1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <asm/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 __skb_queue_head_init(&tp->out_of_order_queue); 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 391 /* So many TCP implementations out there (incorrectly) count the 392 * initial SYN frame in their delayed-ACK and congestion control 393 * algorithms that we must have the following bandaid to talk 394 * efficiently to them. -DaveM 395 */ 396 tp->snd_cwnd = TCP_INIT_CWND; 397 398 /* See draft-stevens-tcpca-spec-01 for discussion of the 399 * initialization of these values. 400 */ 401 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 402 tp->snd_cwnd_clamp = ~0; 403 tp->mss_cache = TCP_MSS_DEFAULT; 404 405 tp->reordering = sysctl_tcp_reordering; 406 tcp_enable_early_retrans(tp); 407 tcp_assign_congestion_control(sk); 408 409 tp->tsoffset = 0; 410 411 sk->sk_state = TCP_CLOSE; 412 413 sk->sk_write_space = sk_stream_write_space; 414 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 415 416 icsk->icsk_sync_mss = tcp_sync_mss; 417 418 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 419 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 420 421 local_bh_disable(); 422 sock_update_memcg(sk); 423 sk_sockets_allocated_inc(sk); 424 local_bh_enable(); 425 } 426 EXPORT_SYMBOL(tcp_init_sock); 427 428 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 429 { 430 if (sk->sk_tsflags) { 431 struct skb_shared_info *shinfo = skb_shinfo(skb); 432 433 sock_tx_timestamp(sk, &shinfo->tx_flags); 434 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 435 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 436 } 437 } 438 439 /* 440 * Wait for a TCP event. 441 * 442 * Note that we don't need to lock the socket, as the upper poll layers 443 * take care of normal races (between the test and the event) and we don't 444 * go look at any of the socket buffers directly. 445 */ 446 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 447 { 448 unsigned int mask; 449 struct sock *sk = sock->sk; 450 const struct tcp_sock *tp = tcp_sk(sk); 451 452 sock_rps_record_flow(sk); 453 454 sock_poll_wait(file, sk_sleep(sk), wait); 455 if (sk->sk_state == TCP_LISTEN) 456 return inet_csk_listen_poll(sk); 457 458 /* Socket is not locked. We are protected from async events 459 * by poll logic and correct handling of state changes 460 * made by other threads is impossible in any case. 461 */ 462 463 mask = 0; 464 465 /* 466 * POLLHUP is certainly not done right. But poll() doesn't 467 * have a notion of HUP in just one direction, and for a 468 * socket the read side is more interesting. 469 * 470 * Some poll() documentation says that POLLHUP is incompatible 471 * with the POLLOUT/POLLWR flags, so somebody should check this 472 * all. But careful, it tends to be safer to return too many 473 * bits than too few, and you can easily break real applications 474 * if you don't tell them that something has hung up! 475 * 476 * Check-me. 477 * 478 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 479 * our fs/select.c). It means that after we received EOF, 480 * poll always returns immediately, making impossible poll() on write() 481 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 482 * if and only if shutdown has been made in both directions. 483 * Actually, it is interesting to look how Solaris and DUX 484 * solve this dilemma. I would prefer, if POLLHUP were maskable, 485 * then we could set it on SND_SHUTDOWN. BTW examples given 486 * in Stevens' books assume exactly this behaviour, it explains 487 * why POLLHUP is incompatible with POLLOUT. --ANK 488 * 489 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 490 * blocking on fresh not-connected or disconnected socket. --ANK 491 */ 492 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 493 mask |= POLLHUP; 494 if (sk->sk_shutdown & RCV_SHUTDOWN) 495 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 496 497 /* Connected or passive Fast Open socket? */ 498 if (sk->sk_state != TCP_SYN_SENT && 499 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 500 int target = sock_rcvlowat(sk, 0, INT_MAX); 501 502 if (tp->urg_seq == tp->copied_seq && 503 !sock_flag(sk, SOCK_URGINLINE) && 504 tp->urg_data) 505 target++; 506 507 /* Potential race condition. If read of tp below will 508 * escape above sk->sk_state, we can be illegally awaken 509 * in SYN_* states. */ 510 if (tp->rcv_nxt - tp->copied_seq >= target) 511 mask |= POLLIN | POLLRDNORM; 512 513 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 514 if (sk_stream_is_writeable(sk)) { 515 mask |= POLLOUT | POLLWRNORM; 516 } else { /* send SIGIO later */ 517 set_bit(SOCK_ASYNC_NOSPACE, 518 &sk->sk_socket->flags); 519 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 520 521 /* Race breaker. If space is freed after 522 * wspace test but before the flags are set, 523 * IO signal will be lost. 524 */ 525 if (sk_stream_is_writeable(sk)) 526 mask |= POLLOUT | POLLWRNORM; 527 } 528 } else 529 mask |= POLLOUT | POLLWRNORM; 530 531 if (tp->urg_data & TCP_URG_VALID) 532 mask |= POLLPRI; 533 } 534 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 535 smp_rmb(); 536 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 537 mask |= POLLERR; 538 539 return mask; 540 } 541 EXPORT_SYMBOL(tcp_poll); 542 543 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 544 { 545 struct tcp_sock *tp = tcp_sk(sk); 546 int answ; 547 bool slow; 548 549 switch (cmd) { 550 case SIOCINQ: 551 if (sk->sk_state == TCP_LISTEN) 552 return -EINVAL; 553 554 slow = lock_sock_fast(sk); 555 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 556 answ = 0; 557 else if (sock_flag(sk, SOCK_URGINLINE) || 558 !tp->urg_data || 559 before(tp->urg_seq, tp->copied_seq) || 560 !before(tp->urg_seq, tp->rcv_nxt)) { 561 562 answ = tp->rcv_nxt - tp->copied_seq; 563 564 /* Subtract 1, if FIN was received */ 565 if (answ && sock_flag(sk, SOCK_DONE)) 566 answ--; 567 } else 568 answ = tp->urg_seq - tp->copied_seq; 569 unlock_sock_fast(sk, slow); 570 break; 571 case SIOCATMARK: 572 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 573 break; 574 case SIOCOUTQ: 575 if (sk->sk_state == TCP_LISTEN) 576 return -EINVAL; 577 578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 579 answ = 0; 580 else 581 answ = tp->write_seq - tp->snd_una; 582 break; 583 case SIOCOUTQNSD: 584 if (sk->sk_state == TCP_LISTEN) 585 return -EINVAL; 586 587 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 588 answ = 0; 589 else 590 answ = tp->write_seq - tp->snd_nxt; 591 break; 592 default: 593 return -ENOIOCTLCMD; 594 } 595 596 return put_user(answ, (int __user *)arg); 597 } 598 EXPORT_SYMBOL(tcp_ioctl); 599 600 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 601 { 602 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 603 tp->pushed_seq = tp->write_seq; 604 } 605 606 static inline bool forced_push(const struct tcp_sock *tp) 607 { 608 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 609 } 610 611 static void skb_entail(struct sock *sk, struct sk_buff *skb) 612 { 613 struct tcp_sock *tp = tcp_sk(sk); 614 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 615 616 skb->csum = 0; 617 tcb->seq = tcb->end_seq = tp->write_seq; 618 tcb->tcp_flags = TCPHDR_ACK; 619 tcb->sacked = 0; 620 __skb_header_release(skb); 621 tcp_add_write_queue_tail(sk, skb); 622 sk->sk_wmem_queued += skb->truesize; 623 sk_mem_charge(sk, skb->truesize); 624 if (tp->nonagle & TCP_NAGLE_PUSH) 625 tp->nonagle &= ~TCP_NAGLE_PUSH; 626 } 627 628 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 629 { 630 if (flags & MSG_OOB) 631 tp->snd_up = tp->write_seq; 632 } 633 634 /* If a not yet filled skb is pushed, do not send it if 635 * we have data packets in Qdisc or NIC queues : 636 * Because TX completion will happen shortly, it gives a chance 637 * to coalesce future sendmsg() payload into this skb, without 638 * need for a timer, and with no latency trade off. 639 * As packets containing data payload have a bigger truesize 640 * than pure acks (dataless) packets, the last checks prevent 641 * autocorking if we only have an ACK in Qdisc/NIC queues, 642 * or if TX completion was delayed after we processed ACK packet. 643 */ 644 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 645 int size_goal) 646 { 647 return skb->len < size_goal && 648 sysctl_tcp_autocorking && 649 skb != tcp_write_queue_head(sk) && 650 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 651 } 652 653 static void tcp_push(struct sock *sk, int flags, int mss_now, 654 int nonagle, int size_goal) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct sk_buff *skb; 658 659 if (!tcp_send_head(sk)) 660 return; 661 662 skb = tcp_write_queue_tail(sk); 663 if (!(flags & MSG_MORE) || forced_push(tp)) 664 tcp_mark_push(tp, skb); 665 666 tcp_mark_urg(tp, flags); 667 668 if (tcp_should_autocork(sk, skb, size_goal)) { 669 670 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 671 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 672 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 673 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 674 } 675 /* It is possible TX completion already happened 676 * before we set TSQ_THROTTLED. 677 */ 678 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 679 return; 680 } 681 682 if (flags & MSG_MORE) 683 nonagle = TCP_NAGLE_CORK; 684 685 __tcp_push_pending_frames(sk, mss_now, nonagle); 686 } 687 688 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 689 unsigned int offset, size_t len) 690 { 691 struct tcp_splice_state *tss = rd_desc->arg.data; 692 int ret; 693 694 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 695 tss->flags); 696 if (ret > 0) 697 rd_desc->count -= ret; 698 return ret; 699 } 700 701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 702 { 703 /* Store TCP splice context information in read_descriptor_t. */ 704 read_descriptor_t rd_desc = { 705 .arg.data = tss, 706 .count = tss->len, 707 }; 708 709 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 710 } 711 712 /** 713 * tcp_splice_read - splice data from TCP socket to a pipe 714 * @sock: socket to splice from 715 * @ppos: position (not valid) 716 * @pipe: pipe to splice to 717 * @len: number of bytes to splice 718 * @flags: splice modifier flags 719 * 720 * Description: 721 * Will read pages from given socket and fill them into a pipe. 722 * 723 **/ 724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 725 struct pipe_inode_info *pipe, size_t len, 726 unsigned int flags) 727 { 728 struct sock *sk = sock->sk; 729 struct tcp_splice_state tss = { 730 .pipe = pipe, 731 .len = len, 732 .flags = flags, 733 }; 734 long timeo; 735 ssize_t spliced; 736 int ret; 737 738 sock_rps_record_flow(sk); 739 /* 740 * We can't seek on a socket input 741 */ 742 if (unlikely(*ppos)) 743 return -ESPIPE; 744 745 ret = spliced = 0; 746 747 lock_sock(sk); 748 749 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 750 while (tss.len) { 751 ret = __tcp_splice_read(sk, &tss); 752 if (ret < 0) 753 break; 754 else if (!ret) { 755 if (spliced) 756 break; 757 if (sock_flag(sk, SOCK_DONE)) 758 break; 759 if (sk->sk_err) { 760 ret = sock_error(sk); 761 break; 762 } 763 if (sk->sk_shutdown & RCV_SHUTDOWN) 764 break; 765 if (sk->sk_state == TCP_CLOSE) { 766 /* 767 * This occurs when user tries to read 768 * from never connected socket. 769 */ 770 if (!sock_flag(sk, SOCK_DONE)) 771 ret = -ENOTCONN; 772 break; 773 } 774 if (!timeo) { 775 ret = -EAGAIN; 776 break; 777 } 778 sk_wait_data(sk, &timeo); 779 if (signal_pending(current)) { 780 ret = sock_intr_errno(timeo); 781 break; 782 } 783 continue; 784 } 785 tss.len -= ret; 786 spliced += ret; 787 788 if (!timeo) 789 break; 790 release_sock(sk); 791 lock_sock(sk); 792 793 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 794 (sk->sk_shutdown & RCV_SHUTDOWN) || 795 signal_pending(current)) 796 break; 797 } 798 799 release_sock(sk); 800 801 if (spliced) 802 return spliced; 803 804 return ret; 805 } 806 EXPORT_SYMBOL(tcp_splice_read); 807 808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 809 { 810 struct sk_buff *skb; 811 812 /* The TCP header must be at least 32-bit aligned. */ 813 size = ALIGN(size, 4); 814 815 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 816 if (skb) { 817 if (sk_wmem_schedule(sk, skb->truesize)) { 818 skb_reserve(skb, sk->sk_prot->max_header); 819 /* 820 * Make sure that we have exactly size bytes 821 * available to the caller, no more, no less. 822 */ 823 skb->reserved_tailroom = skb->end - skb->tail - size; 824 return skb; 825 } 826 __kfree_skb(skb); 827 } else { 828 sk->sk_prot->enter_memory_pressure(sk); 829 sk_stream_moderate_sndbuf(sk); 830 } 831 return NULL; 832 } 833 834 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 835 int large_allowed) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 u32 new_size_goal, size_goal, hlen; 839 840 if (!large_allowed || !sk_can_gso(sk)) 841 return mss_now; 842 843 /* Maybe we should/could use sk->sk_prot->max_header here ? */ 844 hlen = inet_csk(sk)->icsk_af_ops->net_header_len + 845 inet_csk(sk)->icsk_ext_hdr_len + 846 tp->tcp_header_len; 847 848 new_size_goal = sk->sk_gso_max_size - 1 - hlen; 849 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 850 851 /* We try hard to avoid divides here */ 852 size_goal = tp->gso_segs * mss_now; 853 if (unlikely(new_size_goal < size_goal || 854 new_size_goal >= size_goal + mss_now)) { 855 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 856 sk->sk_gso_max_segs); 857 size_goal = tp->gso_segs * mss_now; 858 } 859 860 return max(size_goal, mss_now); 861 } 862 863 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 864 { 865 int mss_now; 866 867 mss_now = tcp_current_mss(sk); 868 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 869 870 return mss_now; 871 } 872 873 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 874 size_t size, int flags) 875 { 876 struct tcp_sock *tp = tcp_sk(sk); 877 int mss_now, size_goal; 878 int err; 879 ssize_t copied; 880 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 881 882 /* Wait for a connection to finish. One exception is TCP Fast Open 883 * (passive side) where data is allowed to be sent before a connection 884 * is fully established. 885 */ 886 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 887 !tcp_passive_fastopen(sk)) { 888 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 889 goto out_err; 890 } 891 892 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 893 894 mss_now = tcp_send_mss(sk, &size_goal, flags); 895 copied = 0; 896 897 err = -EPIPE; 898 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 899 goto out_err; 900 901 while (size > 0) { 902 struct sk_buff *skb = tcp_write_queue_tail(sk); 903 int copy, i; 904 bool can_coalesce; 905 906 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 907 new_segment: 908 if (!sk_stream_memory_free(sk)) 909 goto wait_for_sndbuf; 910 911 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 912 if (!skb) 913 goto wait_for_memory; 914 915 skb_entail(sk, skb); 916 copy = size_goal; 917 } 918 919 if (copy > size) 920 copy = size; 921 922 i = skb_shinfo(skb)->nr_frags; 923 can_coalesce = skb_can_coalesce(skb, i, page, offset); 924 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 925 tcp_mark_push(tp, skb); 926 goto new_segment; 927 } 928 if (!sk_wmem_schedule(sk, copy)) 929 goto wait_for_memory; 930 931 if (can_coalesce) { 932 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 933 } else { 934 get_page(page); 935 skb_fill_page_desc(skb, i, page, offset, copy); 936 } 937 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 938 939 skb->len += copy; 940 skb->data_len += copy; 941 skb->truesize += copy; 942 sk->sk_wmem_queued += copy; 943 sk_mem_charge(sk, copy); 944 skb->ip_summed = CHECKSUM_PARTIAL; 945 tp->write_seq += copy; 946 TCP_SKB_CB(skb)->end_seq += copy; 947 tcp_skb_pcount_set(skb, 0); 948 949 if (!copied) 950 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 951 952 copied += copy; 953 offset += copy; 954 if (!(size -= copy)) { 955 tcp_tx_timestamp(sk, skb); 956 goto out; 957 } 958 959 if (skb->len < size_goal || (flags & MSG_OOB)) 960 continue; 961 962 if (forced_push(tp)) { 963 tcp_mark_push(tp, skb); 964 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 965 } else if (skb == tcp_send_head(sk)) 966 tcp_push_one(sk, mss_now); 967 continue; 968 969 wait_for_sndbuf: 970 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 971 wait_for_memory: 972 tcp_push(sk, flags & ~MSG_MORE, mss_now, 973 TCP_NAGLE_PUSH, size_goal); 974 975 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 976 goto do_error; 977 978 mss_now = tcp_send_mss(sk, &size_goal, flags); 979 } 980 981 out: 982 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 983 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 984 return copied; 985 986 do_error: 987 if (copied) 988 goto out; 989 out_err: 990 return sk_stream_error(sk, flags, err); 991 } 992 993 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 994 size_t size, int flags) 995 { 996 ssize_t res; 997 998 if (!(sk->sk_route_caps & NETIF_F_SG) || 999 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 1000 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1001 flags); 1002 1003 lock_sock(sk); 1004 res = do_tcp_sendpages(sk, page, offset, size, flags); 1005 release_sock(sk); 1006 return res; 1007 } 1008 EXPORT_SYMBOL(tcp_sendpage); 1009 1010 static inline int select_size(const struct sock *sk, bool sg) 1011 { 1012 const struct tcp_sock *tp = tcp_sk(sk); 1013 int tmp = tp->mss_cache; 1014 1015 if (sg) { 1016 if (sk_can_gso(sk)) { 1017 /* Small frames wont use a full page: 1018 * Payload will immediately follow tcp header. 1019 */ 1020 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1021 } else { 1022 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1023 1024 if (tmp >= pgbreak && 1025 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1026 tmp = pgbreak; 1027 } 1028 } 1029 1030 return tmp; 1031 } 1032 1033 void tcp_free_fastopen_req(struct tcp_sock *tp) 1034 { 1035 if (tp->fastopen_req != NULL) { 1036 kfree(tp->fastopen_req); 1037 tp->fastopen_req = NULL; 1038 } 1039 } 1040 1041 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1042 int *copied, size_t size) 1043 { 1044 struct tcp_sock *tp = tcp_sk(sk); 1045 int err, flags; 1046 1047 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1048 return -EOPNOTSUPP; 1049 if (tp->fastopen_req != NULL) 1050 return -EALREADY; /* Another Fast Open is in progress */ 1051 1052 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1053 sk->sk_allocation); 1054 if (unlikely(tp->fastopen_req == NULL)) 1055 return -ENOBUFS; 1056 tp->fastopen_req->data = msg; 1057 tp->fastopen_req->size = size; 1058 1059 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1060 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1061 msg->msg_namelen, flags); 1062 *copied = tp->fastopen_req->copied; 1063 tcp_free_fastopen_req(tp); 1064 return err; 1065 } 1066 1067 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1068 size_t size) 1069 { 1070 const struct iovec *iov; 1071 struct tcp_sock *tp = tcp_sk(sk); 1072 struct sk_buff *skb; 1073 int iovlen, flags, err, copied = 0; 1074 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1075 bool sg; 1076 long timeo; 1077 1078 lock_sock(sk); 1079 1080 flags = msg->msg_flags; 1081 if (flags & MSG_FASTOPEN) { 1082 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1083 if (err == -EINPROGRESS && copied_syn > 0) 1084 goto out; 1085 else if (err) 1086 goto out_err; 1087 offset = copied_syn; 1088 } 1089 1090 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1091 1092 /* Wait for a connection to finish. One exception is TCP Fast Open 1093 * (passive side) where data is allowed to be sent before a connection 1094 * is fully established. 1095 */ 1096 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1097 !tcp_passive_fastopen(sk)) { 1098 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1099 goto do_error; 1100 } 1101 1102 if (unlikely(tp->repair)) { 1103 if (tp->repair_queue == TCP_RECV_QUEUE) { 1104 copied = tcp_send_rcvq(sk, msg, size); 1105 goto out_nopush; 1106 } 1107 1108 err = -EINVAL; 1109 if (tp->repair_queue == TCP_NO_QUEUE) 1110 goto out_err; 1111 1112 /* 'common' sending to sendq */ 1113 } 1114 1115 /* This should be in poll */ 1116 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1117 1118 mss_now = tcp_send_mss(sk, &size_goal, flags); 1119 1120 /* Ok commence sending. */ 1121 iovlen = msg->msg_iter.nr_segs; 1122 iov = msg->msg_iter.iov; 1123 copied = 0; 1124 1125 err = -EPIPE; 1126 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1127 goto out_err; 1128 1129 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1130 1131 while (--iovlen >= 0) { 1132 size_t seglen = iov->iov_len; 1133 unsigned char __user *from = iov->iov_base; 1134 1135 iov++; 1136 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1137 if (offset >= seglen) { 1138 offset -= seglen; 1139 continue; 1140 } 1141 seglen -= offset; 1142 from += offset; 1143 offset = 0; 1144 } 1145 1146 while (seglen > 0) { 1147 int copy = 0; 1148 int max = size_goal; 1149 1150 skb = tcp_write_queue_tail(sk); 1151 if (tcp_send_head(sk)) { 1152 if (skb->ip_summed == CHECKSUM_NONE) 1153 max = mss_now; 1154 copy = max - skb->len; 1155 } 1156 1157 if (copy <= 0) { 1158 new_segment: 1159 /* Allocate new segment. If the interface is SG, 1160 * allocate skb fitting to single page. 1161 */ 1162 if (!sk_stream_memory_free(sk)) 1163 goto wait_for_sndbuf; 1164 1165 skb = sk_stream_alloc_skb(sk, 1166 select_size(sk, sg), 1167 sk->sk_allocation); 1168 if (!skb) 1169 goto wait_for_memory; 1170 1171 /* 1172 * Check whether we can use HW checksum. 1173 */ 1174 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1175 skb->ip_summed = CHECKSUM_PARTIAL; 1176 1177 skb_entail(sk, skb); 1178 copy = size_goal; 1179 max = size_goal; 1180 1181 /* All packets are restored as if they have 1182 * already been sent. skb_mstamp isn't set to 1183 * avoid wrong rtt estimation. 1184 */ 1185 if (tp->repair) 1186 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1187 } 1188 1189 /* Try to append data to the end of skb. */ 1190 if (copy > seglen) 1191 copy = seglen; 1192 1193 /* Where to copy to? */ 1194 if (skb_availroom(skb) > 0) { 1195 /* We have some space in skb head. Superb! */ 1196 copy = min_t(int, copy, skb_availroom(skb)); 1197 err = skb_add_data_nocache(sk, skb, from, copy); 1198 if (err) 1199 goto do_fault; 1200 } else { 1201 bool merge = true; 1202 int i = skb_shinfo(skb)->nr_frags; 1203 struct page_frag *pfrag = sk_page_frag(sk); 1204 1205 if (!sk_page_frag_refill(sk, pfrag)) 1206 goto wait_for_memory; 1207 1208 if (!skb_can_coalesce(skb, i, pfrag->page, 1209 pfrag->offset)) { 1210 if (i == MAX_SKB_FRAGS || !sg) { 1211 tcp_mark_push(tp, skb); 1212 goto new_segment; 1213 } 1214 merge = false; 1215 } 1216 1217 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1218 1219 if (!sk_wmem_schedule(sk, copy)) 1220 goto wait_for_memory; 1221 1222 err = skb_copy_to_page_nocache(sk, from, skb, 1223 pfrag->page, 1224 pfrag->offset, 1225 copy); 1226 if (err) 1227 goto do_error; 1228 1229 /* Update the skb. */ 1230 if (merge) { 1231 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1232 } else { 1233 skb_fill_page_desc(skb, i, pfrag->page, 1234 pfrag->offset, copy); 1235 get_page(pfrag->page); 1236 } 1237 pfrag->offset += copy; 1238 } 1239 1240 if (!copied) 1241 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1242 1243 tp->write_seq += copy; 1244 TCP_SKB_CB(skb)->end_seq += copy; 1245 tcp_skb_pcount_set(skb, 0); 1246 1247 from += copy; 1248 copied += copy; 1249 if ((seglen -= copy) == 0 && iovlen == 0) { 1250 tcp_tx_timestamp(sk, skb); 1251 goto out; 1252 } 1253 1254 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1255 continue; 1256 1257 if (forced_push(tp)) { 1258 tcp_mark_push(tp, skb); 1259 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1260 } else if (skb == tcp_send_head(sk)) 1261 tcp_push_one(sk, mss_now); 1262 continue; 1263 1264 wait_for_sndbuf: 1265 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1266 wait_for_memory: 1267 if (copied) 1268 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1269 TCP_NAGLE_PUSH, size_goal); 1270 1271 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1272 goto do_error; 1273 1274 mss_now = tcp_send_mss(sk, &size_goal, flags); 1275 } 1276 } 1277 1278 out: 1279 if (copied) 1280 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1281 out_nopush: 1282 release_sock(sk); 1283 return copied + copied_syn; 1284 1285 do_fault: 1286 if (!skb->len) { 1287 tcp_unlink_write_queue(skb, sk); 1288 /* It is the one place in all of TCP, except connection 1289 * reset, where we can be unlinking the send_head. 1290 */ 1291 tcp_check_send_head(sk, skb); 1292 sk_wmem_free_skb(sk, skb); 1293 } 1294 1295 do_error: 1296 if (copied + copied_syn) 1297 goto out; 1298 out_err: 1299 err = sk_stream_error(sk, flags, err); 1300 release_sock(sk); 1301 return err; 1302 } 1303 EXPORT_SYMBOL(tcp_sendmsg); 1304 1305 /* 1306 * Handle reading urgent data. BSD has very simple semantics for 1307 * this, no blocking and very strange errors 8) 1308 */ 1309 1310 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1311 { 1312 struct tcp_sock *tp = tcp_sk(sk); 1313 1314 /* No URG data to read. */ 1315 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1316 tp->urg_data == TCP_URG_READ) 1317 return -EINVAL; /* Yes this is right ! */ 1318 1319 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1320 return -ENOTCONN; 1321 1322 if (tp->urg_data & TCP_URG_VALID) { 1323 int err = 0; 1324 char c = tp->urg_data; 1325 1326 if (!(flags & MSG_PEEK)) 1327 tp->urg_data = TCP_URG_READ; 1328 1329 /* Read urgent data. */ 1330 msg->msg_flags |= MSG_OOB; 1331 1332 if (len > 0) { 1333 if (!(flags & MSG_TRUNC)) 1334 err = memcpy_to_msg(msg, &c, 1); 1335 len = 1; 1336 } else 1337 msg->msg_flags |= MSG_TRUNC; 1338 1339 return err ? -EFAULT : len; 1340 } 1341 1342 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1343 return 0; 1344 1345 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1346 * the available implementations agree in this case: 1347 * this call should never block, independent of the 1348 * blocking state of the socket. 1349 * Mike <pall@rz.uni-karlsruhe.de> 1350 */ 1351 return -EAGAIN; 1352 } 1353 1354 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1355 { 1356 struct sk_buff *skb; 1357 int copied = 0, err = 0; 1358 1359 /* XXX -- need to support SO_PEEK_OFF */ 1360 1361 skb_queue_walk(&sk->sk_write_queue, skb) { 1362 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1363 if (err) 1364 break; 1365 1366 copied += skb->len; 1367 } 1368 1369 return err ?: copied; 1370 } 1371 1372 /* Clean up the receive buffer for full frames taken by the user, 1373 * then send an ACK if necessary. COPIED is the number of bytes 1374 * tcp_recvmsg has given to the user so far, it speeds up the 1375 * calculation of whether or not we must ACK for the sake of 1376 * a window update. 1377 */ 1378 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1379 { 1380 struct tcp_sock *tp = tcp_sk(sk); 1381 bool time_to_ack = false; 1382 1383 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1384 1385 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1386 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1387 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1388 1389 if (inet_csk_ack_scheduled(sk)) { 1390 const struct inet_connection_sock *icsk = inet_csk(sk); 1391 /* Delayed ACKs frequently hit locked sockets during bulk 1392 * receive. */ 1393 if (icsk->icsk_ack.blocked || 1394 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1395 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1396 /* 1397 * If this read emptied read buffer, we send ACK, if 1398 * connection is not bidirectional, user drained 1399 * receive buffer and there was a small segment 1400 * in queue. 1401 */ 1402 (copied > 0 && 1403 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1404 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1405 !icsk->icsk_ack.pingpong)) && 1406 !atomic_read(&sk->sk_rmem_alloc))) 1407 time_to_ack = true; 1408 } 1409 1410 /* We send an ACK if we can now advertise a non-zero window 1411 * which has been raised "significantly". 1412 * 1413 * Even if window raised up to infinity, do not send window open ACK 1414 * in states, where we will not receive more. It is useless. 1415 */ 1416 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1417 __u32 rcv_window_now = tcp_receive_window(tp); 1418 1419 /* Optimize, __tcp_select_window() is not cheap. */ 1420 if (2*rcv_window_now <= tp->window_clamp) { 1421 __u32 new_window = __tcp_select_window(sk); 1422 1423 /* Send ACK now, if this read freed lots of space 1424 * in our buffer. Certainly, new_window is new window. 1425 * We can advertise it now, if it is not less than current one. 1426 * "Lots" means "at least twice" here. 1427 */ 1428 if (new_window && new_window >= 2 * rcv_window_now) 1429 time_to_ack = true; 1430 } 1431 } 1432 if (time_to_ack) 1433 tcp_send_ack(sk); 1434 } 1435 1436 static void tcp_prequeue_process(struct sock *sk) 1437 { 1438 struct sk_buff *skb; 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 1441 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1442 1443 /* RX process wants to run with disabled BHs, though it is not 1444 * necessary */ 1445 local_bh_disable(); 1446 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1447 sk_backlog_rcv(sk, skb); 1448 local_bh_enable(); 1449 1450 /* Clear memory counter. */ 1451 tp->ucopy.memory = 0; 1452 } 1453 1454 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1455 { 1456 struct sk_buff *skb; 1457 u32 offset; 1458 1459 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1460 offset = seq - TCP_SKB_CB(skb)->seq; 1461 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1462 offset--; 1463 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1464 *off = offset; 1465 return skb; 1466 } 1467 /* This looks weird, but this can happen if TCP collapsing 1468 * splitted a fat GRO packet, while we released socket lock 1469 * in skb_splice_bits() 1470 */ 1471 sk_eat_skb(sk, skb); 1472 } 1473 return NULL; 1474 } 1475 1476 /* 1477 * This routine provides an alternative to tcp_recvmsg() for routines 1478 * that would like to handle copying from skbuffs directly in 'sendfile' 1479 * fashion. 1480 * Note: 1481 * - It is assumed that the socket was locked by the caller. 1482 * - The routine does not block. 1483 * - At present, there is no support for reading OOB data 1484 * or for 'peeking' the socket using this routine 1485 * (although both would be easy to implement). 1486 */ 1487 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1488 sk_read_actor_t recv_actor) 1489 { 1490 struct sk_buff *skb; 1491 struct tcp_sock *tp = tcp_sk(sk); 1492 u32 seq = tp->copied_seq; 1493 u32 offset; 1494 int copied = 0; 1495 1496 if (sk->sk_state == TCP_LISTEN) 1497 return -ENOTCONN; 1498 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1499 if (offset < skb->len) { 1500 int used; 1501 size_t len; 1502 1503 len = skb->len - offset; 1504 /* Stop reading if we hit a patch of urgent data */ 1505 if (tp->urg_data) { 1506 u32 urg_offset = tp->urg_seq - seq; 1507 if (urg_offset < len) 1508 len = urg_offset; 1509 if (!len) 1510 break; 1511 } 1512 used = recv_actor(desc, skb, offset, len); 1513 if (used <= 0) { 1514 if (!copied) 1515 copied = used; 1516 break; 1517 } else if (used <= len) { 1518 seq += used; 1519 copied += used; 1520 offset += used; 1521 } 1522 /* If recv_actor drops the lock (e.g. TCP splice 1523 * receive) the skb pointer might be invalid when 1524 * getting here: tcp_collapse might have deleted it 1525 * while aggregating skbs from the socket queue. 1526 */ 1527 skb = tcp_recv_skb(sk, seq - 1, &offset); 1528 if (!skb) 1529 break; 1530 /* TCP coalescing might have appended data to the skb. 1531 * Try to splice more frags 1532 */ 1533 if (offset + 1 != skb->len) 1534 continue; 1535 } 1536 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1537 sk_eat_skb(sk, skb); 1538 ++seq; 1539 break; 1540 } 1541 sk_eat_skb(sk, skb); 1542 if (!desc->count) 1543 break; 1544 tp->copied_seq = seq; 1545 } 1546 tp->copied_seq = seq; 1547 1548 tcp_rcv_space_adjust(sk); 1549 1550 /* Clean up data we have read: This will do ACK frames. */ 1551 if (copied > 0) { 1552 tcp_recv_skb(sk, seq, &offset); 1553 tcp_cleanup_rbuf(sk, copied); 1554 } 1555 return copied; 1556 } 1557 EXPORT_SYMBOL(tcp_read_sock); 1558 1559 /* 1560 * This routine copies from a sock struct into the user buffer. 1561 * 1562 * Technical note: in 2.3 we work on _locked_ socket, so that 1563 * tricks with *seq access order and skb->users are not required. 1564 * Probably, code can be easily improved even more. 1565 */ 1566 1567 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1568 size_t len, int nonblock, int flags, int *addr_len) 1569 { 1570 struct tcp_sock *tp = tcp_sk(sk); 1571 int copied = 0; 1572 u32 peek_seq; 1573 u32 *seq; 1574 unsigned long used; 1575 int err; 1576 int target; /* Read at least this many bytes */ 1577 long timeo; 1578 struct task_struct *user_recv = NULL; 1579 struct sk_buff *skb; 1580 u32 urg_hole = 0; 1581 1582 if (unlikely(flags & MSG_ERRQUEUE)) 1583 return inet_recv_error(sk, msg, len, addr_len); 1584 1585 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1586 (sk->sk_state == TCP_ESTABLISHED)) 1587 sk_busy_loop(sk, nonblock); 1588 1589 lock_sock(sk); 1590 1591 err = -ENOTCONN; 1592 if (sk->sk_state == TCP_LISTEN) 1593 goto out; 1594 1595 timeo = sock_rcvtimeo(sk, nonblock); 1596 1597 /* Urgent data needs to be handled specially. */ 1598 if (flags & MSG_OOB) 1599 goto recv_urg; 1600 1601 if (unlikely(tp->repair)) { 1602 err = -EPERM; 1603 if (!(flags & MSG_PEEK)) 1604 goto out; 1605 1606 if (tp->repair_queue == TCP_SEND_QUEUE) 1607 goto recv_sndq; 1608 1609 err = -EINVAL; 1610 if (tp->repair_queue == TCP_NO_QUEUE) 1611 goto out; 1612 1613 /* 'common' recv queue MSG_PEEK-ing */ 1614 } 1615 1616 seq = &tp->copied_seq; 1617 if (flags & MSG_PEEK) { 1618 peek_seq = tp->copied_seq; 1619 seq = &peek_seq; 1620 } 1621 1622 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1623 1624 do { 1625 u32 offset; 1626 1627 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1628 if (tp->urg_data && tp->urg_seq == *seq) { 1629 if (copied) 1630 break; 1631 if (signal_pending(current)) { 1632 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1633 break; 1634 } 1635 } 1636 1637 /* Next get a buffer. */ 1638 1639 skb_queue_walk(&sk->sk_receive_queue, skb) { 1640 /* Now that we have two receive queues this 1641 * shouldn't happen. 1642 */ 1643 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1644 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1645 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1646 flags)) 1647 break; 1648 1649 offset = *seq - TCP_SKB_CB(skb)->seq; 1650 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1651 offset--; 1652 if (offset < skb->len) 1653 goto found_ok_skb; 1654 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1655 goto found_fin_ok; 1656 WARN(!(flags & MSG_PEEK), 1657 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1658 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1659 } 1660 1661 /* Well, if we have backlog, try to process it now yet. */ 1662 1663 if (copied >= target && !sk->sk_backlog.tail) 1664 break; 1665 1666 if (copied) { 1667 if (sk->sk_err || 1668 sk->sk_state == TCP_CLOSE || 1669 (sk->sk_shutdown & RCV_SHUTDOWN) || 1670 !timeo || 1671 signal_pending(current)) 1672 break; 1673 } else { 1674 if (sock_flag(sk, SOCK_DONE)) 1675 break; 1676 1677 if (sk->sk_err) { 1678 copied = sock_error(sk); 1679 break; 1680 } 1681 1682 if (sk->sk_shutdown & RCV_SHUTDOWN) 1683 break; 1684 1685 if (sk->sk_state == TCP_CLOSE) { 1686 if (!sock_flag(sk, SOCK_DONE)) { 1687 /* This occurs when user tries to read 1688 * from never connected socket. 1689 */ 1690 copied = -ENOTCONN; 1691 break; 1692 } 1693 break; 1694 } 1695 1696 if (!timeo) { 1697 copied = -EAGAIN; 1698 break; 1699 } 1700 1701 if (signal_pending(current)) { 1702 copied = sock_intr_errno(timeo); 1703 break; 1704 } 1705 } 1706 1707 tcp_cleanup_rbuf(sk, copied); 1708 1709 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1710 /* Install new reader */ 1711 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1712 user_recv = current; 1713 tp->ucopy.task = user_recv; 1714 tp->ucopy.msg = msg; 1715 } 1716 1717 tp->ucopy.len = len; 1718 1719 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1720 !(flags & (MSG_PEEK | MSG_TRUNC))); 1721 1722 /* Ugly... If prequeue is not empty, we have to 1723 * process it before releasing socket, otherwise 1724 * order will be broken at second iteration. 1725 * More elegant solution is required!!! 1726 * 1727 * Look: we have the following (pseudo)queues: 1728 * 1729 * 1. packets in flight 1730 * 2. backlog 1731 * 3. prequeue 1732 * 4. receive_queue 1733 * 1734 * Each queue can be processed only if the next ones 1735 * are empty. At this point we have empty receive_queue. 1736 * But prequeue _can_ be not empty after 2nd iteration, 1737 * when we jumped to start of loop because backlog 1738 * processing added something to receive_queue. 1739 * We cannot release_sock(), because backlog contains 1740 * packets arrived _after_ prequeued ones. 1741 * 1742 * Shortly, algorithm is clear --- to process all 1743 * the queues in order. We could make it more directly, 1744 * requeueing packets from backlog to prequeue, if 1745 * is not empty. It is more elegant, but eats cycles, 1746 * unfortunately. 1747 */ 1748 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1749 goto do_prequeue; 1750 1751 /* __ Set realtime policy in scheduler __ */ 1752 } 1753 1754 if (copied >= target) { 1755 /* Do not sleep, just process backlog. */ 1756 release_sock(sk); 1757 lock_sock(sk); 1758 } else 1759 sk_wait_data(sk, &timeo); 1760 1761 if (user_recv) { 1762 int chunk; 1763 1764 /* __ Restore normal policy in scheduler __ */ 1765 1766 if ((chunk = len - tp->ucopy.len) != 0) { 1767 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1768 len -= chunk; 1769 copied += chunk; 1770 } 1771 1772 if (tp->rcv_nxt == tp->copied_seq && 1773 !skb_queue_empty(&tp->ucopy.prequeue)) { 1774 do_prequeue: 1775 tcp_prequeue_process(sk); 1776 1777 if ((chunk = len - tp->ucopy.len) != 0) { 1778 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1779 len -= chunk; 1780 copied += chunk; 1781 } 1782 } 1783 } 1784 if ((flags & MSG_PEEK) && 1785 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1786 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1787 current->comm, 1788 task_pid_nr(current)); 1789 peek_seq = tp->copied_seq; 1790 } 1791 continue; 1792 1793 found_ok_skb: 1794 /* Ok so how much can we use? */ 1795 used = skb->len - offset; 1796 if (len < used) 1797 used = len; 1798 1799 /* Do we have urgent data here? */ 1800 if (tp->urg_data) { 1801 u32 urg_offset = tp->urg_seq - *seq; 1802 if (urg_offset < used) { 1803 if (!urg_offset) { 1804 if (!sock_flag(sk, SOCK_URGINLINE)) { 1805 ++*seq; 1806 urg_hole++; 1807 offset++; 1808 used--; 1809 if (!used) 1810 goto skip_copy; 1811 } 1812 } else 1813 used = urg_offset; 1814 } 1815 } 1816 1817 if (!(flags & MSG_TRUNC)) { 1818 err = skb_copy_datagram_msg(skb, offset, msg, used); 1819 if (err) { 1820 /* Exception. Bailout! */ 1821 if (!copied) 1822 copied = -EFAULT; 1823 break; 1824 } 1825 } 1826 1827 *seq += used; 1828 copied += used; 1829 len -= used; 1830 1831 tcp_rcv_space_adjust(sk); 1832 1833 skip_copy: 1834 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1835 tp->urg_data = 0; 1836 tcp_fast_path_check(sk); 1837 } 1838 if (used + offset < skb->len) 1839 continue; 1840 1841 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1842 goto found_fin_ok; 1843 if (!(flags & MSG_PEEK)) 1844 sk_eat_skb(sk, skb); 1845 continue; 1846 1847 found_fin_ok: 1848 /* Process the FIN. */ 1849 ++*seq; 1850 if (!(flags & MSG_PEEK)) 1851 sk_eat_skb(sk, skb); 1852 break; 1853 } while (len > 0); 1854 1855 if (user_recv) { 1856 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1857 int chunk; 1858 1859 tp->ucopy.len = copied > 0 ? len : 0; 1860 1861 tcp_prequeue_process(sk); 1862 1863 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1864 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1865 len -= chunk; 1866 copied += chunk; 1867 } 1868 } 1869 1870 tp->ucopy.task = NULL; 1871 tp->ucopy.len = 0; 1872 } 1873 1874 /* According to UNIX98, msg_name/msg_namelen are ignored 1875 * on connected socket. I was just happy when found this 8) --ANK 1876 */ 1877 1878 /* Clean up data we have read: This will do ACK frames. */ 1879 tcp_cleanup_rbuf(sk, copied); 1880 1881 release_sock(sk); 1882 return copied; 1883 1884 out: 1885 release_sock(sk); 1886 return err; 1887 1888 recv_urg: 1889 err = tcp_recv_urg(sk, msg, len, flags); 1890 goto out; 1891 1892 recv_sndq: 1893 err = tcp_peek_sndq(sk, msg, len); 1894 goto out; 1895 } 1896 EXPORT_SYMBOL(tcp_recvmsg); 1897 1898 void tcp_set_state(struct sock *sk, int state) 1899 { 1900 int oldstate = sk->sk_state; 1901 1902 switch (state) { 1903 case TCP_ESTABLISHED: 1904 if (oldstate != TCP_ESTABLISHED) 1905 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1906 break; 1907 1908 case TCP_CLOSE: 1909 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1910 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1911 1912 sk->sk_prot->unhash(sk); 1913 if (inet_csk(sk)->icsk_bind_hash && 1914 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1915 inet_put_port(sk); 1916 /* fall through */ 1917 default: 1918 if (oldstate == TCP_ESTABLISHED) 1919 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1920 } 1921 1922 /* Change state AFTER socket is unhashed to avoid closed 1923 * socket sitting in hash tables. 1924 */ 1925 sk->sk_state = state; 1926 1927 #ifdef STATE_TRACE 1928 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1929 #endif 1930 } 1931 EXPORT_SYMBOL_GPL(tcp_set_state); 1932 1933 /* 1934 * State processing on a close. This implements the state shift for 1935 * sending our FIN frame. Note that we only send a FIN for some 1936 * states. A shutdown() may have already sent the FIN, or we may be 1937 * closed. 1938 */ 1939 1940 static const unsigned char new_state[16] = { 1941 /* current state: new state: action: */ 1942 /* (Invalid) */ TCP_CLOSE, 1943 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1944 /* TCP_SYN_SENT */ TCP_CLOSE, 1945 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1946 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1947 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1948 /* TCP_TIME_WAIT */ TCP_CLOSE, 1949 /* TCP_CLOSE */ TCP_CLOSE, 1950 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1951 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1952 /* TCP_LISTEN */ TCP_CLOSE, 1953 /* TCP_CLOSING */ TCP_CLOSING, 1954 }; 1955 1956 static int tcp_close_state(struct sock *sk) 1957 { 1958 int next = (int)new_state[sk->sk_state]; 1959 int ns = next & TCP_STATE_MASK; 1960 1961 tcp_set_state(sk, ns); 1962 1963 return next & TCP_ACTION_FIN; 1964 } 1965 1966 /* 1967 * Shutdown the sending side of a connection. Much like close except 1968 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1969 */ 1970 1971 void tcp_shutdown(struct sock *sk, int how) 1972 { 1973 /* We need to grab some memory, and put together a FIN, 1974 * and then put it into the queue to be sent. 1975 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1976 */ 1977 if (!(how & SEND_SHUTDOWN)) 1978 return; 1979 1980 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1981 if ((1 << sk->sk_state) & 1982 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1983 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1984 /* Clear out any half completed packets. FIN if needed. */ 1985 if (tcp_close_state(sk)) 1986 tcp_send_fin(sk); 1987 } 1988 } 1989 EXPORT_SYMBOL(tcp_shutdown); 1990 1991 bool tcp_check_oom(struct sock *sk, int shift) 1992 { 1993 bool too_many_orphans, out_of_socket_memory; 1994 1995 too_many_orphans = tcp_too_many_orphans(sk, shift); 1996 out_of_socket_memory = tcp_out_of_memory(sk); 1997 1998 if (too_many_orphans) 1999 net_info_ratelimited("too many orphaned sockets\n"); 2000 if (out_of_socket_memory) 2001 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2002 return too_many_orphans || out_of_socket_memory; 2003 } 2004 2005 void tcp_close(struct sock *sk, long timeout) 2006 { 2007 struct sk_buff *skb; 2008 int data_was_unread = 0; 2009 int state; 2010 2011 lock_sock(sk); 2012 sk->sk_shutdown = SHUTDOWN_MASK; 2013 2014 if (sk->sk_state == TCP_LISTEN) { 2015 tcp_set_state(sk, TCP_CLOSE); 2016 2017 /* Special case. */ 2018 inet_csk_listen_stop(sk); 2019 2020 goto adjudge_to_death; 2021 } 2022 2023 /* We need to flush the recv. buffs. We do this only on the 2024 * descriptor close, not protocol-sourced closes, because the 2025 * reader process may not have drained the data yet! 2026 */ 2027 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2028 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2029 2030 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2031 len--; 2032 data_was_unread += len; 2033 __kfree_skb(skb); 2034 } 2035 2036 sk_mem_reclaim(sk); 2037 2038 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2039 if (sk->sk_state == TCP_CLOSE) 2040 goto adjudge_to_death; 2041 2042 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2043 * data was lost. To witness the awful effects of the old behavior of 2044 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2045 * GET in an FTP client, suspend the process, wait for the client to 2046 * advertise a zero window, then kill -9 the FTP client, wheee... 2047 * Note: timeout is always zero in such a case. 2048 */ 2049 if (unlikely(tcp_sk(sk)->repair)) { 2050 sk->sk_prot->disconnect(sk, 0); 2051 } else if (data_was_unread) { 2052 /* Unread data was tossed, zap the connection. */ 2053 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2054 tcp_set_state(sk, TCP_CLOSE); 2055 tcp_send_active_reset(sk, sk->sk_allocation); 2056 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2057 /* Check zero linger _after_ checking for unread data. */ 2058 sk->sk_prot->disconnect(sk, 0); 2059 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2060 } else if (tcp_close_state(sk)) { 2061 /* We FIN if the application ate all the data before 2062 * zapping the connection. 2063 */ 2064 2065 /* RED-PEN. Formally speaking, we have broken TCP state 2066 * machine. State transitions: 2067 * 2068 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2069 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2070 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2071 * 2072 * are legal only when FIN has been sent (i.e. in window), 2073 * rather than queued out of window. Purists blame. 2074 * 2075 * F.e. "RFC state" is ESTABLISHED, 2076 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2077 * 2078 * The visible declinations are that sometimes 2079 * we enter time-wait state, when it is not required really 2080 * (harmless), do not send active resets, when they are 2081 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2082 * they look as CLOSING or LAST_ACK for Linux) 2083 * Probably, I missed some more holelets. 2084 * --ANK 2085 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2086 * in a single packet! (May consider it later but will 2087 * probably need API support or TCP_CORK SYN-ACK until 2088 * data is written and socket is closed.) 2089 */ 2090 tcp_send_fin(sk); 2091 } 2092 2093 sk_stream_wait_close(sk, timeout); 2094 2095 adjudge_to_death: 2096 state = sk->sk_state; 2097 sock_hold(sk); 2098 sock_orphan(sk); 2099 2100 /* It is the last release_sock in its life. It will remove backlog. */ 2101 release_sock(sk); 2102 2103 2104 /* Now socket is owned by kernel and we acquire BH lock 2105 to finish close. No need to check for user refs. 2106 */ 2107 local_bh_disable(); 2108 bh_lock_sock(sk); 2109 WARN_ON(sock_owned_by_user(sk)); 2110 2111 percpu_counter_inc(sk->sk_prot->orphan_count); 2112 2113 /* Have we already been destroyed by a softirq or backlog? */ 2114 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2115 goto out; 2116 2117 /* This is a (useful) BSD violating of the RFC. There is a 2118 * problem with TCP as specified in that the other end could 2119 * keep a socket open forever with no application left this end. 2120 * We use a 1 minute timeout (about the same as BSD) then kill 2121 * our end. If they send after that then tough - BUT: long enough 2122 * that we won't make the old 4*rto = almost no time - whoops 2123 * reset mistake. 2124 * 2125 * Nope, it was not mistake. It is really desired behaviour 2126 * f.e. on http servers, when such sockets are useless, but 2127 * consume significant resources. Let's do it with special 2128 * linger2 option. --ANK 2129 */ 2130 2131 if (sk->sk_state == TCP_FIN_WAIT2) { 2132 struct tcp_sock *tp = tcp_sk(sk); 2133 if (tp->linger2 < 0) { 2134 tcp_set_state(sk, TCP_CLOSE); 2135 tcp_send_active_reset(sk, GFP_ATOMIC); 2136 NET_INC_STATS_BH(sock_net(sk), 2137 LINUX_MIB_TCPABORTONLINGER); 2138 } else { 2139 const int tmo = tcp_fin_time(sk); 2140 2141 if (tmo > TCP_TIMEWAIT_LEN) { 2142 inet_csk_reset_keepalive_timer(sk, 2143 tmo - TCP_TIMEWAIT_LEN); 2144 } else { 2145 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2146 goto out; 2147 } 2148 } 2149 } 2150 if (sk->sk_state != TCP_CLOSE) { 2151 sk_mem_reclaim(sk); 2152 if (tcp_check_oom(sk, 0)) { 2153 tcp_set_state(sk, TCP_CLOSE); 2154 tcp_send_active_reset(sk, GFP_ATOMIC); 2155 NET_INC_STATS_BH(sock_net(sk), 2156 LINUX_MIB_TCPABORTONMEMORY); 2157 } 2158 } 2159 2160 if (sk->sk_state == TCP_CLOSE) { 2161 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2162 /* We could get here with a non-NULL req if the socket is 2163 * aborted (e.g., closed with unread data) before 3WHS 2164 * finishes. 2165 */ 2166 if (req != NULL) 2167 reqsk_fastopen_remove(sk, req, false); 2168 inet_csk_destroy_sock(sk); 2169 } 2170 /* Otherwise, socket is reprieved until protocol close. */ 2171 2172 out: 2173 bh_unlock_sock(sk); 2174 local_bh_enable(); 2175 sock_put(sk); 2176 } 2177 EXPORT_SYMBOL(tcp_close); 2178 2179 /* These states need RST on ABORT according to RFC793 */ 2180 2181 static inline bool tcp_need_reset(int state) 2182 { 2183 return (1 << state) & 2184 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2185 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2186 } 2187 2188 int tcp_disconnect(struct sock *sk, int flags) 2189 { 2190 struct inet_sock *inet = inet_sk(sk); 2191 struct inet_connection_sock *icsk = inet_csk(sk); 2192 struct tcp_sock *tp = tcp_sk(sk); 2193 int err = 0; 2194 int old_state = sk->sk_state; 2195 2196 if (old_state != TCP_CLOSE) 2197 tcp_set_state(sk, TCP_CLOSE); 2198 2199 /* ABORT function of RFC793 */ 2200 if (old_state == TCP_LISTEN) { 2201 inet_csk_listen_stop(sk); 2202 } else if (unlikely(tp->repair)) { 2203 sk->sk_err = ECONNABORTED; 2204 } else if (tcp_need_reset(old_state) || 2205 (tp->snd_nxt != tp->write_seq && 2206 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2207 /* The last check adjusts for discrepancy of Linux wrt. RFC 2208 * states 2209 */ 2210 tcp_send_active_reset(sk, gfp_any()); 2211 sk->sk_err = ECONNRESET; 2212 } else if (old_state == TCP_SYN_SENT) 2213 sk->sk_err = ECONNRESET; 2214 2215 tcp_clear_xmit_timers(sk); 2216 __skb_queue_purge(&sk->sk_receive_queue); 2217 tcp_write_queue_purge(sk); 2218 __skb_queue_purge(&tp->out_of_order_queue); 2219 2220 inet->inet_dport = 0; 2221 2222 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2223 inet_reset_saddr(sk); 2224 2225 sk->sk_shutdown = 0; 2226 sock_reset_flag(sk, SOCK_DONE); 2227 tp->srtt_us = 0; 2228 if ((tp->write_seq += tp->max_window + 2) == 0) 2229 tp->write_seq = 1; 2230 icsk->icsk_backoff = 0; 2231 tp->snd_cwnd = 2; 2232 icsk->icsk_probes_out = 0; 2233 tp->packets_out = 0; 2234 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2235 tp->snd_cwnd_cnt = 0; 2236 tp->window_clamp = 0; 2237 tcp_set_ca_state(sk, TCP_CA_Open); 2238 tcp_clear_retrans(tp); 2239 inet_csk_delack_init(sk); 2240 tcp_init_send_head(sk); 2241 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2242 __sk_dst_reset(sk); 2243 2244 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2245 2246 sk->sk_error_report(sk); 2247 return err; 2248 } 2249 EXPORT_SYMBOL(tcp_disconnect); 2250 2251 void tcp_sock_destruct(struct sock *sk) 2252 { 2253 inet_sock_destruct(sk); 2254 2255 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2256 } 2257 2258 static inline bool tcp_can_repair_sock(const struct sock *sk) 2259 { 2260 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2261 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2262 } 2263 2264 static int tcp_repair_options_est(struct tcp_sock *tp, 2265 struct tcp_repair_opt __user *optbuf, unsigned int len) 2266 { 2267 struct tcp_repair_opt opt; 2268 2269 while (len >= sizeof(opt)) { 2270 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2271 return -EFAULT; 2272 2273 optbuf++; 2274 len -= sizeof(opt); 2275 2276 switch (opt.opt_code) { 2277 case TCPOPT_MSS: 2278 tp->rx_opt.mss_clamp = opt.opt_val; 2279 break; 2280 case TCPOPT_WINDOW: 2281 { 2282 u16 snd_wscale = opt.opt_val & 0xFFFF; 2283 u16 rcv_wscale = opt.opt_val >> 16; 2284 2285 if (snd_wscale > 14 || rcv_wscale > 14) 2286 return -EFBIG; 2287 2288 tp->rx_opt.snd_wscale = snd_wscale; 2289 tp->rx_opt.rcv_wscale = rcv_wscale; 2290 tp->rx_opt.wscale_ok = 1; 2291 } 2292 break; 2293 case TCPOPT_SACK_PERM: 2294 if (opt.opt_val != 0) 2295 return -EINVAL; 2296 2297 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2298 if (sysctl_tcp_fack) 2299 tcp_enable_fack(tp); 2300 break; 2301 case TCPOPT_TIMESTAMP: 2302 if (opt.opt_val != 0) 2303 return -EINVAL; 2304 2305 tp->rx_opt.tstamp_ok = 1; 2306 break; 2307 } 2308 } 2309 2310 return 0; 2311 } 2312 2313 /* 2314 * Socket option code for TCP. 2315 */ 2316 static int do_tcp_setsockopt(struct sock *sk, int level, 2317 int optname, char __user *optval, unsigned int optlen) 2318 { 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 struct inet_connection_sock *icsk = inet_csk(sk); 2321 int val; 2322 int err = 0; 2323 2324 /* These are data/string values, all the others are ints */ 2325 switch (optname) { 2326 case TCP_CONGESTION: { 2327 char name[TCP_CA_NAME_MAX]; 2328 2329 if (optlen < 1) 2330 return -EINVAL; 2331 2332 val = strncpy_from_user(name, optval, 2333 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2334 if (val < 0) 2335 return -EFAULT; 2336 name[val] = 0; 2337 2338 lock_sock(sk); 2339 err = tcp_set_congestion_control(sk, name); 2340 release_sock(sk); 2341 return err; 2342 } 2343 default: 2344 /* fallthru */ 2345 break; 2346 } 2347 2348 if (optlen < sizeof(int)) 2349 return -EINVAL; 2350 2351 if (get_user(val, (int __user *)optval)) 2352 return -EFAULT; 2353 2354 lock_sock(sk); 2355 2356 switch (optname) { 2357 case TCP_MAXSEG: 2358 /* Values greater than interface MTU won't take effect. However 2359 * at the point when this call is done we typically don't yet 2360 * know which interface is going to be used */ 2361 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2362 err = -EINVAL; 2363 break; 2364 } 2365 tp->rx_opt.user_mss = val; 2366 break; 2367 2368 case TCP_NODELAY: 2369 if (val) { 2370 /* TCP_NODELAY is weaker than TCP_CORK, so that 2371 * this option on corked socket is remembered, but 2372 * it is not activated until cork is cleared. 2373 * 2374 * However, when TCP_NODELAY is set we make 2375 * an explicit push, which overrides even TCP_CORK 2376 * for currently queued segments. 2377 */ 2378 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2379 tcp_push_pending_frames(sk); 2380 } else { 2381 tp->nonagle &= ~TCP_NAGLE_OFF; 2382 } 2383 break; 2384 2385 case TCP_THIN_LINEAR_TIMEOUTS: 2386 if (val < 0 || val > 1) 2387 err = -EINVAL; 2388 else 2389 tp->thin_lto = val; 2390 break; 2391 2392 case TCP_THIN_DUPACK: 2393 if (val < 0 || val > 1) 2394 err = -EINVAL; 2395 else { 2396 tp->thin_dupack = val; 2397 if (tp->thin_dupack) 2398 tcp_disable_early_retrans(tp); 2399 } 2400 break; 2401 2402 case TCP_REPAIR: 2403 if (!tcp_can_repair_sock(sk)) 2404 err = -EPERM; 2405 else if (val == 1) { 2406 tp->repair = 1; 2407 sk->sk_reuse = SK_FORCE_REUSE; 2408 tp->repair_queue = TCP_NO_QUEUE; 2409 } else if (val == 0) { 2410 tp->repair = 0; 2411 sk->sk_reuse = SK_NO_REUSE; 2412 tcp_send_window_probe(sk); 2413 } else 2414 err = -EINVAL; 2415 2416 break; 2417 2418 case TCP_REPAIR_QUEUE: 2419 if (!tp->repair) 2420 err = -EPERM; 2421 else if (val < TCP_QUEUES_NR) 2422 tp->repair_queue = val; 2423 else 2424 err = -EINVAL; 2425 break; 2426 2427 case TCP_QUEUE_SEQ: 2428 if (sk->sk_state != TCP_CLOSE) 2429 err = -EPERM; 2430 else if (tp->repair_queue == TCP_SEND_QUEUE) 2431 tp->write_seq = val; 2432 else if (tp->repair_queue == TCP_RECV_QUEUE) 2433 tp->rcv_nxt = val; 2434 else 2435 err = -EINVAL; 2436 break; 2437 2438 case TCP_REPAIR_OPTIONS: 2439 if (!tp->repair) 2440 err = -EINVAL; 2441 else if (sk->sk_state == TCP_ESTABLISHED) 2442 err = tcp_repair_options_est(tp, 2443 (struct tcp_repair_opt __user *)optval, 2444 optlen); 2445 else 2446 err = -EPERM; 2447 break; 2448 2449 case TCP_CORK: 2450 /* When set indicates to always queue non-full frames. 2451 * Later the user clears this option and we transmit 2452 * any pending partial frames in the queue. This is 2453 * meant to be used alongside sendfile() to get properly 2454 * filled frames when the user (for example) must write 2455 * out headers with a write() call first and then use 2456 * sendfile to send out the data parts. 2457 * 2458 * TCP_CORK can be set together with TCP_NODELAY and it is 2459 * stronger than TCP_NODELAY. 2460 */ 2461 if (val) { 2462 tp->nonagle |= TCP_NAGLE_CORK; 2463 } else { 2464 tp->nonagle &= ~TCP_NAGLE_CORK; 2465 if (tp->nonagle&TCP_NAGLE_OFF) 2466 tp->nonagle |= TCP_NAGLE_PUSH; 2467 tcp_push_pending_frames(sk); 2468 } 2469 break; 2470 2471 case TCP_KEEPIDLE: 2472 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2473 err = -EINVAL; 2474 else { 2475 tp->keepalive_time = val * HZ; 2476 if (sock_flag(sk, SOCK_KEEPOPEN) && 2477 !((1 << sk->sk_state) & 2478 (TCPF_CLOSE | TCPF_LISTEN))) { 2479 u32 elapsed = keepalive_time_elapsed(tp); 2480 if (tp->keepalive_time > elapsed) 2481 elapsed = tp->keepalive_time - elapsed; 2482 else 2483 elapsed = 0; 2484 inet_csk_reset_keepalive_timer(sk, elapsed); 2485 } 2486 } 2487 break; 2488 case TCP_KEEPINTVL: 2489 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2490 err = -EINVAL; 2491 else 2492 tp->keepalive_intvl = val * HZ; 2493 break; 2494 case TCP_KEEPCNT: 2495 if (val < 1 || val > MAX_TCP_KEEPCNT) 2496 err = -EINVAL; 2497 else 2498 tp->keepalive_probes = val; 2499 break; 2500 case TCP_SYNCNT: 2501 if (val < 1 || val > MAX_TCP_SYNCNT) 2502 err = -EINVAL; 2503 else 2504 icsk->icsk_syn_retries = val; 2505 break; 2506 2507 case TCP_LINGER2: 2508 if (val < 0) 2509 tp->linger2 = -1; 2510 else if (val > sysctl_tcp_fin_timeout / HZ) 2511 tp->linger2 = 0; 2512 else 2513 tp->linger2 = val * HZ; 2514 break; 2515 2516 case TCP_DEFER_ACCEPT: 2517 /* Translate value in seconds to number of retransmits */ 2518 icsk->icsk_accept_queue.rskq_defer_accept = 2519 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2520 TCP_RTO_MAX / HZ); 2521 break; 2522 2523 case TCP_WINDOW_CLAMP: 2524 if (!val) { 2525 if (sk->sk_state != TCP_CLOSE) { 2526 err = -EINVAL; 2527 break; 2528 } 2529 tp->window_clamp = 0; 2530 } else 2531 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2532 SOCK_MIN_RCVBUF / 2 : val; 2533 break; 2534 2535 case TCP_QUICKACK: 2536 if (!val) { 2537 icsk->icsk_ack.pingpong = 1; 2538 } else { 2539 icsk->icsk_ack.pingpong = 0; 2540 if ((1 << sk->sk_state) & 2541 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2542 inet_csk_ack_scheduled(sk)) { 2543 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2544 tcp_cleanup_rbuf(sk, 1); 2545 if (!(val & 1)) 2546 icsk->icsk_ack.pingpong = 1; 2547 } 2548 } 2549 break; 2550 2551 #ifdef CONFIG_TCP_MD5SIG 2552 case TCP_MD5SIG: 2553 /* Read the IP->Key mappings from userspace */ 2554 err = tp->af_specific->md5_parse(sk, optval, optlen); 2555 break; 2556 #endif 2557 case TCP_USER_TIMEOUT: 2558 /* Cap the max time in ms TCP will retry or probe the window 2559 * before giving up and aborting (ETIMEDOUT) a connection. 2560 */ 2561 if (val < 0) 2562 err = -EINVAL; 2563 else 2564 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2565 break; 2566 2567 case TCP_FASTOPEN: 2568 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2569 TCPF_LISTEN))) 2570 err = fastopen_init_queue(sk, val); 2571 else 2572 err = -EINVAL; 2573 break; 2574 case TCP_TIMESTAMP: 2575 if (!tp->repair) 2576 err = -EPERM; 2577 else 2578 tp->tsoffset = val - tcp_time_stamp; 2579 break; 2580 case TCP_NOTSENT_LOWAT: 2581 tp->notsent_lowat = val; 2582 sk->sk_write_space(sk); 2583 break; 2584 default: 2585 err = -ENOPROTOOPT; 2586 break; 2587 } 2588 2589 release_sock(sk); 2590 return err; 2591 } 2592 2593 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2594 unsigned int optlen) 2595 { 2596 const struct inet_connection_sock *icsk = inet_csk(sk); 2597 2598 if (level != SOL_TCP) 2599 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2600 optval, optlen); 2601 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2602 } 2603 EXPORT_SYMBOL(tcp_setsockopt); 2604 2605 #ifdef CONFIG_COMPAT 2606 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2607 char __user *optval, unsigned int optlen) 2608 { 2609 if (level != SOL_TCP) 2610 return inet_csk_compat_setsockopt(sk, level, optname, 2611 optval, optlen); 2612 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2613 } 2614 EXPORT_SYMBOL(compat_tcp_setsockopt); 2615 #endif 2616 2617 /* Return information about state of tcp endpoint in API format. */ 2618 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2619 { 2620 const struct tcp_sock *tp = tcp_sk(sk); 2621 const struct inet_connection_sock *icsk = inet_csk(sk); 2622 u32 now = tcp_time_stamp; 2623 2624 memset(info, 0, sizeof(*info)); 2625 2626 info->tcpi_state = sk->sk_state; 2627 info->tcpi_ca_state = icsk->icsk_ca_state; 2628 info->tcpi_retransmits = icsk->icsk_retransmits; 2629 info->tcpi_probes = icsk->icsk_probes_out; 2630 info->tcpi_backoff = icsk->icsk_backoff; 2631 2632 if (tp->rx_opt.tstamp_ok) 2633 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2634 if (tcp_is_sack(tp)) 2635 info->tcpi_options |= TCPI_OPT_SACK; 2636 if (tp->rx_opt.wscale_ok) { 2637 info->tcpi_options |= TCPI_OPT_WSCALE; 2638 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2639 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2640 } 2641 2642 if (tp->ecn_flags & TCP_ECN_OK) 2643 info->tcpi_options |= TCPI_OPT_ECN; 2644 if (tp->ecn_flags & TCP_ECN_SEEN) 2645 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2646 if (tp->syn_data_acked) 2647 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2648 2649 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2650 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2651 info->tcpi_snd_mss = tp->mss_cache; 2652 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2653 2654 if (sk->sk_state == TCP_LISTEN) { 2655 info->tcpi_unacked = sk->sk_ack_backlog; 2656 info->tcpi_sacked = sk->sk_max_ack_backlog; 2657 } else { 2658 info->tcpi_unacked = tp->packets_out; 2659 info->tcpi_sacked = tp->sacked_out; 2660 } 2661 info->tcpi_lost = tp->lost_out; 2662 info->tcpi_retrans = tp->retrans_out; 2663 info->tcpi_fackets = tp->fackets_out; 2664 2665 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2666 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2667 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2668 2669 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2670 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2671 info->tcpi_rtt = tp->srtt_us >> 3; 2672 info->tcpi_rttvar = tp->mdev_us >> 2; 2673 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2674 info->tcpi_snd_cwnd = tp->snd_cwnd; 2675 info->tcpi_advmss = tp->advmss; 2676 info->tcpi_reordering = tp->reordering; 2677 2678 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2679 info->tcpi_rcv_space = tp->rcvq_space.space; 2680 2681 info->tcpi_total_retrans = tp->total_retrans; 2682 2683 info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ? 2684 sk->sk_pacing_rate : ~0ULL; 2685 info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ? 2686 sk->sk_max_pacing_rate : ~0ULL; 2687 } 2688 EXPORT_SYMBOL_GPL(tcp_get_info); 2689 2690 static int do_tcp_getsockopt(struct sock *sk, int level, 2691 int optname, char __user *optval, int __user *optlen) 2692 { 2693 struct inet_connection_sock *icsk = inet_csk(sk); 2694 struct tcp_sock *tp = tcp_sk(sk); 2695 int val, len; 2696 2697 if (get_user(len, optlen)) 2698 return -EFAULT; 2699 2700 len = min_t(unsigned int, len, sizeof(int)); 2701 2702 if (len < 0) 2703 return -EINVAL; 2704 2705 switch (optname) { 2706 case TCP_MAXSEG: 2707 val = tp->mss_cache; 2708 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2709 val = tp->rx_opt.user_mss; 2710 if (tp->repair) 2711 val = tp->rx_opt.mss_clamp; 2712 break; 2713 case TCP_NODELAY: 2714 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2715 break; 2716 case TCP_CORK: 2717 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2718 break; 2719 case TCP_KEEPIDLE: 2720 val = keepalive_time_when(tp) / HZ; 2721 break; 2722 case TCP_KEEPINTVL: 2723 val = keepalive_intvl_when(tp) / HZ; 2724 break; 2725 case TCP_KEEPCNT: 2726 val = keepalive_probes(tp); 2727 break; 2728 case TCP_SYNCNT: 2729 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2730 break; 2731 case TCP_LINGER2: 2732 val = tp->linger2; 2733 if (val >= 0) 2734 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2735 break; 2736 case TCP_DEFER_ACCEPT: 2737 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2738 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2739 break; 2740 case TCP_WINDOW_CLAMP: 2741 val = tp->window_clamp; 2742 break; 2743 case TCP_INFO: { 2744 struct tcp_info info; 2745 2746 if (get_user(len, optlen)) 2747 return -EFAULT; 2748 2749 tcp_get_info(sk, &info); 2750 2751 len = min_t(unsigned int, len, sizeof(info)); 2752 if (put_user(len, optlen)) 2753 return -EFAULT; 2754 if (copy_to_user(optval, &info, len)) 2755 return -EFAULT; 2756 return 0; 2757 } 2758 case TCP_QUICKACK: 2759 val = !icsk->icsk_ack.pingpong; 2760 break; 2761 2762 case TCP_CONGESTION: 2763 if (get_user(len, optlen)) 2764 return -EFAULT; 2765 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2766 if (put_user(len, optlen)) 2767 return -EFAULT; 2768 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2769 return -EFAULT; 2770 return 0; 2771 2772 case TCP_THIN_LINEAR_TIMEOUTS: 2773 val = tp->thin_lto; 2774 break; 2775 case TCP_THIN_DUPACK: 2776 val = tp->thin_dupack; 2777 break; 2778 2779 case TCP_REPAIR: 2780 val = tp->repair; 2781 break; 2782 2783 case TCP_REPAIR_QUEUE: 2784 if (tp->repair) 2785 val = tp->repair_queue; 2786 else 2787 return -EINVAL; 2788 break; 2789 2790 case TCP_QUEUE_SEQ: 2791 if (tp->repair_queue == TCP_SEND_QUEUE) 2792 val = tp->write_seq; 2793 else if (tp->repair_queue == TCP_RECV_QUEUE) 2794 val = tp->rcv_nxt; 2795 else 2796 return -EINVAL; 2797 break; 2798 2799 case TCP_USER_TIMEOUT: 2800 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2801 break; 2802 2803 case TCP_FASTOPEN: 2804 if (icsk->icsk_accept_queue.fastopenq != NULL) 2805 val = icsk->icsk_accept_queue.fastopenq->max_qlen; 2806 else 2807 val = 0; 2808 break; 2809 2810 case TCP_TIMESTAMP: 2811 val = tcp_time_stamp + tp->tsoffset; 2812 break; 2813 case TCP_NOTSENT_LOWAT: 2814 val = tp->notsent_lowat; 2815 break; 2816 default: 2817 return -ENOPROTOOPT; 2818 } 2819 2820 if (put_user(len, optlen)) 2821 return -EFAULT; 2822 if (copy_to_user(optval, &val, len)) 2823 return -EFAULT; 2824 return 0; 2825 } 2826 2827 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2828 int __user *optlen) 2829 { 2830 struct inet_connection_sock *icsk = inet_csk(sk); 2831 2832 if (level != SOL_TCP) 2833 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2834 optval, optlen); 2835 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2836 } 2837 EXPORT_SYMBOL(tcp_getsockopt); 2838 2839 #ifdef CONFIG_COMPAT 2840 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2841 char __user *optval, int __user *optlen) 2842 { 2843 if (level != SOL_TCP) 2844 return inet_csk_compat_getsockopt(sk, level, optname, 2845 optval, optlen); 2846 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2847 } 2848 EXPORT_SYMBOL(compat_tcp_getsockopt); 2849 #endif 2850 2851 #ifdef CONFIG_TCP_MD5SIG 2852 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2853 static DEFINE_MUTEX(tcp_md5sig_mutex); 2854 static bool tcp_md5sig_pool_populated = false; 2855 2856 static void __tcp_alloc_md5sig_pool(void) 2857 { 2858 int cpu; 2859 2860 for_each_possible_cpu(cpu) { 2861 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2862 struct crypto_hash *hash; 2863 2864 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2865 if (IS_ERR_OR_NULL(hash)) 2866 return; 2867 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2868 } 2869 } 2870 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2871 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2872 */ 2873 smp_wmb(); 2874 tcp_md5sig_pool_populated = true; 2875 } 2876 2877 bool tcp_alloc_md5sig_pool(void) 2878 { 2879 if (unlikely(!tcp_md5sig_pool_populated)) { 2880 mutex_lock(&tcp_md5sig_mutex); 2881 2882 if (!tcp_md5sig_pool_populated) 2883 __tcp_alloc_md5sig_pool(); 2884 2885 mutex_unlock(&tcp_md5sig_mutex); 2886 } 2887 return tcp_md5sig_pool_populated; 2888 } 2889 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2890 2891 2892 /** 2893 * tcp_get_md5sig_pool - get md5sig_pool for this user 2894 * 2895 * We use percpu structure, so if we succeed, we exit with preemption 2896 * and BH disabled, to make sure another thread or softirq handling 2897 * wont try to get same context. 2898 */ 2899 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2900 { 2901 local_bh_disable(); 2902 2903 if (tcp_md5sig_pool_populated) { 2904 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 2905 smp_rmb(); 2906 return this_cpu_ptr(&tcp_md5sig_pool); 2907 } 2908 local_bh_enable(); 2909 return NULL; 2910 } 2911 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2912 2913 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2914 const struct tcphdr *th) 2915 { 2916 struct scatterlist sg; 2917 struct tcphdr hdr; 2918 int err; 2919 2920 /* We are not allowed to change tcphdr, make a local copy */ 2921 memcpy(&hdr, th, sizeof(hdr)); 2922 hdr.check = 0; 2923 2924 /* options aren't included in the hash */ 2925 sg_init_one(&sg, &hdr, sizeof(hdr)); 2926 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 2927 return err; 2928 } 2929 EXPORT_SYMBOL(tcp_md5_hash_header); 2930 2931 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2932 const struct sk_buff *skb, unsigned int header_len) 2933 { 2934 struct scatterlist sg; 2935 const struct tcphdr *tp = tcp_hdr(skb); 2936 struct hash_desc *desc = &hp->md5_desc; 2937 unsigned int i; 2938 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 2939 skb_headlen(skb) - header_len : 0; 2940 const struct skb_shared_info *shi = skb_shinfo(skb); 2941 struct sk_buff *frag_iter; 2942 2943 sg_init_table(&sg, 1); 2944 2945 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2946 if (crypto_hash_update(desc, &sg, head_data_len)) 2947 return 1; 2948 2949 for (i = 0; i < shi->nr_frags; ++i) { 2950 const struct skb_frag_struct *f = &shi->frags[i]; 2951 unsigned int offset = f->page_offset; 2952 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 2953 2954 sg_set_page(&sg, page, skb_frag_size(f), 2955 offset_in_page(offset)); 2956 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 2957 return 1; 2958 } 2959 2960 skb_walk_frags(skb, frag_iter) 2961 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 2962 return 1; 2963 2964 return 0; 2965 } 2966 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2967 2968 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 2969 { 2970 struct scatterlist sg; 2971 2972 sg_init_one(&sg, key->key, key->keylen); 2973 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2974 } 2975 EXPORT_SYMBOL(tcp_md5_hash_key); 2976 2977 #endif 2978 2979 void tcp_done(struct sock *sk) 2980 { 2981 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2982 2983 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2984 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2985 2986 tcp_set_state(sk, TCP_CLOSE); 2987 tcp_clear_xmit_timers(sk); 2988 if (req != NULL) 2989 reqsk_fastopen_remove(sk, req, false); 2990 2991 sk->sk_shutdown = SHUTDOWN_MASK; 2992 2993 if (!sock_flag(sk, SOCK_DEAD)) 2994 sk->sk_state_change(sk); 2995 else 2996 inet_csk_destroy_sock(sk); 2997 } 2998 EXPORT_SYMBOL_GPL(tcp_done); 2999 3000 extern struct tcp_congestion_ops tcp_reno; 3001 3002 static __initdata unsigned long thash_entries; 3003 static int __init set_thash_entries(char *str) 3004 { 3005 ssize_t ret; 3006 3007 if (!str) 3008 return 0; 3009 3010 ret = kstrtoul(str, 0, &thash_entries); 3011 if (ret) 3012 return 0; 3013 3014 return 1; 3015 } 3016 __setup("thash_entries=", set_thash_entries); 3017 3018 static void __init tcp_init_mem(void) 3019 { 3020 unsigned long limit = nr_free_buffer_pages() / 8; 3021 limit = max(limit, 128UL); 3022 sysctl_tcp_mem[0] = limit / 4 * 3; 3023 sysctl_tcp_mem[1] = limit; 3024 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3025 } 3026 3027 void __init tcp_init(void) 3028 { 3029 struct sk_buff *skb = NULL; 3030 unsigned long limit; 3031 int max_rshare, max_wshare, cnt; 3032 unsigned int i; 3033 3034 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3035 3036 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3037 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3038 tcp_hashinfo.bind_bucket_cachep = 3039 kmem_cache_create("tcp_bind_bucket", 3040 sizeof(struct inet_bind_bucket), 0, 3041 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3042 3043 /* Size and allocate the main established and bind bucket 3044 * hash tables. 3045 * 3046 * The methodology is similar to that of the buffer cache. 3047 */ 3048 tcp_hashinfo.ehash = 3049 alloc_large_system_hash("TCP established", 3050 sizeof(struct inet_ehash_bucket), 3051 thash_entries, 3052 17, /* one slot per 128 KB of memory */ 3053 0, 3054 NULL, 3055 &tcp_hashinfo.ehash_mask, 3056 0, 3057 thash_entries ? 0 : 512 * 1024); 3058 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3059 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3060 3061 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3062 panic("TCP: failed to alloc ehash_locks"); 3063 tcp_hashinfo.bhash = 3064 alloc_large_system_hash("TCP bind", 3065 sizeof(struct inet_bind_hashbucket), 3066 tcp_hashinfo.ehash_mask + 1, 3067 17, /* one slot per 128 KB of memory */ 3068 0, 3069 &tcp_hashinfo.bhash_size, 3070 NULL, 3071 0, 3072 64 * 1024); 3073 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3074 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3075 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3076 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3077 } 3078 3079 3080 cnt = tcp_hashinfo.ehash_mask + 1; 3081 3082 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3083 sysctl_tcp_max_orphans = cnt / 2; 3084 sysctl_max_syn_backlog = max(128, cnt / 256); 3085 3086 tcp_init_mem(); 3087 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3088 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3089 max_wshare = min(4UL*1024*1024, limit); 3090 max_rshare = min(6UL*1024*1024, limit); 3091 3092 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3093 sysctl_tcp_wmem[1] = 16*1024; 3094 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3095 3096 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3097 sysctl_tcp_rmem[1] = 87380; 3098 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3099 3100 pr_info("Hash tables configured (established %u bind %u)\n", 3101 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3102 3103 tcp_metrics_init(); 3104 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3105 tcp_tasklet_init(); 3106 } 3107