1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <net/rps.h> 286 287 /* Track pending CMSGs. */ 288 enum { 289 TCP_CMSG_INQ = 1, 290 TCP_CMSG_TS = 2 291 }; 292 293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 295 296 DEFINE_PER_CPU(u32, tcp_tw_isn); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 298 299 long sysctl_tcp_mem[3] __read_mostly; 300 EXPORT_SYMBOL(sysctl_tcp_mem); 301 302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 303 EXPORT_SYMBOL(tcp_memory_allocated); 304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 306 307 #if IS_ENABLED(CONFIG_SMC) 308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 309 EXPORT_SYMBOL(tcp_have_smc); 310 #endif 311 312 /* 313 * Current number of TCP sockets. 314 */ 315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 316 EXPORT_SYMBOL(tcp_sockets_allocated); 317 318 /* 319 * TCP splice context 320 */ 321 struct tcp_splice_state { 322 struct pipe_inode_info *pipe; 323 size_t len; 324 unsigned int flags; 325 }; 326 327 /* 328 * Pressure flag: try to collapse. 329 * Technical note: it is used by multiple contexts non atomically. 330 * All the __sk_mem_schedule() is of this nature: accounting 331 * is strict, actions are advisory and have some latency. 332 */ 333 unsigned long tcp_memory_pressure __read_mostly; 334 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 335 336 void tcp_enter_memory_pressure(struct sock *sk) 337 { 338 unsigned long val; 339 340 if (READ_ONCE(tcp_memory_pressure)) 341 return; 342 val = jiffies; 343 344 if (!val) 345 val--; 346 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 347 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 348 } 349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 350 351 void tcp_leave_memory_pressure(struct sock *sk) 352 { 353 unsigned long val; 354 355 if (!READ_ONCE(tcp_memory_pressure)) 356 return; 357 val = xchg(&tcp_memory_pressure, 0); 358 if (val) 359 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 360 jiffies_to_msecs(jiffies - val)); 361 } 362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 363 364 /* Convert seconds to retransmits based on initial and max timeout */ 365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 366 { 367 u8 res = 0; 368 369 if (seconds > 0) { 370 int period = timeout; 371 372 res = 1; 373 while (seconds > period && res < 255) { 374 res++; 375 timeout <<= 1; 376 if (timeout > rto_max) 377 timeout = rto_max; 378 period += timeout; 379 } 380 } 381 return res; 382 } 383 384 /* Convert retransmits to seconds based on initial and max timeout */ 385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 386 { 387 int period = 0; 388 389 if (retrans > 0) { 390 period = timeout; 391 while (--retrans) { 392 timeout <<= 1; 393 if (timeout > rto_max) 394 timeout = rto_max; 395 period += timeout; 396 } 397 } 398 return period; 399 } 400 401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 402 { 403 u32 rate = READ_ONCE(tp->rate_delivered); 404 u32 intv = READ_ONCE(tp->rate_interval_us); 405 u64 rate64 = 0; 406 407 if (rate && intv) { 408 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 409 do_div(rate64, intv); 410 } 411 return rate64; 412 } 413 414 /* Address-family independent initialization for a tcp_sock. 415 * 416 * NOTE: A lot of things set to zero explicitly by call to 417 * sk_alloc() so need not be done here. 418 */ 419 void tcp_init_sock(struct sock *sk) 420 { 421 struct inet_connection_sock *icsk = inet_csk(sk); 422 struct tcp_sock *tp = tcp_sk(sk); 423 int rto_min_us; 424 425 tp->out_of_order_queue = RB_ROOT; 426 sk->tcp_rtx_queue = RB_ROOT; 427 tcp_init_xmit_timers(sk); 428 INIT_LIST_HEAD(&tp->tsq_node); 429 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 430 431 icsk->icsk_rto = TCP_TIMEOUT_INIT; 432 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 433 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 434 icsk->icsk_delack_max = TCP_DELACK_MAX; 435 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 436 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 437 438 /* So many TCP implementations out there (incorrectly) count the 439 * initial SYN frame in their delayed-ACK and congestion control 440 * algorithms that we must have the following bandaid to talk 441 * efficiently to them. -DaveM 442 */ 443 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 444 445 /* There's a bubble in the pipe until at least the first ACK. */ 446 tp->app_limited = ~0U; 447 tp->rate_app_limited = 1; 448 449 /* See draft-stevens-tcpca-spec-01 for discussion of the 450 * initialization of these values. 451 */ 452 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 453 tp->snd_cwnd_clamp = ~0; 454 tp->mss_cache = TCP_MSS_DEFAULT; 455 456 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 457 tcp_assign_congestion_control(sk); 458 459 tp->tsoffset = 0; 460 tp->rack.reo_wnd_steps = 1; 461 462 sk->sk_write_space = sk_stream_write_space; 463 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 464 465 icsk->icsk_sync_mss = tcp_sync_mss; 466 467 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 468 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 469 tcp_scaling_ratio_init(sk); 470 471 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 472 sk_sockets_allocated_inc(sk); 473 } 474 EXPORT_SYMBOL(tcp_init_sock); 475 476 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 477 { 478 struct sk_buff *skb = tcp_write_queue_tail(sk); 479 480 if (tsflags && skb) { 481 struct skb_shared_info *shinfo = skb_shinfo(skb); 482 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 483 484 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 485 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 486 tcb->txstamp_ack = 1; 487 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 488 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 489 } 490 } 491 492 static bool tcp_stream_is_readable(struct sock *sk, int target) 493 { 494 if (tcp_epollin_ready(sk, target)) 495 return true; 496 return sk_is_readable(sk); 497 } 498 499 /* 500 * Wait for a TCP event. 501 * 502 * Note that we don't need to lock the socket, as the upper poll layers 503 * take care of normal races (between the test and the event) and we don't 504 * go look at any of the socket buffers directly. 505 */ 506 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 507 { 508 __poll_t mask; 509 struct sock *sk = sock->sk; 510 const struct tcp_sock *tp = tcp_sk(sk); 511 u8 shutdown; 512 int state; 513 514 sock_poll_wait(file, sock, wait); 515 516 state = inet_sk_state_load(sk); 517 if (state == TCP_LISTEN) 518 return inet_csk_listen_poll(sk); 519 520 /* Socket is not locked. We are protected from async events 521 * by poll logic and correct handling of state changes 522 * made by other threads is impossible in any case. 523 */ 524 525 mask = 0; 526 527 /* 528 * EPOLLHUP is certainly not done right. But poll() doesn't 529 * have a notion of HUP in just one direction, and for a 530 * socket the read side is more interesting. 531 * 532 * Some poll() documentation says that EPOLLHUP is incompatible 533 * with the EPOLLOUT/POLLWR flags, so somebody should check this 534 * all. But careful, it tends to be safer to return too many 535 * bits than too few, and you can easily break real applications 536 * if you don't tell them that something has hung up! 537 * 538 * Check-me. 539 * 540 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 541 * our fs/select.c). It means that after we received EOF, 542 * poll always returns immediately, making impossible poll() on write() 543 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 544 * if and only if shutdown has been made in both directions. 545 * Actually, it is interesting to look how Solaris and DUX 546 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 547 * then we could set it on SND_SHUTDOWN. BTW examples given 548 * in Stevens' books assume exactly this behaviour, it explains 549 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 550 * 551 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 552 * blocking on fresh not-connected or disconnected socket. --ANK 553 */ 554 shutdown = READ_ONCE(sk->sk_shutdown); 555 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 556 mask |= EPOLLHUP; 557 if (shutdown & RCV_SHUTDOWN) 558 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 559 560 /* Connected or passive Fast Open socket? */ 561 if (state != TCP_SYN_SENT && 562 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 563 int target = sock_rcvlowat(sk, 0, INT_MAX); 564 u16 urg_data = READ_ONCE(tp->urg_data); 565 566 if (unlikely(urg_data) && 567 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 568 !sock_flag(sk, SOCK_URGINLINE)) 569 target++; 570 571 if (tcp_stream_is_readable(sk, target)) 572 mask |= EPOLLIN | EPOLLRDNORM; 573 574 if (!(shutdown & SEND_SHUTDOWN)) { 575 if (__sk_stream_is_writeable(sk, 1)) { 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 } else { /* send SIGIO later */ 578 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 579 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 580 581 /* Race breaker. If space is freed after 582 * wspace test but before the flags are set, 583 * IO signal will be lost. Memory barrier 584 * pairs with the input side. 585 */ 586 smp_mb__after_atomic(); 587 if (__sk_stream_is_writeable(sk, 1)) 588 mask |= EPOLLOUT | EPOLLWRNORM; 589 } 590 } else 591 mask |= EPOLLOUT | EPOLLWRNORM; 592 593 if (urg_data & TCP_URG_VALID) 594 mask |= EPOLLPRI; 595 } else if (state == TCP_SYN_SENT && 596 inet_test_bit(DEFER_CONNECT, sk)) { 597 /* Active TCP fastopen socket with defer_connect 598 * Return EPOLLOUT so application can call write() 599 * in order for kernel to generate SYN+data 600 */ 601 mask |= EPOLLOUT | EPOLLWRNORM; 602 } 603 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 604 smp_rmb(); 605 if (READ_ONCE(sk->sk_err) || 606 !skb_queue_empty_lockless(&sk->sk_error_queue)) 607 mask |= EPOLLERR; 608 609 return mask; 610 } 611 EXPORT_SYMBOL(tcp_poll); 612 613 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 614 { 615 struct tcp_sock *tp = tcp_sk(sk); 616 int answ; 617 bool slow; 618 619 switch (cmd) { 620 case SIOCINQ: 621 if (sk->sk_state == TCP_LISTEN) 622 return -EINVAL; 623 624 slow = lock_sock_fast(sk); 625 answ = tcp_inq(sk); 626 unlock_sock_fast(sk, slow); 627 break; 628 case SIOCATMARK: 629 answ = READ_ONCE(tp->urg_data) && 630 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 631 break; 632 case SIOCOUTQ: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 640 break; 641 case SIOCOUTQNSD: 642 if (sk->sk_state == TCP_LISTEN) 643 return -EINVAL; 644 645 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 646 answ = 0; 647 else 648 answ = READ_ONCE(tp->write_seq) - 649 READ_ONCE(tp->snd_nxt); 650 break; 651 default: 652 return -ENOIOCTLCMD; 653 } 654 655 *karg = answ; 656 return 0; 657 } 658 EXPORT_SYMBOL(tcp_ioctl); 659 660 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 661 { 662 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 663 tp->pushed_seq = tp->write_seq; 664 } 665 666 static inline bool forced_push(const struct tcp_sock *tp) 667 { 668 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 669 } 670 671 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 672 { 673 struct tcp_sock *tp = tcp_sk(sk); 674 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 675 676 tcb->seq = tcb->end_seq = tp->write_seq; 677 tcb->tcp_flags = TCPHDR_ACK; 678 __skb_header_release(skb); 679 tcp_add_write_queue_tail(sk, skb); 680 sk_wmem_queued_add(sk, skb->truesize); 681 sk_mem_charge(sk, skb->truesize); 682 if (tp->nonagle & TCP_NAGLE_PUSH) 683 tp->nonagle &= ~TCP_NAGLE_PUSH; 684 685 tcp_slow_start_after_idle_check(sk); 686 } 687 688 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 689 { 690 if (flags & MSG_OOB) 691 tp->snd_up = tp->write_seq; 692 } 693 694 /* If a not yet filled skb is pushed, do not send it if 695 * we have data packets in Qdisc or NIC queues : 696 * Because TX completion will happen shortly, it gives a chance 697 * to coalesce future sendmsg() payload into this skb, without 698 * need for a timer, and with no latency trade off. 699 * As packets containing data payload have a bigger truesize 700 * than pure acks (dataless) packets, the last checks prevent 701 * autocorking if we only have an ACK in Qdisc/NIC queues, 702 * or if TX completion was delayed after we processed ACK packet. 703 */ 704 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 705 int size_goal) 706 { 707 return skb->len < size_goal && 708 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 709 !tcp_rtx_queue_empty(sk) && 710 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 711 tcp_skb_can_collapse_to(skb); 712 } 713 714 void tcp_push(struct sock *sk, int flags, int mss_now, 715 int nonagle, int size_goal) 716 { 717 struct tcp_sock *tp = tcp_sk(sk); 718 struct sk_buff *skb; 719 720 skb = tcp_write_queue_tail(sk); 721 if (!skb) 722 return; 723 if (!(flags & MSG_MORE) || forced_push(tp)) 724 tcp_mark_push(tp, skb); 725 726 tcp_mark_urg(tp, flags); 727 728 if (tcp_should_autocork(sk, skb, size_goal)) { 729 730 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 731 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 733 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 734 smp_mb__after_atomic(); 735 } 736 /* It is possible TX completion already happened 737 * before we set TSQ_THROTTLED. 738 */ 739 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 740 return; 741 } 742 743 if (flags & MSG_MORE) 744 nonagle = TCP_NAGLE_CORK; 745 746 __tcp_push_pending_frames(sk, mss_now, nonagle); 747 } 748 749 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 750 unsigned int offset, size_t len) 751 { 752 struct tcp_splice_state *tss = rd_desc->arg.data; 753 int ret; 754 755 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 756 min(rd_desc->count, len), tss->flags); 757 if (ret > 0) 758 rd_desc->count -= ret; 759 return ret; 760 } 761 762 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 763 { 764 /* Store TCP splice context information in read_descriptor_t. */ 765 read_descriptor_t rd_desc = { 766 .arg.data = tss, 767 .count = tss->len, 768 }; 769 770 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 771 } 772 773 /** 774 * tcp_splice_read - splice data from TCP socket to a pipe 775 * @sock: socket to splice from 776 * @ppos: position (not valid) 777 * @pipe: pipe to splice to 778 * @len: number of bytes to splice 779 * @flags: splice modifier flags 780 * 781 * Description: 782 * Will read pages from given socket and fill them into a pipe. 783 * 784 **/ 785 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 786 struct pipe_inode_info *pipe, size_t len, 787 unsigned int flags) 788 { 789 struct sock *sk = sock->sk; 790 struct tcp_splice_state tss = { 791 .pipe = pipe, 792 .len = len, 793 .flags = flags, 794 }; 795 long timeo; 796 ssize_t spliced; 797 int ret; 798 799 sock_rps_record_flow(sk); 800 /* 801 * We can't seek on a socket input 802 */ 803 if (unlikely(*ppos)) 804 return -ESPIPE; 805 806 ret = spliced = 0; 807 808 lock_sock(sk); 809 810 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 811 while (tss.len) { 812 ret = __tcp_splice_read(sk, &tss); 813 if (ret < 0) 814 break; 815 else if (!ret) { 816 if (spliced) 817 break; 818 if (sock_flag(sk, SOCK_DONE)) 819 break; 820 if (sk->sk_err) { 821 ret = sock_error(sk); 822 break; 823 } 824 if (sk->sk_shutdown & RCV_SHUTDOWN) 825 break; 826 if (sk->sk_state == TCP_CLOSE) { 827 /* 828 * This occurs when user tries to read 829 * from never connected socket. 830 */ 831 ret = -ENOTCONN; 832 break; 833 } 834 if (!timeo) { 835 ret = -EAGAIN; 836 break; 837 } 838 /* if __tcp_splice_read() got nothing while we have 839 * an skb in receive queue, we do not want to loop. 840 * This might happen with URG data. 841 */ 842 if (!skb_queue_empty(&sk->sk_receive_queue)) 843 break; 844 ret = sk_wait_data(sk, &timeo, NULL); 845 if (ret < 0) 846 break; 847 if (signal_pending(current)) { 848 ret = sock_intr_errno(timeo); 849 break; 850 } 851 continue; 852 } 853 tss.len -= ret; 854 spliced += ret; 855 856 if (!tss.len || !timeo) 857 break; 858 release_sock(sk); 859 lock_sock(sk); 860 861 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 862 (sk->sk_shutdown & RCV_SHUTDOWN) || 863 signal_pending(current)) 864 break; 865 } 866 867 release_sock(sk); 868 869 if (spliced) 870 return spliced; 871 872 return ret; 873 } 874 EXPORT_SYMBOL(tcp_splice_read); 875 876 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 877 bool force_schedule) 878 { 879 struct sk_buff *skb; 880 881 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 882 if (likely(skb)) { 883 bool mem_scheduled; 884 885 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 886 if (force_schedule) { 887 mem_scheduled = true; 888 sk_forced_mem_schedule(sk, skb->truesize); 889 } else { 890 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 891 } 892 if (likely(mem_scheduled)) { 893 skb_reserve(skb, MAX_TCP_HEADER); 894 skb->ip_summed = CHECKSUM_PARTIAL; 895 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 896 return skb; 897 } 898 __kfree_skb(skb); 899 } else { 900 sk->sk_prot->enter_memory_pressure(sk); 901 sk_stream_moderate_sndbuf(sk); 902 } 903 return NULL; 904 } 905 906 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 907 int large_allowed) 908 { 909 struct tcp_sock *tp = tcp_sk(sk); 910 u32 new_size_goal, size_goal; 911 912 if (!large_allowed) 913 return mss_now; 914 915 /* Note : tcp_tso_autosize() will eventually split this later */ 916 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 917 918 /* We try hard to avoid divides here */ 919 size_goal = tp->gso_segs * mss_now; 920 if (unlikely(new_size_goal < size_goal || 921 new_size_goal >= size_goal + mss_now)) { 922 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 923 sk->sk_gso_max_segs); 924 size_goal = tp->gso_segs * mss_now; 925 } 926 927 return max(size_goal, mss_now); 928 } 929 930 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 931 { 932 int mss_now; 933 934 mss_now = tcp_current_mss(sk); 935 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 936 937 return mss_now; 938 } 939 940 /* In some cases, sendmsg() could have added an skb to the write queue, 941 * but failed adding payload on it. We need to remove it to consume less 942 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 943 * epoll() users. Another reason is that tcp_write_xmit() does not like 944 * finding an empty skb in the write queue. 945 */ 946 void tcp_remove_empty_skb(struct sock *sk) 947 { 948 struct sk_buff *skb = tcp_write_queue_tail(sk); 949 950 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 951 tcp_unlink_write_queue(skb, sk); 952 if (tcp_write_queue_empty(sk)) 953 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 954 tcp_wmem_free_skb(sk, skb); 955 } 956 } 957 958 /* skb changing from pure zc to mixed, must charge zc */ 959 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 960 { 961 if (unlikely(skb_zcopy_pure(skb))) { 962 u32 extra = skb->truesize - 963 SKB_TRUESIZE(skb_end_offset(skb)); 964 965 if (!sk_wmem_schedule(sk, extra)) 966 return -ENOMEM; 967 968 sk_mem_charge(sk, extra); 969 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 970 } 971 return 0; 972 } 973 974 975 int tcp_wmem_schedule(struct sock *sk, int copy) 976 { 977 int left; 978 979 if (likely(sk_wmem_schedule(sk, copy))) 980 return copy; 981 982 /* We could be in trouble if we have nothing queued. 983 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 984 * to guarantee some progress. 985 */ 986 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 987 if (left > 0) 988 sk_forced_mem_schedule(sk, min(left, copy)); 989 return min(copy, sk->sk_forward_alloc); 990 } 991 992 void tcp_free_fastopen_req(struct tcp_sock *tp) 993 { 994 if (tp->fastopen_req) { 995 kfree(tp->fastopen_req); 996 tp->fastopen_req = NULL; 997 } 998 } 999 1000 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1001 size_t size, struct ubuf_info *uarg) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 struct inet_sock *inet = inet_sk(sk); 1005 struct sockaddr *uaddr = msg->msg_name; 1006 int err, flags; 1007 1008 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1009 TFO_CLIENT_ENABLE) || 1010 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1011 uaddr->sa_family == AF_UNSPEC)) 1012 return -EOPNOTSUPP; 1013 if (tp->fastopen_req) 1014 return -EALREADY; /* Another Fast Open is in progress */ 1015 1016 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1017 sk->sk_allocation); 1018 if (unlikely(!tp->fastopen_req)) 1019 return -ENOBUFS; 1020 tp->fastopen_req->data = msg; 1021 tp->fastopen_req->size = size; 1022 tp->fastopen_req->uarg = uarg; 1023 1024 if (inet_test_bit(DEFER_CONNECT, sk)) { 1025 err = tcp_connect(sk); 1026 /* Same failure procedure as in tcp_v4/6_connect */ 1027 if (err) { 1028 tcp_set_state(sk, TCP_CLOSE); 1029 inet->inet_dport = 0; 1030 sk->sk_route_caps = 0; 1031 } 1032 } 1033 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1034 err = __inet_stream_connect(sk->sk_socket, uaddr, 1035 msg->msg_namelen, flags, 1); 1036 /* fastopen_req could already be freed in __inet_stream_connect 1037 * if the connection times out or gets rst 1038 */ 1039 if (tp->fastopen_req) { 1040 *copied = tp->fastopen_req->copied; 1041 tcp_free_fastopen_req(tp); 1042 inet_clear_bit(DEFER_CONNECT, sk); 1043 } 1044 return err; 1045 } 1046 1047 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1048 { 1049 struct tcp_sock *tp = tcp_sk(sk); 1050 struct ubuf_info *uarg = NULL; 1051 struct sk_buff *skb; 1052 struct sockcm_cookie sockc; 1053 int flags, err, copied = 0; 1054 int mss_now = 0, size_goal, copied_syn = 0; 1055 int process_backlog = 0; 1056 int zc = 0; 1057 long timeo; 1058 1059 flags = msg->msg_flags; 1060 1061 if ((flags & MSG_ZEROCOPY) && size) { 1062 if (msg->msg_ubuf) { 1063 uarg = msg->msg_ubuf; 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_ZEROCOPY; 1066 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1067 skb = tcp_write_queue_tail(sk); 1068 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1069 if (!uarg) { 1070 err = -ENOBUFS; 1071 goto out_err; 1072 } 1073 if (sk->sk_route_caps & NETIF_F_SG) 1074 zc = MSG_ZEROCOPY; 1075 else 1076 uarg_to_msgzc(uarg)->zerocopy = 0; 1077 } 1078 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1079 if (sk->sk_route_caps & NETIF_F_SG) 1080 zc = MSG_SPLICE_PAGES; 1081 } 1082 1083 if (unlikely(flags & MSG_FASTOPEN || 1084 inet_test_bit(DEFER_CONNECT, sk)) && 1085 !tp->repair) { 1086 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1087 if (err == -EINPROGRESS && copied_syn > 0) 1088 goto out; 1089 else if (err) 1090 goto out_err; 1091 } 1092 1093 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1094 1095 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1096 1097 /* Wait for a connection to finish. One exception is TCP Fast Open 1098 * (passive side) where data is allowed to be sent before a connection 1099 * is fully established. 1100 */ 1101 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1102 !tcp_passive_fastopen(sk)) { 1103 err = sk_stream_wait_connect(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 } 1107 1108 if (unlikely(tp->repair)) { 1109 if (tp->repair_queue == TCP_RECV_QUEUE) { 1110 copied = tcp_send_rcvq(sk, msg, size); 1111 goto out_nopush; 1112 } 1113 1114 err = -EINVAL; 1115 if (tp->repair_queue == TCP_NO_QUEUE) 1116 goto out_err; 1117 1118 /* 'common' sending to sendq */ 1119 } 1120 1121 sockcm_init(&sockc, sk); 1122 if (msg->msg_controllen) { 1123 err = sock_cmsg_send(sk, msg, &sockc); 1124 if (unlikely(err)) { 1125 err = -EINVAL; 1126 goto out_err; 1127 } 1128 } 1129 1130 /* This should be in poll */ 1131 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1132 1133 /* Ok commence sending. */ 1134 copied = 0; 1135 1136 restart: 1137 mss_now = tcp_send_mss(sk, &size_goal, flags); 1138 1139 err = -EPIPE; 1140 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1141 goto do_error; 1142 1143 while (msg_data_left(msg)) { 1144 ssize_t copy = 0; 1145 1146 skb = tcp_write_queue_tail(sk); 1147 if (skb) 1148 copy = size_goal - skb->len; 1149 1150 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1151 bool first_skb; 1152 1153 new_segment: 1154 if (!sk_stream_memory_free(sk)) 1155 goto wait_for_space; 1156 1157 if (unlikely(process_backlog >= 16)) { 1158 process_backlog = 0; 1159 if (sk_flush_backlog(sk)) 1160 goto restart; 1161 } 1162 first_skb = tcp_rtx_and_write_queues_empty(sk); 1163 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1164 first_skb); 1165 if (!skb) 1166 goto wait_for_space; 1167 1168 process_backlog++; 1169 1170 #ifdef CONFIG_SKB_DECRYPTED 1171 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1172 #endif 1173 tcp_skb_entail(sk, skb); 1174 copy = size_goal; 1175 1176 /* All packets are restored as if they have 1177 * already been sent. skb_mstamp_ns isn't set to 1178 * avoid wrong rtt estimation. 1179 */ 1180 if (tp->repair) 1181 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1182 } 1183 1184 /* Try to append data to the end of skb. */ 1185 if (copy > msg_data_left(msg)) 1186 copy = msg_data_left(msg); 1187 1188 if (zc == 0) { 1189 bool merge = true; 1190 int i = skb_shinfo(skb)->nr_frags; 1191 struct page_frag *pfrag = sk_page_frag(sk); 1192 1193 if (!sk_page_frag_refill(sk, pfrag)) 1194 goto wait_for_space; 1195 1196 if (!skb_can_coalesce(skb, i, pfrag->page, 1197 pfrag->offset)) { 1198 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1199 tcp_mark_push(tp, skb); 1200 goto new_segment; 1201 } 1202 merge = false; 1203 } 1204 1205 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1206 1207 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1208 if (tcp_downgrade_zcopy_pure(sk, skb)) 1209 goto wait_for_space; 1210 skb_zcopy_downgrade_managed(skb); 1211 } 1212 1213 copy = tcp_wmem_schedule(sk, copy); 1214 if (!copy) 1215 goto wait_for_space; 1216 1217 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1218 pfrag->page, 1219 pfrag->offset, 1220 copy); 1221 if (err) 1222 goto do_error; 1223 1224 /* Update the skb. */ 1225 if (merge) { 1226 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1227 } else { 1228 skb_fill_page_desc(skb, i, pfrag->page, 1229 pfrag->offset, copy); 1230 page_ref_inc(pfrag->page); 1231 } 1232 pfrag->offset += copy; 1233 } else if (zc == MSG_ZEROCOPY) { 1234 /* First append to a fragless skb builds initial 1235 * pure zerocopy skb 1236 */ 1237 if (!skb->len) 1238 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1239 1240 if (!skb_zcopy_pure(skb)) { 1241 copy = tcp_wmem_schedule(sk, copy); 1242 if (!copy) 1243 goto wait_for_space; 1244 } 1245 1246 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1247 if (err == -EMSGSIZE || err == -EEXIST) { 1248 tcp_mark_push(tp, skb); 1249 goto new_segment; 1250 } 1251 if (err < 0) 1252 goto do_error; 1253 copy = err; 1254 } else if (zc == MSG_SPLICE_PAGES) { 1255 /* Splice in data if we can; copy if we can't. */ 1256 if (tcp_downgrade_zcopy_pure(sk, skb)) 1257 goto wait_for_space; 1258 copy = tcp_wmem_schedule(sk, copy); 1259 if (!copy) 1260 goto wait_for_space; 1261 1262 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1263 sk->sk_allocation); 1264 if (err < 0) { 1265 if (err == -EMSGSIZE) { 1266 tcp_mark_push(tp, skb); 1267 goto new_segment; 1268 } 1269 goto do_error; 1270 } 1271 copy = err; 1272 1273 if (!(flags & MSG_NO_SHARED_FRAGS)) 1274 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1275 1276 sk_wmem_queued_add(sk, copy); 1277 sk_mem_charge(sk, copy); 1278 } 1279 1280 if (!copied) 1281 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1282 1283 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1284 TCP_SKB_CB(skb)->end_seq += copy; 1285 tcp_skb_pcount_set(skb, 0); 1286 1287 copied += copy; 1288 if (!msg_data_left(msg)) { 1289 if (unlikely(flags & MSG_EOR)) 1290 TCP_SKB_CB(skb)->eor = 1; 1291 goto out; 1292 } 1293 1294 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1295 continue; 1296 1297 if (forced_push(tp)) { 1298 tcp_mark_push(tp, skb); 1299 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1300 } else if (skb == tcp_send_head(sk)) 1301 tcp_push_one(sk, mss_now); 1302 continue; 1303 1304 wait_for_space: 1305 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1306 tcp_remove_empty_skb(sk); 1307 if (copied) 1308 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1309 TCP_NAGLE_PUSH, size_goal); 1310 1311 err = sk_stream_wait_memory(sk, &timeo); 1312 if (err != 0) 1313 goto do_error; 1314 1315 mss_now = tcp_send_mss(sk, &size_goal, flags); 1316 } 1317 1318 out: 1319 if (copied) { 1320 tcp_tx_timestamp(sk, sockc.tsflags); 1321 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1322 } 1323 out_nopush: 1324 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1325 if (uarg && !msg->msg_ubuf) 1326 net_zcopy_put(uarg); 1327 return copied + copied_syn; 1328 1329 do_error: 1330 tcp_remove_empty_skb(sk); 1331 1332 if (copied + copied_syn) 1333 goto out; 1334 out_err: 1335 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1336 if (uarg && !msg->msg_ubuf) 1337 net_zcopy_put_abort(uarg, true); 1338 err = sk_stream_error(sk, flags, err); 1339 /* make sure we wake any epoll edge trigger waiter */ 1340 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1341 sk->sk_write_space(sk); 1342 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1343 } 1344 return err; 1345 } 1346 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1347 1348 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1349 { 1350 int ret; 1351 1352 lock_sock(sk); 1353 ret = tcp_sendmsg_locked(sk, msg, size); 1354 release_sock(sk); 1355 1356 return ret; 1357 } 1358 EXPORT_SYMBOL(tcp_sendmsg); 1359 1360 void tcp_splice_eof(struct socket *sock) 1361 { 1362 struct sock *sk = sock->sk; 1363 struct tcp_sock *tp = tcp_sk(sk); 1364 int mss_now, size_goal; 1365 1366 if (!tcp_write_queue_tail(sk)) 1367 return; 1368 1369 lock_sock(sk); 1370 mss_now = tcp_send_mss(sk, &size_goal, 0); 1371 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1372 release_sock(sk); 1373 } 1374 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1375 1376 /* 1377 * Handle reading urgent data. BSD has very simple semantics for 1378 * this, no blocking and very strange errors 8) 1379 */ 1380 1381 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 1385 /* No URG data to read. */ 1386 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1387 tp->urg_data == TCP_URG_READ) 1388 return -EINVAL; /* Yes this is right ! */ 1389 1390 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1391 return -ENOTCONN; 1392 1393 if (tp->urg_data & TCP_URG_VALID) { 1394 int err = 0; 1395 char c = tp->urg_data; 1396 1397 if (!(flags & MSG_PEEK)) 1398 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1399 1400 /* Read urgent data. */ 1401 msg->msg_flags |= MSG_OOB; 1402 1403 if (len > 0) { 1404 if (!(flags & MSG_TRUNC)) 1405 err = memcpy_to_msg(msg, &c, 1); 1406 len = 1; 1407 } else 1408 msg->msg_flags |= MSG_TRUNC; 1409 1410 return err ? -EFAULT : len; 1411 } 1412 1413 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1414 return 0; 1415 1416 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1417 * the available implementations agree in this case: 1418 * this call should never block, independent of the 1419 * blocking state of the socket. 1420 * Mike <pall@rz.uni-karlsruhe.de> 1421 */ 1422 return -EAGAIN; 1423 } 1424 1425 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1426 { 1427 struct sk_buff *skb; 1428 int copied = 0, err = 0; 1429 1430 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1431 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1432 if (err) 1433 return err; 1434 copied += skb->len; 1435 } 1436 1437 skb_queue_walk(&sk->sk_write_queue, skb) { 1438 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1439 if (err) 1440 break; 1441 1442 copied += skb->len; 1443 } 1444 1445 return err ?: copied; 1446 } 1447 1448 /* Clean up the receive buffer for full frames taken by the user, 1449 * then send an ACK if necessary. COPIED is the number of bytes 1450 * tcp_recvmsg has given to the user so far, it speeds up the 1451 * calculation of whether or not we must ACK for the sake of 1452 * a window update. 1453 */ 1454 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1455 { 1456 struct tcp_sock *tp = tcp_sk(sk); 1457 bool time_to_ack = false; 1458 1459 if (inet_csk_ack_scheduled(sk)) { 1460 const struct inet_connection_sock *icsk = inet_csk(sk); 1461 1462 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1463 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1464 /* 1465 * If this read emptied read buffer, we send ACK, if 1466 * connection is not bidirectional, user drained 1467 * receive buffer and there was a small segment 1468 * in queue. 1469 */ 1470 (copied > 0 && 1471 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1472 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1473 !inet_csk_in_pingpong_mode(sk))) && 1474 !atomic_read(&sk->sk_rmem_alloc))) 1475 time_to_ack = true; 1476 } 1477 1478 /* We send an ACK if we can now advertise a non-zero window 1479 * which has been raised "significantly". 1480 * 1481 * Even if window raised up to infinity, do not send window open ACK 1482 * in states, where we will not receive more. It is useless. 1483 */ 1484 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1485 __u32 rcv_window_now = tcp_receive_window(tp); 1486 1487 /* Optimize, __tcp_select_window() is not cheap. */ 1488 if (2*rcv_window_now <= tp->window_clamp) { 1489 __u32 new_window = __tcp_select_window(sk); 1490 1491 /* Send ACK now, if this read freed lots of space 1492 * in our buffer. Certainly, new_window is new window. 1493 * We can advertise it now, if it is not less than current one. 1494 * "Lots" means "at least twice" here. 1495 */ 1496 if (new_window && new_window >= 2 * rcv_window_now) 1497 time_to_ack = true; 1498 } 1499 } 1500 if (time_to_ack) 1501 tcp_send_ack(sk); 1502 } 1503 1504 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1505 { 1506 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1507 struct tcp_sock *tp = tcp_sk(sk); 1508 1509 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1510 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1511 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1512 __tcp_cleanup_rbuf(sk, copied); 1513 } 1514 1515 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1516 { 1517 __skb_unlink(skb, &sk->sk_receive_queue); 1518 if (likely(skb->destructor == sock_rfree)) { 1519 sock_rfree(skb); 1520 skb->destructor = NULL; 1521 skb->sk = NULL; 1522 return skb_attempt_defer_free(skb); 1523 } 1524 __kfree_skb(skb); 1525 } 1526 1527 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1528 { 1529 struct sk_buff *skb; 1530 u32 offset; 1531 1532 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1533 offset = seq - TCP_SKB_CB(skb)->seq; 1534 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1535 pr_err_once("%s: found a SYN, please report !\n", __func__); 1536 offset--; 1537 } 1538 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1539 *off = offset; 1540 return skb; 1541 } 1542 /* This looks weird, but this can happen if TCP collapsing 1543 * splitted a fat GRO packet, while we released socket lock 1544 * in skb_splice_bits() 1545 */ 1546 tcp_eat_recv_skb(sk, skb); 1547 } 1548 return NULL; 1549 } 1550 EXPORT_SYMBOL(tcp_recv_skb); 1551 1552 /* 1553 * This routine provides an alternative to tcp_recvmsg() for routines 1554 * that would like to handle copying from skbuffs directly in 'sendfile' 1555 * fashion. 1556 * Note: 1557 * - It is assumed that the socket was locked by the caller. 1558 * - The routine does not block. 1559 * - At present, there is no support for reading OOB data 1560 * or for 'peeking' the socket using this routine 1561 * (although both would be easy to implement). 1562 */ 1563 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1564 sk_read_actor_t recv_actor) 1565 { 1566 struct sk_buff *skb; 1567 struct tcp_sock *tp = tcp_sk(sk); 1568 u32 seq = tp->copied_seq; 1569 u32 offset; 1570 int copied = 0; 1571 1572 if (sk->sk_state == TCP_LISTEN) 1573 return -ENOTCONN; 1574 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1575 if (offset < skb->len) { 1576 int used; 1577 size_t len; 1578 1579 len = skb->len - offset; 1580 /* Stop reading if we hit a patch of urgent data */ 1581 if (unlikely(tp->urg_data)) { 1582 u32 urg_offset = tp->urg_seq - seq; 1583 if (urg_offset < len) 1584 len = urg_offset; 1585 if (!len) 1586 break; 1587 } 1588 used = recv_actor(desc, skb, offset, len); 1589 if (used <= 0) { 1590 if (!copied) 1591 copied = used; 1592 break; 1593 } 1594 if (WARN_ON_ONCE(used > len)) 1595 used = len; 1596 seq += used; 1597 copied += used; 1598 offset += used; 1599 1600 /* If recv_actor drops the lock (e.g. TCP splice 1601 * receive) the skb pointer might be invalid when 1602 * getting here: tcp_collapse might have deleted it 1603 * while aggregating skbs from the socket queue. 1604 */ 1605 skb = tcp_recv_skb(sk, seq - 1, &offset); 1606 if (!skb) 1607 break; 1608 /* TCP coalescing might have appended data to the skb. 1609 * Try to splice more frags 1610 */ 1611 if (offset + 1 != skb->len) 1612 continue; 1613 } 1614 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1615 tcp_eat_recv_skb(sk, skb); 1616 ++seq; 1617 break; 1618 } 1619 tcp_eat_recv_skb(sk, skb); 1620 if (!desc->count) 1621 break; 1622 WRITE_ONCE(tp->copied_seq, seq); 1623 } 1624 WRITE_ONCE(tp->copied_seq, seq); 1625 1626 tcp_rcv_space_adjust(sk); 1627 1628 /* Clean up data we have read: This will do ACK frames. */ 1629 if (copied > 0) { 1630 tcp_recv_skb(sk, seq, &offset); 1631 tcp_cleanup_rbuf(sk, copied); 1632 } 1633 return copied; 1634 } 1635 EXPORT_SYMBOL(tcp_read_sock); 1636 1637 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1638 { 1639 struct sk_buff *skb; 1640 int copied = 0; 1641 1642 if (sk->sk_state == TCP_LISTEN) 1643 return -ENOTCONN; 1644 1645 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1646 u8 tcp_flags; 1647 int used; 1648 1649 __skb_unlink(skb, &sk->sk_receive_queue); 1650 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1651 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1652 used = recv_actor(sk, skb); 1653 if (used < 0) { 1654 if (!copied) 1655 copied = used; 1656 break; 1657 } 1658 copied += used; 1659 1660 if (tcp_flags & TCPHDR_FIN) 1661 break; 1662 } 1663 return copied; 1664 } 1665 EXPORT_SYMBOL(tcp_read_skb); 1666 1667 void tcp_read_done(struct sock *sk, size_t len) 1668 { 1669 struct tcp_sock *tp = tcp_sk(sk); 1670 u32 seq = tp->copied_seq; 1671 struct sk_buff *skb; 1672 size_t left; 1673 u32 offset; 1674 1675 if (sk->sk_state == TCP_LISTEN) 1676 return; 1677 1678 left = len; 1679 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1680 int used; 1681 1682 used = min_t(size_t, skb->len - offset, left); 1683 seq += used; 1684 left -= used; 1685 1686 if (skb->len > offset + used) 1687 break; 1688 1689 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1690 tcp_eat_recv_skb(sk, skb); 1691 ++seq; 1692 break; 1693 } 1694 tcp_eat_recv_skb(sk, skb); 1695 } 1696 WRITE_ONCE(tp->copied_seq, seq); 1697 1698 tcp_rcv_space_adjust(sk); 1699 1700 /* Clean up data we have read: This will do ACK frames. */ 1701 if (left != len) 1702 tcp_cleanup_rbuf(sk, len - left); 1703 } 1704 EXPORT_SYMBOL(tcp_read_done); 1705 1706 int tcp_peek_len(struct socket *sock) 1707 { 1708 return tcp_inq(sock->sk); 1709 } 1710 EXPORT_SYMBOL(tcp_peek_len); 1711 1712 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1713 int tcp_set_rcvlowat(struct sock *sk, int val) 1714 { 1715 int space, cap; 1716 1717 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1718 cap = sk->sk_rcvbuf >> 1; 1719 else 1720 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1721 val = min(val, cap); 1722 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1723 1724 /* Check if we need to signal EPOLLIN right now */ 1725 tcp_data_ready(sk); 1726 1727 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1728 return 0; 1729 1730 space = tcp_space_from_win(sk, val); 1731 if (space > sk->sk_rcvbuf) { 1732 WRITE_ONCE(sk->sk_rcvbuf, space); 1733 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1734 } 1735 return 0; 1736 } 1737 EXPORT_SYMBOL(tcp_set_rcvlowat); 1738 1739 void tcp_update_recv_tstamps(struct sk_buff *skb, 1740 struct scm_timestamping_internal *tss) 1741 { 1742 if (skb->tstamp) 1743 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1744 else 1745 tss->ts[0] = (struct timespec64) {0}; 1746 1747 if (skb_hwtstamps(skb)->hwtstamp) 1748 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1749 else 1750 tss->ts[2] = (struct timespec64) {0}; 1751 } 1752 1753 #ifdef CONFIG_MMU 1754 static const struct vm_operations_struct tcp_vm_ops = { 1755 }; 1756 1757 int tcp_mmap(struct file *file, struct socket *sock, 1758 struct vm_area_struct *vma) 1759 { 1760 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1761 return -EPERM; 1762 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1763 1764 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1765 vm_flags_set(vma, VM_MIXEDMAP); 1766 1767 vma->vm_ops = &tcp_vm_ops; 1768 return 0; 1769 } 1770 EXPORT_SYMBOL(tcp_mmap); 1771 1772 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1773 u32 *offset_frag) 1774 { 1775 skb_frag_t *frag; 1776 1777 if (unlikely(offset_skb >= skb->len)) 1778 return NULL; 1779 1780 offset_skb -= skb_headlen(skb); 1781 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1782 return NULL; 1783 1784 frag = skb_shinfo(skb)->frags; 1785 while (offset_skb) { 1786 if (skb_frag_size(frag) > offset_skb) { 1787 *offset_frag = offset_skb; 1788 return frag; 1789 } 1790 offset_skb -= skb_frag_size(frag); 1791 ++frag; 1792 } 1793 *offset_frag = 0; 1794 return frag; 1795 } 1796 1797 static bool can_map_frag(const skb_frag_t *frag) 1798 { 1799 struct page *page; 1800 1801 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1802 return false; 1803 1804 page = skb_frag_page(frag); 1805 1806 if (PageCompound(page) || page->mapping) 1807 return false; 1808 1809 return true; 1810 } 1811 1812 static int find_next_mappable_frag(const skb_frag_t *frag, 1813 int remaining_in_skb) 1814 { 1815 int offset = 0; 1816 1817 if (likely(can_map_frag(frag))) 1818 return 0; 1819 1820 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1821 offset += skb_frag_size(frag); 1822 ++frag; 1823 } 1824 return offset; 1825 } 1826 1827 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1828 struct tcp_zerocopy_receive *zc, 1829 struct sk_buff *skb, u32 offset) 1830 { 1831 u32 frag_offset, partial_frag_remainder = 0; 1832 int mappable_offset; 1833 skb_frag_t *frag; 1834 1835 /* worst case: skip to next skb. try to improve on this case below */ 1836 zc->recv_skip_hint = skb->len - offset; 1837 1838 /* Find the frag containing this offset (and how far into that frag) */ 1839 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1840 if (!frag) 1841 return; 1842 1843 if (frag_offset) { 1844 struct skb_shared_info *info = skb_shinfo(skb); 1845 1846 /* We read part of the last frag, must recvmsg() rest of skb. */ 1847 if (frag == &info->frags[info->nr_frags - 1]) 1848 return; 1849 1850 /* Else, we must at least read the remainder in this frag. */ 1851 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1852 zc->recv_skip_hint -= partial_frag_remainder; 1853 ++frag; 1854 } 1855 1856 /* partial_frag_remainder: If part way through a frag, must read rest. 1857 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1858 * in partial_frag_remainder. 1859 */ 1860 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1861 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1862 } 1863 1864 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1865 int flags, struct scm_timestamping_internal *tss, 1866 int *cmsg_flags); 1867 static int receive_fallback_to_copy(struct sock *sk, 1868 struct tcp_zerocopy_receive *zc, int inq, 1869 struct scm_timestamping_internal *tss) 1870 { 1871 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1872 struct msghdr msg = {}; 1873 int err; 1874 1875 zc->length = 0; 1876 zc->recv_skip_hint = 0; 1877 1878 if (copy_address != zc->copybuf_address) 1879 return -EINVAL; 1880 1881 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1882 &msg.msg_iter); 1883 if (err) 1884 return err; 1885 1886 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1887 tss, &zc->msg_flags); 1888 if (err < 0) 1889 return err; 1890 1891 zc->copybuf_len = err; 1892 if (likely(zc->copybuf_len)) { 1893 struct sk_buff *skb; 1894 u32 offset; 1895 1896 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1897 if (skb) 1898 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1899 } 1900 return 0; 1901 } 1902 1903 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1904 struct sk_buff *skb, u32 copylen, 1905 u32 *offset, u32 *seq) 1906 { 1907 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1908 struct msghdr msg = {}; 1909 int err; 1910 1911 if (copy_address != zc->copybuf_address) 1912 return -EINVAL; 1913 1914 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1915 &msg.msg_iter); 1916 if (err) 1917 return err; 1918 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1919 if (err) 1920 return err; 1921 zc->recv_skip_hint -= copylen; 1922 *offset += copylen; 1923 *seq += copylen; 1924 return (__s32)copylen; 1925 } 1926 1927 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1928 struct sock *sk, 1929 struct sk_buff *skb, 1930 u32 *seq, 1931 s32 copybuf_len, 1932 struct scm_timestamping_internal *tss) 1933 { 1934 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1935 1936 if (!copylen) 1937 return 0; 1938 /* skb is null if inq < PAGE_SIZE. */ 1939 if (skb) { 1940 offset = *seq - TCP_SKB_CB(skb)->seq; 1941 } else { 1942 skb = tcp_recv_skb(sk, *seq, &offset); 1943 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1944 tcp_update_recv_tstamps(skb, tss); 1945 zc->msg_flags |= TCP_CMSG_TS; 1946 } 1947 } 1948 1949 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1950 seq); 1951 return zc->copybuf_len < 0 ? 0 : copylen; 1952 } 1953 1954 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1955 struct page **pending_pages, 1956 unsigned long pages_remaining, 1957 unsigned long *address, 1958 u32 *length, 1959 u32 *seq, 1960 struct tcp_zerocopy_receive *zc, 1961 u32 total_bytes_to_map, 1962 int err) 1963 { 1964 /* At least one page did not map. Try zapping if we skipped earlier. */ 1965 if (err == -EBUSY && 1966 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1967 u32 maybe_zap_len; 1968 1969 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1970 *length + /* Mapped or pending */ 1971 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1972 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1973 err = 0; 1974 } 1975 1976 if (!err) { 1977 unsigned long leftover_pages = pages_remaining; 1978 int bytes_mapped; 1979 1980 /* We called zap_page_range_single, try to reinsert. */ 1981 err = vm_insert_pages(vma, *address, 1982 pending_pages, 1983 &pages_remaining); 1984 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1985 *seq += bytes_mapped; 1986 *address += bytes_mapped; 1987 } 1988 if (err) { 1989 /* Either we were unable to zap, OR we zapped, retried an 1990 * insert, and still had an issue. Either ways, pages_remaining 1991 * is the number of pages we were unable to map, and we unroll 1992 * some state we speculatively touched before. 1993 */ 1994 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1995 1996 *length -= bytes_not_mapped; 1997 zc->recv_skip_hint += bytes_not_mapped; 1998 } 1999 return err; 2000 } 2001 2002 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2003 struct page **pages, 2004 unsigned int pages_to_map, 2005 unsigned long *address, 2006 u32 *length, 2007 u32 *seq, 2008 struct tcp_zerocopy_receive *zc, 2009 u32 total_bytes_to_map) 2010 { 2011 unsigned long pages_remaining = pages_to_map; 2012 unsigned int pages_mapped; 2013 unsigned int bytes_mapped; 2014 int err; 2015 2016 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2017 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2018 bytes_mapped = PAGE_SIZE * pages_mapped; 2019 /* Even if vm_insert_pages fails, it may have partially succeeded in 2020 * mapping (some but not all of the pages). 2021 */ 2022 *seq += bytes_mapped; 2023 *address += bytes_mapped; 2024 2025 if (likely(!err)) 2026 return 0; 2027 2028 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2029 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2030 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2031 err); 2032 } 2033 2034 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2035 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2036 struct tcp_zerocopy_receive *zc, 2037 struct scm_timestamping_internal *tss) 2038 { 2039 unsigned long msg_control_addr; 2040 struct msghdr cmsg_dummy; 2041 2042 msg_control_addr = (unsigned long)zc->msg_control; 2043 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2044 cmsg_dummy.msg_controllen = 2045 (__kernel_size_t)zc->msg_controllen; 2046 cmsg_dummy.msg_flags = in_compat_syscall() 2047 ? MSG_CMSG_COMPAT : 0; 2048 cmsg_dummy.msg_control_is_user = true; 2049 zc->msg_flags = 0; 2050 if (zc->msg_control == msg_control_addr && 2051 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2052 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2053 zc->msg_control = (__u64) 2054 ((uintptr_t)cmsg_dummy.msg_control_user); 2055 zc->msg_controllen = 2056 (__u64)cmsg_dummy.msg_controllen; 2057 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2058 } 2059 } 2060 2061 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2062 unsigned long address, 2063 bool *mmap_locked) 2064 { 2065 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2066 2067 if (vma) { 2068 if (vma->vm_ops != &tcp_vm_ops) { 2069 vma_end_read(vma); 2070 return NULL; 2071 } 2072 *mmap_locked = false; 2073 return vma; 2074 } 2075 2076 mmap_read_lock(mm); 2077 vma = vma_lookup(mm, address); 2078 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2079 mmap_read_unlock(mm); 2080 return NULL; 2081 } 2082 *mmap_locked = true; 2083 return vma; 2084 } 2085 2086 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2087 static int tcp_zerocopy_receive(struct sock *sk, 2088 struct tcp_zerocopy_receive *zc, 2089 struct scm_timestamping_internal *tss) 2090 { 2091 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2092 unsigned long address = (unsigned long)zc->address; 2093 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2094 s32 copybuf_len = zc->copybuf_len; 2095 struct tcp_sock *tp = tcp_sk(sk); 2096 const skb_frag_t *frags = NULL; 2097 unsigned int pages_to_map = 0; 2098 struct vm_area_struct *vma; 2099 struct sk_buff *skb = NULL; 2100 u32 seq = tp->copied_seq; 2101 u32 total_bytes_to_map; 2102 int inq = tcp_inq(sk); 2103 bool mmap_locked; 2104 int ret; 2105 2106 zc->copybuf_len = 0; 2107 zc->msg_flags = 0; 2108 2109 if (address & (PAGE_SIZE - 1) || address != zc->address) 2110 return -EINVAL; 2111 2112 if (sk->sk_state == TCP_LISTEN) 2113 return -ENOTCONN; 2114 2115 sock_rps_record_flow(sk); 2116 2117 if (inq && inq <= copybuf_len) 2118 return receive_fallback_to_copy(sk, zc, inq, tss); 2119 2120 if (inq < PAGE_SIZE) { 2121 zc->length = 0; 2122 zc->recv_skip_hint = inq; 2123 if (!inq && sock_flag(sk, SOCK_DONE)) 2124 return -EIO; 2125 return 0; 2126 } 2127 2128 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2129 if (!vma) 2130 return -EINVAL; 2131 2132 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2133 avail_len = min_t(u32, vma_len, inq); 2134 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2135 if (total_bytes_to_map) { 2136 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2137 zap_page_range_single(vma, address, total_bytes_to_map, 2138 NULL); 2139 zc->length = total_bytes_to_map; 2140 zc->recv_skip_hint = 0; 2141 } else { 2142 zc->length = avail_len; 2143 zc->recv_skip_hint = avail_len; 2144 } 2145 ret = 0; 2146 while (length + PAGE_SIZE <= zc->length) { 2147 int mappable_offset; 2148 struct page *page; 2149 2150 if (zc->recv_skip_hint < PAGE_SIZE) { 2151 u32 offset_frag; 2152 2153 if (skb) { 2154 if (zc->recv_skip_hint > 0) 2155 break; 2156 skb = skb->next; 2157 offset = seq - TCP_SKB_CB(skb)->seq; 2158 } else { 2159 skb = tcp_recv_skb(sk, seq, &offset); 2160 } 2161 2162 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2163 tcp_update_recv_tstamps(skb, tss); 2164 zc->msg_flags |= TCP_CMSG_TS; 2165 } 2166 zc->recv_skip_hint = skb->len - offset; 2167 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2168 if (!frags || offset_frag) 2169 break; 2170 } 2171 2172 mappable_offset = find_next_mappable_frag(frags, 2173 zc->recv_skip_hint); 2174 if (mappable_offset) { 2175 zc->recv_skip_hint = mappable_offset; 2176 break; 2177 } 2178 page = skb_frag_page(frags); 2179 prefetchw(page); 2180 pages[pages_to_map++] = page; 2181 length += PAGE_SIZE; 2182 zc->recv_skip_hint -= PAGE_SIZE; 2183 frags++; 2184 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2185 zc->recv_skip_hint < PAGE_SIZE) { 2186 /* Either full batch, or we're about to go to next skb 2187 * (and we cannot unroll failed ops across skbs). 2188 */ 2189 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2190 pages_to_map, 2191 &address, &length, 2192 &seq, zc, 2193 total_bytes_to_map); 2194 if (ret) 2195 goto out; 2196 pages_to_map = 0; 2197 } 2198 } 2199 if (pages_to_map) { 2200 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2201 &address, &length, &seq, 2202 zc, total_bytes_to_map); 2203 } 2204 out: 2205 if (mmap_locked) 2206 mmap_read_unlock(current->mm); 2207 else 2208 vma_end_read(vma); 2209 /* Try to copy straggler data. */ 2210 if (!ret) 2211 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2212 2213 if (length + copylen) { 2214 WRITE_ONCE(tp->copied_seq, seq); 2215 tcp_rcv_space_adjust(sk); 2216 2217 /* Clean up data we have read: This will do ACK frames. */ 2218 tcp_recv_skb(sk, seq, &offset); 2219 tcp_cleanup_rbuf(sk, length + copylen); 2220 ret = 0; 2221 if (length == zc->length) 2222 zc->recv_skip_hint = 0; 2223 } else { 2224 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2225 ret = -EIO; 2226 } 2227 zc->length = length; 2228 return ret; 2229 } 2230 #endif 2231 2232 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2233 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2234 struct scm_timestamping_internal *tss) 2235 { 2236 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2237 bool has_timestamping = false; 2238 2239 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2240 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2241 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2242 if (new_tstamp) { 2243 struct __kernel_timespec kts = { 2244 .tv_sec = tss->ts[0].tv_sec, 2245 .tv_nsec = tss->ts[0].tv_nsec, 2246 }; 2247 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2248 sizeof(kts), &kts); 2249 } else { 2250 struct __kernel_old_timespec ts_old = { 2251 .tv_sec = tss->ts[0].tv_sec, 2252 .tv_nsec = tss->ts[0].tv_nsec, 2253 }; 2254 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2255 sizeof(ts_old), &ts_old); 2256 } 2257 } else { 2258 if (new_tstamp) { 2259 struct __kernel_sock_timeval stv = { 2260 .tv_sec = tss->ts[0].tv_sec, 2261 .tv_usec = tss->ts[0].tv_nsec / 1000, 2262 }; 2263 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2264 sizeof(stv), &stv); 2265 } else { 2266 struct __kernel_old_timeval tv = { 2267 .tv_sec = tss->ts[0].tv_sec, 2268 .tv_usec = tss->ts[0].tv_nsec / 1000, 2269 }; 2270 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2271 sizeof(tv), &tv); 2272 } 2273 } 2274 } 2275 2276 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2277 has_timestamping = true; 2278 else 2279 tss->ts[0] = (struct timespec64) {0}; 2280 } 2281 2282 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2283 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2284 has_timestamping = true; 2285 else 2286 tss->ts[2] = (struct timespec64) {0}; 2287 } 2288 2289 if (has_timestamping) { 2290 tss->ts[1] = (struct timespec64) {0}; 2291 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2292 put_cmsg_scm_timestamping64(msg, tss); 2293 else 2294 put_cmsg_scm_timestamping(msg, tss); 2295 } 2296 } 2297 2298 static int tcp_inq_hint(struct sock *sk) 2299 { 2300 const struct tcp_sock *tp = tcp_sk(sk); 2301 u32 copied_seq = READ_ONCE(tp->copied_seq); 2302 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2303 int inq; 2304 2305 inq = rcv_nxt - copied_seq; 2306 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2307 lock_sock(sk); 2308 inq = tp->rcv_nxt - tp->copied_seq; 2309 release_sock(sk); 2310 } 2311 /* After receiving a FIN, tell the user-space to continue reading 2312 * by returning a non-zero inq. 2313 */ 2314 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2315 inq = 1; 2316 return inq; 2317 } 2318 2319 /* 2320 * This routine copies from a sock struct into the user buffer. 2321 * 2322 * Technical note: in 2.3 we work on _locked_ socket, so that 2323 * tricks with *seq access order and skb->users are not required. 2324 * Probably, code can be easily improved even more. 2325 */ 2326 2327 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2328 int flags, struct scm_timestamping_internal *tss, 2329 int *cmsg_flags) 2330 { 2331 struct tcp_sock *tp = tcp_sk(sk); 2332 int copied = 0; 2333 u32 peek_seq; 2334 u32 *seq; 2335 unsigned long used; 2336 int err; 2337 int target; /* Read at least this many bytes */ 2338 long timeo; 2339 struct sk_buff *skb, *last; 2340 u32 peek_offset = 0; 2341 u32 urg_hole = 0; 2342 2343 err = -ENOTCONN; 2344 if (sk->sk_state == TCP_LISTEN) 2345 goto out; 2346 2347 if (tp->recvmsg_inq) { 2348 *cmsg_flags = TCP_CMSG_INQ; 2349 msg->msg_get_inq = 1; 2350 } 2351 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2352 2353 /* Urgent data needs to be handled specially. */ 2354 if (flags & MSG_OOB) 2355 goto recv_urg; 2356 2357 if (unlikely(tp->repair)) { 2358 err = -EPERM; 2359 if (!(flags & MSG_PEEK)) 2360 goto out; 2361 2362 if (tp->repair_queue == TCP_SEND_QUEUE) 2363 goto recv_sndq; 2364 2365 err = -EINVAL; 2366 if (tp->repair_queue == TCP_NO_QUEUE) 2367 goto out; 2368 2369 /* 'common' recv queue MSG_PEEK-ing */ 2370 } 2371 2372 seq = &tp->copied_seq; 2373 if (flags & MSG_PEEK) { 2374 peek_offset = max(sk_peek_offset(sk, flags), 0); 2375 peek_seq = tp->copied_seq + peek_offset; 2376 seq = &peek_seq; 2377 } 2378 2379 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2380 2381 do { 2382 u32 offset; 2383 2384 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2385 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2386 if (copied) 2387 break; 2388 if (signal_pending(current)) { 2389 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2390 break; 2391 } 2392 } 2393 2394 /* Next get a buffer. */ 2395 2396 last = skb_peek_tail(&sk->sk_receive_queue); 2397 skb_queue_walk(&sk->sk_receive_queue, skb) { 2398 last = skb; 2399 /* Now that we have two receive queues this 2400 * shouldn't happen. 2401 */ 2402 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2403 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2404 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2405 flags)) 2406 break; 2407 2408 offset = *seq - TCP_SKB_CB(skb)->seq; 2409 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2410 pr_err_once("%s: found a SYN, please report !\n", __func__); 2411 offset--; 2412 } 2413 if (offset < skb->len) 2414 goto found_ok_skb; 2415 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2416 goto found_fin_ok; 2417 WARN(!(flags & MSG_PEEK), 2418 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2419 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2420 } 2421 2422 /* Well, if we have backlog, try to process it now yet. */ 2423 2424 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2425 break; 2426 2427 if (copied) { 2428 if (!timeo || 2429 sk->sk_err || 2430 sk->sk_state == TCP_CLOSE || 2431 (sk->sk_shutdown & RCV_SHUTDOWN) || 2432 signal_pending(current)) 2433 break; 2434 } else { 2435 if (sock_flag(sk, SOCK_DONE)) 2436 break; 2437 2438 if (sk->sk_err) { 2439 copied = sock_error(sk); 2440 break; 2441 } 2442 2443 if (sk->sk_shutdown & RCV_SHUTDOWN) 2444 break; 2445 2446 if (sk->sk_state == TCP_CLOSE) { 2447 /* This occurs when user tries to read 2448 * from never connected socket. 2449 */ 2450 copied = -ENOTCONN; 2451 break; 2452 } 2453 2454 if (!timeo) { 2455 copied = -EAGAIN; 2456 break; 2457 } 2458 2459 if (signal_pending(current)) { 2460 copied = sock_intr_errno(timeo); 2461 break; 2462 } 2463 } 2464 2465 if (copied >= target) { 2466 /* Do not sleep, just process backlog. */ 2467 __sk_flush_backlog(sk); 2468 } else { 2469 tcp_cleanup_rbuf(sk, copied); 2470 err = sk_wait_data(sk, &timeo, last); 2471 if (err < 0) { 2472 err = copied ? : err; 2473 goto out; 2474 } 2475 } 2476 2477 if ((flags & MSG_PEEK) && 2478 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2479 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2480 current->comm, 2481 task_pid_nr(current)); 2482 peek_seq = tp->copied_seq + peek_offset; 2483 } 2484 continue; 2485 2486 found_ok_skb: 2487 /* Ok so how much can we use? */ 2488 used = skb->len - offset; 2489 if (len < used) 2490 used = len; 2491 2492 /* Do we have urgent data here? */ 2493 if (unlikely(tp->urg_data)) { 2494 u32 urg_offset = tp->urg_seq - *seq; 2495 if (urg_offset < used) { 2496 if (!urg_offset) { 2497 if (!sock_flag(sk, SOCK_URGINLINE)) { 2498 WRITE_ONCE(*seq, *seq + 1); 2499 urg_hole++; 2500 offset++; 2501 used--; 2502 if (!used) 2503 goto skip_copy; 2504 } 2505 } else 2506 used = urg_offset; 2507 } 2508 } 2509 2510 if (!(flags & MSG_TRUNC)) { 2511 err = skb_copy_datagram_msg(skb, offset, msg, used); 2512 if (err) { 2513 /* Exception. Bailout! */ 2514 if (!copied) 2515 copied = -EFAULT; 2516 break; 2517 } 2518 } 2519 2520 WRITE_ONCE(*seq, *seq + used); 2521 copied += used; 2522 len -= used; 2523 if (flags & MSG_PEEK) 2524 sk_peek_offset_fwd(sk, used); 2525 else 2526 sk_peek_offset_bwd(sk, used); 2527 tcp_rcv_space_adjust(sk); 2528 2529 skip_copy: 2530 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2531 WRITE_ONCE(tp->urg_data, 0); 2532 tcp_fast_path_check(sk); 2533 } 2534 2535 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2536 tcp_update_recv_tstamps(skb, tss); 2537 *cmsg_flags |= TCP_CMSG_TS; 2538 } 2539 2540 if (used + offset < skb->len) 2541 continue; 2542 2543 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2544 goto found_fin_ok; 2545 if (!(flags & MSG_PEEK)) 2546 tcp_eat_recv_skb(sk, skb); 2547 continue; 2548 2549 found_fin_ok: 2550 /* Process the FIN. */ 2551 WRITE_ONCE(*seq, *seq + 1); 2552 if (!(flags & MSG_PEEK)) 2553 tcp_eat_recv_skb(sk, skb); 2554 break; 2555 } while (len > 0); 2556 2557 /* According to UNIX98, msg_name/msg_namelen are ignored 2558 * on connected socket. I was just happy when found this 8) --ANK 2559 */ 2560 2561 /* Clean up data we have read: This will do ACK frames. */ 2562 tcp_cleanup_rbuf(sk, copied); 2563 return copied; 2564 2565 out: 2566 return err; 2567 2568 recv_urg: 2569 err = tcp_recv_urg(sk, msg, len, flags); 2570 goto out; 2571 2572 recv_sndq: 2573 err = tcp_peek_sndq(sk, msg, len); 2574 goto out; 2575 } 2576 2577 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2578 int *addr_len) 2579 { 2580 int cmsg_flags = 0, ret; 2581 struct scm_timestamping_internal tss; 2582 2583 if (unlikely(flags & MSG_ERRQUEUE)) 2584 return inet_recv_error(sk, msg, len, addr_len); 2585 2586 if (sk_can_busy_loop(sk) && 2587 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2588 sk->sk_state == TCP_ESTABLISHED) 2589 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2590 2591 lock_sock(sk); 2592 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2593 release_sock(sk); 2594 2595 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2596 if (cmsg_flags & TCP_CMSG_TS) 2597 tcp_recv_timestamp(msg, sk, &tss); 2598 if (msg->msg_get_inq) { 2599 msg->msg_inq = tcp_inq_hint(sk); 2600 if (cmsg_flags & TCP_CMSG_INQ) 2601 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2602 sizeof(msg->msg_inq), &msg->msg_inq); 2603 } 2604 } 2605 return ret; 2606 } 2607 EXPORT_SYMBOL(tcp_recvmsg); 2608 2609 void tcp_set_state(struct sock *sk, int state) 2610 { 2611 int oldstate = sk->sk_state; 2612 2613 /* We defined a new enum for TCP states that are exported in BPF 2614 * so as not force the internal TCP states to be frozen. The 2615 * following checks will detect if an internal state value ever 2616 * differs from the BPF value. If this ever happens, then we will 2617 * need to remap the internal value to the BPF value before calling 2618 * tcp_call_bpf_2arg. 2619 */ 2620 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2621 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2622 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2623 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2624 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2625 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2626 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2627 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2628 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2629 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2630 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2631 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2632 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2633 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2634 2635 /* bpf uapi header bpf.h defines an anonymous enum with values 2636 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2637 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2638 * But clang built vmlinux does not have this enum in DWARF 2639 * since clang removes the above code before generating IR/debuginfo. 2640 * Let us explicitly emit the type debuginfo to ensure the 2641 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2642 * regardless of which compiler is used. 2643 */ 2644 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2645 2646 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2647 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2648 2649 switch (state) { 2650 case TCP_ESTABLISHED: 2651 if (oldstate != TCP_ESTABLISHED) 2652 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2653 break; 2654 case TCP_CLOSE_WAIT: 2655 if (oldstate == TCP_SYN_RECV) 2656 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2657 break; 2658 2659 case TCP_CLOSE: 2660 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2661 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2662 2663 sk->sk_prot->unhash(sk); 2664 if (inet_csk(sk)->icsk_bind_hash && 2665 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2666 inet_put_port(sk); 2667 fallthrough; 2668 default: 2669 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2670 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2671 } 2672 2673 /* Change state AFTER socket is unhashed to avoid closed 2674 * socket sitting in hash tables. 2675 */ 2676 inet_sk_state_store(sk, state); 2677 } 2678 EXPORT_SYMBOL_GPL(tcp_set_state); 2679 2680 /* 2681 * State processing on a close. This implements the state shift for 2682 * sending our FIN frame. Note that we only send a FIN for some 2683 * states. A shutdown() may have already sent the FIN, or we may be 2684 * closed. 2685 */ 2686 2687 static const unsigned char new_state[16] = { 2688 /* current state: new state: action: */ 2689 [0 /* (Invalid) */] = TCP_CLOSE, 2690 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2691 [TCP_SYN_SENT] = TCP_CLOSE, 2692 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2693 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2694 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2695 [TCP_TIME_WAIT] = TCP_CLOSE, 2696 [TCP_CLOSE] = TCP_CLOSE, 2697 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2698 [TCP_LAST_ACK] = TCP_LAST_ACK, 2699 [TCP_LISTEN] = TCP_CLOSE, 2700 [TCP_CLOSING] = TCP_CLOSING, 2701 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2702 }; 2703 2704 static int tcp_close_state(struct sock *sk) 2705 { 2706 int next = (int)new_state[sk->sk_state]; 2707 int ns = next & TCP_STATE_MASK; 2708 2709 tcp_set_state(sk, ns); 2710 2711 return next & TCP_ACTION_FIN; 2712 } 2713 2714 /* 2715 * Shutdown the sending side of a connection. Much like close except 2716 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2717 */ 2718 2719 void tcp_shutdown(struct sock *sk, int how) 2720 { 2721 /* We need to grab some memory, and put together a FIN, 2722 * and then put it into the queue to be sent. 2723 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2724 */ 2725 if (!(how & SEND_SHUTDOWN)) 2726 return; 2727 2728 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2729 if ((1 << sk->sk_state) & 2730 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2731 TCPF_CLOSE_WAIT)) { 2732 /* Clear out any half completed packets. FIN if needed. */ 2733 if (tcp_close_state(sk)) 2734 tcp_send_fin(sk); 2735 } 2736 } 2737 EXPORT_SYMBOL(tcp_shutdown); 2738 2739 int tcp_orphan_count_sum(void) 2740 { 2741 int i, total = 0; 2742 2743 for_each_possible_cpu(i) 2744 total += per_cpu(tcp_orphan_count, i); 2745 2746 return max(total, 0); 2747 } 2748 2749 static int tcp_orphan_cache; 2750 static struct timer_list tcp_orphan_timer; 2751 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2752 2753 static void tcp_orphan_update(struct timer_list *unused) 2754 { 2755 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2756 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2757 } 2758 2759 static bool tcp_too_many_orphans(int shift) 2760 { 2761 return READ_ONCE(tcp_orphan_cache) << shift > 2762 READ_ONCE(sysctl_tcp_max_orphans); 2763 } 2764 2765 static bool tcp_out_of_memory(const struct sock *sk) 2766 { 2767 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 2768 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 2769 return true; 2770 return false; 2771 } 2772 2773 bool tcp_check_oom(const struct sock *sk, int shift) 2774 { 2775 bool too_many_orphans, out_of_socket_memory; 2776 2777 too_many_orphans = tcp_too_many_orphans(shift); 2778 out_of_socket_memory = tcp_out_of_memory(sk); 2779 2780 if (too_many_orphans) 2781 net_info_ratelimited("too many orphaned sockets\n"); 2782 if (out_of_socket_memory) 2783 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2784 return too_many_orphans || out_of_socket_memory; 2785 } 2786 2787 void __tcp_close(struct sock *sk, long timeout) 2788 { 2789 struct sk_buff *skb; 2790 int data_was_unread = 0; 2791 int state; 2792 2793 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2794 2795 if (sk->sk_state == TCP_LISTEN) { 2796 tcp_set_state(sk, TCP_CLOSE); 2797 2798 /* Special case. */ 2799 inet_csk_listen_stop(sk); 2800 2801 goto adjudge_to_death; 2802 } 2803 2804 /* We need to flush the recv. buffs. We do this only on the 2805 * descriptor close, not protocol-sourced closes, because the 2806 * reader process may not have drained the data yet! 2807 */ 2808 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2809 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2810 2811 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2812 len--; 2813 data_was_unread += len; 2814 __kfree_skb(skb); 2815 } 2816 2817 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2818 if (sk->sk_state == TCP_CLOSE) 2819 goto adjudge_to_death; 2820 2821 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2822 * data was lost. To witness the awful effects of the old behavior of 2823 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2824 * GET in an FTP client, suspend the process, wait for the client to 2825 * advertise a zero window, then kill -9 the FTP client, wheee... 2826 * Note: timeout is always zero in such a case. 2827 */ 2828 if (unlikely(tcp_sk(sk)->repair)) { 2829 sk->sk_prot->disconnect(sk, 0); 2830 } else if (data_was_unread) { 2831 /* Unread data was tossed, zap the connection. */ 2832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2833 tcp_set_state(sk, TCP_CLOSE); 2834 tcp_send_active_reset(sk, sk->sk_allocation, 2835 SK_RST_REASON_NOT_SPECIFIED); 2836 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2837 /* Check zero linger _after_ checking for unread data. */ 2838 sk->sk_prot->disconnect(sk, 0); 2839 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2840 } else if (tcp_close_state(sk)) { 2841 /* We FIN if the application ate all the data before 2842 * zapping the connection. 2843 */ 2844 2845 /* RED-PEN. Formally speaking, we have broken TCP state 2846 * machine. State transitions: 2847 * 2848 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2849 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2850 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2851 * 2852 * are legal only when FIN has been sent (i.e. in window), 2853 * rather than queued out of window. Purists blame. 2854 * 2855 * F.e. "RFC state" is ESTABLISHED, 2856 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2857 * 2858 * The visible declinations are that sometimes 2859 * we enter time-wait state, when it is not required really 2860 * (harmless), do not send active resets, when they are 2861 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2862 * they look as CLOSING or LAST_ACK for Linux) 2863 * Probably, I missed some more holelets. 2864 * --ANK 2865 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2866 * in a single packet! (May consider it later but will 2867 * probably need API support or TCP_CORK SYN-ACK until 2868 * data is written and socket is closed.) 2869 */ 2870 tcp_send_fin(sk); 2871 } 2872 2873 sk_stream_wait_close(sk, timeout); 2874 2875 adjudge_to_death: 2876 state = sk->sk_state; 2877 sock_hold(sk); 2878 sock_orphan(sk); 2879 2880 local_bh_disable(); 2881 bh_lock_sock(sk); 2882 /* remove backlog if any, without releasing ownership. */ 2883 __release_sock(sk); 2884 2885 this_cpu_inc(tcp_orphan_count); 2886 2887 /* Have we already been destroyed by a softirq or backlog? */ 2888 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2889 goto out; 2890 2891 /* This is a (useful) BSD violating of the RFC. There is a 2892 * problem with TCP as specified in that the other end could 2893 * keep a socket open forever with no application left this end. 2894 * We use a 1 minute timeout (about the same as BSD) then kill 2895 * our end. If they send after that then tough - BUT: long enough 2896 * that we won't make the old 4*rto = almost no time - whoops 2897 * reset mistake. 2898 * 2899 * Nope, it was not mistake. It is really desired behaviour 2900 * f.e. on http servers, when such sockets are useless, but 2901 * consume significant resources. Let's do it with special 2902 * linger2 option. --ANK 2903 */ 2904 2905 if (sk->sk_state == TCP_FIN_WAIT2) { 2906 struct tcp_sock *tp = tcp_sk(sk); 2907 if (READ_ONCE(tp->linger2) < 0) { 2908 tcp_set_state(sk, TCP_CLOSE); 2909 tcp_send_active_reset(sk, GFP_ATOMIC, 2910 SK_RST_REASON_NOT_SPECIFIED); 2911 __NET_INC_STATS(sock_net(sk), 2912 LINUX_MIB_TCPABORTONLINGER); 2913 } else { 2914 const int tmo = tcp_fin_time(sk); 2915 2916 if (tmo > TCP_TIMEWAIT_LEN) { 2917 inet_csk_reset_keepalive_timer(sk, 2918 tmo - TCP_TIMEWAIT_LEN); 2919 } else { 2920 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2921 goto out; 2922 } 2923 } 2924 } 2925 if (sk->sk_state != TCP_CLOSE) { 2926 if (tcp_check_oom(sk, 0)) { 2927 tcp_set_state(sk, TCP_CLOSE); 2928 tcp_send_active_reset(sk, GFP_ATOMIC, 2929 SK_RST_REASON_NOT_SPECIFIED); 2930 __NET_INC_STATS(sock_net(sk), 2931 LINUX_MIB_TCPABORTONMEMORY); 2932 } else if (!check_net(sock_net(sk))) { 2933 /* Not possible to send reset; just close */ 2934 tcp_set_state(sk, TCP_CLOSE); 2935 } 2936 } 2937 2938 if (sk->sk_state == TCP_CLOSE) { 2939 struct request_sock *req; 2940 2941 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2942 lockdep_sock_is_held(sk)); 2943 /* We could get here with a non-NULL req if the socket is 2944 * aborted (e.g., closed with unread data) before 3WHS 2945 * finishes. 2946 */ 2947 if (req) 2948 reqsk_fastopen_remove(sk, req, false); 2949 inet_csk_destroy_sock(sk); 2950 } 2951 /* Otherwise, socket is reprieved until protocol close. */ 2952 2953 out: 2954 bh_unlock_sock(sk); 2955 local_bh_enable(); 2956 } 2957 2958 void tcp_close(struct sock *sk, long timeout) 2959 { 2960 lock_sock(sk); 2961 __tcp_close(sk, timeout); 2962 release_sock(sk); 2963 if (!sk->sk_net_refcnt) 2964 inet_csk_clear_xmit_timers_sync(sk); 2965 sock_put(sk); 2966 } 2967 EXPORT_SYMBOL(tcp_close); 2968 2969 /* These states need RST on ABORT according to RFC793 */ 2970 2971 static inline bool tcp_need_reset(int state) 2972 { 2973 return (1 << state) & 2974 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2975 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2976 } 2977 2978 static void tcp_rtx_queue_purge(struct sock *sk) 2979 { 2980 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2981 2982 tcp_sk(sk)->highest_sack = NULL; 2983 while (p) { 2984 struct sk_buff *skb = rb_to_skb(p); 2985 2986 p = rb_next(p); 2987 /* Since we are deleting whole queue, no need to 2988 * list_del(&skb->tcp_tsorted_anchor) 2989 */ 2990 tcp_rtx_queue_unlink(skb, sk); 2991 tcp_wmem_free_skb(sk, skb); 2992 } 2993 } 2994 2995 void tcp_write_queue_purge(struct sock *sk) 2996 { 2997 struct sk_buff *skb; 2998 2999 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3000 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3001 tcp_skb_tsorted_anchor_cleanup(skb); 3002 tcp_wmem_free_skb(sk, skb); 3003 } 3004 tcp_rtx_queue_purge(sk); 3005 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3006 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3007 tcp_sk(sk)->packets_out = 0; 3008 inet_csk(sk)->icsk_backoff = 0; 3009 } 3010 3011 int tcp_disconnect(struct sock *sk, int flags) 3012 { 3013 struct inet_sock *inet = inet_sk(sk); 3014 struct inet_connection_sock *icsk = inet_csk(sk); 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 int old_state = sk->sk_state; 3017 u32 seq; 3018 3019 if (old_state != TCP_CLOSE) 3020 tcp_set_state(sk, TCP_CLOSE); 3021 3022 /* ABORT function of RFC793 */ 3023 if (old_state == TCP_LISTEN) { 3024 inet_csk_listen_stop(sk); 3025 } else if (unlikely(tp->repair)) { 3026 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3027 } else if (tcp_need_reset(old_state) || 3028 (tp->snd_nxt != tp->write_seq && 3029 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3030 /* The last check adjusts for discrepancy of Linux wrt. RFC 3031 * states 3032 */ 3033 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED); 3034 WRITE_ONCE(sk->sk_err, ECONNRESET); 3035 } else if (old_state == TCP_SYN_SENT) 3036 WRITE_ONCE(sk->sk_err, ECONNRESET); 3037 3038 tcp_clear_xmit_timers(sk); 3039 __skb_queue_purge(&sk->sk_receive_queue); 3040 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3041 WRITE_ONCE(tp->urg_data, 0); 3042 sk_set_peek_off(sk, -1); 3043 tcp_write_queue_purge(sk); 3044 tcp_fastopen_active_disable_ofo_check(sk); 3045 skb_rbtree_purge(&tp->out_of_order_queue); 3046 3047 inet->inet_dport = 0; 3048 3049 inet_bhash2_reset_saddr(sk); 3050 3051 WRITE_ONCE(sk->sk_shutdown, 0); 3052 sock_reset_flag(sk, SOCK_DONE); 3053 tp->srtt_us = 0; 3054 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3055 tp->rcv_rtt_last_tsecr = 0; 3056 3057 seq = tp->write_seq + tp->max_window + 2; 3058 if (!seq) 3059 seq = 1; 3060 WRITE_ONCE(tp->write_seq, seq); 3061 3062 icsk->icsk_backoff = 0; 3063 icsk->icsk_probes_out = 0; 3064 icsk->icsk_probes_tstamp = 0; 3065 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3066 icsk->icsk_rto_min = TCP_RTO_MIN; 3067 icsk->icsk_delack_max = TCP_DELACK_MAX; 3068 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3069 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3070 tp->snd_cwnd_cnt = 0; 3071 tp->is_cwnd_limited = 0; 3072 tp->max_packets_out = 0; 3073 tp->window_clamp = 0; 3074 tp->delivered = 0; 3075 tp->delivered_ce = 0; 3076 if (icsk->icsk_ca_ops->release) 3077 icsk->icsk_ca_ops->release(sk); 3078 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3079 icsk->icsk_ca_initialized = 0; 3080 tcp_set_ca_state(sk, TCP_CA_Open); 3081 tp->is_sack_reneg = 0; 3082 tcp_clear_retrans(tp); 3083 tp->total_retrans = 0; 3084 inet_csk_delack_init(sk); 3085 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3086 * issue in __tcp_select_window() 3087 */ 3088 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3089 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3090 __sk_dst_reset(sk); 3091 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3092 tcp_saved_syn_free(tp); 3093 tp->compressed_ack = 0; 3094 tp->segs_in = 0; 3095 tp->segs_out = 0; 3096 tp->bytes_sent = 0; 3097 tp->bytes_acked = 0; 3098 tp->bytes_received = 0; 3099 tp->bytes_retrans = 0; 3100 tp->data_segs_in = 0; 3101 tp->data_segs_out = 0; 3102 tp->duplicate_sack[0].start_seq = 0; 3103 tp->duplicate_sack[0].end_seq = 0; 3104 tp->dsack_dups = 0; 3105 tp->reord_seen = 0; 3106 tp->retrans_out = 0; 3107 tp->sacked_out = 0; 3108 tp->tlp_high_seq = 0; 3109 tp->last_oow_ack_time = 0; 3110 tp->plb_rehash = 0; 3111 /* There's a bubble in the pipe until at least the first ACK. */ 3112 tp->app_limited = ~0U; 3113 tp->rate_app_limited = 1; 3114 tp->rack.mstamp = 0; 3115 tp->rack.advanced = 0; 3116 tp->rack.reo_wnd_steps = 1; 3117 tp->rack.last_delivered = 0; 3118 tp->rack.reo_wnd_persist = 0; 3119 tp->rack.dsack_seen = 0; 3120 tp->syn_data_acked = 0; 3121 tp->rx_opt.saw_tstamp = 0; 3122 tp->rx_opt.dsack = 0; 3123 tp->rx_opt.num_sacks = 0; 3124 tp->rcv_ooopack = 0; 3125 3126 3127 /* Clean up fastopen related fields */ 3128 tcp_free_fastopen_req(tp); 3129 inet_clear_bit(DEFER_CONNECT, sk); 3130 tp->fastopen_client_fail = 0; 3131 3132 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3133 3134 if (sk->sk_frag.page) { 3135 put_page(sk->sk_frag.page); 3136 sk->sk_frag.page = NULL; 3137 sk->sk_frag.offset = 0; 3138 } 3139 sk_error_report(sk); 3140 return 0; 3141 } 3142 EXPORT_SYMBOL(tcp_disconnect); 3143 3144 static inline bool tcp_can_repair_sock(const struct sock *sk) 3145 { 3146 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3147 (sk->sk_state != TCP_LISTEN); 3148 } 3149 3150 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3151 { 3152 struct tcp_repair_window opt; 3153 3154 if (!tp->repair) 3155 return -EPERM; 3156 3157 if (len != sizeof(opt)) 3158 return -EINVAL; 3159 3160 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3161 return -EFAULT; 3162 3163 if (opt.max_window < opt.snd_wnd) 3164 return -EINVAL; 3165 3166 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3167 return -EINVAL; 3168 3169 if (after(opt.rcv_wup, tp->rcv_nxt)) 3170 return -EINVAL; 3171 3172 tp->snd_wl1 = opt.snd_wl1; 3173 tp->snd_wnd = opt.snd_wnd; 3174 tp->max_window = opt.max_window; 3175 3176 tp->rcv_wnd = opt.rcv_wnd; 3177 tp->rcv_wup = opt.rcv_wup; 3178 3179 return 0; 3180 } 3181 3182 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3183 unsigned int len) 3184 { 3185 struct tcp_sock *tp = tcp_sk(sk); 3186 struct tcp_repair_opt opt; 3187 size_t offset = 0; 3188 3189 while (len >= sizeof(opt)) { 3190 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3191 return -EFAULT; 3192 3193 offset += sizeof(opt); 3194 len -= sizeof(opt); 3195 3196 switch (opt.opt_code) { 3197 case TCPOPT_MSS: 3198 tp->rx_opt.mss_clamp = opt.opt_val; 3199 tcp_mtup_init(sk); 3200 break; 3201 case TCPOPT_WINDOW: 3202 { 3203 u16 snd_wscale = opt.opt_val & 0xFFFF; 3204 u16 rcv_wscale = opt.opt_val >> 16; 3205 3206 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3207 return -EFBIG; 3208 3209 tp->rx_opt.snd_wscale = snd_wscale; 3210 tp->rx_opt.rcv_wscale = rcv_wscale; 3211 tp->rx_opt.wscale_ok = 1; 3212 } 3213 break; 3214 case TCPOPT_SACK_PERM: 3215 if (opt.opt_val != 0) 3216 return -EINVAL; 3217 3218 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3219 break; 3220 case TCPOPT_TIMESTAMP: 3221 if (opt.opt_val != 0) 3222 return -EINVAL; 3223 3224 tp->rx_opt.tstamp_ok = 1; 3225 break; 3226 } 3227 } 3228 3229 return 0; 3230 } 3231 3232 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3233 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3234 3235 static void tcp_enable_tx_delay(void) 3236 { 3237 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3238 static int __tcp_tx_delay_enabled = 0; 3239 3240 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3241 static_branch_enable(&tcp_tx_delay_enabled); 3242 pr_info("TCP_TX_DELAY enabled\n"); 3243 } 3244 } 3245 } 3246 3247 /* When set indicates to always queue non-full frames. Later the user clears 3248 * this option and we transmit any pending partial frames in the queue. This is 3249 * meant to be used alongside sendfile() to get properly filled frames when the 3250 * user (for example) must write out headers with a write() call first and then 3251 * use sendfile to send out the data parts. 3252 * 3253 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3254 * TCP_NODELAY. 3255 */ 3256 void __tcp_sock_set_cork(struct sock *sk, bool on) 3257 { 3258 struct tcp_sock *tp = tcp_sk(sk); 3259 3260 if (on) { 3261 tp->nonagle |= TCP_NAGLE_CORK; 3262 } else { 3263 tp->nonagle &= ~TCP_NAGLE_CORK; 3264 if (tp->nonagle & TCP_NAGLE_OFF) 3265 tp->nonagle |= TCP_NAGLE_PUSH; 3266 tcp_push_pending_frames(sk); 3267 } 3268 } 3269 3270 void tcp_sock_set_cork(struct sock *sk, bool on) 3271 { 3272 lock_sock(sk); 3273 __tcp_sock_set_cork(sk, on); 3274 release_sock(sk); 3275 } 3276 EXPORT_SYMBOL(tcp_sock_set_cork); 3277 3278 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3279 * remembered, but it is not activated until cork is cleared. 3280 * 3281 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3282 * even TCP_CORK for currently queued segments. 3283 */ 3284 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3285 { 3286 if (on) { 3287 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3288 tcp_push_pending_frames(sk); 3289 } else { 3290 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3291 } 3292 } 3293 3294 void tcp_sock_set_nodelay(struct sock *sk) 3295 { 3296 lock_sock(sk); 3297 __tcp_sock_set_nodelay(sk, true); 3298 release_sock(sk); 3299 } 3300 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3301 3302 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3303 { 3304 if (!val) { 3305 inet_csk_enter_pingpong_mode(sk); 3306 return; 3307 } 3308 3309 inet_csk_exit_pingpong_mode(sk); 3310 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3311 inet_csk_ack_scheduled(sk)) { 3312 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3313 tcp_cleanup_rbuf(sk, 1); 3314 if (!(val & 1)) 3315 inet_csk_enter_pingpong_mode(sk); 3316 } 3317 } 3318 3319 void tcp_sock_set_quickack(struct sock *sk, int val) 3320 { 3321 lock_sock(sk); 3322 __tcp_sock_set_quickack(sk, val); 3323 release_sock(sk); 3324 } 3325 EXPORT_SYMBOL(tcp_sock_set_quickack); 3326 3327 int tcp_sock_set_syncnt(struct sock *sk, int val) 3328 { 3329 if (val < 1 || val > MAX_TCP_SYNCNT) 3330 return -EINVAL; 3331 3332 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3333 return 0; 3334 } 3335 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3336 3337 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3338 { 3339 /* Cap the max time in ms TCP will retry or probe the window 3340 * before giving up and aborting (ETIMEDOUT) a connection. 3341 */ 3342 if (val < 0) 3343 return -EINVAL; 3344 3345 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3346 return 0; 3347 } 3348 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3349 3350 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3351 { 3352 struct tcp_sock *tp = tcp_sk(sk); 3353 3354 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3355 return -EINVAL; 3356 3357 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3358 WRITE_ONCE(tp->keepalive_time, val * HZ); 3359 if (sock_flag(sk, SOCK_KEEPOPEN) && 3360 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3361 u32 elapsed = keepalive_time_elapsed(tp); 3362 3363 if (tp->keepalive_time > elapsed) 3364 elapsed = tp->keepalive_time - elapsed; 3365 else 3366 elapsed = 0; 3367 inet_csk_reset_keepalive_timer(sk, elapsed); 3368 } 3369 3370 return 0; 3371 } 3372 3373 int tcp_sock_set_keepidle(struct sock *sk, int val) 3374 { 3375 int err; 3376 3377 lock_sock(sk); 3378 err = tcp_sock_set_keepidle_locked(sk, val); 3379 release_sock(sk); 3380 return err; 3381 } 3382 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3383 3384 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3385 { 3386 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3387 return -EINVAL; 3388 3389 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3390 return 0; 3391 } 3392 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3393 3394 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3395 { 3396 if (val < 1 || val > MAX_TCP_KEEPCNT) 3397 return -EINVAL; 3398 3399 /* Paired with READ_ONCE() in keepalive_probes() */ 3400 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3401 return 0; 3402 } 3403 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3404 3405 int tcp_set_window_clamp(struct sock *sk, int val) 3406 { 3407 struct tcp_sock *tp = tcp_sk(sk); 3408 3409 if (!val) { 3410 if (sk->sk_state != TCP_CLOSE) 3411 return -EINVAL; 3412 WRITE_ONCE(tp->window_clamp, 0); 3413 } else { 3414 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3415 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3416 SOCK_MIN_RCVBUF / 2 : val; 3417 3418 if (new_window_clamp == old_window_clamp) 3419 return 0; 3420 3421 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3422 if (new_window_clamp < old_window_clamp) { 3423 /* need to apply the reserved mem provisioning only 3424 * when shrinking the window clamp 3425 */ 3426 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3427 3428 } else { 3429 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3430 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3431 tp->rcv_ssthresh); 3432 } 3433 } 3434 return 0; 3435 } 3436 3437 /* 3438 * Socket option code for TCP. 3439 */ 3440 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3441 sockptr_t optval, unsigned int optlen) 3442 { 3443 struct tcp_sock *tp = tcp_sk(sk); 3444 struct inet_connection_sock *icsk = inet_csk(sk); 3445 struct net *net = sock_net(sk); 3446 int val; 3447 int err = 0; 3448 3449 /* These are data/string values, all the others are ints */ 3450 switch (optname) { 3451 case TCP_CONGESTION: { 3452 char name[TCP_CA_NAME_MAX]; 3453 3454 if (optlen < 1) 3455 return -EINVAL; 3456 3457 val = strncpy_from_sockptr(name, optval, 3458 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3459 if (val < 0) 3460 return -EFAULT; 3461 name[val] = 0; 3462 3463 sockopt_lock_sock(sk); 3464 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3465 sockopt_ns_capable(sock_net(sk)->user_ns, 3466 CAP_NET_ADMIN)); 3467 sockopt_release_sock(sk); 3468 return err; 3469 } 3470 case TCP_ULP: { 3471 char name[TCP_ULP_NAME_MAX]; 3472 3473 if (optlen < 1) 3474 return -EINVAL; 3475 3476 val = strncpy_from_sockptr(name, optval, 3477 min_t(long, TCP_ULP_NAME_MAX - 1, 3478 optlen)); 3479 if (val < 0) 3480 return -EFAULT; 3481 name[val] = 0; 3482 3483 sockopt_lock_sock(sk); 3484 err = tcp_set_ulp(sk, name); 3485 sockopt_release_sock(sk); 3486 return err; 3487 } 3488 case TCP_FASTOPEN_KEY: { 3489 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3490 __u8 *backup_key = NULL; 3491 3492 /* Allow a backup key as well to facilitate key rotation 3493 * First key is the active one. 3494 */ 3495 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3496 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3497 return -EINVAL; 3498 3499 if (copy_from_sockptr(key, optval, optlen)) 3500 return -EFAULT; 3501 3502 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3503 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3504 3505 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3506 } 3507 default: 3508 /* fallthru */ 3509 break; 3510 } 3511 3512 if (optlen < sizeof(int)) 3513 return -EINVAL; 3514 3515 if (copy_from_sockptr(&val, optval, sizeof(val))) 3516 return -EFAULT; 3517 3518 /* Handle options that can be set without locking the socket. */ 3519 switch (optname) { 3520 case TCP_SYNCNT: 3521 return tcp_sock_set_syncnt(sk, val); 3522 case TCP_USER_TIMEOUT: 3523 return tcp_sock_set_user_timeout(sk, val); 3524 case TCP_KEEPINTVL: 3525 return tcp_sock_set_keepintvl(sk, val); 3526 case TCP_KEEPCNT: 3527 return tcp_sock_set_keepcnt(sk, val); 3528 case TCP_LINGER2: 3529 if (val < 0) 3530 WRITE_ONCE(tp->linger2, -1); 3531 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3532 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3533 else 3534 WRITE_ONCE(tp->linger2, val * HZ); 3535 return 0; 3536 case TCP_DEFER_ACCEPT: 3537 /* Translate value in seconds to number of retransmits */ 3538 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3539 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3540 TCP_RTO_MAX / HZ)); 3541 return 0; 3542 } 3543 3544 sockopt_lock_sock(sk); 3545 3546 switch (optname) { 3547 case TCP_MAXSEG: 3548 /* Values greater than interface MTU won't take effect. However 3549 * at the point when this call is done we typically don't yet 3550 * know which interface is going to be used 3551 */ 3552 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3553 err = -EINVAL; 3554 break; 3555 } 3556 tp->rx_opt.user_mss = val; 3557 break; 3558 3559 case TCP_NODELAY: 3560 __tcp_sock_set_nodelay(sk, val); 3561 break; 3562 3563 case TCP_THIN_LINEAR_TIMEOUTS: 3564 if (val < 0 || val > 1) 3565 err = -EINVAL; 3566 else 3567 tp->thin_lto = val; 3568 break; 3569 3570 case TCP_THIN_DUPACK: 3571 if (val < 0 || val > 1) 3572 err = -EINVAL; 3573 break; 3574 3575 case TCP_REPAIR: 3576 if (!tcp_can_repair_sock(sk)) 3577 err = -EPERM; 3578 else if (val == TCP_REPAIR_ON) { 3579 tp->repair = 1; 3580 sk->sk_reuse = SK_FORCE_REUSE; 3581 tp->repair_queue = TCP_NO_QUEUE; 3582 } else if (val == TCP_REPAIR_OFF) { 3583 tp->repair = 0; 3584 sk->sk_reuse = SK_NO_REUSE; 3585 tcp_send_window_probe(sk); 3586 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3587 tp->repair = 0; 3588 sk->sk_reuse = SK_NO_REUSE; 3589 } else 3590 err = -EINVAL; 3591 3592 break; 3593 3594 case TCP_REPAIR_QUEUE: 3595 if (!tp->repair) 3596 err = -EPERM; 3597 else if ((unsigned int)val < TCP_QUEUES_NR) 3598 tp->repair_queue = val; 3599 else 3600 err = -EINVAL; 3601 break; 3602 3603 case TCP_QUEUE_SEQ: 3604 if (sk->sk_state != TCP_CLOSE) { 3605 err = -EPERM; 3606 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3607 if (!tcp_rtx_queue_empty(sk)) 3608 err = -EPERM; 3609 else 3610 WRITE_ONCE(tp->write_seq, val); 3611 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3612 if (tp->rcv_nxt != tp->copied_seq) { 3613 err = -EPERM; 3614 } else { 3615 WRITE_ONCE(tp->rcv_nxt, val); 3616 WRITE_ONCE(tp->copied_seq, val); 3617 } 3618 } else { 3619 err = -EINVAL; 3620 } 3621 break; 3622 3623 case TCP_REPAIR_OPTIONS: 3624 if (!tp->repair) 3625 err = -EINVAL; 3626 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3627 err = tcp_repair_options_est(sk, optval, optlen); 3628 else 3629 err = -EPERM; 3630 break; 3631 3632 case TCP_CORK: 3633 __tcp_sock_set_cork(sk, val); 3634 break; 3635 3636 case TCP_KEEPIDLE: 3637 err = tcp_sock_set_keepidle_locked(sk, val); 3638 break; 3639 case TCP_SAVE_SYN: 3640 /* 0: disable, 1: enable, 2: start from ether_header */ 3641 if (val < 0 || val > 2) 3642 err = -EINVAL; 3643 else 3644 tp->save_syn = val; 3645 break; 3646 3647 case TCP_WINDOW_CLAMP: 3648 err = tcp_set_window_clamp(sk, val); 3649 break; 3650 3651 case TCP_QUICKACK: 3652 __tcp_sock_set_quickack(sk, val); 3653 break; 3654 3655 case TCP_AO_REPAIR: 3656 if (!tcp_can_repair_sock(sk)) { 3657 err = -EPERM; 3658 break; 3659 } 3660 err = tcp_ao_set_repair(sk, optval, optlen); 3661 break; 3662 #ifdef CONFIG_TCP_AO 3663 case TCP_AO_ADD_KEY: 3664 case TCP_AO_DEL_KEY: 3665 case TCP_AO_INFO: { 3666 /* If this is the first TCP-AO setsockopt() on the socket, 3667 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3668 * in any state. 3669 */ 3670 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3671 goto ao_parse; 3672 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3673 lockdep_sock_is_held(sk))) 3674 goto ao_parse; 3675 if (tp->repair) 3676 goto ao_parse; 3677 err = -EISCONN; 3678 break; 3679 ao_parse: 3680 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3681 break; 3682 } 3683 #endif 3684 #ifdef CONFIG_TCP_MD5SIG 3685 case TCP_MD5SIG: 3686 case TCP_MD5SIG_EXT: 3687 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3688 break; 3689 #endif 3690 case TCP_FASTOPEN: 3691 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3692 TCPF_LISTEN))) { 3693 tcp_fastopen_init_key_once(net); 3694 3695 fastopen_queue_tune(sk, val); 3696 } else { 3697 err = -EINVAL; 3698 } 3699 break; 3700 case TCP_FASTOPEN_CONNECT: 3701 if (val > 1 || val < 0) { 3702 err = -EINVAL; 3703 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3704 TFO_CLIENT_ENABLE) { 3705 if (sk->sk_state == TCP_CLOSE) 3706 tp->fastopen_connect = val; 3707 else 3708 err = -EINVAL; 3709 } else { 3710 err = -EOPNOTSUPP; 3711 } 3712 break; 3713 case TCP_FASTOPEN_NO_COOKIE: 3714 if (val > 1 || val < 0) 3715 err = -EINVAL; 3716 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3717 err = -EINVAL; 3718 else 3719 tp->fastopen_no_cookie = val; 3720 break; 3721 case TCP_TIMESTAMP: 3722 if (!tp->repair) { 3723 err = -EPERM; 3724 break; 3725 } 3726 /* val is an opaque field, 3727 * and low order bit contains usec_ts enable bit. 3728 * Its a best effort, and we do not care if user makes an error. 3729 */ 3730 tp->tcp_usec_ts = val & 1; 3731 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3732 break; 3733 case TCP_REPAIR_WINDOW: 3734 err = tcp_repair_set_window(tp, optval, optlen); 3735 break; 3736 case TCP_NOTSENT_LOWAT: 3737 WRITE_ONCE(tp->notsent_lowat, val); 3738 sk->sk_write_space(sk); 3739 break; 3740 case TCP_INQ: 3741 if (val > 1 || val < 0) 3742 err = -EINVAL; 3743 else 3744 tp->recvmsg_inq = val; 3745 break; 3746 case TCP_TX_DELAY: 3747 if (val) 3748 tcp_enable_tx_delay(); 3749 WRITE_ONCE(tp->tcp_tx_delay, val); 3750 break; 3751 default: 3752 err = -ENOPROTOOPT; 3753 break; 3754 } 3755 3756 sockopt_release_sock(sk); 3757 return err; 3758 } 3759 3760 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3761 unsigned int optlen) 3762 { 3763 const struct inet_connection_sock *icsk = inet_csk(sk); 3764 3765 if (level != SOL_TCP) 3766 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3767 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3768 optval, optlen); 3769 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3770 } 3771 EXPORT_SYMBOL(tcp_setsockopt); 3772 3773 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3774 struct tcp_info *info) 3775 { 3776 u64 stats[__TCP_CHRONO_MAX], total = 0; 3777 enum tcp_chrono i; 3778 3779 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3780 stats[i] = tp->chrono_stat[i - 1]; 3781 if (i == tp->chrono_type) 3782 stats[i] += tcp_jiffies32 - tp->chrono_start; 3783 stats[i] *= USEC_PER_SEC / HZ; 3784 total += stats[i]; 3785 } 3786 3787 info->tcpi_busy_time = total; 3788 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3789 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3790 } 3791 3792 /* Return information about state of tcp endpoint in API format. */ 3793 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3794 { 3795 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3796 const struct inet_connection_sock *icsk = inet_csk(sk); 3797 unsigned long rate; 3798 u32 now; 3799 u64 rate64; 3800 bool slow; 3801 3802 memset(info, 0, sizeof(*info)); 3803 if (sk->sk_type != SOCK_STREAM) 3804 return; 3805 3806 info->tcpi_state = inet_sk_state_load(sk); 3807 3808 /* Report meaningful fields for all TCP states, including listeners */ 3809 rate = READ_ONCE(sk->sk_pacing_rate); 3810 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3811 info->tcpi_pacing_rate = rate64; 3812 3813 rate = READ_ONCE(sk->sk_max_pacing_rate); 3814 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3815 info->tcpi_max_pacing_rate = rate64; 3816 3817 info->tcpi_reordering = tp->reordering; 3818 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3819 3820 if (info->tcpi_state == TCP_LISTEN) { 3821 /* listeners aliased fields : 3822 * tcpi_unacked -> Number of children ready for accept() 3823 * tcpi_sacked -> max backlog 3824 */ 3825 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3826 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3827 return; 3828 } 3829 3830 slow = lock_sock_fast(sk); 3831 3832 info->tcpi_ca_state = icsk->icsk_ca_state; 3833 info->tcpi_retransmits = icsk->icsk_retransmits; 3834 info->tcpi_probes = icsk->icsk_probes_out; 3835 info->tcpi_backoff = icsk->icsk_backoff; 3836 3837 if (tp->rx_opt.tstamp_ok) 3838 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3839 if (tcp_is_sack(tp)) 3840 info->tcpi_options |= TCPI_OPT_SACK; 3841 if (tp->rx_opt.wscale_ok) { 3842 info->tcpi_options |= TCPI_OPT_WSCALE; 3843 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3844 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3845 } 3846 3847 if (tp->ecn_flags & TCP_ECN_OK) 3848 info->tcpi_options |= TCPI_OPT_ECN; 3849 if (tp->ecn_flags & TCP_ECN_SEEN) 3850 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3851 if (tp->syn_data_acked) 3852 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3853 if (tp->tcp_usec_ts) 3854 info->tcpi_options |= TCPI_OPT_USEC_TS; 3855 3856 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3857 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3858 tcp_delack_max(sk))); 3859 info->tcpi_snd_mss = tp->mss_cache; 3860 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3861 3862 info->tcpi_unacked = tp->packets_out; 3863 info->tcpi_sacked = tp->sacked_out; 3864 3865 info->tcpi_lost = tp->lost_out; 3866 info->tcpi_retrans = tp->retrans_out; 3867 3868 now = tcp_jiffies32; 3869 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3870 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3871 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3872 3873 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3874 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3875 info->tcpi_rtt = tp->srtt_us >> 3; 3876 info->tcpi_rttvar = tp->mdev_us >> 2; 3877 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3878 info->tcpi_advmss = tp->advmss; 3879 3880 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3881 info->tcpi_rcv_space = tp->rcvq_space.space; 3882 3883 info->tcpi_total_retrans = tp->total_retrans; 3884 3885 info->tcpi_bytes_acked = tp->bytes_acked; 3886 info->tcpi_bytes_received = tp->bytes_received; 3887 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3888 tcp_get_info_chrono_stats(tp, info); 3889 3890 info->tcpi_segs_out = tp->segs_out; 3891 3892 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3893 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3894 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3895 3896 info->tcpi_min_rtt = tcp_min_rtt(tp); 3897 info->tcpi_data_segs_out = tp->data_segs_out; 3898 3899 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3900 rate64 = tcp_compute_delivery_rate(tp); 3901 if (rate64) 3902 info->tcpi_delivery_rate = rate64; 3903 info->tcpi_delivered = tp->delivered; 3904 info->tcpi_delivered_ce = tp->delivered_ce; 3905 info->tcpi_bytes_sent = tp->bytes_sent; 3906 info->tcpi_bytes_retrans = tp->bytes_retrans; 3907 info->tcpi_dsack_dups = tp->dsack_dups; 3908 info->tcpi_reord_seen = tp->reord_seen; 3909 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3910 info->tcpi_snd_wnd = tp->snd_wnd; 3911 info->tcpi_rcv_wnd = tp->rcv_wnd; 3912 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3913 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3914 3915 info->tcpi_total_rto = tp->total_rto; 3916 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3917 info->tcpi_total_rto_time = tp->total_rto_time; 3918 if (tp->rto_stamp) 3919 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3920 3921 unlock_sock_fast(sk, slow); 3922 } 3923 EXPORT_SYMBOL_GPL(tcp_get_info); 3924 3925 static size_t tcp_opt_stats_get_size(void) 3926 { 3927 return 3928 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3929 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3930 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3931 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3932 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3933 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3934 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3935 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3936 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3937 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3938 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3939 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3940 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3941 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3942 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3943 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3944 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3945 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3946 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3947 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3948 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3949 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3950 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3951 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3952 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3953 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3954 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3955 0; 3956 } 3957 3958 /* Returns TTL or hop limit of an incoming packet from skb. */ 3959 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3960 { 3961 if (skb->protocol == htons(ETH_P_IP)) 3962 return ip_hdr(skb)->ttl; 3963 else if (skb->protocol == htons(ETH_P_IPV6)) 3964 return ipv6_hdr(skb)->hop_limit; 3965 else 3966 return 0; 3967 } 3968 3969 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3970 const struct sk_buff *orig_skb, 3971 const struct sk_buff *ack_skb) 3972 { 3973 const struct tcp_sock *tp = tcp_sk(sk); 3974 struct sk_buff *stats; 3975 struct tcp_info info; 3976 unsigned long rate; 3977 u64 rate64; 3978 3979 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3980 if (!stats) 3981 return NULL; 3982 3983 tcp_get_info_chrono_stats(tp, &info); 3984 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3985 info.tcpi_busy_time, TCP_NLA_PAD); 3986 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3987 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3988 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3989 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3990 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3991 tp->data_segs_out, TCP_NLA_PAD); 3992 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3993 tp->total_retrans, TCP_NLA_PAD); 3994 3995 rate = READ_ONCE(sk->sk_pacing_rate); 3996 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3997 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3998 3999 rate64 = tcp_compute_delivery_rate(tp); 4000 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4001 4002 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4003 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4004 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4005 4006 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4007 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4008 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4009 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4010 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4011 4012 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4013 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4014 4015 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4016 TCP_NLA_PAD); 4017 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4018 TCP_NLA_PAD); 4019 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4020 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4021 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4022 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4023 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4024 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4025 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4026 TCP_NLA_PAD); 4027 if (ack_skb) 4028 nla_put_u8(stats, TCP_NLA_TTL, 4029 tcp_skb_ttl_or_hop_limit(ack_skb)); 4030 4031 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4032 return stats; 4033 } 4034 4035 int do_tcp_getsockopt(struct sock *sk, int level, 4036 int optname, sockptr_t optval, sockptr_t optlen) 4037 { 4038 struct inet_connection_sock *icsk = inet_csk(sk); 4039 struct tcp_sock *tp = tcp_sk(sk); 4040 struct net *net = sock_net(sk); 4041 int val, len; 4042 4043 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4044 return -EFAULT; 4045 4046 if (len < 0) 4047 return -EINVAL; 4048 4049 len = min_t(unsigned int, len, sizeof(int)); 4050 4051 switch (optname) { 4052 case TCP_MAXSEG: 4053 val = tp->mss_cache; 4054 if (tp->rx_opt.user_mss && 4055 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4056 val = tp->rx_opt.user_mss; 4057 if (tp->repair) 4058 val = tp->rx_opt.mss_clamp; 4059 break; 4060 case TCP_NODELAY: 4061 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4062 break; 4063 case TCP_CORK: 4064 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4065 break; 4066 case TCP_KEEPIDLE: 4067 val = keepalive_time_when(tp) / HZ; 4068 break; 4069 case TCP_KEEPINTVL: 4070 val = keepalive_intvl_when(tp) / HZ; 4071 break; 4072 case TCP_KEEPCNT: 4073 val = keepalive_probes(tp); 4074 break; 4075 case TCP_SYNCNT: 4076 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4077 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4078 break; 4079 case TCP_LINGER2: 4080 val = READ_ONCE(tp->linger2); 4081 if (val >= 0) 4082 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4083 break; 4084 case TCP_DEFER_ACCEPT: 4085 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4086 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4087 TCP_RTO_MAX / HZ); 4088 break; 4089 case TCP_WINDOW_CLAMP: 4090 val = READ_ONCE(tp->window_clamp); 4091 break; 4092 case TCP_INFO: { 4093 struct tcp_info info; 4094 4095 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4096 return -EFAULT; 4097 4098 tcp_get_info(sk, &info); 4099 4100 len = min_t(unsigned int, len, sizeof(info)); 4101 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4102 return -EFAULT; 4103 if (copy_to_sockptr(optval, &info, len)) 4104 return -EFAULT; 4105 return 0; 4106 } 4107 case TCP_CC_INFO: { 4108 const struct tcp_congestion_ops *ca_ops; 4109 union tcp_cc_info info; 4110 size_t sz = 0; 4111 int attr; 4112 4113 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4114 return -EFAULT; 4115 4116 ca_ops = icsk->icsk_ca_ops; 4117 if (ca_ops && ca_ops->get_info) 4118 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4119 4120 len = min_t(unsigned int, len, sz); 4121 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4122 return -EFAULT; 4123 if (copy_to_sockptr(optval, &info, len)) 4124 return -EFAULT; 4125 return 0; 4126 } 4127 case TCP_QUICKACK: 4128 val = !inet_csk_in_pingpong_mode(sk); 4129 break; 4130 4131 case TCP_CONGESTION: 4132 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4133 return -EFAULT; 4134 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4135 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4136 return -EFAULT; 4137 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4138 return -EFAULT; 4139 return 0; 4140 4141 case TCP_ULP: 4142 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4143 return -EFAULT; 4144 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4145 if (!icsk->icsk_ulp_ops) { 4146 len = 0; 4147 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4148 return -EFAULT; 4149 return 0; 4150 } 4151 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4152 return -EFAULT; 4153 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4154 return -EFAULT; 4155 return 0; 4156 4157 case TCP_FASTOPEN_KEY: { 4158 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4159 unsigned int key_len; 4160 4161 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4162 return -EFAULT; 4163 4164 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4165 TCP_FASTOPEN_KEY_LENGTH; 4166 len = min_t(unsigned int, len, key_len); 4167 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4168 return -EFAULT; 4169 if (copy_to_sockptr(optval, key, len)) 4170 return -EFAULT; 4171 return 0; 4172 } 4173 case TCP_THIN_LINEAR_TIMEOUTS: 4174 val = tp->thin_lto; 4175 break; 4176 4177 case TCP_THIN_DUPACK: 4178 val = 0; 4179 break; 4180 4181 case TCP_REPAIR: 4182 val = tp->repair; 4183 break; 4184 4185 case TCP_REPAIR_QUEUE: 4186 if (tp->repair) 4187 val = tp->repair_queue; 4188 else 4189 return -EINVAL; 4190 break; 4191 4192 case TCP_REPAIR_WINDOW: { 4193 struct tcp_repair_window opt; 4194 4195 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4196 return -EFAULT; 4197 4198 if (len != sizeof(opt)) 4199 return -EINVAL; 4200 4201 if (!tp->repair) 4202 return -EPERM; 4203 4204 opt.snd_wl1 = tp->snd_wl1; 4205 opt.snd_wnd = tp->snd_wnd; 4206 opt.max_window = tp->max_window; 4207 opt.rcv_wnd = tp->rcv_wnd; 4208 opt.rcv_wup = tp->rcv_wup; 4209 4210 if (copy_to_sockptr(optval, &opt, len)) 4211 return -EFAULT; 4212 return 0; 4213 } 4214 case TCP_QUEUE_SEQ: 4215 if (tp->repair_queue == TCP_SEND_QUEUE) 4216 val = tp->write_seq; 4217 else if (tp->repair_queue == TCP_RECV_QUEUE) 4218 val = tp->rcv_nxt; 4219 else 4220 return -EINVAL; 4221 break; 4222 4223 case TCP_USER_TIMEOUT: 4224 val = READ_ONCE(icsk->icsk_user_timeout); 4225 break; 4226 4227 case TCP_FASTOPEN: 4228 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4229 break; 4230 4231 case TCP_FASTOPEN_CONNECT: 4232 val = tp->fastopen_connect; 4233 break; 4234 4235 case TCP_FASTOPEN_NO_COOKIE: 4236 val = tp->fastopen_no_cookie; 4237 break; 4238 4239 case TCP_TX_DELAY: 4240 val = READ_ONCE(tp->tcp_tx_delay); 4241 break; 4242 4243 case TCP_TIMESTAMP: 4244 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4245 if (tp->tcp_usec_ts) 4246 val |= 1; 4247 else 4248 val &= ~1; 4249 break; 4250 case TCP_NOTSENT_LOWAT: 4251 val = READ_ONCE(tp->notsent_lowat); 4252 break; 4253 case TCP_INQ: 4254 val = tp->recvmsg_inq; 4255 break; 4256 case TCP_SAVE_SYN: 4257 val = tp->save_syn; 4258 break; 4259 case TCP_SAVED_SYN: { 4260 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4261 return -EFAULT; 4262 4263 sockopt_lock_sock(sk); 4264 if (tp->saved_syn) { 4265 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4266 len = tcp_saved_syn_len(tp->saved_syn); 4267 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4268 sockopt_release_sock(sk); 4269 return -EFAULT; 4270 } 4271 sockopt_release_sock(sk); 4272 return -EINVAL; 4273 } 4274 len = tcp_saved_syn_len(tp->saved_syn); 4275 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4276 sockopt_release_sock(sk); 4277 return -EFAULT; 4278 } 4279 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4280 sockopt_release_sock(sk); 4281 return -EFAULT; 4282 } 4283 tcp_saved_syn_free(tp); 4284 sockopt_release_sock(sk); 4285 } else { 4286 sockopt_release_sock(sk); 4287 len = 0; 4288 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4289 return -EFAULT; 4290 } 4291 return 0; 4292 } 4293 #ifdef CONFIG_MMU 4294 case TCP_ZEROCOPY_RECEIVE: { 4295 struct scm_timestamping_internal tss; 4296 struct tcp_zerocopy_receive zc = {}; 4297 int err; 4298 4299 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4300 return -EFAULT; 4301 if (len < 0 || 4302 len < offsetofend(struct tcp_zerocopy_receive, length)) 4303 return -EINVAL; 4304 if (unlikely(len > sizeof(zc))) { 4305 err = check_zeroed_sockptr(optval, sizeof(zc), 4306 len - sizeof(zc)); 4307 if (err < 1) 4308 return err == 0 ? -EINVAL : err; 4309 len = sizeof(zc); 4310 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4311 return -EFAULT; 4312 } 4313 if (copy_from_sockptr(&zc, optval, len)) 4314 return -EFAULT; 4315 if (zc.reserved) 4316 return -EINVAL; 4317 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4318 return -EINVAL; 4319 sockopt_lock_sock(sk); 4320 err = tcp_zerocopy_receive(sk, &zc, &tss); 4321 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4322 &zc, &len, err); 4323 sockopt_release_sock(sk); 4324 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4325 goto zerocopy_rcv_cmsg; 4326 switch (len) { 4327 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4328 goto zerocopy_rcv_cmsg; 4329 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4330 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4331 case offsetofend(struct tcp_zerocopy_receive, flags): 4332 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4333 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4334 case offsetofend(struct tcp_zerocopy_receive, err): 4335 goto zerocopy_rcv_sk_err; 4336 case offsetofend(struct tcp_zerocopy_receive, inq): 4337 goto zerocopy_rcv_inq; 4338 case offsetofend(struct tcp_zerocopy_receive, length): 4339 default: 4340 goto zerocopy_rcv_out; 4341 } 4342 zerocopy_rcv_cmsg: 4343 if (zc.msg_flags & TCP_CMSG_TS) 4344 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4345 else 4346 zc.msg_flags = 0; 4347 zerocopy_rcv_sk_err: 4348 if (!err) 4349 zc.err = sock_error(sk); 4350 zerocopy_rcv_inq: 4351 zc.inq = tcp_inq_hint(sk); 4352 zerocopy_rcv_out: 4353 if (!err && copy_to_sockptr(optval, &zc, len)) 4354 err = -EFAULT; 4355 return err; 4356 } 4357 #endif 4358 case TCP_AO_REPAIR: 4359 if (!tcp_can_repair_sock(sk)) 4360 return -EPERM; 4361 return tcp_ao_get_repair(sk, optval, optlen); 4362 case TCP_AO_GET_KEYS: 4363 case TCP_AO_INFO: { 4364 int err; 4365 4366 sockopt_lock_sock(sk); 4367 if (optname == TCP_AO_GET_KEYS) 4368 err = tcp_ao_get_mkts(sk, optval, optlen); 4369 else 4370 err = tcp_ao_get_sock_info(sk, optval, optlen); 4371 sockopt_release_sock(sk); 4372 4373 return err; 4374 } 4375 case TCP_IS_MPTCP: 4376 val = 0; 4377 break; 4378 default: 4379 return -ENOPROTOOPT; 4380 } 4381 4382 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4383 return -EFAULT; 4384 if (copy_to_sockptr(optval, &val, len)) 4385 return -EFAULT; 4386 return 0; 4387 } 4388 4389 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4390 { 4391 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4392 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4393 */ 4394 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4395 return true; 4396 4397 return false; 4398 } 4399 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4400 4401 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4402 int __user *optlen) 4403 { 4404 struct inet_connection_sock *icsk = inet_csk(sk); 4405 4406 if (level != SOL_TCP) 4407 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4408 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4409 optval, optlen); 4410 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4411 USER_SOCKPTR(optlen)); 4412 } 4413 EXPORT_SYMBOL(tcp_getsockopt); 4414 4415 #ifdef CONFIG_TCP_MD5SIG 4416 int tcp_md5_sigpool_id = -1; 4417 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4418 4419 int tcp_md5_alloc_sigpool(void) 4420 { 4421 size_t scratch_size; 4422 int ret; 4423 4424 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4425 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4426 if (ret >= 0) { 4427 /* As long as any md5 sigpool was allocated, the return 4428 * id would stay the same. Re-write the id only for the case 4429 * when previously all MD5 keys were deleted and this call 4430 * allocates the first MD5 key, which may return a different 4431 * sigpool id than was used previously. 4432 */ 4433 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4434 return 0; 4435 } 4436 return ret; 4437 } 4438 4439 void tcp_md5_release_sigpool(void) 4440 { 4441 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4442 } 4443 4444 void tcp_md5_add_sigpool(void) 4445 { 4446 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4447 } 4448 4449 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4450 const struct tcp_md5sig_key *key) 4451 { 4452 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4453 struct scatterlist sg; 4454 4455 sg_init_one(&sg, key->key, keylen); 4456 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4457 4458 /* We use data_race() because tcp_md5_do_add() might change 4459 * key->key under us 4460 */ 4461 return data_race(crypto_ahash_update(hp->req)); 4462 } 4463 EXPORT_SYMBOL(tcp_md5_hash_key); 4464 4465 /* Called with rcu_read_lock() */ 4466 enum skb_drop_reason 4467 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4468 const void *saddr, const void *daddr, 4469 int family, int l3index, const __u8 *hash_location) 4470 { 4471 /* This gets called for each TCP segment that has TCP-MD5 option. 4472 * We have 3 drop cases: 4473 * o No MD5 hash and one expected. 4474 * o MD5 hash and we're not expecting one. 4475 * o MD5 hash and its wrong. 4476 */ 4477 const struct tcp_sock *tp = tcp_sk(sk); 4478 struct tcp_md5sig_key *key; 4479 u8 newhash[16]; 4480 int genhash; 4481 4482 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4483 4484 if (!key && hash_location) { 4485 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4486 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4487 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4488 } 4489 4490 /* Check the signature. 4491 * To support dual stack listeners, we need to handle 4492 * IPv4-mapped case. 4493 */ 4494 if (family == AF_INET) 4495 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4496 else 4497 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4498 NULL, skb); 4499 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4500 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4501 if (family == AF_INET) { 4502 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4503 genhash ? "tcp_v4_calc_md5_hash failed" 4504 : "", l3index); 4505 } else { 4506 if (genhash) { 4507 tcp_hash_fail("MD5 Hash failed", 4508 AF_INET6, skb, "L3 index %d", 4509 l3index); 4510 } else { 4511 tcp_hash_fail("MD5 Hash mismatch", 4512 AF_INET6, skb, "L3 index %d", 4513 l3index); 4514 } 4515 } 4516 return SKB_DROP_REASON_TCP_MD5FAILURE; 4517 } 4518 return SKB_NOT_DROPPED_YET; 4519 } 4520 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4521 4522 #endif 4523 4524 void tcp_done(struct sock *sk) 4525 { 4526 struct request_sock *req; 4527 4528 /* We might be called with a new socket, after 4529 * inet_csk_prepare_forced_close() has been called 4530 * so we can not use lockdep_sock_is_held(sk) 4531 */ 4532 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4533 4534 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4535 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4536 4537 tcp_set_state(sk, TCP_CLOSE); 4538 tcp_clear_xmit_timers(sk); 4539 if (req) 4540 reqsk_fastopen_remove(sk, req, false); 4541 4542 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4543 4544 if (!sock_flag(sk, SOCK_DEAD)) 4545 sk->sk_state_change(sk); 4546 else 4547 inet_csk_destroy_sock(sk); 4548 } 4549 EXPORT_SYMBOL_GPL(tcp_done); 4550 4551 int tcp_abort(struct sock *sk, int err) 4552 { 4553 int state = inet_sk_state_load(sk); 4554 4555 if (state == TCP_NEW_SYN_RECV) { 4556 struct request_sock *req = inet_reqsk(sk); 4557 4558 local_bh_disable(); 4559 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4560 local_bh_enable(); 4561 return 0; 4562 } 4563 if (state == TCP_TIME_WAIT) { 4564 struct inet_timewait_sock *tw = inet_twsk(sk); 4565 4566 refcount_inc(&tw->tw_refcnt); 4567 local_bh_disable(); 4568 inet_twsk_deschedule_put(tw); 4569 local_bh_enable(); 4570 return 0; 4571 } 4572 4573 /* BPF context ensures sock locking. */ 4574 if (!has_current_bpf_ctx()) 4575 /* Don't race with userspace socket closes such as tcp_close. */ 4576 lock_sock(sk); 4577 4578 if (sk->sk_state == TCP_LISTEN) { 4579 tcp_set_state(sk, TCP_CLOSE); 4580 inet_csk_listen_stop(sk); 4581 } 4582 4583 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4584 local_bh_disable(); 4585 bh_lock_sock(sk); 4586 4587 if (!sock_flag(sk, SOCK_DEAD)) { 4588 if (tcp_need_reset(sk->sk_state)) 4589 tcp_send_active_reset(sk, GFP_ATOMIC, 4590 SK_RST_REASON_NOT_SPECIFIED); 4591 tcp_done_with_error(sk, err); 4592 } 4593 4594 bh_unlock_sock(sk); 4595 local_bh_enable(); 4596 tcp_write_queue_purge(sk); 4597 if (!has_current_bpf_ctx()) 4598 release_sock(sk); 4599 return 0; 4600 } 4601 EXPORT_SYMBOL_GPL(tcp_abort); 4602 4603 extern struct tcp_congestion_ops tcp_reno; 4604 4605 static __initdata unsigned long thash_entries; 4606 static int __init set_thash_entries(char *str) 4607 { 4608 ssize_t ret; 4609 4610 if (!str) 4611 return 0; 4612 4613 ret = kstrtoul(str, 0, &thash_entries); 4614 if (ret) 4615 return 0; 4616 4617 return 1; 4618 } 4619 __setup("thash_entries=", set_thash_entries); 4620 4621 static void __init tcp_init_mem(void) 4622 { 4623 unsigned long limit = nr_free_buffer_pages() / 16; 4624 4625 limit = max(limit, 128UL); 4626 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4627 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4628 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4629 } 4630 4631 static void __init tcp_struct_check(void) 4632 { 4633 /* TX read-mostly hotpath cache lines */ 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4637 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4638 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4639 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4641 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4642 4643 /* TXRX read-mostly hotpath cache lines */ 4644 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4645 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4652 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4653 4654 /* RX read-mostly hotpath cache lines */ 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4658 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4659 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4660 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4661 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4662 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4667 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4668 4669 /* TX read-write hotpath cache lines */ 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4675 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4676 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4677 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4678 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4679 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4680 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4681 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4682 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4683 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4684 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4685 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 4686 4687 /* TXRX read-write hotpath cache lines */ 4688 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4689 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 4690 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 4691 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4692 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4693 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4694 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4695 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4696 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4697 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4698 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4699 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4700 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4701 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4702 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4703 4704 /* 32bit arches with 8byte alignment on u64 fields might need padding 4705 * before tcp_clock_cache. 4706 */ 4707 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 4708 4709 /* RX read-write hotpath cache lines */ 4710 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4711 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4712 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4713 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4714 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4715 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4716 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4717 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4718 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4719 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4720 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4721 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4722 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4723 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4724 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4725 } 4726 4727 void __init tcp_init(void) 4728 { 4729 int max_rshare, max_wshare, cnt; 4730 unsigned long limit; 4731 unsigned int i; 4732 4733 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4734 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4735 sizeof_field(struct sk_buff, cb)); 4736 4737 tcp_struct_check(); 4738 4739 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4740 4741 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4742 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4743 4744 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4745 thash_entries, 21, /* one slot per 2 MB*/ 4746 0, 64 * 1024); 4747 tcp_hashinfo.bind_bucket_cachep = 4748 kmem_cache_create("tcp_bind_bucket", 4749 sizeof(struct inet_bind_bucket), 0, 4750 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4751 SLAB_ACCOUNT, 4752 NULL); 4753 tcp_hashinfo.bind2_bucket_cachep = 4754 kmem_cache_create("tcp_bind2_bucket", 4755 sizeof(struct inet_bind2_bucket), 0, 4756 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4757 SLAB_ACCOUNT, 4758 NULL); 4759 4760 /* Size and allocate the main established and bind bucket 4761 * hash tables. 4762 * 4763 * The methodology is similar to that of the buffer cache. 4764 */ 4765 tcp_hashinfo.ehash = 4766 alloc_large_system_hash("TCP established", 4767 sizeof(struct inet_ehash_bucket), 4768 thash_entries, 4769 17, /* one slot per 128 KB of memory */ 4770 0, 4771 NULL, 4772 &tcp_hashinfo.ehash_mask, 4773 0, 4774 thash_entries ? 0 : 512 * 1024); 4775 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4776 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4777 4778 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4779 panic("TCP: failed to alloc ehash_locks"); 4780 tcp_hashinfo.bhash = 4781 alloc_large_system_hash("TCP bind", 4782 2 * sizeof(struct inet_bind_hashbucket), 4783 tcp_hashinfo.ehash_mask + 1, 4784 17, /* one slot per 128 KB of memory */ 4785 0, 4786 &tcp_hashinfo.bhash_size, 4787 NULL, 4788 0, 4789 64 * 1024); 4790 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4791 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4792 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4793 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4794 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4795 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4796 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4797 } 4798 4799 tcp_hashinfo.pernet = false; 4800 4801 cnt = tcp_hashinfo.ehash_mask + 1; 4802 sysctl_tcp_max_orphans = cnt / 2; 4803 4804 tcp_init_mem(); 4805 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4806 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4807 max_wshare = min(4UL*1024*1024, limit); 4808 max_rshare = min(6UL*1024*1024, limit); 4809 4810 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4811 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4812 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4813 4814 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4815 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4816 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4817 4818 pr_info("Hash tables configured (established %u bind %u)\n", 4819 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4820 4821 tcp_v4_init(); 4822 tcp_metrics_init(); 4823 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4824 tcp_tasklet_init(); 4825 mptcp_init(); 4826 } 4827