xref: /linux/net/ipv4/tcp.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <net/rps.h>
286 
287 /* Track pending CMSGs. */
288 enum {
289 	TCP_CMSG_INQ = 1,
290 	TCP_CMSG_TS = 2
291 };
292 
293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
295 
296 DEFINE_PER_CPU(u32, tcp_tw_isn);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
298 
299 long sysctl_tcp_mem[3] __read_mostly;
300 EXPORT_SYMBOL(sysctl_tcp_mem);
301 
302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
306 
307 #if IS_ENABLED(CONFIG_SMC)
308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
309 EXPORT_SYMBOL(tcp_have_smc);
310 #endif
311 
312 /*
313  * Current number of TCP sockets.
314  */
315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
316 EXPORT_SYMBOL(tcp_sockets_allocated);
317 
318 /*
319  * TCP splice context
320  */
321 struct tcp_splice_state {
322 	struct pipe_inode_info *pipe;
323 	size_t len;
324 	unsigned int flags;
325 };
326 
327 /*
328  * Pressure flag: try to collapse.
329  * Technical note: it is used by multiple contexts non atomically.
330  * All the __sk_mem_schedule() is of this nature: accounting
331  * is strict, actions are advisory and have some latency.
332  */
333 unsigned long tcp_memory_pressure __read_mostly;
334 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
335 
336 void tcp_enter_memory_pressure(struct sock *sk)
337 {
338 	unsigned long val;
339 
340 	if (READ_ONCE(tcp_memory_pressure))
341 		return;
342 	val = jiffies;
343 
344 	if (!val)
345 		val--;
346 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
347 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
348 }
349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
350 
351 void tcp_leave_memory_pressure(struct sock *sk)
352 {
353 	unsigned long val;
354 
355 	if (!READ_ONCE(tcp_memory_pressure))
356 		return;
357 	val = xchg(&tcp_memory_pressure, 0);
358 	if (val)
359 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
360 			      jiffies_to_msecs(jiffies - val));
361 }
362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
363 
364 /* Convert seconds to retransmits based on initial and max timeout */
365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
366 {
367 	u8 res = 0;
368 
369 	if (seconds > 0) {
370 		int period = timeout;
371 
372 		res = 1;
373 		while (seconds > period && res < 255) {
374 			res++;
375 			timeout <<= 1;
376 			if (timeout > rto_max)
377 				timeout = rto_max;
378 			period += timeout;
379 		}
380 	}
381 	return res;
382 }
383 
384 /* Convert retransmits to seconds based on initial and max timeout */
385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
386 {
387 	int period = 0;
388 
389 	if (retrans > 0) {
390 		period = timeout;
391 		while (--retrans) {
392 			timeout <<= 1;
393 			if (timeout > rto_max)
394 				timeout = rto_max;
395 			period += timeout;
396 		}
397 	}
398 	return period;
399 }
400 
401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
402 {
403 	u32 rate = READ_ONCE(tp->rate_delivered);
404 	u32 intv = READ_ONCE(tp->rate_interval_us);
405 	u64 rate64 = 0;
406 
407 	if (rate && intv) {
408 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
409 		do_div(rate64, intv);
410 	}
411 	return rate64;
412 }
413 
414 /* Address-family independent initialization for a tcp_sock.
415  *
416  * NOTE: A lot of things set to zero explicitly by call to
417  *       sk_alloc() so need not be done here.
418  */
419 void tcp_init_sock(struct sock *sk)
420 {
421 	struct inet_connection_sock *icsk = inet_csk(sk);
422 	struct tcp_sock *tp = tcp_sk(sk);
423 
424 	tp->out_of_order_queue = RB_ROOT;
425 	sk->tcp_rtx_queue = RB_ROOT;
426 	tcp_init_xmit_timers(sk);
427 	INIT_LIST_HEAD(&tp->tsq_node);
428 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
429 
430 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
431 	icsk->icsk_rto_min = TCP_RTO_MIN;
432 	icsk->icsk_delack_max = TCP_DELACK_MAX;
433 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
434 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
435 
436 	/* So many TCP implementations out there (incorrectly) count the
437 	 * initial SYN frame in their delayed-ACK and congestion control
438 	 * algorithms that we must have the following bandaid to talk
439 	 * efficiently to them.  -DaveM
440 	 */
441 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
442 
443 	/* There's a bubble in the pipe until at least the first ACK. */
444 	tp->app_limited = ~0U;
445 	tp->rate_app_limited = 1;
446 
447 	/* See draft-stevens-tcpca-spec-01 for discussion of the
448 	 * initialization of these values.
449 	 */
450 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
451 	tp->snd_cwnd_clamp = ~0;
452 	tp->mss_cache = TCP_MSS_DEFAULT;
453 
454 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
455 	tcp_assign_congestion_control(sk);
456 
457 	tp->tsoffset = 0;
458 	tp->rack.reo_wnd_steps = 1;
459 
460 	sk->sk_write_space = sk_stream_write_space;
461 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
462 
463 	icsk->icsk_sync_mss = tcp_sync_mss;
464 
465 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
466 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
467 	tcp_scaling_ratio_init(sk);
468 
469 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
470 	sk_sockets_allocated_inc(sk);
471 }
472 EXPORT_SYMBOL(tcp_init_sock);
473 
474 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
475 {
476 	struct sk_buff *skb = tcp_write_queue_tail(sk);
477 
478 	if (tsflags && skb) {
479 		struct skb_shared_info *shinfo = skb_shinfo(skb);
480 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
481 
482 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
483 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
484 			tcb->txstamp_ack = 1;
485 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
486 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
487 	}
488 }
489 
490 static bool tcp_stream_is_readable(struct sock *sk, int target)
491 {
492 	if (tcp_epollin_ready(sk, target))
493 		return true;
494 	return sk_is_readable(sk);
495 }
496 
497 /*
498  *	Wait for a TCP event.
499  *
500  *	Note that we don't need to lock the socket, as the upper poll layers
501  *	take care of normal races (between the test and the event) and we don't
502  *	go look at any of the socket buffers directly.
503  */
504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
505 {
506 	__poll_t mask;
507 	struct sock *sk = sock->sk;
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	u8 shutdown;
510 	int state;
511 
512 	sock_poll_wait(file, sock, wait);
513 
514 	state = inet_sk_state_load(sk);
515 	if (state == TCP_LISTEN)
516 		return inet_csk_listen_poll(sk);
517 
518 	/* Socket is not locked. We are protected from async events
519 	 * by poll logic and correct handling of state changes
520 	 * made by other threads is impossible in any case.
521 	 */
522 
523 	mask = 0;
524 
525 	/*
526 	 * EPOLLHUP is certainly not done right. But poll() doesn't
527 	 * have a notion of HUP in just one direction, and for a
528 	 * socket the read side is more interesting.
529 	 *
530 	 * Some poll() documentation says that EPOLLHUP is incompatible
531 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
532 	 * all. But careful, it tends to be safer to return too many
533 	 * bits than too few, and you can easily break real applications
534 	 * if you don't tell them that something has hung up!
535 	 *
536 	 * Check-me.
537 	 *
538 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
539 	 * our fs/select.c). It means that after we received EOF,
540 	 * poll always returns immediately, making impossible poll() on write()
541 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
542 	 * if and only if shutdown has been made in both directions.
543 	 * Actually, it is interesting to look how Solaris and DUX
544 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
545 	 * then we could set it on SND_SHUTDOWN. BTW examples given
546 	 * in Stevens' books assume exactly this behaviour, it explains
547 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
548 	 *
549 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
550 	 * blocking on fresh not-connected or disconnected socket. --ANK
551 	 */
552 	shutdown = READ_ONCE(sk->sk_shutdown);
553 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
554 		mask |= EPOLLHUP;
555 	if (shutdown & RCV_SHUTDOWN)
556 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
557 
558 	/* Connected or passive Fast Open socket? */
559 	if (state != TCP_SYN_SENT &&
560 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
561 		int target = sock_rcvlowat(sk, 0, INT_MAX);
562 		u16 urg_data = READ_ONCE(tp->urg_data);
563 
564 		if (unlikely(urg_data) &&
565 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
566 		    !sock_flag(sk, SOCK_URGINLINE))
567 			target++;
568 
569 		if (tcp_stream_is_readable(sk, target))
570 			mask |= EPOLLIN | EPOLLRDNORM;
571 
572 		if (!(shutdown & SEND_SHUTDOWN)) {
573 			if (__sk_stream_is_writeable(sk, 1)) {
574 				mask |= EPOLLOUT | EPOLLWRNORM;
575 			} else {  /* send SIGIO later */
576 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
577 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
578 
579 				/* Race breaker. If space is freed after
580 				 * wspace test but before the flags are set,
581 				 * IO signal will be lost. Memory barrier
582 				 * pairs with the input side.
583 				 */
584 				smp_mb__after_atomic();
585 				if (__sk_stream_is_writeable(sk, 1))
586 					mask |= EPOLLOUT | EPOLLWRNORM;
587 			}
588 		} else
589 			mask |= EPOLLOUT | EPOLLWRNORM;
590 
591 		if (urg_data & TCP_URG_VALID)
592 			mask |= EPOLLPRI;
593 	} else if (state == TCP_SYN_SENT &&
594 		   inet_test_bit(DEFER_CONNECT, sk)) {
595 		/* Active TCP fastopen socket with defer_connect
596 		 * Return EPOLLOUT so application can call write()
597 		 * in order for kernel to generate SYN+data
598 		 */
599 		mask |= EPOLLOUT | EPOLLWRNORM;
600 	}
601 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
602 	smp_rmb();
603 	if (READ_ONCE(sk->sk_err) ||
604 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
605 		mask |= EPOLLERR;
606 
607 	return mask;
608 }
609 EXPORT_SYMBOL(tcp_poll);
610 
611 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
612 {
613 	struct tcp_sock *tp = tcp_sk(sk);
614 	int answ;
615 	bool slow;
616 
617 	switch (cmd) {
618 	case SIOCINQ:
619 		if (sk->sk_state == TCP_LISTEN)
620 			return -EINVAL;
621 
622 		slow = lock_sock_fast(sk);
623 		answ = tcp_inq(sk);
624 		unlock_sock_fast(sk, slow);
625 		break;
626 	case SIOCATMARK:
627 		answ = READ_ONCE(tp->urg_data) &&
628 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
629 		break;
630 	case SIOCOUTQ:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
638 		break;
639 	case SIOCOUTQNSD:
640 		if (sk->sk_state == TCP_LISTEN)
641 			return -EINVAL;
642 
643 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
644 			answ = 0;
645 		else
646 			answ = READ_ONCE(tp->write_seq) -
647 			       READ_ONCE(tp->snd_nxt);
648 		break;
649 	default:
650 		return -ENOIOCTLCMD;
651 	}
652 
653 	*karg = answ;
654 	return 0;
655 }
656 EXPORT_SYMBOL(tcp_ioctl);
657 
658 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
659 {
660 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
661 	tp->pushed_seq = tp->write_seq;
662 }
663 
664 static inline bool forced_push(const struct tcp_sock *tp)
665 {
666 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
667 }
668 
669 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
670 {
671 	struct tcp_sock *tp = tcp_sk(sk);
672 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
673 
674 	tcb->seq     = tcb->end_seq = tp->write_seq;
675 	tcb->tcp_flags = TCPHDR_ACK;
676 	__skb_header_release(skb);
677 	tcp_add_write_queue_tail(sk, skb);
678 	sk_wmem_queued_add(sk, skb->truesize);
679 	sk_mem_charge(sk, skb->truesize);
680 	if (tp->nonagle & TCP_NAGLE_PUSH)
681 		tp->nonagle &= ~TCP_NAGLE_PUSH;
682 
683 	tcp_slow_start_after_idle_check(sk);
684 }
685 
686 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
687 {
688 	if (flags & MSG_OOB)
689 		tp->snd_up = tp->write_seq;
690 }
691 
692 /* If a not yet filled skb is pushed, do not send it if
693  * we have data packets in Qdisc or NIC queues :
694  * Because TX completion will happen shortly, it gives a chance
695  * to coalesce future sendmsg() payload into this skb, without
696  * need for a timer, and with no latency trade off.
697  * As packets containing data payload have a bigger truesize
698  * than pure acks (dataless) packets, the last checks prevent
699  * autocorking if we only have an ACK in Qdisc/NIC queues,
700  * or if TX completion was delayed after we processed ACK packet.
701  */
702 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
703 				int size_goal)
704 {
705 	return skb->len < size_goal &&
706 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
707 	       !tcp_rtx_queue_empty(sk) &&
708 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
709 	       tcp_skb_can_collapse_to(skb);
710 }
711 
712 void tcp_push(struct sock *sk, int flags, int mss_now,
713 	      int nonagle, int size_goal)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	struct sk_buff *skb;
717 
718 	skb = tcp_write_queue_tail(sk);
719 	if (!skb)
720 		return;
721 	if (!(flags & MSG_MORE) || forced_push(tp))
722 		tcp_mark_push(tp, skb);
723 
724 	tcp_mark_urg(tp, flags);
725 
726 	if (tcp_should_autocork(sk, skb, size_goal)) {
727 
728 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
729 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
730 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
731 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
732 			smp_mb__after_atomic();
733 		}
734 		/* It is possible TX completion already happened
735 		 * before we set TSQ_THROTTLED.
736 		 */
737 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
738 			return;
739 	}
740 
741 	if (flags & MSG_MORE)
742 		nonagle = TCP_NAGLE_CORK;
743 
744 	__tcp_push_pending_frames(sk, mss_now, nonagle);
745 }
746 
747 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
748 				unsigned int offset, size_t len)
749 {
750 	struct tcp_splice_state *tss = rd_desc->arg.data;
751 	int ret;
752 
753 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
754 			      min(rd_desc->count, len), tss->flags);
755 	if (ret > 0)
756 		rd_desc->count -= ret;
757 	return ret;
758 }
759 
760 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
761 {
762 	/* Store TCP splice context information in read_descriptor_t. */
763 	read_descriptor_t rd_desc = {
764 		.arg.data = tss,
765 		.count	  = tss->len,
766 	};
767 
768 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
769 }
770 
771 /**
772  *  tcp_splice_read - splice data from TCP socket to a pipe
773  * @sock:	socket to splice from
774  * @ppos:	position (not valid)
775  * @pipe:	pipe to splice to
776  * @len:	number of bytes to splice
777  * @flags:	splice modifier flags
778  *
779  * Description:
780  *    Will read pages from given socket and fill them into a pipe.
781  *
782  **/
783 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
784 			struct pipe_inode_info *pipe, size_t len,
785 			unsigned int flags)
786 {
787 	struct sock *sk = sock->sk;
788 	struct tcp_splice_state tss = {
789 		.pipe = pipe,
790 		.len = len,
791 		.flags = flags,
792 	};
793 	long timeo;
794 	ssize_t spliced;
795 	int ret;
796 
797 	sock_rps_record_flow(sk);
798 	/*
799 	 * We can't seek on a socket input
800 	 */
801 	if (unlikely(*ppos))
802 		return -ESPIPE;
803 
804 	ret = spliced = 0;
805 
806 	lock_sock(sk);
807 
808 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
809 	while (tss.len) {
810 		ret = __tcp_splice_read(sk, &tss);
811 		if (ret < 0)
812 			break;
813 		else if (!ret) {
814 			if (spliced)
815 				break;
816 			if (sock_flag(sk, SOCK_DONE))
817 				break;
818 			if (sk->sk_err) {
819 				ret = sock_error(sk);
820 				break;
821 			}
822 			if (sk->sk_shutdown & RCV_SHUTDOWN)
823 				break;
824 			if (sk->sk_state == TCP_CLOSE) {
825 				/*
826 				 * This occurs when user tries to read
827 				 * from never connected socket.
828 				 */
829 				ret = -ENOTCONN;
830 				break;
831 			}
832 			if (!timeo) {
833 				ret = -EAGAIN;
834 				break;
835 			}
836 			/* if __tcp_splice_read() got nothing while we have
837 			 * an skb in receive queue, we do not want to loop.
838 			 * This might happen with URG data.
839 			 */
840 			if (!skb_queue_empty(&sk->sk_receive_queue))
841 				break;
842 			ret = sk_wait_data(sk, &timeo, NULL);
843 			if (ret < 0)
844 				break;
845 			if (signal_pending(current)) {
846 				ret = sock_intr_errno(timeo);
847 				break;
848 			}
849 			continue;
850 		}
851 		tss.len -= ret;
852 		spliced += ret;
853 
854 		if (!tss.len || !timeo)
855 			break;
856 		release_sock(sk);
857 		lock_sock(sk);
858 
859 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
860 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
861 		    signal_pending(current))
862 			break;
863 	}
864 
865 	release_sock(sk);
866 
867 	if (spliced)
868 		return spliced;
869 
870 	return ret;
871 }
872 EXPORT_SYMBOL(tcp_splice_read);
873 
874 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
875 				     bool force_schedule)
876 {
877 	struct sk_buff *skb;
878 
879 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
880 	if (likely(skb)) {
881 		bool mem_scheduled;
882 
883 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
884 		if (force_schedule) {
885 			mem_scheduled = true;
886 			sk_forced_mem_schedule(sk, skb->truesize);
887 		} else {
888 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
889 		}
890 		if (likely(mem_scheduled)) {
891 			skb_reserve(skb, MAX_TCP_HEADER);
892 			skb->ip_summed = CHECKSUM_PARTIAL;
893 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894 			return skb;
895 		}
896 		__kfree_skb(skb);
897 	} else {
898 		sk->sk_prot->enter_memory_pressure(sk);
899 		sk_stream_moderate_sndbuf(sk);
900 	}
901 	return NULL;
902 }
903 
904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
905 				       int large_allowed)
906 {
907 	struct tcp_sock *tp = tcp_sk(sk);
908 	u32 new_size_goal, size_goal;
909 
910 	if (!large_allowed)
911 		return mss_now;
912 
913 	/* Note : tcp_tso_autosize() will eventually split this later */
914 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
915 
916 	/* We try hard to avoid divides here */
917 	size_goal = tp->gso_segs * mss_now;
918 	if (unlikely(new_size_goal < size_goal ||
919 		     new_size_goal >= size_goal + mss_now)) {
920 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 				     sk->sk_gso_max_segs);
922 		size_goal = tp->gso_segs * mss_now;
923 	}
924 
925 	return max(size_goal, mss_now);
926 }
927 
928 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
929 {
930 	int mss_now;
931 
932 	mss_now = tcp_current_mss(sk);
933 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
934 
935 	return mss_now;
936 }
937 
938 /* In some cases, sendmsg() could have added an skb to the write queue,
939  * but failed adding payload on it. We need to remove it to consume less
940  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
941  * epoll() users. Another reason is that tcp_write_xmit() does not like
942  * finding an empty skb in the write queue.
943  */
944 void tcp_remove_empty_skb(struct sock *sk)
945 {
946 	struct sk_buff *skb = tcp_write_queue_tail(sk);
947 
948 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
949 		tcp_unlink_write_queue(skb, sk);
950 		if (tcp_write_queue_empty(sk))
951 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 		tcp_wmem_free_skb(sk, skb);
953 	}
954 }
955 
956 /* skb changing from pure zc to mixed, must charge zc */
957 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
958 {
959 	if (unlikely(skb_zcopy_pure(skb))) {
960 		u32 extra = skb->truesize -
961 			    SKB_TRUESIZE(skb_end_offset(skb));
962 
963 		if (!sk_wmem_schedule(sk, extra))
964 			return -ENOMEM;
965 
966 		sk_mem_charge(sk, extra);
967 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
968 	}
969 	return 0;
970 }
971 
972 
973 int tcp_wmem_schedule(struct sock *sk, int copy)
974 {
975 	int left;
976 
977 	if (likely(sk_wmem_schedule(sk, copy)))
978 		return copy;
979 
980 	/* We could be in trouble if we have nothing queued.
981 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
982 	 * to guarantee some progress.
983 	 */
984 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
985 	if (left > 0)
986 		sk_forced_mem_schedule(sk, min(left, copy));
987 	return min(copy, sk->sk_forward_alloc);
988 }
989 
990 void tcp_free_fastopen_req(struct tcp_sock *tp)
991 {
992 	if (tp->fastopen_req) {
993 		kfree(tp->fastopen_req);
994 		tp->fastopen_req = NULL;
995 	}
996 }
997 
998 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
999 			 size_t size, struct ubuf_info *uarg)
1000 {
1001 	struct tcp_sock *tp = tcp_sk(sk);
1002 	struct inet_sock *inet = inet_sk(sk);
1003 	struct sockaddr *uaddr = msg->msg_name;
1004 	int err, flags;
1005 
1006 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1007 	      TFO_CLIENT_ENABLE) ||
1008 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1009 	     uaddr->sa_family == AF_UNSPEC))
1010 		return -EOPNOTSUPP;
1011 	if (tp->fastopen_req)
1012 		return -EALREADY; /* Another Fast Open is in progress */
1013 
1014 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1015 				   sk->sk_allocation);
1016 	if (unlikely(!tp->fastopen_req))
1017 		return -ENOBUFS;
1018 	tp->fastopen_req->data = msg;
1019 	tp->fastopen_req->size = size;
1020 	tp->fastopen_req->uarg = uarg;
1021 
1022 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1023 		err = tcp_connect(sk);
1024 		/* Same failure procedure as in tcp_v4/6_connect */
1025 		if (err) {
1026 			tcp_set_state(sk, TCP_CLOSE);
1027 			inet->inet_dport = 0;
1028 			sk->sk_route_caps = 0;
1029 		}
1030 	}
1031 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1032 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1033 				    msg->msg_namelen, flags, 1);
1034 	/* fastopen_req could already be freed in __inet_stream_connect
1035 	 * if the connection times out or gets rst
1036 	 */
1037 	if (tp->fastopen_req) {
1038 		*copied = tp->fastopen_req->copied;
1039 		tcp_free_fastopen_req(tp);
1040 		inet_clear_bit(DEFER_CONNECT, sk);
1041 	}
1042 	return err;
1043 }
1044 
1045 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 	struct ubuf_info *uarg = NULL;
1049 	struct sk_buff *skb;
1050 	struct sockcm_cookie sockc;
1051 	int flags, err, copied = 0;
1052 	int mss_now = 0, size_goal, copied_syn = 0;
1053 	int process_backlog = 0;
1054 	int zc = 0;
1055 	long timeo;
1056 
1057 	flags = msg->msg_flags;
1058 
1059 	if ((flags & MSG_ZEROCOPY) && size) {
1060 		if (msg->msg_ubuf) {
1061 			uarg = msg->msg_ubuf;
1062 			if (sk->sk_route_caps & NETIF_F_SG)
1063 				zc = MSG_ZEROCOPY;
1064 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1065 			skb = tcp_write_queue_tail(sk);
1066 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1067 			if (!uarg) {
1068 				err = -ENOBUFS;
1069 				goto out_err;
1070 			}
1071 			if (sk->sk_route_caps & NETIF_F_SG)
1072 				zc = MSG_ZEROCOPY;
1073 			else
1074 				uarg_to_msgzc(uarg)->zerocopy = 0;
1075 		}
1076 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1077 		if (sk->sk_route_caps & NETIF_F_SG)
1078 			zc = MSG_SPLICE_PAGES;
1079 	}
1080 
1081 	if (unlikely(flags & MSG_FASTOPEN ||
1082 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1083 	    !tp->repair) {
1084 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1085 		if (err == -EINPROGRESS && copied_syn > 0)
1086 			goto out;
1087 		else if (err)
1088 			goto out_err;
1089 	}
1090 
1091 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1092 
1093 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1094 
1095 	/* Wait for a connection to finish. One exception is TCP Fast Open
1096 	 * (passive side) where data is allowed to be sent before a connection
1097 	 * is fully established.
1098 	 */
1099 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1100 	    !tcp_passive_fastopen(sk)) {
1101 		err = sk_stream_wait_connect(sk, &timeo);
1102 		if (err != 0)
1103 			goto do_error;
1104 	}
1105 
1106 	if (unlikely(tp->repair)) {
1107 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1108 			copied = tcp_send_rcvq(sk, msg, size);
1109 			goto out_nopush;
1110 		}
1111 
1112 		err = -EINVAL;
1113 		if (tp->repair_queue == TCP_NO_QUEUE)
1114 			goto out_err;
1115 
1116 		/* 'common' sending to sendq */
1117 	}
1118 
1119 	sockcm_init(&sockc, sk);
1120 	if (msg->msg_controllen) {
1121 		err = sock_cmsg_send(sk, msg, &sockc);
1122 		if (unlikely(err)) {
1123 			err = -EINVAL;
1124 			goto out_err;
1125 		}
1126 	}
1127 
1128 	/* This should be in poll */
1129 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1130 
1131 	/* Ok commence sending. */
1132 	copied = 0;
1133 
1134 restart:
1135 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1136 
1137 	err = -EPIPE;
1138 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1139 		goto do_error;
1140 
1141 	while (msg_data_left(msg)) {
1142 		ssize_t copy = 0;
1143 
1144 		skb = tcp_write_queue_tail(sk);
1145 		if (skb)
1146 			copy = size_goal - skb->len;
1147 
1148 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1149 			bool first_skb;
1150 
1151 new_segment:
1152 			if (!sk_stream_memory_free(sk))
1153 				goto wait_for_space;
1154 
1155 			if (unlikely(process_backlog >= 16)) {
1156 				process_backlog = 0;
1157 				if (sk_flush_backlog(sk))
1158 					goto restart;
1159 			}
1160 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1161 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1162 						   first_skb);
1163 			if (!skb)
1164 				goto wait_for_space;
1165 
1166 			process_backlog++;
1167 
1168 			tcp_skb_entail(sk, skb);
1169 			copy = size_goal;
1170 
1171 			/* All packets are restored as if they have
1172 			 * already been sent. skb_mstamp_ns isn't set to
1173 			 * avoid wrong rtt estimation.
1174 			 */
1175 			if (tp->repair)
1176 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1177 		}
1178 
1179 		/* Try to append data to the end of skb. */
1180 		if (copy > msg_data_left(msg))
1181 			copy = msg_data_left(msg);
1182 
1183 		if (zc == 0) {
1184 			bool merge = true;
1185 			int i = skb_shinfo(skb)->nr_frags;
1186 			struct page_frag *pfrag = sk_page_frag(sk);
1187 
1188 			if (!sk_page_frag_refill(sk, pfrag))
1189 				goto wait_for_space;
1190 
1191 			if (!skb_can_coalesce(skb, i, pfrag->page,
1192 					      pfrag->offset)) {
1193 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1194 					tcp_mark_push(tp, skb);
1195 					goto new_segment;
1196 				}
1197 				merge = false;
1198 			}
1199 
1200 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1201 
1202 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1203 				if (tcp_downgrade_zcopy_pure(sk, skb))
1204 					goto wait_for_space;
1205 				skb_zcopy_downgrade_managed(skb);
1206 			}
1207 
1208 			copy = tcp_wmem_schedule(sk, copy);
1209 			if (!copy)
1210 				goto wait_for_space;
1211 
1212 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1213 						       pfrag->page,
1214 						       pfrag->offset,
1215 						       copy);
1216 			if (err)
1217 				goto do_error;
1218 
1219 			/* Update the skb. */
1220 			if (merge) {
1221 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1222 			} else {
1223 				skb_fill_page_desc(skb, i, pfrag->page,
1224 						   pfrag->offset, copy);
1225 				page_ref_inc(pfrag->page);
1226 			}
1227 			pfrag->offset += copy;
1228 		} else if (zc == MSG_ZEROCOPY)  {
1229 			/* First append to a fragless skb builds initial
1230 			 * pure zerocopy skb
1231 			 */
1232 			if (!skb->len)
1233 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1234 
1235 			if (!skb_zcopy_pure(skb)) {
1236 				copy = tcp_wmem_schedule(sk, copy);
1237 				if (!copy)
1238 					goto wait_for_space;
1239 			}
1240 
1241 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1242 			if (err == -EMSGSIZE || err == -EEXIST) {
1243 				tcp_mark_push(tp, skb);
1244 				goto new_segment;
1245 			}
1246 			if (err < 0)
1247 				goto do_error;
1248 			copy = err;
1249 		} else if (zc == MSG_SPLICE_PAGES) {
1250 			/* Splice in data if we can; copy if we can't. */
1251 			if (tcp_downgrade_zcopy_pure(sk, skb))
1252 				goto wait_for_space;
1253 			copy = tcp_wmem_schedule(sk, copy);
1254 			if (!copy)
1255 				goto wait_for_space;
1256 
1257 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1258 						   sk->sk_allocation);
1259 			if (err < 0) {
1260 				if (err == -EMSGSIZE) {
1261 					tcp_mark_push(tp, skb);
1262 					goto new_segment;
1263 				}
1264 				goto do_error;
1265 			}
1266 			copy = err;
1267 
1268 			if (!(flags & MSG_NO_SHARED_FRAGS))
1269 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1270 
1271 			sk_wmem_queued_add(sk, copy);
1272 			sk_mem_charge(sk, copy);
1273 		}
1274 
1275 		if (!copied)
1276 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1277 
1278 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1279 		TCP_SKB_CB(skb)->end_seq += copy;
1280 		tcp_skb_pcount_set(skb, 0);
1281 
1282 		copied += copy;
1283 		if (!msg_data_left(msg)) {
1284 			if (unlikely(flags & MSG_EOR))
1285 				TCP_SKB_CB(skb)->eor = 1;
1286 			goto out;
1287 		}
1288 
1289 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1290 			continue;
1291 
1292 		if (forced_push(tp)) {
1293 			tcp_mark_push(tp, skb);
1294 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1295 		} else if (skb == tcp_send_head(sk))
1296 			tcp_push_one(sk, mss_now);
1297 		continue;
1298 
1299 wait_for_space:
1300 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1301 		tcp_remove_empty_skb(sk);
1302 		if (copied)
1303 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1304 				 TCP_NAGLE_PUSH, size_goal);
1305 
1306 		err = sk_stream_wait_memory(sk, &timeo);
1307 		if (err != 0)
1308 			goto do_error;
1309 
1310 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1311 	}
1312 
1313 out:
1314 	if (copied) {
1315 		tcp_tx_timestamp(sk, sockc.tsflags);
1316 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1317 	}
1318 out_nopush:
1319 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1320 	if (uarg && !msg->msg_ubuf)
1321 		net_zcopy_put(uarg);
1322 	return copied + copied_syn;
1323 
1324 do_error:
1325 	tcp_remove_empty_skb(sk);
1326 
1327 	if (copied + copied_syn)
1328 		goto out;
1329 out_err:
1330 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1331 	if (uarg && !msg->msg_ubuf)
1332 		net_zcopy_put_abort(uarg, true);
1333 	err = sk_stream_error(sk, flags, err);
1334 	/* make sure we wake any epoll edge trigger waiter */
1335 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1336 		sk->sk_write_space(sk);
1337 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1338 	}
1339 	return err;
1340 }
1341 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1342 
1343 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1344 {
1345 	int ret;
1346 
1347 	lock_sock(sk);
1348 	ret = tcp_sendmsg_locked(sk, msg, size);
1349 	release_sock(sk);
1350 
1351 	return ret;
1352 }
1353 EXPORT_SYMBOL(tcp_sendmsg);
1354 
1355 void tcp_splice_eof(struct socket *sock)
1356 {
1357 	struct sock *sk = sock->sk;
1358 	struct tcp_sock *tp = tcp_sk(sk);
1359 	int mss_now, size_goal;
1360 
1361 	if (!tcp_write_queue_tail(sk))
1362 		return;
1363 
1364 	lock_sock(sk);
1365 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1366 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1367 	release_sock(sk);
1368 }
1369 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1370 
1371 /*
1372  *	Handle reading urgent data. BSD has very simple semantics for
1373  *	this, no blocking and very strange errors 8)
1374  */
1375 
1376 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1377 {
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 
1380 	/* No URG data to read. */
1381 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1382 	    tp->urg_data == TCP_URG_READ)
1383 		return -EINVAL;	/* Yes this is right ! */
1384 
1385 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1386 		return -ENOTCONN;
1387 
1388 	if (tp->urg_data & TCP_URG_VALID) {
1389 		int err = 0;
1390 		char c = tp->urg_data;
1391 
1392 		if (!(flags & MSG_PEEK))
1393 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1394 
1395 		/* Read urgent data. */
1396 		msg->msg_flags |= MSG_OOB;
1397 
1398 		if (len > 0) {
1399 			if (!(flags & MSG_TRUNC))
1400 				err = memcpy_to_msg(msg, &c, 1);
1401 			len = 1;
1402 		} else
1403 			msg->msg_flags |= MSG_TRUNC;
1404 
1405 		return err ? -EFAULT : len;
1406 	}
1407 
1408 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1409 		return 0;
1410 
1411 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1412 	 * the available implementations agree in this case:
1413 	 * this call should never block, independent of the
1414 	 * blocking state of the socket.
1415 	 * Mike <pall@rz.uni-karlsruhe.de>
1416 	 */
1417 	return -EAGAIN;
1418 }
1419 
1420 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1421 {
1422 	struct sk_buff *skb;
1423 	int copied = 0, err = 0;
1424 
1425 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1426 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1427 		if (err)
1428 			return err;
1429 		copied += skb->len;
1430 	}
1431 
1432 	skb_queue_walk(&sk->sk_write_queue, skb) {
1433 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1434 		if (err)
1435 			break;
1436 
1437 		copied += skb->len;
1438 	}
1439 
1440 	return err ?: copied;
1441 }
1442 
1443 /* Clean up the receive buffer for full frames taken by the user,
1444  * then send an ACK if necessary.  COPIED is the number of bytes
1445  * tcp_recvmsg has given to the user so far, it speeds up the
1446  * calculation of whether or not we must ACK for the sake of
1447  * a window update.
1448  */
1449 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1450 {
1451 	struct tcp_sock *tp = tcp_sk(sk);
1452 	bool time_to_ack = false;
1453 
1454 	if (inet_csk_ack_scheduled(sk)) {
1455 		const struct inet_connection_sock *icsk = inet_csk(sk);
1456 
1457 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1458 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1459 		    /*
1460 		     * If this read emptied read buffer, we send ACK, if
1461 		     * connection is not bidirectional, user drained
1462 		     * receive buffer and there was a small segment
1463 		     * in queue.
1464 		     */
1465 		    (copied > 0 &&
1466 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1467 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1468 		       !inet_csk_in_pingpong_mode(sk))) &&
1469 		      !atomic_read(&sk->sk_rmem_alloc)))
1470 			time_to_ack = true;
1471 	}
1472 
1473 	/* We send an ACK if we can now advertise a non-zero window
1474 	 * which has been raised "significantly".
1475 	 *
1476 	 * Even if window raised up to infinity, do not send window open ACK
1477 	 * in states, where we will not receive more. It is useless.
1478 	 */
1479 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1480 		__u32 rcv_window_now = tcp_receive_window(tp);
1481 
1482 		/* Optimize, __tcp_select_window() is not cheap. */
1483 		if (2*rcv_window_now <= tp->window_clamp) {
1484 			__u32 new_window = __tcp_select_window(sk);
1485 
1486 			/* Send ACK now, if this read freed lots of space
1487 			 * in our buffer. Certainly, new_window is new window.
1488 			 * We can advertise it now, if it is not less than current one.
1489 			 * "Lots" means "at least twice" here.
1490 			 */
1491 			if (new_window && new_window >= 2 * rcv_window_now)
1492 				time_to_ack = true;
1493 		}
1494 	}
1495 	if (time_to_ack)
1496 		tcp_send_ack(sk);
1497 }
1498 
1499 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1500 {
1501 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1502 	struct tcp_sock *tp = tcp_sk(sk);
1503 
1504 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1505 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1506 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1507 	__tcp_cleanup_rbuf(sk, copied);
1508 }
1509 
1510 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1511 {
1512 	__skb_unlink(skb, &sk->sk_receive_queue);
1513 	if (likely(skb->destructor == sock_rfree)) {
1514 		sock_rfree(skb);
1515 		skb->destructor = NULL;
1516 		skb->sk = NULL;
1517 		return skb_attempt_defer_free(skb);
1518 	}
1519 	__kfree_skb(skb);
1520 }
1521 
1522 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1523 {
1524 	struct sk_buff *skb;
1525 	u32 offset;
1526 
1527 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1528 		offset = seq - TCP_SKB_CB(skb)->seq;
1529 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1530 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1531 			offset--;
1532 		}
1533 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1534 			*off = offset;
1535 			return skb;
1536 		}
1537 		/* This looks weird, but this can happen if TCP collapsing
1538 		 * splitted a fat GRO packet, while we released socket lock
1539 		 * in skb_splice_bits()
1540 		 */
1541 		tcp_eat_recv_skb(sk, skb);
1542 	}
1543 	return NULL;
1544 }
1545 EXPORT_SYMBOL(tcp_recv_skb);
1546 
1547 /*
1548  * This routine provides an alternative to tcp_recvmsg() for routines
1549  * that would like to handle copying from skbuffs directly in 'sendfile'
1550  * fashion.
1551  * Note:
1552  *	- It is assumed that the socket was locked by the caller.
1553  *	- The routine does not block.
1554  *	- At present, there is no support for reading OOB data
1555  *	  or for 'peeking' the socket using this routine
1556  *	  (although both would be easy to implement).
1557  */
1558 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1559 		  sk_read_actor_t recv_actor)
1560 {
1561 	struct sk_buff *skb;
1562 	struct tcp_sock *tp = tcp_sk(sk);
1563 	u32 seq = tp->copied_seq;
1564 	u32 offset;
1565 	int copied = 0;
1566 
1567 	if (sk->sk_state == TCP_LISTEN)
1568 		return -ENOTCONN;
1569 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1570 		if (offset < skb->len) {
1571 			int used;
1572 			size_t len;
1573 
1574 			len = skb->len - offset;
1575 			/* Stop reading if we hit a patch of urgent data */
1576 			if (unlikely(tp->urg_data)) {
1577 				u32 urg_offset = tp->urg_seq - seq;
1578 				if (urg_offset < len)
1579 					len = urg_offset;
1580 				if (!len)
1581 					break;
1582 			}
1583 			used = recv_actor(desc, skb, offset, len);
1584 			if (used <= 0) {
1585 				if (!copied)
1586 					copied = used;
1587 				break;
1588 			}
1589 			if (WARN_ON_ONCE(used > len))
1590 				used = len;
1591 			seq += used;
1592 			copied += used;
1593 			offset += used;
1594 
1595 			/* If recv_actor drops the lock (e.g. TCP splice
1596 			 * receive) the skb pointer might be invalid when
1597 			 * getting here: tcp_collapse might have deleted it
1598 			 * while aggregating skbs from the socket queue.
1599 			 */
1600 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1601 			if (!skb)
1602 				break;
1603 			/* TCP coalescing might have appended data to the skb.
1604 			 * Try to splice more frags
1605 			 */
1606 			if (offset + 1 != skb->len)
1607 				continue;
1608 		}
1609 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1610 			tcp_eat_recv_skb(sk, skb);
1611 			++seq;
1612 			break;
1613 		}
1614 		tcp_eat_recv_skb(sk, skb);
1615 		if (!desc->count)
1616 			break;
1617 		WRITE_ONCE(tp->copied_seq, seq);
1618 	}
1619 	WRITE_ONCE(tp->copied_seq, seq);
1620 
1621 	tcp_rcv_space_adjust(sk);
1622 
1623 	/* Clean up data we have read: This will do ACK frames. */
1624 	if (copied > 0) {
1625 		tcp_recv_skb(sk, seq, &offset);
1626 		tcp_cleanup_rbuf(sk, copied);
1627 	}
1628 	return copied;
1629 }
1630 EXPORT_SYMBOL(tcp_read_sock);
1631 
1632 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1633 {
1634 	struct sk_buff *skb;
1635 	int copied = 0;
1636 
1637 	if (sk->sk_state == TCP_LISTEN)
1638 		return -ENOTCONN;
1639 
1640 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1641 		u8 tcp_flags;
1642 		int used;
1643 
1644 		__skb_unlink(skb, &sk->sk_receive_queue);
1645 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1646 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1647 		used = recv_actor(sk, skb);
1648 		if (used < 0) {
1649 			if (!copied)
1650 				copied = used;
1651 			break;
1652 		}
1653 		copied += used;
1654 
1655 		if (tcp_flags & TCPHDR_FIN)
1656 			break;
1657 	}
1658 	return copied;
1659 }
1660 EXPORT_SYMBOL(tcp_read_skb);
1661 
1662 void tcp_read_done(struct sock *sk, size_t len)
1663 {
1664 	struct tcp_sock *tp = tcp_sk(sk);
1665 	u32 seq = tp->copied_seq;
1666 	struct sk_buff *skb;
1667 	size_t left;
1668 	u32 offset;
1669 
1670 	if (sk->sk_state == TCP_LISTEN)
1671 		return;
1672 
1673 	left = len;
1674 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1675 		int used;
1676 
1677 		used = min_t(size_t, skb->len - offset, left);
1678 		seq += used;
1679 		left -= used;
1680 
1681 		if (skb->len > offset + used)
1682 			break;
1683 
1684 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1685 			tcp_eat_recv_skb(sk, skb);
1686 			++seq;
1687 			break;
1688 		}
1689 		tcp_eat_recv_skb(sk, skb);
1690 	}
1691 	WRITE_ONCE(tp->copied_seq, seq);
1692 
1693 	tcp_rcv_space_adjust(sk);
1694 
1695 	/* Clean up data we have read: This will do ACK frames. */
1696 	if (left != len)
1697 		tcp_cleanup_rbuf(sk, len - left);
1698 }
1699 EXPORT_SYMBOL(tcp_read_done);
1700 
1701 int tcp_peek_len(struct socket *sock)
1702 {
1703 	return tcp_inq(sock->sk);
1704 }
1705 EXPORT_SYMBOL(tcp_peek_len);
1706 
1707 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1708 int tcp_set_rcvlowat(struct sock *sk, int val)
1709 {
1710 	int space, cap;
1711 
1712 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1713 		cap = sk->sk_rcvbuf >> 1;
1714 	else
1715 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1716 	val = min(val, cap);
1717 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1718 
1719 	/* Check if we need to signal EPOLLIN right now */
1720 	tcp_data_ready(sk);
1721 
1722 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723 		return 0;
1724 
1725 	space = tcp_space_from_win(sk, val);
1726 	if (space > sk->sk_rcvbuf) {
1727 		WRITE_ONCE(sk->sk_rcvbuf, space);
1728 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1729 	}
1730 	return 0;
1731 }
1732 EXPORT_SYMBOL(tcp_set_rcvlowat);
1733 
1734 void tcp_update_recv_tstamps(struct sk_buff *skb,
1735 			     struct scm_timestamping_internal *tss)
1736 {
1737 	if (skb->tstamp)
1738 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1739 	else
1740 		tss->ts[0] = (struct timespec64) {0};
1741 
1742 	if (skb_hwtstamps(skb)->hwtstamp)
1743 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1744 	else
1745 		tss->ts[2] = (struct timespec64) {0};
1746 }
1747 
1748 #ifdef CONFIG_MMU
1749 static const struct vm_operations_struct tcp_vm_ops = {
1750 };
1751 
1752 int tcp_mmap(struct file *file, struct socket *sock,
1753 	     struct vm_area_struct *vma)
1754 {
1755 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1756 		return -EPERM;
1757 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1758 
1759 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1760 	vm_flags_set(vma, VM_MIXEDMAP);
1761 
1762 	vma->vm_ops = &tcp_vm_ops;
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(tcp_mmap);
1766 
1767 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1768 				       u32 *offset_frag)
1769 {
1770 	skb_frag_t *frag;
1771 
1772 	if (unlikely(offset_skb >= skb->len))
1773 		return NULL;
1774 
1775 	offset_skb -= skb_headlen(skb);
1776 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1777 		return NULL;
1778 
1779 	frag = skb_shinfo(skb)->frags;
1780 	while (offset_skb) {
1781 		if (skb_frag_size(frag) > offset_skb) {
1782 			*offset_frag = offset_skb;
1783 			return frag;
1784 		}
1785 		offset_skb -= skb_frag_size(frag);
1786 		++frag;
1787 	}
1788 	*offset_frag = 0;
1789 	return frag;
1790 }
1791 
1792 static bool can_map_frag(const skb_frag_t *frag)
1793 {
1794 	struct page *page;
1795 
1796 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1797 		return false;
1798 
1799 	page = skb_frag_page(frag);
1800 
1801 	if (PageCompound(page) || page->mapping)
1802 		return false;
1803 
1804 	return true;
1805 }
1806 
1807 static int find_next_mappable_frag(const skb_frag_t *frag,
1808 				   int remaining_in_skb)
1809 {
1810 	int offset = 0;
1811 
1812 	if (likely(can_map_frag(frag)))
1813 		return 0;
1814 
1815 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1816 		offset += skb_frag_size(frag);
1817 		++frag;
1818 	}
1819 	return offset;
1820 }
1821 
1822 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1823 					  struct tcp_zerocopy_receive *zc,
1824 					  struct sk_buff *skb, u32 offset)
1825 {
1826 	u32 frag_offset, partial_frag_remainder = 0;
1827 	int mappable_offset;
1828 	skb_frag_t *frag;
1829 
1830 	/* worst case: skip to next skb. try to improve on this case below */
1831 	zc->recv_skip_hint = skb->len - offset;
1832 
1833 	/* Find the frag containing this offset (and how far into that frag) */
1834 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1835 	if (!frag)
1836 		return;
1837 
1838 	if (frag_offset) {
1839 		struct skb_shared_info *info = skb_shinfo(skb);
1840 
1841 		/* We read part of the last frag, must recvmsg() rest of skb. */
1842 		if (frag == &info->frags[info->nr_frags - 1])
1843 			return;
1844 
1845 		/* Else, we must at least read the remainder in this frag. */
1846 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1847 		zc->recv_skip_hint -= partial_frag_remainder;
1848 		++frag;
1849 	}
1850 
1851 	/* partial_frag_remainder: If part way through a frag, must read rest.
1852 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1853 	 * in partial_frag_remainder.
1854 	 */
1855 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1856 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1857 }
1858 
1859 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1860 			      int flags, struct scm_timestamping_internal *tss,
1861 			      int *cmsg_flags);
1862 static int receive_fallback_to_copy(struct sock *sk,
1863 				    struct tcp_zerocopy_receive *zc, int inq,
1864 				    struct scm_timestamping_internal *tss)
1865 {
1866 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1867 	struct msghdr msg = {};
1868 	int err;
1869 
1870 	zc->length = 0;
1871 	zc->recv_skip_hint = 0;
1872 
1873 	if (copy_address != zc->copybuf_address)
1874 		return -EINVAL;
1875 
1876 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1877 			  &msg.msg_iter);
1878 	if (err)
1879 		return err;
1880 
1881 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1882 				 tss, &zc->msg_flags);
1883 	if (err < 0)
1884 		return err;
1885 
1886 	zc->copybuf_len = err;
1887 	if (likely(zc->copybuf_len)) {
1888 		struct sk_buff *skb;
1889 		u32 offset;
1890 
1891 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1892 		if (skb)
1893 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1894 	}
1895 	return 0;
1896 }
1897 
1898 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1899 				   struct sk_buff *skb, u32 copylen,
1900 				   u32 *offset, u32 *seq)
1901 {
1902 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1903 	struct msghdr msg = {};
1904 	int err;
1905 
1906 	if (copy_address != zc->copybuf_address)
1907 		return -EINVAL;
1908 
1909 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1910 			  &msg.msg_iter);
1911 	if (err)
1912 		return err;
1913 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1914 	if (err)
1915 		return err;
1916 	zc->recv_skip_hint -= copylen;
1917 	*offset += copylen;
1918 	*seq += copylen;
1919 	return (__s32)copylen;
1920 }
1921 
1922 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1923 				  struct sock *sk,
1924 				  struct sk_buff *skb,
1925 				  u32 *seq,
1926 				  s32 copybuf_len,
1927 				  struct scm_timestamping_internal *tss)
1928 {
1929 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1930 
1931 	if (!copylen)
1932 		return 0;
1933 	/* skb is null if inq < PAGE_SIZE. */
1934 	if (skb) {
1935 		offset = *seq - TCP_SKB_CB(skb)->seq;
1936 	} else {
1937 		skb = tcp_recv_skb(sk, *seq, &offset);
1938 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1939 			tcp_update_recv_tstamps(skb, tss);
1940 			zc->msg_flags |= TCP_CMSG_TS;
1941 		}
1942 	}
1943 
1944 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1945 						  seq);
1946 	return zc->copybuf_len < 0 ? 0 : copylen;
1947 }
1948 
1949 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1950 					      struct page **pending_pages,
1951 					      unsigned long pages_remaining,
1952 					      unsigned long *address,
1953 					      u32 *length,
1954 					      u32 *seq,
1955 					      struct tcp_zerocopy_receive *zc,
1956 					      u32 total_bytes_to_map,
1957 					      int err)
1958 {
1959 	/* At least one page did not map. Try zapping if we skipped earlier. */
1960 	if (err == -EBUSY &&
1961 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1962 		u32 maybe_zap_len;
1963 
1964 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1965 				*length + /* Mapped or pending */
1966 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1967 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1968 		err = 0;
1969 	}
1970 
1971 	if (!err) {
1972 		unsigned long leftover_pages = pages_remaining;
1973 		int bytes_mapped;
1974 
1975 		/* We called zap_page_range_single, try to reinsert. */
1976 		err = vm_insert_pages(vma, *address,
1977 				      pending_pages,
1978 				      &pages_remaining);
1979 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1980 		*seq += bytes_mapped;
1981 		*address += bytes_mapped;
1982 	}
1983 	if (err) {
1984 		/* Either we were unable to zap, OR we zapped, retried an
1985 		 * insert, and still had an issue. Either ways, pages_remaining
1986 		 * is the number of pages we were unable to map, and we unroll
1987 		 * some state we speculatively touched before.
1988 		 */
1989 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1990 
1991 		*length -= bytes_not_mapped;
1992 		zc->recv_skip_hint += bytes_not_mapped;
1993 	}
1994 	return err;
1995 }
1996 
1997 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1998 					struct page **pages,
1999 					unsigned int pages_to_map,
2000 					unsigned long *address,
2001 					u32 *length,
2002 					u32 *seq,
2003 					struct tcp_zerocopy_receive *zc,
2004 					u32 total_bytes_to_map)
2005 {
2006 	unsigned long pages_remaining = pages_to_map;
2007 	unsigned int pages_mapped;
2008 	unsigned int bytes_mapped;
2009 	int err;
2010 
2011 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2012 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2013 	bytes_mapped = PAGE_SIZE * pages_mapped;
2014 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2015 	 * mapping (some but not all of the pages).
2016 	 */
2017 	*seq += bytes_mapped;
2018 	*address += bytes_mapped;
2019 
2020 	if (likely(!err))
2021 		return 0;
2022 
2023 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2024 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2025 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2026 		err);
2027 }
2028 
2029 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2030 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2031 				      struct tcp_zerocopy_receive *zc,
2032 				      struct scm_timestamping_internal *tss)
2033 {
2034 	unsigned long msg_control_addr;
2035 	struct msghdr cmsg_dummy;
2036 
2037 	msg_control_addr = (unsigned long)zc->msg_control;
2038 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2039 	cmsg_dummy.msg_controllen =
2040 		(__kernel_size_t)zc->msg_controllen;
2041 	cmsg_dummy.msg_flags = in_compat_syscall()
2042 		? MSG_CMSG_COMPAT : 0;
2043 	cmsg_dummy.msg_control_is_user = true;
2044 	zc->msg_flags = 0;
2045 	if (zc->msg_control == msg_control_addr &&
2046 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2047 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2048 		zc->msg_control = (__u64)
2049 			((uintptr_t)cmsg_dummy.msg_control_user);
2050 		zc->msg_controllen =
2051 			(__u64)cmsg_dummy.msg_controllen;
2052 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2053 	}
2054 }
2055 
2056 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2057 					   unsigned long address,
2058 					   bool *mmap_locked)
2059 {
2060 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2061 
2062 	if (vma) {
2063 		if (vma->vm_ops != &tcp_vm_ops) {
2064 			vma_end_read(vma);
2065 			return NULL;
2066 		}
2067 		*mmap_locked = false;
2068 		return vma;
2069 	}
2070 
2071 	mmap_read_lock(mm);
2072 	vma = vma_lookup(mm, address);
2073 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2074 		mmap_read_unlock(mm);
2075 		return NULL;
2076 	}
2077 	*mmap_locked = true;
2078 	return vma;
2079 }
2080 
2081 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2082 static int tcp_zerocopy_receive(struct sock *sk,
2083 				struct tcp_zerocopy_receive *zc,
2084 				struct scm_timestamping_internal *tss)
2085 {
2086 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2087 	unsigned long address = (unsigned long)zc->address;
2088 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2089 	s32 copybuf_len = zc->copybuf_len;
2090 	struct tcp_sock *tp = tcp_sk(sk);
2091 	const skb_frag_t *frags = NULL;
2092 	unsigned int pages_to_map = 0;
2093 	struct vm_area_struct *vma;
2094 	struct sk_buff *skb = NULL;
2095 	u32 seq = tp->copied_seq;
2096 	u32 total_bytes_to_map;
2097 	int inq = tcp_inq(sk);
2098 	bool mmap_locked;
2099 	int ret;
2100 
2101 	zc->copybuf_len = 0;
2102 	zc->msg_flags = 0;
2103 
2104 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2105 		return -EINVAL;
2106 
2107 	if (sk->sk_state == TCP_LISTEN)
2108 		return -ENOTCONN;
2109 
2110 	sock_rps_record_flow(sk);
2111 
2112 	if (inq && inq <= copybuf_len)
2113 		return receive_fallback_to_copy(sk, zc, inq, tss);
2114 
2115 	if (inq < PAGE_SIZE) {
2116 		zc->length = 0;
2117 		zc->recv_skip_hint = inq;
2118 		if (!inq && sock_flag(sk, SOCK_DONE))
2119 			return -EIO;
2120 		return 0;
2121 	}
2122 
2123 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2124 	if (!vma)
2125 		return -EINVAL;
2126 
2127 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2128 	avail_len = min_t(u32, vma_len, inq);
2129 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2130 	if (total_bytes_to_map) {
2131 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2132 			zap_page_range_single(vma, address, total_bytes_to_map,
2133 					      NULL);
2134 		zc->length = total_bytes_to_map;
2135 		zc->recv_skip_hint = 0;
2136 	} else {
2137 		zc->length = avail_len;
2138 		zc->recv_skip_hint = avail_len;
2139 	}
2140 	ret = 0;
2141 	while (length + PAGE_SIZE <= zc->length) {
2142 		int mappable_offset;
2143 		struct page *page;
2144 
2145 		if (zc->recv_skip_hint < PAGE_SIZE) {
2146 			u32 offset_frag;
2147 
2148 			if (skb) {
2149 				if (zc->recv_skip_hint > 0)
2150 					break;
2151 				skb = skb->next;
2152 				offset = seq - TCP_SKB_CB(skb)->seq;
2153 			} else {
2154 				skb = tcp_recv_skb(sk, seq, &offset);
2155 			}
2156 
2157 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2158 				tcp_update_recv_tstamps(skb, tss);
2159 				zc->msg_flags |= TCP_CMSG_TS;
2160 			}
2161 			zc->recv_skip_hint = skb->len - offset;
2162 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2163 			if (!frags || offset_frag)
2164 				break;
2165 		}
2166 
2167 		mappable_offset = find_next_mappable_frag(frags,
2168 							  zc->recv_skip_hint);
2169 		if (mappable_offset) {
2170 			zc->recv_skip_hint = mappable_offset;
2171 			break;
2172 		}
2173 		page = skb_frag_page(frags);
2174 		prefetchw(page);
2175 		pages[pages_to_map++] = page;
2176 		length += PAGE_SIZE;
2177 		zc->recv_skip_hint -= PAGE_SIZE;
2178 		frags++;
2179 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2180 		    zc->recv_skip_hint < PAGE_SIZE) {
2181 			/* Either full batch, or we're about to go to next skb
2182 			 * (and we cannot unroll failed ops across skbs).
2183 			 */
2184 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2185 							   pages_to_map,
2186 							   &address, &length,
2187 							   &seq, zc,
2188 							   total_bytes_to_map);
2189 			if (ret)
2190 				goto out;
2191 			pages_to_map = 0;
2192 		}
2193 	}
2194 	if (pages_to_map) {
2195 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2196 						   &address, &length, &seq,
2197 						   zc, total_bytes_to_map);
2198 	}
2199 out:
2200 	if (mmap_locked)
2201 		mmap_read_unlock(current->mm);
2202 	else
2203 		vma_end_read(vma);
2204 	/* Try to copy straggler data. */
2205 	if (!ret)
2206 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2207 
2208 	if (length + copylen) {
2209 		WRITE_ONCE(tp->copied_seq, seq);
2210 		tcp_rcv_space_adjust(sk);
2211 
2212 		/* Clean up data we have read: This will do ACK frames. */
2213 		tcp_recv_skb(sk, seq, &offset);
2214 		tcp_cleanup_rbuf(sk, length + copylen);
2215 		ret = 0;
2216 		if (length == zc->length)
2217 			zc->recv_skip_hint = 0;
2218 	} else {
2219 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2220 			ret = -EIO;
2221 	}
2222 	zc->length = length;
2223 	return ret;
2224 }
2225 #endif
2226 
2227 /* Similar to __sock_recv_timestamp, but does not require an skb */
2228 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2229 			struct scm_timestamping_internal *tss)
2230 {
2231 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2232 	bool has_timestamping = false;
2233 
2234 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2235 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2236 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2237 				if (new_tstamp) {
2238 					struct __kernel_timespec kts = {
2239 						.tv_sec = tss->ts[0].tv_sec,
2240 						.tv_nsec = tss->ts[0].tv_nsec,
2241 					};
2242 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2243 						 sizeof(kts), &kts);
2244 				} else {
2245 					struct __kernel_old_timespec ts_old = {
2246 						.tv_sec = tss->ts[0].tv_sec,
2247 						.tv_nsec = tss->ts[0].tv_nsec,
2248 					};
2249 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2250 						 sizeof(ts_old), &ts_old);
2251 				}
2252 			} else {
2253 				if (new_tstamp) {
2254 					struct __kernel_sock_timeval stv = {
2255 						.tv_sec = tss->ts[0].tv_sec,
2256 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2257 					};
2258 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2259 						 sizeof(stv), &stv);
2260 				} else {
2261 					struct __kernel_old_timeval tv = {
2262 						.tv_sec = tss->ts[0].tv_sec,
2263 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2264 					};
2265 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2266 						 sizeof(tv), &tv);
2267 				}
2268 			}
2269 		}
2270 
2271 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2272 			has_timestamping = true;
2273 		else
2274 			tss->ts[0] = (struct timespec64) {0};
2275 	}
2276 
2277 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2278 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2279 			has_timestamping = true;
2280 		else
2281 			tss->ts[2] = (struct timespec64) {0};
2282 	}
2283 
2284 	if (has_timestamping) {
2285 		tss->ts[1] = (struct timespec64) {0};
2286 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2287 			put_cmsg_scm_timestamping64(msg, tss);
2288 		else
2289 			put_cmsg_scm_timestamping(msg, tss);
2290 	}
2291 }
2292 
2293 static int tcp_inq_hint(struct sock *sk)
2294 {
2295 	const struct tcp_sock *tp = tcp_sk(sk);
2296 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2297 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2298 	int inq;
2299 
2300 	inq = rcv_nxt - copied_seq;
2301 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2302 		lock_sock(sk);
2303 		inq = tp->rcv_nxt - tp->copied_seq;
2304 		release_sock(sk);
2305 	}
2306 	/* After receiving a FIN, tell the user-space to continue reading
2307 	 * by returning a non-zero inq.
2308 	 */
2309 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2310 		inq = 1;
2311 	return inq;
2312 }
2313 
2314 /*
2315  *	This routine copies from a sock struct into the user buffer.
2316  *
2317  *	Technical note: in 2.3 we work on _locked_ socket, so that
2318  *	tricks with *seq access order and skb->users are not required.
2319  *	Probably, code can be easily improved even more.
2320  */
2321 
2322 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2323 			      int flags, struct scm_timestamping_internal *tss,
2324 			      int *cmsg_flags)
2325 {
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 	int copied = 0;
2328 	u32 peek_seq;
2329 	u32 *seq;
2330 	unsigned long used;
2331 	int err;
2332 	int target;		/* Read at least this many bytes */
2333 	long timeo;
2334 	struct sk_buff *skb, *last;
2335 	u32 peek_offset = 0;
2336 	u32 urg_hole = 0;
2337 
2338 	err = -ENOTCONN;
2339 	if (sk->sk_state == TCP_LISTEN)
2340 		goto out;
2341 
2342 	if (tp->recvmsg_inq) {
2343 		*cmsg_flags = TCP_CMSG_INQ;
2344 		msg->msg_get_inq = 1;
2345 	}
2346 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2347 
2348 	/* Urgent data needs to be handled specially. */
2349 	if (flags & MSG_OOB)
2350 		goto recv_urg;
2351 
2352 	if (unlikely(tp->repair)) {
2353 		err = -EPERM;
2354 		if (!(flags & MSG_PEEK))
2355 			goto out;
2356 
2357 		if (tp->repair_queue == TCP_SEND_QUEUE)
2358 			goto recv_sndq;
2359 
2360 		err = -EINVAL;
2361 		if (tp->repair_queue == TCP_NO_QUEUE)
2362 			goto out;
2363 
2364 		/* 'common' recv queue MSG_PEEK-ing */
2365 	}
2366 
2367 	seq = &tp->copied_seq;
2368 	if (flags & MSG_PEEK) {
2369 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2370 		peek_seq = tp->copied_seq + peek_offset;
2371 		seq = &peek_seq;
2372 	}
2373 
2374 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2375 
2376 	do {
2377 		u32 offset;
2378 
2379 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2380 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2381 			if (copied)
2382 				break;
2383 			if (signal_pending(current)) {
2384 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2385 				break;
2386 			}
2387 		}
2388 
2389 		/* Next get a buffer. */
2390 
2391 		last = skb_peek_tail(&sk->sk_receive_queue);
2392 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2393 			last = skb;
2394 			/* Now that we have two receive queues this
2395 			 * shouldn't happen.
2396 			 */
2397 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2398 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2399 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2400 				 flags))
2401 				break;
2402 
2403 			offset = *seq - TCP_SKB_CB(skb)->seq;
2404 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2405 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2406 				offset--;
2407 			}
2408 			if (offset < skb->len)
2409 				goto found_ok_skb;
2410 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2411 				goto found_fin_ok;
2412 			WARN(!(flags & MSG_PEEK),
2413 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2414 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2415 		}
2416 
2417 		/* Well, if we have backlog, try to process it now yet. */
2418 
2419 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2420 			break;
2421 
2422 		if (copied) {
2423 			if (!timeo ||
2424 			    sk->sk_err ||
2425 			    sk->sk_state == TCP_CLOSE ||
2426 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2427 			    signal_pending(current))
2428 				break;
2429 		} else {
2430 			if (sock_flag(sk, SOCK_DONE))
2431 				break;
2432 
2433 			if (sk->sk_err) {
2434 				copied = sock_error(sk);
2435 				break;
2436 			}
2437 
2438 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2439 				break;
2440 
2441 			if (sk->sk_state == TCP_CLOSE) {
2442 				/* This occurs when user tries to read
2443 				 * from never connected socket.
2444 				 */
2445 				copied = -ENOTCONN;
2446 				break;
2447 			}
2448 
2449 			if (!timeo) {
2450 				copied = -EAGAIN;
2451 				break;
2452 			}
2453 
2454 			if (signal_pending(current)) {
2455 				copied = sock_intr_errno(timeo);
2456 				break;
2457 			}
2458 		}
2459 
2460 		if (copied >= target) {
2461 			/* Do not sleep, just process backlog. */
2462 			__sk_flush_backlog(sk);
2463 		} else {
2464 			tcp_cleanup_rbuf(sk, copied);
2465 			err = sk_wait_data(sk, &timeo, last);
2466 			if (err < 0) {
2467 				err = copied ? : err;
2468 				goto out;
2469 			}
2470 		}
2471 
2472 		if ((flags & MSG_PEEK) &&
2473 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2474 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2475 					    current->comm,
2476 					    task_pid_nr(current));
2477 			peek_seq = tp->copied_seq + peek_offset;
2478 		}
2479 		continue;
2480 
2481 found_ok_skb:
2482 		/* Ok so how much can we use? */
2483 		used = skb->len - offset;
2484 		if (len < used)
2485 			used = len;
2486 
2487 		/* Do we have urgent data here? */
2488 		if (unlikely(tp->urg_data)) {
2489 			u32 urg_offset = tp->urg_seq - *seq;
2490 			if (urg_offset < used) {
2491 				if (!urg_offset) {
2492 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2493 						WRITE_ONCE(*seq, *seq + 1);
2494 						urg_hole++;
2495 						offset++;
2496 						used--;
2497 						if (!used)
2498 							goto skip_copy;
2499 					}
2500 				} else
2501 					used = urg_offset;
2502 			}
2503 		}
2504 
2505 		if (!(flags & MSG_TRUNC)) {
2506 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2507 			if (err) {
2508 				/* Exception. Bailout! */
2509 				if (!copied)
2510 					copied = -EFAULT;
2511 				break;
2512 			}
2513 		}
2514 
2515 		WRITE_ONCE(*seq, *seq + used);
2516 		copied += used;
2517 		len -= used;
2518 		if (flags & MSG_PEEK)
2519 			sk_peek_offset_fwd(sk, used);
2520 		else
2521 			sk_peek_offset_bwd(sk, used);
2522 		tcp_rcv_space_adjust(sk);
2523 
2524 skip_copy:
2525 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2526 			WRITE_ONCE(tp->urg_data, 0);
2527 			tcp_fast_path_check(sk);
2528 		}
2529 
2530 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2531 			tcp_update_recv_tstamps(skb, tss);
2532 			*cmsg_flags |= TCP_CMSG_TS;
2533 		}
2534 
2535 		if (used + offset < skb->len)
2536 			continue;
2537 
2538 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2539 			goto found_fin_ok;
2540 		if (!(flags & MSG_PEEK))
2541 			tcp_eat_recv_skb(sk, skb);
2542 		continue;
2543 
2544 found_fin_ok:
2545 		/* Process the FIN. */
2546 		WRITE_ONCE(*seq, *seq + 1);
2547 		if (!(flags & MSG_PEEK))
2548 			tcp_eat_recv_skb(sk, skb);
2549 		break;
2550 	} while (len > 0);
2551 
2552 	/* According to UNIX98, msg_name/msg_namelen are ignored
2553 	 * on connected socket. I was just happy when found this 8) --ANK
2554 	 */
2555 
2556 	/* Clean up data we have read: This will do ACK frames. */
2557 	tcp_cleanup_rbuf(sk, copied);
2558 	return copied;
2559 
2560 out:
2561 	return err;
2562 
2563 recv_urg:
2564 	err = tcp_recv_urg(sk, msg, len, flags);
2565 	goto out;
2566 
2567 recv_sndq:
2568 	err = tcp_peek_sndq(sk, msg, len);
2569 	goto out;
2570 }
2571 
2572 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2573 		int *addr_len)
2574 {
2575 	int cmsg_flags = 0, ret;
2576 	struct scm_timestamping_internal tss;
2577 
2578 	if (unlikely(flags & MSG_ERRQUEUE))
2579 		return inet_recv_error(sk, msg, len, addr_len);
2580 
2581 	if (sk_can_busy_loop(sk) &&
2582 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2583 	    sk->sk_state == TCP_ESTABLISHED)
2584 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2585 
2586 	lock_sock(sk);
2587 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2588 	release_sock(sk);
2589 
2590 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2591 		if (cmsg_flags & TCP_CMSG_TS)
2592 			tcp_recv_timestamp(msg, sk, &tss);
2593 		if (msg->msg_get_inq) {
2594 			msg->msg_inq = tcp_inq_hint(sk);
2595 			if (cmsg_flags & TCP_CMSG_INQ)
2596 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2597 					 sizeof(msg->msg_inq), &msg->msg_inq);
2598 		}
2599 	}
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL(tcp_recvmsg);
2603 
2604 void tcp_set_state(struct sock *sk, int state)
2605 {
2606 	int oldstate = sk->sk_state;
2607 
2608 	/* We defined a new enum for TCP states that are exported in BPF
2609 	 * so as not force the internal TCP states to be frozen. The
2610 	 * following checks will detect if an internal state value ever
2611 	 * differs from the BPF value. If this ever happens, then we will
2612 	 * need to remap the internal value to the BPF value before calling
2613 	 * tcp_call_bpf_2arg.
2614 	 */
2615 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2616 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2617 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2618 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2619 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2620 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2621 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2622 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2623 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2624 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2625 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2626 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2627 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2628 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2629 
2630 	/* bpf uapi header bpf.h defines an anonymous enum with values
2631 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2632 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2633 	 * But clang built vmlinux does not have this enum in DWARF
2634 	 * since clang removes the above code before generating IR/debuginfo.
2635 	 * Let us explicitly emit the type debuginfo to ensure the
2636 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2637 	 * regardless of which compiler is used.
2638 	 */
2639 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2640 
2641 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2642 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2643 
2644 	switch (state) {
2645 	case TCP_ESTABLISHED:
2646 		if (oldstate != TCP_ESTABLISHED)
2647 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2648 		break;
2649 
2650 	case TCP_CLOSE:
2651 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2652 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2653 
2654 		sk->sk_prot->unhash(sk);
2655 		if (inet_csk(sk)->icsk_bind_hash &&
2656 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2657 			inet_put_port(sk);
2658 		fallthrough;
2659 	default:
2660 		if (oldstate == TCP_ESTABLISHED)
2661 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2662 	}
2663 
2664 	/* Change state AFTER socket is unhashed to avoid closed
2665 	 * socket sitting in hash tables.
2666 	 */
2667 	inet_sk_state_store(sk, state);
2668 }
2669 EXPORT_SYMBOL_GPL(tcp_set_state);
2670 
2671 /*
2672  *	State processing on a close. This implements the state shift for
2673  *	sending our FIN frame. Note that we only send a FIN for some
2674  *	states. A shutdown() may have already sent the FIN, or we may be
2675  *	closed.
2676  */
2677 
2678 static const unsigned char new_state[16] = {
2679   /* current state:        new state:      action:	*/
2680   [0 /* (Invalid) */]	= TCP_CLOSE,
2681   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2682   [TCP_SYN_SENT]	= TCP_CLOSE,
2683   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2684   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2685   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2686   [TCP_TIME_WAIT]	= TCP_CLOSE,
2687   [TCP_CLOSE]		= TCP_CLOSE,
2688   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2689   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2690   [TCP_LISTEN]		= TCP_CLOSE,
2691   [TCP_CLOSING]		= TCP_CLOSING,
2692   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2693 };
2694 
2695 static int tcp_close_state(struct sock *sk)
2696 {
2697 	int next = (int)new_state[sk->sk_state];
2698 	int ns = next & TCP_STATE_MASK;
2699 
2700 	tcp_set_state(sk, ns);
2701 
2702 	return next & TCP_ACTION_FIN;
2703 }
2704 
2705 /*
2706  *	Shutdown the sending side of a connection. Much like close except
2707  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2708  */
2709 
2710 void tcp_shutdown(struct sock *sk, int how)
2711 {
2712 	/*	We need to grab some memory, and put together a FIN,
2713 	 *	and then put it into the queue to be sent.
2714 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2715 	 */
2716 	if (!(how & SEND_SHUTDOWN))
2717 		return;
2718 
2719 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2720 	if ((1 << sk->sk_state) &
2721 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2722 	     TCPF_CLOSE_WAIT)) {
2723 		/* Clear out any half completed packets.  FIN if needed. */
2724 		if (tcp_close_state(sk))
2725 			tcp_send_fin(sk);
2726 	}
2727 }
2728 EXPORT_SYMBOL(tcp_shutdown);
2729 
2730 int tcp_orphan_count_sum(void)
2731 {
2732 	int i, total = 0;
2733 
2734 	for_each_possible_cpu(i)
2735 		total += per_cpu(tcp_orphan_count, i);
2736 
2737 	return max(total, 0);
2738 }
2739 
2740 static int tcp_orphan_cache;
2741 static struct timer_list tcp_orphan_timer;
2742 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2743 
2744 static void tcp_orphan_update(struct timer_list *unused)
2745 {
2746 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2747 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2748 }
2749 
2750 static bool tcp_too_many_orphans(int shift)
2751 {
2752 	return READ_ONCE(tcp_orphan_cache) << shift >
2753 		READ_ONCE(sysctl_tcp_max_orphans);
2754 }
2755 
2756 static bool tcp_out_of_memory(const struct sock *sk)
2757 {
2758 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
2759 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
2760 		return true;
2761 	return false;
2762 }
2763 
2764 bool tcp_check_oom(const struct sock *sk, int shift)
2765 {
2766 	bool too_many_orphans, out_of_socket_memory;
2767 
2768 	too_many_orphans = tcp_too_many_orphans(shift);
2769 	out_of_socket_memory = tcp_out_of_memory(sk);
2770 
2771 	if (too_many_orphans)
2772 		net_info_ratelimited("too many orphaned sockets\n");
2773 	if (out_of_socket_memory)
2774 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2775 	return too_many_orphans || out_of_socket_memory;
2776 }
2777 
2778 void __tcp_close(struct sock *sk, long timeout)
2779 {
2780 	struct sk_buff *skb;
2781 	int data_was_unread = 0;
2782 	int state;
2783 
2784 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2785 
2786 	if (sk->sk_state == TCP_LISTEN) {
2787 		tcp_set_state(sk, TCP_CLOSE);
2788 
2789 		/* Special case. */
2790 		inet_csk_listen_stop(sk);
2791 
2792 		goto adjudge_to_death;
2793 	}
2794 
2795 	/*  We need to flush the recv. buffs.  We do this only on the
2796 	 *  descriptor close, not protocol-sourced closes, because the
2797 	 *  reader process may not have drained the data yet!
2798 	 */
2799 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2800 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2801 
2802 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2803 			len--;
2804 		data_was_unread += len;
2805 		__kfree_skb(skb);
2806 	}
2807 
2808 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2809 	if (sk->sk_state == TCP_CLOSE)
2810 		goto adjudge_to_death;
2811 
2812 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2813 	 * data was lost. To witness the awful effects of the old behavior of
2814 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2815 	 * GET in an FTP client, suspend the process, wait for the client to
2816 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2817 	 * Note: timeout is always zero in such a case.
2818 	 */
2819 	if (unlikely(tcp_sk(sk)->repair)) {
2820 		sk->sk_prot->disconnect(sk, 0);
2821 	} else if (data_was_unread) {
2822 		/* Unread data was tossed, zap the connection. */
2823 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2824 		tcp_set_state(sk, TCP_CLOSE);
2825 		tcp_send_active_reset(sk, sk->sk_allocation,
2826 				      SK_RST_REASON_NOT_SPECIFIED);
2827 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2828 		/* Check zero linger _after_ checking for unread data. */
2829 		sk->sk_prot->disconnect(sk, 0);
2830 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2831 	} else if (tcp_close_state(sk)) {
2832 		/* We FIN if the application ate all the data before
2833 		 * zapping the connection.
2834 		 */
2835 
2836 		/* RED-PEN. Formally speaking, we have broken TCP state
2837 		 * machine. State transitions:
2838 		 *
2839 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2840 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2841 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2842 		 *
2843 		 * are legal only when FIN has been sent (i.e. in window),
2844 		 * rather than queued out of window. Purists blame.
2845 		 *
2846 		 * F.e. "RFC state" is ESTABLISHED,
2847 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2848 		 *
2849 		 * The visible declinations are that sometimes
2850 		 * we enter time-wait state, when it is not required really
2851 		 * (harmless), do not send active resets, when they are
2852 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2853 		 * they look as CLOSING or LAST_ACK for Linux)
2854 		 * Probably, I missed some more holelets.
2855 		 * 						--ANK
2856 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2857 		 * in a single packet! (May consider it later but will
2858 		 * probably need API support or TCP_CORK SYN-ACK until
2859 		 * data is written and socket is closed.)
2860 		 */
2861 		tcp_send_fin(sk);
2862 	}
2863 
2864 	sk_stream_wait_close(sk, timeout);
2865 
2866 adjudge_to_death:
2867 	state = sk->sk_state;
2868 	sock_hold(sk);
2869 	sock_orphan(sk);
2870 
2871 	local_bh_disable();
2872 	bh_lock_sock(sk);
2873 	/* remove backlog if any, without releasing ownership. */
2874 	__release_sock(sk);
2875 
2876 	this_cpu_inc(tcp_orphan_count);
2877 
2878 	/* Have we already been destroyed by a softirq or backlog? */
2879 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2880 		goto out;
2881 
2882 	/*	This is a (useful) BSD violating of the RFC. There is a
2883 	 *	problem with TCP as specified in that the other end could
2884 	 *	keep a socket open forever with no application left this end.
2885 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2886 	 *	our end. If they send after that then tough - BUT: long enough
2887 	 *	that we won't make the old 4*rto = almost no time - whoops
2888 	 *	reset mistake.
2889 	 *
2890 	 *	Nope, it was not mistake. It is really desired behaviour
2891 	 *	f.e. on http servers, when such sockets are useless, but
2892 	 *	consume significant resources. Let's do it with special
2893 	 *	linger2	option.					--ANK
2894 	 */
2895 
2896 	if (sk->sk_state == TCP_FIN_WAIT2) {
2897 		struct tcp_sock *tp = tcp_sk(sk);
2898 		if (READ_ONCE(tp->linger2) < 0) {
2899 			tcp_set_state(sk, TCP_CLOSE);
2900 			tcp_send_active_reset(sk, GFP_ATOMIC,
2901 					      SK_RST_REASON_NOT_SPECIFIED);
2902 			__NET_INC_STATS(sock_net(sk),
2903 					LINUX_MIB_TCPABORTONLINGER);
2904 		} else {
2905 			const int tmo = tcp_fin_time(sk);
2906 
2907 			if (tmo > TCP_TIMEWAIT_LEN) {
2908 				inet_csk_reset_keepalive_timer(sk,
2909 						tmo - TCP_TIMEWAIT_LEN);
2910 			} else {
2911 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2912 				goto out;
2913 			}
2914 		}
2915 	}
2916 	if (sk->sk_state != TCP_CLOSE) {
2917 		if (tcp_check_oom(sk, 0)) {
2918 			tcp_set_state(sk, TCP_CLOSE);
2919 			tcp_send_active_reset(sk, GFP_ATOMIC,
2920 					      SK_RST_REASON_NOT_SPECIFIED);
2921 			__NET_INC_STATS(sock_net(sk),
2922 					LINUX_MIB_TCPABORTONMEMORY);
2923 		} else if (!check_net(sock_net(sk))) {
2924 			/* Not possible to send reset; just close */
2925 			tcp_set_state(sk, TCP_CLOSE);
2926 		}
2927 	}
2928 
2929 	if (sk->sk_state == TCP_CLOSE) {
2930 		struct request_sock *req;
2931 
2932 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2933 						lockdep_sock_is_held(sk));
2934 		/* We could get here with a non-NULL req if the socket is
2935 		 * aborted (e.g., closed with unread data) before 3WHS
2936 		 * finishes.
2937 		 */
2938 		if (req)
2939 			reqsk_fastopen_remove(sk, req, false);
2940 		inet_csk_destroy_sock(sk);
2941 	}
2942 	/* Otherwise, socket is reprieved until protocol close. */
2943 
2944 out:
2945 	bh_unlock_sock(sk);
2946 	local_bh_enable();
2947 }
2948 
2949 void tcp_close(struct sock *sk, long timeout)
2950 {
2951 	lock_sock(sk);
2952 	__tcp_close(sk, timeout);
2953 	release_sock(sk);
2954 	if (!sk->sk_net_refcnt)
2955 		inet_csk_clear_xmit_timers_sync(sk);
2956 	sock_put(sk);
2957 }
2958 EXPORT_SYMBOL(tcp_close);
2959 
2960 /* These states need RST on ABORT according to RFC793 */
2961 
2962 static inline bool tcp_need_reset(int state)
2963 {
2964 	return (1 << state) &
2965 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2966 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2967 }
2968 
2969 static void tcp_rtx_queue_purge(struct sock *sk)
2970 {
2971 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2972 
2973 	tcp_sk(sk)->highest_sack = NULL;
2974 	while (p) {
2975 		struct sk_buff *skb = rb_to_skb(p);
2976 
2977 		p = rb_next(p);
2978 		/* Since we are deleting whole queue, no need to
2979 		 * list_del(&skb->tcp_tsorted_anchor)
2980 		 */
2981 		tcp_rtx_queue_unlink(skb, sk);
2982 		tcp_wmem_free_skb(sk, skb);
2983 	}
2984 }
2985 
2986 void tcp_write_queue_purge(struct sock *sk)
2987 {
2988 	struct sk_buff *skb;
2989 
2990 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2991 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2992 		tcp_skb_tsorted_anchor_cleanup(skb);
2993 		tcp_wmem_free_skb(sk, skb);
2994 	}
2995 	tcp_rtx_queue_purge(sk);
2996 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2997 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2998 	tcp_sk(sk)->packets_out = 0;
2999 	inet_csk(sk)->icsk_backoff = 0;
3000 }
3001 
3002 int tcp_disconnect(struct sock *sk, int flags)
3003 {
3004 	struct inet_sock *inet = inet_sk(sk);
3005 	struct inet_connection_sock *icsk = inet_csk(sk);
3006 	struct tcp_sock *tp = tcp_sk(sk);
3007 	int old_state = sk->sk_state;
3008 	u32 seq;
3009 
3010 	if (old_state != TCP_CLOSE)
3011 		tcp_set_state(sk, TCP_CLOSE);
3012 
3013 	/* ABORT function of RFC793 */
3014 	if (old_state == TCP_LISTEN) {
3015 		inet_csk_listen_stop(sk);
3016 	} else if (unlikely(tp->repair)) {
3017 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3018 	} else if (tcp_need_reset(old_state) ||
3019 		   (tp->snd_nxt != tp->write_seq &&
3020 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3021 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3022 		 * states
3023 		 */
3024 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED);
3025 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3026 	} else if (old_state == TCP_SYN_SENT)
3027 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3028 
3029 	tcp_clear_xmit_timers(sk);
3030 	__skb_queue_purge(&sk->sk_receive_queue);
3031 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3032 	WRITE_ONCE(tp->urg_data, 0);
3033 	sk_set_peek_off(sk, -1);
3034 	tcp_write_queue_purge(sk);
3035 	tcp_fastopen_active_disable_ofo_check(sk);
3036 	skb_rbtree_purge(&tp->out_of_order_queue);
3037 
3038 	inet->inet_dport = 0;
3039 
3040 	inet_bhash2_reset_saddr(sk);
3041 
3042 	WRITE_ONCE(sk->sk_shutdown, 0);
3043 	sock_reset_flag(sk, SOCK_DONE);
3044 	tp->srtt_us = 0;
3045 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3046 	tp->rcv_rtt_last_tsecr = 0;
3047 
3048 	seq = tp->write_seq + tp->max_window + 2;
3049 	if (!seq)
3050 		seq = 1;
3051 	WRITE_ONCE(tp->write_seq, seq);
3052 
3053 	icsk->icsk_backoff = 0;
3054 	icsk->icsk_probes_out = 0;
3055 	icsk->icsk_probes_tstamp = 0;
3056 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3057 	icsk->icsk_rto_min = TCP_RTO_MIN;
3058 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3059 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3060 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3061 	tp->snd_cwnd_cnt = 0;
3062 	tp->is_cwnd_limited = 0;
3063 	tp->max_packets_out = 0;
3064 	tp->window_clamp = 0;
3065 	tp->delivered = 0;
3066 	tp->delivered_ce = 0;
3067 	if (icsk->icsk_ca_ops->release)
3068 		icsk->icsk_ca_ops->release(sk);
3069 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3070 	icsk->icsk_ca_initialized = 0;
3071 	tcp_set_ca_state(sk, TCP_CA_Open);
3072 	tp->is_sack_reneg = 0;
3073 	tcp_clear_retrans(tp);
3074 	tp->total_retrans = 0;
3075 	inet_csk_delack_init(sk);
3076 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3077 	 * issue in __tcp_select_window()
3078 	 */
3079 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3080 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3081 	__sk_dst_reset(sk);
3082 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3083 	tcp_saved_syn_free(tp);
3084 	tp->compressed_ack = 0;
3085 	tp->segs_in = 0;
3086 	tp->segs_out = 0;
3087 	tp->bytes_sent = 0;
3088 	tp->bytes_acked = 0;
3089 	tp->bytes_received = 0;
3090 	tp->bytes_retrans = 0;
3091 	tp->data_segs_in = 0;
3092 	tp->data_segs_out = 0;
3093 	tp->duplicate_sack[0].start_seq = 0;
3094 	tp->duplicate_sack[0].end_seq = 0;
3095 	tp->dsack_dups = 0;
3096 	tp->reord_seen = 0;
3097 	tp->retrans_out = 0;
3098 	tp->sacked_out = 0;
3099 	tp->tlp_high_seq = 0;
3100 	tp->last_oow_ack_time = 0;
3101 	tp->plb_rehash = 0;
3102 	/* There's a bubble in the pipe until at least the first ACK. */
3103 	tp->app_limited = ~0U;
3104 	tp->rate_app_limited = 1;
3105 	tp->rack.mstamp = 0;
3106 	tp->rack.advanced = 0;
3107 	tp->rack.reo_wnd_steps = 1;
3108 	tp->rack.last_delivered = 0;
3109 	tp->rack.reo_wnd_persist = 0;
3110 	tp->rack.dsack_seen = 0;
3111 	tp->syn_data_acked = 0;
3112 	tp->rx_opt.saw_tstamp = 0;
3113 	tp->rx_opt.dsack = 0;
3114 	tp->rx_opt.num_sacks = 0;
3115 	tp->rcv_ooopack = 0;
3116 
3117 
3118 	/* Clean up fastopen related fields */
3119 	tcp_free_fastopen_req(tp);
3120 	inet_clear_bit(DEFER_CONNECT, sk);
3121 	tp->fastopen_client_fail = 0;
3122 
3123 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3124 
3125 	if (sk->sk_frag.page) {
3126 		put_page(sk->sk_frag.page);
3127 		sk->sk_frag.page = NULL;
3128 		sk->sk_frag.offset = 0;
3129 	}
3130 	sk_error_report(sk);
3131 	return 0;
3132 }
3133 EXPORT_SYMBOL(tcp_disconnect);
3134 
3135 static inline bool tcp_can_repair_sock(const struct sock *sk)
3136 {
3137 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3138 		(sk->sk_state != TCP_LISTEN);
3139 }
3140 
3141 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3142 {
3143 	struct tcp_repair_window opt;
3144 
3145 	if (!tp->repair)
3146 		return -EPERM;
3147 
3148 	if (len != sizeof(opt))
3149 		return -EINVAL;
3150 
3151 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3152 		return -EFAULT;
3153 
3154 	if (opt.max_window < opt.snd_wnd)
3155 		return -EINVAL;
3156 
3157 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3158 		return -EINVAL;
3159 
3160 	if (after(opt.rcv_wup, tp->rcv_nxt))
3161 		return -EINVAL;
3162 
3163 	tp->snd_wl1	= opt.snd_wl1;
3164 	tp->snd_wnd	= opt.snd_wnd;
3165 	tp->max_window	= opt.max_window;
3166 
3167 	tp->rcv_wnd	= opt.rcv_wnd;
3168 	tp->rcv_wup	= opt.rcv_wup;
3169 
3170 	return 0;
3171 }
3172 
3173 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3174 		unsigned int len)
3175 {
3176 	struct tcp_sock *tp = tcp_sk(sk);
3177 	struct tcp_repair_opt opt;
3178 	size_t offset = 0;
3179 
3180 	while (len >= sizeof(opt)) {
3181 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3182 			return -EFAULT;
3183 
3184 		offset += sizeof(opt);
3185 		len -= sizeof(opt);
3186 
3187 		switch (opt.opt_code) {
3188 		case TCPOPT_MSS:
3189 			tp->rx_opt.mss_clamp = opt.opt_val;
3190 			tcp_mtup_init(sk);
3191 			break;
3192 		case TCPOPT_WINDOW:
3193 			{
3194 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3195 				u16 rcv_wscale = opt.opt_val >> 16;
3196 
3197 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3198 					return -EFBIG;
3199 
3200 				tp->rx_opt.snd_wscale = snd_wscale;
3201 				tp->rx_opt.rcv_wscale = rcv_wscale;
3202 				tp->rx_opt.wscale_ok = 1;
3203 			}
3204 			break;
3205 		case TCPOPT_SACK_PERM:
3206 			if (opt.opt_val != 0)
3207 				return -EINVAL;
3208 
3209 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3210 			break;
3211 		case TCPOPT_TIMESTAMP:
3212 			if (opt.opt_val != 0)
3213 				return -EINVAL;
3214 
3215 			tp->rx_opt.tstamp_ok = 1;
3216 			break;
3217 		}
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3224 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3225 
3226 static void tcp_enable_tx_delay(void)
3227 {
3228 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3229 		static int __tcp_tx_delay_enabled = 0;
3230 
3231 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3232 			static_branch_enable(&tcp_tx_delay_enabled);
3233 			pr_info("TCP_TX_DELAY enabled\n");
3234 		}
3235 	}
3236 }
3237 
3238 /* When set indicates to always queue non-full frames.  Later the user clears
3239  * this option and we transmit any pending partial frames in the queue.  This is
3240  * meant to be used alongside sendfile() to get properly filled frames when the
3241  * user (for example) must write out headers with a write() call first and then
3242  * use sendfile to send out the data parts.
3243  *
3244  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3245  * TCP_NODELAY.
3246  */
3247 void __tcp_sock_set_cork(struct sock *sk, bool on)
3248 {
3249 	struct tcp_sock *tp = tcp_sk(sk);
3250 
3251 	if (on) {
3252 		tp->nonagle |= TCP_NAGLE_CORK;
3253 	} else {
3254 		tp->nonagle &= ~TCP_NAGLE_CORK;
3255 		if (tp->nonagle & TCP_NAGLE_OFF)
3256 			tp->nonagle |= TCP_NAGLE_PUSH;
3257 		tcp_push_pending_frames(sk);
3258 	}
3259 }
3260 
3261 void tcp_sock_set_cork(struct sock *sk, bool on)
3262 {
3263 	lock_sock(sk);
3264 	__tcp_sock_set_cork(sk, on);
3265 	release_sock(sk);
3266 }
3267 EXPORT_SYMBOL(tcp_sock_set_cork);
3268 
3269 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3270  * remembered, but it is not activated until cork is cleared.
3271  *
3272  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3273  * even TCP_CORK for currently queued segments.
3274  */
3275 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3276 {
3277 	if (on) {
3278 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3279 		tcp_push_pending_frames(sk);
3280 	} else {
3281 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3282 	}
3283 }
3284 
3285 void tcp_sock_set_nodelay(struct sock *sk)
3286 {
3287 	lock_sock(sk);
3288 	__tcp_sock_set_nodelay(sk, true);
3289 	release_sock(sk);
3290 }
3291 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3292 
3293 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3294 {
3295 	if (!val) {
3296 		inet_csk_enter_pingpong_mode(sk);
3297 		return;
3298 	}
3299 
3300 	inet_csk_exit_pingpong_mode(sk);
3301 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3302 	    inet_csk_ack_scheduled(sk)) {
3303 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3304 		tcp_cleanup_rbuf(sk, 1);
3305 		if (!(val & 1))
3306 			inet_csk_enter_pingpong_mode(sk);
3307 	}
3308 }
3309 
3310 void tcp_sock_set_quickack(struct sock *sk, int val)
3311 {
3312 	lock_sock(sk);
3313 	__tcp_sock_set_quickack(sk, val);
3314 	release_sock(sk);
3315 }
3316 EXPORT_SYMBOL(tcp_sock_set_quickack);
3317 
3318 int tcp_sock_set_syncnt(struct sock *sk, int val)
3319 {
3320 	if (val < 1 || val > MAX_TCP_SYNCNT)
3321 		return -EINVAL;
3322 
3323 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3324 	return 0;
3325 }
3326 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3327 
3328 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3329 {
3330 	/* Cap the max time in ms TCP will retry or probe the window
3331 	 * before giving up and aborting (ETIMEDOUT) a connection.
3332 	 */
3333 	if (val < 0)
3334 		return -EINVAL;
3335 
3336 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3337 	return 0;
3338 }
3339 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3340 
3341 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3342 {
3343 	struct tcp_sock *tp = tcp_sk(sk);
3344 
3345 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3346 		return -EINVAL;
3347 
3348 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3349 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3350 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3351 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3352 		u32 elapsed = keepalive_time_elapsed(tp);
3353 
3354 		if (tp->keepalive_time > elapsed)
3355 			elapsed = tp->keepalive_time - elapsed;
3356 		else
3357 			elapsed = 0;
3358 		inet_csk_reset_keepalive_timer(sk, elapsed);
3359 	}
3360 
3361 	return 0;
3362 }
3363 
3364 int tcp_sock_set_keepidle(struct sock *sk, int val)
3365 {
3366 	int err;
3367 
3368 	lock_sock(sk);
3369 	err = tcp_sock_set_keepidle_locked(sk, val);
3370 	release_sock(sk);
3371 	return err;
3372 }
3373 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3374 
3375 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3376 {
3377 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3378 		return -EINVAL;
3379 
3380 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3381 	return 0;
3382 }
3383 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3384 
3385 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3386 {
3387 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3388 		return -EINVAL;
3389 
3390 	/* Paired with READ_ONCE() in keepalive_probes() */
3391 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3392 	return 0;
3393 }
3394 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3395 
3396 int tcp_set_window_clamp(struct sock *sk, int val)
3397 {
3398 	struct tcp_sock *tp = tcp_sk(sk);
3399 
3400 	if (!val) {
3401 		if (sk->sk_state != TCP_CLOSE)
3402 			return -EINVAL;
3403 		WRITE_ONCE(tp->window_clamp, 0);
3404 	} else {
3405 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3406 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3407 						SOCK_MIN_RCVBUF / 2 : val;
3408 
3409 		if (new_window_clamp == old_window_clamp)
3410 			return 0;
3411 
3412 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3413 		if (new_window_clamp < old_window_clamp) {
3414 			/* need to apply the reserved mem provisioning only
3415 			 * when shrinking the window clamp
3416 			 */
3417 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3418 
3419 		} else {
3420 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3421 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3422 					       tp->rcv_ssthresh);
3423 		}
3424 	}
3425 	return 0;
3426 }
3427 
3428 /*
3429  *	Socket option code for TCP.
3430  */
3431 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3432 		      sockptr_t optval, unsigned int optlen)
3433 {
3434 	struct tcp_sock *tp = tcp_sk(sk);
3435 	struct inet_connection_sock *icsk = inet_csk(sk);
3436 	struct net *net = sock_net(sk);
3437 	int val;
3438 	int err = 0;
3439 
3440 	/* These are data/string values, all the others are ints */
3441 	switch (optname) {
3442 	case TCP_CONGESTION: {
3443 		char name[TCP_CA_NAME_MAX];
3444 
3445 		if (optlen < 1)
3446 			return -EINVAL;
3447 
3448 		val = strncpy_from_sockptr(name, optval,
3449 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3450 		if (val < 0)
3451 			return -EFAULT;
3452 		name[val] = 0;
3453 
3454 		sockopt_lock_sock(sk);
3455 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3456 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3457 								    CAP_NET_ADMIN));
3458 		sockopt_release_sock(sk);
3459 		return err;
3460 	}
3461 	case TCP_ULP: {
3462 		char name[TCP_ULP_NAME_MAX];
3463 
3464 		if (optlen < 1)
3465 			return -EINVAL;
3466 
3467 		val = strncpy_from_sockptr(name, optval,
3468 					min_t(long, TCP_ULP_NAME_MAX - 1,
3469 					      optlen));
3470 		if (val < 0)
3471 			return -EFAULT;
3472 		name[val] = 0;
3473 
3474 		sockopt_lock_sock(sk);
3475 		err = tcp_set_ulp(sk, name);
3476 		sockopt_release_sock(sk);
3477 		return err;
3478 	}
3479 	case TCP_FASTOPEN_KEY: {
3480 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3481 		__u8 *backup_key = NULL;
3482 
3483 		/* Allow a backup key as well to facilitate key rotation
3484 		 * First key is the active one.
3485 		 */
3486 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3487 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3488 			return -EINVAL;
3489 
3490 		if (copy_from_sockptr(key, optval, optlen))
3491 			return -EFAULT;
3492 
3493 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3494 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3495 
3496 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3497 	}
3498 	default:
3499 		/* fallthru */
3500 		break;
3501 	}
3502 
3503 	if (optlen < sizeof(int))
3504 		return -EINVAL;
3505 
3506 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3507 		return -EFAULT;
3508 
3509 	/* Handle options that can be set without locking the socket. */
3510 	switch (optname) {
3511 	case TCP_SYNCNT:
3512 		return tcp_sock_set_syncnt(sk, val);
3513 	case TCP_USER_TIMEOUT:
3514 		return tcp_sock_set_user_timeout(sk, val);
3515 	case TCP_KEEPINTVL:
3516 		return tcp_sock_set_keepintvl(sk, val);
3517 	case TCP_KEEPCNT:
3518 		return tcp_sock_set_keepcnt(sk, val);
3519 	case TCP_LINGER2:
3520 		if (val < 0)
3521 			WRITE_ONCE(tp->linger2, -1);
3522 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3523 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3524 		else
3525 			WRITE_ONCE(tp->linger2, val * HZ);
3526 		return 0;
3527 	case TCP_DEFER_ACCEPT:
3528 		/* Translate value in seconds to number of retransmits */
3529 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3530 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3531 					   TCP_RTO_MAX / HZ));
3532 		return 0;
3533 	}
3534 
3535 	sockopt_lock_sock(sk);
3536 
3537 	switch (optname) {
3538 	case TCP_MAXSEG:
3539 		/* Values greater than interface MTU won't take effect. However
3540 		 * at the point when this call is done we typically don't yet
3541 		 * know which interface is going to be used
3542 		 */
3543 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3544 			err = -EINVAL;
3545 			break;
3546 		}
3547 		tp->rx_opt.user_mss = val;
3548 		break;
3549 
3550 	case TCP_NODELAY:
3551 		__tcp_sock_set_nodelay(sk, val);
3552 		break;
3553 
3554 	case TCP_THIN_LINEAR_TIMEOUTS:
3555 		if (val < 0 || val > 1)
3556 			err = -EINVAL;
3557 		else
3558 			tp->thin_lto = val;
3559 		break;
3560 
3561 	case TCP_THIN_DUPACK:
3562 		if (val < 0 || val > 1)
3563 			err = -EINVAL;
3564 		break;
3565 
3566 	case TCP_REPAIR:
3567 		if (!tcp_can_repair_sock(sk))
3568 			err = -EPERM;
3569 		else if (val == TCP_REPAIR_ON) {
3570 			tp->repair = 1;
3571 			sk->sk_reuse = SK_FORCE_REUSE;
3572 			tp->repair_queue = TCP_NO_QUEUE;
3573 		} else if (val == TCP_REPAIR_OFF) {
3574 			tp->repair = 0;
3575 			sk->sk_reuse = SK_NO_REUSE;
3576 			tcp_send_window_probe(sk);
3577 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3578 			tp->repair = 0;
3579 			sk->sk_reuse = SK_NO_REUSE;
3580 		} else
3581 			err = -EINVAL;
3582 
3583 		break;
3584 
3585 	case TCP_REPAIR_QUEUE:
3586 		if (!tp->repair)
3587 			err = -EPERM;
3588 		else if ((unsigned int)val < TCP_QUEUES_NR)
3589 			tp->repair_queue = val;
3590 		else
3591 			err = -EINVAL;
3592 		break;
3593 
3594 	case TCP_QUEUE_SEQ:
3595 		if (sk->sk_state != TCP_CLOSE) {
3596 			err = -EPERM;
3597 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3598 			if (!tcp_rtx_queue_empty(sk))
3599 				err = -EPERM;
3600 			else
3601 				WRITE_ONCE(tp->write_seq, val);
3602 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3603 			if (tp->rcv_nxt != tp->copied_seq) {
3604 				err = -EPERM;
3605 			} else {
3606 				WRITE_ONCE(tp->rcv_nxt, val);
3607 				WRITE_ONCE(tp->copied_seq, val);
3608 			}
3609 		} else {
3610 			err = -EINVAL;
3611 		}
3612 		break;
3613 
3614 	case TCP_REPAIR_OPTIONS:
3615 		if (!tp->repair)
3616 			err = -EINVAL;
3617 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3618 			err = tcp_repair_options_est(sk, optval, optlen);
3619 		else
3620 			err = -EPERM;
3621 		break;
3622 
3623 	case TCP_CORK:
3624 		__tcp_sock_set_cork(sk, val);
3625 		break;
3626 
3627 	case TCP_KEEPIDLE:
3628 		err = tcp_sock_set_keepidle_locked(sk, val);
3629 		break;
3630 	case TCP_SAVE_SYN:
3631 		/* 0: disable, 1: enable, 2: start from ether_header */
3632 		if (val < 0 || val > 2)
3633 			err = -EINVAL;
3634 		else
3635 			tp->save_syn = val;
3636 		break;
3637 
3638 	case TCP_WINDOW_CLAMP:
3639 		err = tcp_set_window_clamp(sk, val);
3640 		break;
3641 
3642 	case TCP_QUICKACK:
3643 		__tcp_sock_set_quickack(sk, val);
3644 		break;
3645 
3646 	case TCP_AO_REPAIR:
3647 		if (!tcp_can_repair_sock(sk)) {
3648 			err = -EPERM;
3649 			break;
3650 		}
3651 		err = tcp_ao_set_repair(sk, optval, optlen);
3652 		break;
3653 #ifdef CONFIG_TCP_AO
3654 	case TCP_AO_ADD_KEY:
3655 	case TCP_AO_DEL_KEY:
3656 	case TCP_AO_INFO: {
3657 		/* If this is the first TCP-AO setsockopt() on the socket,
3658 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3659 		 * in any state.
3660 		 */
3661 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3662 			goto ao_parse;
3663 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3664 					      lockdep_sock_is_held(sk)))
3665 			goto ao_parse;
3666 		if (tp->repair)
3667 			goto ao_parse;
3668 		err = -EISCONN;
3669 		break;
3670 ao_parse:
3671 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3672 		break;
3673 	}
3674 #endif
3675 #ifdef CONFIG_TCP_MD5SIG
3676 	case TCP_MD5SIG:
3677 	case TCP_MD5SIG_EXT:
3678 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3679 		break;
3680 #endif
3681 	case TCP_FASTOPEN:
3682 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3683 		    TCPF_LISTEN))) {
3684 			tcp_fastopen_init_key_once(net);
3685 
3686 			fastopen_queue_tune(sk, val);
3687 		} else {
3688 			err = -EINVAL;
3689 		}
3690 		break;
3691 	case TCP_FASTOPEN_CONNECT:
3692 		if (val > 1 || val < 0) {
3693 			err = -EINVAL;
3694 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3695 			   TFO_CLIENT_ENABLE) {
3696 			if (sk->sk_state == TCP_CLOSE)
3697 				tp->fastopen_connect = val;
3698 			else
3699 				err = -EINVAL;
3700 		} else {
3701 			err = -EOPNOTSUPP;
3702 		}
3703 		break;
3704 	case TCP_FASTOPEN_NO_COOKIE:
3705 		if (val > 1 || val < 0)
3706 			err = -EINVAL;
3707 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3708 			err = -EINVAL;
3709 		else
3710 			tp->fastopen_no_cookie = val;
3711 		break;
3712 	case TCP_TIMESTAMP:
3713 		if (!tp->repair) {
3714 			err = -EPERM;
3715 			break;
3716 		}
3717 		/* val is an opaque field,
3718 		 * and low order bit contains usec_ts enable bit.
3719 		 * Its a best effort, and we do not care if user makes an error.
3720 		 */
3721 		tp->tcp_usec_ts = val & 1;
3722 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3723 		break;
3724 	case TCP_REPAIR_WINDOW:
3725 		err = tcp_repair_set_window(tp, optval, optlen);
3726 		break;
3727 	case TCP_NOTSENT_LOWAT:
3728 		WRITE_ONCE(tp->notsent_lowat, val);
3729 		sk->sk_write_space(sk);
3730 		break;
3731 	case TCP_INQ:
3732 		if (val > 1 || val < 0)
3733 			err = -EINVAL;
3734 		else
3735 			tp->recvmsg_inq = val;
3736 		break;
3737 	case TCP_TX_DELAY:
3738 		if (val)
3739 			tcp_enable_tx_delay();
3740 		WRITE_ONCE(tp->tcp_tx_delay, val);
3741 		break;
3742 	default:
3743 		err = -ENOPROTOOPT;
3744 		break;
3745 	}
3746 
3747 	sockopt_release_sock(sk);
3748 	return err;
3749 }
3750 
3751 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3752 		   unsigned int optlen)
3753 {
3754 	const struct inet_connection_sock *icsk = inet_csk(sk);
3755 
3756 	if (level != SOL_TCP)
3757 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3758 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3759 								optval, optlen);
3760 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3761 }
3762 EXPORT_SYMBOL(tcp_setsockopt);
3763 
3764 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3765 				      struct tcp_info *info)
3766 {
3767 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3768 	enum tcp_chrono i;
3769 
3770 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3771 		stats[i] = tp->chrono_stat[i - 1];
3772 		if (i == tp->chrono_type)
3773 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3774 		stats[i] *= USEC_PER_SEC / HZ;
3775 		total += stats[i];
3776 	}
3777 
3778 	info->tcpi_busy_time = total;
3779 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3780 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3781 }
3782 
3783 /* Return information about state of tcp endpoint in API format. */
3784 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3785 {
3786 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3787 	const struct inet_connection_sock *icsk = inet_csk(sk);
3788 	unsigned long rate;
3789 	u32 now;
3790 	u64 rate64;
3791 	bool slow;
3792 
3793 	memset(info, 0, sizeof(*info));
3794 	if (sk->sk_type != SOCK_STREAM)
3795 		return;
3796 
3797 	info->tcpi_state = inet_sk_state_load(sk);
3798 
3799 	/* Report meaningful fields for all TCP states, including listeners */
3800 	rate = READ_ONCE(sk->sk_pacing_rate);
3801 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3802 	info->tcpi_pacing_rate = rate64;
3803 
3804 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3805 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3806 	info->tcpi_max_pacing_rate = rate64;
3807 
3808 	info->tcpi_reordering = tp->reordering;
3809 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3810 
3811 	if (info->tcpi_state == TCP_LISTEN) {
3812 		/* listeners aliased fields :
3813 		 * tcpi_unacked -> Number of children ready for accept()
3814 		 * tcpi_sacked  -> max backlog
3815 		 */
3816 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3817 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3818 		return;
3819 	}
3820 
3821 	slow = lock_sock_fast(sk);
3822 
3823 	info->tcpi_ca_state = icsk->icsk_ca_state;
3824 	info->tcpi_retransmits = icsk->icsk_retransmits;
3825 	info->tcpi_probes = icsk->icsk_probes_out;
3826 	info->tcpi_backoff = icsk->icsk_backoff;
3827 
3828 	if (tp->rx_opt.tstamp_ok)
3829 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3830 	if (tcp_is_sack(tp))
3831 		info->tcpi_options |= TCPI_OPT_SACK;
3832 	if (tp->rx_opt.wscale_ok) {
3833 		info->tcpi_options |= TCPI_OPT_WSCALE;
3834 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3835 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3836 	}
3837 
3838 	if (tp->ecn_flags & TCP_ECN_OK)
3839 		info->tcpi_options |= TCPI_OPT_ECN;
3840 	if (tp->ecn_flags & TCP_ECN_SEEN)
3841 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3842 	if (tp->syn_data_acked)
3843 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3844 	if (tp->tcp_usec_ts)
3845 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3846 
3847 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3848 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3849 						tcp_delack_max(sk)));
3850 	info->tcpi_snd_mss = tp->mss_cache;
3851 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3852 
3853 	info->tcpi_unacked = tp->packets_out;
3854 	info->tcpi_sacked = tp->sacked_out;
3855 
3856 	info->tcpi_lost = tp->lost_out;
3857 	info->tcpi_retrans = tp->retrans_out;
3858 
3859 	now = tcp_jiffies32;
3860 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3861 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3862 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3863 
3864 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3865 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3866 	info->tcpi_rtt = tp->srtt_us >> 3;
3867 	info->tcpi_rttvar = tp->mdev_us >> 2;
3868 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3869 	info->tcpi_advmss = tp->advmss;
3870 
3871 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3872 	info->tcpi_rcv_space = tp->rcvq_space.space;
3873 
3874 	info->tcpi_total_retrans = tp->total_retrans;
3875 
3876 	info->tcpi_bytes_acked = tp->bytes_acked;
3877 	info->tcpi_bytes_received = tp->bytes_received;
3878 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3879 	tcp_get_info_chrono_stats(tp, info);
3880 
3881 	info->tcpi_segs_out = tp->segs_out;
3882 
3883 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3884 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3885 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3886 
3887 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3888 	info->tcpi_data_segs_out = tp->data_segs_out;
3889 
3890 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3891 	rate64 = tcp_compute_delivery_rate(tp);
3892 	if (rate64)
3893 		info->tcpi_delivery_rate = rate64;
3894 	info->tcpi_delivered = tp->delivered;
3895 	info->tcpi_delivered_ce = tp->delivered_ce;
3896 	info->tcpi_bytes_sent = tp->bytes_sent;
3897 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3898 	info->tcpi_dsack_dups = tp->dsack_dups;
3899 	info->tcpi_reord_seen = tp->reord_seen;
3900 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3901 	info->tcpi_snd_wnd = tp->snd_wnd;
3902 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3903 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3904 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3905 
3906 	info->tcpi_total_rto = tp->total_rto;
3907 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3908 	info->tcpi_total_rto_time = tp->total_rto_time;
3909 	if (tp->rto_stamp)
3910 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3911 
3912 	unlock_sock_fast(sk, slow);
3913 }
3914 EXPORT_SYMBOL_GPL(tcp_get_info);
3915 
3916 static size_t tcp_opt_stats_get_size(void)
3917 {
3918 	return
3919 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3920 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3921 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3922 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3923 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3924 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3925 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3926 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3927 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3928 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3929 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3930 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3931 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3932 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3933 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3934 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3935 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3936 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3937 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3938 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3939 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3940 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3941 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3942 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3943 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3944 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3945 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3946 		0;
3947 }
3948 
3949 /* Returns TTL or hop limit of an incoming packet from skb. */
3950 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3951 {
3952 	if (skb->protocol == htons(ETH_P_IP))
3953 		return ip_hdr(skb)->ttl;
3954 	else if (skb->protocol == htons(ETH_P_IPV6))
3955 		return ipv6_hdr(skb)->hop_limit;
3956 	else
3957 		return 0;
3958 }
3959 
3960 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3961 					       const struct sk_buff *orig_skb,
3962 					       const struct sk_buff *ack_skb)
3963 {
3964 	const struct tcp_sock *tp = tcp_sk(sk);
3965 	struct sk_buff *stats;
3966 	struct tcp_info info;
3967 	unsigned long rate;
3968 	u64 rate64;
3969 
3970 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3971 	if (!stats)
3972 		return NULL;
3973 
3974 	tcp_get_info_chrono_stats(tp, &info);
3975 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3976 			  info.tcpi_busy_time, TCP_NLA_PAD);
3977 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3978 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3979 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3980 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3981 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3982 			  tp->data_segs_out, TCP_NLA_PAD);
3983 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3984 			  tp->total_retrans, TCP_NLA_PAD);
3985 
3986 	rate = READ_ONCE(sk->sk_pacing_rate);
3987 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3988 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3989 
3990 	rate64 = tcp_compute_delivery_rate(tp);
3991 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3992 
3993 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3994 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3995 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3996 
3997 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3998 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3999 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4000 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4001 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4002 
4003 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4004 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4005 
4006 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4007 			  TCP_NLA_PAD);
4008 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4009 			  TCP_NLA_PAD);
4010 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4011 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4012 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4013 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4014 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4015 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4016 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4017 			  TCP_NLA_PAD);
4018 	if (ack_skb)
4019 		nla_put_u8(stats, TCP_NLA_TTL,
4020 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4021 
4022 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4023 	return stats;
4024 }
4025 
4026 int do_tcp_getsockopt(struct sock *sk, int level,
4027 		      int optname, sockptr_t optval, sockptr_t optlen)
4028 {
4029 	struct inet_connection_sock *icsk = inet_csk(sk);
4030 	struct tcp_sock *tp = tcp_sk(sk);
4031 	struct net *net = sock_net(sk);
4032 	int val, len;
4033 
4034 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4035 		return -EFAULT;
4036 
4037 	if (len < 0)
4038 		return -EINVAL;
4039 
4040 	len = min_t(unsigned int, len, sizeof(int));
4041 
4042 	switch (optname) {
4043 	case TCP_MAXSEG:
4044 		val = tp->mss_cache;
4045 		if (tp->rx_opt.user_mss &&
4046 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4047 			val = tp->rx_opt.user_mss;
4048 		if (tp->repair)
4049 			val = tp->rx_opt.mss_clamp;
4050 		break;
4051 	case TCP_NODELAY:
4052 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4053 		break;
4054 	case TCP_CORK:
4055 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4056 		break;
4057 	case TCP_KEEPIDLE:
4058 		val = keepalive_time_when(tp) / HZ;
4059 		break;
4060 	case TCP_KEEPINTVL:
4061 		val = keepalive_intvl_when(tp) / HZ;
4062 		break;
4063 	case TCP_KEEPCNT:
4064 		val = keepalive_probes(tp);
4065 		break;
4066 	case TCP_SYNCNT:
4067 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4068 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4069 		break;
4070 	case TCP_LINGER2:
4071 		val = READ_ONCE(tp->linger2);
4072 		if (val >= 0)
4073 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4074 		break;
4075 	case TCP_DEFER_ACCEPT:
4076 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4077 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4078 				      TCP_RTO_MAX / HZ);
4079 		break;
4080 	case TCP_WINDOW_CLAMP:
4081 		val = READ_ONCE(tp->window_clamp);
4082 		break;
4083 	case TCP_INFO: {
4084 		struct tcp_info info;
4085 
4086 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4087 			return -EFAULT;
4088 
4089 		tcp_get_info(sk, &info);
4090 
4091 		len = min_t(unsigned int, len, sizeof(info));
4092 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4093 			return -EFAULT;
4094 		if (copy_to_sockptr(optval, &info, len))
4095 			return -EFAULT;
4096 		return 0;
4097 	}
4098 	case TCP_CC_INFO: {
4099 		const struct tcp_congestion_ops *ca_ops;
4100 		union tcp_cc_info info;
4101 		size_t sz = 0;
4102 		int attr;
4103 
4104 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4105 			return -EFAULT;
4106 
4107 		ca_ops = icsk->icsk_ca_ops;
4108 		if (ca_ops && ca_ops->get_info)
4109 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4110 
4111 		len = min_t(unsigned int, len, sz);
4112 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4113 			return -EFAULT;
4114 		if (copy_to_sockptr(optval, &info, len))
4115 			return -EFAULT;
4116 		return 0;
4117 	}
4118 	case TCP_QUICKACK:
4119 		val = !inet_csk_in_pingpong_mode(sk);
4120 		break;
4121 
4122 	case TCP_CONGESTION:
4123 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4124 			return -EFAULT;
4125 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4126 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4127 			return -EFAULT;
4128 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4129 			return -EFAULT;
4130 		return 0;
4131 
4132 	case TCP_ULP:
4133 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4134 			return -EFAULT;
4135 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4136 		if (!icsk->icsk_ulp_ops) {
4137 			len = 0;
4138 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4139 				return -EFAULT;
4140 			return 0;
4141 		}
4142 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4143 			return -EFAULT;
4144 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4145 			return -EFAULT;
4146 		return 0;
4147 
4148 	case TCP_FASTOPEN_KEY: {
4149 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4150 		unsigned int key_len;
4151 
4152 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4153 			return -EFAULT;
4154 
4155 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4156 				TCP_FASTOPEN_KEY_LENGTH;
4157 		len = min_t(unsigned int, len, key_len);
4158 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4159 			return -EFAULT;
4160 		if (copy_to_sockptr(optval, key, len))
4161 			return -EFAULT;
4162 		return 0;
4163 	}
4164 	case TCP_THIN_LINEAR_TIMEOUTS:
4165 		val = tp->thin_lto;
4166 		break;
4167 
4168 	case TCP_THIN_DUPACK:
4169 		val = 0;
4170 		break;
4171 
4172 	case TCP_REPAIR:
4173 		val = tp->repair;
4174 		break;
4175 
4176 	case TCP_REPAIR_QUEUE:
4177 		if (tp->repair)
4178 			val = tp->repair_queue;
4179 		else
4180 			return -EINVAL;
4181 		break;
4182 
4183 	case TCP_REPAIR_WINDOW: {
4184 		struct tcp_repair_window opt;
4185 
4186 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4187 			return -EFAULT;
4188 
4189 		if (len != sizeof(opt))
4190 			return -EINVAL;
4191 
4192 		if (!tp->repair)
4193 			return -EPERM;
4194 
4195 		opt.snd_wl1	= tp->snd_wl1;
4196 		opt.snd_wnd	= tp->snd_wnd;
4197 		opt.max_window	= tp->max_window;
4198 		opt.rcv_wnd	= tp->rcv_wnd;
4199 		opt.rcv_wup	= tp->rcv_wup;
4200 
4201 		if (copy_to_sockptr(optval, &opt, len))
4202 			return -EFAULT;
4203 		return 0;
4204 	}
4205 	case TCP_QUEUE_SEQ:
4206 		if (tp->repair_queue == TCP_SEND_QUEUE)
4207 			val = tp->write_seq;
4208 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4209 			val = tp->rcv_nxt;
4210 		else
4211 			return -EINVAL;
4212 		break;
4213 
4214 	case TCP_USER_TIMEOUT:
4215 		val = READ_ONCE(icsk->icsk_user_timeout);
4216 		break;
4217 
4218 	case TCP_FASTOPEN:
4219 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4220 		break;
4221 
4222 	case TCP_FASTOPEN_CONNECT:
4223 		val = tp->fastopen_connect;
4224 		break;
4225 
4226 	case TCP_FASTOPEN_NO_COOKIE:
4227 		val = tp->fastopen_no_cookie;
4228 		break;
4229 
4230 	case TCP_TX_DELAY:
4231 		val = READ_ONCE(tp->tcp_tx_delay);
4232 		break;
4233 
4234 	case TCP_TIMESTAMP:
4235 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4236 		if (tp->tcp_usec_ts)
4237 			val |= 1;
4238 		else
4239 			val &= ~1;
4240 		break;
4241 	case TCP_NOTSENT_LOWAT:
4242 		val = READ_ONCE(tp->notsent_lowat);
4243 		break;
4244 	case TCP_INQ:
4245 		val = tp->recvmsg_inq;
4246 		break;
4247 	case TCP_SAVE_SYN:
4248 		val = tp->save_syn;
4249 		break;
4250 	case TCP_SAVED_SYN: {
4251 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4252 			return -EFAULT;
4253 
4254 		sockopt_lock_sock(sk);
4255 		if (tp->saved_syn) {
4256 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4257 				len = tcp_saved_syn_len(tp->saved_syn);
4258 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4259 					sockopt_release_sock(sk);
4260 					return -EFAULT;
4261 				}
4262 				sockopt_release_sock(sk);
4263 				return -EINVAL;
4264 			}
4265 			len = tcp_saved_syn_len(tp->saved_syn);
4266 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4267 				sockopt_release_sock(sk);
4268 				return -EFAULT;
4269 			}
4270 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4271 				sockopt_release_sock(sk);
4272 				return -EFAULT;
4273 			}
4274 			tcp_saved_syn_free(tp);
4275 			sockopt_release_sock(sk);
4276 		} else {
4277 			sockopt_release_sock(sk);
4278 			len = 0;
4279 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4280 				return -EFAULT;
4281 		}
4282 		return 0;
4283 	}
4284 #ifdef CONFIG_MMU
4285 	case TCP_ZEROCOPY_RECEIVE: {
4286 		struct scm_timestamping_internal tss;
4287 		struct tcp_zerocopy_receive zc = {};
4288 		int err;
4289 
4290 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4291 			return -EFAULT;
4292 		if (len < 0 ||
4293 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4294 			return -EINVAL;
4295 		if (unlikely(len > sizeof(zc))) {
4296 			err = check_zeroed_sockptr(optval, sizeof(zc),
4297 						   len - sizeof(zc));
4298 			if (err < 1)
4299 				return err == 0 ? -EINVAL : err;
4300 			len = sizeof(zc);
4301 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4302 				return -EFAULT;
4303 		}
4304 		if (copy_from_sockptr(&zc, optval, len))
4305 			return -EFAULT;
4306 		if (zc.reserved)
4307 			return -EINVAL;
4308 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4309 			return -EINVAL;
4310 		sockopt_lock_sock(sk);
4311 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4312 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4313 							  &zc, &len, err);
4314 		sockopt_release_sock(sk);
4315 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4316 			goto zerocopy_rcv_cmsg;
4317 		switch (len) {
4318 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4319 			goto zerocopy_rcv_cmsg;
4320 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4321 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4322 		case offsetofend(struct tcp_zerocopy_receive, flags):
4323 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4324 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4325 		case offsetofend(struct tcp_zerocopy_receive, err):
4326 			goto zerocopy_rcv_sk_err;
4327 		case offsetofend(struct tcp_zerocopy_receive, inq):
4328 			goto zerocopy_rcv_inq;
4329 		case offsetofend(struct tcp_zerocopy_receive, length):
4330 		default:
4331 			goto zerocopy_rcv_out;
4332 		}
4333 zerocopy_rcv_cmsg:
4334 		if (zc.msg_flags & TCP_CMSG_TS)
4335 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4336 		else
4337 			zc.msg_flags = 0;
4338 zerocopy_rcv_sk_err:
4339 		if (!err)
4340 			zc.err = sock_error(sk);
4341 zerocopy_rcv_inq:
4342 		zc.inq = tcp_inq_hint(sk);
4343 zerocopy_rcv_out:
4344 		if (!err && copy_to_sockptr(optval, &zc, len))
4345 			err = -EFAULT;
4346 		return err;
4347 	}
4348 #endif
4349 	case TCP_AO_REPAIR:
4350 		if (!tcp_can_repair_sock(sk))
4351 			return -EPERM;
4352 		return tcp_ao_get_repair(sk, optval, optlen);
4353 	case TCP_AO_GET_KEYS:
4354 	case TCP_AO_INFO: {
4355 		int err;
4356 
4357 		sockopt_lock_sock(sk);
4358 		if (optname == TCP_AO_GET_KEYS)
4359 			err = tcp_ao_get_mkts(sk, optval, optlen);
4360 		else
4361 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4362 		sockopt_release_sock(sk);
4363 
4364 		return err;
4365 	}
4366 	case TCP_IS_MPTCP:
4367 		val = 0;
4368 		break;
4369 	default:
4370 		return -ENOPROTOOPT;
4371 	}
4372 
4373 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4374 		return -EFAULT;
4375 	if (copy_to_sockptr(optval, &val, len))
4376 		return -EFAULT;
4377 	return 0;
4378 }
4379 
4380 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4381 {
4382 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4383 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4384 	 */
4385 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4386 		return true;
4387 
4388 	return false;
4389 }
4390 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4391 
4392 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4393 		   int __user *optlen)
4394 {
4395 	struct inet_connection_sock *icsk = inet_csk(sk);
4396 
4397 	if (level != SOL_TCP)
4398 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4399 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4400 								optval, optlen);
4401 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4402 				 USER_SOCKPTR(optlen));
4403 }
4404 EXPORT_SYMBOL(tcp_getsockopt);
4405 
4406 #ifdef CONFIG_TCP_MD5SIG
4407 int tcp_md5_sigpool_id = -1;
4408 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4409 
4410 int tcp_md5_alloc_sigpool(void)
4411 {
4412 	size_t scratch_size;
4413 	int ret;
4414 
4415 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4416 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4417 	if (ret >= 0) {
4418 		/* As long as any md5 sigpool was allocated, the return
4419 		 * id would stay the same. Re-write the id only for the case
4420 		 * when previously all MD5 keys were deleted and this call
4421 		 * allocates the first MD5 key, which may return a different
4422 		 * sigpool id than was used previously.
4423 		 */
4424 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4425 		return 0;
4426 	}
4427 	return ret;
4428 }
4429 
4430 void tcp_md5_release_sigpool(void)
4431 {
4432 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4433 }
4434 
4435 void tcp_md5_add_sigpool(void)
4436 {
4437 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4438 }
4439 
4440 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4441 		     const struct tcp_md5sig_key *key)
4442 {
4443 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4444 	struct scatterlist sg;
4445 
4446 	sg_init_one(&sg, key->key, keylen);
4447 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4448 
4449 	/* We use data_race() because tcp_md5_do_add() might change
4450 	 * key->key under us
4451 	 */
4452 	return data_race(crypto_ahash_update(hp->req));
4453 }
4454 EXPORT_SYMBOL(tcp_md5_hash_key);
4455 
4456 /* Called with rcu_read_lock() */
4457 enum skb_drop_reason
4458 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4459 		     const void *saddr, const void *daddr,
4460 		     int family, int l3index, const __u8 *hash_location)
4461 {
4462 	/* This gets called for each TCP segment that has TCP-MD5 option.
4463 	 * We have 3 drop cases:
4464 	 * o No MD5 hash and one expected.
4465 	 * o MD5 hash and we're not expecting one.
4466 	 * o MD5 hash and its wrong.
4467 	 */
4468 	const struct tcp_sock *tp = tcp_sk(sk);
4469 	struct tcp_md5sig_key *key;
4470 	u8 newhash[16];
4471 	int genhash;
4472 
4473 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4474 
4475 	if (!key && hash_location) {
4476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4477 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4478 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4479 	}
4480 
4481 	/* Check the signature.
4482 	 * To support dual stack listeners, we need to handle
4483 	 * IPv4-mapped case.
4484 	 */
4485 	if (family == AF_INET)
4486 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4487 	else
4488 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4489 							 NULL, skb);
4490 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4491 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4492 		if (family == AF_INET) {
4493 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4494 				      genhash ? "tcp_v4_calc_md5_hash failed"
4495 				      : "", l3index);
4496 		} else {
4497 			if (genhash) {
4498 				tcp_hash_fail("MD5 Hash failed",
4499 					      AF_INET6, skb, "L3 index %d",
4500 					      l3index);
4501 			} else {
4502 				tcp_hash_fail("MD5 Hash mismatch",
4503 					      AF_INET6, skb, "L3 index %d",
4504 					      l3index);
4505 			}
4506 		}
4507 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4508 	}
4509 	return SKB_NOT_DROPPED_YET;
4510 }
4511 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4512 
4513 #endif
4514 
4515 void tcp_done(struct sock *sk)
4516 {
4517 	struct request_sock *req;
4518 
4519 	/* We might be called with a new socket, after
4520 	 * inet_csk_prepare_forced_close() has been called
4521 	 * so we can not use lockdep_sock_is_held(sk)
4522 	 */
4523 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4524 
4525 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4526 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4527 
4528 	tcp_set_state(sk, TCP_CLOSE);
4529 	tcp_clear_xmit_timers(sk);
4530 	if (req)
4531 		reqsk_fastopen_remove(sk, req, false);
4532 
4533 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4534 
4535 	if (!sock_flag(sk, SOCK_DEAD))
4536 		sk->sk_state_change(sk);
4537 	else
4538 		inet_csk_destroy_sock(sk);
4539 }
4540 EXPORT_SYMBOL_GPL(tcp_done);
4541 
4542 int tcp_abort(struct sock *sk, int err)
4543 {
4544 	int state = inet_sk_state_load(sk);
4545 
4546 	if (state == TCP_NEW_SYN_RECV) {
4547 		struct request_sock *req = inet_reqsk(sk);
4548 
4549 		local_bh_disable();
4550 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4551 		local_bh_enable();
4552 		return 0;
4553 	}
4554 	if (state == TCP_TIME_WAIT) {
4555 		struct inet_timewait_sock *tw = inet_twsk(sk);
4556 
4557 		refcount_inc(&tw->tw_refcnt);
4558 		local_bh_disable();
4559 		inet_twsk_deschedule_put(tw);
4560 		local_bh_enable();
4561 		return 0;
4562 	}
4563 
4564 	/* BPF context ensures sock locking. */
4565 	if (!has_current_bpf_ctx())
4566 		/* Don't race with userspace socket closes such as tcp_close. */
4567 		lock_sock(sk);
4568 
4569 	if (sk->sk_state == TCP_LISTEN) {
4570 		tcp_set_state(sk, TCP_CLOSE);
4571 		inet_csk_listen_stop(sk);
4572 	}
4573 
4574 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4575 	local_bh_disable();
4576 	bh_lock_sock(sk);
4577 
4578 	if (!sock_flag(sk, SOCK_DEAD)) {
4579 		WRITE_ONCE(sk->sk_err, err);
4580 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4581 		smp_wmb();
4582 		sk_error_report(sk);
4583 		if (tcp_need_reset(sk->sk_state))
4584 			tcp_send_active_reset(sk, GFP_ATOMIC,
4585 					      SK_RST_REASON_NOT_SPECIFIED);
4586 		tcp_done(sk);
4587 	}
4588 
4589 	bh_unlock_sock(sk);
4590 	local_bh_enable();
4591 	tcp_write_queue_purge(sk);
4592 	if (!has_current_bpf_ctx())
4593 		release_sock(sk);
4594 	return 0;
4595 }
4596 EXPORT_SYMBOL_GPL(tcp_abort);
4597 
4598 extern struct tcp_congestion_ops tcp_reno;
4599 
4600 static __initdata unsigned long thash_entries;
4601 static int __init set_thash_entries(char *str)
4602 {
4603 	ssize_t ret;
4604 
4605 	if (!str)
4606 		return 0;
4607 
4608 	ret = kstrtoul(str, 0, &thash_entries);
4609 	if (ret)
4610 		return 0;
4611 
4612 	return 1;
4613 }
4614 __setup("thash_entries=", set_thash_entries);
4615 
4616 static void __init tcp_init_mem(void)
4617 {
4618 	unsigned long limit = nr_free_buffer_pages() / 16;
4619 
4620 	limit = max(limit, 128UL);
4621 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4622 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4623 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4624 }
4625 
4626 static void __init tcp_struct_check(void)
4627 {
4628 	/* TX read-mostly hotpath cache lines */
4629 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4630 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4631 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4632 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4633 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4634 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4635 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4636 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4637 
4638 	/* TXRX read-mostly hotpath cache lines */
4639 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4640 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4641 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4642 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4643 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4644 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4645 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4646 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4647 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4648 
4649 	/* RX read-mostly hotpath cache lines */
4650 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4651 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4652 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4653 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4654 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4655 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4656 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4657 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4658 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4659 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4660 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4661 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4662 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4663 
4664 	/* TX read-write hotpath cache lines */
4665 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4666 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4667 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4668 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4669 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4670 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4671 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4672 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4673 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4674 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4675 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4676 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4677 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4678 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4679 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4680 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4681 
4682 	/* TXRX read-write hotpath cache lines */
4683 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4684 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4685 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4686 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4687 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4688 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4689 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4690 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4691 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4692 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4693 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4694 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4695 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4696 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4697 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4698 
4699 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4700 	 * before tcp_clock_cache.
4701 	 */
4702 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4703 
4704 	/* RX read-write hotpath cache lines */
4705 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4706 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4707 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4708 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4709 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4710 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4711 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4712 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4713 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4714 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4715 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4716 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4717 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4718 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4719 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4720 }
4721 
4722 void __init tcp_init(void)
4723 {
4724 	int max_rshare, max_wshare, cnt;
4725 	unsigned long limit;
4726 	unsigned int i;
4727 
4728 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4729 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4730 		     sizeof_field(struct sk_buff, cb));
4731 
4732 	tcp_struct_check();
4733 
4734 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4735 
4736 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4737 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4738 
4739 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4740 			    thash_entries, 21,  /* one slot per 2 MB*/
4741 			    0, 64 * 1024);
4742 	tcp_hashinfo.bind_bucket_cachep =
4743 		kmem_cache_create("tcp_bind_bucket",
4744 				  sizeof(struct inet_bind_bucket), 0,
4745 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4746 				  SLAB_ACCOUNT,
4747 				  NULL);
4748 	tcp_hashinfo.bind2_bucket_cachep =
4749 		kmem_cache_create("tcp_bind2_bucket",
4750 				  sizeof(struct inet_bind2_bucket), 0,
4751 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4752 				  SLAB_ACCOUNT,
4753 				  NULL);
4754 
4755 	/* Size and allocate the main established and bind bucket
4756 	 * hash tables.
4757 	 *
4758 	 * The methodology is similar to that of the buffer cache.
4759 	 */
4760 	tcp_hashinfo.ehash =
4761 		alloc_large_system_hash("TCP established",
4762 					sizeof(struct inet_ehash_bucket),
4763 					thash_entries,
4764 					17, /* one slot per 128 KB of memory */
4765 					0,
4766 					NULL,
4767 					&tcp_hashinfo.ehash_mask,
4768 					0,
4769 					thash_entries ? 0 : 512 * 1024);
4770 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4771 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4772 
4773 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4774 		panic("TCP: failed to alloc ehash_locks");
4775 	tcp_hashinfo.bhash =
4776 		alloc_large_system_hash("TCP bind",
4777 					2 * sizeof(struct inet_bind_hashbucket),
4778 					tcp_hashinfo.ehash_mask + 1,
4779 					17, /* one slot per 128 KB of memory */
4780 					0,
4781 					&tcp_hashinfo.bhash_size,
4782 					NULL,
4783 					0,
4784 					64 * 1024);
4785 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4786 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4787 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4788 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4789 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4790 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4791 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4792 	}
4793 
4794 	tcp_hashinfo.pernet = false;
4795 
4796 	cnt = tcp_hashinfo.ehash_mask + 1;
4797 	sysctl_tcp_max_orphans = cnt / 2;
4798 
4799 	tcp_init_mem();
4800 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4801 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4802 	max_wshare = min(4UL*1024*1024, limit);
4803 	max_rshare = min(6UL*1024*1024, limit);
4804 
4805 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4806 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4807 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4808 
4809 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4810 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4811 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4812 
4813 	pr_info("Hash tables configured (established %u bind %u)\n",
4814 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4815 
4816 	tcp_v4_init();
4817 	tcp_metrics_init();
4818 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4819 	tcp_tasklet_init();
4820 	mptcp_init();
4821 }
4822