xref: /linux/net/ipv4/tcp.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 
268 #include <net/icmp.h>
269 #include <net/tcp.h>
270 #include <net/xfrm.h>
271 #include <net/ip.h>
272 #include <net/netdma.h>
273 #include <net/sock.h>
274 
275 #include <asm/uaccess.h>
276 #include <asm/ioctls.h>
277 
278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279 
280 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
281 
282 EXPORT_SYMBOL_GPL(tcp_orphan_count);
283 
284 int sysctl_tcp_mem[3] __read_mostly;
285 int sysctl_tcp_wmem[3] __read_mostly;
286 int sysctl_tcp_rmem[3] __read_mostly;
287 
288 EXPORT_SYMBOL(sysctl_tcp_mem);
289 EXPORT_SYMBOL(sysctl_tcp_rmem);
290 EXPORT_SYMBOL(sysctl_tcp_wmem);
291 
292 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
293 atomic_t tcp_sockets_allocated;	/* Current number of TCP sockets. */
294 
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 EXPORT_SYMBOL(tcp_sockets_allocated);
297 
298 /*
299  * TCP splice context
300  */
301 struct tcp_splice_state {
302 	struct pipe_inode_info *pipe;
303 	size_t len;
304 	unsigned int flags;
305 };
306 
307 /*
308  * Pressure flag: try to collapse.
309  * Technical note: it is used by multiple contexts non atomically.
310  * All the __sk_mem_schedule() is of this nature: accounting
311  * is strict, actions are advisory and have some latency.
312  */
313 int tcp_memory_pressure __read_mostly;
314 
315 EXPORT_SYMBOL(tcp_memory_pressure);
316 
317 void tcp_enter_memory_pressure(struct sock *sk)
318 {
319 	if (!tcp_memory_pressure) {
320 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
321 		tcp_memory_pressure = 1;
322 	}
323 }
324 
325 EXPORT_SYMBOL(tcp_enter_memory_pressure);
326 
327 /*
328  *	Wait for a TCP event.
329  *
330  *	Note that we don't need to lock the socket, as the upper poll layers
331  *	take care of normal races (between the test and the event) and we don't
332  *	go look at any of the socket buffers directly.
333  */
334 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
335 {
336 	unsigned int mask;
337 	struct sock *sk = sock->sk;
338 	struct tcp_sock *tp = tcp_sk(sk);
339 
340 	poll_wait(file, sk->sk_sleep, wait);
341 	if (sk->sk_state == TCP_LISTEN)
342 		return inet_csk_listen_poll(sk);
343 
344 	/* Socket is not locked. We are protected from async events
345 	 * by poll logic and correct handling of state changes
346 	 * made by other threads is impossible in any case.
347 	 */
348 
349 	mask = 0;
350 	if (sk->sk_err)
351 		mask = POLLERR;
352 
353 	/*
354 	 * POLLHUP is certainly not done right. But poll() doesn't
355 	 * have a notion of HUP in just one direction, and for a
356 	 * socket the read side is more interesting.
357 	 *
358 	 * Some poll() documentation says that POLLHUP is incompatible
359 	 * with the POLLOUT/POLLWR flags, so somebody should check this
360 	 * all. But careful, it tends to be safer to return too many
361 	 * bits than too few, and you can easily break real applications
362 	 * if you don't tell them that something has hung up!
363 	 *
364 	 * Check-me.
365 	 *
366 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
367 	 * our fs/select.c). It means that after we received EOF,
368 	 * poll always returns immediately, making impossible poll() on write()
369 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
370 	 * if and only if shutdown has been made in both directions.
371 	 * Actually, it is interesting to look how Solaris and DUX
372 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
373 	 * then we could set it on SND_SHUTDOWN. BTW examples given
374 	 * in Stevens' books assume exactly this behaviour, it explains
375 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
376 	 *
377 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
378 	 * blocking on fresh not-connected or disconnected socket. --ANK
379 	 */
380 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
381 		mask |= POLLHUP;
382 	if (sk->sk_shutdown & RCV_SHUTDOWN)
383 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
384 
385 	/* Connected? */
386 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
387 		int target = sock_rcvlowat(sk, 0, INT_MAX);
388 
389 		if (tp->urg_seq == tp->copied_seq &&
390 		    !sock_flag(sk, SOCK_URGINLINE) &&
391 		    tp->urg_data)
392 			target--;
393 
394 		/* Potential race condition. If read of tp below will
395 		 * escape above sk->sk_state, we can be illegally awaken
396 		 * in SYN_* states. */
397 		if (tp->rcv_nxt - tp->copied_seq >= target)
398 			mask |= POLLIN | POLLRDNORM;
399 
400 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
401 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
402 				mask |= POLLOUT | POLLWRNORM;
403 			} else {  /* send SIGIO later */
404 				set_bit(SOCK_ASYNC_NOSPACE,
405 					&sk->sk_socket->flags);
406 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407 
408 				/* Race breaker. If space is freed after
409 				 * wspace test but before the flags are set,
410 				 * IO signal will be lost.
411 				 */
412 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
413 					mask |= POLLOUT | POLLWRNORM;
414 			}
415 		}
416 
417 		if (tp->urg_data & TCP_URG_VALID)
418 			mask |= POLLPRI;
419 	}
420 	return mask;
421 }
422 
423 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
424 {
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int answ;
427 
428 	switch (cmd) {
429 	case SIOCINQ:
430 		if (sk->sk_state == TCP_LISTEN)
431 			return -EINVAL;
432 
433 		lock_sock(sk);
434 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
435 			answ = 0;
436 		else if (sock_flag(sk, SOCK_URGINLINE) ||
437 			 !tp->urg_data ||
438 			 before(tp->urg_seq, tp->copied_seq) ||
439 			 !before(tp->urg_seq, tp->rcv_nxt)) {
440 			answ = tp->rcv_nxt - tp->copied_seq;
441 
442 			/* Subtract 1, if FIN is in queue. */
443 			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
444 				answ -=
445 		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
446 		} else
447 			answ = tp->urg_seq - tp->copied_seq;
448 		release_sock(sk);
449 		break;
450 	case SIOCATMARK:
451 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
452 		break;
453 	case SIOCOUTQ:
454 		if (sk->sk_state == TCP_LISTEN)
455 			return -EINVAL;
456 
457 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
458 			answ = 0;
459 		else
460 			answ = tp->write_seq - tp->snd_una;
461 		break;
462 	default:
463 		return -ENOIOCTLCMD;
464 	}
465 
466 	return put_user(answ, (int __user *)arg);
467 }
468 
469 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
470 {
471 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
472 	tp->pushed_seq = tp->write_seq;
473 }
474 
475 static inline int forced_push(struct tcp_sock *tp)
476 {
477 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
478 }
479 
480 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
484 
485 	skb->csum    = 0;
486 	tcb->seq     = tcb->end_seq = tp->write_seq;
487 	tcb->flags   = TCPCB_FLAG_ACK;
488 	tcb->sacked  = 0;
489 	skb_header_release(skb);
490 	tcp_add_write_queue_tail(sk, skb);
491 	sk->sk_wmem_queued += skb->truesize;
492 	sk_mem_charge(sk, skb->truesize);
493 	if (tp->nonagle & TCP_NAGLE_PUSH)
494 		tp->nonagle &= ~TCP_NAGLE_PUSH;
495 }
496 
497 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
498 				struct sk_buff *skb)
499 {
500 	if (flags & MSG_OOB)
501 		tp->snd_up = tp->write_seq;
502 }
503 
504 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
505 			    int nonagle)
506 {
507 	struct tcp_sock *tp = tcp_sk(sk);
508 
509 	if (tcp_send_head(sk)) {
510 		struct sk_buff *skb = tcp_write_queue_tail(sk);
511 		if (!(flags & MSG_MORE) || forced_push(tp))
512 			tcp_mark_push(tp, skb);
513 		tcp_mark_urg(tp, flags, skb);
514 		__tcp_push_pending_frames(sk, mss_now,
515 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
516 	}
517 }
518 
519 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
520 				unsigned int offset, size_t len)
521 {
522 	struct tcp_splice_state *tss = rd_desc->arg.data;
523 
524 	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
525 }
526 
527 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
528 {
529 	/* Store TCP splice context information in read_descriptor_t. */
530 	read_descriptor_t rd_desc = {
531 		.arg.data = tss,
532 	};
533 
534 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
535 }
536 
537 /**
538  *  tcp_splice_read - splice data from TCP socket to a pipe
539  * @sock:	socket to splice from
540  * @ppos:	position (not valid)
541  * @pipe:	pipe to splice to
542  * @len:	number of bytes to splice
543  * @flags:	splice modifier flags
544  *
545  * Description:
546  *    Will read pages from given socket and fill them into a pipe.
547  *
548  **/
549 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
550 			struct pipe_inode_info *pipe, size_t len,
551 			unsigned int flags)
552 {
553 	struct sock *sk = sock->sk;
554 	struct tcp_splice_state tss = {
555 		.pipe = pipe,
556 		.len = len,
557 		.flags = flags,
558 	};
559 	long timeo;
560 	ssize_t spliced;
561 	int ret;
562 
563 	/*
564 	 * We can't seek on a socket input
565 	 */
566 	if (unlikely(*ppos))
567 		return -ESPIPE;
568 
569 	ret = spliced = 0;
570 
571 	lock_sock(sk);
572 
573 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
574 	while (tss.len) {
575 		ret = __tcp_splice_read(sk, &tss);
576 		if (ret < 0)
577 			break;
578 		else if (!ret) {
579 			if (spliced)
580 				break;
581 			if (flags & SPLICE_F_NONBLOCK) {
582 				ret = -EAGAIN;
583 				break;
584 			}
585 			if (sock_flag(sk, SOCK_DONE))
586 				break;
587 			if (sk->sk_err) {
588 				ret = sock_error(sk);
589 				break;
590 			}
591 			if (sk->sk_shutdown & RCV_SHUTDOWN)
592 				break;
593 			if (sk->sk_state == TCP_CLOSE) {
594 				/*
595 				 * This occurs when user tries to read
596 				 * from never connected socket.
597 				 */
598 				if (!sock_flag(sk, SOCK_DONE))
599 					ret = -ENOTCONN;
600 				break;
601 			}
602 			if (!timeo) {
603 				ret = -EAGAIN;
604 				break;
605 			}
606 			sk_wait_data(sk, &timeo);
607 			if (signal_pending(current)) {
608 				ret = sock_intr_errno(timeo);
609 				break;
610 			}
611 			continue;
612 		}
613 		tss.len -= ret;
614 		spliced += ret;
615 
616 		release_sock(sk);
617 		lock_sock(sk);
618 
619 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
620 		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
621 		    signal_pending(current))
622 			break;
623 	}
624 
625 	release_sock(sk);
626 
627 	if (spliced)
628 		return spliced;
629 
630 	return ret;
631 }
632 
633 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
634 {
635 	struct sk_buff *skb;
636 
637 	/* The TCP header must be at least 32-bit aligned.  */
638 	size = ALIGN(size, 4);
639 
640 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
641 	if (skb) {
642 		if (sk_wmem_schedule(sk, skb->truesize)) {
643 			/*
644 			 * Make sure that we have exactly size bytes
645 			 * available to the caller, no more, no less.
646 			 */
647 			skb_reserve(skb, skb_tailroom(skb) - size);
648 			return skb;
649 		}
650 		__kfree_skb(skb);
651 	} else {
652 		sk->sk_prot->enter_memory_pressure(sk);
653 		sk_stream_moderate_sndbuf(sk);
654 	}
655 	return NULL;
656 }
657 
658 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
659 			 size_t psize, int flags)
660 {
661 	struct tcp_sock *tp = tcp_sk(sk);
662 	int mss_now, size_goal;
663 	int err;
664 	ssize_t copied;
665 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
666 
667 	/* Wait for a connection to finish. */
668 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
669 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
670 			goto out_err;
671 
672 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
673 
674 	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
675 	size_goal = tp->xmit_size_goal;
676 	copied = 0;
677 
678 	err = -EPIPE;
679 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
680 		goto do_error;
681 
682 	while (psize > 0) {
683 		struct sk_buff *skb = tcp_write_queue_tail(sk);
684 		struct page *page = pages[poffset / PAGE_SIZE];
685 		int copy, i, can_coalesce;
686 		int offset = poffset % PAGE_SIZE;
687 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
688 
689 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
690 new_segment:
691 			if (!sk_stream_memory_free(sk))
692 				goto wait_for_sndbuf;
693 
694 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
695 			if (!skb)
696 				goto wait_for_memory;
697 
698 			skb_entail(sk, skb);
699 			copy = size_goal;
700 		}
701 
702 		if (copy > size)
703 			copy = size;
704 
705 		i = skb_shinfo(skb)->nr_frags;
706 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
707 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
708 			tcp_mark_push(tp, skb);
709 			goto new_segment;
710 		}
711 		if (!sk_wmem_schedule(sk, copy))
712 			goto wait_for_memory;
713 
714 		if (can_coalesce) {
715 			skb_shinfo(skb)->frags[i - 1].size += copy;
716 		} else {
717 			get_page(page);
718 			skb_fill_page_desc(skb, i, page, offset, copy);
719 		}
720 
721 		skb->len += copy;
722 		skb->data_len += copy;
723 		skb->truesize += copy;
724 		sk->sk_wmem_queued += copy;
725 		sk_mem_charge(sk, copy);
726 		skb->ip_summed = CHECKSUM_PARTIAL;
727 		tp->write_seq += copy;
728 		TCP_SKB_CB(skb)->end_seq += copy;
729 		skb_shinfo(skb)->gso_segs = 0;
730 
731 		if (!copied)
732 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
733 
734 		copied += copy;
735 		poffset += copy;
736 		if (!(psize -= copy))
737 			goto out;
738 
739 		if (skb->len < size_goal || (flags & MSG_OOB))
740 			continue;
741 
742 		if (forced_push(tp)) {
743 			tcp_mark_push(tp, skb);
744 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
745 		} else if (skb == tcp_send_head(sk))
746 			tcp_push_one(sk, mss_now);
747 		continue;
748 
749 wait_for_sndbuf:
750 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
751 wait_for_memory:
752 		if (copied)
753 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
754 
755 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
756 			goto do_error;
757 
758 		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
759 		size_goal = tp->xmit_size_goal;
760 	}
761 
762 out:
763 	if (copied)
764 		tcp_push(sk, flags, mss_now, tp->nonagle);
765 	return copied;
766 
767 do_error:
768 	if (copied)
769 		goto out;
770 out_err:
771 	return sk_stream_error(sk, flags, err);
772 }
773 
774 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
775 		     size_t size, int flags)
776 {
777 	ssize_t res;
778 	struct sock *sk = sock->sk;
779 
780 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
781 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
782 		return sock_no_sendpage(sock, page, offset, size, flags);
783 
784 	lock_sock(sk);
785 	TCP_CHECK_TIMER(sk);
786 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
787 	TCP_CHECK_TIMER(sk);
788 	release_sock(sk);
789 	return res;
790 }
791 
792 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
793 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
794 
795 static inline int select_size(struct sock *sk)
796 {
797 	struct tcp_sock *tp = tcp_sk(sk);
798 	int tmp = tp->mss_cache;
799 
800 	if (sk->sk_route_caps & NETIF_F_SG) {
801 		if (sk_can_gso(sk))
802 			tmp = 0;
803 		else {
804 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
805 
806 			if (tmp >= pgbreak &&
807 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
808 				tmp = pgbreak;
809 		}
810 	}
811 
812 	return tmp;
813 }
814 
815 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
816 		size_t size)
817 {
818 	struct sock *sk = sock->sk;
819 	struct iovec *iov;
820 	struct tcp_sock *tp = tcp_sk(sk);
821 	struct sk_buff *skb;
822 	int iovlen, flags;
823 	int mss_now, size_goal;
824 	int err, copied;
825 	long timeo;
826 
827 	lock_sock(sk);
828 	TCP_CHECK_TIMER(sk);
829 
830 	flags = msg->msg_flags;
831 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
832 
833 	/* Wait for a connection to finish. */
834 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
835 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
836 			goto out_err;
837 
838 	/* This should be in poll */
839 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
840 
841 	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
842 	size_goal = tp->xmit_size_goal;
843 
844 	/* Ok commence sending. */
845 	iovlen = msg->msg_iovlen;
846 	iov = msg->msg_iov;
847 	copied = 0;
848 
849 	err = -EPIPE;
850 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
851 		goto do_error;
852 
853 	while (--iovlen >= 0) {
854 		int seglen = iov->iov_len;
855 		unsigned char __user *from = iov->iov_base;
856 
857 		iov++;
858 
859 		while (seglen > 0) {
860 			int copy;
861 
862 			skb = tcp_write_queue_tail(sk);
863 
864 			if (!tcp_send_head(sk) ||
865 			    (copy = size_goal - skb->len) <= 0) {
866 
867 new_segment:
868 				/* Allocate new segment. If the interface is SG,
869 				 * allocate skb fitting to single page.
870 				 */
871 				if (!sk_stream_memory_free(sk))
872 					goto wait_for_sndbuf;
873 
874 				skb = sk_stream_alloc_skb(sk, select_size(sk),
875 						sk->sk_allocation);
876 				if (!skb)
877 					goto wait_for_memory;
878 
879 				/*
880 				 * Check whether we can use HW checksum.
881 				 */
882 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
883 					skb->ip_summed = CHECKSUM_PARTIAL;
884 
885 				skb_entail(sk, skb);
886 				copy = size_goal;
887 			}
888 
889 			/* Try to append data to the end of skb. */
890 			if (copy > seglen)
891 				copy = seglen;
892 
893 			/* Where to copy to? */
894 			if (skb_tailroom(skb) > 0) {
895 				/* We have some space in skb head. Superb! */
896 				if (copy > skb_tailroom(skb))
897 					copy = skb_tailroom(skb);
898 				if ((err = skb_add_data(skb, from, copy)) != 0)
899 					goto do_fault;
900 			} else {
901 				int merge = 0;
902 				int i = skb_shinfo(skb)->nr_frags;
903 				struct page *page = TCP_PAGE(sk);
904 				int off = TCP_OFF(sk);
905 
906 				if (skb_can_coalesce(skb, i, page, off) &&
907 				    off != PAGE_SIZE) {
908 					/* We can extend the last page
909 					 * fragment. */
910 					merge = 1;
911 				} else if (i == MAX_SKB_FRAGS ||
912 					   (!i &&
913 					   !(sk->sk_route_caps & NETIF_F_SG))) {
914 					/* Need to add new fragment and cannot
915 					 * do this because interface is non-SG,
916 					 * or because all the page slots are
917 					 * busy. */
918 					tcp_mark_push(tp, skb);
919 					goto new_segment;
920 				} else if (page) {
921 					if (off == PAGE_SIZE) {
922 						put_page(page);
923 						TCP_PAGE(sk) = page = NULL;
924 						off = 0;
925 					}
926 				} else
927 					off = 0;
928 
929 				if (copy > PAGE_SIZE - off)
930 					copy = PAGE_SIZE - off;
931 
932 				if (!sk_wmem_schedule(sk, copy))
933 					goto wait_for_memory;
934 
935 				if (!page) {
936 					/* Allocate new cache page. */
937 					if (!(page = sk_stream_alloc_page(sk)))
938 						goto wait_for_memory;
939 				}
940 
941 				/* Time to copy data. We are close to
942 				 * the end! */
943 				err = skb_copy_to_page(sk, from, skb, page,
944 						       off, copy);
945 				if (err) {
946 					/* If this page was new, give it to the
947 					 * socket so it does not get leaked.
948 					 */
949 					if (!TCP_PAGE(sk)) {
950 						TCP_PAGE(sk) = page;
951 						TCP_OFF(sk) = 0;
952 					}
953 					goto do_error;
954 				}
955 
956 				/* Update the skb. */
957 				if (merge) {
958 					skb_shinfo(skb)->frags[i - 1].size +=
959 									copy;
960 				} else {
961 					skb_fill_page_desc(skb, i, page, off, copy);
962 					if (TCP_PAGE(sk)) {
963 						get_page(page);
964 					} else if (off + copy < PAGE_SIZE) {
965 						get_page(page);
966 						TCP_PAGE(sk) = page;
967 					}
968 				}
969 
970 				TCP_OFF(sk) = off + copy;
971 			}
972 
973 			if (!copied)
974 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
975 
976 			tp->write_seq += copy;
977 			TCP_SKB_CB(skb)->end_seq += copy;
978 			skb_shinfo(skb)->gso_segs = 0;
979 
980 			from += copy;
981 			copied += copy;
982 			if ((seglen -= copy) == 0 && iovlen == 0)
983 				goto out;
984 
985 			if (skb->len < size_goal || (flags & MSG_OOB))
986 				continue;
987 
988 			if (forced_push(tp)) {
989 				tcp_mark_push(tp, skb);
990 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
991 			} else if (skb == tcp_send_head(sk))
992 				tcp_push_one(sk, mss_now);
993 			continue;
994 
995 wait_for_sndbuf:
996 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
997 wait_for_memory:
998 			if (copied)
999 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1000 
1001 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1002 				goto do_error;
1003 
1004 			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1005 			size_goal = tp->xmit_size_goal;
1006 		}
1007 	}
1008 
1009 out:
1010 	if (copied)
1011 		tcp_push(sk, flags, mss_now, tp->nonagle);
1012 	TCP_CHECK_TIMER(sk);
1013 	release_sock(sk);
1014 	return copied;
1015 
1016 do_fault:
1017 	if (!skb->len) {
1018 		tcp_unlink_write_queue(skb, sk);
1019 		/* It is the one place in all of TCP, except connection
1020 		 * reset, where we can be unlinking the send_head.
1021 		 */
1022 		tcp_check_send_head(sk, skb);
1023 		sk_wmem_free_skb(sk, skb);
1024 	}
1025 
1026 do_error:
1027 	if (copied)
1028 		goto out;
1029 out_err:
1030 	err = sk_stream_error(sk, flags, err);
1031 	TCP_CHECK_TIMER(sk);
1032 	release_sock(sk);
1033 	return err;
1034 }
1035 
1036 /*
1037  *	Handle reading urgent data. BSD has very simple semantics for
1038  *	this, no blocking and very strange errors 8)
1039  */
1040 
1041 static int tcp_recv_urg(struct sock *sk, long timeo,
1042 			struct msghdr *msg, int len, int flags,
1043 			int *addr_len)
1044 {
1045 	struct tcp_sock *tp = tcp_sk(sk);
1046 
1047 	/* No URG data to read. */
1048 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1049 	    tp->urg_data == TCP_URG_READ)
1050 		return -EINVAL;	/* Yes this is right ! */
1051 
1052 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1053 		return -ENOTCONN;
1054 
1055 	if (tp->urg_data & TCP_URG_VALID) {
1056 		int err = 0;
1057 		char c = tp->urg_data;
1058 
1059 		if (!(flags & MSG_PEEK))
1060 			tp->urg_data = TCP_URG_READ;
1061 
1062 		/* Read urgent data. */
1063 		msg->msg_flags |= MSG_OOB;
1064 
1065 		if (len > 0) {
1066 			if (!(flags & MSG_TRUNC))
1067 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1068 			len = 1;
1069 		} else
1070 			msg->msg_flags |= MSG_TRUNC;
1071 
1072 		return err ? -EFAULT : len;
1073 	}
1074 
1075 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1076 		return 0;
1077 
1078 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1079 	 * the available implementations agree in this case:
1080 	 * this call should never block, independent of the
1081 	 * blocking state of the socket.
1082 	 * Mike <pall@rz.uni-karlsruhe.de>
1083 	 */
1084 	return -EAGAIN;
1085 }
1086 
1087 /* Clean up the receive buffer for full frames taken by the user,
1088  * then send an ACK if necessary.  COPIED is the number of bytes
1089  * tcp_recvmsg has given to the user so far, it speeds up the
1090  * calculation of whether or not we must ACK for the sake of
1091  * a window update.
1092  */
1093 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1094 {
1095 	struct tcp_sock *tp = tcp_sk(sk);
1096 	int time_to_ack = 0;
1097 
1098 #if TCP_DEBUG
1099 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1100 
1101 	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1102 #endif
1103 
1104 	if (inet_csk_ack_scheduled(sk)) {
1105 		const struct inet_connection_sock *icsk = inet_csk(sk);
1106 		   /* Delayed ACKs frequently hit locked sockets during bulk
1107 		    * receive. */
1108 		if (icsk->icsk_ack.blocked ||
1109 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1110 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1111 		    /*
1112 		     * If this read emptied read buffer, we send ACK, if
1113 		     * connection is not bidirectional, user drained
1114 		     * receive buffer and there was a small segment
1115 		     * in queue.
1116 		     */
1117 		    (copied > 0 &&
1118 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1119 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1120 		       !icsk->icsk_ack.pingpong)) &&
1121 		      !atomic_read(&sk->sk_rmem_alloc)))
1122 			time_to_ack = 1;
1123 	}
1124 
1125 	/* We send an ACK if we can now advertise a non-zero window
1126 	 * which has been raised "significantly".
1127 	 *
1128 	 * Even if window raised up to infinity, do not send window open ACK
1129 	 * in states, where we will not receive more. It is useless.
1130 	 */
1131 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1132 		__u32 rcv_window_now = tcp_receive_window(tp);
1133 
1134 		/* Optimize, __tcp_select_window() is not cheap. */
1135 		if (2*rcv_window_now <= tp->window_clamp) {
1136 			__u32 new_window = __tcp_select_window(sk);
1137 
1138 			/* Send ACK now, if this read freed lots of space
1139 			 * in our buffer. Certainly, new_window is new window.
1140 			 * We can advertise it now, if it is not less than current one.
1141 			 * "Lots" means "at least twice" here.
1142 			 */
1143 			if (new_window && new_window >= 2 * rcv_window_now)
1144 				time_to_ack = 1;
1145 		}
1146 	}
1147 	if (time_to_ack)
1148 		tcp_send_ack(sk);
1149 }
1150 
1151 static void tcp_prequeue_process(struct sock *sk)
1152 {
1153 	struct sk_buff *skb;
1154 	struct tcp_sock *tp = tcp_sk(sk);
1155 
1156 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1157 
1158 	/* RX process wants to run with disabled BHs, though it is not
1159 	 * necessary */
1160 	local_bh_disable();
1161 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1162 		sk_backlog_rcv(sk, skb);
1163 	local_bh_enable();
1164 
1165 	/* Clear memory counter. */
1166 	tp->ucopy.memory = 0;
1167 }
1168 
1169 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1170 {
1171 	struct sk_buff *skb;
1172 	u32 offset;
1173 
1174 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1175 		offset = seq - TCP_SKB_CB(skb)->seq;
1176 		if (tcp_hdr(skb)->syn)
1177 			offset--;
1178 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1179 			*off = offset;
1180 			return skb;
1181 		}
1182 	}
1183 	return NULL;
1184 }
1185 
1186 /*
1187  * This routine provides an alternative to tcp_recvmsg() for routines
1188  * that would like to handle copying from skbuffs directly in 'sendfile'
1189  * fashion.
1190  * Note:
1191  *	- It is assumed that the socket was locked by the caller.
1192  *	- The routine does not block.
1193  *	- At present, there is no support for reading OOB data
1194  *	  or for 'peeking' the socket using this routine
1195  *	  (although both would be easy to implement).
1196  */
1197 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1198 		  sk_read_actor_t recv_actor)
1199 {
1200 	struct sk_buff *skb;
1201 	struct tcp_sock *tp = tcp_sk(sk);
1202 	u32 seq = tp->copied_seq;
1203 	u32 offset;
1204 	int copied = 0;
1205 
1206 	if (sk->sk_state == TCP_LISTEN)
1207 		return -ENOTCONN;
1208 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1209 		if (offset < skb->len) {
1210 			int used;
1211 			size_t len;
1212 
1213 			len = skb->len - offset;
1214 			/* Stop reading if we hit a patch of urgent data */
1215 			if (tp->urg_data) {
1216 				u32 urg_offset = tp->urg_seq - seq;
1217 				if (urg_offset < len)
1218 					len = urg_offset;
1219 				if (!len)
1220 					break;
1221 			}
1222 			used = recv_actor(desc, skb, offset, len);
1223 			if (used < 0) {
1224 				if (!copied)
1225 					copied = used;
1226 				break;
1227 			} else if (used <= len) {
1228 				seq += used;
1229 				copied += used;
1230 				offset += used;
1231 			}
1232 			/*
1233 			 * If recv_actor drops the lock (e.g. TCP splice
1234 			 * receive) the skb pointer might be invalid when
1235 			 * getting here: tcp_collapse might have deleted it
1236 			 * while aggregating skbs from the socket queue.
1237 			 */
1238 			skb = tcp_recv_skb(sk, seq-1, &offset);
1239 			if (!skb || (offset+1 != skb->len))
1240 				break;
1241 		}
1242 		if (tcp_hdr(skb)->fin) {
1243 			sk_eat_skb(sk, skb, 0);
1244 			++seq;
1245 			break;
1246 		}
1247 		sk_eat_skb(sk, skb, 0);
1248 		if (!desc->count)
1249 			break;
1250 	}
1251 	tp->copied_seq = seq;
1252 
1253 	tcp_rcv_space_adjust(sk);
1254 
1255 	/* Clean up data we have read: This will do ACK frames. */
1256 	if (copied > 0)
1257 		tcp_cleanup_rbuf(sk, copied);
1258 	return copied;
1259 }
1260 
1261 /*
1262  *	This routine copies from a sock struct into the user buffer.
1263  *
1264  *	Technical note: in 2.3 we work on _locked_ socket, so that
1265  *	tricks with *seq access order and skb->users are not required.
1266  *	Probably, code can be easily improved even more.
1267  */
1268 
1269 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1270 		size_t len, int nonblock, int flags, int *addr_len)
1271 {
1272 	struct tcp_sock *tp = tcp_sk(sk);
1273 	int copied = 0;
1274 	u32 peek_seq;
1275 	u32 *seq;
1276 	unsigned long used;
1277 	int err;
1278 	int target;		/* Read at least this many bytes */
1279 	long timeo;
1280 	struct task_struct *user_recv = NULL;
1281 	int copied_early = 0;
1282 	struct sk_buff *skb;
1283 
1284 	lock_sock(sk);
1285 
1286 	TCP_CHECK_TIMER(sk);
1287 
1288 	err = -ENOTCONN;
1289 	if (sk->sk_state == TCP_LISTEN)
1290 		goto out;
1291 
1292 	timeo = sock_rcvtimeo(sk, nonblock);
1293 
1294 	/* Urgent data needs to be handled specially. */
1295 	if (flags & MSG_OOB)
1296 		goto recv_urg;
1297 
1298 	seq = &tp->copied_seq;
1299 	if (flags & MSG_PEEK) {
1300 		peek_seq = tp->copied_seq;
1301 		seq = &peek_seq;
1302 	}
1303 
1304 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1305 
1306 #ifdef CONFIG_NET_DMA
1307 	tp->ucopy.dma_chan = NULL;
1308 	preempt_disable();
1309 	skb = skb_peek_tail(&sk->sk_receive_queue);
1310 	{
1311 		int available = 0;
1312 
1313 		if (skb)
1314 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1315 		if ((available < target) &&
1316 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1317 		    !sysctl_tcp_low_latency &&
1318 		    __get_cpu_var(softnet_data).net_dma) {
1319 			preempt_enable_no_resched();
1320 			tp->ucopy.pinned_list =
1321 					dma_pin_iovec_pages(msg->msg_iov, len);
1322 		} else {
1323 			preempt_enable_no_resched();
1324 		}
1325 	}
1326 #endif
1327 
1328 	do {
1329 		u32 offset;
1330 
1331 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1332 		if (tp->urg_data && tp->urg_seq == *seq) {
1333 			if (copied)
1334 				break;
1335 			if (signal_pending(current)) {
1336 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1337 				break;
1338 			}
1339 		}
1340 
1341 		/* Next get a buffer. */
1342 
1343 		skb = skb_peek(&sk->sk_receive_queue);
1344 		do {
1345 			if (!skb)
1346 				break;
1347 
1348 			/* Now that we have two receive queues this
1349 			 * shouldn't happen.
1350 			 */
1351 			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1352 				printk(KERN_INFO "recvmsg bug: copied %X "
1353 				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1354 				break;
1355 			}
1356 			offset = *seq - TCP_SKB_CB(skb)->seq;
1357 			if (tcp_hdr(skb)->syn)
1358 				offset--;
1359 			if (offset < skb->len)
1360 				goto found_ok_skb;
1361 			if (tcp_hdr(skb)->fin)
1362 				goto found_fin_ok;
1363 			WARN_ON(!(flags & MSG_PEEK));
1364 			skb = skb->next;
1365 		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1366 
1367 		/* Well, if we have backlog, try to process it now yet. */
1368 
1369 		if (copied >= target && !sk->sk_backlog.tail)
1370 			break;
1371 
1372 		if (copied) {
1373 			if (sk->sk_err ||
1374 			    sk->sk_state == TCP_CLOSE ||
1375 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1376 			    !timeo ||
1377 			    signal_pending(current) ||
1378 			    (flags & MSG_PEEK))
1379 				break;
1380 		} else {
1381 			if (sock_flag(sk, SOCK_DONE))
1382 				break;
1383 
1384 			if (sk->sk_err) {
1385 				copied = sock_error(sk);
1386 				break;
1387 			}
1388 
1389 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1390 				break;
1391 
1392 			if (sk->sk_state == TCP_CLOSE) {
1393 				if (!sock_flag(sk, SOCK_DONE)) {
1394 					/* This occurs when user tries to read
1395 					 * from never connected socket.
1396 					 */
1397 					copied = -ENOTCONN;
1398 					break;
1399 				}
1400 				break;
1401 			}
1402 
1403 			if (!timeo) {
1404 				copied = -EAGAIN;
1405 				break;
1406 			}
1407 
1408 			if (signal_pending(current)) {
1409 				copied = sock_intr_errno(timeo);
1410 				break;
1411 			}
1412 		}
1413 
1414 		tcp_cleanup_rbuf(sk, copied);
1415 
1416 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1417 			/* Install new reader */
1418 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1419 				user_recv = current;
1420 				tp->ucopy.task = user_recv;
1421 				tp->ucopy.iov = msg->msg_iov;
1422 			}
1423 
1424 			tp->ucopy.len = len;
1425 
1426 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1427 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1428 
1429 			/* Ugly... If prequeue is not empty, we have to
1430 			 * process it before releasing socket, otherwise
1431 			 * order will be broken at second iteration.
1432 			 * More elegant solution is required!!!
1433 			 *
1434 			 * Look: we have the following (pseudo)queues:
1435 			 *
1436 			 * 1. packets in flight
1437 			 * 2. backlog
1438 			 * 3. prequeue
1439 			 * 4. receive_queue
1440 			 *
1441 			 * Each queue can be processed only if the next ones
1442 			 * are empty. At this point we have empty receive_queue.
1443 			 * But prequeue _can_ be not empty after 2nd iteration,
1444 			 * when we jumped to start of loop because backlog
1445 			 * processing added something to receive_queue.
1446 			 * We cannot release_sock(), because backlog contains
1447 			 * packets arrived _after_ prequeued ones.
1448 			 *
1449 			 * Shortly, algorithm is clear --- to process all
1450 			 * the queues in order. We could make it more directly,
1451 			 * requeueing packets from backlog to prequeue, if
1452 			 * is not empty. It is more elegant, but eats cycles,
1453 			 * unfortunately.
1454 			 */
1455 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1456 				goto do_prequeue;
1457 
1458 			/* __ Set realtime policy in scheduler __ */
1459 		}
1460 
1461 		if (copied >= target) {
1462 			/* Do not sleep, just process backlog. */
1463 			release_sock(sk);
1464 			lock_sock(sk);
1465 		} else
1466 			sk_wait_data(sk, &timeo);
1467 
1468 #ifdef CONFIG_NET_DMA
1469 		tp->ucopy.wakeup = 0;
1470 #endif
1471 
1472 		if (user_recv) {
1473 			int chunk;
1474 
1475 			/* __ Restore normal policy in scheduler __ */
1476 
1477 			if ((chunk = len - tp->ucopy.len) != 0) {
1478 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1479 				len -= chunk;
1480 				copied += chunk;
1481 			}
1482 
1483 			if (tp->rcv_nxt == tp->copied_seq &&
1484 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1485 do_prequeue:
1486 				tcp_prequeue_process(sk);
1487 
1488 				if ((chunk = len - tp->ucopy.len) != 0) {
1489 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1490 					len -= chunk;
1491 					copied += chunk;
1492 				}
1493 			}
1494 		}
1495 		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1496 			if (net_ratelimit())
1497 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1498 				       current->comm, task_pid_nr(current));
1499 			peek_seq = tp->copied_seq;
1500 		}
1501 		continue;
1502 
1503 	found_ok_skb:
1504 		/* Ok so how much can we use? */
1505 		used = skb->len - offset;
1506 		if (len < used)
1507 			used = len;
1508 
1509 		/* Do we have urgent data here? */
1510 		if (tp->urg_data) {
1511 			u32 urg_offset = tp->urg_seq - *seq;
1512 			if (urg_offset < used) {
1513 				if (!urg_offset) {
1514 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1515 						++*seq;
1516 						offset++;
1517 						used--;
1518 						if (!used)
1519 							goto skip_copy;
1520 					}
1521 				} else
1522 					used = urg_offset;
1523 			}
1524 		}
1525 
1526 		if (!(flags & MSG_TRUNC)) {
1527 #ifdef CONFIG_NET_DMA
1528 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1529 				tp->ucopy.dma_chan = get_softnet_dma();
1530 
1531 			if (tp->ucopy.dma_chan) {
1532 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1533 					tp->ucopy.dma_chan, skb, offset,
1534 					msg->msg_iov, used,
1535 					tp->ucopy.pinned_list);
1536 
1537 				if (tp->ucopy.dma_cookie < 0) {
1538 
1539 					printk(KERN_ALERT "dma_cookie < 0\n");
1540 
1541 					/* Exception. Bailout! */
1542 					if (!copied)
1543 						copied = -EFAULT;
1544 					break;
1545 				}
1546 				if ((offset + used) == skb->len)
1547 					copied_early = 1;
1548 
1549 			} else
1550 #endif
1551 			{
1552 				err = skb_copy_datagram_iovec(skb, offset,
1553 						msg->msg_iov, used);
1554 				if (err) {
1555 					/* Exception. Bailout! */
1556 					if (!copied)
1557 						copied = -EFAULT;
1558 					break;
1559 				}
1560 			}
1561 		}
1562 
1563 		*seq += used;
1564 		copied += used;
1565 		len -= used;
1566 
1567 		tcp_rcv_space_adjust(sk);
1568 
1569 skip_copy:
1570 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1571 			tp->urg_data = 0;
1572 			tcp_fast_path_check(sk);
1573 		}
1574 		if (used + offset < skb->len)
1575 			continue;
1576 
1577 		if (tcp_hdr(skb)->fin)
1578 			goto found_fin_ok;
1579 		if (!(flags & MSG_PEEK)) {
1580 			sk_eat_skb(sk, skb, copied_early);
1581 			copied_early = 0;
1582 		}
1583 		continue;
1584 
1585 	found_fin_ok:
1586 		/* Process the FIN. */
1587 		++*seq;
1588 		if (!(flags & MSG_PEEK)) {
1589 			sk_eat_skb(sk, skb, copied_early);
1590 			copied_early = 0;
1591 		}
1592 		break;
1593 	} while (len > 0);
1594 
1595 	if (user_recv) {
1596 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1597 			int chunk;
1598 
1599 			tp->ucopy.len = copied > 0 ? len : 0;
1600 
1601 			tcp_prequeue_process(sk);
1602 
1603 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1604 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1605 				len -= chunk;
1606 				copied += chunk;
1607 			}
1608 		}
1609 
1610 		tp->ucopy.task = NULL;
1611 		tp->ucopy.len = 0;
1612 	}
1613 
1614 #ifdef CONFIG_NET_DMA
1615 	if (tp->ucopy.dma_chan) {
1616 		dma_cookie_t done, used;
1617 
1618 		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1619 
1620 		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1621 						 tp->ucopy.dma_cookie, &done,
1622 						 &used) == DMA_IN_PROGRESS) {
1623 			/* do partial cleanup of sk_async_wait_queue */
1624 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1625 			       (dma_async_is_complete(skb->dma_cookie, done,
1626 						      used) == DMA_SUCCESS)) {
1627 				__skb_dequeue(&sk->sk_async_wait_queue);
1628 				kfree_skb(skb);
1629 			}
1630 		}
1631 
1632 		/* Safe to free early-copied skbs now */
1633 		__skb_queue_purge(&sk->sk_async_wait_queue);
1634 		dma_chan_put(tp->ucopy.dma_chan);
1635 		tp->ucopy.dma_chan = NULL;
1636 	}
1637 	if (tp->ucopy.pinned_list) {
1638 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1639 		tp->ucopy.pinned_list = NULL;
1640 	}
1641 #endif
1642 
1643 	/* According to UNIX98, msg_name/msg_namelen are ignored
1644 	 * on connected socket. I was just happy when found this 8) --ANK
1645 	 */
1646 
1647 	/* Clean up data we have read: This will do ACK frames. */
1648 	tcp_cleanup_rbuf(sk, copied);
1649 
1650 	TCP_CHECK_TIMER(sk);
1651 	release_sock(sk);
1652 	return copied;
1653 
1654 out:
1655 	TCP_CHECK_TIMER(sk);
1656 	release_sock(sk);
1657 	return err;
1658 
1659 recv_urg:
1660 	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1661 	goto out;
1662 }
1663 
1664 void tcp_set_state(struct sock *sk, int state)
1665 {
1666 	int oldstate = sk->sk_state;
1667 
1668 	switch (state) {
1669 	case TCP_ESTABLISHED:
1670 		if (oldstate != TCP_ESTABLISHED)
1671 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1672 		break;
1673 
1674 	case TCP_CLOSE:
1675 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1676 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1677 
1678 		sk->sk_prot->unhash(sk);
1679 		if (inet_csk(sk)->icsk_bind_hash &&
1680 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1681 			inet_put_port(sk);
1682 		/* fall through */
1683 	default:
1684 		if (oldstate==TCP_ESTABLISHED)
1685 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1686 	}
1687 
1688 	/* Change state AFTER socket is unhashed to avoid closed
1689 	 * socket sitting in hash tables.
1690 	 */
1691 	sk->sk_state = state;
1692 
1693 #ifdef STATE_TRACE
1694 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1695 #endif
1696 }
1697 EXPORT_SYMBOL_GPL(tcp_set_state);
1698 
1699 /*
1700  *	State processing on a close. This implements the state shift for
1701  *	sending our FIN frame. Note that we only send a FIN for some
1702  *	states. A shutdown() may have already sent the FIN, or we may be
1703  *	closed.
1704  */
1705 
1706 static const unsigned char new_state[16] = {
1707   /* current state:        new state:      action:	*/
1708   /* (Invalid)		*/ TCP_CLOSE,
1709   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1710   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1711   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1712   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1713   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1714   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1715   /* TCP_CLOSE		*/ TCP_CLOSE,
1716   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1717   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1718   /* TCP_LISTEN		*/ TCP_CLOSE,
1719   /* TCP_CLOSING	*/ TCP_CLOSING,
1720 };
1721 
1722 static int tcp_close_state(struct sock *sk)
1723 {
1724 	int next = (int)new_state[sk->sk_state];
1725 	int ns = next & TCP_STATE_MASK;
1726 
1727 	tcp_set_state(sk, ns);
1728 
1729 	return next & TCP_ACTION_FIN;
1730 }
1731 
1732 /*
1733  *	Shutdown the sending side of a connection. Much like close except
1734  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1735  */
1736 
1737 void tcp_shutdown(struct sock *sk, int how)
1738 {
1739 	/*	We need to grab some memory, and put together a FIN,
1740 	 *	and then put it into the queue to be sent.
1741 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1742 	 */
1743 	if (!(how & SEND_SHUTDOWN))
1744 		return;
1745 
1746 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1747 	if ((1 << sk->sk_state) &
1748 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1749 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1750 		/* Clear out any half completed packets.  FIN if needed. */
1751 		if (tcp_close_state(sk))
1752 			tcp_send_fin(sk);
1753 	}
1754 }
1755 
1756 void tcp_close(struct sock *sk, long timeout)
1757 {
1758 	struct sk_buff *skb;
1759 	int data_was_unread = 0;
1760 	int state;
1761 
1762 	lock_sock(sk);
1763 	sk->sk_shutdown = SHUTDOWN_MASK;
1764 
1765 	if (sk->sk_state == TCP_LISTEN) {
1766 		tcp_set_state(sk, TCP_CLOSE);
1767 
1768 		/* Special case. */
1769 		inet_csk_listen_stop(sk);
1770 
1771 		goto adjudge_to_death;
1772 	}
1773 
1774 	/*  We need to flush the recv. buffs.  We do this only on the
1775 	 *  descriptor close, not protocol-sourced closes, because the
1776 	 *  reader process may not have drained the data yet!
1777 	 */
1778 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1779 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1780 			  tcp_hdr(skb)->fin;
1781 		data_was_unread += len;
1782 		__kfree_skb(skb);
1783 	}
1784 
1785 	sk_mem_reclaim(sk);
1786 
1787 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1788 	 * data was lost. To witness the awful effects of the old behavior of
1789 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1790 	 * GET in an FTP client, suspend the process, wait for the client to
1791 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1792 	 * Note: timeout is always zero in such a case.
1793 	 */
1794 	if (data_was_unread) {
1795 		/* Unread data was tossed, zap the connection. */
1796 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1797 		tcp_set_state(sk, TCP_CLOSE);
1798 		tcp_send_active_reset(sk, GFP_KERNEL);
1799 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1800 		/* Check zero linger _after_ checking for unread data. */
1801 		sk->sk_prot->disconnect(sk, 0);
1802 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1803 	} else if (tcp_close_state(sk)) {
1804 		/* We FIN if the application ate all the data before
1805 		 * zapping the connection.
1806 		 */
1807 
1808 		/* RED-PEN. Formally speaking, we have broken TCP state
1809 		 * machine. State transitions:
1810 		 *
1811 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1812 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1813 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1814 		 *
1815 		 * are legal only when FIN has been sent (i.e. in window),
1816 		 * rather than queued out of window. Purists blame.
1817 		 *
1818 		 * F.e. "RFC state" is ESTABLISHED,
1819 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1820 		 *
1821 		 * The visible declinations are that sometimes
1822 		 * we enter time-wait state, when it is not required really
1823 		 * (harmless), do not send active resets, when they are
1824 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1825 		 * they look as CLOSING or LAST_ACK for Linux)
1826 		 * Probably, I missed some more holelets.
1827 		 * 						--ANK
1828 		 */
1829 		tcp_send_fin(sk);
1830 	}
1831 
1832 	sk_stream_wait_close(sk, timeout);
1833 
1834 adjudge_to_death:
1835 	state = sk->sk_state;
1836 	sock_hold(sk);
1837 	sock_orphan(sk);
1838 	atomic_inc(sk->sk_prot->orphan_count);
1839 
1840 	/* It is the last release_sock in its life. It will remove backlog. */
1841 	release_sock(sk);
1842 
1843 
1844 	/* Now socket is owned by kernel and we acquire BH lock
1845 	   to finish close. No need to check for user refs.
1846 	 */
1847 	local_bh_disable();
1848 	bh_lock_sock(sk);
1849 	WARN_ON(sock_owned_by_user(sk));
1850 
1851 	/* Have we already been destroyed by a softirq or backlog? */
1852 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1853 		goto out;
1854 
1855 	/*	This is a (useful) BSD violating of the RFC. There is a
1856 	 *	problem with TCP as specified in that the other end could
1857 	 *	keep a socket open forever with no application left this end.
1858 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1859 	 *	our end. If they send after that then tough - BUT: long enough
1860 	 *	that we won't make the old 4*rto = almost no time - whoops
1861 	 *	reset mistake.
1862 	 *
1863 	 *	Nope, it was not mistake. It is really desired behaviour
1864 	 *	f.e. on http servers, when such sockets are useless, but
1865 	 *	consume significant resources. Let's do it with special
1866 	 *	linger2	option.					--ANK
1867 	 */
1868 
1869 	if (sk->sk_state == TCP_FIN_WAIT2) {
1870 		struct tcp_sock *tp = tcp_sk(sk);
1871 		if (tp->linger2 < 0) {
1872 			tcp_set_state(sk, TCP_CLOSE);
1873 			tcp_send_active_reset(sk, GFP_ATOMIC);
1874 			NET_INC_STATS_BH(sock_net(sk),
1875 					LINUX_MIB_TCPABORTONLINGER);
1876 		} else {
1877 			const int tmo = tcp_fin_time(sk);
1878 
1879 			if (tmo > TCP_TIMEWAIT_LEN) {
1880 				inet_csk_reset_keepalive_timer(sk,
1881 						tmo - TCP_TIMEWAIT_LEN);
1882 			} else {
1883 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1884 				goto out;
1885 			}
1886 		}
1887 	}
1888 	if (sk->sk_state != TCP_CLOSE) {
1889 		sk_mem_reclaim(sk);
1890 		if (tcp_too_many_orphans(sk,
1891 				atomic_read(sk->sk_prot->orphan_count))) {
1892 			if (net_ratelimit())
1893 				printk(KERN_INFO "TCP: too many of orphaned "
1894 				       "sockets\n");
1895 			tcp_set_state(sk, TCP_CLOSE);
1896 			tcp_send_active_reset(sk, GFP_ATOMIC);
1897 			NET_INC_STATS_BH(sock_net(sk),
1898 					LINUX_MIB_TCPABORTONMEMORY);
1899 		}
1900 	}
1901 
1902 	if (sk->sk_state == TCP_CLOSE)
1903 		inet_csk_destroy_sock(sk);
1904 	/* Otherwise, socket is reprieved until protocol close. */
1905 
1906 out:
1907 	bh_unlock_sock(sk);
1908 	local_bh_enable();
1909 	sock_put(sk);
1910 }
1911 
1912 /* These states need RST on ABORT according to RFC793 */
1913 
1914 static inline int tcp_need_reset(int state)
1915 {
1916 	return (1 << state) &
1917 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1918 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1919 }
1920 
1921 int tcp_disconnect(struct sock *sk, int flags)
1922 {
1923 	struct inet_sock *inet = inet_sk(sk);
1924 	struct inet_connection_sock *icsk = inet_csk(sk);
1925 	struct tcp_sock *tp = tcp_sk(sk);
1926 	int err = 0;
1927 	int old_state = sk->sk_state;
1928 
1929 	if (old_state != TCP_CLOSE)
1930 		tcp_set_state(sk, TCP_CLOSE);
1931 
1932 	/* ABORT function of RFC793 */
1933 	if (old_state == TCP_LISTEN) {
1934 		inet_csk_listen_stop(sk);
1935 	} else if (tcp_need_reset(old_state) ||
1936 		   (tp->snd_nxt != tp->write_seq &&
1937 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1938 		/* The last check adjusts for discrepancy of Linux wrt. RFC
1939 		 * states
1940 		 */
1941 		tcp_send_active_reset(sk, gfp_any());
1942 		sk->sk_err = ECONNRESET;
1943 	} else if (old_state == TCP_SYN_SENT)
1944 		sk->sk_err = ECONNRESET;
1945 
1946 	tcp_clear_xmit_timers(sk);
1947 	__skb_queue_purge(&sk->sk_receive_queue);
1948 	tcp_write_queue_purge(sk);
1949 	__skb_queue_purge(&tp->out_of_order_queue);
1950 #ifdef CONFIG_NET_DMA
1951 	__skb_queue_purge(&sk->sk_async_wait_queue);
1952 #endif
1953 
1954 	inet->dport = 0;
1955 
1956 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1957 		inet_reset_saddr(sk);
1958 
1959 	sk->sk_shutdown = 0;
1960 	sock_reset_flag(sk, SOCK_DONE);
1961 	tp->srtt = 0;
1962 	if ((tp->write_seq += tp->max_window + 2) == 0)
1963 		tp->write_seq = 1;
1964 	icsk->icsk_backoff = 0;
1965 	tp->snd_cwnd = 2;
1966 	icsk->icsk_probes_out = 0;
1967 	tp->packets_out = 0;
1968 	tp->snd_ssthresh = 0x7fffffff;
1969 	tp->snd_cwnd_cnt = 0;
1970 	tp->bytes_acked = 0;
1971 	tcp_set_ca_state(sk, TCP_CA_Open);
1972 	tcp_clear_retrans(tp);
1973 	inet_csk_delack_init(sk);
1974 	tcp_init_send_head(sk);
1975 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1976 	__sk_dst_reset(sk);
1977 
1978 	WARN_ON(inet->num && !icsk->icsk_bind_hash);
1979 
1980 	sk->sk_error_report(sk);
1981 	return err;
1982 }
1983 
1984 /*
1985  *	Socket option code for TCP.
1986  */
1987 static int do_tcp_setsockopt(struct sock *sk, int level,
1988 		int optname, char __user *optval, int optlen)
1989 {
1990 	struct tcp_sock *tp = tcp_sk(sk);
1991 	struct inet_connection_sock *icsk = inet_csk(sk);
1992 	int val;
1993 	int err = 0;
1994 
1995 	/* This is a string value all the others are int's */
1996 	if (optname == TCP_CONGESTION) {
1997 		char name[TCP_CA_NAME_MAX];
1998 
1999 		if (optlen < 1)
2000 			return -EINVAL;
2001 
2002 		val = strncpy_from_user(name, optval,
2003 					min(TCP_CA_NAME_MAX-1, optlen));
2004 		if (val < 0)
2005 			return -EFAULT;
2006 		name[val] = 0;
2007 
2008 		lock_sock(sk);
2009 		err = tcp_set_congestion_control(sk, name);
2010 		release_sock(sk);
2011 		return err;
2012 	}
2013 
2014 	if (optlen < sizeof(int))
2015 		return -EINVAL;
2016 
2017 	if (get_user(val, (int __user *)optval))
2018 		return -EFAULT;
2019 
2020 	lock_sock(sk);
2021 
2022 	switch (optname) {
2023 	case TCP_MAXSEG:
2024 		/* Values greater than interface MTU won't take effect. However
2025 		 * at the point when this call is done we typically don't yet
2026 		 * know which interface is going to be used */
2027 		if (val < 8 || val > MAX_TCP_WINDOW) {
2028 			err = -EINVAL;
2029 			break;
2030 		}
2031 		tp->rx_opt.user_mss = val;
2032 		break;
2033 
2034 	case TCP_NODELAY:
2035 		if (val) {
2036 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2037 			 * this option on corked socket is remembered, but
2038 			 * it is not activated until cork is cleared.
2039 			 *
2040 			 * However, when TCP_NODELAY is set we make
2041 			 * an explicit push, which overrides even TCP_CORK
2042 			 * for currently queued segments.
2043 			 */
2044 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2045 			tcp_push_pending_frames(sk);
2046 		} else {
2047 			tp->nonagle &= ~TCP_NAGLE_OFF;
2048 		}
2049 		break;
2050 
2051 	case TCP_CORK:
2052 		/* When set indicates to always queue non-full frames.
2053 		 * Later the user clears this option and we transmit
2054 		 * any pending partial frames in the queue.  This is
2055 		 * meant to be used alongside sendfile() to get properly
2056 		 * filled frames when the user (for example) must write
2057 		 * out headers with a write() call first and then use
2058 		 * sendfile to send out the data parts.
2059 		 *
2060 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2061 		 * stronger than TCP_NODELAY.
2062 		 */
2063 		if (val) {
2064 			tp->nonagle |= TCP_NAGLE_CORK;
2065 		} else {
2066 			tp->nonagle &= ~TCP_NAGLE_CORK;
2067 			if (tp->nonagle&TCP_NAGLE_OFF)
2068 				tp->nonagle |= TCP_NAGLE_PUSH;
2069 			tcp_push_pending_frames(sk);
2070 		}
2071 		break;
2072 
2073 	case TCP_KEEPIDLE:
2074 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2075 			err = -EINVAL;
2076 		else {
2077 			tp->keepalive_time = val * HZ;
2078 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2079 			    !((1 << sk->sk_state) &
2080 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2081 				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2082 				if (tp->keepalive_time > elapsed)
2083 					elapsed = tp->keepalive_time - elapsed;
2084 				else
2085 					elapsed = 0;
2086 				inet_csk_reset_keepalive_timer(sk, elapsed);
2087 			}
2088 		}
2089 		break;
2090 	case TCP_KEEPINTVL:
2091 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2092 			err = -EINVAL;
2093 		else
2094 			tp->keepalive_intvl = val * HZ;
2095 		break;
2096 	case TCP_KEEPCNT:
2097 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2098 			err = -EINVAL;
2099 		else
2100 			tp->keepalive_probes = val;
2101 		break;
2102 	case TCP_SYNCNT:
2103 		if (val < 1 || val > MAX_TCP_SYNCNT)
2104 			err = -EINVAL;
2105 		else
2106 			icsk->icsk_syn_retries = val;
2107 		break;
2108 
2109 	case TCP_LINGER2:
2110 		if (val < 0)
2111 			tp->linger2 = -1;
2112 		else if (val > sysctl_tcp_fin_timeout / HZ)
2113 			tp->linger2 = 0;
2114 		else
2115 			tp->linger2 = val * HZ;
2116 		break;
2117 
2118 	case TCP_DEFER_ACCEPT:
2119 		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2120 		if (val > 0) {
2121 			/* Translate value in seconds to number of
2122 			 * retransmits */
2123 			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2124 			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2125 				       icsk->icsk_accept_queue.rskq_defer_accept))
2126 				icsk->icsk_accept_queue.rskq_defer_accept++;
2127 			icsk->icsk_accept_queue.rskq_defer_accept++;
2128 		}
2129 		break;
2130 
2131 	case TCP_WINDOW_CLAMP:
2132 		if (!val) {
2133 			if (sk->sk_state != TCP_CLOSE) {
2134 				err = -EINVAL;
2135 				break;
2136 			}
2137 			tp->window_clamp = 0;
2138 		} else
2139 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2140 						SOCK_MIN_RCVBUF / 2 : val;
2141 		break;
2142 
2143 	case TCP_QUICKACK:
2144 		if (!val) {
2145 			icsk->icsk_ack.pingpong = 1;
2146 		} else {
2147 			icsk->icsk_ack.pingpong = 0;
2148 			if ((1 << sk->sk_state) &
2149 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2150 			    inet_csk_ack_scheduled(sk)) {
2151 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2152 				tcp_cleanup_rbuf(sk, 1);
2153 				if (!(val & 1))
2154 					icsk->icsk_ack.pingpong = 1;
2155 			}
2156 		}
2157 		break;
2158 
2159 #ifdef CONFIG_TCP_MD5SIG
2160 	case TCP_MD5SIG:
2161 		/* Read the IP->Key mappings from userspace */
2162 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2163 		break;
2164 #endif
2165 
2166 	default:
2167 		err = -ENOPROTOOPT;
2168 		break;
2169 	}
2170 
2171 	release_sock(sk);
2172 	return err;
2173 }
2174 
2175 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2176 		   int optlen)
2177 {
2178 	struct inet_connection_sock *icsk = inet_csk(sk);
2179 
2180 	if (level != SOL_TCP)
2181 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2182 						     optval, optlen);
2183 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2184 }
2185 
2186 #ifdef CONFIG_COMPAT
2187 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2188 			  char __user *optval, int optlen)
2189 {
2190 	if (level != SOL_TCP)
2191 		return inet_csk_compat_setsockopt(sk, level, optname,
2192 						  optval, optlen);
2193 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2194 }
2195 
2196 EXPORT_SYMBOL(compat_tcp_setsockopt);
2197 #endif
2198 
2199 /* Return information about state of tcp endpoint in API format. */
2200 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2201 {
2202 	struct tcp_sock *tp = tcp_sk(sk);
2203 	const struct inet_connection_sock *icsk = inet_csk(sk);
2204 	u32 now = tcp_time_stamp;
2205 
2206 	memset(info, 0, sizeof(*info));
2207 
2208 	info->tcpi_state = sk->sk_state;
2209 	info->tcpi_ca_state = icsk->icsk_ca_state;
2210 	info->tcpi_retransmits = icsk->icsk_retransmits;
2211 	info->tcpi_probes = icsk->icsk_probes_out;
2212 	info->tcpi_backoff = icsk->icsk_backoff;
2213 
2214 	if (tp->rx_opt.tstamp_ok)
2215 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2216 	if (tcp_is_sack(tp))
2217 		info->tcpi_options |= TCPI_OPT_SACK;
2218 	if (tp->rx_opt.wscale_ok) {
2219 		info->tcpi_options |= TCPI_OPT_WSCALE;
2220 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2221 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2222 	}
2223 
2224 	if (tp->ecn_flags&TCP_ECN_OK)
2225 		info->tcpi_options |= TCPI_OPT_ECN;
2226 
2227 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2228 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2229 	info->tcpi_snd_mss = tp->mss_cache;
2230 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2231 
2232 	if (sk->sk_state == TCP_LISTEN) {
2233 		info->tcpi_unacked = sk->sk_ack_backlog;
2234 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2235 	} else {
2236 		info->tcpi_unacked = tp->packets_out;
2237 		info->tcpi_sacked = tp->sacked_out;
2238 	}
2239 	info->tcpi_lost = tp->lost_out;
2240 	info->tcpi_retrans = tp->retrans_out;
2241 	info->tcpi_fackets = tp->fackets_out;
2242 
2243 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2244 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2245 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2246 
2247 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2248 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2249 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2250 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2251 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2252 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2253 	info->tcpi_advmss = tp->advmss;
2254 	info->tcpi_reordering = tp->reordering;
2255 
2256 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2257 	info->tcpi_rcv_space = tp->rcvq_space.space;
2258 
2259 	info->tcpi_total_retrans = tp->total_retrans;
2260 }
2261 
2262 EXPORT_SYMBOL_GPL(tcp_get_info);
2263 
2264 static int do_tcp_getsockopt(struct sock *sk, int level,
2265 		int optname, char __user *optval, int __user *optlen)
2266 {
2267 	struct inet_connection_sock *icsk = inet_csk(sk);
2268 	struct tcp_sock *tp = tcp_sk(sk);
2269 	int val, len;
2270 
2271 	if (get_user(len, optlen))
2272 		return -EFAULT;
2273 
2274 	len = min_t(unsigned int, len, sizeof(int));
2275 
2276 	if (len < 0)
2277 		return -EINVAL;
2278 
2279 	switch (optname) {
2280 	case TCP_MAXSEG:
2281 		val = tp->mss_cache;
2282 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2283 			val = tp->rx_opt.user_mss;
2284 		break;
2285 	case TCP_NODELAY:
2286 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2287 		break;
2288 	case TCP_CORK:
2289 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2290 		break;
2291 	case TCP_KEEPIDLE:
2292 		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2293 		break;
2294 	case TCP_KEEPINTVL:
2295 		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2296 		break;
2297 	case TCP_KEEPCNT:
2298 		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2299 		break;
2300 	case TCP_SYNCNT:
2301 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2302 		break;
2303 	case TCP_LINGER2:
2304 		val = tp->linger2;
2305 		if (val >= 0)
2306 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2307 		break;
2308 	case TCP_DEFER_ACCEPT:
2309 		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2310 			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2311 		break;
2312 	case TCP_WINDOW_CLAMP:
2313 		val = tp->window_clamp;
2314 		break;
2315 	case TCP_INFO: {
2316 		struct tcp_info info;
2317 
2318 		if (get_user(len, optlen))
2319 			return -EFAULT;
2320 
2321 		tcp_get_info(sk, &info);
2322 
2323 		len = min_t(unsigned int, len, sizeof(info));
2324 		if (put_user(len, optlen))
2325 			return -EFAULT;
2326 		if (copy_to_user(optval, &info, len))
2327 			return -EFAULT;
2328 		return 0;
2329 	}
2330 	case TCP_QUICKACK:
2331 		val = !icsk->icsk_ack.pingpong;
2332 		break;
2333 
2334 	case TCP_CONGESTION:
2335 		if (get_user(len, optlen))
2336 			return -EFAULT;
2337 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2338 		if (put_user(len, optlen))
2339 			return -EFAULT;
2340 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2341 			return -EFAULT;
2342 		return 0;
2343 	default:
2344 		return -ENOPROTOOPT;
2345 	}
2346 
2347 	if (put_user(len, optlen))
2348 		return -EFAULT;
2349 	if (copy_to_user(optval, &val, len))
2350 		return -EFAULT;
2351 	return 0;
2352 }
2353 
2354 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2355 		   int __user *optlen)
2356 {
2357 	struct inet_connection_sock *icsk = inet_csk(sk);
2358 
2359 	if (level != SOL_TCP)
2360 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2361 						     optval, optlen);
2362 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2363 }
2364 
2365 #ifdef CONFIG_COMPAT
2366 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2367 			  char __user *optval, int __user *optlen)
2368 {
2369 	if (level != SOL_TCP)
2370 		return inet_csk_compat_getsockopt(sk, level, optname,
2371 						  optval, optlen);
2372 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2373 }
2374 
2375 EXPORT_SYMBOL(compat_tcp_getsockopt);
2376 #endif
2377 
2378 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2379 {
2380 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2381 	struct tcphdr *th;
2382 	unsigned thlen;
2383 	unsigned int seq;
2384 	__be32 delta;
2385 	unsigned int oldlen;
2386 	unsigned int len;
2387 
2388 	if (!pskb_may_pull(skb, sizeof(*th)))
2389 		goto out;
2390 
2391 	th = tcp_hdr(skb);
2392 	thlen = th->doff * 4;
2393 	if (thlen < sizeof(*th))
2394 		goto out;
2395 
2396 	if (!pskb_may_pull(skb, thlen))
2397 		goto out;
2398 
2399 	oldlen = (u16)~skb->len;
2400 	__skb_pull(skb, thlen);
2401 
2402 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2403 		/* Packet is from an untrusted source, reset gso_segs. */
2404 		int type = skb_shinfo(skb)->gso_type;
2405 		int mss;
2406 
2407 		if (unlikely(type &
2408 			     ~(SKB_GSO_TCPV4 |
2409 			       SKB_GSO_DODGY |
2410 			       SKB_GSO_TCP_ECN |
2411 			       SKB_GSO_TCPV6 |
2412 			       0) ||
2413 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2414 			goto out;
2415 
2416 		mss = skb_shinfo(skb)->gso_size;
2417 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2418 
2419 		segs = NULL;
2420 		goto out;
2421 	}
2422 
2423 	segs = skb_segment(skb, features);
2424 	if (IS_ERR(segs))
2425 		goto out;
2426 
2427 	len = skb_shinfo(skb)->gso_size;
2428 	delta = htonl(oldlen + (thlen + len));
2429 
2430 	skb = segs;
2431 	th = tcp_hdr(skb);
2432 	seq = ntohl(th->seq);
2433 
2434 	do {
2435 		th->fin = th->psh = 0;
2436 
2437 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2438 				       (__force u32)delta));
2439 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2440 			th->check =
2441 			     csum_fold(csum_partial(skb_transport_header(skb),
2442 						    thlen, skb->csum));
2443 
2444 		seq += len;
2445 		skb = skb->next;
2446 		th = tcp_hdr(skb);
2447 
2448 		th->seq = htonl(seq);
2449 		th->cwr = 0;
2450 	} while (skb->next);
2451 
2452 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2453 		      skb->data_len);
2454 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2455 				(__force u32)delta));
2456 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2457 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2458 						   thlen, skb->csum));
2459 
2460 out:
2461 	return segs;
2462 }
2463 EXPORT_SYMBOL(tcp_tso_segment);
2464 
2465 #ifdef CONFIG_TCP_MD5SIG
2466 static unsigned long tcp_md5sig_users;
2467 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2468 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2469 
2470 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2471 {
2472 	int cpu;
2473 	for_each_possible_cpu(cpu) {
2474 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2475 		if (p) {
2476 			if (p->md5_desc.tfm)
2477 				crypto_free_hash(p->md5_desc.tfm);
2478 			kfree(p);
2479 			p = NULL;
2480 		}
2481 	}
2482 	free_percpu(pool);
2483 }
2484 
2485 void tcp_free_md5sig_pool(void)
2486 {
2487 	struct tcp_md5sig_pool **pool = NULL;
2488 
2489 	spin_lock_bh(&tcp_md5sig_pool_lock);
2490 	if (--tcp_md5sig_users == 0) {
2491 		pool = tcp_md5sig_pool;
2492 		tcp_md5sig_pool = NULL;
2493 	}
2494 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2495 	if (pool)
2496 		__tcp_free_md5sig_pool(pool);
2497 }
2498 
2499 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2500 
2501 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2502 {
2503 	int cpu;
2504 	struct tcp_md5sig_pool **pool;
2505 
2506 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2507 	if (!pool)
2508 		return NULL;
2509 
2510 	for_each_possible_cpu(cpu) {
2511 		struct tcp_md5sig_pool *p;
2512 		struct crypto_hash *hash;
2513 
2514 		p = kzalloc(sizeof(*p), GFP_KERNEL);
2515 		if (!p)
2516 			goto out_free;
2517 		*per_cpu_ptr(pool, cpu) = p;
2518 
2519 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2520 		if (!hash || IS_ERR(hash))
2521 			goto out_free;
2522 
2523 		p->md5_desc.tfm = hash;
2524 	}
2525 	return pool;
2526 out_free:
2527 	__tcp_free_md5sig_pool(pool);
2528 	return NULL;
2529 }
2530 
2531 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2532 {
2533 	struct tcp_md5sig_pool **pool;
2534 	int alloc = 0;
2535 
2536 retry:
2537 	spin_lock_bh(&tcp_md5sig_pool_lock);
2538 	pool = tcp_md5sig_pool;
2539 	if (tcp_md5sig_users++ == 0) {
2540 		alloc = 1;
2541 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2542 	} else if (!pool) {
2543 		tcp_md5sig_users--;
2544 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2545 		cpu_relax();
2546 		goto retry;
2547 	} else
2548 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2549 
2550 	if (alloc) {
2551 		/* we cannot hold spinlock here because this may sleep. */
2552 		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2553 		spin_lock_bh(&tcp_md5sig_pool_lock);
2554 		if (!p) {
2555 			tcp_md5sig_users--;
2556 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2557 			return NULL;
2558 		}
2559 		pool = tcp_md5sig_pool;
2560 		if (pool) {
2561 			/* oops, it has already been assigned. */
2562 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2563 			__tcp_free_md5sig_pool(p);
2564 		} else {
2565 			tcp_md5sig_pool = pool = p;
2566 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2567 		}
2568 	}
2569 	return pool;
2570 }
2571 
2572 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2573 
2574 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2575 {
2576 	struct tcp_md5sig_pool **p;
2577 	spin_lock_bh(&tcp_md5sig_pool_lock);
2578 	p = tcp_md5sig_pool;
2579 	if (p)
2580 		tcp_md5sig_users++;
2581 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2582 	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2583 }
2584 
2585 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2586 
2587 void __tcp_put_md5sig_pool(void)
2588 {
2589 	tcp_free_md5sig_pool();
2590 }
2591 
2592 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2593 
2594 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2595 			struct tcphdr *th)
2596 {
2597 	struct scatterlist sg;
2598 	int err;
2599 
2600 	__sum16 old_checksum = th->check;
2601 	th->check = 0;
2602 	/* options aren't included in the hash */
2603 	sg_init_one(&sg, th, sizeof(struct tcphdr));
2604 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2605 	th->check = old_checksum;
2606 	return err;
2607 }
2608 
2609 EXPORT_SYMBOL(tcp_md5_hash_header);
2610 
2611 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2612 			  struct sk_buff *skb, unsigned header_len)
2613 {
2614 	struct scatterlist sg;
2615 	const struct tcphdr *tp = tcp_hdr(skb);
2616 	struct hash_desc *desc = &hp->md5_desc;
2617 	unsigned i;
2618 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2619 				       skb_headlen(skb) - header_len : 0;
2620 	const struct skb_shared_info *shi = skb_shinfo(skb);
2621 
2622 	sg_init_table(&sg, 1);
2623 
2624 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2625 	if (crypto_hash_update(desc, &sg, head_data_len))
2626 		return 1;
2627 
2628 	for (i = 0; i < shi->nr_frags; ++i) {
2629 		const struct skb_frag_struct *f = &shi->frags[i];
2630 		sg_set_page(&sg, f->page, f->size, f->page_offset);
2631 		if (crypto_hash_update(desc, &sg, f->size))
2632 			return 1;
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2639 
2640 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2641 {
2642 	struct scatterlist sg;
2643 
2644 	sg_init_one(&sg, key->key, key->keylen);
2645 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2646 }
2647 
2648 EXPORT_SYMBOL(tcp_md5_hash_key);
2649 
2650 #endif
2651 
2652 void tcp_done(struct sock *sk)
2653 {
2654 	if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2655 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2656 
2657 	tcp_set_state(sk, TCP_CLOSE);
2658 	tcp_clear_xmit_timers(sk);
2659 
2660 	sk->sk_shutdown = SHUTDOWN_MASK;
2661 
2662 	if (!sock_flag(sk, SOCK_DEAD))
2663 		sk->sk_state_change(sk);
2664 	else
2665 		inet_csk_destroy_sock(sk);
2666 }
2667 EXPORT_SYMBOL_GPL(tcp_done);
2668 
2669 extern struct tcp_congestion_ops tcp_reno;
2670 
2671 static __initdata unsigned long thash_entries;
2672 static int __init set_thash_entries(char *str)
2673 {
2674 	if (!str)
2675 		return 0;
2676 	thash_entries = simple_strtoul(str, &str, 0);
2677 	return 1;
2678 }
2679 __setup("thash_entries=", set_thash_entries);
2680 
2681 void __init tcp_init(void)
2682 {
2683 	struct sk_buff *skb = NULL;
2684 	unsigned long nr_pages, limit;
2685 	int order, i, max_share;
2686 
2687 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2688 
2689 	tcp_hashinfo.bind_bucket_cachep =
2690 		kmem_cache_create("tcp_bind_bucket",
2691 				  sizeof(struct inet_bind_bucket), 0,
2692 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2693 
2694 	/* Size and allocate the main established and bind bucket
2695 	 * hash tables.
2696 	 *
2697 	 * The methodology is similar to that of the buffer cache.
2698 	 */
2699 	tcp_hashinfo.ehash =
2700 		alloc_large_system_hash("TCP established",
2701 					sizeof(struct inet_ehash_bucket),
2702 					thash_entries,
2703 					(num_physpages >= 128 * 1024) ?
2704 					13 : 15,
2705 					0,
2706 					&tcp_hashinfo.ehash_size,
2707 					NULL,
2708 					thash_entries ? 0 : 512 * 1024);
2709 	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2710 	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2711 		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2712 		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2713 	}
2714 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2715 		panic("TCP: failed to alloc ehash_locks");
2716 	tcp_hashinfo.bhash =
2717 		alloc_large_system_hash("TCP bind",
2718 					sizeof(struct inet_bind_hashbucket),
2719 					tcp_hashinfo.ehash_size,
2720 					(num_physpages >= 128 * 1024) ?
2721 					13 : 15,
2722 					0,
2723 					&tcp_hashinfo.bhash_size,
2724 					NULL,
2725 					64 * 1024);
2726 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2727 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2728 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2729 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2730 	}
2731 
2732 	/* Try to be a bit smarter and adjust defaults depending
2733 	 * on available memory.
2734 	 */
2735 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2736 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2737 			order++)
2738 		;
2739 	if (order >= 4) {
2740 		tcp_death_row.sysctl_max_tw_buckets = 180000;
2741 		sysctl_tcp_max_orphans = 4096 << (order - 4);
2742 		sysctl_max_syn_backlog = 1024;
2743 	} else if (order < 3) {
2744 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2745 		sysctl_tcp_max_orphans >>= (3 - order);
2746 		sysctl_max_syn_backlog = 128;
2747 	}
2748 
2749 	/* Set the pressure threshold to be a fraction of global memory that
2750 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2751 	 * memory, with a floor of 128 pages.
2752 	 */
2753 	nr_pages = totalram_pages - totalhigh_pages;
2754 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2755 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2756 	limit = max(limit, 128UL);
2757 	sysctl_tcp_mem[0] = limit / 4 * 3;
2758 	sysctl_tcp_mem[1] = limit;
2759 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2760 
2761 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2762 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2763 	max_share = min(4UL*1024*1024, limit);
2764 
2765 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2766 	sysctl_tcp_wmem[1] = 16*1024;
2767 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2768 
2769 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2770 	sysctl_tcp_rmem[1] = 87380;
2771 	sysctl_tcp_rmem[2] = max(87380, max_share);
2772 
2773 	printk(KERN_INFO "TCP: Hash tables configured "
2774 	       "(established %d bind %d)\n",
2775 	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2776 
2777 	tcp_register_congestion_control(&tcp_reno);
2778 }
2779 
2780 EXPORT_SYMBOL(tcp_close);
2781 EXPORT_SYMBOL(tcp_disconnect);
2782 EXPORT_SYMBOL(tcp_getsockopt);
2783 EXPORT_SYMBOL(tcp_ioctl);
2784 EXPORT_SYMBOL(tcp_poll);
2785 EXPORT_SYMBOL(tcp_read_sock);
2786 EXPORT_SYMBOL(tcp_recvmsg);
2787 EXPORT_SYMBOL(tcp_sendmsg);
2788 EXPORT_SYMBOL(tcp_splice_read);
2789 EXPORT_SYMBOL(tcp_sendpage);
2790 EXPORT_SYMBOL(tcp_setsockopt);
2791 EXPORT_SYMBOL(tcp_shutdown);
2792