xref: /linux/net/ipv4/tcp.c (revision 95188aaf9fc81e9539606cad5c9579bd27604f92)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290 
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  *       sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	skb_queue_head_init(&tp->out_of_order_queue);
378 	tcp_init_xmit_timers(sk);
379 	tcp_prequeue_init(tp);
380 	INIT_LIST_HEAD(&tp->tsq_node);
381 
382 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 	tp->mdev = TCP_TIMEOUT_INIT;
384 
385 	/* So many TCP implementations out there (incorrectly) count the
386 	 * initial SYN frame in their delayed-ACK and congestion control
387 	 * algorithms that we must have the following bandaid to talk
388 	 * efficiently to them.  -DaveM
389 	 */
390 	tp->snd_cwnd = TCP_INIT_CWND;
391 
392 	/* See draft-stevens-tcpca-spec-01 for discussion of the
393 	 * initialization of these values.
394 	 */
395 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 	tp->snd_cwnd_clamp = ~0;
397 	tp->mss_cache = TCP_MSS_DEFAULT;
398 
399 	tp->reordering = sysctl_tcp_reordering;
400 	tcp_enable_early_retrans(tp);
401 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402 
403 	tp->tsoffset = 0;
404 
405 	sk->sk_state = TCP_CLOSE;
406 
407 	sk->sk_write_space = sk_stream_write_space;
408 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
409 
410 	icsk->icsk_sync_mss = tcp_sync_mss;
411 
412 	/* TCP Cookie Transactions */
413 	if (sysctl_tcp_cookie_size > 0) {
414 		/* Default, cookies without s_data_payload. */
415 		tp->cookie_values =
416 			kzalloc(sizeof(*tp->cookie_values),
417 				sk->sk_allocation);
418 		if (tp->cookie_values != NULL)
419 			kref_init(&tp->cookie_values->kref);
420 	}
421 	/* Presumed zeroed, in order of appearance:
422 	 *	cookie_in_always, cookie_out_never,
423 	 *	s_data_constant, s_data_in, s_data_out
424 	 */
425 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
426 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
427 
428 	local_bh_disable();
429 	sock_update_memcg(sk);
430 	sk_sockets_allocated_inc(sk);
431 	local_bh_enable();
432 }
433 EXPORT_SYMBOL(tcp_init_sock);
434 
435 /*
436  *	Wait for a TCP event.
437  *
438  *	Note that we don't need to lock the socket, as the upper poll layers
439  *	take care of normal races (between the test and the event) and we don't
440  *	go look at any of the socket buffers directly.
441  */
442 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
443 {
444 	unsigned int mask;
445 	struct sock *sk = sock->sk;
446 	const struct tcp_sock *tp = tcp_sk(sk);
447 
448 	sock_poll_wait(file, sk_sleep(sk), wait);
449 	if (sk->sk_state == TCP_LISTEN)
450 		return inet_csk_listen_poll(sk);
451 
452 	/* Socket is not locked. We are protected from async events
453 	 * by poll logic and correct handling of state changes
454 	 * made by other threads is impossible in any case.
455 	 */
456 
457 	mask = 0;
458 
459 	/*
460 	 * POLLHUP is certainly not done right. But poll() doesn't
461 	 * have a notion of HUP in just one direction, and for a
462 	 * socket the read side is more interesting.
463 	 *
464 	 * Some poll() documentation says that POLLHUP is incompatible
465 	 * with the POLLOUT/POLLWR flags, so somebody should check this
466 	 * all. But careful, it tends to be safer to return too many
467 	 * bits than too few, and you can easily break real applications
468 	 * if you don't tell them that something has hung up!
469 	 *
470 	 * Check-me.
471 	 *
472 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
473 	 * our fs/select.c). It means that after we received EOF,
474 	 * poll always returns immediately, making impossible poll() on write()
475 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
476 	 * if and only if shutdown has been made in both directions.
477 	 * Actually, it is interesting to look how Solaris and DUX
478 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
479 	 * then we could set it on SND_SHUTDOWN. BTW examples given
480 	 * in Stevens' books assume exactly this behaviour, it explains
481 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
482 	 *
483 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
484 	 * blocking on fresh not-connected or disconnected socket. --ANK
485 	 */
486 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
487 		mask |= POLLHUP;
488 	if (sk->sk_shutdown & RCV_SHUTDOWN)
489 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
490 
491 	/* Connected or passive Fast Open socket? */
492 	if (sk->sk_state != TCP_SYN_SENT &&
493 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
494 		int target = sock_rcvlowat(sk, 0, INT_MAX);
495 
496 		if (tp->urg_seq == tp->copied_seq &&
497 		    !sock_flag(sk, SOCK_URGINLINE) &&
498 		    tp->urg_data)
499 			target++;
500 
501 		/* Potential race condition. If read of tp below will
502 		 * escape above sk->sk_state, we can be illegally awaken
503 		 * in SYN_* states. */
504 		if (tp->rcv_nxt - tp->copied_seq >= target)
505 			mask |= POLLIN | POLLRDNORM;
506 
507 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
508 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
509 				mask |= POLLOUT | POLLWRNORM;
510 			} else {  /* send SIGIO later */
511 				set_bit(SOCK_ASYNC_NOSPACE,
512 					&sk->sk_socket->flags);
513 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
514 
515 				/* Race breaker. If space is freed after
516 				 * wspace test but before the flags are set,
517 				 * IO signal will be lost.
518 				 */
519 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
520 					mask |= POLLOUT | POLLWRNORM;
521 			}
522 		} else
523 			mask |= POLLOUT | POLLWRNORM;
524 
525 		if (tp->urg_data & TCP_URG_VALID)
526 			mask |= POLLPRI;
527 	}
528 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
529 	smp_rmb();
530 	if (sk->sk_err)
531 		mask |= POLLERR;
532 
533 	return mask;
534 }
535 EXPORT_SYMBOL(tcp_poll);
536 
537 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
538 {
539 	struct tcp_sock *tp = tcp_sk(sk);
540 	int answ;
541 	bool slow;
542 
543 	switch (cmd) {
544 	case SIOCINQ:
545 		if (sk->sk_state == TCP_LISTEN)
546 			return -EINVAL;
547 
548 		slow = lock_sock_fast(sk);
549 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
550 			answ = 0;
551 		else if (sock_flag(sk, SOCK_URGINLINE) ||
552 			 !tp->urg_data ||
553 			 before(tp->urg_seq, tp->copied_seq) ||
554 			 !before(tp->urg_seq, tp->rcv_nxt)) {
555 
556 			answ = tp->rcv_nxt - tp->copied_seq;
557 
558 			/* Subtract 1, if FIN was received */
559 			if (answ && sock_flag(sk, SOCK_DONE))
560 				answ--;
561 		} else
562 			answ = tp->urg_seq - tp->copied_seq;
563 		unlock_sock_fast(sk, slow);
564 		break;
565 	case SIOCATMARK:
566 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
567 		break;
568 	case SIOCOUTQ:
569 		if (sk->sk_state == TCP_LISTEN)
570 			return -EINVAL;
571 
572 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
573 			answ = 0;
574 		else
575 			answ = tp->write_seq - tp->snd_una;
576 		break;
577 	case SIOCOUTQNSD:
578 		if (sk->sk_state == TCP_LISTEN)
579 			return -EINVAL;
580 
581 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 			answ = 0;
583 		else
584 			answ = tp->write_seq - tp->snd_nxt;
585 		break;
586 	default:
587 		return -ENOIOCTLCMD;
588 	}
589 
590 	return put_user(answ, (int __user *)arg);
591 }
592 EXPORT_SYMBOL(tcp_ioctl);
593 
594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
595 {
596 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
597 	tp->pushed_seq = tp->write_seq;
598 }
599 
600 static inline bool forced_push(const struct tcp_sock *tp)
601 {
602 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 }
604 
605 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
609 
610 	skb->csum    = 0;
611 	tcb->seq     = tcb->end_seq = tp->write_seq;
612 	tcb->tcp_flags = TCPHDR_ACK;
613 	tcb->sacked  = 0;
614 	skb_header_release(skb);
615 	tcp_add_write_queue_tail(sk, skb);
616 	sk->sk_wmem_queued += skb->truesize;
617 	sk_mem_charge(sk, skb->truesize);
618 	if (tp->nonagle & TCP_NAGLE_PUSH)
619 		tp->nonagle &= ~TCP_NAGLE_PUSH;
620 }
621 
622 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
623 {
624 	if (flags & MSG_OOB)
625 		tp->snd_up = tp->write_seq;
626 }
627 
628 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
629 			    int nonagle)
630 {
631 	if (tcp_send_head(sk)) {
632 		struct tcp_sock *tp = tcp_sk(sk);
633 
634 		if (!(flags & MSG_MORE) || forced_push(tp))
635 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
636 
637 		tcp_mark_urg(tp, flags);
638 		__tcp_push_pending_frames(sk, mss_now,
639 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
640 	}
641 }
642 
643 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
644 				unsigned int offset, size_t len)
645 {
646 	struct tcp_splice_state *tss = rd_desc->arg.data;
647 	int ret;
648 
649 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
650 			      tss->flags);
651 	if (ret > 0)
652 		rd_desc->count -= ret;
653 	return ret;
654 }
655 
656 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
657 {
658 	/* Store TCP splice context information in read_descriptor_t. */
659 	read_descriptor_t rd_desc = {
660 		.arg.data = tss,
661 		.count	  = tss->len,
662 	};
663 
664 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
665 }
666 
667 /**
668  *  tcp_splice_read - splice data from TCP socket to a pipe
669  * @sock:	socket to splice from
670  * @ppos:	position (not valid)
671  * @pipe:	pipe to splice to
672  * @len:	number of bytes to splice
673  * @flags:	splice modifier flags
674  *
675  * Description:
676  *    Will read pages from given socket and fill them into a pipe.
677  *
678  **/
679 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
680 			struct pipe_inode_info *pipe, size_t len,
681 			unsigned int flags)
682 {
683 	struct sock *sk = sock->sk;
684 	struct tcp_splice_state tss = {
685 		.pipe = pipe,
686 		.len = len,
687 		.flags = flags,
688 	};
689 	long timeo;
690 	ssize_t spliced;
691 	int ret;
692 
693 	sock_rps_record_flow(sk);
694 	/*
695 	 * We can't seek on a socket input
696 	 */
697 	if (unlikely(*ppos))
698 		return -ESPIPE;
699 
700 	ret = spliced = 0;
701 
702 	lock_sock(sk);
703 
704 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
705 	while (tss.len) {
706 		ret = __tcp_splice_read(sk, &tss);
707 		if (ret < 0)
708 			break;
709 		else if (!ret) {
710 			if (spliced)
711 				break;
712 			if (sock_flag(sk, SOCK_DONE))
713 				break;
714 			if (sk->sk_err) {
715 				ret = sock_error(sk);
716 				break;
717 			}
718 			if (sk->sk_shutdown & RCV_SHUTDOWN)
719 				break;
720 			if (sk->sk_state == TCP_CLOSE) {
721 				/*
722 				 * This occurs when user tries to read
723 				 * from never connected socket.
724 				 */
725 				if (!sock_flag(sk, SOCK_DONE))
726 					ret = -ENOTCONN;
727 				break;
728 			}
729 			if (!timeo) {
730 				ret = -EAGAIN;
731 				break;
732 			}
733 			sk_wait_data(sk, &timeo);
734 			if (signal_pending(current)) {
735 				ret = sock_intr_errno(timeo);
736 				break;
737 			}
738 			continue;
739 		}
740 		tss.len -= ret;
741 		spliced += ret;
742 
743 		if (!timeo)
744 			break;
745 		release_sock(sk);
746 		lock_sock(sk);
747 
748 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
749 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
750 		    signal_pending(current))
751 			break;
752 	}
753 
754 	release_sock(sk);
755 
756 	if (spliced)
757 		return spliced;
758 
759 	return ret;
760 }
761 EXPORT_SYMBOL(tcp_splice_read);
762 
763 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
764 {
765 	struct sk_buff *skb;
766 
767 	/* The TCP header must be at least 32-bit aligned.  */
768 	size = ALIGN(size, 4);
769 
770 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
771 	if (skb) {
772 		if (sk_wmem_schedule(sk, skb->truesize)) {
773 			skb_reserve(skb, sk->sk_prot->max_header);
774 			/*
775 			 * Make sure that we have exactly size bytes
776 			 * available to the caller, no more, no less.
777 			 */
778 			skb->reserved_tailroom = skb->end - skb->tail - size;
779 			return skb;
780 		}
781 		__kfree_skb(skb);
782 	} else {
783 		sk->sk_prot->enter_memory_pressure(sk);
784 		sk_stream_moderate_sndbuf(sk);
785 	}
786 	return NULL;
787 }
788 
789 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
790 				       int large_allowed)
791 {
792 	struct tcp_sock *tp = tcp_sk(sk);
793 	u32 xmit_size_goal, old_size_goal;
794 
795 	xmit_size_goal = mss_now;
796 
797 	if (large_allowed && sk_can_gso(sk)) {
798 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
799 				  inet_csk(sk)->icsk_af_ops->net_header_len -
800 				  inet_csk(sk)->icsk_ext_hdr_len -
801 				  tp->tcp_header_len);
802 
803 		/* TSQ : try to have two TSO segments in flight */
804 		xmit_size_goal = min_t(u32, xmit_size_goal,
805 				       sysctl_tcp_limit_output_bytes >> 1);
806 
807 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
808 
809 		/* We try hard to avoid divides here */
810 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
811 
812 		if (likely(old_size_goal <= xmit_size_goal &&
813 			   old_size_goal + mss_now > xmit_size_goal)) {
814 			xmit_size_goal = old_size_goal;
815 		} else {
816 			tp->xmit_size_goal_segs =
817 				min_t(u16, xmit_size_goal / mss_now,
818 				      sk->sk_gso_max_segs);
819 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
820 		}
821 	}
822 
823 	return max(xmit_size_goal, mss_now);
824 }
825 
826 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
827 {
828 	int mss_now;
829 
830 	mss_now = tcp_current_mss(sk);
831 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
832 
833 	return mss_now;
834 }
835 
836 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
837 				size_t size, int flags)
838 {
839 	struct tcp_sock *tp = tcp_sk(sk);
840 	int mss_now, size_goal;
841 	int err;
842 	ssize_t copied;
843 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
844 
845 	/* Wait for a connection to finish. One exception is TCP Fast Open
846 	 * (passive side) where data is allowed to be sent before a connection
847 	 * is fully established.
848 	 */
849 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
850 	    !tcp_passive_fastopen(sk)) {
851 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
852 			goto out_err;
853 	}
854 
855 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
856 
857 	mss_now = tcp_send_mss(sk, &size_goal, flags);
858 	copied = 0;
859 
860 	err = -EPIPE;
861 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
862 		goto out_err;
863 
864 	while (size > 0) {
865 		struct sk_buff *skb = tcp_write_queue_tail(sk);
866 		int copy, i;
867 		bool can_coalesce;
868 
869 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
870 new_segment:
871 			if (!sk_stream_memory_free(sk))
872 				goto wait_for_sndbuf;
873 
874 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
875 			if (!skb)
876 				goto wait_for_memory;
877 
878 			skb_entail(sk, skb);
879 			copy = size_goal;
880 		}
881 
882 		if (copy > size)
883 			copy = size;
884 
885 		i = skb_shinfo(skb)->nr_frags;
886 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
887 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
888 			tcp_mark_push(tp, skb);
889 			goto new_segment;
890 		}
891 		if (!sk_wmem_schedule(sk, copy))
892 			goto wait_for_memory;
893 
894 		if (can_coalesce) {
895 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
896 		} else {
897 			get_page(page);
898 			skb_fill_page_desc(skb, i, page, offset, copy);
899 		}
900 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
901 
902 		skb->len += copy;
903 		skb->data_len += copy;
904 		skb->truesize += copy;
905 		sk->sk_wmem_queued += copy;
906 		sk_mem_charge(sk, copy);
907 		skb->ip_summed = CHECKSUM_PARTIAL;
908 		tp->write_seq += copy;
909 		TCP_SKB_CB(skb)->end_seq += copy;
910 		skb_shinfo(skb)->gso_segs = 0;
911 
912 		if (!copied)
913 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
914 
915 		copied += copy;
916 		offset += copy;
917 		if (!(size -= copy))
918 			goto out;
919 
920 		if (skb->len < size_goal || (flags & MSG_OOB))
921 			continue;
922 
923 		if (forced_push(tp)) {
924 			tcp_mark_push(tp, skb);
925 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
926 		} else if (skb == tcp_send_head(sk))
927 			tcp_push_one(sk, mss_now);
928 		continue;
929 
930 wait_for_sndbuf:
931 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
932 wait_for_memory:
933 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
934 
935 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
936 			goto do_error;
937 
938 		mss_now = tcp_send_mss(sk, &size_goal, flags);
939 	}
940 
941 out:
942 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
943 		tcp_push(sk, flags, mss_now, tp->nonagle);
944 	return copied;
945 
946 do_error:
947 	if (copied)
948 		goto out;
949 out_err:
950 	return sk_stream_error(sk, flags, err);
951 }
952 
953 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
954 		 size_t size, int flags)
955 {
956 	ssize_t res;
957 
958 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
959 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
960 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
961 					flags);
962 
963 	lock_sock(sk);
964 	res = do_tcp_sendpages(sk, page, offset, size, flags);
965 	release_sock(sk);
966 	return res;
967 }
968 EXPORT_SYMBOL(tcp_sendpage);
969 
970 static inline int select_size(const struct sock *sk, bool sg)
971 {
972 	const struct tcp_sock *tp = tcp_sk(sk);
973 	int tmp = tp->mss_cache;
974 
975 	if (sg) {
976 		if (sk_can_gso(sk)) {
977 			/* Small frames wont use a full page:
978 			 * Payload will immediately follow tcp header.
979 			 */
980 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
981 		} else {
982 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
983 
984 			if (tmp >= pgbreak &&
985 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
986 				tmp = pgbreak;
987 		}
988 	}
989 
990 	return tmp;
991 }
992 
993 void tcp_free_fastopen_req(struct tcp_sock *tp)
994 {
995 	if (tp->fastopen_req != NULL) {
996 		kfree(tp->fastopen_req);
997 		tp->fastopen_req = NULL;
998 	}
999 }
1000 
1001 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1002 {
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	int err, flags;
1005 
1006 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1007 		return -EOPNOTSUPP;
1008 	if (tp->fastopen_req != NULL)
1009 		return -EALREADY; /* Another Fast Open is in progress */
1010 
1011 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1012 				   sk->sk_allocation);
1013 	if (unlikely(tp->fastopen_req == NULL))
1014 		return -ENOBUFS;
1015 	tp->fastopen_req->data = msg;
1016 
1017 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1018 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1019 				    msg->msg_namelen, flags);
1020 	*size = tp->fastopen_req->copied;
1021 	tcp_free_fastopen_req(tp);
1022 	return err;
1023 }
1024 
1025 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1026 		size_t size)
1027 {
1028 	struct iovec *iov;
1029 	struct tcp_sock *tp = tcp_sk(sk);
1030 	struct sk_buff *skb;
1031 	int iovlen, flags, err, copied = 0;
1032 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1033 	bool sg;
1034 	long timeo;
1035 
1036 	lock_sock(sk);
1037 
1038 	flags = msg->msg_flags;
1039 	if (flags & MSG_FASTOPEN) {
1040 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1041 		if (err == -EINPROGRESS && copied_syn > 0)
1042 			goto out;
1043 		else if (err)
1044 			goto out_err;
1045 		offset = copied_syn;
1046 	}
1047 
1048 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1049 
1050 	/* Wait for a connection to finish. One exception is TCP Fast Open
1051 	 * (passive side) where data is allowed to be sent before a connection
1052 	 * is fully established.
1053 	 */
1054 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1055 	    !tcp_passive_fastopen(sk)) {
1056 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1057 			goto do_error;
1058 	}
1059 
1060 	if (unlikely(tp->repair)) {
1061 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1062 			copied = tcp_send_rcvq(sk, msg, size);
1063 			goto out;
1064 		}
1065 
1066 		err = -EINVAL;
1067 		if (tp->repair_queue == TCP_NO_QUEUE)
1068 			goto out_err;
1069 
1070 		/* 'common' sending to sendq */
1071 	}
1072 
1073 	/* This should be in poll */
1074 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1075 
1076 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1077 
1078 	/* Ok commence sending. */
1079 	iovlen = msg->msg_iovlen;
1080 	iov = msg->msg_iov;
1081 	copied = 0;
1082 
1083 	err = -EPIPE;
1084 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1085 		goto out_err;
1086 
1087 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1088 
1089 	while (--iovlen >= 0) {
1090 		size_t seglen = iov->iov_len;
1091 		unsigned char __user *from = iov->iov_base;
1092 
1093 		iov++;
1094 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1095 			if (offset >= seglen) {
1096 				offset -= seglen;
1097 				continue;
1098 			}
1099 			seglen -= offset;
1100 			from += offset;
1101 			offset = 0;
1102 		}
1103 
1104 		while (seglen > 0) {
1105 			int copy = 0;
1106 			int max = size_goal;
1107 
1108 			skb = tcp_write_queue_tail(sk);
1109 			if (tcp_send_head(sk)) {
1110 				if (skb->ip_summed == CHECKSUM_NONE)
1111 					max = mss_now;
1112 				copy = max - skb->len;
1113 			}
1114 
1115 			if (copy <= 0) {
1116 new_segment:
1117 				/* Allocate new segment. If the interface is SG,
1118 				 * allocate skb fitting to single page.
1119 				 */
1120 				if (!sk_stream_memory_free(sk))
1121 					goto wait_for_sndbuf;
1122 
1123 				skb = sk_stream_alloc_skb(sk,
1124 							  select_size(sk, sg),
1125 							  sk->sk_allocation);
1126 				if (!skb)
1127 					goto wait_for_memory;
1128 
1129 				/*
1130 				 * Check whether we can use HW checksum.
1131 				 */
1132 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1133 					skb->ip_summed = CHECKSUM_PARTIAL;
1134 
1135 				skb_entail(sk, skb);
1136 				copy = size_goal;
1137 				max = size_goal;
1138 			}
1139 
1140 			/* Try to append data to the end of skb. */
1141 			if (copy > seglen)
1142 				copy = seglen;
1143 
1144 			/* Where to copy to? */
1145 			if (skb_availroom(skb) > 0) {
1146 				/* We have some space in skb head. Superb! */
1147 				copy = min_t(int, copy, skb_availroom(skb));
1148 				err = skb_add_data_nocache(sk, skb, from, copy);
1149 				if (err)
1150 					goto do_fault;
1151 			} else {
1152 				bool merge = true;
1153 				int i = skb_shinfo(skb)->nr_frags;
1154 				struct page_frag *pfrag = sk_page_frag(sk);
1155 
1156 				if (!sk_page_frag_refill(sk, pfrag))
1157 					goto wait_for_memory;
1158 
1159 				if (!skb_can_coalesce(skb, i, pfrag->page,
1160 						      pfrag->offset)) {
1161 					if (i == MAX_SKB_FRAGS || !sg) {
1162 						tcp_mark_push(tp, skb);
1163 						goto new_segment;
1164 					}
1165 					merge = false;
1166 				}
1167 
1168 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1169 
1170 				if (!sk_wmem_schedule(sk, copy))
1171 					goto wait_for_memory;
1172 
1173 				err = skb_copy_to_page_nocache(sk, from, skb,
1174 							       pfrag->page,
1175 							       pfrag->offset,
1176 							       copy);
1177 				if (err)
1178 					goto do_error;
1179 
1180 				/* Update the skb. */
1181 				if (merge) {
1182 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1183 				} else {
1184 					skb_fill_page_desc(skb, i, pfrag->page,
1185 							   pfrag->offset, copy);
1186 					get_page(pfrag->page);
1187 				}
1188 				pfrag->offset += copy;
1189 			}
1190 
1191 			if (!copied)
1192 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1193 
1194 			tp->write_seq += copy;
1195 			TCP_SKB_CB(skb)->end_seq += copy;
1196 			skb_shinfo(skb)->gso_segs = 0;
1197 
1198 			from += copy;
1199 			copied += copy;
1200 			if ((seglen -= copy) == 0 && iovlen == 0)
1201 				goto out;
1202 
1203 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1204 				continue;
1205 
1206 			if (forced_push(tp)) {
1207 				tcp_mark_push(tp, skb);
1208 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1209 			} else if (skb == tcp_send_head(sk))
1210 				tcp_push_one(sk, mss_now);
1211 			continue;
1212 
1213 wait_for_sndbuf:
1214 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1215 wait_for_memory:
1216 			if (copied)
1217 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1218 
1219 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1220 				goto do_error;
1221 
1222 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1223 		}
1224 	}
1225 
1226 out:
1227 	if (copied)
1228 		tcp_push(sk, flags, mss_now, tp->nonagle);
1229 	release_sock(sk);
1230 	return copied + copied_syn;
1231 
1232 do_fault:
1233 	if (!skb->len) {
1234 		tcp_unlink_write_queue(skb, sk);
1235 		/* It is the one place in all of TCP, except connection
1236 		 * reset, where we can be unlinking the send_head.
1237 		 */
1238 		tcp_check_send_head(sk, skb);
1239 		sk_wmem_free_skb(sk, skb);
1240 	}
1241 
1242 do_error:
1243 	if (copied + copied_syn)
1244 		goto out;
1245 out_err:
1246 	err = sk_stream_error(sk, flags, err);
1247 	release_sock(sk);
1248 	return err;
1249 }
1250 EXPORT_SYMBOL(tcp_sendmsg);
1251 
1252 /*
1253  *	Handle reading urgent data. BSD has very simple semantics for
1254  *	this, no blocking and very strange errors 8)
1255  */
1256 
1257 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1258 {
1259 	struct tcp_sock *tp = tcp_sk(sk);
1260 
1261 	/* No URG data to read. */
1262 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1263 	    tp->urg_data == TCP_URG_READ)
1264 		return -EINVAL;	/* Yes this is right ! */
1265 
1266 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1267 		return -ENOTCONN;
1268 
1269 	if (tp->urg_data & TCP_URG_VALID) {
1270 		int err = 0;
1271 		char c = tp->urg_data;
1272 
1273 		if (!(flags & MSG_PEEK))
1274 			tp->urg_data = TCP_URG_READ;
1275 
1276 		/* Read urgent data. */
1277 		msg->msg_flags |= MSG_OOB;
1278 
1279 		if (len > 0) {
1280 			if (!(flags & MSG_TRUNC))
1281 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1282 			len = 1;
1283 		} else
1284 			msg->msg_flags |= MSG_TRUNC;
1285 
1286 		return err ? -EFAULT : len;
1287 	}
1288 
1289 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1290 		return 0;
1291 
1292 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1293 	 * the available implementations agree in this case:
1294 	 * this call should never block, independent of the
1295 	 * blocking state of the socket.
1296 	 * Mike <pall@rz.uni-karlsruhe.de>
1297 	 */
1298 	return -EAGAIN;
1299 }
1300 
1301 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1302 {
1303 	struct sk_buff *skb;
1304 	int copied = 0, err = 0;
1305 
1306 	/* XXX -- need to support SO_PEEK_OFF */
1307 
1308 	skb_queue_walk(&sk->sk_write_queue, skb) {
1309 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1310 		if (err)
1311 			break;
1312 
1313 		copied += skb->len;
1314 	}
1315 
1316 	return err ?: copied;
1317 }
1318 
1319 /* Clean up the receive buffer for full frames taken by the user,
1320  * then send an ACK if necessary.  COPIED is the number of bytes
1321  * tcp_recvmsg has given to the user so far, it speeds up the
1322  * calculation of whether or not we must ACK for the sake of
1323  * a window update.
1324  */
1325 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1326 {
1327 	struct tcp_sock *tp = tcp_sk(sk);
1328 	bool time_to_ack = false;
1329 
1330 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1331 
1332 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1333 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1334 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1335 
1336 	if (inet_csk_ack_scheduled(sk)) {
1337 		const struct inet_connection_sock *icsk = inet_csk(sk);
1338 		   /* Delayed ACKs frequently hit locked sockets during bulk
1339 		    * receive. */
1340 		if (icsk->icsk_ack.blocked ||
1341 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1342 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1343 		    /*
1344 		     * If this read emptied read buffer, we send ACK, if
1345 		     * connection is not bidirectional, user drained
1346 		     * receive buffer and there was a small segment
1347 		     * in queue.
1348 		     */
1349 		    (copied > 0 &&
1350 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1351 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1352 		       !icsk->icsk_ack.pingpong)) &&
1353 		      !atomic_read(&sk->sk_rmem_alloc)))
1354 			time_to_ack = true;
1355 	}
1356 
1357 	/* We send an ACK if we can now advertise a non-zero window
1358 	 * which has been raised "significantly".
1359 	 *
1360 	 * Even if window raised up to infinity, do not send window open ACK
1361 	 * in states, where we will not receive more. It is useless.
1362 	 */
1363 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1364 		__u32 rcv_window_now = tcp_receive_window(tp);
1365 
1366 		/* Optimize, __tcp_select_window() is not cheap. */
1367 		if (2*rcv_window_now <= tp->window_clamp) {
1368 			__u32 new_window = __tcp_select_window(sk);
1369 
1370 			/* Send ACK now, if this read freed lots of space
1371 			 * in our buffer. Certainly, new_window is new window.
1372 			 * We can advertise it now, if it is not less than current one.
1373 			 * "Lots" means "at least twice" here.
1374 			 */
1375 			if (new_window && new_window >= 2 * rcv_window_now)
1376 				time_to_ack = true;
1377 		}
1378 	}
1379 	if (time_to_ack)
1380 		tcp_send_ack(sk);
1381 }
1382 
1383 static void tcp_prequeue_process(struct sock *sk)
1384 {
1385 	struct sk_buff *skb;
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 
1388 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1389 
1390 	/* RX process wants to run with disabled BHs, though it is not
1391 	 * necessary */
1392 	local_bh_disable();
1393 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1394 		sk_backlog_rcv(sk, skb);
1395 	local_bh_enable();
1396 
1397 	/* Clear memory counter. */
1398 	tp->ucopy.memory = 0;
1399 }
1400 
1401 #ifdef CONFIG_NET_DMA
1402 static void tcp_service_net_dma(struct sock *sk, bool wait)
1403 {
1404 	dma_cookie_t done, used;
1405 	dma_cookie_t last_issued;
1406 	struct tcp_sock *tp = tcp_sk(sk);
1407 
1408 	if (!tp->ucopy.dma_chan)
1409 		return;
1410 
1411 	last_issued = tp->ucopy.dma_cookie;
1412 	dma_async_issue_pending(tp->ucopy.dma_chan);
1413 
1414 	do {
1415 		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1416 					      last_issued, &done,
1417 					      &used) == DMA_SUCCESS) {
1418 			/* Safe to free early-copied skbs now */
1419 			__skb_queue_purge(&sk->sk_async_wait_queue);
1420 			break;
1421 		} else {
1422 			struct sk_buff *skb;
1423 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1424 			       (dma_async_is_complete(skb->dma_cookie, done,
1425 						      used) == DMA_SUCCESS)) {
1426 				__skb_dequeue(&sk->sk_async_wait_queue);
1427 				kfree_skb(skb);
1428 			}
1429 		}
1430 	} while (wait);
1431 }
1432 #endif
1433 
1434 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1435 {
1436 	struct sk_buff *skb;
1437 	u32 offset;
1438 
1439 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1440 		offset = seq - TCP_SKB_CB(skb)->seq;
1441 		if (tcp_hdr(skb)->syn)
1442 			offset--;
1443 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1444 			*off = offset;
1445 			return skb;
1446 		}
1447 		/* This looks weird, but this can happen if TCP collapsing
1448 		 * splitted a fat GRO packet, while we released socket lock
1449 		 * in skb_splice_bits()
1450 		 */
1451 		sk_eat_skb(sk, skb, false);
1452 	}
1453 	return NULL;
1454 }
1455 
1456 /*
1457  * This routine provides an alternative to tcp_recvmsg() for routines
1458  * that would like to handle copying from skbuffs directly in 'sendfile'
1459  * fashion.
1460  * Note:
1461  *	- It is assumed that the socket was locked by the caller.
1462  *	- The routine does not block.
1463  *	- At present, there is no support for reading OOB data
1464  *	  or for 'peeking' the socket using this routine
1465  *	  (although both would be easy to implement).
1466  */
1467 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1468 		  sk_read_actor_t recv_actor)
1469 {
1470 	struct sk_buff *skb;
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	u32 seq = tp->copied_seq;
1473 	u32 offset;
1474 	int copied = 0;
1475 
1476 	if (sk->sk_state == TCP_LISTEN)
1477 		return -ENOTCONN;
1478 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1479 		if (offset < skb->len) {
1480 			int used;
1481 			size_t len;
1482 
1483 			len = skb->len - offset;
1484 			/* Stop reading if we hit a patch of urgent data */
1485 			if (tp->urg_data) {
1486 				u32 urg_offset = tp->urg_seq - seq;
1487 				if (urg_offset < len)
1488 					len = urg_offset;
1489 				if (!len)
1490 					break;
1491 			}
1492 			used = recv_actor(desc, skb, offset, len);
1493 			if (used <= 0) {
1494 				if (!copied)
1495 					copied = used;
1496 				break;
1497 			} else if (used <= len) {
1498 				seq += used;
1499 				copied += used;
1500 				offset += used;
1501 			}
1502 			/* If recv_actor drops the lock (e.g. TCP splice
1503 			 * receive) the skb pointer might be invalid when
1504 			 * getting here: tcp_collapse might have deleted it
1505 			 * while aggregating skbs from the socket queue.
1506 			 */
1507 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1508 			if (!skb)
1509 				break;
1510 			/* TCP coalescing might have appended data to the skb.
1511 			 * Try to splice more frags
1512 			 */
1513 			if (offset + 1 != skb->len)
1514 				continue;
1515 		}
1516 		if (tcp_hdr(skb)->fin) {
1517 			sk_eat_skb(sk, skb, false);
1518 			++seq;
1519 			break;
1520 		}
1521 		sk_eat_skb(sk, skb, false);
1522 		if (!desc->count)
1523 			break;
1524 		tp->copied_seq = seq;
1525 	}
1526 	tp->copied_seq = seq;
1527 
1528 	tcp_rcv_space_adjust(sk);
1529 
1530 	/* Clean up data we have read: This will do ACK frames. */
1531 	if (copied > 0) {
1532 		tcp_recv_skb(sk, seq, &offset);
1533 		tcp_cleanup_rbuf(sk, copied);
1534 	}
1535 	return copied;
1536 }
1537 EXPORT_SYMBOL(tcp_read_sock);
1538 
1539 /*
1540  *	This routine copies from a sock struct into the user buffer.
1541  *
1542  *	Technical note: in 2.3 we work on _locked_ socket, so that
1543  *	tricks with *seq access order and skb->users are not required.
1544  *	Probably, code can be easily improved even more.
1545  */
1546 
1547 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1548 		size_t len, int nonblock, int flags, int *addr_len)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	int copied = 0;
1552 	u32 peek_seq;
1553 	u32 *seq;
1554 	unsigned long used;
1555 	int err;
1556 	int target;		/* Read at least this many bytes */
1557 	long timeo;
1558 	struct task_struct *user_recv = NULL;
1559 	bool copied_early = false;
1560 	struct sk_buff *skb;
1561 	u32 urg_hole = 0;
1562 
1563 	lock_sock(sk);
1564 
1565 	err = -ENOTCONN;
1566 	if (sk->sk_state == TCP_LISTEN)
1567 		goto out;
1568 
1569 	timeo = sock_rcvtimeo(sk, nonblock);
1570 
1571 	/* Urgent data needs to be handled specially. */
1572 	if (flags & MSG_OOB)
1573 		goto recv_urg;
1574 
1575 	if (unlikely(tp->repair)) {
1576 		err = -EPERM;
1577 		if (!(flags & MSG_PEEK))
1578 			goto out;
1579 
1580 		if (tp->repair_queue == TCP_SEND_QUEUE)
1581 			goto recv_sndq;
1582 
1583 		err = -EINVAL;
1584 		if (tp->repair_queue == TCP_NO_QUEUE)
1585 			goto out;
1586 
1587 		/* 'common' recv queue MSG_PEEK-ing */
1588 	}
1589 
1590 	seq = &tp->copied_seq;
1591 	if (flags & MSG_PEEK) {
1592 		peek_seq = tp->copied_seq;
1593 		seq = &peek_seq;
1594 	}
1595 
1596 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1597 
1598 #ifdef CONFIG_NET_DMA
1599 	tp->ucopy.dma_chan = NULL;
1600 	preempt_disable();
1601 	skb = skb_peek_tail(&sk->sk_receive_queue);
1602 	{
1603 		int available = 0;
1604 
1605 		if (skb)
1606 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1607 		if ((available < target) &&
1608 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1609 		    !sysctl_tcp_low_latency &&
1610 		    net_dma_find_channel()) {
1611 			preempt_enable_no_resched();
1612 			tp->ucopy.pinned_list =
1613 					dma_pin_iovec_pages(msg->msg_iov, len);
1614 		} else {
1615 			preempt_enable_no_resched();
1616 		}
1617 	}
1618 #endif
1619 
1620 	do {
1621 		u32 offset;
1622 
1623 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1624 		if (tp->urg_data && tp->urg_seq == *seq) {
1625 			if (copied)
1626 				break;
1627 			if (signal_pending(current)) {
1628 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1629 				break;
1630 			}
1631 		}
1632 
1633 		/* Next get a buffer. */
1634 
1635 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1636 			/* Now that we have two receive queues this
1637 			 * shouldn't happen.
1638 			 */
1639 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1640 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1641 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1642 				 flags))
1643 				break;
1644 
1645 			offset = *seq - TCP_SKB_CB(skb)->seq;
1646 			if (tcp_hdr(skb)->syn)
1647 				offset--;
1648 			if (offset < skb->len)
1649 				goto found_ok_skb;
1650 			if (tcp_hdr(skb)->fin)
1651 				goto found_fin_ok;
1652 			WARN(!(flags & MSG_PEEK),
1653 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1654 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1655 		}
1656 
1657 		/* Well, if we have backlog, try to process it now yet. */
1658 
1659 		if (copied >= target && !sk->sk_backlog.tail)
1660 			break;
1661 
1662 		if (copied) {
1663 			if (sk->sk_err ||
1664 			    sk->sk_state == TCP_CLOSE ||
1665 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1666 			    !timeo ||
1667 			    signal_pending(current))
1668 				break;
1669 		} else {
1670 			if (sock_flag(sk, SOCK_DONE))
1671 				break;
1672 
1673 			if (sk->sk_err) {
1674 				copied = sock_error(sk);
1675 				break;
1676 			}
1677 
1678 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1679 				break;
1680 
1681 			if (sk->sk_state == TCP_CLOSE) {
1682 				if (!sock_flag(sk, SOCK_DONE)) {
1683 					/* This occurs when user tries to read
1684 					 * from never connected socket.
1685 					 */
1686 					copied = -ENOTCONN;
1687 					break;
1688 				}
1689 				break;
1690 			}
1691 
1692 			if (!timeo) {
1693 				copied = -EAGAIN;
1694 				break;
1695 			}
1696 
1697 			if (signal_pending(current)) {
1698 				copied = sock_intr_errno(timeo);
1699 				break;
1700 			}
1701 		}
1702 
1703 		tcp_cleanup_rbuf(sk, copied);
1704 
1705 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1706 			/* Install new reader */
1707 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1708 				user_recv = current;
1709 				tp->ucopy.task = user_recv;
1710 				tp->ucopy.iov = msg->msg_iov;
1711 			}
1712 
1713 			tp->ucopy.len = len;
1714 
1715 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1716 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1717 
1718 			/* Ugly... If prequeue is not empty, we have to
1719 			 * process it before releasing socket, otherwise
1720 			 * order will be broken at second iteration.
1721 			 * More elegant solution is required!!!
1722 			 *
1723 			 * Look: we have the following (pseudo)queues:
1724 			 *
1725 			 * 1. packets in flight
1726 			 * 2. backlog
1727 			 * 3. prequeue
1728 			 * 4. receive_queue
1729 			 *
1730 			 * Each queue can be processed only if the next ones
1731 			 * are empty. At this point we have empty receive_queue.
1732 			 * But prequeue _can_ be not empty after 2nd iteration,
1733 			 * when we jumped to start of loop because backlog
1734 			 * processing added something to receive_queue.
1735 			 * We cannot release_sock(), because backlog contains
1736 			 * packets arrived _after_ prequeued ones.
1737 			 *
1738 			 * Shortly, algorithm is clear --- to process all
1739 			 * the queues in order. We could make it more directly,
1740 			 * requeueing packets from backlog to prequeue, if
1741 			 * is not empty. It is more elegant, but eats cycles,
1742 			 * unfortunately.
1743 			 */
1744 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1745 				goto do_prequeue;
1746 
1747 			/* __ Set realtime policy in scheduler __ */
1748 		}
1749 
1750 #ifdef CONFIG_NET_DMA
1751 		if (tp->ucopy.dma_chan) {
1752 			if (tp->rcv_wnd == 0 &&
1753 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1754 				tcp_service_net_dma(sk, true);
1755 				tcp_cleanup_rbuf(sk, copied);
1756 			} else
1757 				dma_async_issue_pending(tp->ucopy.dma_chan);
1758 		}
1759 #endif
1760 		if (copied >= target) {
1761 			/* Do not sleep, just process backlog. */
1762 			release_sock(sk);
1763 			lock_sock(sk);
1764 		} else
1765 			sk_wait_data(sk, &timeo);
1766 
1767 #ifdef CONFIG_NET_DMA
1768 		tcp_service_net_dma(sk, false);  /* Don't block */
1769 		tp->ucopy.wakeup = 0;
1770 #endif
1771 
1772 		if (user_recv) {
1773 			int chunk;
1774 
1775 			/* __ Restore normal policy in scheduler __ */
1776 
1777 			if ((chunk = len - tp->ucopy.len) != 0) {
1778 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1779 				len -= chunk;
1780 				copied += chunk;
1781 			}
1782 
1783 			if (tp->rcv_nxt == tp->copied_seq &&
1784 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1785 do_prequeue:
1786 				tcp_prequeue_process(sk);
1787 
1788 				if ((chunk = len - tp->ucopy.len) != 0) {
1789 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1790 					len -= chunk;
1791 					copied += chunk;
1792 				}
1793 			}
1794 		}
1795 		if ((flags & MSG_PEEK) &&
1796 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1797 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1798 					    current->comm,
1799 					    task_pid_nr(current));
1800 			peek_seq = tp->copied_seq;
1801 		}
1802 		continue;
1803 
1804 	found_ok_skb:
1805 		/* Ok so how much can we use? */
1806 		used = skb->len - offset;
1807 		if (len < used)
1808 			used = len;
1809 
1810 		/* Do we have urgent data here? */
1811 		if (tp->urg_data) {
1812 			u32 urg_offset = tp->urg_seq - *seq;
1813 			if (urg_offset < used) {
1814 				if (!urg_offset) {
1815 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1816 						++*seq;
1817 						urg_hole++;
1818 						offset++;
1819 						used--;
1820 						if (!used)
1821 							goto skip_copy;
1822 					}
1823 				} else
1824 					used = urg_offset;
1825 			}
1826 		}
1827 
1828 		if (!(flags & MSG_TRUNC)) {
1829 #ifdef CONFIG_NET_DMA
1830 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1831 				tp->ucopy.dma_chan = net_dma_find_channel();
1832 
1833 			if (tp->ucopy.dma_chan) {
1834 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1835 					tp->ucopy.dma_chan, skb, offset,
1836 					msg->msg_iov, used,
1837 					tp->ucopy.pinned_list);
1838 
1839 				if (tp->ucopy.dma_cookie < 0) {
1840 
1841 					pr_alert("%s: dma_cookie < 0\n",
1842 						 __func__);
1843 
1844 					/* Exception. Bailout! */
1845 					if (!copied)
1846 						copied = -EFAULT;
1847 					break;
1848 				}
1849 
1850 				dma_async_issue_pending(tp->ucopy.dma_chan);
1851 
1852 				if ((offset + used) == skb->len)
1853 					copied_early = true;
1854 
1855 			} else
1856 #endif
1857 			{
1858 				err = skb_copy_datagram_iovec(skb, offset,
1859 						msg->msg_iov, used);
1860 				if (err) {
1861 					/* Exception. Bailout! */
1862 					if (!copied)
1863 						copied = -EFAULT;
1864 					break;
1865 				}
1866 			}
1867 		}
1868 
1869 		*seq += used;
1870 		copied += used;
1871 		len -= used;
1872 
1873 		tcp_rcv_space_adjust(sk);
1874 
1875 skip_copy:
1876 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1877 			tp->urg_data = 0;
1878 			tcp_fast_path_check(sk);
1879 		}
1880 		if (used + offset < skb->len)
1881 			continue;
1882 
1883 		if (tcp_hdr(skb)->fin)
1884 			goto found_fin_ok;
1885 		if (!(flags & MSG_PEEK)) {
1886 			sk_eat_skb(sk, skb, copied_early);
1887 			copied_early = false;
1888 		}
1889 		continue;
1890 
1891 	found_fin_ok:
1892 		/* Process the FIN. */
1893 		++*seq;
1894 		if (!(flags & MSG_PEEK)) {
1895 			sk_eat_skb(sk, skb, copied_early);
1896 			copied_early = false;
1897 		}
1898 		break;
1899 	} while (len > 0);
1900 
1901 	if (user_recv) {
1902 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1903 			int chunk;
1904 
1905 			tp->ucopy.len = copied > 0 ? len : 0;
1906 
1907 			tcp_prequeue_process(sk);
1908 
1909 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1910 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1911 				len -= chunk;
1912 				copied += chunk;
1913 			}
1914 		}
1915 
1916 		tp->ucopy.task = NULL;
1917 		tp->ucopy.len = 0;
1918 	}
1919 
1920 #ifdef CONFIG_NET_DMA
1921 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1922 	tp->ucopy.dma_chan = NULL;
1923 
1924 	if (tp->ucopy.pinned_list) {
1925 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1926 		tp->ucopy.pinned_list = NULL;
1927 	}
1928 #endif
1929 
1930 	/* According to UNIX98, msg_name/msg_namelen are ignored
1931 	 * on connected socket. I was just happy when found this 8) --ANK
1932 	 */
1933 
1934 	/* Clean up data we have read: This will do ACK frames. */
1935 	tcp_cleanup_rbuf(sk, copied);
1936 
1937 	release_sock(sk);
1938 	return copied;
1939 
1940 out:
1941 	release_sock(sk);
1942 	return err;
1943 
1944 recv_urg:
1945 	err = tcp_recv_urg(sk, msg, len, flags);
1946 	goto out;
1947 
1948 recv_sndq:
1949 	err = tcp_peek_sndq(sk, msg, len);
1950 	goto out;
1951 }
1952 EXPORT_SYMBOL(tcp_recvmsg);
1953 
1954 void tcp_set_state(struct sock *sk, int state)
1955 {
1956 	int oldstate = sk->sk_state;
1957 
1958 	switch (state) {
1959 	case TCP_ESTABLISHED:
1960 		if (oldstate != TCP_ESTABLISHED)
1961 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1962 		break;
1963 
1964 	case TCP_CLOSE:
1965 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1966 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1967 
1968 		sk->sk_prot->unhash(sk);
1969 		if (inet_csk(sk)->icsk_bind_hash &&
1970 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1971 			inet_put_port(sk);
1972 		/* fall through */
1973 	default:
1974 		if (oldstate == TCP_ESTABLISHED)
1975 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1976 	}
1977 
1978 	/* Change state AFTER socket is unhashed to avoid closed
1979 	 * socket sitting in hash tables.
1980 	 */
1981 	sk->sk_state = state;
1982 
1983 #ifdef STATE_TRACE
1984 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1985 #endif
1986 }
1987 EXPORT_SYMBOL_GPL(tcp_set_state);
1988 
1989 /*
1990  *	State processing on a close. This implements the state shift for
1991  *	sending our FIN frame. Note that we only send a FIN for some
1992  *	states. A shutdown() may have already sent the FIN, or we may be
1993  *	closed.
1994  */
1995 
1996 static const unsigned char new_state[16] = {
1997   /* current state:        new state:      action:	*/
1998   /* (Invalid)		*/ TCP_CLOSE,
1999   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2000   /* TCP_SYN_SENT	*/ TCP_CLOSE,
2001   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2002   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2003   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2004   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2005   /* TCP_CLOSE		*/ TCP_CLOSE,
2006   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2007   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2008   /* TCP_LISTEN		*/ TCP_CLOSE,
2009   /* TCP_CLOSING	*/ TCP_CLOSING,
2010 };
2011 
2012 static int tcp_close_state(struct sock *sk)
2013 {
2014 	int next = (int)new_state[sk->sk_state];
2015 	int ns = next & TCP_STATE_MASK;
2016 
2017 	tcp_set_state(sk, ns);
2018 
2019 	return next & TCP_ACTION_FIN;
2020 }
2021 
2022 /*
2023  *	Shutdown the sending side of a connection. Much like close except
2024  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2025  */
2026 
2027 void tcp_shutdown(struct sock *sk, int how)
2028 {
2029 	/*	We need to grab some memory, and put together a FIN,
2030 	 *	and then put it into the queue to be sent.
2031 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2032 	 */
2033 	if (!(how & SEND_SHUTDOWN))
2034 		return;
2035 
2036 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2037 	if ((1 << sk->sk_state) &
2038 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2039 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2040 		/* Clear out any half completed packets.  FIN if needed. */
2041 		if (tcp_close_state(sk))
2042 			tcp_send_fin(sk);
2043 	}
2044 }
2045 EXPORT_SYMBOL(tcp_shutdown);
2046 
2047 bool tcp_check_oom(struct sock *sk, int shift)
2048 {
2049 	bool too_many_orphans, out_of_socket_memory;
2050 
2051 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2052 	out_of_socket_memory = tcp_out_of_memory(sk);
2053 
2054 	if (too_many_orphans)
2055 		net_info_ratelimited("too many orphaned sockets\n");
2056 	if (out_of_socket_memory)
2057 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2058 	return too_many_orphans || out_of_socket_memory;
2059 }
2060 
2061 void tcp_close(struct sock *sk, long timeout)
2062 {
2063 	struct sk_buff *skb;
2064 	int data_was_unread = 0;
2065 	int state;
2066 
2067 	lock_sock(sk);
2068 	sk->sk_shutdown = SHUTDOWN_MASK;
2069 
2070 	if (sk->sk_state == TCP_LISTEN) {
2071 		tcp_set_state(sk, TCP_CLOSE);
2072 
2073 		/* Special case. */
2074 		inet_csk_listen_stop(sk);
2075 
2076 		goto adjudge_to_death;
2077 	}
2078 
2079 	/*  We need to flush the recv. buffs.  We do this only on the
2080 	 *  descriptor close, not protocol-sourced closes, because the
2081 	 *  reader process may not have drained the data yet!
2082 	 */
2083 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2084 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2085 			  tcp_hdr(skb)->fin;
2086 		data_was_unread += len;
2087 		__kfree_skb(skb);
2088 	}
2089 
2090 	sk_mem_reclaim(sk);
2091 
2092 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2093 	if (sk->sk_state == TCP_CLOSE)
2094 		goto adjudge_to_death;
2095 
2096 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2097 	 * data was lost. To witness the awful effects of the old behavior of
2098 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2099 	 * GET in an FTP client, suspend the process, wait for the client to
2100 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2101 	 * Note: timeout is always zero in such a case.
2102 	 */
2103 	if (unlikely(tcp_sk(sk)->repair)) {
2104 		sk->sk_prot->disconnect(sk, 0);
2105 	} else if (data_was_unread) {
2106 		/* Unread data was tossed, zap the connection. */
2107 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2108 		tcp_set_state(sk, TCP_CLOSE);
2109 		tcp_send_active_reset(sk, sk->sk_allocation);
2110 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2111 		/* Check zero linger _after_ checking for unread data. */
2112 		sk->sk_prot->disconnect(sk, 0);
2113 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2114 	} else if (tcp_close_state(sk)) {
2115 		/* We FIN if the application ate all the data before
2116 		 * zapping the connection.
2117 		 */
2118 
2119 		/* RED-PEN. Formally speaking, we have broken TCP state
2120 		 * machine. State transitions:
2121 		 *
2122 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2123 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2124 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2125 		 *
2126 		 * are legal only when FIN has been sent (i.e. in window),
2127 		 * rather than queued out of window. Purists blame.
2128 		 *
2129 		 * F.e. "RFC state" is ESTABLISHED,
2130 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2131 		 *
2132 		 * The visible declinations are that sometimes
2133 		 * we enter time-wait state, when it is not required really
2134 		 * (harmless), do not send active resets, when they are
2135 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2136 		 * they look as CLOSING or LAST_ACK for Linux)
2137 		 * Probably, I missed some more holelets.
2138 		 * 						--ANK
2139 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2140 		 * in a single packet! (May consider it later but will
2141 		 * probably need API support or TCP_CORK SYN-ACK until
2142 		 * data is written and socket is closed.)
2143 		 */
2144 		tcp_send_fin(sk);
2145 	}
2146 
2147 	sk_stream_wait_close(sk, timeout);
2148 
2149 adjudge_to_death:
2150 	state = sk->sk_state;
2151 	sock_hold(sk);
2152 	sock_orphan(sk);
2153 
2154 	/* It is the last release_sock in its life. It will remove backlog. */
2155 	release_sock(sk);
2156 
2157 
2158 	/* Now socket is owned by kernel and we acquire BH lock
2159 	   to finish close. No need to check for user refs.
2160 	 */
2161 	local_bh_disable();
2162 	bh_lock_sock(sk);
2163 	WARN_ON(sock_owned_by_user(sk));
2164 
2165 	percpu_counter_inc(sk->sk_prot->orphan_count);
2166 
2167 	/* Have we already been destroyed by a softirq or backlog? */
2168 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2169 		goto out;
2170 
2171 	/*	This is a (useful) BSD violating of the RFC. There is a
2172 	 *	problem with TCP as specified in that the other end could
2173 	 *	keep a socket open forever with no application left this end.
2174 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2175 	 *	our end. If they send after that then tough - BUT: long enough
2176 	 *	that we won't make the old 4*rto = almost no time - whoops
2177 	 *	reset mistake.
2178 	 *
2179 	 *	Nope, it was not mistake. It is really desired behaviour
2180 	 *	f.e. on http servers, when such sockets are useless, but
2181 	 *	consume significant resources. Let's do it with special
2182 	 *	linger2	option.					--ANK
2183 	 */
2184 
2185 	if (sk->sk_state == TCP_FIN_WAIT2) {
2186 		struct tcp_sock *tp = tcp_sk(sk);
2187 		if (tp->linger2 < 0) {
2188 			tcp_set_state(sk, TCP_CLOSE);
2189 			tcp_send_active_reset(sk, GFP_ATOMIC);
2190 			NET_INC_STATS_BH(sock_net(sk),
2191 					LINUX_MIB_TCPABORTONLINGER);
2192 		} else {
2193 			const int tmo = tcp_fin_time(sk);
2194 
2195 			if (tmo > TCP_TIMEWAIT_LEN) {
2196 				inet_csk_reset_keepalive_timer(sk,
2197 						tmo - TCP_TIMEWAIT_LEN);
2198 			} else {
2199 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2200 				goto out;
2201 			}
2202 		}
2203 	}
2204 	if (sk->sk_state != TCP_CLOSE) {
2205 		sk_mem_reclaim(sk);
2206 		if (tcp_check_oom(sk, 0)) {
2207 			tcp_set_state(sk, TCP_CLOSE);
2208 			tcp_send_active_reset(sk, GFP_ATOMIC);
2209 			NET_INC_STATS_BH(sock_net(sk),
2210 					LINUX_MIB_TCPABORTONMEMORY);
2211 		}
2212 	}
2213 
2214 	if (sk->sk_state == TCP_CLOSE) {
2215 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2216 		/* We could get here with a non-NULL req if the socket is
2217 		 * aborted (e.g., closed with unread data) before 3WHS
2218 		 * finishes.
2219 		 */
2220 		if (req != NULL)
2221 			reqsk_fastopen_remove(sk, req, false);
2222 		inet_csk_destroy_sock(sk);
2223 	}
2224 	/* Otherwise, socket is reprieved until protocol close. */
2225 
2226 out:
2227 	bh_unlock_sock(sk);
2228 	local_bh_enable();
2229 	sock_put(sk);
2230 }
2231 EXPORT_SYMBOL(tcp_close);
2232 
2233 /* These states need RST on ABORT according to RFC793 */
2234 
2235 static inline bool tcp_need_reset(int state)
2236 {
2237 	return (1 << state) &
2238 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2239 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2240 }
2241 
2242 int tcp_disconnect(struct sock *sk, int flags)
2243 {
2244 	struct inet_sock *inet = inet_sk(sk);
2245 	struct inet_connection_sock *icsk = inet_csk(sk);
2246 	struct tcp_sock *tp = tcp_sk(sk);
2247 	int err = 0;
2248 	int old_state = sk->sk_state;
2249 
2250 	if (old_state != TCP_CLOSE)
2251 		tcp_set_state(sk, TCP_CLOSE);
2252 
2253 	/* ABORT function of RFC793 */
2254 	if (old_state == TCP_LISTEN) {
2255 		inet_csk_listen_stop(sk);
2256 	} else if (unlikely(tp->repair)) {
2257 		sk->sk_err = ECONNABORTED;
2258 	} else if (tcp_need_reset(old_state) ||
2259 		   (tp->snd_nxt != tp->write_seq &&
2260 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2261 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2262 		 * states
2263 		 */
2264 		tcp_send_active_reset(sk, gfp_any());
2265 		sk->sk_err = ECONNRESET;
2266 	} else if (old_state == TCP_SYN_SENT)
2267 		sk->sk_err = ECONNRESET;
2268 
2269 	tcp_clear_xmit_timers(sk);
2270 	__skb_queue_purge(&sk->sk_receive_queue);
2271 	tcp_write_queue_purge(sk);
2272 	__skb_queue_purge(&tp->out_of_order_queue);
2273 #ifdef CONFIG_NET_DMA
2274 	__skb_queue_purge(&sk->sk_async_wait_queue);
2275 #endif
2276 
2277 	inet->inet_dport = 0;
2278 
2279 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2280 		inet_reset_saddr(sk);
2281 
2282 	sk->sk_shutdown = 0;
2283 	sock_reset_flag(sk, SOCK_DONE);
2284 	tp->srtt = 0;
2285 	if ((tp->write_seq += tp->max_window + 2) == 0)
2286 		tp->write_seq = 1;
2287 	icsk->icsk_backoff = 0;
2288 	tp->snd_cwnd = 2;
2289 	icsk->icsk_probes_out = 0;
2290 	tp->packets_out = 0;
2291 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2292 	tp->snd_cwnd_cnt = 0;
2293 	tp->window_clamp = 0;
2294 	tcp_set_ca_state(sk, TCP_CA_Open);
2295 	tcp_clear_retrans(tp);
2296 	inet_csk_delack_init(sk);
2297 	tcp_init_send_head(sk);
2298 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2299 	__sk_dst_reset(sk);
2300 
2301 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2302 
2303 	sk->sk_error_report(sk);
2304 	return err;
2305 }
2306 EXPORT_SYMBOL(tcp_disconnect);
2307 
2308 void tcp_sock_destruct(struct sock *sk)
2309 {
2310 	inet_sock_destruct(sk);
2311 
2312 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2313 }
2314 
2315 static inline bool tcp_can_repair_sock(const struct sock *sk)
2316 {
2317 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2318 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2319 }
2320 
2321 static int tcp_repair_options_est(struct tcp_sock *tp,
2322 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2323 {
2324 	struct tcp_repair_opt opt;
2325 
2326 	while (len >= sizeof(opt)) {
2327 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2328 			return -EFAULT;
2329 
2330 		optbuf++;
2331 		len -= sizeof(opt);
2332 
2333 		switch (opt.opt_code) {
2334 		case TCPOPT_MSS:
2335 			tp->rx_opt.mss_clamp = opt.opt_val;
2336 			break;
2337 		case TCPOPT_WINDOW:
2338 			{
2339 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2340 				u16 rcv_wscale = opt.opt_val >> 16;
2341 
2342 				if (snd_wscale > 14 || rcv_wscale > 14)
2343 					return -EFBIG;
2344 
2345 				tp->rx_opt.snd_wscale = snd_wscale;
2346 				tp->rx_opt.rcv_wscale = rcv_wscale;
2347 				tp->rx_opt.wscale_ok = 1;
2348 			}
2349 			break;
2350 		case TCPOPT_SACK_PERM:
2351 			if (opt.opt_val != 0)
2352 				return -EINVAL;
2353 
2354 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2355 			if (sysctl_tcp_fack)
2356 				tcp_enable_fack(tp);
2357 			break;
2358 		case TCPOPT_TIMESTAMP:
2359 			if (opt.opt_val != 0)
2360 				return -EINVAL;
2361 
2362 			tp->rx_opt.tstamp_ok = 1;
2363 			break;
2364 		}
2365 	}
2366 
2367 	return 0;
2368 }
2369 
2370 /*
2371  *	Socket option code for TCP.
2372  */
2373 static int do_tcp_setsockopt(struct sock *sk, int level,
2374 		int optname, char __user *optval, unsigned int optlen)
2375 {
2376 	struct tcp_sock *tp = tcp_sk(sk);
2377 	struct inet_connection_sock *icsk = inet_csk(sk);
2378 	int val;
2379 	int err = 0;
2380 
2381 	/* These are data/string values, all the others are ints */
2382 	switch (optname) {
2383 	case TCP_CONGESTION: {
2384 		char name[TCP_CA_NAME_MAX];
2385 
2386 		if (optlen < 1)
2387 			return -EINVAL;
2388 
2389 		val = strncpy_from_user(name, optval,
2390 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2391 		if (val < 0)
2392 			return -EFAULT;
2393 		name[val] = 0;
2394 
2395 		lock_sock(sk);
2396 		err = tcp_set_congestion_control(sk, name);
2397 		release_sock(sk);
2398 		return err;
2399 	}
2400 	case TCP_COOKIE_TRANSACTIONS: {
2401 		struct tcp_cookie_transactions ctd;
2402 		struct tcp_cookie_values *cvp = NULL;
2403 
2404 		if (sizeof(ctd) > optlen)
2405 			return -EINVAL;
2406 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2407 			return -EFAULT;
2408 
2409 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2410 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2411 			return -EINVAL;
2412 
2413 		if (ctd.tcpct_cookie_desired == 0) {
2414 			/* default to global value */
2415 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2416 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2417 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2418 			return -EINVAL;
2419 		}
2420 
2421 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2422 			/* Supercedes all other values */
2423 			lock_sock(sk);
2424 			if (tp->cookie_values != NULL) {
2425 				kref_put(&tp->cookie_values->kref,
2426 					 tcp_cookie_values_release);
2427 				tp->cookie_values = NULL;
2428 			}
2429 			tp->rx_opt.cookie_in_always = 0; /* false */
2430 			tp->rx_opt.cookie_out_never = 1; /* true */
2431 			release_sock(sk);
2432 			return err;
2433 		}
2434 
2435 		/* Allocate ancillary memory before locking.
2436 		 */
2437 		if (ctd.tcpct_used > 0 ||
2438 		    (tp->cookie_values == NULL &&
2439 		     (sysctl_tcp_cookie_size > 0 ||
2440 		      ctd.tcpct_cookie_desired > 0 ||
2441 		      ctd.tcpct_s_data_desired > 0))) {
2442 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2443 				      GFP_KERNEL);
2444 			if (cvp == NULL)
2445 				return -ENOMEM;
2446 
2447 			kref_init(&cvp->kref);
2448 		}
2449 		lock_sock(sk);
2450 		tp->rx_opt.cookie_in_always =
2451 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2452 		tp->rx_opt.cookie_out_never = 0; /* false */
2453 
2454 		if (tp->cookie_values != NULL) {
2455 			if (cvp != NULL) {
2456 				/* Changed values are recorded by a changed
2457 				 * pointer, ensuring the cookie will differ,
2458 				 * without separately hashing each value later.
2459 				 */
2460 				kref_put(&tp->cookie_values->kref,
2461 					 tcp_cookie_values_release);
2462 			} else {
2463 				cvp = tp->cookie_values;
2464 			}
2465 		}
2466 
2467 		if (cvp != NULL) {
2468 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2469 
2470 			if (ctd.tcpct_used > 0) {
2471 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2472 				       ctd.tcpct_used);
2473 				cvp->s_data_desired = ctd.tcpct_used;
2474 				cvp->s_data_constant = 1; /* true */
2475 			} else {
2476 				/* No constant payload data. */
2477 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2478 				cvp->s_data_constant = 0; /* false */
2479 			}
2480 
2481 			tp->cookie_values = cvp;
2482 		}
2483 		release_sock(sk);
2484 		return err;
2485 	}
2486 	default:
2487 		/* fallthru */
2488 		break;
2489 	}
2490 
2491 	if (optlen < sizeof(int))
2492 		return -EINVAL;
2493 
2494 	if (get_user(val, (int __user *)optval))
2495 		return -EFAULT;
2496 
2497 	lock_sock(sk);
2498 
2499 	switch (optname) {
2500 	case TCP_MAXSEG:
2501 		/* Values greater than interface MTU won't take effect. However
2502 		 * at the point when this call is done we typically don't yet
2503 		 * know which interface is going to be used */
2504 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2505 			err = -EINVAL;
2506 			break;
2507 		}
2508 		tp->rx_opt.user_mss = val;
2509 		break;
2510 
2511 	case TCP_NODELAY:
2512 		if (val) {
2513 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2514 			 * this option on corked socket is remembered, but
2515 			 * it is not activated until cork is cleared.
2516 			 *
2517 			 * However, when TCP_NODELAY is set we make
2518 			 * an explicit push, which overrides even TCP_CORK
2519 			 * for currently queued segments.
2520 			 */
2521 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2522 			tcp_push_pending_frames(sk);
2523 		} else {
2524 			tp->nonagle &= ~TCP_NAGLE_OFF;
2525 		}
2526 		break;
2527 
2528 	case TCP_THIN_LINEAR_TIMEOUTS:
2529 		if (val < 0 || val > 1)
2530 			err = -EINVAL;
2531 		else
2532 			tp->thin_lto = val;
2533 		break;
2534 
2535 	case TCP_THIN_DUPACK:
2536 		if (val < 0 || val > 1)
2537 			err = -EINVAL;
2538 		else
2539 			tp->thin_dupack = val;
2540 			if (tp->thin_dupack)
2541 				tcp_disable_early_retrans(tp);
2542 		break;
2543 
2544 	case TCP_REPAIR:
2545 		if (!tcp_can_repair_sock(sk))
2546 			err = -EPERM;
2547 		else if (val == 1) {
2548 			tp->repair = 1;
2549 			sk->sk_reuse = SK_FORCE_REUSE;
2550 			tp->repair_queue = TCP_NO_QUEUE;
2551 		} else if (val == 0) {
2552 			tp->repair = 0;
2553 			sk->sk_reuse = SK_NO_REUSE;
2554 			tcp_send_window_probe(sk);
2555 		} else
2556 			err = -EINVAL;
2557 
2558 		break;
2559 
2560 	case TCP_REPAIR_QUEUE:
2561 		if (!tp->repair)
2562 			err = -EPERM;
2563 		else if (val < TCP_QUEUES_NR)
2564 			tp->repair_queue = val;
2565 		else
2566 			err = -EINVAL;
2567 		break;
2568 
2569 	case TCP_QUEUE_SEQ:
2570 		if (sk->sk_state != TCP_CLOSE)
2571 			err = -EPERM;
2572 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2573 			tp->write_seq = val;
2574 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2575 			tp->rcv_nxt = val;
2576 		else
2577 			err = -EINVAL;
2578 		break;
2579 
2580 	case TCP_REPAIR_OPTIONS:
2581 		if (!tp->repair)
2582 			err = -EINVAL;
2583 		else if (sk->sk_state == TCP_ESTABLISHED)
2584 			err = tcp_repair_options_est(tp,
2585 					(struct tcp_repair_opt __user *)optval,
2586 					optlen);
2587 		else
2588 			err = -EPERM;
2589 		break;
2590 
2591 	case TCP_CORK:
2592 		/* When set indicates to always queue non-full frames.
2593 		 * Later the user clears this option and we transmit
2594 		 * any pending partial frames in the queue.  This is
2595 		 * meant to be used alongside sendfile() to get properly
2596 		 * filled frames when the user (for example) must write
2597 		 * out headers with a write() call first and then use
2598 		 * sendfile to send out the data parts.
2599 		 *
2600 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2601 		 * stronger than TCP_NODELAY.
2602 		 */
2603 		if (val) {
2604 			tp->nonagle |= TCP_NAGLE_CORK;
2605 		} else {
2606 			tp->nonagle &= ~TCP_NAGLE_CORK;
2607 			if (tp->nonagle&TCP_NAGLE_OFF)
2608 				tp->nonagle |= TCP_NAGLE_PUSH;
2609 			tcp_push_pending_frames(sk);
2610 		}
2611 		break;
2612 
2613 	case TCP_KEEPIDLE:
2614 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2615 			err = -EINVAL;
2616 		else {
2617 			tp->keepalive_time = val * HZ;
2618 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2619 			    !((1 << sk->sk_state) &
2620 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2621 				u32 elapsed = keepalive_time_elapsed(tp);
2622 				if (tp->keepalive_time > elapsed)
2623 					elapsed = tp->keepalive_time - elapsed;
2624 				else
2625 					elapsed = 0;
2626 				inet_csk_reset_keepalive_timer(sk, elapsed);
2627 			}
2628 		}
2629 		break;
2630 	case TCP_KEEPINTVL:
2631 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2632 			err = -EINVAL;
2633 		else
2634 			tp->keepalive_intvl = val * HZ;
2635 		break;
2636 	case TCP_KEEPCNT:
2637 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2638 			err = -EINVAL;
2639 		else
2640 			tp->keepalive_probes = val;
2641 		break;
2642 	case TCP_SYNCNT:
2643 		if (val < 1 || val > MAX_TCP_SYNCNT)
2644 			err = -EINVAL;
2645 		else
2646 			icsk->icsk_syn_retries = val;
2647 		break;
2648 
2649 	case TCP_LINGER2:
2650 		if (val < 0)
2651 			tp->linger2 = -1;
2652 		else if (val > sysctl_tcp_fin_timeout / HZ)
2653 			tp->linger2 = 0;
2654 		else
2655 			tp->linger2 = val * HZ;
2656 		break;
2657 
2658 	case TCP_DEFER_ACCEPT:
2659 		/* Translate value in seconds to number of retransmits */
2660 		icsk->icsk_accept_queue.rskq_defer_accept =
2661 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2662 					TCP_RTO_MAX / HZ);
2663 		break;
2664 
2665 	case TCP_WINDOW_CLAMP:
2666 		if (!val) {
2667 			if (sk->sk_state != TCP_CLOSE) {
2668 				err = -EINVAL;
2669 				break;
2670 			}
2671 			tp->window_clamp = 0;
2672 		} else
2673 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2674 						SOCK_MIN_RCVBUF / 2 : val;
2675 		break;
2676 
2677 	case TCP_QUICKACK:
2678 		if (!val) {
2679 			icsk->icsk_ack.pingpong = 1;
2680 		} else {
2681 			icsk->icsk_ack.pingpong = 0;
2682 			if ((1 << sk->sk_state) &
2683 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2684 			    inet_csk_ack_scheduled(sk)) {
2685 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2686 				tcp_cleanup_rbuf(sk, 1);
2687 				if (!(val & 1))
2688 					icsk->icsk_ack.pingpong = 1;
2689 			}
2690 		}
2691 		break;
2692 
2693 #ifdef CONFIG_TCP_MD5SIG
2694 	case TCP_MD5SIG:
2695 		/* Read the IP->Key mappings from userspace */
2696 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2697 		break;
2698 #endif
2699 	case TCP_USER_TIMEOUT:
2700 		/* Cap the max timeout in ms TCP will retry/retrans
2701 		 * before giving up and aborting (ETIMEDOUT) a connection.
2702 		 */
2703 		if (val < 0)
2704 			err = -EINVAL;
2705 		else
2706 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2707 		break;
2708 
2709 	case TCP_FASTOPEN:
2710 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2711 		    TCPF_LISTEN)))
2712 			err = fastopen_init_queue(sk, val);
2713 		else
2714 			err = -EINVAL;
2715 		break;
2716 	case TCP_TIMESTAMP:
2717 		if (!tp->repair)
2718 			err = -EPERM;
2719 		else
2720 			tp->tsoffset = val - tcp_time_stamp;
2721 		break;
2722 	default:
2723 		err = -ENOPROTOOPT;
2724 		break;
2725 	}
2726 
2727 	release_sock(sk);
2728 	return err;
2729 }
2730 
2731 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2732 		   unsigned int optlen)
2733 {
2734 	const struct inet_connection_sock *icsk = inet_csk(sk);
2735 
2736 	if (level != SOL_TCP)
2737 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2738 						     optval, optlen);
2739 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2740 }
2741 EXPORT_SYMBOL(tcp_setsockopt);
2742 
2743 #ifdef CONFIG_COMPAT
2744 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2745 			  char __user *optval, unsigned int optlen)
2746 {
2747 	if (level != SOL_TCP)
2748 		return inet_csk_compat_setsockopt(sk, level, optname,
2749 						  optval, optlen);
2750 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2751 }
2752 EXPORT_SYMBOL(compat_tcp_setsockopt);
2753 #endif
2754 
2755 /* Return information about state of tcp endpoint in API format. */
2756 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2757 {
2758 	const struct tcp_sock *tp = tcp_sk(sk);
2759 	const struct inet_connection_sock *icsk = inet_csk(sk);
2760 	u32 now = tcp_time_stamp;
2761 
2762 	memset(info, 0, sizeof(*info));
2763 
2764 	info->tcpi_state = sk->sk_state;
2765 	info->tcpi_ca_state = icsk->icsk_ca_state;
2766 	info->tcpi_retransmits = icsk->icsk_retransmits;
2767 	info->tcpi_probes = icsk->icsk_probes_out;
2768 	info->tcpi_backoff = icsk->icsk_backoff;
2769 
2770 	if (tp->rx_opt.tstamp_ok)
2771 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2772 	if (tcp_is_sack(tp))
2773 		info->tcpi_options |= TCPI_OPT_SACK;
2774 	if (tp->rx_opt.wscale_ok) {
2775 		info->tcpi_options |= TCPI_OPT_WSCALE;
2776 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2777 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2778 	}
2779 
2780 	if (tp->ecn_flags & TCP_ECN_OK)
2781 		info->tcpi_options |= TCPI_OPT_ECN;
2782 	if (tp->ecn_flags & TCP_ECN_SEEN)
2783 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2784 	if (tp->syn_data_acked)
2785 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2786 
2787 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2788 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2789 	info->tcpi_snd_mss = tp->mss_cache;
2790 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2791 
2792 	if (sk->sk_state == TCP_LISTEN) {
2793 		info->tcpi_unacked = sk->sk_ack_backlog;
2794 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2795 	} else {
2796 		info->tcpi_unacked = tp->packets_out;
2797 		info->tcpi_sacked = tp->sacked_out;
2798 	}
2799 	info->tcpi_lost = tp->lost_out;
2800 	info->tcpi_retrans = tp->retrans_out;
2801 	info->tcpi_fackets = tp->fackets_out;
2802 
2803 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2804 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2805 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2806 
2807 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2808 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2809 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2810 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2811 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2812 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2813 	info->tcpi_advmss = tp->advmss;
2814 	info->tcpi_reordering = tp->reordering;
2815 
2816 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2817 	info->tcpi_rcv_space = tp->rcvq_space.space;
2818 
2819 	info->tcpi_total_retrans = tp->total_retrans;
2820 }
2821 EXPORT_SYMBOL_GPL(tcp_get_info);
2822 
2823 static int do_tcp_getsockopt(struct sock *sk, int level,
2824 		int optname, char __user *optval, int __user *optlen)
2825 {
2826 	struct inet_connection_sock *icsk = inet_csk(sk);
2827 	struct tcp_sock *tp = tcp_sk(sk);
2828 	int val, len;
2829 
2830 	if (get_user(len, optlen))
2831 		return -EFAULT;
2832 
2833 	len = min_t(unsigned int, len, sizeof(int));
2834 
2835 	if (len < 0)
2836 		return -EINVAL;
2837 
2838 	switch (optname) {
2839 	case TCP_MAXSEG:
2840 		val = tp->mss_cache;
2841 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2842 			val = tp->rx_opt.user_mss;
2843 		if (tp->repair)
2844 			val = tp->rx_opt.mss_clamp;
2845 		break;
2846 	case TCP_NODELAY:
2847 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2848 		break;
2849 	case TCP_CORK:
2850 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2851 		break;
2852 	case TCP_KEEPIDLE:
2853 		val = keepalive_time_when(tp) / HZ;
2854 		break;
2855 	case TCP_KEEPINTVL:
2856 		val = keepalive_intvl_when(tp) / HZ;
2857 		break;
2858 	case TCP_KEEPCNT:
2859 		val = keepalive_probes(tp);
2860 		break;
2861 	case TCP_SYNCNT:
2862 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2863 		break;
2864 	case TCP_LINGER2:
2865 		val = tp->linger2;
2866 		if (val >= 0)
2867 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2868 		break;
2869 	case TCP_DEFER_ACCEPT:
2870 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2871 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2872 		break;
2873 	case TCP_WINDOW_CLAMP:
2874 		val = tp->window_clamp;
2875 		break;
2876 	case TCP_INFO: {
2877 		struct tcp_info info;
2878 
2879 		if (get_user(len, optlen))
2880 			return -EFAULT;
2881 
2882 		tcp_get_info(sk, &info);
2883 
2884 		len = min_t(unsigned int, len, sizeof(info));
2885 		if (put_user(len, optlen))
2886 			return -EFAULT;
2887 		if (copy_to_user(optval, &info, len))
2888 			return -EFAULT;
2889 		return 0;
2890 	}
2891 	case TCP_QUICKACK:
2892 		val = !icsk->icsk_ack.pingpong;
2893 		break;
2894 
2895 	case TCP_CONGESTION:
2896 		if (get_user(len, optlen))
2897 			return -EFAULT;
2898 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2899 		if (put_user(len, optlen))
2900 			return -EFAULT;
2901 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2902 			return -EFAULT;
2903 		return 0;
2904 
2905 	case TCP_COOKIE_TRANSACTIONS: {
2906 		struct tcp_cookie_transactions ctd;
2907 		struct tcp_cookie_values *cvp = tp->cookie_values;
2908 
2909 		if (get_user(len, optlen))
2910 			return -EFAULT;
2911 		if (len < sizeof(ctd))
2912 			return -EINVAL;
2913 
2914 		memset(&ctd, 0, sizeof(ctd));
2915 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2916 				   TCP_COOKIE_IN_ALWAYS : 0)
2917 				| (tp->rx_opt.cookie_out_never ?
2918 				   TCP_COOKIE_OUT_NEVER : 0);
2919 
2920 		if (cvp != NULL) {
2921 			ctd.tcpct_flags |= (cvp->s_data_in ?
2922 					    TCP_S_DATA_IN : 0)
2923 					 | (cvp->s_data_out ?
2924 					    TCP_S_DATA_OUT : 0);
2925 
2926 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2927 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2928 
2929 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2930 			       cvp->cookie_pair_size);
2931 			ctd.tcpct_used = cvp->cookie_pair_size;
2932 		}
2933 
2934 		if (put_user(sizeof(ctd), optlen))
2935 			return -EFAULT;
2936 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2937 			return -EFAULT;
2938 		return 0;
2939 	}
2940 	case TCP_THIN_LINEAR_TIMEOUTS:
2941 		val = tp->thin_lto;
2942 		break;
2943 	case TCP_THIN_DUPACK:
2944 		val = tp->thin_dupack;
2945 		break;
2946 
2947 	case TCP_REPAIR:
2948 		val = tp->repair;
2949 		break;
2950 
2951 	case TCP_REPAIR_QUEUE:
2952 		if (tp->repair)
2953 			val = tp->repair_queue;
2954 		else
2955 			return -EINVAL;
2956 		break;
2957 
2958 	case TCP_QUEUE_SEQ:
2959 		if (tp->repair_queue == TCP_SEND_QUEUE)
2960 			val = tp->write_seq;
2961 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2962 			val = tp->rcv_nxt;
2963 		else
2964 			return -EINVAL;
2965 		break;
2966 
2967 	case TCP_USER_TIMEOUT:
2968 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2969 		break;
2970 	case TCP_TIMESTAMP:
2971 		val = tcp_time_stamp + tp->tsoffset;
2972 		break;
2973 	default:
2974 		return -ENOPROTOOPT;
2975 	}
2976 
2977 	if (put_user(len, optlen))
2978 		return -EFAULT;
2979 	if (copy_to_user(optval, &val, len))
2980 		return -EFAULT;
2981 	return 0;
2982 }
2983 
2984 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2985 		   int __user *optlen)
2986 {
2987 	struct inet_connection_sock *icsk = inet_csk(sk);
2988 
2989 	if (level != SOL_TCP)
2990 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2991 						     optval, optlen);
2992 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2993 }
2994 EXPORT_SYMBOL(tcp_getsockopt);
2995 
2996 #ifdef CONFIG_COMPAT
2997 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2998 			  char __user *optval, int __user *optlen)
2999 {
3000 	if (level != SOL_TCP)
3001 		return inet_csk_compat_getsockopt(sk, level, optname,
3002 						  optval, optlen);
3003 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3004 }
3005 EXPORT_SYMBOL(compat_tcp_getsockopt);
3006 #endif
3007 
3008 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
3009 	netdev_features_t features)
3010 {
3011 	struct sk_buff *segs = ERR_PTR(-EINVAL);
3012 	struct tcphdr *th;
3013 	unsigned int thlen;
3014 	unsigned int seq;
3015 	__be32 delta;
3016 	unsigned int oldlen;
3017 	unsigned int mss;
3018 
3019 	if (!pskb_may_pull(skb, sizeof(*th)))
3020 		goto out;
3021 
3022 	th = tcp_hdr(skb);
3023 	thlen = th->doff * 4;
3024 	if (thlen < sizeof(*th))
3025 		goto out;
3026 
3027 	if (!pskb_may_pull(skb, thlen))
3028 		goto out;
3029 
3030 	oldlen = (u16)~skb->len;
3031 	__skb_pull(skb, thlen);
3032 
3033 	mss = skb_shinfo(skb)->gso_size;
3034 	if (unlikely(skb->len <= mss))
3035 		goto out;
3036 
3037 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3038 		/* Packet is from an untrusted source, reset gso_segs. */
3039 		int type = skb_shinfo(skb)->gso_type;
3040 
3041 		if (unlikely(type &
3042 			     ~(SKB_GSO_TCPV4 |
3043 			       SKB_GSO_DODGY |
3044 			       SKB_GSO_TCP_ECN |
3045 			       SKB_GSO_TCPV6 |
3046 			       SKB_GSO_GRE |
3047 			       0) ||
3048 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3049 			goto out;
3050 
3051 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3052 
3053 		segs = NULL;
3054 		goto out;
3055 	}
3056 
3057 	segs = skb_segment(skb, features);
3058 	if (IS_ERR(segs))
3059 		goto out;
3060 
3061 	delta = htonl(oldlen + (thlen + mss));
3062 
3063 	skb = segs;
3064 	th = tcp_hdr(skb);
3065 	seq = ntohl(th->seq);
3066 
3067 	do {
3068 		th->fin = th->psh = 0;
3069 
3070 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3071 				       (__force u32)delta));
3072 		if (skb->ip_summed != CHECKSUM_PARTIAL)
3073 			th->check =
3074 			     csum_fold(csum_partial(skb_transport_header(skb),
3075 						    thlen, skb->csum));
3076 
3077 		seq += mss;
3078 		skb = skb->next;
3079 		th = tcp_hdr(skb);
3080 
3081 		th->seq = htonl(seq);
3082 		th->cwr = 0;
3083 	} while (skb->next);
3084 
3085 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3086 		      skb->data_len);
3087 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3088 				(__force u32)delta));
3089 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3090 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3091 						   thlen, skb->csum));
3092 
3093 out:
3094 	return segs;
3095 }
3096 EXPORT_SYMBOL(tcp_tso_segment);
3097 
3098 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3099 {
3100 	struct sk_buff **pp = NULL;
3101 	struct sk_buff *p;
3102 	struct tcphdr *th;
3103 	struct tcphdr *th2;
3104 	unsigned int len;
3105 	unsigned int thlen;
3106 	__be32 flags;
3107 	unsigned int mss = 1;
3108 	unsigned int hlen;
3109 	unsigned int off;
3110 	int flush = 1;
3111 	int i;
3112 
3113 	off = skb_gro_offset(skb);
3114 	hlen = off + sizeof(*th);
3115 	th = skb_gro_header_fast(skb, off);
3116 	if (skb_gro_header_hard(skb, hlen)) {
3117 		th = skb_gro_header_slow(skb, hlen, off);
3118 		if (unlikely(!th))
3119 			goto out;
3120 	}
3121 
3122 	thlen = th->doff * 4;
3123 	if (thlen < sizeof(*th))
3124 		goto out;
3125 
3126 	hlen = off + thlen;
3127 	if (skb_gro_header_hard(skb, hlen)) {
3128 		th = skb_gro_header_slow(skb, hlen, off);
3129 		if (unlikely(!th))
3130 			goto out;
3131 	}
3132 
3133 	skb_gro_pull(skb, thlen);
3134 
3135 	len = skb_gro_len(skb);
3136 	flags = tcp_flag_word(th);
3137 
3138 	for (; (p = *head); head = &p->next) {
3139 		if (!NAPI_GRO_CB(p)->same_flow)
3140 			continue;
3141 
3142 		th2 = tcp_hdr(p);
3143 
3144 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3145 			NAPI_GRO_CB(p)->same_flow = 0;
3146 			continue;
3147 		}
3148 
3149 		goto found;
3150 	}
3151 
3152 	goto out_check_final;
3153 
3154 found:
3155 	flush = NAPI_GRO_CB(p)->flush;
3156 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3157 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3158 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3159 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3160 	for (i = sizeof(*th); i < thlen; i += 4)
3161 		flush |= *(u32 *)((u8 *)th + i) ^
3162 			 *(u32 *)((u8 *)th2 + i);
3163 
3164 	mss = skb_shinfo(p)->gso_size;
3165 
3166 	flush |= (len - 1) >= mss;
3167 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3168 
3169 	if (flush || skb_gro_receive(head, skb)) {
3170 		mss = 1;
3171 		goto out_check_final;
3172 	}
3173 
3174 	p = *head;
3175 	th2 = tcp_hdr(p);
3176 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3177 
3178 out_check_final:
3179 	flush = len < mss;
3180 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3181 					TCP_FLAG_RST | TCP_FLAG_SYN |
3182 					TCP_FLAG_FIN));
3183 
3184 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3185 		pp = head;
3186 
3187 out:
3188 	NAPI_GRO_CB(skb)->flush |= flush;
3189 
3190 	return pp;
3191 }
3192 EXPORT_SYMBOL(tcp_gro_receive);
3193 
3194 int tcp_gro_complete(struct sk_buff *skb)
3195 {
3196 	struct tcphdr *th = tcp_hdr(skb);
3197 
3198 	skb->csum_start = skb_transport_header(skb) - skb->head;
3199 	skb->csum_offset = offsetof(struct tcphdr, check);
3200 	skb->ip_summed = CHECKSUM_PARTIAL;
3201 
3202 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3203 
3204 	if (th->cwr)
3205 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3206 
3207 	return 0;
3208 }
3209 EXPORT_SYMBOL(tcp_gro_complete);
3210 
3211 #ifdef CONFIG_TCP_MD5SIG
3212 static unsigned long tcp_md5sig_users;
3213 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3214 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3215 
3216 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3217 {
3218 	int cpu;
3219 
3220 	for_each_possible_cpu(cpu) {
3221 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3222 
3223 		if (p->md5_desc.tfm)
3224 			crypto_free_hash(p->md5_desc.tfm);
3225 	}
3226 	free_percpu(pool);
3227 }
3228 
3229 void tcp_free_md5sig_pool(void)
3230 {
3231 	struct tcp_md5sig_pool __percpu *pool = NULL;
3232 
3233 	spin_lock_bh(&tcp_md5sig_pool_lock);
3234 	if (--tcp_md5sig_users == 0) {
3235 		pool = tcp_md5sig_pool;
3236 		tcp_md5sig_pool = NULL;
3237 	}
3238 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3239 	if (pool)
3240 		__tcp_free_md5sig_pool(pool);
3241 }
3242 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3243 
3244 static struct tcp_md5sig_pool __percpu *
3245 __tcp_alloc_md5sig_pool(struct sock *sk)
3246 {
3247 	int cpu;
3248 	struct tcp_md5sig_pool __percpu *pool;
3249 
3250 	pool = alloc_percpu(struct tcp_md5sig_pool);
3251 	if (!pool)
3252 		return NULL;
3253 
3254 	for_each_possible_cpu(cpu) {
3255 		struct crypto_hash *hash;
3256 
3257 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3258 		if (IS_ERR_OR_NULL(hash))
3259 			goto out_free;
3260 
3261 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3262 	}
3263 	return pool;
3264 out_free:
3265 	__tcp_free_md5sig_pool(pool);
3266 	return NULL;
3267 }
3268 
3269 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3270 {
3271 	struct tcp_md5sig_pool __percpu *pool;
3272 	bool alloc = false;
3273 
3274 retry:
3275 	spin_lock_bh(&tcp_md5sig_pool_lock);
3276 	pool = tcp_md5sig_pool;
3277 	if (tcp_md5sig_users++ == 0) {
3278 		alloc = true;
3279 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3280 	} else if (!pool) {
3281 		tcp_md5sig_users--;
3282 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3283 		cpu_relax();
3284 		goto retry;
3285 	} else
3286 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3287 
3288 	if (alloc) {
3289 		/* we cannot hold spinlock here because this may sleep. */
3290 		struct tcp_md5sig_pool __percpu *p;
3291 
3292 		p = __tcp_alloc_md5sig_pool(sk);
3293 		spin_lock_bh(&tcp_md5sig_pool_lock);
3294 		if (!p) {
3295 			tcp_md5sig_users--;
3296 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3297 			return NULL;
3298 		}
3299 		pool = tcp_md5sig_pool;
3300 		if (pool) {
3301 			/* oops, it has already been assigned. */
3302 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3303 			__tcp_free_md5sig_pool(p);
3304 		} else {
3305 			tcp_md5sig_pool = pool = p;
3306 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3307 		}
3308 	}
3309 	return pool;
3310 }
3311 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3312 
3313 
3314 /**
3315  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3316  *
3317  *	We use percpu structure, so if we succeed, we exit with preemption
3318  *	and BH disabled, to make sure another thread or softirq handling
3319  *	wont try to get same context.
3320  */
3321 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3322 {
3323 	struct tcp_md5sig_pool __percpu *p;
3324 
3325 	local_bh_disable();
3326 
3327 	spin_lock(&tcp_md5sig_pool_lock);
3328 	p = tcp_md5sig_pool;
3329 	if (p)
3330 		tcp_md5sig_users++;
3331 	spin_unlock(&tcp_md5sig_pool_lock);
3332 
3333 	if (p)
3334 		return this_cpu_ptr(p);
3335 
3336 	local_bh_enable();
3337 	return NULL;
3338 }
3339 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3340 
3341 void tcp_put_md5sig_pool(void)
3342 {
3343 	local_bh_enable();
3344 	tcp_free_md5sig_pool();
3345 }
3346 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3347 
3348 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3349 			const struct tcphdr *th)
3350 {
3351 	struct scatterlist sg;
3352 	struct tcphdr hdr;
3353 	int err;
3354 
3355 	/* We are not allowed to change tcphdr, make a local copy */
3356 	memcpy(&hdr, th, sizeof(hdr));
3357 	hdr.check = 0;
3358 
3359 	/* options aren't included in the hash */
3360 	sg_init_one(&sg, &hdr, sizeof(hdr));
3361 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3362 	return err;
3363 }
3364 EXPORT_SYMBOL(tcp_md5_hash_header);
3365 
3366 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3367 			  const struct sk_buff *skb, unsigned int header_len)
3368 {
3369 	struct scatterlist sg;
3370 	const struct tcphdr *tp = tcp_hdr(skb);
3371 	struct hash_desc *desc = &hp->md5_desc;
3372 	unsigned int i;
3373 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3374 					   skb_headlen(skb) - header_len : 0;
3375 	const struct skb_shared_info *shi = skb_shinfo(skb);
3376 	struct sk_buff *frag_iter;
3377 
3378 	sg_init_table(&sg, 1);
3379 
3380 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3381 	if (crypto_hash_update(desc, &sg, head_data_len))
3382 		return 1;
3383 
3384 	for (i = 0; i < shi->nr_frags; ++i) {
3385 		const struct skb_frag_struct *f = &shi->frags[i];
3386 		struct page *page = skb_frag_page(f);
3387 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3388 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3389 			return 1;
3390 	}
3391 
3392 	skb_walk_frags(skb, frag_iter)
3393 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3394 			return 1;
3395 
3396 	return 0;
3397 }
3398 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3399 
3400 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3401 {
3402 	struct scatterlist sg;
3403 
3404 	sg_init_one(&sg, key->key, key->keylen);
3405 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3406 }
3407 EXPORT_SYMBOL(tcp_md5_hash_key);
3408 
3409 #endif
3410 
3411 /* Each Responder maintains up to two secret values concurrently for
3412  * efficient secret rollover.  Each secret value has 4 states:
3413  *
3414  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3415  *    Generates new Responder-Cookies, but not yet used for primary
3416  *    verification.  This is a short-term state, typically lasting only
3417  *    one round trip time (RTT).
3418  *
3419  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3420  *    Used both for generation and primary verification.
3421  *
3422  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3423  *    Used for verification, until the first failure that can be
3424  *    verified by the newer Generating secret.  At that time, this
3425  *    cookie's state is changed to Secondary, and the Generating
3426  *    cookie's state is changed to Primary.  This is a short-term state,
3427  *    typically lasting only one round trip time (RTT).
3428  *
3429  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3430  *    Used for secondary verification, after primary verification
3431  *    failures.  This state lasts no more than twice the Maximum Segment
3432  *    Lifetime (2MSL).  Then, the secret is discarded.
3433  */
3434 struct tcp_cookie_secret {
3435 	/* The secret is divided into two parts.  The digest part is the
3436 	 * equivalent of previously hashing a secret and saving the state,
3437 	 * and serves as an initialization vector (IV).  The message part
3438 	 * serves as the trailing secret.
3439 	 */
3440 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3441 	unsigned long			expires;
3442 };
3443 
3444 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3445 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3446 #define TCP_SECRET_LIFE (HZ * 600)
3447 
3448 static struct tcp_cookie_secret tcp_secret_one;
3449 static struct tcp_cookie_secret tcp_secret_two;
3450 
3451 /* Essentially a circular list, without dynamic allocation. */
3452 static struct tcp_cookie_secret *tcp_secret_generating;
3453 static struct tcp_cookie_secret *tcp_secret_primary;
3454 static struct tcp_cookie_secret *tcp_secret_retiring;
3455 static struct tcp_cookie_secret *tcp_secret_secondary;
3456 
3457 static DEFINE_SPINLOCK(tcp_secret_locker);
3458 
3459 /* Select a pseudo-random word in the cookie workspace.
3460  */
3461 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3462 {
3463 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3464 }
3465 
3466 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3467  * Called in softirq context.
3468  * Returns: 0 for success.
3469  */
3470 int tcp_cookie_generator(u32 *bakery)
3471 {
3472 	unsigned long jiffy = jiffies;
3473 
3474 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3475 		spin_lock_bh(&tcp_secret_locker);
3476 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3477 			/* refreshed by another */
3478 			memcpy(bakery,
3479 			       &tcp_secret_generating->secrets[0],
3480 			       COOKIE_WORKSPACE_WORDS);
3481 		} else {
3482 			/* still needs refreshing */
3483 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3484 
3485 			/* The first time, paranoia assumes that the
3486 			 * randomization function isn't as strong.  But,
3487 			 * this secret initialization is delayed until
3488 			 * the last possible moment (packet arrival).
3489 			 * Although that time is observable, it is
3490 			 * unpredictably variable.  Mash in the most
3491 			 * volatile clock bits available, and expire the
3492 			 * secret extra quickly.
3493 			 */
3494 			if (unlikely(tcp_secret_primary->expires ==
3495 				     tcp_secret_secondary->expires)) {
3496 				struct timespec tv;
3497 
3498 				getnstimeofday(&tv);
3499 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3500 					(u32)tv.tv_nsec;
3501 
3502 				tcp_secret_secondary->expires = jiffy
3503 					+ TCP_SECRET_1MSL
3504 					+ (0x0f & tcp_cookie_work(bakery, 0));
3505 			} else {
3506 				tcp_secret_secondary->expires = jiffy
3507 					+ TCP_SECRET_LIFE
3508 					+ (0xff & tcp_cookie_work(bakery, 1));
3509 				tcp_secret_primary->expires = jiffy
3510 					+ TCP_SECRET_2MSL
3511 					+ (0x1f & tcp_cookie_work(bakery, 2));
3512 			}
3513 			memcpy(&tcp_secret_secondary->secrets[0],
3514 			       bakery, COOKIE_WORKSPACE_WORDS);
3515 
3516 			rcu_assign_pointer(tcp_secret_generating,
3517 					   tcp_secret_secondary);
3518 			rcu_assign_pointer(tcp_secret_retiring,
3519 					   tcp_secret_primary);
3520 			/*
3521 			 * Neither call_rcu() nor synchronize_rcu() needed.
3522 			 * Retiring data is not freed.  It is replaced after
3523 			 * further (locked) pointer updates, and a quiet time
3524 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3525 			 */
3526 		}
3527 		spin_unlock_bh(&tcp_secret_locker);
3528 	} else {
3529 		rcu_read_lock_bh();
3530 		memcpy(bakery,
3531 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3532 		       COOKIE_WORKSPACE_WORDS);
3533 		rcu_read_unlock_bh();
3534 	}
3535 	return 0;
3536 }
3537 EXPORT_SYMBOL(tcp_cookie_generator);
3538 
3539 void tcp_done(struct sock *sk)
3540 {
3541 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3542 
3543 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3544 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3545 
3546 	tcp_set_state(sk, TCP_CLOSE);
3547 	tcp_clear_xmit_timers(sk);
3548 	if (req != NULL)
3549 		reqsk_fastopen_remove(sk, req, false);
3550 
3551 	sk->sk_shutdown = SHUTDOWN_MASK;
3552 
3553 	if (!sock_flag(sk, SOCK_DEAD))
3554 		sk->sk_state_change(sk);
3555 	else
3556 		inet_csk_destroy_sock(sk);
3557 }
3558 EXPORT_SYMBOL_GPL(tcp_done);
3559 
3560 extern struct tcp_congestion_ops tcp_reno;
3561 
3562 static __initdata unsigned long thash_entries;
3563 static int __init set_thash_entries(char *str)
3564 {
3565 	ssize_t ret;
3566 
3567 	if (!str)
3568 		return 0;
3569 
3570 	ret = kstrtoul(str, 0, &thash_entries);
3571 	if (ret)
3572 		return 0;
3573 
3574 	return 1;
3575 }
3576 __setup("thash_entries=", set_thash_entries);
3577 
3578 void tcp_init_mem(struct net *net)
3579 {
3580 	unsigned long limit = nr_free_buffer_pages() / 8;
3581 	limit = max(limit, 128UL);
3582 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3583 	net->ipv4.sysctl_tcp_mem[1] = limit;
3584 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3585 }
3586 
3587 void __init tcp_init(void)
3588 {
3589 	struct sk_buff *skb = NULL;
3590 	unsigned long limit;
3591 	int max_rshare, max_wshare, cnt;
3592 	unsigned int i;
3593 	unsigned long jiffy = jiffies;
3594 
3595 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3596 
3597 	percpu_counter_init(&tcp_sockets_allocated, 0);
3598 	percpu_counter_init(&tcp_orphan_count, 0);
3599 	tcp_hashinfo.bind_bucket_cachep =
3600 		kmem_cache_create("tcp_bind_bucket",
3601 				  sizeof(struct inet_bind_bucket), 0,
3602 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3603 
3604 	/* Size and allocate the main established and bind bucket
3605 	 * hash tables.
3606 	 *
3607 	 * The methodology is similar to that of the buffer cache.
3608 	 */
3609 	tcp_hashinfo.ehash =
3610 		alloc_large_system_hash("TCP established",
3611 					sizeof(struct inet_ehash_bucket),
3612 					thash_entries,
3613 					17, /* one slot per 128 KB of memory */
3614 					0,
3615 					NULL,
3616 					&tcp_hashinfo.ehash_mask,
3617 					0,
3618 					thash_entries ? 0 : 512 * 1024);
3619 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3620 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3621 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3622 	}
3623 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3624 		panic("TCP: failed to alloc ehash_locks");
3625 	tcp_hashinfo.bhash =
3626 		alloc_large_system_hash("TCP bind",
3627 					sizeof(struct inet_bind_hashbucket),
3628 					tcp_hashinfo.ehash_mask + 1,
3629 					17, /* one slot per 128 KB of memory */
3630 					0,
3631 					&tcp_hashinfo.bhash_size,
3632 					NULL,
3633 					0,
3634 					64 * 1024);
3635 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3636 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3637 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3638 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3639 	}
3640 
3641 
3642 	cnt = tcp_hashinfo.ehash_mask + 1;
3643 
3644 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3645 	sysctl_tcp_max_orphans = cnt / 2;
3646 	sysctl_max_syn_backlog = max(128, cnt / 256);
3647 
3648 	tcp_init_mem(&init_net);
3649 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3650 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3651 	max_wshare = min(4UL*1024*1024, limit);
3652 	max_rshare = min(6UL*1024*1024, limit);
3653 
3654 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3655 	sysctl_tcp_wmem[1] = 16*1024;
3656 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3657 
3658 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3659 	sysctl_tcp_rmem[1] = 87380;
3660 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3661 
3662 	pr_info("Hash tables configured (established %u bind %u)\n",
3663 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3664 
3665 	tcp_metrics_init();
3666 
3667 	tcp_register_congestion_control(&tcp_reno);
3668 
3669 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3670 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3671 	tcp_secret_one.expires = jiffy; /* past due */
3672 	tcp_secret_two.expires = jiffy; /* past due */
3673 	tcp_secret_generating = &tcp_secret_one;
3674 	tcp_secret_primary = &tcp_secret_one;
3675 	tcp_secret_retiring = &tcp_secret_two;
3676 	tcp_secret_secondary = &tcp_secret_two;
3677 	tcp_tasklet_init();
3678 }
3679