lock_sock(sk); 1037 1038 flags = msg->msg_flags; 1039 if (flags & MSG_FASTOPEN) { 1040 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1041 if (err == -EINPROGRESS && copied_syn > 0) 1042 goto out; 1043 else if (err) 1044 goto out_err; 1045 offset = copied_syn; 1046 } 1047 1048 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1049 1050 /* Wait for a connection to finish. One exception is TCP Fast Open 1051 * (passive side) where data is allowed to be sent before a connection 1052 * is fully established. 1053 */ 1054 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1055 !tcp_passive_fastopen(sk)) { 1056 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1057 goto do_error; 1058 } 1059 1060 if (unlikely(tp->repair)) { 1061 if (tp->repair_queue == TCP_RECV_QUEUE) { 1062 copied = tcp_send_rcvq(sk, msg, size); 1063 goto out; 1064 } 1065 1066 err = -EINVAL; 1067 if (tp->repair_queue == TCP_NO_QUEUE) 1068 goto out_err; 1069 1070 /* 'common' sending to sendq */ 1071 } 1072 1073 /* This should be in poll */ 1074 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1075 1076 mss_now = tcp_send_mss(sk, &size_goal, flags); 1077 1078 /* Ok commence sending. */ 1079 iovlen = msg->msg_iovlen; 1080 iov = msg->msg_iov; 1081 copied = 0; 1082 1083 err = -EPIPE; 1084 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1085 goto out_err; 1086 1087 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1088 1089 while (--iovlen >= 0) { 1090 size_t seglen = iov->iov_len; 1091 unsigned char __user *from = iov->iov_base; 1092 1093 iov++; 1094 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1095 if (offset >= seglen) { 1096 offset -= seglen; 1097 continue; 1098 } 1099 seglen -= offset; 1100 from += offset; 1101 offset = 0; 1102 } 1103 1104 while (seglen > 0) { 1105 int copy = 0; 1106 int max = size_goal; 1107 1108 skb = tcp_write_queue_tail(sk); 1109 if (tcp_send_head(sk)) { 1110 if (skb->ip_summed == CHECKSUM_NONE) 1111 max = mss_now; 1112 copy = max - skb->len; 1113 } 1114 1115 if (copy <= 0) { 1116 new_segment: 1117 /* Allocate new segment. If the interface is SG, 1118 * allocate skb fitting to single page. 1119 */ 1120 if (!sk_stream_memory_free(sk)) 1121 goto wait_for_sndbuf; 1122 1123 skb = sk_stream_alloc_skb(sk, 1124 select_size(sk, sg), 1125 sk->sk_allocation); 1126 if (!skb) 1127 goto wait_for_memory; 1128 1129 /* 1130 * Check whether we can use HW checksum. 1131 */ 1132 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1133 skb->ip_summed = CHECKSUM_PARTIAL; 1134 1135 skb_entail(sk, skb); 1136 copy = size_goal; 1137 max = size_goal; 1138 } 1139 1140 /* Try to append data to the end of skb. */ 1141 if (copy > seglen) 1142 copy = seglen; 1143 1144 /* Where to copy to? */ 1145 if (skb_availroom(skb) > 0) { 1146 /* We have some space in skb head. Superb! */ 1147 copy = min_t(int, copy, skb_availroom(skb)); 1148 err = skb_add_data_nocache(sk, skb, from, copy); 1149 if (err) 1150 goto do_fault; 1151 } else { 1152 bool merge = true; 1153 int i = skb_shinfo(skb)->nr_frags; 1154 struct page_frag *pfrag = sk_page_frag(sk); 1155 1156 if (!sk_page_frag_refill(sk, pfrag)) 1157 goto wait_for_memory; 1158 1159 if (!skb_can_coalesce(skb, i, pfrag->page, 1160 pfrag->offset)) { 1161 if (i == MAX_SKB_FRAGS || !sg) { 1162 tcp_mark_push(tp, skb); 1163 goto new_segment; 1164 } 1165 merge = false; 1166 } 1167 1168 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1169 1170 if (!sk_wmem_schedule(sk, copy)) 1171 goto wait_for_memory; 1172 1173 err = skb_copy_to_page_nocache(sk, from, skb, 1174 pfrag->page, 1175 pfrag->offset, 1176 copy); 1177 if (err) 1178 goto do_error; 1179 1180 /* Update the skb. */ 1181 if (merge) { 1182 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1183 } else { 1184 skb_fill_page_desc(skb, i, pfrag->page, 1185 pfrag->offset, copy); 1186 get_page(pfrag->page); 1187 } 1188 pfrag->offset += copy; 1189 } 1190 1191 if (!copied) 1192 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1193 1194 tp->write_seq += copy; 1195 TCP_SKB_CB(skb)->end_seq += copy; 1196 skb_shinfo(skb)->gso_segs = 0; 1197 1198 from += copy; 1199 copied += copy; 1200 if ((seglen -= copy) == 0 && iovlen == 0) 1201 goto out; 1202 1203 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1204 continue; 1205 1206 if (forced_push(tp)) { 1207 tcp_mark_push(tp, skb); 1208 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1209 } else if (skb == tcp_send_head(sk)) 1210 tcp_push_one(sk, mss_now); 1211 continue; 1212 1213 wait_for_sndbuf: 1214 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1215 wait_for_memory: 1216 if (copied) 1217 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1218 1219 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1220 goto do_error; 1221 1222 mss_now = tcp_send_mss(sk, &size_goal, flags); 1223 } 1224 } 1225 1226 out: 1227 if (copied) 1228 tcp_push(sk, flags, mss_now, tp->nonagle); 1229 release_sock(sk); 1230 return copied + copied_syn; 1231 1232 do_fault: 1233 if (!skb->len) { 1234 tcp_unlink_write_queue(skb, sk); 1235 /* It is the one place in all of TCP, except connection 1236 * reset, where we can be unlinking the send_head. 1237 */ 1238 tcp_check_send_head(sk, skb); 1239 sk_wmem_free_skb(sk, skb); 1240 } 1241 1242 do_error: 1243 if (copied + copied_syn) 1244 goto out; 1245 out_err: 1246 err = sk_stream_error(sk, flags, err); 1247 release_sock(sk); 1248 return err; 1249 } 1250 EXPORT_SYMBOL(tcp_sendmsg); 1251 1252 /* 1253 * Handle reading urgent data. BSD has very simple semantics for 1254 * this, no blocking and very strange errors 8) 1255 */ 1256 1257 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1258 { 1259 struct tcp_sock *tp = tcp_sk(sk); 1260 1261 /* No URG data to read. */ 1262 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1263 tp->urg_data == TCP_URG_READ) 1264 return -EINVAL; /* Yes this is right ! */ 1265 1266 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1267 return -ENOTCONN; 1268 1269 if (tp->urg_data & TCP_URG_VALID) { 1270 int err = 0; 1271 char c = tp->urg_data; 1272 1273 if (!(flags & MSG_PEEK)) 1274 tp->urg_data = TCP_URG_READ; 1275 1276 /* Read urgent data. */ 1277 msg->msg_flags |= MSG_OOB; 1278 1279 if (len > 0) { 1280 if (!(flags & MSG_TRUNC)) 1281 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1282 len = 1; 1283 } else 1284 msg->msg_flags |= MSG_TRUNC; 1285 1286 return err ? -EFAULT : len; 1287 } 1288 1289 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1290 return 0; 1291 1292 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1293 * the available implementations agree in this case: 1294 * this call should never block, independent of the 1295 * blocking state of the socket. 1296 * Mike <pall@rz.uni-karlsruhe.de> 1297 */ 1298 return -EAGAIN; 1299 } 1300 1301 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1302 { 1303 struct sk_buff *skb; 1304 int copied = 0, err = 0; 1305 1306 /* XXX -- need to support SO_PEEK_OFF */ 1307 1308 skb_queue_walk(&sk->sk_write_queue, skb) { 1309 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1310 if (err) 1311 break; 1312 1313 copied += skb->len; 1314 } 1315 1316 return err ?: copied; 1317 } 1318 1319 /* Clean up the receive buffer for full frames taken by the user, 1320 * then send an ACK if necessary. COPIED is the number of bytes 1321 * tcp_recvmsg has given to the user so far, it speeds up the 1322 * calculation of whether or not we must ACK for the sake of 1323 * a window update. 1324 */ 1325 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1326 { 1327 struct tcp_sock *tp = tcp_sk(sk); 1328 bool time_to_ack = false; 1329 1330 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1331 1332 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1333 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1334 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1335 1336 if (inet_csk_ack_scheduled(sk)) { 1337 const struct inet_connection_sock *icsk = inet_csk(sk); 1338 /* Delayed ACKs frequently hit locked sockets during bulk 1339 * receive. */ 1340 if (icsk->icsk_ack.blocked || 1341 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1342 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1343 /* 1344 * If this read emptied read buffer, we send ACK, if 1345 * connection is not bidirectional, user drained 1346 * receive buffer and there was a small segment 1347 * in queue. 1348 */ 1349 (copied > 0 && 1350 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1351 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1352 !icsk->icsk_ack.pingpong)) && 1353 !atomic_read(&sk->sk_rmem_alloc))) 1354 time_to_ack = true; 1355 } 1356 1357 /* We send an ACK if we can now advertise a non-zero window 1358 * which has been raised "significantly". 1359 * 1360 * Even if window raised up to infinity, do not send window open ACK 1361 * in states, where we will not receive more. It is useless. 1362 */ 1363 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1364 __u32 rcv_window_now = tcp_receive_window(tp); 1365 1366 /* Optimize, __tcp_select_window() is not cheap. */ 1367 if (2*rcv_window_now <= tp->window_clamp) { 1368 __u32 new_window = __tcp_select_window(sk); 1369 1370 /* Send ACK now, if this read freed lots of space 1371 * in our buffer. Certainly, new_window is new window. 1372 * We can advertise it now, if it is not less than current one. 1373 * "Lots" means "at least twice" here. 1374 */ 1375 if (new_window && new_window >= 2 * rcv_window_now) 1376 time_to_ack = true; 1377 } 1378 } 1379 if (time_to_ack) 1380 tcp_send_ack(sk); 1381 } 1382 1383 static void tcp_prequeue_process(struct sock *sk) 1384 { 1385 struct sk_buff *skb; 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 1388 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1389 1390 /* RX process wants to run with disabled BHs, though it is not 1391 * necessary */ 1392 local_bh_disable(); 1393 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1394 sk_backlog_rcv(sk, skb); 1395 local_bh_enable(); 1396 1397 /* Clear memory counter. */ 1398 tp->ucopy.memory = 0; 1399 } 1400 1401 #ifdef CONFIG_NET_DMA 1402 static void tcp_service_net_dma(struct sock *sk, bool wait) 1403 { 1404 dma_cookie_t done, used; 1405 dma_cookie_t last_issued; 1406 struct tcp_sock *tp = tcp_sk(sk); 1407 1408 if (!tp->ucopy.dma_chan) 1409 return; 1410 1411 last_issued = tp->ucopy.dma_cookie; 1412 dma_async_issue_pending(tp->ucopy.dma_chan); 1413 1414 do { 1415 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1416 last_issued, &done, 1417 &used) == DMA_SUCCESS) { 1418 /* Safe to free early-copied skbs now */ 1419 __skb_queue_purge(&sk->sk_async_wait_queue); 1420 break; 1421 } else { 1422 struct sk_buff *skb; 1423 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1424 (dma_async_is_complete(skb->dma_cookie, done, 1425 used) == DMA_SUCCESS)) { 1426 __skb_dequeue(&sk->sk_async_wait_queue); 1427 kfree_skb(skb); 1428 } 1429 } 1430 } while (wait); 1431 } 1432 #endif 1433 1434 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1435 { 1436 struct sk_buff *skb; 1437 u32 offset; 1438 1439 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1440 offset = seq - TCP_SKB_CB(skb)->seq; 1441 if (tcp_hdr(skb)->syn) 1442 offset--; 1443 if (offset < skb->len || tcp_hdr(skb)->fin) { 1444 *off = offset; 1445 return skb; 1446 } 1447 /* This looks weird, but this can happen if TCP collapsing 1448 * splitted a fat GRO packet, while we released socket lock 1449 * in skb_splice_bits() 1450 */ 1451 sk_eat_skb(sk, skb, false); 1452 } 1453 return NULL; 1454 } 1455 1456 /* 1457 * This routine provides an alternative to tcp_recvmsg() for routines 1458 * that would like to handle copying from skbuffs directly in 'sendfile' 1459 * fashion. 1460 * Note: 1461 * - It is assumed that the socket was locked by the caller. 1462 * - The routine does not block. 1463 * - At present, there is no support for reading OOB data 1464 * or for 'peeking' the socket using this routine 1465 * (although both would be easy to implement). 1466 */ 1467 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1468 sk_read_actor_t recv_actor) 1469 { 1470 struct sk_buff *skb; 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 u32 seq = tp->copied_seq; 1473 u32 offset; 1474 int copied = 0; 1475 1476 if (sk->sk_state == TCP_LISTEN) 1477 return -ENOTCONN; 1478 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1479 if (offset < skb->len) { 1480 int used; 1481 size_t len; 1482 1483 len = skb->len - offset; 1484 /* Stop reading if we hit a patch of urgent data */ 1485 if (tp->urg_data) { 1486 u32 urg_offset = tp->urg_seq - seq; 1487 if (urg_offset < len) 1488 len = urg_offset; 1489 if (!len) 1490 break; 1491 } 1492 used = recv_actor(desc, skb, offset, len); 1493 if (used <= 0) { 1494 if (!copied) 1495 copied = used; 1496 break; 1497 } else if (used <= len) { 1498 seq += used; 1499 copied += used; 1500 offset += used; 1501 } 1502 /* If recv_actor drops the lock (e.g. TCP splice 1503 * receive) the skb pointer might be invalid when 1504 * getting here: tcp_collapse might have deleted it 1505 * while aggregating skbs from the socket queue. 1506 */ 1507 skb = tcp_recv_skb(sk, seq - 1, &offset); 1508 if (!skb) 1509 break; 1510 /* TCP coalescing might have appended data to the skb. 1511 * Try to splice more frags 1512 */ 1513 if (offset + 1 != skb->len) 1514 continue; 1515 } 1516 if (tcp_hdr(skb)->fin) { 1517 sk_eat_skb(sk, skb, false); 1518 ++seq; 1519 break; 1520 } 1521 sk_eat_skb(sk, skb, false); 1522 if (!desc->count) 1523 break; 1524 tp->copied_seq = seq; 1525 } 1526 tp->copied_seq = seq; 1527 1528 tcp_rcv_space_adjust(sk); 1529 1530 /* Clean up data we have read: This will do ACK frames. */ 1531 if (copied > 0) { 1532 tcp_recv_skb(sk, seq, &offset); 1533 tcp_cleanup_rbuf(sk, copied); 1534 } 1535 return copied; 1536 } 1537 EXPORT_SYMBOL(tcp_read_sock); 1538 1539 /* 1540 * This routine copies from a sock struct into the user buffer. 1541 * 1542 * Technical note: in 2.3 we work on _locked_ socket, so that 1543 * tricks with *seq access order and skb->users are not required. 1544 * Probably, code can be easily improved even more. 1545 */ 1546 1547 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1548 size_t len, int nonblock, int flags, int *addr_len) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 int copied = 0; 1552 u32 peek_seq; 1553 u32 *seq; 1554 unsigned long used; 1555 int err; 1556 int target; /* Read at least this many bytes */ 1557 long timeo; 1558 struct task_struct *user_recv = NULL; 1559 bool copied_early = false; 1560 struct sk_buff *skb; 1561 u32 urg_hole = 0; 1562 1563 lock_sock(sk); 1564 1565 err = -ENOTCONN; 1566 if (sk->sk_state == TCP_LISTEN) 1567 goto out; 1568 1569 timeo = sock_rcvtimeo(sk, nonblock); 1570 1571 /* Urgent data needs to be handled specially. */ 1572 if (flags & MSG_OOB) 1573 goto recv_urg; 1574 1575 if (unlikely(tp->repair)) { 1576 err = -EPERM; 1577 if (!(flags & MSG_PEEK)) 1578 goto out; 1579 1580 if (tp->repair_queue == TCP_SEND_QUEUE) 1581 goto recv_sndq; 1582 1583 err = -EINVAL; 1584 if (tp->repair_queue == TCP_NO_QUEUE) 1585 goto out; 1586 1587 /* 'common' recv queue MSG_PEEK-ing */ 1588 } 1589 1590 seq = &tp->copied_seq; 1591 if (flags & MSG_PEEK) { 1592 peek_seq = tp->copied_seq; 1593 seq = &peek_seq; 1594 } 1595 1596 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1597 1598 #ifdef CONFIG_NET_DMA 1599 tp->ucopy.dma_chan = NULL; 1600 preempt_disable(); 1601 skb = skb_peek_tail(&sk->sk_receive_queue); 1602 { 1603 int available = 0; 1604 1605 if (skb) 1606 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1607 if ((available < target) && 1608 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1609 !sysctl_tcp_low_latency && 1610 net_dma_find_channel()) { 1611 preempt_enable_no_resched(); 1612 tp->ucopy.pinned_list = 1613 dma_pin_iovec_pages(msg->msg_iov, len); 1614 } else { 1615 preempt_enable_no_resched(); 1616 } 1617 } 1618 #endif 1619 1620 do { 1621 u32 offset; 1622 1623 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1624 if (tp->urg_data && tp->urg_seq == *seq) { 1625 if (copied) 1626 break; 1627 if (signal_pending(current)) { 1628 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1629 break; 1630 } 1631 } 1632 1633 /* Next get a buffer. */ 1634 1635 skb_queue_walk(&sk->sk_receive_queue, skb) { 1636 /* Now that we have two receive queues this 1637 * shouldn't happen. 1638 */ 1639 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1640 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1641 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1642 flags)) 1643 break; 1644 1645 offset = *seq - TCP_SKB_CB(skb)->seq; 1646 if (tcp_hdr(skb)->syn) 1647 offset--; 1648 if (offset < skb->len) 1649 goto found_ok_skb; 1650 if (tcp_hdr(skb)->fin) 1651 goto found_fin_ok; 1652 WARN(!(flags & MSG_PEEK), 1653 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1654 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1655 } 1656 1657 /* Well, if we have backlog, try to process it now yet. */ 1658 1659 if (copied >= target && !sk->sk_backlog.tail) 1660 break; 1661 1662 if (copied) { 1663 if (sk->sk_err || 1664 sk->sk_state == TCP_CLOSE || 1665 (sk->sk_shutdown & RCV_SHUTDOWN) || 1666 !timeo || 1667 signal_pending(current)) 1668 break; 1669 } else { 1670 if (sock_flag(sk, SOCK_DONE)) 1671 break; 1672 1673 if (sk->sk_err) { 1674 copied = sock_error(sk); 1675 break; 1676 } 1677 1678 if (sk->sk_shutdown & RCV_SHUTDOWN) 1679 break; 1680 1681 if (sk->sk_state == TCP_CLOSE) { 1682 if (!sock_flag(sk, SOCK_DONE)) { 1683 /* This occurs when user tries to read 1684 * from never connected socket. 1685 */ 1686 copied = -ENOTCONN; 1687 break; 1688 } 1689 break; 1690 } 1691 1692 if (!timeo) { 1693 copied = -EAGAIN; 1694 break; 1695 } 1696 1697 if (signal_pending(current)) { 1698 copied = sock_intr_errno(timeo); 1699 break; 1700 } 1701 } 1702 1703 tcp_cleanup_rbuf(sk, copied); 1704 1705 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1706 /* Install new reader */ 1707 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1708 user_recv = current; 1709 tp->ucopy.task = user_recv; 1710 tp->ucopy.iov = msg->msg_iov; 1711 } 1712 1713 tp->ucopy.len = len; 1714 1715 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1716 !(flags & (MSG_PEEK | MSG_TRUNC))); 1717 1718 /* Ugly... If prequeue is not empty, we have to 1719 * process it before releasing socket, otherwise 1720 * order will be broken at second iteration. 1721 * More elegant solution is required!!! 1722 * 1723 * Look: we have the following (pseudo)queues: 1724 * 1725 * 1. packets in flight 1726 * 2. backlog 1727 * 3. prequeue 1728 * 4. receive_queue 1729 * 1730 * Each queue can be processed only if the next ones 1731 * are empty. At this point we have empty receive_queue. 1732 * But prequeue _can_ be not empty after 2nd iteration, 1733 * when we jumped to start of loop because backlog 1734 * processing added something to receive_queue. 1735 * We cannot release_sock(), because backlog contains 1736 * packets arrived _after_ prequeued ones. 1737 * 1738 * Shortly, algorithm is clear --- to process all 1739 * the queues in order. We could make it more directly, 1740 * requeueing packets from backlog to prequeue, if 1741 * is not empty. It is more elegant, but eats cycles, 1742 * unfortunately. 1743 */ 1744 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1745 goto do_prequeue; 1746 1747 /* __ Set realtime policy in scheduler __ */ 1748 } 1749 1750 #ifdef CONFIG_NET_DMA 1751 if (tp->ucopy.dma_chan) { 1752 if (tp->rcv_wnd == 0 && 1753 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1754 tcp_service_net_dma(sk, true); 1755 tcp_cleanup_rbuf(sk, copied); 1756 } else 1757 dma_async_issue_pending(tp->ucopy.dma_chan); 1758 } 1759 #endif 1760 if (copied >= target) { 1761 /* Do not sleep, just process backlog. */ 1762 release_sock(sk); 1763 lock_sock(sk); 1764 } else 1765 sk_wait_data(sk, &timeo); 1766 1767 #ifdef CONFIG_NET_DMA 1768 tcp_service_net_dma(sk, false); /* Don't block */ 1769 tp->ucopy.wakeup = 0; 1770 #endif 1771 1772 if (user_recv) { 1773 int chunk; 1774 1775 /* __ Restore normal policy in scheduler __ */ 1776 1777 if ((chunk = len - tp->ucopy.len) != 0) { 1778 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1779 len -= chunk; 1780 copied += chunk; 1781 } 1782 1783 if (tp->rcv_nxt == tp->copied_seq && 1784 !skb_queue_empty(&tp->ucopy.prequeue)) { 1785 do_prequeue: 1786 tcp_prequeue_process(sk); 1787 1788 if ((chunk = len - tp->ucopy.len) != 0) { 1789 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1790 len -= chunk; 1791 copied += chunk; 1792 } 1793 } 1794 } 1795 if ((flags & MSG_PEEK) && 1796 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1797 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1798 current->comm, 1799 task_pid_nr(current)); 1800 peek_seq = tp->copied_seq; 1801 } 1802 continue; 1803 1804 found_ok_skb: 1805 /* Ok so how much can we use? */ 1806 used = skb->len - offset; 1807 if (len < used) 1808 used = len; 1809 1810 /* Do we have urgent data here? */ 1811 if (tp->urg_data) { 1812 u32 urg_offset = tp->urg_seq - *seq; 1813 if (urg_offset < used) { 1814 if (!urg_offset) { 1815 if (!sock_flag(sk, SOCK_URGINLINE)) { 1816 ++*seq; 1817 urg_hole++; 1818 offset++; 1819 used--; 1820 if (!used) 1821 goto skip_copy; 1822 } 1823 } else 1824 used = urg_offset; 1825 } 1826 } 1827 1828 if (!(flags & MSG_TRUNC)) { 1829 #ifdef CONFIG_NET_DMA 1830 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1831 tp->ucopy.dma_chan = net_dma_find_channel(); 1832 1833 if (tp->ucopy.dma_chan) { 1834 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1835 tp->ucopy.dma_chan, skb, offset, 1836 msg->msg_iov, used, 1837 tp->ucopy.pinned_list); 1838 1839 if (tp->ucopy.dma_cookie < 0) { 1840 1841 pr_alert("%s: dma_cookie < 0\n", 1842 __func__); 1843 1844 /* Exception. Bailout! */ 1845 if (!copied) 1846 copied = -EFAULT; 1847 break; 1848 } 1849 1850 dma_async_issue_pending(tp->ucopy.dma_chan); 1851 1852 if ((offset + used) == skb->len) 1853 copied_early = true; 1854 1855 } else 1856 #endif 1857 { 1858 err = skb_copy_datagram_iovec(skb, offset, 1859 msg->msg_iov, used); 1860 if (err) { 1861 /* Exception. Bailout! */ 1862 if (!copied) 1863 copied = -EFAULT; 1864 break; 1865 } 1866 } 1867 } 1868 1869 *seq += used; 1870 copied += used; 1871 len -= used; 1872 1873 tcp_rcv_space_adjust(sk); 1874 1875 skip_copy: 1876 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1877 tp->urg_data = 0; 1878 tcp_fast_path_check(sk); 1879 } 1880 if (used + offset < skb->len) 1881 continue; 1882 1883 if (tcp_hdr(skb)->fin) 1884 goto found_fin_ok; 1885 if (!(flags & MSG_PEEK)) { 1886 sk_eat_skb(sk, skb, copied_early); 1887 copied_early = false; 1888 } 1889 continue; 1890 1891 found_fin_ok: 1892 /* Process the FIN. */ 1893 ++*seq; 1894 if (!(flags & MSG_PEEK)) { 1895 sk_eat_skb(sk, skb, copied_early); 1896 copied_early = false; 1897 } 1898 break; 1899 } while (len > 0); 1900 1901 if (user_recv) { 1902 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1903 int chunk; 1904 1905 tp->ucopy.len = copied > 0 ? len : 0; 1906 1907 tcp_prequeue_process(sk); 1908 1909 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1910 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1911 len -= chunk; 1912 copied += chunk; 1913 } 1914 } 1915 1916 tp->ucopy.task = NULL; 1917 tp->ucopy.len = 0; 1918 } 1919 1920 #ifdef CONFIG_NET_DMA 1921 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1922 tp->ucopy.dma_chan = NULL; 1923 1924 if (tp->ucopy.pinned_list) { 1925 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1926 tp->ucopy.pinned_list = NULL; 1927 } 1928 #endif 1929 1930 /* According to UNIX98, msg_name/msg_namelen are ignored 1931 * on connected socket. I was just happy when found this 8) --ANK 1932 */ 1933 1934 /* Clean up data we have read: This will do ACK frames. */ 1935 tcp_cleanup_rbuf(sk, copied); 1936 1937 release_sock(sk); 1938 return copied; 1939 1940 out: 1941 release_sock(sk); 1942 return err; 1943 1944 recv_urg: 1945 err = tcp_recv_urg(sk, msg, len, flags); 1946 goto out; 1947 1948 recv_sndq: 1949 err = tcp_peek_sndq(sk, msg, len); 1950 goto out; 1951 } 1952 EXPORT_SYMBOL(tcp_recvmsg); 1953 1954 void tcp_set_state(struct sock *sk, int state) 1955 { 1956 int oldstate = sk->sk_state; 1957 1958 switch (state) { 1959 case TCP_ESTABLISHED: 1960 if (oldstate != TCP_ESTABLISHED) 1961 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1962 break; 1963 1964 case TCP_CLOSE: 1965 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1966 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1967 1968 sk->sk_prot->unhash(sk); 1969 if (inet_csk(sk)->icsk_bind_hash && 1970 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1971 inet_put_port(sk); 1972 /* fall through */ 1973 default: 1974 if (oldstate == TCP_ESTABLISHED) 1975 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1976 } 1977 1978 /* Change state AFTER socket is unhashed to avoid closed 1979 * socket sitting in hash tables. 1980 */ 1981 sk->sk_state = state; 1982 1983 #ifdef STATE_TRACE 1984 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1985 #endif 1986 } 1987 EXPORT_SYMBOL_GPL(tcp_set_state); 1988 1989 /* 1990 * State processing on a close. This implements the state shift for 1991 * sending our FIN frame. Note that we only send a FIN for some 1992 * states. A shutdown() may have already sent the FIN, or we may be 1993 * closed. 1994 */ 1995 1996 static const unsigned char new_state[16] = { 1997 /* current state: new state: action: */ 1998 /* (Invalid) */ TCP_CLOSE, 1999 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2000 /* TCP_SYN_SENT */ TCP_CLOSE, 2001 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2002 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2003 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2004 /* TCP_TIME_WAIT */ TCP_CLOSE, 2005 /* TCP_CLOSE */ TCP_CLOSE, 2006 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2007 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2008 /* TCP_LISTEN */ TCP_CLOSE, 2009 /* TCP_CLOSING */ TCP_CLOSING, 2010 }; 2011 2012 static int tcp_close_state(struct sock *sk) 2013 { 2014 int next = (int)new_state[sk->sk_state]; 2015 int ns = next & TCP_STATE_MASK; 2016 2017 tcp_set_state(sk, ns); 2018 2019 return next & TCP_ACTION_FIN; 2020 } 2021 2022 /* 2023 * Shutdown the sending side of a connection. Much like close except 2024 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2025 */ 2026 2027 void tcp_shutdown(struct sock *sk, int how) 2028 { 2029 /* We need to grab some memory, and put together a FIN, 2030 * and then put it into the queue to be sent. 2031 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2032 */ 2033 if (!(how & SEND_SHUTDOWN)) 2034 return; 2035 2036 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2037 if ((1 << sk->sk_state) & 2038 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2039 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2040 /* Clear out any half completed packets. FIN if needed. */ 2041 if (tcp_close_state(sk)) 2042 tcp_send_fin(sk); 2043 } 2044 } 2045 EXPORT_SYMBOL(tcp_shutdown); 2046 2047 bool tcp_check_oom(struct sock *sk, int shift) 2048 { 2049 bool too_many_orphans, out_of_socket_memory; 2050 2051 too_many_orphans = tcp_too_many_orphans(sk, shift); 2052 out_of_socket_memory = tcp_out_of_memory(sk); 2053 2054 if (too_many_orphans) 2055 net_info_ratelimited("too many orphaned sockets\n"); 2056 if (out_of_socket_memory) 2057 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2058 return too_many_orphans || out_of_socket_memory; 2059 } 2060 2061 void tcp_close(struct sock *sk, long timeout) 2062 { 2063 struct sk_buff *skb; 2064 int data_was_unread = 0; 2065 int state; 2066 2067 lock_sock(sk); 2068 sk->sk_shutdown = SHUTDOWN_MASK; 2069 2070 if (sk->sk_state == TCP_LISTEN) { 2071 tcp_set_state(sk, TCP_CLOSE); 2072 2073 /* Special case. */ 2074 inet_csk_listen_stop(sk); 2075 2076 goto adjudge_to_death; 2077 } 2078 2079 /* We need to flush the recv. buffs. We do this only on the 2080 * descriptor close, not protocol-sourced closes, because the 2081 * reader process may not have drained the data yet! 2082 */ 2083 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2084 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2085 tcp_hdr(skb)->fin; 2086 data_was_unread += len; 2087 __kfree_skb(skb); 2088 } 2089 2090 sk_mem_reclaim(sk); 2091 2092 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2093 if (sk->sk_state == TCP_CLOSE) 2094 goto adjudge_to_death; 2095 2096 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2097 * data was lost. To witness the awful effects of the old behavior of 2098 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2099 * GET in an FTP client, suspend the process, wait for the client to 2100 * advertise a zero window, then kill -9 the FTP client, wheee... 2101 * Note: timeout is always zero in such a case. 2102 */ 2103 if (unlikely(tcp_sk(sk)->repair)) { 2104 sk->sk_prot->disconnect(sk, 0); 2105 } else if (data_was_unread) { 2106 /* Unread data was tossed, zap the connection. */ 2107 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2108 tcp_set_state(sk, TCP_CLOSE); 2109 tcp_send_active_reset(sk, sk->sk_allocation); 2110 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2111 /* Check zero linger _after_ checking for unread data. */ 2112 sk->sk_prot->disconnect(sk, 0); 2113 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2114 } else if (tcp_close_state(sk)) { 2115 /* We FIN if the application ate all the data before 2116 * zapping the connection. 2117 */ 2118 2119 /* RED-PEN. Formally speaking, we have broken TCP state 2120 * machine. State transitions: 2121 * 2122 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2123 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2124 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2125 * 2126 * are legal only when FIN has been sent (i.e. in window), 2127 * rather than queued out of window. Purists blame. 2128 * 2129 * F.e. "RFC state" is ESTABLISHED, 2130 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2131 * 2132 * The visible declinations are that sometimes 2133 * we enter time-wait state, when it is not required really 2134 * (harmless), do not send active resets, when they are 2135 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2136 * they look as CLOSING or LAST_ACK for Linux) 2137 * Probably, I missed some more holelets. 2138 * --ANK 2139 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2140 * in a single packet! (May consider it later but will 2141 * probably need API support or TCP_CORK SYN-ACK until 2142 * data is written and socket is closed.) 2143 */ 2144 tcp_send_fin(sk); 2145 } 2146 2147 sk_stream_wait_close(sk, timeout); 2148 2149 adjudge_to_death: 2150 state = sk->sk_state; 2151 sock_hold(sk); 2152 sock_orphan(sk); 2153 2154 /* It is the last release_sock in its life. It will remove backlog. */ 2155 release_sock(sk); 2156 2157 2158 /* Now socket is owned by kernel and we acquire BH lock 2159 to finish close. No need to check for user refs. 2160 */ 2161 local_bh_disable(); 2162 bh_lock_sock(sk); 2163 WARN_ON(sock_owned_by_user(sk)); 2164 2165 percpu_counter_inc(sk->sk_prot->orphan_count); 2166 2167 /* Have we already been destroyed by a softirq or backlog? */ 2168 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2169 goto out; 2170 2171 /* This is a (useful) BSD violating of the RFC. There is a 2172 * problem with TCP as specified in that the other end could 2173 * keep a socket open forever with no application left this end. 2174 * We use a 3 minute timeout (about the same as BSD) then kill 2175 * our end. If they send after that then tough - BUT: long enough 2176 * that we won't make the old 4*rto = almost no time - whoops 2177 * reset mistake. 2178 * 2179 * Nope, it was not mistake. It is really desired behaviour 2180 * f.e. on http servers, when such sockets are useless, but 2181 * consume significant resources. Let's do it with special 2182 * linger2 option. --ANK 2183 */ 2184 2185 if (sk->sk_state == TCP_FIN_WAIT2) { 2186 struct tcp_sock *tp = tcp_sk(sk); 2187 if (tp->linger2 < 0) { 2188 tcp_set_state(sk, TCP_CLOSE); 2189 tcp_send_active_reset(sk, GFP_ATOMIC); 2190 NET_INC_STATS_BH(sock_net(sk), 2191 LINUX_MIB_TCPABORTONLINGER); 2192 } else { 2193 const int tmo = tcp_fin_time(sk); 2194 2195 if (tmo > TCP_TIMEWAIT_LEN) { 2196 inet_csk_reset_keepalive_timer(sk, 2197 tmo - TCP_TIMEWAIT_LEN); 2198 } else { 2199 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2200 goto out; 2201 } 2202 } 2203 } 2204 if (sk->sk_state != TCP_CLOSE) { 2205 sk_mem_reclaim(sk); 2206 if (tcp_check_oom(sk, 0)) { 2207 tcp_set_state(sk, TCP_CLOSE); 2208 tcp_send_active_reset(sk, GFP_ATOMIC); 2209 NET_INC_STATS_BH(sock_net(sk), 2210 LINUX_MIB_TCPABORTONMEMORY); 2211 } 2212 } 2213 2214 if (sk->sk_state == TCP_CLOSE) { 2215 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2216 /* We could get here with a non-NULL req if the socket is 2217 * aborted (e.g., closed with unread data) before 3WHS 2218 * finishes. 2219 */ 2220 if (req != NULL) 2221 reqsk_fastopen_remove(sk, req, false); 2222 inet_csk_destroy_sock(sk); 2223 } 2224 /* Otherwise, socket is reprieved until protocol close. */ 2225 2226 out: 2227 bh_unlock_sock(sk); 2228 local_bh_enable(); 2229 sock_put(sk); 2230 } 2231 EXPORT_SYMBOL(tcp_close); 2232 2233 /* These states need RST on ABORT according to RFC793 */ 2234 2235 static inline bool tcp_need_reset(int state) 2236 { 2237 return (1 << state) & 2238 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2239 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2240 } 2241 2242 int tcp_disconnect(struct sock *sk, int flags) 2243 { 2244 struct inet_sock *inet = inet_sk(sk); 2245 struct inet_connection_sock *icsk = inet_csk(sk); 2246 struct tcp_sock *tp = tcp_sk(sk); 2247 int err = 0; 2248 int old_state = sk->sk_state; 2249 2250 if (old_state != TCP_CLOSE) 2251 tcp_set_state(sk, TCP_CLOSE); 2252 2253 /* ABORT function of RFC793 */ 2254 if (old_state == TCP_LISTEN) { 2255 inet_csk_listen_stop(sk); 2256 } else if (unlikely(tp->repair)) { 2257 sk->sk_err = ECONNABORTED; 2258 } else if (tcp_need_reset(old_state) || 2259 (tp->snd_nxt != tp->write_seq && 2260 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2261 /* The last check adjusts for discrepancy of Linux wrt. RFC 2262 * states 2263 */ 2264 tcp_send_active_reset(sk, gfp_any()); 2265 sk->sk_err = ECONNRESET; 2266 } else if (old_state == TCP_SYN_SENT) 2267 sk->sk_err = ECONNRESET; 2268 2269 tcp_clear_xmit_timers(sk); 2270 __skb_queue_purge(&sk->sk_receive_queue); 2271 tcp_write_queue_purge(sk); 2272 __skb_queue_purge(&tp->out_of_order_queue); 2273 #ifdef CONFIG_NET_DMA 2274 __skb_queue_purge(&sk->sk_async_wait_queue); 2275 #endif 2276 2277 inet->inet_dport = 0; 2278 2279 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2280 inet_reset_saddr(sk); 2281 2282 sk->sk_shutdown = 0; 2283 sock_reset_flag(sk, SOCK_DONE); 2284 tp->srtt = 0; 2285 if ((tp->write_seq += tp->max_window + 2) == 0) 2286 tp->write_seq = 1; 2287 icsk->icsk_backoff = 0; 2288 tp->snd_cwnd = 2; 2289 icsk->icsk_probes_out = 0; 2290 tp->packets_out = 0; 2291 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2292 tp->snd_cwnd_cnt = 0; 2293 tp->window_clamp = 0; 2294 tcp_set_ca_state(sk, TCP_CA_Open); 2295 tcp_clear_retrans(tp); 2296 inet_csk_delack_init(sk); 2297 tcp_init_send_head(sk); 2298 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2299 __sk_dst_reset(sk); 2300 2301 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2302 2303 sk->sk_error_report(sk); 2304 return err; 2305 } 2306 EXPORT_SYMBOL(tcp_disconnect); 2307 2308 void tcp_sock_destruct(struct sock *sk) 2309 { 2310 inet_sock_destruct(sk); 2311 2312 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2313 } 2314 2315 static inline bool tcp_can_repair_sock(const struct sock *sk) 2316 { 2317 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2318 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2319 } 2320 2321 static int tcp_repair_options_est(struct tcp_sock *tp, 2322 struct tcp_repair_opt __user *optbuf, unsigned int len) 2323 { 2324 struct tcp_repair_opt opt; 2325 2326 while (len >= sizeof(opt)) { 2327 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2328 return -EFAULT; 2329 2330 optbuf++; 2331 len -= sizeof(opt); 2332 2333 switch (opt.opt_code) { 2334 case TCPOPT_MSS: 2335 tp->rx_opt.mss_clamp = opt.opt_val; 2336 break; 2337 case TCPOPT_WINDOW: 2338 { 2339 u16 snd_wscale = opt.opt_val & 0xFFFF; 2340 u16 rcv_wscale = opt.opt_val >> 16; 2341 2342 if (snd_wscale > 14 || rcv_wscale > 14) 2343 return -EFBIG; 2344 2345 tp->rx_opt.snd_wscale = snd_wscale; 2346 tp->rx_opt.rcv_wscale = rcv_wscale; 2347 tp->rx_opt.wscale_ok = 1; 2348 } 2349 break; 2350 case TCPOPT_SACK_PERM: 2351 if (opt.opt_val != 0) 2352 return -EINVAL; 2353 2354 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2355 if (sysctl_tcp_fack) 2356 tcp_enable_fack(tp); 2357 break; 2358 case TCPOPT_TIMESTAMP: 2359 if (opt.opt_val != 0) 2360 return -EINVAL; 2361 2362 tp->rx_opt.tstamp_ok = 1; 2363 break; 2364 } 2365 } 2366 2367 return 0; 2368 } 2369 2370 /* 2371 * Socket option code for TCP. 2372 */ 2373 static int do_tcp_setsockopt(struct sock *sk, int level, 2374 int optname, char __user *optval, unsigned int optlen) 2375 { 2376 struct tcp_sock *tp = tcp_sk(sk); 2377 struct inet_connection_sock *icsk = inet_csk(sk); 2378 int val; 2379 int err = 0; 2380 2381 /* These are data/string values, all the others are ints */ 2382 switch (optname) { 2383 case TCP_CONGESTION: { 2384 char name[TCP_CA_NAME_MAX]; 2385 2386 if (optlen < 1) 2387 return -EINVAL; 2388 2389 val = strncpy_from_user(name, optval, 2390 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2391 if (val < 0) 2392 return -EFAULT; 2393 name[val] = 0; 2394 2395 lock_sock(sk); 2396 err = tcp_set_congestion_control(sk, name); 2397 release_sock(sk); 2398 return err; 2399 } 2400 case TCP_COOKIE_TRANSACTIONS: { 2401 struct tcp_cookie_transactions ctd; 2402 struct tcp_cookie_values *cvp = NULL; 2403 2404 if (sizeof(ctd) > optlen) 2405 return -EINVAL; 2406 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2407 return -EFAULT; 2408 2409 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2410 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2411 return -EINVAL; 2412 2413 if (ctd.tcpct_cookie_desired == 0) { 2414 /* default to global value */ 2415 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2416 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2417 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2418 return -EINVAL; 2419 } 2420 2421 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2422 /* Supercedes all other values */ 2423 lock_sock(sk); 2424 if (tp->cookie_values != NULL) { 2425 kref_put(&tp->cookie_values->kref, 2426 tcp_cookie_values_release); 2427 tp->cookie_values = NULL; 2428 } 2429 tp->rx_opt.cookie_in_always = 0; /* false */ 2430 tp->rx_opt.cookie_out_never = 1; /* true */ 2431 release_sock(sk); 2432 return err; 2433 } 2434 2435 /* Allocate ancillary memory before locking. 2436 */ 2437 if (ctd.tcpct_used > 0 || 2438 (tp->cookie_values == NULL && 2439 (sysctl_tcp_cookie_size > 0 || 2440 ctd.tcpct_cookie_desired > 0 || 2441 ctd.tcpct_s_data_desired > 0))) { 2442 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2443 GFP_KERNEL); 2444 if (cvp == NULL) 2445 return -ENOMEM; 2446 2447 kref_init(&cvp->kref); 2448 } 2449 lock_sock(sk); 2450 tp->rx_opt.cookie_in_always = 2451 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2452 tp->rx_opt.cookie_out_never = 0; /* false */ 2453 2454 if (tp->cookie_values != NULL) { 2455 if (cvp != NULL) { 2456 /* Changed values are recorded by a changed 2457 * pointer, ensuring the cookie will differ, 2458 * without separately hashing each value later. 2459 */ 2460 kref_put(&tp->cookie_values->kref, 2461 tcp_cookie_values_release); 2462 } else { 2463 cvp = tp->cookie_values; 2464 } 2465 } 2466 2467 if (cvp != NULL) { 2468 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2469 2470 if (ctd.tcpct_used > 0) { 2471 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2472 ctd.tcpct_used); 2473 cvp->s_data_desired = ctd.tcpct_used; 2474 cvp->s_data_constant = 1; /* true */ 2475 } else { 2476 /* No constant payload data. */ 2477 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2478 cvp->s_data_constant = 0; /* false */ 2479 } 2480 2481 tp->cookie_values = cvp; 2482 } 2483 release_sock(sk); 2484 return err; 2485 } 2486 default: 2487 /* fallthru */ 2488 break; 2489 } 2490 2491 if (optlen < sizeof(int)) 2492 return -EINVAL; 2493 2494 if (get_user(val, (int __user *)optval)) 2495 return -EFAULT; 2496 2497 lock_sock(sk); 2498 2499 switch (optname) { 2500 case TCP_MAXSEG: 2501 /* Values greater than interface MTU won't take effect. However 2502 * at the point when this call is done we typically don't yet 2503 * know which interface is going to be used */ 2504 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2505 err = -EINVAL; 2506 break; 2507 } 2508 tp->rx_opt.user_mss = val; 2509 break; 2510 2511 case TCP_NODELAY: 2512 if (val) { 2513 /* TCP_NODELAY is weaker than TCP_CORK, so that 2514 * this option on corked socket is remembered, but 2515 * it is not activated until cork is cleared. 2516 * 2517 * However, when TCP_NODELAY is set we make 2518 * an explicit push, which overrides even TCP_CORK 2519 * for currently queued segments. 2520 */ 2521 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2522 tcp_push_pending_frames(sk); 2523 } else { 2524 tp->nonagle &= ~TCP_NAGLE_OFF; 2525 } 2526 break; 2527 2528 case TCP_THIN_LINEAR_TIMEOUTS: 2529 if (val < 0 || val > 1) 2530 err = -EINVAL; 2531 else 2532 tp->thin_lto = val; 2533 break; 2534 2535 case TCP_THIN_DUPACK: 2536 if (val < 0 || val > 1) 2537 err = -EINVAL; 2538 else 2539 tp->thin_dupack = val; 2540 if (tp->thin_dupack) 2541 tcp_disable_early_retrans(tp); 2542 break; 2543 2544 case TCP_REPAIR: 2545 if (!tcp_can_repair_sock(sk)) 2546 err = -EPERM; 2547 else if (val == 1) { 2548 tp->repair = 1; 2549 sk->sk_reuse = SK_FORCE_REUSE; 2550 tp->repair_queue = TCP_NO_QUEUE; 2551 } else if (val == 0) { 2552 tp->repair = 0; 2553 sk->sk_reuse = SK_NO_REUSE; 2554 tcp_send_window_probe(sk); 2555 } else 2556 err = -EINVAL; 2557 2558 break; 2559 2560 case TCP_REPAIR_QUEUE: 2561 if (!tp->repair) 2562 err = -EPERM; 2563 else if (val < TCP_QUEUES_NR) 2564 tp->repair_queue = val; 2565 else 2566 err = -EINVAL; 2567 break; 2568 2569 case TCP_QUEUE_SEQ: 2570 if (sk->sk_state != TCP_CLOSE) 2571 err = -EPERM; 2572 else if (tp->repair_queue == TCP_SEND_QUEUE) 2573 tp->write_seq = val; 2574 else if (tp->repair_queue == TCP_RECV_QUEUE) 2575 tp->rcv_nxt = val; 2576 else 2577 err = -EINVAL; 2578 break; 2579 2580 case TCP_REPAIR_OPTIONS: 2581 if (!tp->repair) 2582 err = -EINVAL; 2583 else if (sk->sk_state == TCP_ESTABLISHED) 2584 err = tcp_repair_options_est(tp, 2585 (struct tcp_repair_opt __user *)optval, 2586 optlen); 2587 else 2588 err = -EPERM; 2589 break; 2590 2591 case TCP_CORK: 2592 /* When set indicates to always queue non-full frames. 2593 * Later the user clears this option and we transmit 2594 * any pending partial frames in the queue. This is 2595 * meant to be used alongside sendfile() to get properly 2596 * filled frames when the user (for example) must write 2597 * out headers with a write() call first and then use 2598 * sendfile to send out the data parts. 2599 * 2600 * TCP_CORK can be set together with TCP_NODELAY and it is 2601 * stronger than TCP_NODELAY. 2602 */ 2603 if (val) { 2604 tp->nonagle |= TCP_NAGLE_CORK; 2605 } else { 2606 tp->nonagle &= ~TCP_NAGLE_CORK; 2607 if (tp->nonagle&TCP_NAGLE_OFF) 2608 tp->nonagle |= TCP_NAGLE_PUSH; 2609 tcp_push_pending_frames(sk); 2610 } 2611 break; 2612 2613 case TCP_KEEPIDLE: 2614 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2615 err = -EINVAL; 2616 else { 2617 tp->keepalive_time = val * HZ; 2618 if (sock_flag(sk, SOCK_KEEPOPEN) && 2619 !((1 << sk->sk_state) & 2620 (TCPF_CLOSE | TCPF_LISTEN))) { 2621 u32 elapsed = keepalive_time_elapsed(tp); 2622 if (tp->keepalive_time > elapsed) 2623 elapsed = tp->keepalive_time - elapsed; 2624 else 2625 elapsed = 0; 2626 inet_csk_reset_keepalive_timer(sk, elapsed); 2627 } 2628 } 2629 break; 2630 case TCP_KEEPINTVL: 2631 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2632 err = -EINVAL; 2633 else 2634 tp->keepalive_intvl = val * HZ; 2635 break; 2636 case TCP_KEEPCNT: 2637 if (val < 1 || val > MAX_TCP_KEEPCNT) 2638 err = -EINVAL; 2639 else 2640 tp->keepalive_probes = val; 2641 break; 2642 case TCP_SYNCNT: 2643 if (val < 1 || val > MAX_TCP_SYNCNT) 2644 err = -EINVAL; 2645 else 2646 icsk->icsk_syn_retries = val; 2647 break; 2648 2649 case TCP_LINGER2: 2650 if (val < 0) 2651 tp->linger2 = -1; 2652 else if (val > sysctl_tcp_fin_timeout / HZ) 2653 tp->linger2 = 0; 2654 else 2655 tp->linger2 = val * HZ; 2656 break; 2657 2658 case TCP_DEFER_ACCEPT: 2659 /* Translate value in seconds to number of retransmits */ 2660 icsk->icsk_accept_queue.rskq_defer_accept = 2661 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2662 TCP_RTO_MAX / HZ); 2663 break; 2664 2665 case TCP_WINDOW_CLAMP: 2666 if (!val) { 2667 if (sk->sk_state != TCP_CLOSE) { 2668 err = -EINVAL; 2669 break; 2670 } 2671 tp->window_clamp = 0; 2672 } else 2673 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2674 SOCK_MIN_RCVBUF / 2 : val; 2675 break; 2676 2677 case TCP_QUICKACK: 2678 if (!val) { 2679 icsk->icsk_ack.pingpong = 1; 2680 } else { 2681 icsk->icsk_ack.pingpong = 0; 2682 if ((1 << sk->sk_state) & 2683 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2684 inet_csk_ack_scheduled(sk)) { 2685 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2686 tcp_cleanup_rbuf(sk, 1); 2687 if (!(val & 1)) 2688 icsk->icsk_ack.pingpong = 1; 2689 } 2690 } 2691 break; 2692 2693 #ifdef CONFIG_TCP_MD5SIG 2694 case TCP_MD5SIG: 2695 /* Read the IP->Key mappings from userspace */ 2696 err = tp->af_specific->md5_parse(sk, optval, optlen); 2697 break; 2698 #endif 2699 case TCP_USER_TIMEOUT: 2700 /* Cap the max timeout in ms TCP will retry/retrans 2701 * before giving up and aborting (ETIMEDOUT) a connection. 2702 */ 2703 if (val < 0) 2704 err = -EINVAL; 2705 else 2706 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2707 break; 2708 2709 case TCP_FASTOPEN: 2710 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2711 TCPF_LISTEN))) 2712 err = fastopen_init_queue(sk, val); 2713 else 2714 err = -EINVAL; 2715 break; 2716 case TCP_TIMESTAMP: 2717 if (!tp->repair) 2718 err = -EPERM; 2719 else 2720 tp->tsoffset = val - tcp_time_stamp; 2721 break; 2722 default: 2723 err = -ENOPROTOOPT; 2724 break; 2725 } 2726 2727 release_sock(sk); 2728 return err; 2729 } 2730 2731 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2732 unsigned int optlen) 2733 { 2734 const struct inet_connection_sock *icsk = inet_csk(sk); 2735 2736 if (level != SOL_TCP) 2737 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2738 optval, optlen); 2739 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2740 } 2741 EXPORT_SYMBOL(tcp_setsockopt); 2742 2743 #ifdef CONFIG_COMPAT 2744 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2745 char __user *optval, unsigned int optlen) 2746 { 2747 if (level != SOL_TCP) 2748 return inet_csk_compat_setsockopt(sk, level, optname, 2749 optval, optlen); 2750 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2751 } 2752 EXPORT_SYMBOL(compat_tcp_setsockopt); 2753 #endif 2754 2755 /* Return information about state of tcp endpoint in API format. */ 2756 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2757 { 2758 const struct tcp_sock *tp = tcp_sk(sk); 2759 const struct inet_connection_sock *icsk = inet_csk(sk); 2760 u32 now = tcp_time_stamp; 2761 2762 memset(info, 0, sizeof(*info)); 2763 2764 info->tcpi_state = sk->sk_state; 2765 info->tcpi_ca_state = icsk->icsk_ca_state; 2766 info->tcpi_retransmits = icsk->icsk_retransmits; 2767 info->tcpi_probes = icsk->icsk_probes_out; 2768 info->tcpi_backoff = icsk->icsk_backoff; 2769 2770 if (tp->rx_opt.tstamp_ok) 2771 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2772 if (tcp_is_sack(tp)) 2773 info->tcpi_options |= TCPI_OPT_SACK; 2774 if (tp->rx_opt.wscale_ok) { 2775 info->tcpi_options |= TCPI_OPT_WSCALE; 2776 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2777 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2778 } 2779 2780 if (tp->ecn_flags & TCP_ECN_OK) 2781 info->tcpi_options |= TCPI_OPT_ECN; 2782 if (tp->ecn_flags & TCP_ECN_SEEN) 2783 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2784 if (tp->syn_data_acked) 2785 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2786 2787 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2788 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2789 info->tcpi_snd_mss = tp->mss_cache; 2790 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2791 2792 if (sk->sk_state == TCP_LISTEN) { 2793 info->tcpi_unacked = sk->sk_ack_backlog; 2794 info->tcpi_sacked = sk->sk_max_ack_backlog; 2795 } else { 2796 info->tcpi_unacked = tp->packets_out; 2797 info->tcpi_sacked = tp->sacked_out; 2798 } 2799 info->tcpi_lost = tp->lost_out; 2800 info->tcpi_retrans = tp->retrans_out; 2801 info->tcpi_fackets = tp->fackets_out; 2802 2803 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2804 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2805 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2806 2807 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2808 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2809 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2810 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2811 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2812 info->tcpi_snd_cwnd = tp->snd_cwnd; 2813 info->tcpi_advmss = tp->advmss; 2814 info->tcpi_reordering = tp->reordering; 2815 2816 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2817 info->tcpi_rcv_space = tp->rcvq_space.space; 2818 2819 info->tcpi_total_retrans = tp->total_retrans; 2820 } 2821 EXPORT_SYMBOL_GPL(tcp_get_info); 2822 2823 static int do_tcp_getsockopt(struct sock *sk, int level, 2824 int optname, char __user *optval, int __user *optlen) 2825 { 2826 struct inet_connection_sock *icsk = inet_csk(sk); 2827 struct tcp_sock *tp = tcp_sk(sk); 2828 int val, len; 2829 2830 if (get_user(len, optlen)) 2831 return -EFAULT; 2832 2833 len = min_t(unsigned int, len, sizeof(int)); 2834 2835 if (len < 0) 2836 return -EINVAL; 2837 2838 switch (optname) { 2839 case TCP_MAXSEG: 2840 val = tp->mss_cache; 2841 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2842 val = tp->rx_opt.user_mss; 2843 if (tp->repair) 2844 val = tp->rx_opt.mss_clamp; 2845 break; 2846 case TCP_NODELAY: 2847 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2848 break; 2849 case TCP_CORK: 2850 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2851 break; 2852 case TCP_KEEPIDLE: 2853 val = keepalive_time_when(tp) / HZ; 2854 break; 2855 case TCP_KEEPINTVL: 2856 val = keepalive_intvl_when(tp) / HZ; 2857 break; 2858 case TCP_KEEPCNT: 2859 val = keepalive_probes(tp); 2860 break; 2861 case TCP_SYNCNT: 2862 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2863 break; 2864 case TCP_LINGER2: 2865 val = tp->linger2; 2866 if (val >= 0) 2867 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2868 break; 2869 case TCP_DEFER_ACCEPT: 2870 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2871 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2872 break; 2873 case TCP_WINDOW_CLAMP: 2874 val = tp->window_clamp; 2875 break; 2876 case TCP_INFO: { 2877 struct tcp_info info; 2878 2879 if (get_user(len, optlen)) 2880 return -EFAULT; 2881 2882 tcp_get_info(sk, &info); 2883 2884 len = min_t(unsigned int, len, sizeof(info)); 2885 if (put_user(len, optlen)) 2886 return -EFAULT; 2887 if (copy_to_user(optval, &info, len)) 2888 return -EFAULT; 2889 return 0; 2890 } 2891 case TCP_QUICKACK: 2892 val = !icsk->icsk_ack.pingpong; 2893 break; 2894 2895 case TCP_CONGESTION: 2896 if (get_user(len, optlen)) 2897 return -EFAULT; 2898 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2899 if (put_user(len, optlen)) 2900 return -EFAULT; 2901 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2902 return -EFAULT; 2903 return 0; 2904 2905 case TCP_COOKIE_TRANSACTIONS: { 2906 struct tcp_cookie_transactions ctd; 2907 struct tcp_cookie_values *cvp = tp->cookie_values; 2908 2909 if (get_user(len, optlen)) 2910 return -EFAULT; 2911 if (len < sizeof(ctd)) 2912 return -EINVAL; 2913 2914 memset(&ctd, 0, sizeof(ctd)); 2915 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2916 TCP_COOKIE_IN_ALWAYS : 0) 2917 | (tp->rx_opt.cookie_out_never ? 2918 TCP_COOKIE_OUT_NEVER : 0); 2919 2920 if (cvp != NULL) { 2921 ctd.tcpct_flags |= (cvp->s_data_in ? 2922 TCP_S_DATA_IN : 0) 2923 | (cvp->s_data_out ? 2924 TCP_S_DATA_OUT : 0); 2925 2926 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2927 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2928 2929 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2930 cvp->cookie_pair_size); 2931 ctd.tcpct_used = cvp->cookie_pair_size; 2932 } 2933 2934 if (put_user(sizeof(ctd), optlen)) 2935 return -EFAULT; 2936 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2937 return -EFAULT; 2938 return 0; 2939 } 2940 case TCP_THIN_LINEAR_TIMEOUTS: 2941 val = tp->thin_lto; 2942 break; 2943 case TCP_THIN_DUPACK: 2944 val = tp->thin_dupack; 2945 break; 2946 2947 case TCP_REPAIR: 2948 val = tp->repair; 2949 break; 2950 2951 case TCP_REPAIR_QUEUE: 2952 if (tp->repair) 2953 val = tp->repair_queue; 2954 else 2955 return -EINVAL; 2956 break; 2957 2958 case TCP_QUEUE_SEQ: 2959 if (tp->repair_queue == TCP_SEND_QUEUE) 2960 val = tp->write_seq; 2961 else if (tp->repair_queue == TCP_RECV_QUEUE) 2962 val = tp->rcv_nxt; 2963 else 2964 return -EINVAL; 2965 break; 2966 2967 case TCP_USER_TIMEOUT: 2968 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2969 break; 2970 case TCP_TIMESTAMP: 2971 val = tcp_time_stamp + tp->tsoffset; 2972 break; 2973 default: 2974 return -ENOPROTOOPT; 2975 } 2976 2977 if (put_user(len, optlen)) 2978 return -EFAULT; 2979 if (copy_to_user(optval, &val, len)) 2980 return -EFAULT; 2981 return 0; 2982 } 2983 2984 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2985 int __user *optlen) 2986 { 2987 struct inet_connection_sock *icsk = inet_csk(sk); 2988 2989 if (level != SOL_TCP) 2990 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2991 optval, optlen); 2992 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2993 } 2994 EXPORT_SYMBOL(tcp_getsockopt); 2995 2996 #ifdef CONFIG_COMPAT 2997 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2998 char __user *optval, int __user *optlen) 2999 { 3000 if (level != SOL_TCP) 3001 return inet_csk_compat_getsockopt(sk, level, optname, 3002 optval, optlen); 3003 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3004 } 3005 EXPORT_SYMBOL(compat_tcp_getsockopt); 3006 #endif 3007 3008 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 3009 netdev_features_t features) 3010 { 3011 struct sk_buff *segs = ERR_PTR(-EINVAL); 3012 struct tcphdr *th; 3013 unsigned int thlen; 3014 unsigned int seq; 3015 __be32 delta; 3016 unsigned int oldlen; 3017 unsigned int mss; 3018 3019 if (!pskb_may_pull(skb, sizeof(*th))) 3020 goto out; 3021 3022 th = tcp_hdr(skb); 3023 thlen = th->doff * 4; 3024 if (thlen < sizeof(*th)) 3025 goto out; 3026 3027 if (!pskb_may_pull(skb, thlen)) 3028 goto out; 3029 3030 oldlen = (u16)~skb->len; 3031 __skb_pull(skb, thlen); 3032 3033 mss = skb_shinfo(skb)->gso_size; 3034 if (unlikely(skb->len <= mss)) 3035 goto out; 3036 3037 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 3038 /* Packet is from an untrusted source, reset gso_segs. */ 3039 int type = skb_shinfo(skb)->gso_type; 3040 3041 if (unlikely(type & 3042 ~(SKB_GSO_TCPV4 | 3043 SKB_GSO_DODGY | 3044 SKB_GSO_TCP_ECN | 3045 SKB_GSO_TCPV6 | 3046 SKB_GSO_GRE | 3047 0) || 3048 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 3049 goto out; 3050 3051 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 3052 3053 segs = NULL; 3054 goto out; 3055 } 3056 3057 segs = skb_segment(skb, features); 3058 if (IS_ERR(segs)) 3059 goto out; 3060 3061 delta = htonl(oldlen + (thlen + mss)); 3062 3063 skb = segs; 3064 th = tcp_hdr(skb); 3065 seq = ntohl(th->seq); 3066 3067 do { 3068 th->fin = th->psh = 0; 3069 3070 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 3071 (__force u32)delta)); 3072 if (skb->ip_summed != CHECKSUM_PARTIAL) 3073 th->check = 3074 csum_fold(csum_partial(skb_transport_header(skb), 3075 thlen, skb->csum)); 3076 3077 seq += mss; 3078 skb = skb->next; 3079 th = tcp_hdr(skb); 3080 3081 th->seq = htonl(seq); 3082 th->cwr = 0; 3083 } while (skb->next); 3084 3085 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 3086 skb->data_len); 3087 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 3088 (__force u32)delta)); 3089 if (skb->ip_summed != CHECKSUM_PARTIAL) 3090 th->check = csum_fold(csum_partial(skb_transport_header(skb), 3091 thlen, skb->csum)); 3092 3093 out: 3094 return segs; 3095 } 3096 EXPORT_SYMBOL(tcp_tso_segment); 3097 3098 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3099 { 3100 struct sk_buff **pp = NULL; 3101 struct sk_buff *p; 3102 struct tcphdr *th; 3103 struct tcphdr *th2; 3104 unsigned int len; 3105 unsigned int thlen; 3106 __be32 flags; 3107 unsigned int mss = 1; 3108 unsigned int hlen; 3109 unsigned int off; 3110 int flush = 1; 3111 int i; 3112 3113 off = skb_gro_offset(skb); 3114 hlen = off + sizeof(*th); 3115 th = skb_gro_header_fast(skb, off); 3116 if (skb_gro_header_hard(skb, hlen)) { 3117 th = skb_gro_header_slow(skb, hlen, off); 3118 if (unlikely(!th)) 3119 goto out; 3120 } 3121 3122 thlen = th->doff * 4; 3123 if (thlen < sizeof(*th)) 3124 goto out; 3125 3126 hlen = off + thlen; 3127 if (skb_gro_header_hard(skb, hlen)) { 3128 th = skb_gro_header_slow(skb, hlen, off); 3129 if (unlikely(!th)) 3130 goto out; 3131 } 3132 3133 skb_gro_pull(skb, thlen); 3134 3135 len = skb_gro_len(skb); 3136 flags = tcp_flag_word(th); 3137 3138 for (; (p = *head); head = &p->next) { 3139 if (!NAPI_GRO_CB(p)->same_flow) 3140 continue; 3141 3142 th2 = tcp_hdr(p); 3143 3144 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 3145 NAPI_GRO_CB(p)->same_flow = 0; 3146 continue; 3147 } 3148 3149 goto found; 3150 } 3151 3152 goto out_check_final; 3153 3154 found: 3155 flush = NAPI_GRO_CB(p)->flush; 3156 flush |= (__force int)(flags & TCP_FLAG_CWR); 3157 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 3158 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 3159 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 3160 for (i = sizeof(*th); i < thlen; i += 4) 3161 flush |= *(u32 *)((u8 *)th + i) ^ 3162 *(u32 *)((u8 *)th2 + i); 3163 3164 mss = skb_shinfo(p)->gso_size; 3165 3166 flush |= (len - 1) >= mss; 3167 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 3168 3169 if (flush || skb_gro_receive(head, skb)) { 3170 mss = 1; 3171 goto out_check_final; 3172 } 3173 3174 p = *head; 3175 th2 = tcp_hdr(p); 3176 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 3177 3178 out_check_final: 3179 flush = len < mss; 3180 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 3181 TCP_FLAG_RST | TCP_FLAG_SYN | 3182 TCP_FLAG_FIN)); 3183 3184 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 3185 pp = head; 3186 3187 out: 3188 NAPI_GRO_CB(skb)->flush |= flush; 3189 3190 return pp; 3191 } 3192 EXPORT_SYMBOL(tcp_gro_receive); 3193 3194 int tcp_gro_complete(struct sk_buff *skb) 3195 { 3196 struct tcphdr *th = tcp_hdr(skb); 3197 3198 skb->csum_start = skb_transport_header(skb) - skb->head; 3199 skb->csum_offset = offsetof(struct tcphdr, check); 3200 skb->ip_summed = CHECKSUM_PARTIAL; 3201 3202 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3203 3204 if (th->cwr) 3205 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3206 3207 return 0; 3208 } 3209 EXPORT_SYMBOL(tcp_gro_complete); 3210 3211 #ifdef CONFIG_TCP_MD5SIG 3212 static unsigned long tcp_md5sig_users; 3213 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 3214 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 3215 3216 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 3217 { 3218 int cpu; 3219 3220 for_each_possible_cpu(cpu) { 3221 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 3222 3223 if (p->md5_desc.tfm) 3224 crypto_free_hash(p->md5_desc.tfm); 3225 } 3226 free_percpu(pool); 3227 } 3228 3229 void tcp_free_md5sig_pool(void) 3230 { 3231 struct tcp_md5sig_pool __percpu *pool = NULL; 3232 3233 spin_lock_bh(&tcp_md5sig_pool_lock); 3234 if (--tcp_md5sig_users == 0) { 3235 pool = tcp_md5sig_pool; 3236 tcp_md5sig_pool = NULL; 3237 } 3238 spin_unlock_bh(&tcp_md5sig_pool_lock); 3239 if (pool) 3240 __tcp_free_md5sig_pool(pool); 3241 } 3242 EXPORT_SYMBOL(tcp_free_md5sig_pool); 3243 3244 static struct tcp_md5sig_pool __percpu * 3245 __tcp_alloc_md5sig_pool(struct sock *sk) 3246 { 3247 int cpu; 3248 struct tcp_md5sig_pool __percpu *pool; 3249 3250 pool = alloc_percpu(struct tcp_md5sig_pool); 3251 if (!pool) 3252 return NULL; 3253 3254 for_each_possible_cpu(cpu) { 3255 struct crypto_hash *hash; 3256 3257 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 3258 if (IS_ERR_OR_NULL(hash)) 3259 goto out_free; 3260 3261 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 3262 } 3263 return pool; 3264 out_free: 3265 __tcp_free_md5sig_pool(pool); 3266 return NULL; 3267 } 3268 3269 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 3270 { 3271 struct tcp_md5sig_pool __percpu *pool; 3272 bool alloc = false; 3273 3274 retry: 3275 spin_lock_bh(&tcp_md5sig_pool_lock); 3276 pool = tcp_md5sig_pool; 3277 if (tcp_md5sig_users++ == 0) { 3278 alloc = true; 3279 spin_unlock_bh(&tcp_md5sig_pool_lock); 3280 } else if (!pool) { 3281 tcp_md5sig_users--; 3282 spin_unlock_bh(&tcp_md5sig_pool_lock); 3283 cpu_relax(); 3284 goto retry; 3285 } else 3286 spin_unlock_bh(&tcp_md5sig_pool_lock); 3287 3288 if (alloc) { 3289 /* we cannot hold spinlock here because this may sleep. */ 3290 struct tcp_md5sig_pool __percpu *p; 3291 3292 p = __tcp_alloc_md5sig_pool(sk); 3293 spin_lock_bh(&tcp_md5sig_pool_lock); 3294 if (!p) { 3295 tcp_md5sig_users--; 3296 spin_unlock_bh(&tcp_md5sig_pool_lock); 3297 return NULL; 3298 } 3299 pool = tcp_md5sig_pool; 3300 if (pool) { 3301 /* oops, it has already been assigned. */ 3302 spin_unlock_bh(&tcp_md5sig_pool_lock); 3303 __tcp_free_md5sig_pool(p); 3304 } else { 3305 tcp_md5sig_pool = pool = p; 3306 spin_unlock_bh(&tcp_md5sig_pool_lock); 3307 } 3308 } 3309 return pool; 3310 } 3311 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3312 3313 3314 /** 3315 * tcp_get_md5sig_pool - get md5sig_pool for this user 3316 * 3317 * We use percpu structure, so if we succeed, we exit with preemption 3318 * and BH disabled, to make sure another thread or softirq handling 3319 * wont try to get same context. 3320 */ 3321 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3322 { 3323 struct tcp_md5sig_pool __percpu *p; 3324 3325 local_bh_disable(); 3326 3327 spin_lock(&tcp_md5sig_pool_lock); 3328 p = tcp_md5sig_pool; 3329 if (p) 3330 tcp_md5sig_users++; 3331 spin_unlock(&tcp_md5sig_pool_lock); 3332 3333 if (p) 3334 return this_cpu_ptr(p); 3335 3336 local_bh_enable(); 3337 return NULL; 3338 } 3339 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3340 3341 void tcp_put_md5sig_pool(void) 3342 { 3343 local_bh_enable(); 3344 tcp_free_md5sig_pool(); 3345 } 3346 EXPORT_SYMBOL(tcp_put_md5sig_pool); 3347 3348 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3349 const struct tcphdr *th) 3350 { 3351 struct scatterlist sg; 3352 struct tcphdr hdr; 3353 int err; 3354 3355 /* We are not allowed to change tcphdr, make a local copy */ 3356 memcpy(&hdr, th, sizeof(hdr)); 3357 hdr.check = 0; 3358 3359 /* options aren't included in the hash */ 3360 sg_init_one(&sg, &hdr, sizeof(hdr)); 3361 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3362 return err; 3363 } 3364 EXPORT_SYMBOL(tcp_md5_hash_header); 3365 3366 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3367 const struct sk_buff *skb, unsigned int header_len) 3368 { 3369 struct scatterlist sg; 3370 const struct tcphdr *tp = tcp_hdr(skb); 3371 struct hash_desc *desc = &hp->md5_desc; 3372 unsigned int i; 3373 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3374 skb_headlen(skb) - header_len : 0; 3375 const struct skb_shared_info *shi = skb_shinfo(skb); 3376 struct sk_buff *frag_iter; 3377 3378 sg_init_table(&sg, 1); 3379 3380 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3381 if (crypto_hash_update(desc, &sg, head_data_len)) 3382 return 1; 3383 3384 for (i = 0; i < shi->nr_frags; ++i) { 3385 const struct skb_frag_struct *f = &shi->frags[i]; 3386 struct page *page = skb_frag_page(f); 3387 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3388 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3389 return 1; 3390 } 3391 3392 skb_walk_frags(skb, frag_iter) 3393 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3394 return 1; 3395 3396 return 0; 3397 } 3398 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3399 3400 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3401 { 3402 struct scatterlist sg; 3403 3404 sg_init_one(&sg, key->key, key->keylen); 3405 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3406 } 3407 EXPORT_SYMBOL(tcp_md5_hash_key); 3408 3409 #endif 3410 3411 /* Each Responder maintains up to two secret values concurrently for 3412 * efficient secret rollover. Each secret value has 4 states: 3413 * 3414 * Generating. (tcp_secret_generating != tcp_secret_primary) 3415 * Generates new Responder-Cookies, but not yet used for primary 3416 * verification. This is a short-term state, typically lasting only 3417 * one round trip time (RTT). 3418 * 3419 * Primary. (tcp_secret_generating == tcp_secret_primary) 3420 * Used both for generation and primary verification. 3421 * 3422 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3423 * Used for verification, until the first failure that can be 3424 * verified by the newer Generating secret. At that time, this 3425 * cookie's state is changed to Secondary, and the Generating 3426 * cookie's state is changed to Primary. This is a short-term state, 3427 * typically lasting only one round trip time (RTT). 3428 * 3429 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3430 * Used for secondary verification, after primary verification 3431 * failures. This state lasts no more than twice the Maximum Segment 3432 * Lifetime (2MSL). Then, the secret is discarded. 3433 */ 3434 struct tcp_cookie_secret { 3435 /* The secret is divided into two parts. The digest part is the 3436 * equivalent of previously hashing a secret and saving the state, 3437 * and serves as an initialization vector (IV). The message part 3438 * serves as the trailing secret. 3439 */ 3440 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3441 unsigned long expires; 3442 }; 3443 3444 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3445 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3446 #define TCP_SECRET_LIFE (HZ * 600) 3447 3448 static struct tcp_cookie_secret tcp_secret_one; 3449 static struct tcp_cookie_secret tcp_secret_two; 3450 3451 /* Essentially a circular list, without dynamic allocation. */ 3452 static struct tcp_cookie_secret *tcp_secret_generating; 3453 static struct tcp_cookie_secret *tcp_secret_primary; 3454 static struct tcp_cookie_secret *tcp_secret_retiring; 3455 static struct tcp_cookie_secret *tcp_secret_secondary; 3456 3457 static DEFINE_SPINLOCK(tcp_secret_locker); 3458 3459 /* Select a pseudo-random word in the cookie workspace. 3460 */ 3461 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3462 { 3463 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3464 } 3465 3466 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3467 * Called in softirq context. 3468 * Returns: 0 for success. 3469 */ 3470 int tcp_cookie_generator(u32 *bakery) 3471 { 3472 unsigned long jiffy = jiffies; 3473 3474 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3475 spin_lock_bh(&tcp_secret_locker); 3476 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3477 /* refreshed by another */ 3478 memcpy(bakery, 3479 &tcp_secret_generating->secrets[0], 3480 COOKIE_WORKSPACE_WORDS); 3481 } else { 3482 /* still needs refreshing */ 3483 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3484 3485 /* The first time, paranoia assumes that the 3486 * randomization function isn't as strong. But, 3487 * this secret initialization is delayed until 3488 * the last possible moment (packet arrival). 3489 * Although that time is observable, it is 3490 * unpredictably variable. Mash in the most 3491 * volatile clock bits available, and expire the 3492 * secret extra quickly. 3493 */ 3494 if (unlikely(tcp_secret_primary->expires == 3495 tcp_secret_secondary->expires)) { 3496 struct timespec tv; 3497 3498 getnstimeofday(&tv); 3499 bakery[COOKIE_DIGEST_WORDS+0] ^= 3500 (u32)tv.tv_nsec; 3501 3502 tcp_secret_secondary->expires = jiffy 3503 + TCP_SECRET_1MSL 3504 + (0x0f & tcp_cookie_work(bakery, 0)); 3505 } else { 3506 tcp_secret_secondary->expires = jiffy 3507 + TCP_SECRET_LIFE 3508 + (0xff & tcp_cookie_work(bakery, 1)); 3509 tcp_secret_primary->expires = jiffy 3510 + TCP_SECRET_2MSL 3511 + (0x1f & tcp_cookie_work(bakery, 2)); 3512 } 3513 memcpy(&tcp_secret_secondary->secrets[0], 3514 bakery, COOKIE_WORKSPACE_WORDS); 3515 3516 rcu_assign_pointer(tcp_secret_generating, 3517 tcp_secret_secondary); 3518 rcu_assign_pointer(tcp_secret_retiring, 3519 tcp_secret_primary); 3520 /* 3521 * Neither call_rcu() nor synchronize_rcu() needed. 3522 * Retiring data is not freed. It is replaced after 3523 * further (locked) pointer updates, and a quiet time 3524 * (minimum 1MSL, maximum LIFE - 2MSL). 3525 */ 3526 } 3527 spin_unlock_bh(&tcp_secret_locker); 3528 } else { 3529 rcu_read_lock_bh(); 3530 memcpy(bakery, 3531 &rcu_dereference(tcp_secret_generating)->secrets[0], 3532 COOKIE_WORKSPACE_WORDS); 3533 rcu_read_unlock_bh(); 3534 } 3535 return 0; 3536 } 3537 EXPORT_SYMBOL(tcp_cookie_generator); 3538 3539 void tcp_done(struct sock *sk) 3540 { 3541 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3542 3543 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3544 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3545 3546 tcp_set_state(sk, TCP_CLOSE); 3547 tcp_clear_xmit_timers(sk); 3548 if (req != NULL) 3549 reqsk_fastopen_remove(sk, req, false); 3550 3551 sk->sk_shutdown = SHUTDOWN_MASK; 3552 3553 if (!sock_flag(sk, SOCK_DEAD)) 3554 sk->sk_state_change(sk); 3555 else 3556 inet_csk_destroy_sock(sk); 3557 } 3558 EXPORT_SYMBOL_GPL(tcp_done); 3559 3560 extern struct tcp_congestion_ops tcp_reno; 3561 3562 static __initdata unsigned long thash_entries; 3563 static int __init set_thash_entries(char *str) 3564 { 3565 ssize_t ret; 3566 3567 if (!str) 3568 return 0; 3569 3570 ret = kstrtoul(str, 0, &thash_entries); 3571 if (ret) 3572 return 0; 3573 3574 return 1; 3575 } 3576 __setup("thash_entries=", set_thash_entries); 3577 3578 void tcp_init_mem(struct net *net) 3579 { 3580 unsigned long limit = nr_free_buffer_pages() / 8; 3581 limit = max(limit, 128UL); 3582 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3583 net->ipv4.sysctl_tcp_mem[1] = limit; 3584 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3585 } 3586 3587 void __init tcp_init(void) 3588 { 3589 struct sk_buff *skb = NULL; 3590 unsigned long limit; 3591 int max_rshare, max_wshare, cnt; 3592 unsigned int i; 3593 unsigned long jiffy = jiffies; 3594 3595 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3596 3597 percpu_counter_init(&tcp_sockets_allocated, 0); 3598 percpu_counter_init(&tcp_orphan_count, 0); 3599 tcp_hashinfo.bind_bucket_cachep = 3600 kmem_cache_create("tcp_bind_bucket", 3601 sizeof(struct inet_bind_bucket), 0, 3602 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3603 3604 /* Size and allocate the main established and bind bucket 3605 * hash tables. 3606 * 3607 * The methodology is similar to that of the buffer cache. 3608 */ 3609 tcp_hashinfo.ehash = 3610 alloc_large_system_hash("TCP established", 3611 sizeof(struct inet_ehash_bucket), 3612 thash_entries, 3613 17, /* one slot per 128 KB of memory */ 3614 0, 3615 NULL, 3616 &tcp_hashinfo.ehash_mask, 3617 0, 3618 thash_entries ? 0 : 512 * 1024); 3619 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3620 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3621 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3622 } 3623 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3624 panic("TCP: failed to alloc ehash_locks"); 3625 tcp_hashinfo.bhash = 3626 alloc_large_system_hash("TCP bind", 3627 sizeof(struct inet_bind_hashbucket), 3628 tcp_hashinfo.ehash_mask + 1, 3629 17, /* one slot per 128 KB of memory */ 3630 0, 3631 &tcp_hashinfo.bhash_size, 3632 NULL, 3633 0, 3634 64 * 1024); 3635 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3636 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3637 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3638 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3639 } 3640 3641 3642 cnt = tcp_hashinfo.ehash_mask + 1; 3643 3644 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3645 sysctl_tcp_max_orphans = cnt / 2; 3646 sysctl_max_syn_backlog = max(128, cnt / 256); 3647 3648 tcp_init_mem(&init_net); 3649 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3650 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3651 max_wshare = min(4UL*1024*1024, limit); 3652 max_rshare = min(6UL*1024*1024, limit); 3653 3654 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3655 sysctl_tcp_wmem[1] = 16*1024; 3656 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3657 3658 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3659 sysctl_tcp_rmem[1] = 87380; 3660 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3661 3662 pr_info("Hash tables configured (established %u bind %u)\n", 3663 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3664 3665 tcp_metrics_init(); 3666 3667 tcp_register_congestion_control(&tcp_reno); 3668 3669 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3670 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3671 tcp_secret_one.expires = jiffy; /* past due */ 3672 tcp_secret_two.expires = jiffy; /* past due */ 3673 tcp_secret_generating = &tcp_secret_one; 3674 tcp_secret_primary = &tcp_secret_one; 3675 tcp_secret_retiring = &tcp_secret_two; 3676 tcp_secret_secondary = &tcp_secret_two; 3677 tcp_tasklet_init(); 3678 } 3679