xref: /linux/net/ipv4/tcp.c (revision 93d4e8bb3f137e8037a65ea96f175f81c25c50e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <net/rps.h>
286 
287 /* Track pending CMSGs. */
288 enum {
289 	TCP_CMSG_INQ = 1,
290 	TCP_CMSG_TS = 2
291 };
292 
293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
295 
296 DEFINE_PER_CPU(u32, tcp_tw_isn);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
298 
299 long sysctl_tcp_mem[3] __read_mostly;
300 EXPORT_SYMBOL(sysctl_tcp_mem);
301 
302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
306 
307 #if IS_ENABLED(CONFIG_SMC)
308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
309 EXPORT_SYMBOL(tcp_have_smc);
310 #endif
311 
312 /*
313  * Current number of TCP sockets.
314  */
315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
316 EXPORT_SYMBOL(tcp_sockets_allocated);
317 
318 /*
319  * TCP splice context
320  */
321 struct tcp_splice_state {
322 	struct pipe_inode_info *pipe;
323 	size_t len;
324 	unsigned int flags;
325 };
326 
327 /*
328  * Pressure flag: try to collapse.
329  * Technical note: it is used by multiple contexts non atomically.
330  * All the __sk_mem_schedule() is of this nature: accounting
331  * is strict, actions are advisory and have some latency.
332  */
333 unsigned long tcp_memory_pressure __read_mostly;
334 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
335 
336 void tcp_enter_memory_pressure(struct sock *sk)
337 {
338 	unsigned long val;
339 
340 	if (READ_ONCE(tcp_memory_pressure))
341 		return;
342 	val = jiffies;
343 
344 	if (!val)
345 		val--;
346 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
347 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
348 }
349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
350 
351 void tcp_leave_memory_pressure(struct sock *sk)
352 {
353 	unsigned long val;
354 
355 	if (!READ_ONCE(tcp_memory_pressure))
356 		return;
357 	val = xchg(&tcp_memory_pressure, 0);
358 	if (val)
359 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
360 			      jiffies_to_msecs(jiffies - val));
361 }
362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
363 
364 /* Convert seconds to retransmits based on initial and max timeout */
365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
366 {
367 	u8 res = 0;
368 
369 	if (seconds > 0) {
370 		int period = timeout;
371 
372 		res = 1;
373 		while (seconds > period && res < 255) {
374 			res++;
375 			timeout <<= 1;
376 			if (timeout > rto_max)
377 				timeout = rto_max;
378 			period += timeout;
379 		}
380 	}
381 	return res;
382 }
383 
384 /* Convert retransmits to seconds based on initial and max timeout */
385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
386 {
387 	int period = 0;
388 
389 	if (retrans > 0) {
390 		period = timeout;
391 		while (--retrans) {
392 			timeout <<= 1;
393 			if (timeout > rto_max)
394 				timeout = rto_max;
395 			period += timeout;
396 		}
397 	}
398 	return period;
399 }
400 
401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
402 {
403 	u32 rate = READ_ONCE(tp->rate_delivered);
404 	u32 intv = READ_ONCE(tp->rate_interval_us);
405 	u64 rate64 = 0;
406 
407 	if (rate && intv) {
408 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
409 		do_div(rate64, intv);
410 	}
411 	return rate64;
412 }
413 
414 /* Address-family independent initialization for a tcp_sock.
415  *
416  * NOTE: A lot of things set to zero explicitly by call to
417  *       sk_alloc() so need not be done here.
418  */
419 void tcp_init_sock(struct sock *sk)
420 {
421 	struct inet_connection_sock *icsk = inet_csk(sk);
422 	struct tcp_sock *tp = tcp_sk(sk);
423 	int rto_min_us;
424 
425 	tp->out_of_order_queue = RB_ROOT;
426 	sk->tcp_rtx_queue = RB_ROOT;
427 	tcp_init_xmit_timers(sk);
428 	INIT_LIST_HEAD(&tp->tsq_node);
429 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
430 
431 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
432 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
433 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
434 	icsk->icsk_delack_max = TCP_DELACK_MAX;
435 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
436 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
437 
438 	/* So many TCP implementations out there (incorrectly) count the
439 	 * initial SYN frame in their delayed-ACK and congestion control
440 	 * algorithms that we must have the following bandaid to talk
441 	 * efficiently to them.  -DaveM
442 	 */
443 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
444 
445 	/* There's a bubble in the pipe until at least the first ACK. */
446 	tp->app_limited = ~0U;
447 	tp->rate_app_limited = 1;
448 
449 	/* See draft-stevens-tcpca-spec-01 for discussion of the
450 	 * initialization of these values.
451 	 */
452 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
453 	tp->snd_cwnd_clamp = ~0;
454 	tp->mss_cache = TCP_MSS_DEFAULT;
455 
456 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
457 	tcp_assign_congestion_control(sk);
458 
459 	tp->tsoffset = 0;
460 	tp->rack.reo_wnd_steps = 1;
461 
462 	sk->sk_write_space = sk_stream_write_space;
463 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
464 
465 	icsk->icsk_sync_mss = tcp_sync_mss;
466 
467 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
468 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
469 	tcp_scaling_ratio_init(sk);
470 
471 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
472 	sk_sockets_allocated_inc(sk);
473 }
474 EXPORT_SYMBOL(tcp_init_sock);
475 
476 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
477 {
478 	struct sk_buff *skb = tcp_write_queue_tail(sk);
479 
480 	if (tsflags && skb) {
481 		struct skb_shared_info *shinfo = skb_shinfo(skb);
482 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
483 
484 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
485 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
486 			tcb->txstamp_ack = 1;
487 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
488 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
489 	}
490 }
491 
492 static bool tcp_stream_is_readable(struct sock *sk, int target)
493 {
494 	if (tcp_epollin_ready(sk, target))
495 		return true;
496 	return sk_is_readable(sk);
497 }
498 
499 /*
500  *	Wait for a TCP event.
501  *
502  *	Note that we don't need to lock the socket, as the upper poll layers
503  *	take care of normal races (between the test and the event) and we don't
504  *	go look at any of the socket buffers directly.
505  */
506 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
507 {
508 	__poll_t mask;
509 	struct sock *sk = sock->sk;
510 	const struct tcp_sock *tp = tcp_sk(sk);
511 	u8 shutdown;
512 	int state;
513 
514 	sock_poll_wait(file, sock, wait);
515 
516 	state = inet_sk_state_load(sk);
517 	if (state == TCP_LISTEN)
518 		return inet_csk_listen_poll(sk);
519 
520 	/* Socket is not locked. We are protected from async events
521 	 * by poll logic and correct handling of state changes
522 	 * made by other threads is impossible in any case.
523 	 */
524 
525 	mask = 0;
526 
527 	/*
528 	 * EPOLLHUP is certainly not done right. But poll() doesn't
529 	 * have a notion of HUP in just one direction, and for a
530 	 * socket the read side is more interesting.
531 	 *
532 	 * Some poll() documentation says that EPOLLHUP is incompatible
533 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
534 	 * all. But careful, it tends to be safer to return too many
535 	 * bits than too few, and you can easily break real applications
536 	 * if you don't tell them that something has hung up!
537 	 *
538 	 * Check-me.
539 	 *
540 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
541 	 * our fs/select.c). It means that after we received EOF,
542 	 * poll always returns immediately, making impossible poll() on write()
543 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
544 	 * if and only if shutdown has been made in both directions.
545 	 * Actually, it is interesting to look how Solaris and DUX
546 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
547 	 * then we could set it on SND_SHUTDOWN. BTW examples given
548 	 * in Stevens' books assume exactly this behaviour, it explains
549 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
550 	 *
551 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
552 	 * blocking on fresh not-connected or disconnected socket. --ANK
553 	 */
554 	shutdown = READ_ONCE(sk->sk_shutdown);
555 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
556 		mask |= EPOLLHUP;
557 	if (shutdown & RCV_SHUTDOWN)
558 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
559 
560 	/* Connected or passive Fast Open socket? */
561 	if (state != TCP_SYN_SENT &&
562 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
563 		int target = sock_rcvlowat(sk, 0, INT_MAX);
564 		u16 urg_data = READ_ONCE(tp->urg_data);
565 
566 		if (unlikely(urg_data) &&
567 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
568 		    !sock_flag(sk, SOCK_URGINLINE))
569 			target++;
570 
571 		if (tcp_stream_is_readable(sk, target))
572 			mask |= EPOLLIN | EPOLLRDNORM;
573 
574 		if (!(shutdown & SEND_SHUTDOWN)) {
575 			if (__sk_stream_is_writeable(sk, 1)) {
576 				mask |= EPOLLOUT | EPOLLWRNORM;
577 			} else {  /* send SIGIO later */
578 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
579 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
580 
581 				/* Race breaker. If space is freed after
582 				 * wspace test but before the flags are set,
583 				 * IO signal will be lost. Memory barrier
584 				 * pairs with the input side.
585 				 */
586 				smp_mb__after_atomic();
587 				if (__sk_stream_is_writeable(sk, 1))
588 					mask |= EPOLLOUT | EPOLLWRNORM;
589 			}
590 		} else
591 			mask |= EPOLLOUT | EPOLLWRNORM;
592 
593 		if (urg_data & TCP_URG_VALID)
594 			mask |= EPOLLPRI;
595 	} else if (state == TCP_SYN_SENT &&
596 		   inet_test_bit(DEFER_CONNECT, sk)) {
597 		/* Active TCP fastopen socket with defer_connect
598 		 * Return EPOLLOUT so application can call write()
599 		 * in order for kernel to generate SYN+data
600 		 */
601 		mask |= EPOLLOUT | EPOLLWRNORM;
602 	}
603 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
604 	smp_rmb();
605 	if (READ_ONCE(sk->sk_err) ||
606 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
607 		mask |= EPOLLERR;
608 
609 	return mask;
610 }
611 EXPORT_SYMBOL(tcp_poll);
612 
613 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
614 {
615 	struct tcp_sock *tp = tcp_sk(sk);
616 	int answ;
617 	bool slow;
618 
619 	switch (cmd) {
620 	case SIOCINQ:
621 		if (sk->sk_state == TCP_LISTEN)
622 			return -EINVAL;
623 
624 		slow = lock_sock_fast(sk);
625 		answ = tcp_inq(sk);
626 		unlock_sock_fast(sk, slow);
627 		break;
628 	case SIOCATMARK:
629 		answ = READ_ONCE(tp->urg_data) &&
630 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
631 		break;
632 	case SIOCOUTQ:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
640 		break;
641 	case SIOCOUTQNSD:
642 		if (sk->sk_state == TCP_LISTEN)
643 			return -EINVAL;
644 
645 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
646 			answ = 0;
647 		else
648 			answ = READ_ONCE(tp->write_seq) -
649 			       READ_ONCE(tp->snd_nxt);
650 		break;
651 	default:
652 		return -ENOIOCTLCMD;
653 	}
654 
655 	*karg = answ;
656 	return 0;
657 }
658 EXPORT_SYMBOL(tcp_ioctl);
659 
660 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
661 {
662 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
663 	tp->pushed_seq = tp->write_seq;
664 }
665 
666 static inline bool forced_push(const struct tcp_sock *tp)
667 {
668 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
669 }
670 
671 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
672 {
673 	struct tcp_sock *tp = tcp_sk(sk);
674 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
675 
676 	tcb->seq     = tcb->end_seq = tp->write_seq;
677 	tcb->tcp_flags = TCPHDR_ACK;
678 	__skb_header_release(skb);
679 	tcp_add_write_queue_tail(sk, skb);
680 	sk_wmem_queued_add(sk, skb->truesize);
681 	sk_mem_charge(sk, skb->truesize);
682 	if (tp->nonagle & TCP_NAGLE_PUSH)
683 		tp->nonagle &= ~TCP_NAGLE_PUSH;
684 
685 	tcp_slow_start_after_idle_check(sk);
686 }
687 
688 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
689 {
690 	if (flags & MSG_OOB)
691 		tp->snd_up = tp->write_seq;
692 }
693 
694 /* If a not yet filled skb is pushed, do not send it if
695  * we have data packets in Qdisc or NIC queues :
696  * Because TX completion will happen shortly, it gives a chance
697  * to coalesce future sendmsg() payload into this skb, without
698  * need for a timer, and with no latency trade off.
699  * As packets containing data payload have a bigger truesize
700  * than pure acks (dataless) packets, the last checks prevent
701  * autocorking if we only have an ACK in Qdisc/NIC queues,
702  * or if TX completion was delayed after we processed ACK packet.
703  */
704 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
705 				int size_goal)
706 {
707 	return skb->len < size_goal &&
708 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
709 	       !tcp_rtx_queue_empty(sk) &&
710 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
711 	       tcp_skb_can_collapse_to(skb);
712 }
713 
714 void tcp_push(struct sock *sk, int flags, int mss_now,
715 	      int nonagle, int size_goal)
716 {
717 	struct tcp_sock *tp = tcp_sk(sk);
718 	struct sk_buff *skb;
719 
720 	skb = tcp_write_queue_tail(sk);
721 	if (!skb)
722 		return;
723 	if (!(flags & MSG_MORE) || forced_push(tp))
724 		tcp_mark_push(tp, skb);
725 
726 	tcp_mark_urg(tp, flags);
727 
728 	if (tcp_should_autocork(sk, skb, size_goal)) {
729 
730 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
731 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
732 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
733 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
734 			smp_mb__after_atomic();
735 		}
736 		/* It is possible TX completion already happened
737 		 * before we set TSQ_THROTTLED.
738 		 */
739 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
740 			return;
741 	}
742 
743 	if (flags & MSG_MORE)
744 		nonagle = TCP_NAGLE_CORK;
745 
746 	__tcp_push_pending_frames(sk, mss_now, nonagle);
747 }
748 
749 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
750 				unsigned int offset, size_t len)
751 {
752 	struct tcp_splice_state *tss = rd_desc->arg.data;
753 	int ret;
754 
755 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
756 			      min(rd_desc->count, len), tss->flags);
757 	if (ret > 0)
758 		rd_desc->count -= ret;
759 	return ret;
760 }
761 
762 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
763 {
764 	/* Store TCP splice context information in read_descriptor_t. */
765 	read_descriptor_t rd_desc = {
766 		.arg.data = tss,
767 		.count	  = tss->len,
768 	};
769 
770 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
771 }
772 
773 /**
774  *  tcp_splice_read - splice data from TCP socket to a pipe
775  * @sock:	socket to splice from
776  * @ppos:	position (not valid)
777  * @pipe:	pipe to splice to
778  * @len:	number of bytes to splice
779  * @flags:	splice modifier flags
780  *
781  * Description:
782  *    Will read pages from given socket and fill them into a pipe.
783  *
784  **/
785 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
786 			struct pipe_inode_info *pipe, size_t len,
787 			unsigned int flags)
788 {
789 	struct sock *sk = sock->sk;
790 	struct tcp_splice_state tss = {
791 		.pipe = pipe,
792 		.len = len,
793 		.flags = flags,
794 	};
795 	long timeo;
796 	ssize_t spliced;
797 	int ret;
798 
799 	sock_rps_record_flow(sk);
800 	/*
801 	 * We can't seek on a socket input
802 	 */
803 	if (unlikely(*ppos))
804 		return -ESPIPE;
805 
806 	ret = spliced = 0;
807 
808 	lock_sock(sk);
809 
810 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
811 	while (tss.len) {
812 		ret = __tcp_splice_read(sk, &tss);
813 		if (ret < 0)
814 			break;
815 		else if (!ret) {
816 			if (spliced)
817 				break;
818 			if (sock_flag(sk, SOCK_DONE))
819 				break;
820 			if (sk->sk_err) {
821 				ret = sock_error(sk);
822 				break;
823 			}
824 			if (sk->sk_shutdown & RCV_SHUTDOWN)
825 				break;
826 			if (sk->sk_state == TCP_CLOSE) {
827 				/*
828 				 * This occurs when user tries to read
829 				 * from never connected socket.
830 				 */
831 				ret = -ENOTCONN;
832 				break;
833 			}
834 			if (!timeo) {
835 				ret = -EAGAIN;
836 				break;
837 			}
838 			/* if __tcp_splice_read() got nothing while we have
839 			 * an skb in receive queue, we do not want to loop.
840 			 * This might happen with URG data.
841 			 */
842 			if (!skb_queue_empty(&sk->sk_receive_queue))
843 				break;
844 			ret = sk_wait_data(sk, &timeo, NULL);
845 			if (ret < 0)
846 				break;
847 			if (signal_pending(current)) {
848 				ret = sock_intr_errno(timeo);
849 				break;
850 			}
851 			continue;
852 		}
853 		tss.len -= ret;
854 		spliced += ret;
855 
856 		if (!tss.len || !timeo)
857 			break;
858 		release_sock(sk);
859 		lock_sock(sk);
860 
861 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
862 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
863 		    signal_pending(current))
864 			break;
865 	}
866 
867 	release_sock(sk);
868 
869 	if (spliced)
870 		return spliced;
871 
872 	return ret;
873 }
874 EXPORT_SYMBOL(tcp_splice_read);
875 
876 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
877 				     bool force_schedule)
878 {
879 	struct sk_buff *skb;
880 
881 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
882 	if (likely(skb)) {
883 		bool mem_scheduled;
884 
885 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
886 		if (force_schedule) {
887 			mem_scheduled = true;
888 			sk_forced_mem_schedule(sk, skb->truesize);
889 		} else {
890 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
891 		}
892 		if (likely(mem_scheduled)) {
893 			skb_reserve(skb, MAX_TCP_HEADER);
894 			skb->ip_summed = CHECKSUM_PARTIAL;
895 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
896 			return skb;
897 		}
898 		__kfree_skb(skb);
899 	} else {
900 		sk->sk_prot->enter_memory_pressure(sk);
901 		sk_stream_moderate_sndbuf(sk);
902 	}
903 	return NULL;
904 }
905 
906 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
907 				       int large_allowed)
908 {
909 	struct tcp_sock *tp = tcp_sk(sk);
910 	u32 new_size_goal, size_goal;
911 
912 	if (!large_allowed)
913 		return mss_now;
914 
915 	/* Note : tcp_tso_autosize() will eventually split this later */
916 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
917 
918 	/* We try hard to avoid divides here */
919 	size_goal = tp->gso_segs * mss_now;
920 	if (unlikely(new_size_goal < size_goal ||
921 		     new_size_goal >= size_goal + mss_now)) {
922 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
923 				     sk->sk_gso_max_segs);
924 		size_goal = tp->gso_segs * mss_now;
925 	}
926 
927 	return max(size_goal, mss_now);
928 }
929 
930 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
931 {
932 	int mss_now;
933 
934 	mss_now = tcp_current_mss(sk);
935 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
936 
937 	return mss_now;
938 }
939 
940 /* In some cases, sendmsg() could have added an skb to the write queue,
941  * but failed adding payload on it. We need to remove it to consume less
942  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
943  * epoll() users. Another reason is that tcp_write_xmit() does not like
944  * finding an empty skb in the write queue.
945  */
946 void tcp_remove_empty_skb(struct sock *sk)
947 {
948 	struct sk_buff *skb = tcp_write_queue_tail(sk);
949 
950 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
951 		tcp_unlink_write_queue(skb, sk);
952 		if (tcp_write_queue_empty(sk))
953 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
954 		tcp_wmem_free_skb(sk, skb);
955 	}
956 }
957 
958 /* skb changing from pure zc to mixed, must charge zc */
959 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
960 {
961 	if (unlikely(skb_zcopy_pure(skb))) {
962 		u32 extra = skb->truesize -
963 			    SKB_TRUESIZE(skb_end_offset(skb));
964 
965 		if (!sk_wmem_schedule(sk, extra))
966 			return -ENOMEM;
967 
968 		sk_mem_charge(sk, extra);
969 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
970 	}
971 	return 0;
972 }
973 
974 
975 int tcp_wmem_schedule(struct sock *sk, int copy)
976 {
977 	int left;
978 
979 	if (likely(sk_wmem_schedule(sk, copy)))
980 		return copy;
981 
982 	/* We could be in trouble if we have nothing queued.
983 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
984 	 * to guarantee some progress.
985 	 */
986 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
987 	if (left > 0)
988 		sk_forced_mem_schedule(sk, min(left, copy));
989 	return min(copy, sk->sk_forward_alloc);
990 }
991 
992 void tcp_free_fastopen_req(struct tcp_sock *tp)
993 {
994 	if (tp->fastopen_req) {
995 		kfree(tp->fastopen_req);
996 		tp->fastopen_req = NULL;
997 	}
998 }
999 
1000 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1001 			 size_t size, struct ubuf_info *uarg)
1002 {
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	struct inet_sock *inet = inet_sk(sk);
1005 	struct sockaddr *uaddr = msg->msg_name;
1006 	int err, flags;
1007 
1008 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1009 	      TFO_CLIENT_ENABLE) ||
1010 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1011 	     uaddr->sa_family == AF_UNSPEC))
1012 		return -EOPNOTSUPP;
1013 	if (tp->fastopen_req)
1014 		return -EALREADY; /* Another Fast Open is in progress */
1015 
1016 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1017 				   sk->sk_allocation);
1018 	if (unlikely(!tp->fastopen_req))
1019 		return -ENOBUFS;
1020 	tp->fastopen_req->data = msg;
1021 	tp->fastopen_req->size = size;
1022 	tp->fastopen_req->uarg = uarg;
1023 
1024 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1025 		err = tcp_connect(sk);
1026 		/* Same failure procedure as in tcp_v4/6_connect */
1027 		if (err) {
1028 			tcp_set_state(sk, TCP_CLOSE);
1029 			inet->inet_dport = 0;
1030 			sk->sk_route_caps = 0;
1031 		}
1032 	}
1033 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1034 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1035 				    msg->msg_namelen, flags, 1);
1036 	/* fastopen_req could already be freed in __inet_stream_connect
1037 	 * if the connection times out or gets rst
1038 	 */
1039 	if (tp->fastopen_req) {
1040 		*copied = tp->fastopen_req->copied;
1041 		tcp_free_fastopen_req(tp);
1042 		inet_clear_bit(DEFER_CONNECT, sk);
1043 	}
1044 	return err;
1045 }
1046 
1047 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1048 {
1049 	struct tcp_sock *tp = tcp_sk(sk);
1050 	struct ubuf_info *uarg = NULL;
1051 	struct sk_buff *skb;
1052 	struct sockcm_cookie sockc;
1053 	int flags, err, copied = 0;
1054 	int mss_now = 0, size_goal, copied_syn = 0;
1055 	int process_backlog = 0;
1056 	int zc = 0;
1057 	long timeo;
1058 
1059 	flags = msg->msg_flags;
1060 
1061 	if ((flags & MSG_ZEROCOPY) && size) {
1062 		if (msg->msg_ubuf) {
1063 			uarg = msg->msg_ubuf;
1064 			if (sk->sk_route_caps & NETIF_F_SG)
1065 				zc = MSG_ZEROCOPY;
1066 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1067 			skb = tcp_write_queue_tail(sk);
1068 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1069 			if (!uarg) {
1070 				err = -ENOBUFS;
1071 				goto out_err;
1072 			}
1073 			if (sk->sk_route_caps & NETIF_F_SG)
1074 				zc = MSG_ZEROCOPY;
1075 			else
1076 				uarg_to_msgzc(uarg)->zerocopy = 0;
1077 		}
1078 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1079 		if (sk->sk_route_caps & NETIF_F_SG)
1080 			zc = MSG_SPLICE_PAGES;
1081 	}
1082 
1083 	if (unlikely(flags & MSG_FASTOPEN ||
1084 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1085 	    !tp->repair) {
1086 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1087 		if (err == -EINPROGRESS && copied_syn > 0)
1088 			goto out;
1089 		else if (err)
1090 			goto out_err;
1091 	}
1092 
1093 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1094 
1095 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1096 
1097 	/* Wait for a connection to finish. One exception is TCP Fast Open
1098 	 * (passive side) where data is allowed to be sent before a connection
1099 	 * is fully established.
1100 	 */
1101 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1102 	    !tcp_passive_fastopen(sk)) {
1103 		err = sk_stream_wait_connect(sk, &timeo);
1104 		if (err != 0)
1105 			goto do_error;
1106 	}
1107 
1108 	if (unlikely(tp->repair)) {
1109 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1110 			copied = tcp_send_rcvq(sk, msg, size);
1111 			goto out_nopush;
1112 		}
1113 
1114 		err = -EINVAL;
1115 		if (tp->repair_queue == TCP_NO_QUEUE)
1116 			goto out_err;
1117 
1118 		/* 'common' sending to sendq */
1119 	}
1120 
1121 	sockcm_init(&sockc, sk);
1122 	if (msg->msg_controllen) {
1123 		err = sock_cmsg_send(sk, msg, &sockc);
1124 		if (unlikely(err)) {
1125 			err = -EINVAL;
1126 			goto out_err;
1127 		}
1128 	}
1129 
1130 	/* This should be in poll */
1131 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1132 
1133 	/* Ok commence sending. */
1134 	copied = 0;
1135 
1136 restart:
1137 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1138 
1139 	err = -EPIPE;
1140 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1141 		goto do_error;
1142 
1143 	while (msg_data_left(msg)) {
1144 		ssize_t copy = 0;
1145 
1146 		skb = tcp_write_queue_tail(sk);
1147 		if (skb)
1148 			copy = size_goal - skb->len;
1149 
1150 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1151 			bool first_skb;
1152 
1153 new_segment:
1154 			if (!sk_stream_memory_free(sk))
1155 				goto wait_for_space;
1156 
1157 			if (unlikely(process_backlog >= 16)) {
1158 				process_backlog = 0;
1159 				if (sk_flush_backlog(sk))
1160 					goto restart;
1161 			}
1162 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1163 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1164 						   first_skb);
1165 			if (!skb)
1166 				goto wait_for_space;
1167 
1168 			process_backlog++;
1169 
1170 #ifdef CONFIG_SKB_DECRYPTED
1171 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1172 #endif
1173 			tcp_skb_entail(sk, skb);
1174 			copy = size_goal;
1175 
1176 			/* All packets are restored as if they have
1177 			 * already been sent. skb_mstamp_ns isn't set to
1178 			 * avoid wrong rtt estimation.
1179 			 */
1180 			if (tp->repair)
1181 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1182 		}
1183 
1184 		/* Try to append data to the end of skb. */
1185 		if (copy > msg_data_left(msg))
1186 			copy = msg_data_left(msg);
1187 
1188 		if (zc == 0) {
1189 			bool merge = true;
1190 			int i = skb_shinfo(skb)->nr_frags;
1191 			struct page_frag *pfrag = sk_page_frag(sk);
1192 
1193 			if (!sk_page_frag_refill(sk, pfrag))
1194 				goto wait_for_space;
1195 
1196 			if (!skb_can_coalesce(skb, i, pfrag->page,
1197 					      pfrag->offset)) {
1198 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1199 					tcp_mark_push(tp, skb);
1200 					goto new_segment;
1201 				}
1202 				merge = false;
1203 			}
1204 
1205 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1206 
1207 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1208 				if (tcp_downgrade_zcopy_pure(sk, skb))
1209 					goto wait_for_space;
1210 				skb_zcopy_downgrade_managed(skb);
1211 			}
1212 
1213 			copy = tcp_wmem_schedule(sk, copy);
1214 			if (!copy)
1215 				goto wait_for_space;
1216 
1217 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1218 						       pfrag->page,
1219 						       pfrag->offset,
1220 						       copy);
1221 			if (err)
1222 				goto do_error;
1223 
1224 			/* Update the skb. */
1225 			if (merge) {
1226 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1227 			} else {
1228 				skb_fill_page_desc(skb, i, pfrag->page,
1229 						   pfrag->offset, copy);
1230 				page_ref_inc(pfrag->page);
1231 			}
1232 			pfrag->offset += copy;
1233 		} else if (zc == MSG_ZEROCOPY)  {
1234 			/* First append to a fragless skb builds initial
1235 			 * pure zerocopy skb
1236 			 */
1237 			if (!skb->len)
1238 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1239 
1240 			if (!skb_zcopy_pure(skb)) {
1241 				copy = tcp_wmem_schedule(sk, copy);
1242 				if (!copy)
1243 					goto wait_for_space;
1244 			}
1245 
1246 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1247 			if (err == -EMSGSIZE || err == -EEXIST) {
1248 				tcp_mark_push(tp, skb);
1249 				goto new_segment;
1250 			}
1251 			if (err < 0)
1252 				goto do_error;
1253 			copy = err;
1254 		} else if (zc == MSG_SPLICE_PAGES) {
1255 			/* Splice in data if we can; copy if we can't. */
1256 			if (tcp_downgrade_zcopy_pure(sk, skb))
1257 				goto wait_for_space;
1258 			copy = tcp_wmem_schedule(sk, copy);
1259 			if (!copy)
1260 				goto wait_for_space;
1261 
1262 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1263 						   sk->sk_allocation);
1264 			if (err < 0) {
1265 				if (err == -EMSGSIZE) {
1266 					tcp_mark_push(tp, skb);
1267 					goto new_segment;
1268 				}
1269 				goto do_error;
1270 			}
1271 			copy = err;
1272 
1273 			if (!(flags & MSG_NO_SHARED_FRAGS))
1274 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1275 
1276 			sk_wmem_queued_add(sk, copy);
1277 			sk_mem_charge(sk, copy);
1278 		}
1279 
1280 		if (!copied)
1281 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1282 
1283 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1284 		TCP_SKB_CB(skb)->end_seq += copy;
1285 		tcp_skb_pcount_set(skb, 0);
1286 
1287 		copied += copy;
1288 		if (!msg_data_left(msg)) {
1289 			if (unlikely(flags & MSG_EOR))
1290 				TCP_SKB_CB(skb)->eor = 1;
1291 			goto out;
1292 		}
1293 
1294 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1295 			continue;
1296 
1297 		if (forced_push(tp)) {
1298 			tcp_mark_push(tp, skb);
1299 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1300 		} else if (skb == tcp_send_head(sk))
1301 			tcp_push_one(sk, mss_now);
1302 		continue;
1303 
1304 wait_for_space:
1305 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1306 		tcp_remove_empty_skb(sk);
1307 		if (copied)
1308 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1309 				 TCP_NAGLE_PUSH, size_goal);
1310 
1311 		err = sk_stream_wait_memory(sk, &timeo);
1312 		if (err != 0)
1313 			goto do_error;
1314 
1315 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1316 	}
1317 
1318 out:
1319 	if (copied) {
1320 		tcp_tx_timestamp(sk, sockc.tsflags);
1321 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1322 	}
1323 out_nopush:
1324 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1325 	if (uarg && !msg->msg_ubuf)
1326 		net_zcopy_put(uarg);
1327 	return copied + copied_syn;
1328 
1329 do_error:
1330 	tcp_remove_empty_skb(sk);
1331 
1332 	if (copied + copied_syn)
1333 		goto out;
1334 out_err:
1335 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1336 	if (uarg && !msg->msg_ubuf)
1337 		net_zcopy_put_abort(uarg, true);
1338 	err = sk_stream_error(sk, flags, err);
1339 	/* make sure we wake any epoll edge trigger waiter */
1340 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1341 		sk->sk_write_space(sk);
1342 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1343 	}
1344 	return err;
1345 }
1346 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1347 
1348 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1349 {
1350 	int ret;
1351 
1352 	lock_sock(sk);
1353 	ret = tcp_sendmsg_locked(sk, msg, size);
1354 	release_sock(sk);
1355 
1356 	return ret;
1357 }
1358 EXPORT_SYMBOL(tcp_sendmsg);
1359 
1360 void tcp_splice_eof(struct socket *sock)
1361 {
1362 	struct sock *sk = sock->sk;
1363 	struct tcp_sock *tp = tcp_sk(sk);
1364 	int mss_now, size_goal;
1365 
1366 	if (!tcp_write_queue_tail(sk))
1367 		return;
1368 
1369 	lock_sock(sk);
1370 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1371 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1372 	release_sock(sk);
1373 }
1374 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1375 
1376 /*
1377  *	Handle reading urgent data. BSD has very simple semantics for
1378  *	this, no blocking and very strange errors 8)
1379  */
1380 
1381 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 
1385 	/* No URG data to read. */
1386 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1387 	    tp->urg_data == TCP_URG_READ)
1388 		return -EINVAL;	/* Yes this is right ! */
1389 
1390 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1391 		return -ENOTCONN;
1392 
1393 	if (tp->urg_data & TCP_URG_VALID) {
1394 		int err = 0;
1395 		char c = tp->urg_data;
1396 
1397 		if (!(flags & MSG_PEEK))
1398 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1399 
1400 		/* Read urgent data. */
1401 		msg->msg_flags |= MSG_OOB;
1402 
1403 		if (len > 0) {
1404 			if (!(flags & MSG_TRUNC))
1405 				err = memcpy_to_msg(msg, &c, 1);
1406 			len = 1;
1407 		} else
1408 			msg->msg_flags |= MSG_TRUNC;
1409 
1410 		return err ? -EFAULT : len;
1411 	}
1412 
1413 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1414 		return 0;
1415 
1416 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1417 	 * the available implementations agree in this case:
1418 	 * this call should never block, independent of the
1419 	 * blocking state of the socket.
1420 	 * Mike <pall@rz.uni-karlsruhe.de>
1421 	 */
1422 	return -EAGAIN;
1423 }
1424 
1425 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1426 {
1427 	struct sk_buff *skb;
1428 	int copied = 0, err = 0;
1429 
1430 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1431 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 		if (err)
1433 			return err;
1434 		copied += skb->len;
1435 	}
1436 
1437 	skb_queue_walk(&sk->sk_write_queue, skb) {
1438 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1439 		if (err)
1440 			break;
1441 
1442 		copied += skb->len;
1443 	}
1444 
1445 	return err ?: copied;
1446 }
1447 
1448 /* Clean up the receive buffer for full frames taken by the user,
1449  * then send an ACK if necessary.  COPIED is the number of bytes
1450  * tcp_recvmsg has given to the user so far, it speeds up the
1451  * calculation of whether or not we must ACK for the sake of
1452  * a window update.
1453  */
1454 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1455 {
1456 	struct tcp_sock *tp = tcp_sk(sk);
1457 	bool time_to_ack = false;
1458 
1459 	if (inet_csk_ack_scheduled(sk)) {
1460 		const struct inet_connection_sock *icsk = inet_csk(sk);
1461 
1462 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1463 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1464 		    /*
1465 		     * If this read emptied read buffer, we send ACK, if
1466 		     * connection is not bidirectional, user drained
1467 		     * receive buffer and there was a small segment
1468 		     * in queue.
1469 		     */
1470 		    (copied > 0 &&
1471 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1472 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1473 		       !inet_csk_in_pingpong_mode(sk))) &&
1474 		      !atomic_read(&sk->sk_rmem_alloc)))
1475 			time_to_ack = true;
1476 	}
1477 
1478 	/* We send an ACK if we can now advertise a non-zero window
1479 	 * which has been raised "significantly".
1480 	 *
1481 	 * Even if window raised up to infinity, do not send window open ACK
1482 	 * in states, where we will not receive more. It is useless.
1483 	 */
1484 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1485 		__u32 rcv_window_now = tcp_receive_window(tp);
1486 
1487 		/* Optimize, __tcp_select_window() is not cheap. */
1488 		if (2*rcv_window_now <= tp->window_clamp) {
1489 			__u32 new_window = __tcp_select_window(sk);
1490 
1491 			/* Send ACK now, if this read freed lots of space
1492 			 * in our buffer. Certainly, new_window is new window.
1493 			 * We can advertise it now, if it is not less than current one.
1494 			 * "Lots" means "at least twice" here.
1495 			 */
1496 			if (new_window && new_window >= 2 * rcv_window_now)
1497 				time_to_ack = true;
1498 		}
1499 	}
1500 	if (time_to_ack)
1501 		tcp_send_ack(sk);
1502 }
1503 
1504 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1505 {
1506 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1507 	struct tcp_sock *tp = tcp_sk(sk);
1508 
1509 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1510 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1511 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1512 	__tcp_cleanup_rbuf(sk, copied);
1513 }
1514 
1515 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1516 {
1517 	__skb_unlink(skb, &sk->sk_receive_queue);
1518 	if (likely(skb->destructor == sock_rfree)) {
1519 		sock_rfree(skb);
1520 		skb->destructor = NULL;
1521 		skb->sk = NULL;
1522 		return skb_attempt_defer_free(skb);
1523 	}
1524 	__kfree_skb(skb);
1525 }
1526 
1527 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1528 {
1529 	struct sk_buff *skb;
1530 	u32 offset;
1531 
1532 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1533 		offset = seq - TCP_SKB_CB(skb)->seq;
1534 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1535 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1536 			offset--;
1537 		}
1538 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1539 			*off = offset;
1540 			return skb;
1541 		}
1542 		/* This looks weird, but this can happen if TCP collapsing
1543 		 * splitted a fat GRO packet, while we released socket lock
1544 		 * in skb_splice_bits()
1545 		 */
1546 		tcp_eat_recv_skb(sk, skb);
1547 	}
1548 	return NULL;
1549 }
1550 EXPORT_SYMBOL(tcp_recv_skb);
1551 
1552 /*
1553  * This routine provides an alternative to tcp_recvmsg() for routines
1554  * that would like to handle copying from skbuffs directly in 'sendfile'
1555  * fashion.
1556  * Note:
1557  *	- It is assumed that the socket was locked by the caller.
1558  *	- The routine does not block.
1559  *	- At present, there is no support for reading OOB data
1560  *	  or for 'peeking' the socket using this routine
1561  *	  (although both would be easy to implement).
1562  */
1563 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1564 		  sk_read_actor_t recv_actor)
1565 {
1566 	struct sk_buff *skb;
1567 	struct tcp_sock *tp = tcp_sk(sk);
1568 	u32 seq = tp->copied_seq;
1569 	u32 offset;
1570 	int copied = 0;
1571 
1572 	if (sk->sk_state == TCP_LISTEN)
1573 		return -ENOTCONN;
1574 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1575 		if (offset < skb->len) {
1576 			int used;
1577 			size_t len;
1578 
1579 			len = skb->len - offset;
1580 			/* Stop reading if we hit a patch of urgent data */
1581 			if (unlikely(tp->urg_data)) {
1582 				u32 urg_offset = tp->urg_seq - seq;
1583 				if (urg_offset < len)
1584 					len = urg_offset;
1585 				if (!len)
1586 					break;
1587 			}
1588 			used = recv_actor(desc, skb, offset, len);
1589 			if (used <= 0) {
1590 				if (!copied)
1591 					copied = used;
1592 				break;
1593 			}
1594 			if (WARN_ON_ONCE(used > len))
1595 				used = len;
1596 			seq += used;
1597 			copied += used;
1598 			offset += used;
1599 
1600 			/* If recv_actor drops the lock (e.g. TCP splice
1601 			 * receive) the skb pointer might be invalid when
1602 			 * getting here: tcp_collapse might have deleted it
1603 			 * while aggregating skbs from the socket queue.
1604 			 */
1605 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1606 			if (!skb)
1607 				break;
1608 			/* TCP coalescing might have appended data to the skb.
1609 			 * Try to splice more frags
1610 			 */
1611 			if (offset + 1 != skb->len)
1612 				continue;
1613 		}
1614 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1615 			tcp_eat_recv_skb(sk, skb);
1616 			++seq;
1617 			break;
1618 		}
1619 		tcp_eat_recv_skb(sk, skb);
1620 		if (!desc->count)
1621 			break;
1622 		WRITE_ONCE(tp->copied_seq, seq);
1623 	}
1624 	WRITE_ONCE(tp->copied_seq, seq);
1625 
1626 	tcp_rcv_space_adjust(sk);
1627 
1628 	/* Clean up data we have read: This will do ACK frames. */
1629 	if (copied > 0) {
1630 		tcp_recv_skb(sk, seq, &offset);
1631 		tcp_cleanup_rbuf(sk, copied);
1632 	}
1633 	return copied;
1634 }
1635 EXPORT_SYMBOL(tcp_read_sock);
1636 
1637 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1638 {
1639 	struct sk_buff *skb;
1640 	int copied = 0;
1641 
1642 	if (sk->sk_state == TCP_LISTEN)
1643 		return -ENOTCONN;
1644 
1645 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1646 		u8 tcp_flags;
1647 		int used;
1648 
1649 		__skb_unlink(skb, &sk->sk_receive_queue);
1650 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1651 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1652 		used = recv_actor(sk, skb);
1653 		if (used < 0) {
1654 			if (!copied)
1655 				copied = used;
1656 			break;
1657 		}
1658 		copied += used;
1659 
1660 		if (tcp_flags & TCPHDR_FIN)
1661 			break;
1662 	}
1663 	return copied;
1664 }
1665 EXPORT_SYMBOL(tcp_read_skb);
1666 
1667 void tcp_read_done(struct sock *sk, size_t len)
1668 {
1669 	struct tcp_sock *tp = tcp_sk(sk);
1670 	u32 seq = tp->copied_seq;
1671 	struct sk_buff *skb;
1672 	size_t left;
1673 	u32 offset;
1674 
1675 	if (sk->sk_state == TCP_LISTEN)
1676 		return;
1677 
1678 	left = len;
1679 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1680 		int used;
1681 
1682 		used = min_t(size_t, skb->len - offset, left);
1683 		seq += used;
1684 		left -= used;
1685 
1686 		if (skb->len > offset + used)
1687 			break;
1688 
1689 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1690 			tcp_eat_recv_skb(sk, skb);
1691 			++seq;
1692 			break;
1693 		}
1694 		tcp_eat_recv_skb(sk, skb);
1695 	}
1696 	WRITE_ONCE(tp->copied_seq, seq);
1697 
1698 	tcp_rcv_space_adjust(sk);
1699 
1700 	/* Clean up data we have read: This will do ACK frames. */
1701 	if (left != len)
1702 		tcp_cleanup_rbuf(sk, len - left);
1703 }
1704 EXPORT_SYMBOL(tcp_read_done);
1705 
1706 int tcp_peek_len(struct socket *sock)
1707 {
1708 	return tcp_inq(sock->sk);
1709 }
1710 EXPORT_SYMBOL(tcp_peek_len);
1711 
1712 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1713 int tcp_set_rcvlowat(struct sock *sk, int val)
1714 {
1715 	int space, cap;
1716 
1717 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1718 		cap = sk->sk_rcvbuf >> 1;
1719 	else
1720 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1721 	val = min(val, cap);
1722 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1723 
1724 	/* Check if we need to signal EPOLLIN right now */
1725 	tcp_data_ready(sk);
1726 
1727 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1728 		return 0;
1729 
1730 	space = tcp_space_from_win(sk, val);
1731 	if (space > sk->sk_rcvbuf) {
1732 		WRITE_ONCE(sk->sk_rcvbuf, space);
1733 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1734 	}
1735 	return 0;
1736 }
1737 EXPORT_SYMBOL(tcp_set_rcvlowat);
1738 
1739 void tcp_update_recv_tstamps(struct sk_buff *skb,
1740 			     struct scm_timestamping_internal *tss)
1741 {
1742 	if (skb->tstamp)
1743 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1744 	else
1745 		tss->ts[0] = (struct timespec64) {0};
1746 
1747 	if (skb_hwtstamps(skb)->hwtstamp)
1748 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1749 	else
1750 		tss->ts[2] = (struct timespec64) {0};
1751 }
1752 
1753 #ifdef CONFIG_MMU
1754 static const struct vm_operations_struct tcp_vm_ops = {
1755 };
1756 
1757 int tcp_mmap(struct file *file, struct socket *sock,
1758 	     struct vm_area_struct *vma)
1759 {
1760 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1761 		return -EPERM;
1762 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1763 
1764 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1765 	vm_flags_set(vma, VM_MIXEDMAP);
1766 
1767 	vma->vm_ops = &tcp_vm_ops;
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(tcp_mmap);
1771 
1772 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1773 				       u32 *offset_frag)
1774 {
1775 	skb_frag_t *frag;
1776 
1777 	if (unlikely(offset_skb >= skb->len))
1778 		return NULL;
1779 
1780 	offset_skb -= skb_headlen(skb);
1781 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1782 		return NULL;
1783 
1784 	frag = skb_shinfo(skb)->frags;
1785 	while (offset_skb) {
1786 		if (skb_frag_size(frag) > offset_skb) {
1787 			*offset_frag = offset_skb;
1788 			return frag;
1789 		}
1790 		offset_skb -= skb_frag_size(frag);
1791 		++frag;
1792 	}
1793 	*offset_frag = 0;
1794 	return frag;
1795 }
1796 
1797 static bool can_map_frag(const skb_frag_t *frag)
1798 {
1799 	struct page *page;
1800 
1801 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1802 		return false;
1803 
1804 	page = skb_frag_page(frag);
1805 
1806 	if (PageCompound(page) || page->mapping)
1807 		return false;
1808 
1809 	return true;
1810 }
1811 
1812 static int find_next_mappable_frag(const skb_frag_t *frag,
1813 				   int remaining_in_skb)
1814 {
1815 	int offset = 0;
1816 
1817 	if (likely(can_map_frag(frag)))
1818 		return 0;
1819 
1820 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1821 		offset += skb_frag_size(frag);
1822 		++frag;
1823 	}
1824 	return offset;
1825 }
1826 
1827 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1828 					  struct tcp_zerocopy_receive *zc,
1829 					  struct sk_buff *skb, u32 offset)
1830 {
1831 	u32 frag_offset, partial_frag_remainder = 0;
1832 	int mappable_offset;
1833 	skb_frag_t *frag;
1834 
1835 	/* worst case: skip to next skb. try to improve on this case below */
1836 	zc->recv_skip_hint = skb->len - offset;
1837 
1838 	/* Find the frag containing this offset (and how far into that frag) */
1839 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1840 	if (!frag)
1841 		return;
1842 
1843 	if (frag_offset) {
1844 		struct skb_shared_info *info = skb_shinfo(skb);
1845 
1846 		/* We read part of the last frag, must recvmsg() rest of skb. */
1847 		if (frag == &info->frags[info->nr_frags - 1])
1848 			return;
1849 
1850 		/* Else, we must at least read the remainder in this frag. */
1851 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1852 		zc->recv_skip_hint -= partial_frag_remainder;
1853 		++frag;
1854 	}
1855 
1856 	/* partial_frag_remainder: If part way through a frag, must read rest.
1857 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1858 	 * in partial_frag_remainder.
1859 	 */
1860 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1861 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1862 }
1863 
1864 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1865 			      int flags, struct scm_timestamping_internal *tss,
1866 			      int *cmsg_flags);
1867 static int receive_fallback_to_copy(struct sock *sk,
1868 				    struct tcp_zerocopy_receive *zc, int inq,
1869 				    struct scm_timestamping_internal *tss)
1870 {
1871 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1872 	struct msghdr msg = {};
1873 	int err;
1874 
1875 	zc->length = 0;
1876 	zc->recv_skip_hint = 0;
1877 
1878 	if (copy_address != zc->copybuf_address)
1879 		return -EINVAL;
1880 
1881 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1882 			  &msg.msg_iter);
1883 	if (err)
1884 		return err;
1885 
1886 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1887 				 tss, &zc->msg_flags);
1888 	if (err < 0)
1889 		return err;
1890 
1891 	zc->copybuf_len = err;
1892 	if (likely(zc->copybuf_len)) {
1893 		struct sk_buff *skb;
1894 		u32 offset;
1895 
1896 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1897 		if (skb)
1898 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1899 	}
1900 	return 0;
1901 }
1902 
1903 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1904 				   struct sk_buff *skb, u32 copylen,
1905 				   u32 *offset, u32 *seq)
1906 {
1907 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1908 	struct msghdr msg = {};
1909 	int err;
1910 
1911 	if (copy_address != zc->copybuf_address)
1912 		return -EINVAL;
1913 
1914 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1915 			  &msg.msg_iter);
1916 	if (err)
1917 		return err;
1918 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1919 	if (err)
1920 		return err;
1921 	zc->recv_skip_hint -= copylen;
1922 	*offset += copylen;
1923 	*seq += copylen;
1924 	return (__s32)copylen;
1925 }
1926 
1927 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1928 				  struct sock *sk,
1929 				  struct sk_buff *skb,
1930 				  u32 *seq,
1931 				  s32 copybuf_len,
1932 				  struct scm_timestamping_internal *tss)
1933 {
1934 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1935 
1936 	if (!copylen)
1937 		return 0;
1938 	/* skb is null if inq < PAGE_SIZE. */
1939 	if (skb) {
1940 		offset = *seq - TCP_SKB_CB(skb)->seq;
1941 	} else {
1942 		skb = tcp_recv_skb(sk, *seq, &offset);
1943 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1944 			tcp_update_recv_tstamps(skb, tss);
1945 			zc->msg_flags |= TCP_CMSG_TS;
1946 		}
1947 	}
1948 
1949 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1950 						  seq);
1951 	return zc->copybuf_len < 0 ? 0 : copylen;
1952 }
1953 
1954 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1955 					      struct page **pending_pages,
1956 					      unsigned long pages_remaining,
1957 					      unsigned long *address,
1958 					      u32 *length,
1959 					      u32 *seq,
1960 					      struct tcp_zerocopy_receive *zc,
1961 					      u32 total_bytes_to_map,
1962 					      int err)
1963 {
1964 	/* At least one page did not map. Try zapping if we skipped earlier. */
1965 	if (err == -EBUSY &&
1966 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1967 		u32 maybe_zap_len;
1968 
1969 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1970 				*length + /* Mapped or pending */
1971 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1972 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1973 		err = 0;
1974 	}
1975 
1976 	if (!err) {
1977 		unsigned long leftover_pages = pages_remaining;
1978 		int bytes_mapped;
1979 
1980 		/* We called zap_page_range_single, try to reinsert. */
1981 		err = vm_insert_pages(vma, *address,
1982 				      pending_pages,
1983 				      &pages_remaining);
1984 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1985 		*seq += bytes_mapped;
1986 		*address += bytes_mapped;
1987 	}
1988 	if (err) {
1989 		/* Either we were unable to zap, OR we zapped, retried an
1990 		 * insert, and still had an issue. Either ways, pages_remaining
1991 		 * is the number of pages we were unable to map, and we unroll
1992 		 * some state we speculatively touched before.
1993 		 */
1994 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1995 
1996 		*length -= bytes_not_mapped;
1997 		zc->recv_skip_hint += bytes_not_mapped;
1998 	}
1999 	return err;
2000 }
2001 
2002 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2003 					struct page **pages,
2004 					unsigned int pages_to_map,
2005 					unsigned long *address,
2006 					u32 *length,
2007 					u32 *seq,
2008 					struct tcp_zerocopy_receive *zc,
2009 					u32 total_bytes_to_map)
2010 {
2011 	unsigned long pages_remaining = pages_to_map;
2012 	unsigned int pages_mapped;
2013 	unsigned int bytes_mapped;
2014 	int err;
2015 
2016 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2017 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2018 	bytes_mapped = PAGE_SIZE * pages_mapped;
2019 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2020 	 * mapping (some but not all of the pages).
2021 	 */
2022 	*seq += bytes_mapped;
2023 	*address += bytes_mapped;
2024 
2025 	if (likely(!err))
2026 		return 0;
2027 
2028 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2029 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2030 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2031 		err);
2032 }
2033 
2034 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2035 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2036 				      struct tcp_zerocopy_receive *zc,
2037 				      struct scm_timestamping_internal *tss)
2038 {
2039 	unsigned long msg_control_addr;
2040 	struct msghdr cmsg_dummy;
2041 
2042 	msg_control_addr = (unsigned long)zc->msg_control;
2043 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2044 	cmsg_dummy.msg_controllen =
2045 		(__kernel_size_t)zc->msg_controllen;
2046 	cmsg_dummy.msg_flags = in_compat_syscall()
2047 		? MSG_CMSG_COMPAT : 0;
2048 	cmsg_dummy.msg_control_is_user = true;
2049 	zc->msg_flags = 0;
2050 	if (zc->msg_control == msg_control_addr &&
2051 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2052 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2053 		zc->msg_control = (__u64)
2054 			((uintptr_t)cmsg_dummy.msg_control_user);
2055 		zc->msg_controllen =
2056 			(__u64)cmsg_dummy.msg_controllen;
2057 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2058 	}
2059 }
2060 
2061 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2062 					   unsigned long address,
2063 					   bool *mmap_locked)
2064 {
2065 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2066 
2067 	if (vma) {
2068 		if (vma->vm_ops != &tcp_vm_ops) {
2069 			vma_end_read(vma);
2070 			return NULL;
2071 		}
2072 		*mmap_locked = false;
2073 		return vma;
2074 	}
2075 
2076 	mmap_read_lock(mm);
2077 	vma = vma_lookup(mm, address);
2078 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2079 		mmap_read_unlock(mm);
2080 		return NULL;
2081 	}
2082 	*mmap_locked = true;
2083 	return vma;
2084 }
2085 
2086 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2087 static int tcp_zerocopy_receive(struct sock *sk,
2088 				struct tcp_zerocopy_receive *zc,
2089 				struct scm_timestamping_internal *tss)
2090 {
2091 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2092 	unsigned long address = (unsigned long)zc->address;
2093 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2094 	s32 copybuf_len = zc->copybuf_len;
2095 	struct tcp_sock *tp = tcp_sk(sk);
2096 	const skb_frag_t *frags = NULL;
2097 	unsigned int pages_to_map = 0;
2098 	struct vm_area_struct *vma;
2099 	struct sk_buff *skb = NULL;
2100 	u32 seq = tp->copied_seq;
2101 	u32 total_bytes_to_map;
2102 	int inq = tcp_inq(sk);
2103 	bool mmap_locked;
2104 	int ret;
2105 
2106 	zc->copybuf_len = 0;
2107 	zc->msg_flags = 0;
2108 
2109 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2110 		return -EINVAL;
2111 
2112 	if (sk->sk_state == TCP_LISTEN)
2113 		return -ENOTCONN;
2114 
2115 	sock_rps_record_flow(sk);
2116 
2117 	if (inq && inq <= copybuf_len)
2118 		return receive_fallback_to_copy(sk, zc, inq, tss);
2119 
2120 	if (inq < PAGE_SIZE) {
2121 		zc->length = 0;
2122 		zc->recv_skip_hint = inq;
2123 		if (!inq && sock_flag(sk, SOCK_DONE))
2124 			return -EIO;
2125 		return 0;
2126 	}
2127 
2128 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2129 	if (!vma)
2130 		return -EINVAL;
2131 
2132 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2133 	avail_len = min_t(u32, vma_len, inq);
2134 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2135 	if (total_bytes_to_map) {
2136 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2137 			zap_page_range_single(vma, address, total_bytes_to_map,
2138 					      NULL);
2139 		zc->length = total_bytes_to_map;
2140 		zc->recv_skip_hint = 0;
2141 	} else {
2142 		zc->length = avail_len;
2143 		zc->recv_skip_hint = avail_len;
2144 	}
2145 	ret = 0;
2146 	while (length + PAGE_SIZE <= zc->length) {
2147 		int mappable_offset;
2148 		struct page *page;
2149 
2150 		if (zc->recv_skip_hint < PAGE_SIZE) {
2151 			u32 offset_frag;
2152 
2153 			if (skb) {
2154 				if (zc->recv_skip_hint > 0)
2155 					break;
2156 				skb = skb->next;
2157 				offset = seq - TCP_SKB_CB(skb)->seq;
2158 			} else {
2159 				skb = tcp_recv_skb(sk, seq, &offset);
2160 			}
2161 
2162 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2163 				tcp_update_recv_tstamps(skb, tss);
2164 				zc->msg_flags |= TCP_CMSG_TS;
2165 			}
2166 			zc->recv_skip_hint = skb->len - offset;
2167 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2168 			if (!frags || offset_frag)
2169 				break;
2170 		}
2171 
2172 		mappable_offset = find_next_mappable_frag(frags,
2173 							  zc->recv_skip_hint);
2174 		if (mappable_offset) {
2175 			zc->recv_skip_hint = mappable_offset;
2176 			break;
2177 		}
2178 		page = skb_frag_page(frags);
2179 		prefetchw(page);
2180 		pages[pages_to_map++] = page;
2181 		length += PAGE_SIZE;
2182 		zc->recv_skip_hint -= PAGE_SIZE;
2183 		frags++;
2184 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2185 		    zc->recv_skip_hint < PAGE_SIZE) {
2186 			/* Either full batch, or we're about to go to next skb
2187 			 * (and we cannot unroll failed ops across skbs).
2188 			 */
2189 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2190 							   pages_to_map,
2191 							   &address, &length,
2192 							   &seq, zc,
2193 							   total_bytes_to_map);
2194 			if (ret)
2195 				goto out;
2196 			pages_to_map = 0;
2197 		}
2198 	}
2199 	if (pages_to_map) {
2200 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2201 						   &address, &length, &seq,
2202 						   zc, total_bytes_to_map);
2203 	}
2204 out:
2205 	if (mmap_locked)
2206 		mmap_read_unlock(current->mm);
2207 	else
2208 		vma_end_read(vma);
2209 	/* Try to copy straggler data. */
2210 	if (!ret)
2211 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2212 
2213 	if (length + copylen) {
2214 		WRITE_ONCE(tp->copied_seq, seq);
2215 		tcp_rcv_space_adjust(sk);
2216 
2217 		/* Clean up data we have read: This will do ACK frames. */
2218 		tcp_recv_skb(sk, seq, &offset);
2219 		tcp_cleanup_rbuf(sk, length + copylen);
2220 		ret = 0;
2221 		if (length == zc->length)
2222 			zc->recv_skip_hint = 0;
2223 	} else {
2224 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2225 			ret = -EIO;
2226 	}
2227 	zc->length = length;
2228 	return ret;
2229 }
2230 #endif
2231 
2232 /* Similar to __sock_recv_timestamp, but does not require an skb */
2233 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2234 			struct scm_timestamping_internal *tss)
2235 {
2236 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2237 	bool has_timestamping = false;
2238 
2239 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2240 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2241 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2242 				if (new_tstamp) {
2243 					struct __kernel_timespec kts = {
2244 						.tv_sec = tss->ts[0].tv_sec,
2245 						.tv_nsec = tss->ts[0].tv_nsec,
2246 					};
2247 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2248 						 sizeof(kts), &kts);
2249 				} else {
2250 					struct __kernel_old_timespec ts_old = {
2251 						.tv_sec = tss->ts[0].tv_sec,
2252 						.tv_nsec = tss->ts[0].tv_nsec,
2253 					};
2254 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2255 						 sizeof(ts_old), &ts_old);
2256 				}
2257 			} else {
2258 				if (new_tstamp) {
2259 					struct __kernel_sock_timeval stv = {
2260 						.tv_sec = tss->ts[0].tv_sec,
2261 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2262 					};
2263 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2264 						 sizeof(stv), &stv);
2265 				} else {
2266 					struct __kernel_old_timeval tv = {
2267 						.tv_sec = tss->ts[0].tv_sec,
2268 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2269 					};
2270 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2271 						 sizeof(tv), &tv);
2272 				}
2273 			}
2274 		}
2275 
2276 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2277 			has_timestamping = true;
2278 		else
2279 			tss->ts[0] = (struct timespec64) {0};
2280 	}
2281 
2282 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2283 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2284 			has_timestamping = true;
2285 		else
2286 			tss->ts[2] = (struct timespec64) {0};
2287 	}
2288 
2289 	if (has_timestamping) {
2290 		tss->ts[1] = (struct timespec64) {0};
2291 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2292 			put_cmsg_scm_timestamping64(msg, tss);
2293 		else
2294 			put_cmsg_scm_timestamping(msg, tss);
2295 	}
2296 }
2297 
2298 static int tcp_inq_hint(struct sock *sk)
2299 {
2300 	const struct tcp_sock *tp = tcp_sk(sk);
2301 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2302 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2303 	int inq;
2304 
2305 	inq = rcv_nxt - copied_seq;
2306 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2307 		lock_sock(sk);
2308 		inq = tp->rcv_nxt - tp->copied_seq;
2309 		release_sock(sk);
2310 	}
2311 	/* After receiving a FIN, tell the user-space to continue reading
2312 	 * by returning a non-zero inq.
2313 	 */
2314 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2315 		inq = 1;
2316 	return inq;
2317 }
2318 
2319 /*
2320  *	This routine copies from a sock struct into the user buffer.
2321  *
2322  *	Technical note: in 2.3 we work on _locked_ socket, so that
2323  *	tricks with *seq access order and skb->users are not required.
2324  *	Probably, code can be easily improved even more.
2325  */
2326 
2327 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2328 			      int flags, struct scm_timestamping_internal *tss,
2329 			      int *cmsg_flags)
2330 {
2331 	struct tcp_sock *tp = tcp_sk(sk);
2332 	int copied = 0;
2333 	u32 peek_seq;
2334 	u32 *seq;
2335 	unsigned long used;
2336 	int err;
2337 	int target;		/* Read at least this many bytes */
2338 	long timeo;
2339 	struct sk_buff *skb, *last;
2340 	u32 peek_offset = 0;
2341 	u32 urg_hole = 0;
2342 
2343 	err = -ENOTCONN;
2344 	if (sk->sk_state == TCP_LISTEN)
2345 		goto out;
2346 
2347 	if (tp->recvmsg_inq) {
2348 		*cmsg_flags = TCP_CMSG_INQ;
2349 		msg->msg_get_inq = 1;
2350 	}
2351 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2352 
2353 	/* Urgent data needs to be handled specially. */
2354 	if (flags & MSG_OOB)
2355 		goto recv_urg;
2356 
2357 	if (unlikely(tp->repair)) {
2358 		err = -EPERM;
2359 		if (!(flags & MSG_PEEK))
2360 			goto out;
2361 
2362 		if (tp->repair_queue == TCP_SEND_QUEUE)
2363 			goto recv_sndq;
2364 
2365 		err = -EINVAL;
2366 		if (tp->repair_queue == TCP_NO_QUEUE)
2367 			goto out;
2368 
2369 		/* 'common' recv queue MSG_PEEK-ing */
2370 	}
2371 
2372 	seq = &tp->copied_seq;
2373 	if (flags & MSG_PEEK) {
2374 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2375 		peek_seq = tp->copied_seq + peek_offset;
2376 		seq = &peek_seq;
2377 	}
2378 
2379 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2380 
2381 	do {
2382 		u32 offset;
2383 
2384 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2385 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2386 			if (copied)
2387 				break;
2388 			if (signal_pending(current)) {
2389 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2390 				break;
2391 			}
2392 		}
2393 
2394 		/* Next get a buffer. */
2395 
2396 		last = skb_peek_tail(&sk->sk_receive_queue);
2397 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2398 			last = skb;
2399 			/* Now that we have two receive queues this
2400 			 * shouldn't happen.
2401 			 */
2402 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2403 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2404 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2405 				 flags))
2406 				break;
2407 
2408 			offset = *seq - TCP_SKB_CB(skb)->seq;
2409 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2410 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2411 				offset--;
2412 			}
2413 			if (offset < skb->len)
2414 				goto found_ok_skb;
2415 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2416 				goto found_fin_ok;
2417 			WARN(!(flags & MSG_PEEK),
2418 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2419 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2420 		}
2421 
2422 		/* Well, if we have backlog, try to process it now yet. */
2423 
2424 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2425 			break;
2426 
2427 		if (copied) {
2428 			if (!timeo ||
2429 			    sk->sk_err ||
2430 			    sk->sk_state == TCP_CLOSE ||
2431 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2432 			    signal_pending(current))
2433 				break;
2434 		} else {
2435 			if (sock_flag(sk, SOCK_DONE))
2436 				break;
2437 
2438 			if (sk->sk_err) {
2439 				copied = sock_error(sk);
2440 				break;
2441 			}
2442 
2443 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2444 				break;
2445 
2446 			if (sk->sk_state == TCP_CLOSE) {
2447 				/* This occurs when user tries to read
2448 				 * from never connected socket.
2449 				 */
2450 				copied = -ENOTCONN;
2451 				break;
2452 			}
2453 
2454 			if (!timeo) {
2455 				copied = -EAGAIN;
2456 				break;
2457 			}
2458 
2459 			if (signal_pending(current)) {
2460 				copied = sock_intr_errno(timeo);
2461 				break;
2462 			}
2463 		}
2464 
2465 		if (copied >= target) {
2466 			/* Do not sleep, just process backlog. */
2467 			__sk_flush_backlog(sk);
2468 		} else {
2469 			tcp_cleanup_rbuf(sk, copied);
2470 			err = sk_wait_data(sk, &timeo, last);
2471 			if (err < 0) {
2472 				err = copied ? : err;
2473 				goto out;
2474 			}
2475 		}
2476 
2477 		if ((flags & MSG_PEEK) &&
2478 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2479 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2480 					    current->comm,
2481 					    task_pid_nr(current));
2482 			peek_seq = tp->copied_seq + peek_offset;
2483 		}
2484 		continue;
2485 
2486 found_ok_skb:
2487 		/* Ok so how much can we use? */
2488 		used = skb->len - offset;
2489 		if (len < used)
2490 			used = len;
2491 
2492 		/* Do we have urgent data here? */
2493 		if (unlikely(tp->urg_data)) {
2494 			u32 urg_offset = tp->urg_seq - *seq;
2495 			if (urg_offset < used) {
2496 				if (!urg_offset) {
2497 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2498 						WRITE_ONCE(*seq, *seq + 1);
2499 						urg_hole++;
2500 						offset++;
2501 						used--;
2502 						if (!used)
2503 							goto skip_copy;
2504 					}
2505 				} else
2506 					used = urg_offset;
2507 			}
2508 		}
2509 
2510 		if (!(flags & MSG_TRUNC)) {
2511 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2512 			if (err) {
2513 				/* Exception. Bailout! */
2514 				if (!copied)
2515 					copied = -EFAULT;
2516 				break;
2517 			}
2518 		}
2519 
2520 		WRITE_ONCE(*seq, *seq + used);
2521 		copied += used;
2522 		len -= used;
2523 		if (flags & MSG_PEEK)
2524 			sk_peek_offset_fwd(sk, used);
2525 		else
2526 			sk_peek_offset_bwd(sk, used);
2527 		tcp_rcv_space_adjust(sk);
2528 
2529 skip_copy:
2530 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2531 			WRITE_ONCE(tp->urg_data, 0);
2532 			tcp_fast_path_check(sk);
2533 		}
2534 
2535 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2536 			tcp_update_recv_tstamps(skb, tss);
2537 			*cmsg_flags |= TCP_CMSG_TS;
2538 		}
2539 
2540 		if (used + offset < skb->len)
2541 			continue;
2542 
2543 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2544 			goto found_fin_ok;
2545 		if (!(flags & MSG_PEEK))
2546 			tcp_eat_recv_skb(sk, skb);
2547 		continue;
2548 
2549 found_fin_ok:
2550 		/* Process the FIN. */
2551 		WRITE_ONCE(*seq, *seq + 1);
2552 		if (!(flags & MSG_PEEK))
2553 			tcp_eat_recv_skb(sk, skb);
2554 		break;
2555 	} while (len > 0);
2556 
2557 	/* According to UNIX98, msg_name/msg_namelen are ignored
2558 	 * on connected socket. I was just happy when found this 8) --ANK
2559 	 */
2560 
2561 	/* Clean up data we have read: This will do ACK frames. */
2562 	tcp_cleanup_rbuf(sk, copied);
2563 	return copied;
2564 
2565 out:
2566 	return err;
2567 
2568 recv_urg:
2569 	err = tcp_recv_urg(sk, msg, len, flags);
2570 	goto out;
2571 
2572 recv_sndq:
2573 	err = tcp_peek_sndq(sk, msg, len);
2574 	goto out;
2575 }
2576 
2577 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2578 		int *addr_len)
2579 {
2580 	int cmsg_flags = 0, ret;
2581 	struct scm_timestamping_internal tss;
2582 
2583 	if (unlikely(flags & MSG_ERRQUEUE))
2584 		return inet_recv_error(sk, msg, len, addr_len);
2585 
2586 	if (sk_can_busy_loop(sk) &&
2587 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2588 	    sk->sk_state == TCP_ESTABLISHED)
2589 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2590 
2591 	lock_sock(sk);
2592 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2593 	release_sock(sk);
2594 
2595 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2596 		if (cmsg_flags & TCP_CMSG_TS)
2597 			tcp_recv_timestamp(msg, sk, &tss);
2598 		if (msg->msg_get_inq) {
2599 			msg->msg_inq = tcp_inq_hint(sk);
2600 			if (cmsg_flags & TCP_CMSG_INQ)
2601 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2602 					 sizeof(msg->msg_inq), &msg->msg_inq);
2603 		}
2604 	}
2605 	return ret;
2606 }
2607 EXPORT_SYMBOL(tcp_recvmsg);
2608 
2609 void tcp_set_state(struct sock *sk, int state)
2610 {
2611 	int oldstate = sk->sk_state;
2612 
2613 	/* We defined a new enum for TCP states that are exported in BPF
2614 	 * so as not force the internal TCP states to be frozen. The
2615 	 * following checks will detect if an internal state value ever
2616 	 * differs from the BPF value. If this ever happens, then we will
2617 	 * need to remap the internal value to the BPF value before calling
2618 	 * tcp_call_bpf_2arg.
2619 	 */
2620 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2621 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2622 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2623 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2624 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2625 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2626 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2627 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2628 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2629 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2630 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2631 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2632 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2633 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2634 
2635 	/* bpf uapi header bpf.h defines an anonymous enum with values
2636 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2637 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2638 	 * But clang built vmlinux does not have this enum in DWARF
2639 	 * since clang removes the above code before generating IR/debuginfo.
2640 	 * Let us explicitly emit the type debuginfo to ensure the
2641 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2642 	 * regardless of which compiler is used.
2643 	 */
2644 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2645 
2646 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2647 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2648 
2649 	switch (state) {
2650 	case TCP_ESTABLISHED:
2651 		if (oldstate != TCP_ESTABLISHED)
2652 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653 		break;
2654 	case TCP_CLOSE_WAIT:
2655 		if (oldstate == TCP_SYN_RECV)
2656 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2657 		break;
2658 
2659 	case TCP_CLOSE:
2660 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2661 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2662 
2663 		sk->sk_prot->unhash(sk);
2664 		if (inet_csk(sk)->icsk_bind_hash &&
2665 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2666 			inet_put_port(sk);
2667 		fallthrough;
2668 	default:
2669 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2670 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2671 	}
2672 
2673 	/* Change state AFTER socket is unhashed to avoid closed
2674 	 * socket sitting in hash tables.
2675 	 */
2676 	inet_sk_state_store(sk, state);
2677 }
2678 EXPORT_SYMBOL_GPL(tcp_set_state);
2679 
2680 /*
2681  *	State processing on a close. This implements the state shift for
2682  *	sending our FIN frame. Note that we only send a FIN for some
2683  *	states. A shutdown() may have already sent the FIN, or we may be
2684  *	closed.
2685  */
2686 
2687 static const unsigned char new_state[16] = {
2688   /* current state:        new state:      action:	*/
2689   [0 /* (Invalid) */]	= TCP_CLOSE,
2690   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2691   [TCP_SYN_SENT]	= TCP_CLOSE,
2692   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2693   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2694   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2695   [TCP_TIME_WAIT]	= TCP_CLOSE,
2696   [TCP_CLOSE]		= TCP_CLOSE,
2697   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2698   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2699   [TCP_LISTEN]		= TCP_CLOSE,
2700   [TCP_CLOSING]		= TCP_CLOSING,
2701   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2702 };
2703 
2704 static int tcp_close_state(struct sock *sk)
2705 {
2706 	int next = (int)new_state[sk->sk_state];
2707 	int ns = next & TCP_STATE_MASK;
2708 
2709 	tcp_set_state(sk, ns);
2710 
2711 	return next & TCP_ACTION_FIN;
2712 }
2713 
2714 /*
2715  *	Shutdown the sending side of a connection. Much like close except
2716  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2717  */
2718 
2719 void tcp_shutdown(struct sock *sk, int how)
2720 {
2721 	/*	We need to grab some memory, and put together a FIN,
2722 	 *	and then put it into the queue to be sent.
2723 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2724 	 */
2725 	if (!(how & SEND_SHUTDOWN))
2726 		return;
2727 
2728 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2729 	if ((1 << sk->sk_state) &
2730 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2731 	     TCPF_CLOSE_WAIT)) {
2732 		/* Clear out any half completed packets.  FIN if needed. */
2733 		if (tcp_close_state(sk))
2734 			tcp_send_fin(sk);
2735 	}
2736 }
2737 EXPORT_SYMBOL(tcp_shutdown);
2738 
2739 int tcp_orphan_count_sum(void)
2740 {
2741 	int i, total = 0;
2742 
2743 	for_each_possible_cpu(i)
2744 		total += per_cpu(tcp_orphan_count, i);
2745 
2746 	return max(total, 0);
2747 }
2748 
2749 static int tcp_orphan_cache;
2750 static struct timer_list tcp_orphan_timer;
2751 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2752 
2753 static void tcp_orphan_update(struct timer_list *unused)
2754 {
2755 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2756 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2757 }
2758 
2759 static bool tcp_too_many_orphans(int shift)
2760 {
2761 	return READ_ONCE(tcp_orphan_cache) << shift >
2762 		READ_ONCE(sysctl_tcp_max_orphans);
2763 }
2764 
2765 static bool tcp_out_of_memory(const struct sock *sk)
2766 {
2767 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
2768 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
2769 		return true;
2770 	return false;
2771 }
2772 
2773 bool tcp_check_oom(const struct sock *sk, int shift)
2774 {
2775 	bool too_many_orphans, out_of_socket_memory;
2776 
2777 	too_many_orphans = tcp_too_many_orphans(shift);
2778 	out_of_socket_memory = tcp_out_of_memory(sk);
2779 
2780 	if (too_many_orphans)
2781 		net_info_ratelimited("too many orphaned sockets\n");
2782 	if (out_of_socket_memory)
2783 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2784 	return too_many_orphans || out_of_socket_memory;
2785 }
2786 
2787 void __tcp_close(struct sock *sk, long timeout)
2788 {
2789 	struct sk_buff *skb;
2790 	int data_was_unread = 0;
2791 	int state;
2792 
2793 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2794 
2795 	if (sk->sk_state == TCP_LISTEN) {
2796 		tcp_set_state(sk, TCP_CLOSE);
2797 
2798 		/* Special case. */
2799 		inet_csk_listen_stop(sk);
2800 
2801 		goto adjudge_to_death;
2802 	}
2803 
2804 	/*  We need to flush the recv. buffs.  We do this only on the
2805 	 *  descriptor close, not protocol-sourced closes, because the
2806 	 *  reader process may not have drained the data yet!
2807 	 */
2808 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2809 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2810 
2811 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2812 			len--;
2813 		data_was_unread += len;
2814 		__kfree_skb(skb);
2815 	}
2816 
2817 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2818 	if (sk->sk_state == TCP_CLOSE)
2819 		goto adjudge_to_death;
2820 
2821 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2822 	 * data was lost. To witness the awful effects of the old behavior of
2823 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2824 	 * GET in an FTP client, suspend the process, wait for the client to
2825 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2826 	 * Note: timeout is always zero in such a case.
2827 	 */
2828 	if (unlikely(tcp_sk(sk)->repair)) {
2829 		sk->sk_prot->disconnect(sk, 0);
2830 	} else if (data_was_unread) {
2831 		/* Unread data was tossed, zap the connection. */
2832 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2833 		tcp_set_state(sk, TCP_CLOSE);
2834 		tcp_send_active_reset(sk, sk->sk_allocation,
2835 				      SK_RST_REASON_NOT_SPECIFIED);
2836 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2837 		/* Check zero linger _after_ checking for unread data. */
2838 		sk->sk_prot->disconnect(sk, 0);
2839 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2840 	} else if (tcp_close_state(sk)) {
2841 		/* We FIN if the application ate all the data before
2842 		 * zapping the connection.
2843 		 */
2844 
2845 		/* RED-PEN. Formally speaking, we have broken TCP state
2846 		 * machine. State transitions:
2847 		 *
2848 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2849 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2850 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2851 		 *
2852 		 * are legal only when FIN has been sent (i.e. in window),
2853 		 * rather than queued out of window. Purists blame.
2854 		 *
2855 		 * F.e. "RFC state" is ESTABLISHED,
2856 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2857 		 *
2858 		 * The visible declinations are that sometimes
2859 		 * we enter time-wait state, when it is not required really
2860 		 * (harmless), do not send active resets, when they are
2861 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2862 		 * they look as CLOSING or LAST_ACK for Linux)
2863 		 * Probably, I missed some more holelets.
2864 		 * 						--ANK
2865 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2866 		 * in a single packet! (May consider it later but will
2867 		 * probably need API support or TCP_CORK SYN-ACK until
2868 		 * data is written and socket is closed.)
2869 		 */
2870 		tcp_send_fin(sk);
2871 	}
2872 
2873 	sk_stream_wait_close(sk, timeout);
2874 
2875 adjudge_to_death:
2876 	state = sk->sk_state;
2877 	sock_hold(sk);
2878 	sock_orphan(sk);
2879 
2880 	local_bh_disable();
2881 	bh_lock_sock(sk);
2882 	/* remove backlog if any, without releasing ownership. */
2883 	__release_sock(sk);
2884 
2885 	this_cpu_inc(tcp_orphan_count);
2886 
2887 	/* Have we already been destroyed by a softirq or backlog? */
2888 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2889 		goto out;
2890 
2891 	/*	This is a (useful) BSD violating of the RFC. There is a
2892 	 *	problem with TCP as specified in that the other end could
2893 	 *	keep a socket open forever with no application left this end.
2894 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2895 	 *	our end. If they send after that then tough - BUT: long enough
2896 	 *	that we won't make the old 4*rto = almost no time - whoops
2897 	 *	reset mistake.
2898 	 *
2899 	 *	Nope, it was not mistake. It is really desired behaviour
2900 	 *	f.e. on http servers, when such sockets are useless, but
2901 	 *	consume significant resources. Let's do it with special
2902 	 *	linger2	option.					--ANK
2903 	 */
2904 
2905 	if (sk->sk_state == TCP_FIN_WAIT2) {
2906 		struct tcp_sock *tp = tcp_sk(sk);
2907 		if (READ_ONCE(tp->linger2) < 0) {
2908 			tcp_set_state(sk, TCP_CLOSE);
2909 			tcp_send_active_reset(sk, GFP_ATOMIC,
2910 					      SK_RST_REASON_NOT_SPECIFIED);
2911 			__NET_INC_STATS(sock_net(sk),
2912 					LINUX_MIB_TCPABORTONLINGER);
2913 		} else {
2914 			const int tmo = tcp_fin_time(sk);
2915 
2916 			if (tmo > TCP_TIMEWAIT_LEN) {
2917 				inet_csk_reset_keepalive_timer(sk,
2918 						tmo - TCP_TIMEWAIT_LEN);
2919 			} else {
2920 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2921 				goto out;
2922 			}
2923 		}
2924 	}
2925 	if (sk->sk_state != TCP_CLOSE) {
2926 		if (tcp_check_oom(sk, 0)) {
2927 			tcp_set_state(sk, TCP_CLOSE);
2928 			tcp_send_active_reset(sk, GFP_ATOMIC,
2929 					      SK_RST_REASON_NOT_SPECIFIED);
2930 			__NET_INC_STATS(sock_net(sk),
2931 					LINUX_MIB_TCPABORTONMEMORY);
2932 		} else if (!check_net(sock_net(sk))) {
2933 			/* Not possible to send reset; just close */
2934 			tcp_set_state(sk, TCP_CLOSE);
2935 		}
2936 	}
2937 
2938 	if (sk->sk_state == TCP_CLOSE) {
2939 		struct request_sock *req;
2940 
2941 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2942 						lockdep_sock_is_held(sk));
2943 		/* We could get here with a non-NULL req if the socket is
2944 		 * aborted (e.g., closed with unread data) before 3WHS
2945 		 * finishes.
2946 		 */
2947 		if (req)
2948 			reqsk_fastopen_remove(sk, req, false);
2949 		inet_csk_destroy_sock(sk);
2950 	}
2951 	/* Otherwise, socket is reprieved until protocol close. */
2952 
2953 out:
2954 	bh_unlock_sock(sk);
2955 	local_bh_enable();
2956 }
2957 
2958 void tcp_close(struct sock *sk, long timeout)
2959 {
2960 	lock_sock(sk);
2961 	__tcp_close(sk, timeout);
2962 	release_sock(sk);
2963 	if (!sk->sk_net_refcnt)
2964 		inet_csk_clear_xmit_timers_sync(sk);
2965 	sock_put(sk);
2966 }
2967 EXPORT_SYMBOL(tcp_close);
2968 
2969 /* These states need RST on ABORT according to RFC793 */
2970 
2971 static inline bool tcp_need_reset(int state)
2972 {
2973 	return (1 << state) &
2974 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2975 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2976 }
2977 
2978 static void tcp_rtx_queue_purge(struct sock *sk)
2979 {
2980 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2981 
2982 	tcp_sk(sk)->highest_sack = NULL;
2983 	while (p) {
2984 		struct sk_buff *skb = rb_to_skb(p);
2985 
2986 		p = rb_next(p);
2987 		/* Since we are deleting whole queue, no need to
2988 		 * list_del(&skb->tcp_tsorted_anchor)
2989 		 */
2990 		tcp_rtx_queue_unlink(skb, sk);
2991 		tcp_wmem_free_skb(sk, skb);
2992 	}
2993 }
2994 
2995 void tcp_write_queue_purge(struct sock *sk)
2996 {
2997 	struct sk_buff *skb;
2998 
2999 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3000 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3001 		tcp_skb_tsorted_anchor_cleanup(skb);
3002 		tcp_wmem_free_skb(sk, skb);
3003 	}
3004 	tcp_rtx_queue_purge(sk);
3005 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3006 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3007 	tcp_sk(sk)->packets_out = 0;
3008 	inet_csk(sk)->icsk_backoff = 0;
3009 }
3010 
3011 int tcp_disconnect(struct sock *sk, int flags)
3012 {
3013 	struct inet_sock *inet = inet_sk(sk);
3014 	struct inet_connection_sock *icsk = inet_csk(sk);
3015 	struct tcp_sock *tp = tcp_sk(sk);
3016 	int old_state = sk->sk_state;
3017 	u32 seq;
3018 
3019 	if (old_state != TCP_CLOSE)
3020 		tcp_set_state(sk, TCP_CLOSE);
3021 
3022 	/* ABORT function of RFC793 */
3023 	if (old_state == TCP_LISTEN) {
3024 		inet_csk_listen_stop(sk);
3025 	} else if (unlikely(tp->repair)) {
3026 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3027 	} else if (tcp_need_reset(old_state) ||
3028 		   (tp->snd_nxt != tp->write_seq &&
3029 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3030 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3031 		 * states
3032 		 */
3033 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED);
3034 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3035 	} else if (old_state == TCP_SYN_SENT)
3036 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3037 
3038 	tcp_clear_xmit_timers(sk);
3039 	__skb_queue_purge(&sk->sk_receive_queue);
3040 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3041 	WRITE_ONCE(tp->urg_data, 0);
3042 	sk_set_peek_off(sk, -1);
3043 	tcp_write_queue_purge(sk);
3044 	tcp_fastopen_active_disable_ofo_check(sk);
3045 	skb_rbtree_purge(&tp->out_of_order_queue);
3046 
3047 	inet->inet_dport = 0;
3048 
3049 	inet_bhash2_reset_saddr(sk);
3050 
3051 	WRITE_ONCE(sk->sk_shutdown, 0);
3052 	sock_reset_flag(sk, SOCK_DONE);
3053 	tp->srtt_us = 0;
3054 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3055 	tp->rcv_rtt_last_tsecr = 0;
3056 
3057 	seq = tp->write_seq + tp->max_window + 2;
3058 	if (!seq)
3059 		seq = 1;
3060 	WRITE_ONCE(tp->write_seq, seq);
3061 
3062 	icsk->icsk_backoff = 0;
3063 	icsk->icsk_probes_out = 0;
3064 	icsk->icsk_probes_tstamp = 0;
3065 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3066 	icsk->icsk_rto_min = TCP_RTO_MIN;
3067 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3068 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3069 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3070 	tp->snd_cwnd_cnt = 0;
3071 	tp->is_cwnd_limited = 0;
3072 	tp->max_packets_out = 0;
3073 	tp->window_clamp = 0;
3074 	tp->delivered = 0;
3075 	tp->delivered_ce = 0;
3076 	if (icsk->icsk_ca_ops->release)
3077 		icsk->icsk_ca_ops->release(sk);
3078 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3079 	icsk->icsk_ca_initialized = 0;
3080 	tcp_set_ca_state(sk, TCP_CA_Open);
3081 	tp->is_sack_reneg = 0;
3082 	tcp_clear_retrans(tp);
3083 	tp->total_retrans = 0;
3084 	inet_csk_delack_init(sk);
3085 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3086 	 * issue in __tcp_select_window()
3087 	 */
3088 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3089 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3090 	__sk_dst_reset(sk);
3091 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3092 	tcp_saved_syn_free(tp);
3093 	tp->compressed_ack = 0;
3094 	tp->segs_in = 0;
3095 	tp->segs_out = 0;
3096 	tp->bytes_sent = 0;
3097 	tp->bytes_acked = 0;
3098 	tp->bytes_received = 0;
3099 	tp->bytes_retrans = 0;
3100 	tp->data_segs_in = 0;
3101 	tp->data_segs_out = 0;
3102 	tp->duplicate_sack[0].start_seq = 0;
3103 	tp->duplicate_sack[0].end_seq = 0;
3104 	tp->dsack_dups = 0;
3105 	tp->reord_seen = 0;
3106 	tp->retrans_out = 0;
3107 	tp->sacked_out = 0;
3108 	tp->tlp_high_seq = 0;
3109 	tp->last_oow_ack_time = 0;
3110 	tp->plb_rehash = 0;
3111 	/* There's a bubble in the pipe until at least the first ACK. */
3112 	tp->app_limited = ~0U;
3113 	tp->rate_app_limited = 1;
3114 	tp->rack.mstamp = 0;
3115 	tp->rack.advanced = 0;
3116 	tp->rack.reo_wnd_steps = 1;
3117 	tp->rack.last_delivered = 0;
3118 	tp->rack.reo_wnd_persist = 0;
3119 	tp->rack.dsack_seen = 0;
3120 	tp->syn_data_acked = 0;
3121 	tp->rx_opt.saw_tstamp = 0;
3122 	tp->rx_opt.dsack = 0;
3123 	tp->rx_opt.num_sacks = 0;
3124 	tp->rcv_ooopack = 0;
3125 
3126 
3127 	/* Clean up fastopen related fields */
3128 	tcp_free_fastopen_req(tp);
3129 	inet_clear_bit(DEFER_CONNECT, sk);
3130 	tp->fastopen_client_fail = 0;
3131 
3132 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3133 
3134 	if (sk->sk_frag.page) {
3135 		put_page(sk->sk_frag.page);
3136 		sk->sk_frag.page = NULL;
3137 		sk->sk_frag.offset = 0;
3138 	}
3139 	sk_error_report(sk);
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL(tcp_disconnect);
3143 
3144 static inline bool tcp_can_repair_sock(const struct sock *sk)
3145 {
3146 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3147 		(sk->sk_state != TCP_LISTEN);
3148 }
3149 
3150 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3151 {
3152 	struct tcp_repair_window opt;
3153 
3154 	if (!tp->repair)
3155 		return -EPERM;
3156 
3157 	if (len != sizeof(opt))
3158 		return -EINVAL;
3159 
3160 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3161 		return -EFAULT;
3162 
3163 	if (opt.max_window < opt.snd_wnd)
3164 		return -EINVAL;
3165 
3166 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3167 		return -EINVAL;
3168 
3169 	if (after(opt.rcv_wup, tp->rcv_nxt))
3170 		return -EINVAL;
3171 
3172 	tp->snd_wl1	= opt.snd_wl1;
3173 	tp->snd_wnd	= opt.snd_wnd;
3174 	tp->max_window	= opt.max_window;
3175 
3176 	tp->rcv_wnd	= opt.rcv_wnd;
3177 	tp->rcv_wup	= opt.rcv_wup;
3178 
3179 	return 0;
3180 }
3181 
3182 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3183 		unsigned int len)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 	struct tcp_repair_opt opt;
3187 	size_t offset = 0;
3188 
3189 	while (len >= sizeof(opt)) {
3190 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3191 			return -EFAULT;
3192 
3193 		offset += sizeof(opt);
3194 		len -= sizeof(opt);
3195 
3196 		switch (opt.opt_code) {
3197 		case TCPOPT_MSS:
3198 			tp->rx_opt.mss_clamp = opt.opt_val;
3199 			tcp_mtup_init(sk);
3200 			break;
3201 		case TCPOPT_WINDOW:
3202 			{
3203 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3204 				u16 rcv_wscale = opt.opt_val >> 16;
3205 
3206 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3207 					return -EFBIG;
3208 
3209 				tp->rx_opt.snd_wscale = snd_wscale;
3210 				tp->rx_opt.rcv_wscale = rcv_wscale;
3211 				tp->rx_opt.wscale_ok = 1;
3212 			}
3213 			break;
3214 		case TCPOPT_SACK_PERM:
3215 			if (opt.opt_val != 0)
3216 				return -EINVAL;
3217 
3218 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3219 			break;
3220 		case TCPOPT_TIMESTAMP:
3221 			if (opt.opt_val != 0)
3222 				return -EINVAL;
3223 
3224 			tp->rx_opt.tstamp_ok = 1;
3225 			break;
3226 		}
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3233 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3234 
3235 static void tcp_enable_tx_delay(void)
3236 {
3237 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3238 		static int __tcp_tx_delay_enabled = 0;
3239 
3240 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3241 			static_branch_enable(&tcp_tx_delay_enabled);
3242 			pr_info("TCP_TX_DELAY enabled\n");
3243 		}
3244 	}
3245 }
3246 
3247 /* When set indicates to always queue non-full frames.  Later the user clears
3248  * this option and we transmit any pending partial frames in the queue.  This is
3249  * meant to be used alongside sendfile() to get properly filled frames when the
3250  * user (for example) must write out headers with a write() call first and then
3251  * use sendfile to send out the data parts.
3252  *
3253  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3254  * TCP_NODELAY.
3255  */
3256 void __tcp_sock_set_cork(struct sock *sk, bool on)
3257 {
3258 	struct tcp_sock *tp = tcp_sk(sk);
3259 
3260 	if (on) {
3261 		tp->nonagle |= TCP_NAGLE_CORK;
3262 	} else {
3263 		tp->nonagle &= ~TCP_NAGLE_CORK;
3264 		if (tp->nonagle & TCP_NAGLE_OFF)
3265 			tp->nonagle |= TCP_NAGLE_PUSH;
3266 		tcp_push_pending_frames(sk);
3267 	}
3268 }
3269 
3270 void tcp_sock_set_cork(struct sock *sk, bool on)
3271 {
3272 	lock_sock(sk);
3273 	__tcp_sock_set_cork(sk, on);
3274 	release_sock(sk);
3275 }
3276 EXPORT_SYMBOL(tcp_sock_set_cork);
3277 
3278 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3279  * remembered, but it is not activated until cork is cleared.
3280  *
3281  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3282  * even TCP_CORK for currently queued segments.
3283  */
3284 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3285 {
3286 	if (on) {
3287 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3288 		tcp_push_pending_frames(sk);
3289 	} else {
3290 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3291 	}
3292 }
3293 
3294 void tcp_sock_set_nodelay(struct sock *sk)
3295 {
3296 	lock_sock(sk);
3297 	__tcp_sock_set_nodelay(sk, true);
3298 	release_sock(sk);
3299 }
3300 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3301 
3302 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3303 {
3304 	if (!val) {
3305 		inet_csk_enter_pingpong_mode(sk);
3306 		return;
3307 	}
3308 
3309 	inet_csk_exit_pingpong_mode(sk);
3310 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3311 	    inet_csk_ack_scheduled(sk)) {
3312 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3313 		tcp_cleanup_rbuf(sk, 1);
3314 		if (!(val & 1))
3315 			inet_csk_enter_pingpong_mode(sk);
3316 	}
3317 }
3318 
3319 void tcp_sock_set_quickack(struct sock *sk, int val)
3320 {
3321 	lock_sock(sk);
3322 	__tcp_sock_set_quickack(sk, val);
3323 	release_sock(sk);
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_quickack);
3326 
3327 int tcp_sock_set_syncnt(struct sock *sk, int val)
3328 {
3329 	if (val < 1 || val > MAX_TCP_SYNCNT)
3330 		return -EINVAL;
3331 
3332 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3333 	return 0;
3334 }
3335 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3336 
3337 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3338 {
3339 	/* Cap the max time in ms TCP will retry or probe the window
3340 	 * before giving up and aborting (ETIMEDOUT) a connection.
3341 	 */
3342 	if (val < 0)
3343 		return -EINVAL;
3344 
3345 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3346 	return 0;
3347 }
3348 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3349 
3350 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3351 {
3352 	struct tcp_sock *tp = tcp_sk(sk);
3353 
3354 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3355 		return -EINVAL;
3356 
3357 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3358 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3359 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3360 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3361 		u32 elapsed = keepalive_time_elapsed(tp);
3362 
3363 		if (tp->keepalive_time > elapsed)
3364 			elapsed = tp->keepalive_time - elapsed;
3365 		else
3366 			elapsed = 0;
3367 		inet_csk_reset_keepalive_timer(sk, elapsed);
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 int tcp_sock_set_keepidle(struct sock *sk, int val)
3374 {
3375 	int err;
3376 
3377 	lock_sock(sk);
3378 	err = tcp_sock_set_keepidle_locked(sk, val);
3379 	release_sock(sk);
3380 	return err;
3381 }
3382 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3383 
3384 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3385 {
3386 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3387 		return -EINVAL;
3388 
3389 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3390 	return 0;
3391 }
3392 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3393 
3394 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3395 {
3396 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3397 		return -EINVAL;
3398 
3399 	/* Paired with READ_ONCE() in keepalive_probes() */
3400 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3401 	return 0;
3402 }
3403 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3404 
3405 int tcp_set_window_clamp(struct sock *sk, int val)
3406 {
3407 	struct tcp_sock *tp = tcp_sk(sk);
3408 
3409 	if (!val) {
3410 		if (sk->sk_state != TCP_CLOSE)
3411 			return -EINVAL;
3412 		WRITE_ONCE(tp->window_clamp, 0);
3413 	} else {
3414 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3415 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3416 						SOCK_MIN_RCVBUF / 2 : val;
3417 
3418 		if (new_window_clamp == old_window_clamp)
3419 			return 0;
3420 
3421 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3422 		if (new_window_clamp < old_window_clamp) {
3423 			/* need to apply the reserved mem provisioning only
3424 			 * when shrinking the window clamp
3425 			 */
3426 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3427 
3428 		} else {
3429 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3430 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3431 					       tp->rcv_ssthresh);
3432 		}
3433 	}
3434 	return 0;
3435 }
3436 
3437 /*
3438  *	Socket option code for TCP.
3439  */
3440 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3441 		      sockptr_t optval, unsigned int optlen)
3442 {
3443 	struct tcp_sock *tp = tcp_sk(sk);
3444 	struct inet_connection_sock *icsk = inet_csk(sk);
3445 	struct net *net = sock_net(sk);
3446 	int val;
3447 	int err = 0;
3448 
3449 	/* These are data/string values, all the others are ints */
3450 	switch (optname) {
3451 	case TCP_CONGESTION: {
3452 		char name[TCP_CA_NAME_MAX];
3453 
3454 		if (optlen < 1)
3455 			return -EINVAL;
3456 
3457 		val = strncpy_from_sockptr(name, optval,
3458 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3459 		if (val < 0)
3460 			return -EFAULT;
3461 		name[val] = 0;
3462 
3463 		sockopt_lock_sock(sk);
3464 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3465 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3466 								    CAP_NET_ADMIN));
3467 		sockopt_release_sock(sk);
3468 		return err;
3469 	}
3470 	case TCP_ULP: {
3471 		char name[TCP_ULP_NAME_MAX];
3472 
3473 		if (optlen < 1)
3474 			return -EINVAL;
3475 
3476 		val = strncpy_from_sockptr(name, optval,
3477 					min_t(long, TCP_ULP_NAME_MAX - 1,
3478 					      optlen));
3479 		if (val < 0)
3480 			return -EFAULT;
3481 		name[val] = 0;
3482 
3483 		sockopt_lock_sock(sk);
3484 		err = tcp_set_ulp(sk, name);
3485 		sockopt_release_sock(sk);
3486 		return err;
3487 	}
3488 	case TCP_FASTOPEN_KEY: {
3489 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3490 		__u8 *backup_key = NULL;
3491 
3492 		/* Allow a backup key as well to facilitate key rotation
3493 		 * First key is the active one.
3494 		 */
3495 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3496 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3497 			return -EINVAL;
3498 
3499 		if (copy_from_sockptr(key, optval, optlen))
3500 			return -EFAULT;
3501 
3502 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3503 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3504 
3505 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3506 	}
3507 	default:
3508 		/* fallthru */
3509 		break;
3510 	}
3511 
3512 	if (optlen < sizeof(int))
3513 		return -EINVAL;
3514 
3515 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3516 		return -EFAULT;
3517 
3518 	/* Handle options that can be set without locking the socket. */
3519 	switch (optname) {
3520 	case TCP_SYNCNT:
3521 		return tcp_sock_set_syncnt(sk, val);
3522 	case TCP_USER_TIMEOUT:
3523 		return tcp_sock_set_user_timeout(sk, val);
3524 	case TCP_KEEPINTVL:
3525 		return tcp_sock_set_keepintvl(sk, val);
3526 	case TCP_KEEPCNT:
3527 		return tcp_sock_set_keepcnt(sk, val);
3528 	case TCP_LINGER2:
3529 		if (val < 0)
3530 			WRITE_ONCE(tp->linger2, -1);
3531 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3532 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3533 		else
3534 			WRITE_ONCE(tp->linger2, val * HZ);
3535 		return 0;
3536 	case TCP_DEFER_ACCEPT:
3537 		/* Translate value in seconds to number of retransmits */
3538 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3539 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3540 					   TCP_RTO_MAX / HZ));
3541 		return 0;
3542 	}
3543 
3544 	sockopt_lock_sock(sk);
3545 
3546 	switch (optname) {
3547 	case TCP_MAXSEG:
3548 		/* Values greater than interface MTU won't take effect. However
3549 		 * at the point when this call is done we typically don't yet
3550 		 * know which interface is going to be used
3551 		 */
3552 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3553 			err = -EINVAL;
3554 			break;
3555 		}
3556 		tp->rx_opt.user_mss = val;
3557 		break;
3558 
3559 	case TCP_NODELAY:
3560 		__tcp_sock_set_nodelay(sk, val);
3561 		break;
3562 
3563 	case TCP_THIN_LINEAR_TIMEOUTS:
3564 		if (val < 0 || val > 1)
3565 			err = -EINVAL;
3566 		else
3567 			tp->thin_lto = val;
3568 		break;
3569 
3570 	case TCP_THIN_DUPACK:
3571 		if (val < 0 || val > 1)
3572 			err = -EINVAL;
3573 		break;
3574 
3575 	case TCP_REPAIR:
3576 		if (!tcp_can_repair_sock(sk))
3577 			err = -EPERM;
3578 		else if (val == TCP_REPAIR_ON) {
3579 			tp->repair = 1;
3580 			sk->sk_reuse = SK_FORCE_REUSE;
3581 			tp->repair_queue = TCP_NO_QUEUE;
3582 		} else if (val == TCP_REPAIR_OFF) {
3583 			tp->repair = 0;
3584 			sk->sk_reuse = SK_NO_REUSE;
3585 			tcp_send_window_probe(sk);
3586 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3587 			tp->repair = 0;
3588 			sk->sk_reuse = SK_NO_REUSE;
3589 		} else
3590 			err = -EINVAL;
3591 
3592 		break;
3593 
3594 	case TCP_REPAIR_QUEUE:
3595 		if (!tp->repair)
3596 			err = -EPERM;
3597 		else if ((unsigned int)val < TCP_QUEUES_NR)
3598 			tp->repair_queue = val;
3599 		else
3600 			err = -EINVAL;
3601 		break;
3602 
3603 	case TCP_QUEUE_SEQ:
3604 		if (sk->sk_state != TCP_CLOSE) {
3605 			err = -EPERM;
3606 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3607 			if (!tcp_rtx_queue_empty(sk))
3608 				err = -EPERM;
3609 			else
3610 				WRITE_ONCE(tp->write_seq, val);
3611 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3612 			if (tp->rcv_nxt != tp->copied_seq) {
3613 				err = -EPERM;
3614 			} else {
3615 				WRITE_ONCE(tp->rcv_nxt, val);
3616 				WRITE_ONCE(tp->copied_seq, val);
3617 			}
3618 		} else {
3619 			err = -EINVAL;
3620 		}
3621 		break;
3622 
3623 	case TCP_REPAIR_OPTIONS:
3624 		if (!tp->repair)
3625 			err = -EINVAL;
3626 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3627 			err = tcp_repair_options_est(sk, optval, optlen);
3628 		else
3629 			err = -EPERM;
3630 		break;
3631 
3632 	case TCP_CORK:
3633 		__tcp_sock_set_cork(sk, val);
3634 		break;
3635 
3636 	case TCP_KEEPIDLE:
3637 		err = tcp_sock_set_keepidle_locked(sk, val);
3638 		break;
3639 	case TCP_SAVE_SYN:
3640 		/* 0: disable, 1: enable, 2: start from ether_header */
3641 		if (val < 0 || val > 2)
3642 			err = -EINVAL;
3643 		else
3644 			tp->save_syn = val;
3645 		break;
3646 
3647 	case TCP_WINDOW_CLAMP:
3648 		err = tcp_set_window_clamp(sk, val);
3649 		break;
3650 
3651 	case TCP_QUICKACK:
3652 		__tcp_sock_set_quickack(sk, val);
3653 		break;
3654 
3655 	case TCP_AO_REPAIR:
3656 		if (!tcp_can_repair_sock(sk)) {
3657 			err = -EPERM;
3658 			break;
3659 		}
3660 		err = tcp_ao_set_repair(sk, optval, optlen);
3661 		break;
3662 #ifdef CONFIG_TCP_AO
3663 	case TCP_AO_ADD_KEY:
3664 	case TCP_AO_DEL_KEY:
3665 	case TCP_AO_INFO: {
3666 		/* If this is the first TCP-AO setsockopt() on the socket,
3667 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3668 		 * in any state.
3669 		 */
3670 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3671 			goto ao_parse;
3672 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3673 					      lockdep_sock_is_held(sk)))
3674 			goto ao_parse;
3675 		if (tp->repair)
3676 			goto ao_parse;
3677 		err = -EISCONN;
3678 		break;
3679 ao_parse:
3680 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3681 		break;
3682 	}
3683 #endif
3684 #ifdef CONFIG_TCP_MD5SIG
3685 	case TCP_MD5SIG:
3686 	case TCP_MD5SIG_EXT:
3687 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3688 		break;
3689 #endif
3690 	case TCP_FASTOPEN:
3691 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3692 		    TCPF_LISTEN))) {
3693 			tcp_fastopen_init_key_once(net);
3694 
3695 			fastopen_queue_tune(sk, val);
3696 		} else {
3697 			err = -EINVAL;
3698 		}
3699 		break;
3700 	case TCP_FASTOPEN_CONNECT:
3701 		if (val > 1 || val < 0) {
3702 			err = -EINVAL;
3703 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3704 			   TFO_CLIENT_ENABLE) {
3705 			if (sk->sk_state == TCP_CLOSE)
3706 				tp->fastopen_connect = val;
3707 			else
3708 				err = -EINVAL;
3709 		} else {
3710 			err = -EOPNOTSUPP;
3711 		}
3712 		break;
3713 	case TCP_FASTOPEN_NO_COOKIE:
3714 		if (val > 1 || val < 0)
3715 			err = -EINVAL;
3716 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3717 			err = -EINVAL;
3718 		else
3719 			tp->fastopen_no_cookie = val;
3720 		break;
3721 	case TCP_TIMESTAMP:
3722 		if (!tp->repair) {
3723 			err = -EPERM;
3724 			break;
3725 		}
3726 		/* val is an opaque field,
3727 		 * and low order bit contains usec_ts enable bit.
3728 		 * Its a best effort, and we do not care if user makes an error.
3729 		 */
3730 		tp->tcp_usec_ts = val & 1;
3731 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3732 		break;
3733 	case TCP_REPAIR_WINDOW:
3734 		err = tcp_repair_set_window(tp, optval, optlen);
3735 		break;
3736 	case TCP_NOTSENT_LOWAT:
3737 		WRITE_ONCE(tp->notsent_lowat, val);
3738 		sk->sk_write_space(sk);
3739 		break;
3740 	case TCP_INQ:
3741 		if (val > 1 || val < 0)
3742 			err = -EINVAL;
3743 		else
3744 			tp->recvmsg_inq = val;
3745 		break;
3746 	case TCP_TX_DELAY:
3747 		if (val)
3748 			tcp_enable_tx_delay();
3749 		WRITE_ONCE(tp->tcp_tx_delay, val);
3750 		break;
3751 	default:
3752 		err = -ENOPROTOOPT;
3753 		break;
3754 	}
3755 
3756 	sockopt_release_sock(sk);
3757 	return err;
3758 }
3759 
3760 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3761 		   unsigned int optlen)
3762 {
3763 	const struct inet_connection_sock *icsk = inet_csk(sk);
3764 
3765 	if (level != SOL_TCP)
3766 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3767 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3768 								optval, optlen);
3769 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3770 }
3771 EXPORT_SYMBOL(tcp_setsockopt);
3772 
3773 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3774 				      struct tcp_info *info)
3775 {
3776 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3777 	enum tcp_chrono i;
3778 
3779 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3780 		stats[i] = tp->chrono_stat[i - 1];
3781 		if (i == tp->chrono_type)
3782 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3783 		stats[i] *= USEC_PER_SEC / HZ;
3784 		total += stats[i];
3785 	}
3786 
3787 	info->tcpi_busy_time = total;
3788 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3789 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3790 }
3791 
3792 /* Return information about state of tcp endpoint in API format. */
3793 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3794 {
3795 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3796 	const struct inet_connection_sock *icsk = inet_csk(sk);
3797 	unsigned long rate;
3798 	u32 now;
3799 	u64 rate64;
3800 	bool slow;
3801 
3802 	memset(info, 0, sizeof(*info));
3803 	if (sk->sk_type != SOCK_STREAM)
3804 		return;
3805 
3806 	info->tcpi_state = inet_sk_state_load(sk);
3807 
3808 	/* Report meaningful fields for all TCP states, including listeners */
3809 	rate = READ_ONCE(sk->sk_pacing_rate);
3810 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3811 	info->tcpi_pacing_rate = rate64;
3812 
3813 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3814 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3815 	info->tcpi_max_pacing_rate = rate64;
3816 
3817 	info->tcpi_reordering = tp->reordering;
3818 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3819 
3820 	if (info->tcpi_state == TCP_LISTEN) {
3821 		/* listeners aliased fields :
3822 		 * tcpi_unacked -> Number of children ready for accept()
3823 		 * tcpi_sacked  -> max backlog
3824 		 */
3825 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3826 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3827 		return;
3828 	}
3829 
3830 	slow = lock_sock_fast(sk);
3831 
3832 	info->tcpi_ca_state = icsk->icsk_ca_state;
3833 	info->tcpi_retransmits = icsk->icsk_retransmits;
3834 	info->tcpi_probes = icsk->icsk_probes_out;
3835 	info->tcpi_backoff = icsk->icsk_backoff;
3836 
3837 	if (tp->rx_opt.tstamp_ok)
3838 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3839 	if (tcp_is_sack(tp))
3840 		info->tcpi_options |= TCPI_OPT_SACK;
3841 	if (tp->rx_opt.wscale_ok) {
3842 		info->tcpi_options |= TCPI_OPT_WSCALE;
3843 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3844 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3845 	}
3846 
3847 	if (tp->ecn_flags & TCP_ECN_OK)
3848 		info->tcpi_options |= TCPI_OPT_ECN;
3849 	if (tp->ecn_flags & TCP_ECN_SEEN)
3850 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3851 	if (tp->syn_data_acked)
3852 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3853 	if (tp->tcp_usec_ts)
3854 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3855 
3856 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3857 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3858 						tcp_delack_max(sk)));
3859 	info->tcpi_snd_mss = tp->mss_cache;
3860 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3861 
3862 	info->tcpi_unacked = tp->packets_out;
3863 	info->tcpi_sacked = tp->sacked_out;
3864 
3865 	info->tcpi_lost = tp->lost_out;
3866 	info->tcpi_retrans = tp->retrans_out;
3867 
3868 	now = tcp_jiffies32;
3869 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3870 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3871 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3872 
3873 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3874 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3875 	info->tcpi_rtt = tp->srtt_us >> 3;
3876 	info->tcpi_rttvar = tp->mdev_us >> 2;
3877 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3878 	info->tcpi_advmss = tp->advmss;
3879 
3880 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3881 	info->tcpi_rcv_space = tp->rcvq_space.space;
3882 
3883 	info->tcpi_total_retrans = tp->total_retrans;
3884 
3885 	info->tcpi_bytes_acked = tp->bytes_acked;
3886 	info->tcpi_bytes_received = tp->bytes_received;
3887 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3888 	tcp_get_info_chrono_stats(tp, info);
3889 
3890 	info->tcpi_segs_out = tp->segs_out;
3891 
3892 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3893 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3894 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3895 
3896 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3897 	info->tcpi_data_segs_out = tp->data_segs_out;
3898 
3899 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3900 	rate64 = tcp_compute_delivery_rate(tp);
3901 	if (rate64)
3902 		info->tcpi_delivery_rate = rate64;
3903 	info->tcpi_delivered = tp->delivered;
3904 	info->tcpi_delivered_ce = tp->delivered_ce;
3905 	info->tcpi_bytes_sent = tp->bytes_sent;
3906 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3907 	info->tcpi_dsack_dups = tp->dsack_dups;
3908 	info->tcpi_reord_seen = tp->reord_seen;
3909 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3910 	info->tcpi_snd_wnd = tp->snd_wnd;
3911 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3912 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3913 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3914 
3915 	info->tcpi_total_rto = tp->total_rto;
3916 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3917 	info->tcpi_total_rto_time = tp->total_rto_time;
3918 	if (tp->rto_stamp)
3919 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3920 
3921 	unlock_sock_fast(sk, slow);
3922 }
3923 EXPORT_SYMBOL_GPL(tcp_get_info);
3924 
3925 static size_t tcp_opt_stats_get_size(void)
3926 {
3927 	return
3928 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3929 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3930 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3931 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3932 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3933 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3934 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3935 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3936 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3937 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3938 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3939 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3940 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3941 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3942 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3943 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3944 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3945 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3946 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3947 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3948 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3949 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3950 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3951 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3952 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3953 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3954 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3955 		0;
3956 }
3957 
3958 /* Returns TTL or hop limit of an incoming packet from skb. */
3959 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3960 {
3961 	if (skb->protocol == htons(ETH_P_IP))
3962 		return ip_hdr(skb)->ttl;
3963 	else if (skb->protocol == htons(ETH_P_IPV6))
3964 		return ipv6_hdr(skb)->hop_limit;
3965 	else
3966 		return 0;
3967 }
3968 
3969 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3970 					       const struct sk_buff *orig_skb,
3971 					       const struct sk_buff *ack_skb)
3972 {
3973 	const struct tcp_sock *tp = tcp_sk(sk);
3974 	struct sk_buff *stats;
3975 	struct tcp_info info;
3976 	unsigned long rate;
3977 	u64 rate64;
3978 
3979 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3980 	if (!stats)
3981 		return NULL;
3982 
3983 	tcp_get_info_chrono_stats(tp, &info);
3984 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3985 			  info.tcpi_busy_time, TCP_NLA_PAD);
3986 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3987 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3988 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3989 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3990 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3991 			  tp->data_segs_out, TCP_NLA_PAD);
3992 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3993 			  tp->total_retrans, TCP_NLA_PAD);
3994 
3995 	rate = READ_ONCE(sk->sk_pacing_rate);
3996 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3997 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3998 
3999 	rate64 = tcp_compute_delivery_rate(tp);
4000 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4001 
4002 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4003 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4004 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4005 
4006 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4007 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4008 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4009 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4010 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4011 
4012 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4013 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4014 
4015 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4016 			  TCP_NLA_PAD);
4017 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4018 			  TCP_NLA_PAD);
4019 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4020 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4021 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4022 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4023 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4024 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4025 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4026 			  TCP_NLA_PAD);
4027 	if (ack_skb)
4028 		nla_put_u8(stats, TCP_NLA_TTL,
4029 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4030 
4031 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4032 	return stats;
4033 }
4034 
4035 int do_tcp_getsockopt(struct sock *sk, int level,
4036 		      int optname, sockptr_t optval, sockptr_t optlen)
4037 {
4038 	struct inet_connection_sock *icsk = inet_csk(sk);
4039 	struct tcp_sock *tp = tcp_sk(sk);
4040 	struct net *net = sock_net(sk);
4041 	int val, len;
4042 
4043 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4044 		return -EFAULT;
4045 
4046 	if (len < 0)
4047 		return -EINVAL;
4048 
4049 	len = min_t(unsigned int, len, sizeof(int));
4050 
4051 	switch (optname) {
4052 	case TCP_MAXSEG:
4053 		val = tp->mss_cache;
4054 		if (tp->rx_opt.user_mss &&
4055 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4056 			val = tp->rx_opt.user_mss;
4057 		if (tp->repair)
4058 			val = tp->rx_opt.mss_clamp;
4059 		break;
4060 	case TCP_NODELAY:
4061 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4062 		break;
4063 	case TCP_CORK:
4064 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4065 		break;
4066 	case TCP_KEEPIDLE:
4067 		val = keepalive_time_when(tp) / HZ;
4068 		break;
4069 	case TCP_KEEPINTVL:
4070 		val = keepalive_intvl_when(tp) / HZ;
4071 		break;
4072 	case TCP_KEEPCNT:
4073 		val = keepalive_probes(tp);
4074 		break;
4075 	case TCP_SYNCNT:
4076 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4077 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4078 		break;
4079 	case TCP_LINGER2:
4080 		val = READ_ONCE(tp->linger2);
4081 		if (val >= 0)
4082 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4083 		break;
4084 	case TCP_DEFER_ACCEPT:
4085 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4086 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4087 				      TCP_RTO_MAX / HZ);
4088 		break;
4089 	case TCP_WINDOW_CLAMP:
4090 		val = READ_ONCE(tp->window_clamp);
4091 		break;
4092 	case TCP_INFO: {
4093 		struct tcp_info info;
4094 
4095 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4096 			return -EFAULT;
4097 
4098 		tcp_get_info(sk, &info);
4099 
4100 		len = min_t(unsigned int, len, sizeof(info));
4101 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4102 			return -EFAULT;
4103 		if (copy_to_sockptr(optval, &info, len))
4104 			return -EFAULT;
4105 		return 0;
4106 	}
4107 	case TCP_CC_INFO: {
4108 		const struct tcp_congestion_ops *ca_ops;
4109 		union tcp_cc_info info;
4110 		size_t sz = 0;
4111 		int attr;
4112 
4113 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4114 			return -EFAULT;
4115 
4116 		ca_ops = icsk->icsk_ca_ops;
4117 		if (ca_ops && ca_ops->get_info)
4118 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4119 
4120 		len = min_t(unsigned int, len, sz);
4121 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4122 			return -EFAULT;
4123 		if (copy_to_sockptr(optval, &info, len))
4124 			return -EFAULT;
4125 		return 0;
4126 	}
4127 	case TCP_QUICKACK:
4128 		val = !inet_csk_in_pingpong_mode(sk);
4129 		break;
4130 
4131 	case TCP_CONGESTION:
4132 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4133 			return -EFAULT;
4134 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4135 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4136 			return -EFAULT;
4137 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4138 			return -EFAULT;
4139 		return 0;
4140 
4141 	case TCP_ULP:
4142 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4143 			return -EFAULT;
4144 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4145 		if (!icsk->icsk_ulp_ops) {
4146 			len = 0;
4147 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4148 				return -EFAULT;
4149 			return 0;
4150 		}
4151 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4152 			return -EFAULT;
4153 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4154 			return -EFAULT;
4155 		return 0;
4156 
4157 	case TCP_FASTOPEN_KEY: {
4158 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4159 		unsigned int key_len;
4160 
4161 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4162 			return -EFAULT;
4163 
4164 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4165 				TCP_FASTOPEN_KEY_LENGTH;
4166 		len = min_t(unsigned int, len, key_len);
4167 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4168 			return -EFAULT;
4169 		if (copy_to_sockptr(optval, key, len))
4170 			return -EFAULT;
4171 		return 0;
4172 	}
4173 	case TCP_THIN_LINEAR_TIMEOUTS:
4174 		val = tp->thin_lto;
4175 		break;
4176 
4177 	case TCP_THIN_DUPACK:
4178 		val = 0;
4179 		break;
4180 
4181 	case TCP_REPAIR:
4182 		val = tp->repair;
4183 		break;
4184 
4185 	case TCP_REPAIR_QUEUE:
4186 		if (tp->repair)
4187 			val = tp->repair_queue;
4188 		else
4189 			return -EINVAL;
4190 		break;
4191 
4192 	case TCP_REPAIR_WINDOW: {
4193 		struct tcp_repair_window opt;
4194 
4195 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4196 			return -EFAULT;
4197 
4198 		if (len != sizeof(opt))
4199 			return -EINVAL;
4200 
4201 		if (!tp->repair)
4202 			return -EPERM;
4203 
4204 		opt.snd_wl1	= tp->snd_wl1;
4205 		opt.snd_wnd	= tp->snd_wnd;
4206 		opt.max_window	= tp->max_window;
4207 		opt.rcv_wnd	= tp->rcv_wnd;
4208 		opt.rcv_wup	= tp->rcv_wup;
4209 
4210 		if (copy_to_sockptr(optval, &opt, len))
4211 			return -EFAULT;
4212 		return 0;
4213 	}
4214 	case TCP_QUEUE_SEQ:
4215 		if (tp->repair_queue == TCP_SEND_QUEUE)
4216 			val = tp->write_seq;
4217 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4218 			val = tp->rcv_nxt;
4219 		else
4220 			return -EINVAL;
4221 		break;
4222 
4223 	case TCP_USER_TIMEOUT:
4224 		val = READ_ONCE(icsk->icsk_user_timeout);
4225 		break;
4226 
4227 	case TCP_FASTOPEN:
4228 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4229 		break;
4230 
4231 	case TCP_FASTOPEN_CONNECT:
4232 		val = tp->fastopen_connect;
4233 		break;
4234 
4235 	case TCP_FASTOPEN_NO_COOKIE:
4236 		val = tp->fastopen_no_cookie;
4237 		break;
4238 
4239 	case TCP_TX_DELAY:
4240 		val = READ_ONCE(tp->tcp_tx_delay);
4241 		break;
4242 
4243 	case TCP_TIMESTAMP:
4244 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4245 		if (tp->tcp_usec_ts)
4246 			val |= 1;
4247 		else
4248 			val &= ~1;
4249 		break;
4250 	case TCP_NOTSENT_LOWAT:
4251 		val = READ_ONCE(tp->notsent_lowat);
4252 		break;
4253 	case TCP_INQ:
4254 		val = tp->recvmsg_inq;
4255 		break;
4256 	case TCP_SAVE_SYN:
4257 		val = tp->save_syn;
4258 		break;
4259 	case TCP_SAVED_SYN: {
4260 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4261 			return -EFAULT;
4262 
4263 		sockopt_lock_sock(sk);
4264 		if (tp->saved_syn) {
4265 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4266 				len = tcp_saved_syn_len(tp->saved_syn);
4267 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4268 					sockopt_release_sock(sk);
4269 					return -EFAULT;
4270 				}
4271 				sockopt_release_sock(sk);
4272 				return -EINVAL;
4273 			}
4274 			len = tcp_saved_syn_len(tp->saved_syn);
4275 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4276 				sockopt_release_sock(sk);
4277 				return -EFAULT;
4278 			}
4279 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4280 				sockopt_release_sock(sk);
4281 				return -EFAULT;
4282 			}
4283 			tcp_saved_syn_free(tp);
4284 			sockopt_release_sock(sk);
4285 		} else {
4286 			sockopt_release_sock(sk);
4287 			len = 0;
4288 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4289 				return -EFAULT;
4290 		}
4291 		return 0;
4292 	}
4293 #ifdef CONFIG_MMU
4294 	case TCP_ZEROCOPY_RECEIVE: {
4295 		struct scm_timestamping_internal tss;
4296 		struct tcp_zerocopy_receive zc = {};
4297 		int err;
4298 
4299 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4300 			return -EFAULT;
4301 		if (len < 0 ||
4302 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4303 			return -EINVAL;
4304 		if (unlikely(len > sizeof(zc))) {
4305 			err = check_zeroed_sockptr(optval, sizeof(zc),
4306 						   len - sizeof(zc));
4307 			if (err < 1)
4308 				return err == 0 ? -EINVAL : err;
4309 			len = sizeof(zc);
4310 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4311 				return -EFAULT;
4312 		}
4313 		if (copy_from_sockptr(&zc, optval, len))
4314 			return -EFAULT;
4315 		if (zc.reserved)
4316 			return -EINVAL;
4317 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4318 			return -EINVAL;
4319 		sockopt_lock_sock(sk);
4320 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4321 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4322 							  &zc, &len, err);
4323 		sockopt_release_sock(sk);
4324 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4325 			goto zerocopy_rcv_cmsg;
4326 		switch (len) {
4327 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4328 			goto zerocopy_rcv_cmsg;
4329 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4330 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4331 		case offsetofend(struct tcp_zerocopy_receive, flags):
4332 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4333 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4334 		case offsetofend(struct tcp_zerocopy_receive, err):
4335 			goto zerocopy_rcv_sk_err;
4336 		case offsetofend(struct tcp_zerocopy_receive, inq):
4337 			goto zerocopy_rcv_inq;
4338 		case offsetofend(struct tcp_zerocopy_receive, length):
4339 		default:
4340 			goto zerocopy_rcv_out;
4341 		}
4342 zerocopy_rcv_cmsg:
4343 		if (zc.msg_flags & TCP_CMSG_TS)
4344 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4345 		else
4346 			zc.msg_flags = 0;
4347 zerocopy_rcv_sk_err:
4348 		if (!err)
4349 			zc.err = sock_error(sk);
4350 zerocopy_rcv_inq:
4351 		zc.inq = tcp_inq_hint(sk);
4352 zerocopy_rcv_out:
4353 		if (!err && copy_to_sockptr(optval, &zc, len))
4354 			err = -EFAULT;
4355 		return err;
4356 	}
4357 #endif
4358 	case TCP_AO_REPAIR:
4359 		if (!tcp_can_repair_sock(sk))
4360 			return -EPERM;
4361 		return tcp_ao_get_repair(sk, optval, optlen);
4362 	case TCP_AO_GET_KEYS:
4363 	case TCP_AO_INFO: {
4364 		int err;
4365 
4366 		sockopt_lock_sock(sk);
4367 		if (optname == TCP_AO_GET_KEYS)
4368 			err = tcp_ao_get_mkts(sk, optval, optlen);
4369 		else
4370 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4371 		sockopt_release_sock(sk);
4372 
4373 		return err;
4374 	}
4375 	case TCP_IS_MPTCP:
4376 		val = 0;
4377 		break;
4378 	default:
4379 		return -ENOPROTOOPT;
4380 	}
4381 
4382 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4383 		return -EFAULT;
4384 	if (copy_to_sockptr(optval, &val, len))
4385 		return -EFAULT;
4386 	return 0;
4387 }
4388 
4389 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4390 {
4391 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4392 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4393 	 */
4394 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4395 		return true;
4396 
4397 	return false;
4398 }
4399 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4400 
4401 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4402 		   int __user *optlen)
4403 {
4404 	struct inet_connection_sock *icsk = inet_csk(sk);
4405 
4406 	if (level != SOL_TCP)
4407 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4408 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4409 								optval, optlen);
4410 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4411 				 USER_SOCKPTR(optlen));
4412 }
4413 EXPORT_SYMBOL(tcp_getsockopt);
4414 
4415 #ifdef CONFIG_TCP_MD5SIG
4416 int tcp_md5_sigpool_id = -1;
4417 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4418 
4419 int tcp_md5_alloc_sigpool(void)
4420 {
4421 	size_t scratch_size;
4422 	int ret;
4423 
4424 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4425 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4426 	if (ret >= 0) {
4427 		/* As long as any md5 sigpool was allocated, the return
4428 		 * id would stay the same. Re-write the id only for the case
4429 		 * when previously all MD5 keys were deleted and this call
4430 		 * allocates the first MD5 key, which may return a different
4431 		 * sigpool id than was used previously.
4432 		 */
4433 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4434 		return 0;
4435 	}
4436 	return ret;
4437 }
4438 
4439 void tcp_md5_release_sigpool(void)
4440 {
4441 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4442 }
4443 
4444 void tcp_md5_add_sigpool(void)
4445 {
4446 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4447 }
4448 
4449 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4450 		     const struct tcp_md5sig_key *key)
4451 {
4452 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4453 	struct scatterlist sg;
4454 
4455 	sg_init_one(&sg, key->key, keylen);
4456 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4457 
4458 	/* We use data_race() because tcp_md5_do_add() might change
4459 	 * key->key under us
4460 	 */
4461 	return data_race(crypto_ahash_update(hp->req));
4462 }
4463 EXPORT_SYMBOL(tcp_md5_hash_key);
4464 
4465 /* Called with rcu_read_lock() */
4466 enum skb_drop_reason
4467 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4468 		     const void *saddr, const void *daddr,
4469 		     int family, int l3index, const __u8 *hash_location)
4470 {
4471 	/* This gets called for each TCP segment that has TCP-MD5 option.
4472 	 * We have 3 drop cases:
4473 	 * o No MD5 hash and one expected.
4474 	 * o MD5 hash and we're not expecting one.
4475 	 * o MD5 hash and its wrong.
4476 	 */
4477 	const struct tcp_sock *tp = tcp_sk(sk);
4478 	struct tcp_md5sig_key *key;
4479 	u8 newhash[16];
4480 	int genhash;
4481 
4482 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4483 
4484 	if (!key && hash_location) {
4485 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4486 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4487 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4488 	}
4489 
4490 	/* Check the signature.
4491 	 * To support dual stack listeners, we need to handle
4492 	 * IPv4-mapped case.
4493 	 */
4494 	if (family == AF_INET)
4495 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4496 	else
4497 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4498 							 NULL, skb);
4499 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4500 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4501 		if (family == AF_INET) {
4502 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4503 				      genhash ? "tcp_v4_calc_md5_hash failed"
4504 				      : "", l3index);
4505 		} else {
4506 			if (genhash) {
4507 				tcp_hash_fail("MD5 Hash failed",
4508 					      AF_INET6, skb, "L3 index %d",
4509 					      l3index);
4510 			} else {
4511 				tcp_hash_fail("MD5 Hash mismatch",
4512 					      AF_INET6, skb, "L3 index %d",
4513 					      l3index);
4514 			}
4515 		}
4516 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4517 	}
4518 	return SKB_NOT_DROPPED_YET;
4519 }
4520 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4521 
4522 #endif
4523 
4524 void tcp_done(struct sock *sk)
4525 {
4526 	struct request_sock *req;
4527 
4528 	/* We might be called with a new socket, after
4529 	 * inet_csk_prepare_forced_close() has been called
4530 	 * so we can not use lockdep_sock_is_held(sk)
4531 	 */
4532 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4533 
4534 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4535 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4536 
4537 	tcp_set_state(sk, TCP_CLOSE);
4538 	tcp_clear_xmit_timers(sk);
4539 	if (req)
4540 		reqsk_fastopen_remove(sk, req, false);
4541 
4542 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4543 
4544 	if (!sock_flag(sk, SOCK_DEAD))
4545 		sk->sk_state_change(sk);
4546 	else
4547 		inet_csk_destroy_sock(sk);
4548 }
4549 EXPORT_SYMBOL_GPL(tcp_done);
4550 
4551 int tcp_abort(struct sock *sk, int err)
4552 {
4553 	int state = inet_sk_state_load(sk);
4554 
4555 	if (state == TCP_NEW_SYN_RECV) {
4556 		struct request_sock *req = inet_reqsk(sk);
4557 
4558 		local_bh_disable();
4559 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4560 		local_bh_enable();
4561 		return 0;
4562 	}
4563 	if (state == TCP_TIME_WAIT) {
4564 		struct inet_timewait_sock *tw = inet_twsk(sk);
4565 
4566 		refcount_inc(&tw->tw_refcnt);
4567 		local_bh_disable();
4568 		inet_twsk_deschedule_put(tw);
4569 		local_bh_enable();
4570 		return 0;
4571 	}
4572 
4573 	/* BPF context ensures sock locking. */
4574 	if (!has_current_bpf_ctx())
4575 		/* Don't race with userspace socket closes such as tcp_close. */
4576 		lock_sock(sk);
4577 
4578 	if (sk->sk_state == TCP_LISTEN) {
4579 		tcp_set_state(sk, TCP_CLOSE);
4580 		inet_csk_listen_stop(sk);
4581 	}
4582 
4583 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4584 	local_bh_disable();
4585 	bh_lock_sock(sk);
4586 
4587 	if (!sock_flag(sk, SOCK_DEAD)) {
4588 		if (tcp_need_reset(sk->sk_state))
4589 			tcp_send_active_reset(sk, GFP_ATOMIC,
4590 					      SK_RST_REASON_NOT_SPECIFIED);
4591 		tcp_done_with_error(sk, err);
4592 	}
4593 
4594 	bh_unlock_sock(sk);
4595 	local_bh_enable();
4596 	tcp_write_queue_purge(sk);
4597 	if (!has_current_bpf_ctx())
4598 		release_sock(sk);
4599 	return 0;
4600 }
4601 EXPORT_SYMBOL_GPL(tcp_abort);
4602 
4603 extern struct tcp_congestion_ops tcp_reno;
4604 
4605 static __initdata unsigned long thash_entries;
4606 static int __init set_thash_entries(char *str)
4607 {
4608 	ssize_t ret;
4609 
4610 	if (!str)
4611 		return 0;
4612 
4613 	ret = kstrtoul(str, 0, &thash_entries);
4614 	if (ret)
4615 		return 0;
4616 
4617 	return 1;
4618 }
4619 __setup("thash_entries=", set_thash_entries);
4620 
4621 static void __init tcp_init_mem(void)
4622 {
4623 	unsigned long limit = nr_free_buffer_pages() / 16;
4624 
4625 	limit = max(limit, 128UL);
4626 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4627 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4628 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4629 }
4630 
4631 static void __init tcp_struct_check(void)
4632 {
4633 	/* TX read-mostly hotpath cache lines */
4634 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4635 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4636 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4637 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4638 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4639 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4640 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4641 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4642 
4643 	/* TXRX read-mostly hotpath cache lines */
4644 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4645 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4646 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4647 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4648 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4649 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4650 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4651 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4652 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4653 
4654 	/* RX read-mostly hotpath cache lines */
4655 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4656 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4657 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4658 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4659 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4660 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4661 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4662 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4663 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4664 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4665 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4666 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4667 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4668 
4669 	/* TX read-write hotpath cache lines */
4670 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4671 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4672 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4673 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4674 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4675 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4676 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4677 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4678 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4679 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4680 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4681 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4682 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4683 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4684 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4685 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4686 
4687 	/* TXRX read-write hotpath cache lines */
4688 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4689 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4690 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4691 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4692 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4693 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4694 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4695 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4696 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4697 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4698 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4699 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4700 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4701 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4702 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4703 
4704 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4705 	 * before tcp_clock_cache.
4706 	 */
4707 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4708 
4709 	/* RX read-write hotpath cache lines */
4710 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4711 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4712 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4713 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4714 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4715 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4716 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4717 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4718 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4719 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4720 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4721 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4722 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4723 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4724 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4725 }
4726 
4727 void __init tcp_init(void)
4728 {
4729 	int max_rshare, max_wshare, cnt;
4730 	unsigned long limit;
4731 	unsigned int i;
4732 
4733 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4734 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4735 		     sizeof_field(struct sk_buff, cb));
4736 
4737 	tcp_struct_check();
4738 
4739 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4740 
4741 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4742 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4743 
4744 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4745 			    thash_entries, 21,  /* one slot per 2 MB*/
4746 			    0, 64 * 1024);
4747 	tcp_hashinfo.bind_bucket_cachep =
4748 		kmem_cache_create("tcp_bind_bucket",
4749 				  sizeof(struct inet_bind_bucket), 0,
4750 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4751 				  SLAB_ACCOUNT,
4752 				  NULL);
4753 	tcp_hashinfo.bind2_bucket_cachep =
4754 		kmem_cache_create("tcp_bind2_bucket",
4755 				  sizeof(struct inet_bind2_bucket), 0,
4756 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4757 				  SLAB_ACCOUNT,
4758 				  NULL);
4759 
4760 	/* Size and allocate the main established and bind bucket
4761 	 * hash tables.
4762 	 *
4763 	 * The methodology is similar to that of the buffer cache.
4764 	 */
4765 	tcp_hashinfo.ehash =
4766 		alloc_large_system_hash("TCP established",
4767 					sizeof(struct inet_ehash_bucket),
4768 					thash_entries,
4769 					17, /* one slot per 128 KB of memory */
4770 					0,
4771 					NULL,
4772 					&tcp_hashinfo.ehash_mask,
4773 					0,
4774 					thash_entries ? 0 : 512 * 1024);
4775 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4776 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4777 
4778 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4779 		panic("TCP: failed to alloc ehash_locks");
4780 	tcp_hashinfo.bhash =
4781 		alloc_large_system_hash("TCP bind",
4782 					2 * sizeof(struct inet_bind_hashbucket),
4783 					tcp_hashinfo.ehash_mask + 1,
4784 					17, /* one slot per 128 KB of memory */
4785 					0,
4786 					&tcp_hashinfo.bhash_size,
4787 					NULL,
4788 					0,
4789 					64 * 1024);
4790 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4791 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4792 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4793 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4794 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4795 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4796 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4797 	}
4798 
4799 	tcp_hashinfo.pernet = false;
4800 
4801 	cnt = tcp_hashinfo.ehash_mask + 1;
4802 	sysctl_tcp_max_orphans = cnt / 2;
4803 
4804 	tcp_init_mem();
4805 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4806 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4807 	max_wshare = min(4UL*1024*1024, limit);
4808 	max_rshare = min(6UL*1024*1024, limit);
4809 
4810 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4811 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4812 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4813 
4814 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4815 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4816 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4817 
4818 	pr_info("Hash tables configured (established %u bind %u)\n",
4819 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4820 
4821 	tcp_v4_init();
4822 	tcp_metrics_init();
4823 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4824 	tcp_tasklet_init();
4825 	mptcp_init();
4826 }
4827