1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/memblock.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sock, wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 /* The TCP header must be at least 32-bit aligned. */ 869 size = ALIGN(size, 4); 870 871 if (unlikely(tcp_under_memory_pressure(sk))) 872 sk_mem_reclaim_partial(sk); 873 874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 875 if (likely(skb)) { 876 bool mem_scheduled; 877 878 if (force_schedule) { 879 mem_scheduled = true; 880 sk_forced_mem_schedule(sk, skb->truesize); 881 } else { 882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 883 } 884 if (likely(mem_scheduled)) { 885 skb_reserve(skb, sk->sk_prot->max_header); 886 /* 887 * Make sure that we have exactly size bytes 888 * available to the caller, no more, no less. 889 */ 890 skb->reserved_tailroom = skb->end - skb->tail - size; 891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 892 return skb; 893 } 894 __kfree_skb(skb); 895 } else { 896 sk->sk_prot->enter_memory_pressure(sk); 897 sk_stream_moderate_sndbuf(sk); 898 } 899 return NULL; 900 } 901 902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 903 int large_allowed) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 u32 new_size_goal, size_goal; 907 908 if (!large_allowed) 909 return mss_now; 910 911 /* Note : tcp_tso_autosize() will eventually split this later */ 912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 914 915 /* We try hard to avoid divides here */ 916 size_goal = tp->gso_segs * mss_now; 917 if (unlikely(new_size_goal < size_goal || 918 new_size_goal >= size_goal + mss_now)) { 919 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 920 sk->sk_gso_max_segs); 921 size_goal = tp->gso_segs * mss_now; 922 } 923 924 return max(size_goal, mss_now); 925 } 926 927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 928 { 929 int mss_now; 930 931 mss_now = tcp_current_mss(sk); 932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 933 934 return mss_now; 935 } 936 937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 938 size_t size, int flags) 939 { 940 struct tcp_sock *tp = tcp_sk(sk); 941 int mss_now, size_goal; 942 int err; 943 ssize_t copied; 944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 945 946 if (IS_ENABLED(CONFIG_DEBUG_VM) && 947 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 948 return -EINVAL; 949 950 /* Wait for a connection to finish. One exception is TCP Fast Open 951 * (passive side) where data is allowed to be sent before a connection 952 * is fully established. 953 */ 954 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 955 !tcp_passive_fastopen(sk)) { 956 err = sk_stream_wait_connect(sk, &timeo); 957 if (err != 0) 958 goto out_err; 959 } 960 961 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 962 963 mss_now = tcp_send_mss(sk, &size_goal, flags); 964 copied = 0; 965 966 err = -EPIPE; 967 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 968 goto out_err; 969 970 while (size > 0) { 971 struct sk_buff *skb = tcp_write_queue_tail(sk); 972 int copy, i; 973 bool can_coalesce; 974 975 if (!skb || (copy = size_goal - skb->len) <= 0 || 976 !tcp_skb_can_collapse_to(skb)) { 977 new_segment: 978 if (!sk_stream_memory_free(sk)) 979 goto wait_for_sndbuf; 980 981 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 982 tcp_rtx_and_write_queues_empty(sk)); 983 if (!skb) 984 goto wait_for_memory; 985 986 skb_entail(sk, skb); 987 copy = size_goal; 988 } 989 990 if (copy > size) 991 copy = size; 992 993 i = skb_shinfo(skb)->nr_frags; 994 can_coalesce = skb_can_coalesce(skb, i, page, offset); 995 if (!can_coalesce && i >= sysctl_max_skb_frags) { 996 tcp_mark_push(tp, skb); 997 goto new_segment; 998 } 999 if (!sk_wmem_schedule(sk, copy)) 1000 goto wait_for_memory; 1001 1002 if (can_coalesce) { 1003 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1004 } else { 1005 get_page(page); 1006 skb_fill_page_desc(skb, i, page, offset, copy); 1007 } 1008 1009 if (!(flags & MSG_NO_SHARED_FRAGS)) 1010 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1011 1012 skb->len += copy; 1013 skb->data_len += copy; 1014 skb->truesize += copy; 1015 sk->sk_wmem_queued += copy; 1016 sk_mem_charge(sk, copy); 1017 skb->ip_summed = CHECKSUM_PARTIAL; 1018 tp->write_seq += copy; 1019 TCP_SKB_CB(skb)->end_seq += copy; 1020 tcp_skb_pcount_set(skb, 0); 1021 1022 if (!copied) 1023 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1024 1025 copied += copy; 1026 offset += copy; 1027 size -= copy; 1028 if (!size) 1029 goto out; 1030 1031 if (skb->len < size_goal || (flags & MSG_OOB)) 1032 continue; 1033 1034 if (forced_push(tp)) { 1035 tcp_mark_push(tp, skb); 1036 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1037 } else if (skb == tcp_send_head(sk)) 1038 tcp_push_one(sk, mss_now); 1039 continue; 1040 1041 wait_for_sndbuf: 1042 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1043 wait_for_memory: 1044 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1045 TCP_NAGLE_PUSH, size_goal); 1046 1047 err = sk_stream_wait_memory(sk, &timeo); 1048 if (err != 0) 1049 goto do_error; 1050 1051 mss_now = tcp_send_mss(sk, &size_goal, flags); 1052 } 1053 1054 out: 1055 if (copied) { 1056 tcp_tx_timestamp(sk, sk->sk_tsflags); 1057 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1058 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1059 } 1060 return copied; 1061 1062 do_error: 1063 if (copied) 1064 goto out; 1065 out_err: 1066 /* make sure we wake any epoll edge trigger waiter */ 1067 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1068 err == -EAGAIN)) { 1069 sk->sk_write_space(sk); 1070 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1071 } 1072 return sk_stream_error(sk, flags, err); 1073 } 1074 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1075 1076 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1077 size_t size, int flags) 1078 { 1079 if (!(sk->sk_route_caps & NETIF_F_SG)) 1080 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1081 1082 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1083 1084 return do_tcp_sendpages(sk, page, offset, size, flags); 1085 } 1086 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1087 1088 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1089 size_t size, int flags) 1090 { 1091 int ret; 1092 1093 lock_sock(sk); 1094 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1095 release_sock(sk); 1096 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(tcp_sendpage); 1100 1101 /* Do not bother using a page frag for very small frames. 1102 * But use this heuristic only for the first skb in write queue. 1103 * 1104 * Having no payload in skb->head allows better SACK shifting 1105 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1106 * write queue has less skbs. 1107 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1108 * This also speeds up tso_fragment(), since it wont fallback 1109 * to tcp_fragment(). 1110 */ 1111 static int linear_payload_sz(bool first_skb) 1112 { 1113 if (first_skb) 1114 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1115 return 0; 1116 } 1117 1118 static int select_size(bool first_skb, bool zc) 1119 { 1120 if (zc) 1121 return 0; 1122 return linear_payload_sz(first_skb); 1123 } 1124 1125 void tcp_free_fastopen_req(struct tcp_sock *tp) 1126 { 1127 if (tp->fastopen_req) { 1128 kfree(tp->fastopen_req); 1129 tp->fastopen_req = NULL; 1130 } 1131 } 1132 1133 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1134 int *copied, size_t size, 1135 struct ubuf_info *uarg) 1136 { 1137 struct tcp_sock *tp = tcp_sk(sk); 1138 struct inet_sock *inet = inet_sk(sk); 1139 struct sockaddr *uaddr = msg->msg_name; 1140 int err, flags; 1141 1142 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1143 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1144 uaddr->sa_family == AF_UNSPEC)) 1145 return -EOPNOTSUPP; 1146 if (tp->fastopen_req) 1147 return -EALREADY; /* Another Fast Open is in progress */ 1148 1149 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1150 sk->sk_allocation); 1151 if (unlikely(!tp->fastopen_req)) 1152 return -ENOBUFS; 1153 tp->fastopen_req->data = msg; 1154 tp->fastopen_req->size = size; 1155 tp->fastopen_req->uarg = uarg; 1156 1157 if (inet->defer_connect) { 1158 err = tcp_connect(sk); 1159 /* Same failure procedure as in tcp_v4/6_connect */ 1160 if (err) { 1161 tcp_set_state(sk, TCP_CLOSE); 1162 inet->inet_dport = 0; 1163 sk->sk_route_caps = 0; 1164 } 1165 } 1166 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1167 err = __inet_stream_connect(sk->sk_socket, uaddr, 1168 msg->msg_namelen, flags, 1); 1169 /* fastopen_req could already be freed in __inet_stream_connect 1170 * if the connection times out or gets rst 1171 */ 1172 if (tp->fastopen_req) { 1173 *copied = tp->fastopen_req->copied; 1174 tcp_free_fastopen_req(tp); 1175 inet->defer_connect = 0; 1176 } 1177 return err; 1178 } 1179 1180 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1181 { 1182 struct tcp_sock *tp = tcp_sk(sk); 1183 struct ubuf_info *uarg = NULL; 1184 struct sk_buff *skb; 1185 struct sockcm_cookie sockc; 1186 int flags, err, copied = 0; 1187 int mss_now = 0, size_goal, copied_syn = 0; 1188 bool process_backlog = false; 1189 bool zc = false; 1190 long timeo; 1191 1192 flags = msg->msg_flags; 1193 1194 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1195 skb = tcp_write_queue_tail(sk); 1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1197 if (!uarg) { 1198 err = -ENOBUFS; 1199 goto out_err; 1200 } 1201 1202 zc = sk->sk_route_caps & NETIF_F_SG; 1203 if (!zc) 1204 uarg->zerocopy = 0; 1205 } 1206 1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1208 !tp->repair) { 1209 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1210 if (err == -EINPROGRESS && copied_syn > 0) 1211 goto out; 1212 else if (err) 1213 goto out_err; 1214 } 1215 1216 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1217 1218 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1219 1220 /* Wait for a connection to finish. One exception is TCP Fast Open 1221 * (passive side) where data is allowed to be sent before a connection 1222 * is fully established. 1223 */ 1224 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1225 !tcp_passive_fastopen(sk)) { 1226 err = sk_stream_wait_connect(sk, &timeo); 1227 if (err != 0) 1228 goto do_error; 1229 } 1230 1231 if (unlikely(tp->repair)) { 1232 if (tp->repair_queue == TCP_RECV_QUEUE) { 1233 copied = tcp_send_rcvq(sk, msg, size); 1234 goto out_nopush; 1235 } 1236 1237 err = -EINVAL; 1238 if (tp->repair_queue == TCP_NO_QUEUE) 1239 goto out_err; 1240 1241 /* 'common' sending to sendq */ 1242 } 1243 1244 sockcm_init(&sockc, sk); 1245 if (msg->msg_controllen) { 1246 err = sock_cmsg_send(sk, msg, &sockc); 1247 if (unlikely(err)) { 1248 err = -EINVAL; 1249 goto out_err; 1250 } 1251 } 1252 1253 /* This should be in poll */ 1254 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1255 1256 /* Ok commence sending. */ 1257 copied = 0; 1258 1259 restart: 1260 mss_now = tcp_send_mss(sk, &size_goal, flags); 1261 1262 err = -EPIPE; 1263 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1264 goto do_error; 1265 1266 while (msg_data_left(msg)) { 1267 int copy = 0; 1268 1269 skb = tcp_write_queue_tail(sk); 1270 if (skb) 1271 copy = size_goal - skb->len; 1272 1273 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1274 bool first_skb; 1275 int linear; 1276 1277 new_segment: 1278 if (!sk_stream_memory_free(sk)) 1279 goto wait_for_sndbuf; 1280 1281 if (process_backlog && sk_flush_backlog(sk)) { 1282 process_backlog = false; 1283 goto restart; 1284 } 1285 first_skb = tcp_rtx_and_write_queues_empty(sk); 1286 linear = select_size(first_skb, zc); 1287 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1288 first_skb); 1289 if (!skb) 1290 goto wait_for_memory; 1291 1292 process_backlog = true; 1293 skb->ip_summed = CHECKSUM_PARTIAL; 1294 1295 skb_entail(sk, skb); 1296 copy = size_goal; 1297 1298 /* All packets are restored as if they have 1299 * already been sent. skb_mstamp_ns isn't set to 1300 * avoid wrong rtt estimation. 1301 */ 1302 if (tp->repair) 1303 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1304 } 1305 1306 /* Try to append data to the end of skb. */ 1307 if (copy > msg_data_left(msg)) 1308 copy = msg_data_left(msg); 1309 1310 /* Where to copy to? */ 1311 if (skb_availroom(skb) > 0 && !zc) { 1312 /* We have some space in skb head. Superb! */ 1313 copy = min_t(int, copy, skb_availroom(skb)); 1314 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1315 if (err) 1316 goto do_fault; 1317 } else if (!zc) { 1318 bool merge = true; 1319 int i = skb_shinfo(skb)->nr_frags; 1320 struct page_frag *pfrag = sk_page_frag(sk); 1321 1322 if (!sk_page_frag_refill(sk, pfrag)) 1323 goto wait_for_memory; 1324 1325 if (!skb_can_coalesce(skb, i, pfrag->page, 1326 pfrag->offset)) { 1327 if (i >= sysctl_max_skb_frags) { 1328 tcp_mark_push(tp, skb); 1329 goto new_segment; 1330 } 1331 merge = false; 1332 } 1333 1334 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1335 1336 if (!sk_wmem_schedule(sk, copy)) 1337 goto wait_for_memory; 1338 1339 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1340 pfrag->page, 1341 pfrag->offset, 1342 copy); 1343 if (err) 1344 goto do_error; 1345 1346 /* Update the skb. */ 1347 if (merge) { 1348 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1349 } else { 1350 skb_fill_page_desc(skb, i, pfrag->page, 1351 pfrag->offset, copy); 1352 page_ref_inc(pfrag->page); 1353 } 1354 pfrag->offset += copy; 1355 } else { 1356 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1357 if (err == -EMSGSIZE || err == -EEXIST) { 1358 tcp_mark_push(tp, skb); 1359 goto new_segment; 1360 } 1361 if (err < 0) 1362 goto do_error; 1363 copy = err; 1364 } 1365 1366 if (!copied) 1367 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1368 1369 tp->write_seq += copy; 1370 TCP_SKB_CB(skb)->end_seq += copy; 1371 tcp_skb_pcount_set(skb, 0); 1372 1373 copied += copy; 1374 if (!msg_data_left(msg)) { 1375 if (unlikely(flags & MSG_EOR)) 1376 TCP_SKB_CB(skb)->eor = 1; 1377 goto out; 1378 } 1379 1380 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1381 continue; 1382 1383 if (forced_push(tp)) { 1384 tcp_mark_push(tp, skb); 1385 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1386 } else if (skb == tcp_send_head(sk)) 1387 tcp_push_one(sk, mss_now); 1388 continue; 1389 1390 wait_for_sndbuf: 1391 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1392 wait_for_memory: 1393 if (copied) 1394 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1395 TCP_NAGLE_PUSH, size_goal); 1396 1397 err = sk_stream_wait_memory(sk, &timeo); 1398 if (err != 0) 1399 goto do_error; 1400 1401 mss_now = tcp_send_mss(sk, &size_goal, flags); 1402 } 1403 1404 out: 1405 if (copied) { 1406 tcp_tx_timestamp(sk, sockc.tsflags); 1407 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1408 } 1409 out_nopush: 1410 sock_zerocopy_put(uarg); 1411 return copied + copied_syn; 1412 1413 do_fault: 1414 if (!skb->len) { 1415 tcp_unlink_write_queue(skb, sk); 1416 /* It is the one place in all of TCP, except connection 1417 * reset, where we can be unlinking the send_head. 1418 */ 1419 if (tcp_write_queue_empty(sk)) 1420 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1421 sk_wmem_free_skb(sk, skb); 1422 } 1423 1424 do_error: 1425 if (copied + copied_syn) 1426 goto out; 1427 out_err: 1428 sock_zerocopy_put_abort(uarg, true); 1429 err = sk_stream_error(sk, flags, err); 1430 /* make sure we wake any epoll edge trigger waiter */ 1431 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1432 err == -EAGAIN)) { 1433 sk->sk_write_space(sk); 1434 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1435 } 1436 return err; 1437 } 1438 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1439 1440 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1441 { 1442 int ret; 1443 1444 lock_sock(sk); 1445 ret = tcp_sendmsg_locked(sk, msg, size); 1446 release_sock(sk); 1447 1448 return ret; 1449 } 1450 EXPORT_SYMBOL(tcp_sendmsg); 1451 1452 /* 1453 * Handle reading urgent data. BSD has very simple semantics for 1454 * this, no blocking and very strange errors 8) 1455 */ 1456 1457 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1458 { 1459 struct tcp_sock *tp = tcp_sk(sk); 1460 1461 /* No URG data to read. */ 1462 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1463 tp->urg_data == TCP_URG_READ) 1464 return -EINVAL; /* Yes this is right ! */ 1465 1466 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1467 return -ENOTCONN; 1468 1469 if (tp->urg_data & TCP_URG_VALID) { 1470 int err = 0; 1471 char c = tp->urg_data; 1472 1473 if (!(flags & MSG_PEEK)) 1474 tp->urg_data = TCP_URG_READ; 1475 1476 /* Read urgent data. */ 1477 msg->msg_flags |= MSG_OOB; 1478 1479 if (len > 0) { 1480 if (!(flags & MSG_TRUNC)) 1481 err = memcpy_to_msg(msg, &c, 1); 1482 len = 1; 1483 } else 1484 msg->msg_flags |= MSG_TRUNC; 1485 1486 return err ? -EFAULT : len; 1487 } 1488 1489 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1490 return 0; 1491 1492 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1493 * the available implementations agree in this case: 1494 * this call should never block, independent of the 1495 * blocking state of the socket. 1496 * Mike <pall@rz.uni-karlsruhe.de> 1497 */ 1498 return -EAGAIN; 1499 } 1500 1501 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1502 { 1503 struct sk_buff *skb; 1504 int copied = 0, err = 0; 1505 1506 /* XXX -- need to support SO_PEEK_OFF */ 1507 1508 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1509 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1510 if (err) 1511 return err; 1512 copied += skb->len; 1513 } 1514 1515 skb_queue_walk(&sk->sk_write_queue, skb) { 1516 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1517 if (err) 1518 break; 1519 1520 copied += skb->len; 1521 } 1522 1523 return err ?: copied; 1524 } 1525 1526 /* Clean up the receive buffer for full frames taken by the user, 1527 * then send an ACK if necessary. COPIED is the number of bytes 1528 * tcp_recvmsg has given to the user so far, it speeds up the 1529 * calculation of whether or not we must ACK for the sake of 1530 * a window update. 1531 */ 1532 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1533 { 1534 struct tcp_sock *tp = tcp_sk(sk); 1535 bool time_to_ack = false; 1536 1537 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1538 1539 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1540 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1541 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1542 1543 if (inet_csk_ack_scheduled(sk)) { 1544 const struct inet_connection_sock *icsk = inet_csk(sk); 1545 /* Delayed ACKs frequently hit locked sockets during bulk 1546 * receive. */ 1547 if (icsk->icsk_ack.blocked || 1548 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1549 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1550 /* 1551 * If this read emptied read buffer, we send ACK, if 1552 * connection is not bidirectional, user drained 1553 * receive buffer and there was a small segment 1554 * in queue. 1555 */ 1556 (copied > 0 && 1557 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1559 !inet_csk_in_pingpong_mode(sk))) && 1560 !atomic_read(&sk->sk_rmem_alloc))) 1561 time_to_ack = true; 1562 } 1563 1564 /* We send an ACK if we can now advertise a non-zero window 1565 * which has been raised "significantly". 1566 * 1567 * Even if window raised up to infinity, do not send window open ACK 1568 * in states, where we will not receive more. It is useless. 1569 */ 1570 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1571 __u32 rcv_window_now = tcp_receive_window(tp); 1572 1573 /* Optimize, __tcp_select_window() is not cheap. */ 1574 if (2*rcv_window_now <= tp->window_clamp) { 1575 __u32 new_window = __tcp_select_window(sk); 1576 1577 /* Send ACK now, if this read freed lots of space 1578 * in our buffer. Certainly, new_window is new window. 1579 * We can advertise it now, if it is not less than current one. 1580 * "Lots" means "at least twice" here. 1581 */ 1582 if (new_window && new_window >= 2 * rcv_window_now) 1583 time_to_ack = true; 1584 } 1585 } 1586 if (time_to_ack) 1587 tcp_send_ack(sk); 1588 } 1589 1590 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1591 { 1592 struct sk_buff *skb; 1593 u32 offset; 1594 1595 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1596 offset = seq - TCP_SKB_CB(skb)->seq; 1597 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1598 pr_err_once("%s: found a SYN, please report !\n", __func__); 1599 offset--; 1600 } 1601 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1602 *off = offset; 1603 return skb; 1604 } 1605 /* This looks weird, but this can happen if TCP collapsing 1606 * splitted a fat GRO packet, while we released socket lock 1607 * in skb_splice_bits() 1608 */ 1609 sk_eat_skb(sk, skb); 1610 } 1611 return NULL; 1612 } 1613 1614 /* 1615 * This routine provides an alternative to tcp_recvmsg() for routines 1616 * that would like to handle copying from skbuffs directly in 'sendfile' 1617 * fashion. 1618 * Note: 1619 * - It is assumed that the socket was locked by the caller. 1620 * - The routine does not block. 1621 * - At present, there is no support for reading OOB data 1622 * or for 'peeking' the socket using this routine 1623 * (although both would be easy to implement). 1624 */ 1625 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1626 sk_read_actor_t recv_actor) 1627 { 1628 struct sk_buff *skb; 1629 struct tcp_sock *tp = tcp_sk(sk); 1630 u32 seq = tp->copied_seq; 1631 u32 offset; 1632 int copied = 0; 1633 1634 if (sk->sk_state == TCP_LISTEN) 1635 return -ENOTCONN; 1636 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1637 if (offset < skb->len) { 1638 int used; 1639 size_t len; 1640 1641 len = skb->len - offset; 1642 /* Stop reading if we hit a patch of urgent data */ 1643 if (tp->urg_data) { 1644 u32 urg_offset = tp->urg_seq - seq; 1645 if (urg_offset < len) 1646 len = urg_offset; 1647 if (!len) 1648 break; 1649 } 1650 used = recv_actor(desc, skb, offset, len); 1651 if (used <= 0) { 1652 if (!copied) 1653 copied = used; 1654 break; 1655 } else if (used <= len) { 1656 seq += used; 1657 copied += used; 1658 offset += used; 1659 } 1660 /* If recv_actor drops the lock (e.g. TCP splice 1661 * receive) the skb pointer might be invalid when 1662 * getting here: tcp_collapse might have deleted it 1663 * while aggregating skbs from the socket queue. 1664 */ 1665 skb = tcp_recv_skb(sk, seq - 1, &offset); 1666 if (!skb) 1667 break; 1668 /* TCP coalescing might have appended data to the skb. 1669 * Try to splice more frags 1670 */ 1671 if (offset + 1 != skb->len) 1672 continue; 1673 } 1674 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1675 sk_eat_skb(sk, skb); 1676 ++seq; 1677 break; 1678 } 1679 sk_eat_skb(sk, skb); 1680 if (!desc->count) 1681 break; 1682 tp->copied_seq = seq; 1683 } 1684 tp->copied_seq = seq; 1685 1686 tcp_rcv_space_adjust(sk); 1687 1688 /* Clean up data we have read: This will do ACK frames. */ 1689 if (copied > 0) { 1690 tcp_recv_skb(sk, seq, &offset); 1691 tcp_cleanup_rbuf(sk, copied); 1692 } 1693 return copied; 1694 } 1695 EXPORT_SYMBOL(tcp_read_sock); 1696 1697 int tcp_peek_len(struct socket *sock) 1698 { 1699 return tcp_inq(sock->sk); 1700 } 1701 EXPORT_SYMBOL(tcp_peek_len); 1702 1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1704 int tcp_set_rcvlowat(struct sock *sk, int val) 1705 { 1706 int cap; 1707 1708 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1709 cap = sk->sk_rcvbuf >> 1; 1710 else 1711 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1712 val = min(val, cap); 1713 sk->sk_rcvlowat = val ? : 1; 1714 1715 /* Check if we need to signal EPOLLIN right now */ 1716 tcp_data_ready(sk); 1717 1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1719 return 0; 1720 1721 val <<= 1; 1722 if (val > sk->sk_rcvbuf) { 1723 sk->sk_rcvbuf = val; 1724 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1725 } 1726 return 0; 1727 } 1728 EXPORT_SYMBOL(tcp_set_rcvlowat); 1729 1730 #ifdef CONFIG_MMU 1731 static const struct vm_operations_struct tcp_vm_ops = { 1732 }; 1733 1734 int tcp_mmap(struct file *file, struct socket *sock, 1735 struct vm_area_struct *vma) 1736 { 1737 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1738 return -EPERM; 1739 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1740 1741 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1742 vma->vm_flags |= VM_MIXEDMAP; 1743 1744 vma->vm_ops = &tcp_vm_ops; 1745 return 0; 1746 } 1747 EXPORT_SYMBOL(tcp_mmap); 1748 1749 static int tcp_zerocopy_receive(struct sock *sk, 1750 struct tcp_zerocopy_receive *zc) 1751 { 1752 unsigned long address = (unsigned long)zc->address; 1753 const skb_frag_t *frags = NULL; 1754 u32 length = 0, seq, offset; 1755 struct vm_area_struct *vma; 1756 struct sk_buff *skb = NULL; 1757 struct tcp_sock *tp; 1758 int inq; 1759 int ret; 1760 1761 if (address & (PAGE_SIZE - 1) || address != zc->address) 1762 return -EINVAL; 1763 1764 if (sk->sk_state == TCP_LISTEN) 1765 return -ENOTCONN; 1766 1767 sock_rps_record_flow(sk); 1768 1769 down_read(¤t->mm->mmap_sem); 1770 1771 ret = -EINVAL; 1772 vma = find_vma(current->mm, address); 1773 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1774 goto out; 1775 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1776 1777 tp = tcp_sk(sk); 1778 seq = tp->copied_seq; 1779 inq = tcp_inq(sk); 1780 zc->length = min_t(u32, zc->length, inq); 1781 zc->length &= ~(PAGE_SIZE - 1); 1782 if (zc->length) { 1783 zap_page_range(vma, address, zc->length); 1784 zc->recv_skip_hint = 0; 1785 } else { 1786 zc->recv_skip_hint = inq; 1787 } 1788 ret = 0; 1789 while (length + PAGE_SIZE <= zc->length) { 1790 if (zc->recv_skip_hint < PAGE_SIZE) { 1791 if (skb) { 1792 skb = skb->next; 1793 offset = seq - TCP_SKB_CB(skb)->seq; 1794 } else { 1795 skb = tcp_recv_skb(sk, seq, &offset); 1796 } 1797 1798 zc->recv_skip_hint = skb->len - offset; 1799 offset -= skb_headlen(skb); 1800 if ((int)offset < 0 || skb_has_frag_list(skb)) 1801 break; 1802 frags = skb_shinfo(skb)->frags; 1803 while (offset) { 1804 if (frags->size > offset) 1805 goto out; 1806 offset -= frags->size; 1807 frags++; 1808 } 1809 } 1810 if (frags->size != PAGE_SIZE || frags->page_offset) { 1811 int remaining = zc->recv_skip_hint; 1812 1813 while (remaining && (frags->size != PAGE_SIZE || 1814 frags->page_offset)) { 1815 remaining -= frags->size; 1816 frags++; 1817 } 1818 zc->recv_skip_hint -= remaining; 1819 break; 1820 } 1821 ret = vm_insert_page(vma, address + length, 1822 skb_frag_page(frags)); 1823 if (ret) 1824 break; 1825 length += PAGE_SIZE; 1826 seq += PAGE_SIZE; 1827 zc->recv_skip_hint -= PAGE_SIZE; 1828 frags++; 1829 } 1830 out: 1831 up_read(¤t->mm->mmap_sem); 1832 if (length) { 1833 tp->copied_seq = seq; 1834 tcp_rcv_space_adjust(sk); 1835 1836 /* Clean up data we have read: This will do ACK frames. */ 1837 tcp_recv_skb(sk, seq, &offset); 1838 tcp_cleanup_rbuf(sk, length); 1839 ret = 0; 1840 if (length == zc->length) 1841 zc->recv_skip_hint = 0; 1842 } else { 1843 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1844 ret = -EIO; 1845 } 1846 zc->length = length; 1847 return ret; 1848 } 1849 #endif 1850 1851 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1852 struct scm_timestamping_internal *tss) 1853 { 1854 if (skb->tstamp) 1855 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1856 else 1857 tss->ts[0] = (struct timespec64) {0}; 1858 1859 if (skb_hwtstamps(skb)->hwtstamp) 1860 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1861 else 1862 tss->ts[2] = (struct timespec64) {0}; 1863 } 1864 1865 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1866 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1867 struct scm_timestamping_internal *tss) 1868 { 1869 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1870 bool has_timestamping = false; 1871 1872 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1873 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1874 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1875 if (new_tstamp) { 1876 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1877 1878 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1879 sizeof(kts), &kts); 1880 } else { 1881 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1882 1883 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1884 sizeof(ts_old), &ts_old); 1885 } 1886 } else { 1887 if (new_tstamp) { 1888 struct __kernel_sock_timeval stv; 1889 1890 stv.tv_sec = tss->ts[0].tv_sec; 1891 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1892 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1893 sizeof(stv), &stv); 1894 } else { 1895 struct __kernel_old_timeval tv; 1896 1897 tv.tv_sec = tss->ts[0].tv_sec; 1898 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1899 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1900 sizeof(tv), &tv); 1901 } 1902 } 1903 } 1904 1905 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1906 has_timestamping = true; 1907 else 1908 tss->ts[0] = (struct timespec64) {0}; 1909 } 1910 1911 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1912 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1913 has_timestamping = true; 1914 else 1915 tss->ts[2] = (struct timespec64) {0}; 1916 } 1917 1918 if (has_timestamping) { 1919 tss->ts[1] = (struct timespec64) {0}; 1920 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1921 put_cmsg_scm_timestamping64(msg, tss); 1922 else 1923 put_cmsg_scm_timestamping(msg, tss); 1924 } 1925 } 1926 1927 static int tcp_inq_hint(struct sock *sk) 1928 { 1929 const struct tcp_sock *tp = tcp_sk(sk); 1930 u32 copied_seq = READ_ONCE(tp->copied_seq); 1931 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1932 int inq; 1933 1934 inq = rcv_nxt - copied_seq; 1935 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1936 lock_sock(sk); 1937 inq = tp->rcv_nxt - tp->copied_seq; 1938 release_sock(sk); 1939 } 1940 /* After receiving a FIN, tell the user-space to continue reading 1941 * by returning a non-zero inq. 1942 */ 1943 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1944 inq = 1; 1945 return inq; 1946 } 1947 1948 /* 1949 * This routine copies from a sock struct into the user buffer. 1950 * 1951 * Technical note: in 2.3 we work on _locked_ socket, so that 1952 * tricks with *seq access order and skb->users are not required. 1953 * Probably, code can be easily improved even more. 1954 */ 1955 1956 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1957 int flags, int *addr_len) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 int copied = 0; 1961 u32 peek_seq; 1962 u32 *seq; 1963 unsigned long used; 1964 int err, inq; 1965 int target; /* Read at least this many bytes */ 1966 long timeo; 1967 struct sk_buff *skb, *last; 1968 u32 urg_hole = 0; 1969 struct scm_timestamping_internal tss; 1970 bool has_tss = false; 1971 bool has_cmsg; 1972 1973 if (unlikely(flags & MSG_ERRQUEUE)) 1974 return inet_recv_error(sk, msg, len, addr_len); 1975 1976 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1977 (sk->sk_state == TCP_ESTABLISHED)) 1978 sk_busy_loop(sk, nonblock); 1979 1980 lock_sock(sk); 1981 1982 err = -ENOTCONN; 1983 if (sk->sk_state == TCP_LISTEN) 1984 goto out; 1985 1986 has_cmsg = tp->recvmsg_inq; 1987 timeo = sock_rcvtimeo(sk, nonblock); 1988 1989 /* Urgent data needs to be handled specially. */ 1990 if (flags & MSG_OOB) 1991 goto recv_urg; 1992 1993 if (unlikely(tp->repair)) { 1994 err = -EPERM; 1995 if (!(flags & MSG_PEEK)) 1996 goto out; 1997 1998 if (tp->repair_queue == TCP_SEND_QUEUE) 1999 goto recv_sndq; 2000 2001 err = -EINVAL; 2002 if (tp->repair_queue == TCP_NO_QUEUE) 2003 goto out; 2004 2005 /* 'common' recv queue MSG_PEEK-ing */ 2006 } 2007 2008 seq = &tp->copied_seq; 2009 if (flags & MSG_PEEK) { 2010 peek_seq = tp->copied_seq; 2011 seq = &peek_seq; 2012 } 2013 2014 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2015 2016 do { 2017 u32 offset; 2018 2019 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2020 if (tp->urg_data && tp->urg_seq == *seq) { 2021 if (copied) 2022 break; 2023 if (signal_pending(current)) { 2024 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2025 break; 2026 } 2027 } 2028 2029 /* Next get a buffer. */ 2030 2031 last = skb_peek_tail(&sk->sk_receive_queue); 2032 skb_queue_walk(&sk->sk_receive_queue, skb) { 2033 last = skb; 2034 /* Now that we have two receive queues this 2035 * shouldn't happen. 2036 */ 2037 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2038 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2039 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2040 flags)) 2041 break; 2042 2043 offset = *seq - TCP_SKB_CB(skb)->seq; 2044 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2045 pr_err_once("%s: found a SYN, please report !\n", __func__); 2046 offset--; 2047 } 2048 if (offset < skb->len) 2049 goto found_ok_skb; 2050 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2051 goto found_fin_ok; 2052 WARN(!(flags & MSG_PEEK), 2053 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2054 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2055 } 2056 2057 /* Well, if we have backlog, try to process it now yet. */ 2058 2059 if (copied >= target && !sk->sk_backlog.tail) 2060 break; 2061 2062 if (copied) { 2063 if (sk->sk_err || 2064 sk->sk_state == TCP_CLOSE || 2065 (sk->sk_shutdown & RCV_SHUTDOWN) || 2066 !timeo || 2067 signal_pending(current)) 2068 break; 2069 } else { 2070 if (sock_flag(sk, SOCK_DONE)) 2071 break; 2072 2073 if (sk->sk_err) { 2074 copied = sock_error(sk); 2075 break; 2076 } 2077 2078 if (sk->sk_shutdown & RCV_SHUTDOWN) 2079 break; 2080 2081 if (sk->sk_state == TCP_CLOSE) { 2082 /* This occurs when user tries to read 2083 * from never connected socket. 2084 */ 2085 copied = -ENOTCONN; 2086 break; 2087 } 2088 2089 if (!timeo) { 2090 copied = -EAGAIN; 2091 break; 2092 } 2093 2094 if (signal_pending(current)) { 2095 copied = sock_intr_errno(timeo); 2096 break; 2097 } 2098 } 2099 2100 tcp_cleanup_rbuf(sk, copied); 2101 2102 if (copied >= target) { 2103 /* Do not sleep, just process backlog. */ 2104 release_sock(sk); 2105 lock_sock(sk); 2106 } else { 2107 sk_wait_data(sk, &timeo, last); 2108 } 2109 2110 if ((flags & MSG_PEEK) && 2111 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2112 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2113 current->comm, 2114 task_pid_nr(current)); 2115 peek_seq = tp->copied_seq; 2116 } 2117 continue; 2118 2119 found_ok_skb: 2120 /* Ok so how much can we use? */ 2121 used = skb->len - offset; 2122 if (len < used) 2123 used = len; 2124 2125 /* Do we have urgent data here? */ 2126 if (tp->urg_data) { 2127 u32 urg_offset = tp->urg_seq - *seq; 2128 if (urg_offset < used) { 2129 if (!urg_offset) { 2130 if (!sock_flag(sk, SOCK_URGINLINE)) { 2131 ++*seq; 2132 urg_hole++; 2133 offset++; 2134 used--; 2135 if (!used) 2136 goto skip_copy; 2137 } 2138 } else 2139 used = urg_offset; 2140 } 2141 } 2142 2143 if (!(flags & MSG_TRUNC)) { 2144 err = skb_copy_datagram_msg(skb, offset, msg, used); 2145 if (err) { 2146 /* Exception. Bailout! */ 2147 if (!copied) 2148 copied = -EFAULT; 2149 break; 2150 } 2151 } 2152 2153 *seq += used; 2154 copied += used; 2155 len -= used; 2156 2157 tcp_rcv_space_adjust(sk); 2158 2159 skip_copy: 2160 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2161 tp->urg_data = 0; 2162 tcp_fast_path_check(sk); 2163 } 2164 if (used + offset < skb->len) 2165 continue; 2166 2167 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2168 tcp_update_recv_tstamps(skb, &tss); 2169 has_tss = true; 2170 has_cmsg = true; 2171 } 2172 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2173 goto found_fin_ok; 2174 if (!(flags & MSG_PEEK)) 2175 sk_eat_skb(sk, skb); 2176 continue; 2177 2178 found_fin_ok: 2179 /* Process the FIN. */ 2180 ++*seq; 2181 if (!(flags & MSG_PEEK)) 2182 sk_eat_skb(sk, skb); 2183 break; 2184 } while (len > 0); 2185 2186 /* According to UNIX98, msg_name/msg_namelen are ignored 2187 * on connected socket. I was just happy when found this 8) --ANK 2188 */ 2189 2190 /* Clean up data we have read: This will do ACK frames. */ 2191 tcp_cleanup_rbuf(sk, copied); 2192 2193 release_sock(sk); 2194 2195 if (has_cmsg) { 2196 if (has_tss) 2197 tcp_recv_timestamp(msg, sk, &tss); 2198 if (tp->recvmsg_inq) { 2199 inq = tcp_inq_hint(sk); 2200 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2201 } 2202 } 2203 2204 return copied; 2205 2206 out: 2207 release_sock(sk); 2208 return err; 2209 2210 recv_urg: 2211 err = tcp_recv_urg(sk, msg, len, flags); 2212 goto out; 2213 2214 recv_sndq: 2215 err = tcp_peek_sndq(sk, msg, len); 2216 goto out; 2217 } 2218 EXPORT_SYMBOL(tcp_recvmsg); 2219 2220 void tcp_set_state(struct sock *sk, int state) 2221 { 2222 int oldstate = sk->sk_state; 2223 2224 /* We defined a new enum for TCP states that are exported in BPF 2225 * so as not force the internal TCP states to be frozen. The 2226 * following checks will detect if an internal state value ever 2227 * differs from the BPF value. If this ever happens, then we will 2228 * need to remap the internal value to the BPF value before calling 2229 * tcp_call_bpf_2arg. 2230 */ 2231 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2232 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2233 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2234 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2235 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2236 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2237 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2238 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2239 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2240 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2241 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2242 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2243 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2244 2245 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2246 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2247 2248 switch (state) { 2249 case TCP_ESTABLISHED: 2250 if (oldstate != TCP_ESTABLISHED) 2251 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2252 break; 2253 2254 case TCP_CLOSE: 2255 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2256 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2257 2258 sk->sk_prot->unhash(sk); 2259 if (inet_csk(sk)->icsk_bind_hash && 2260 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2261 inet_put_port(sk); 2262 /* fall through */ 2263 default: 2264 if (oldstate == TCP_ESTABLISHED) 2265 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2266 } 2267 2268 /* Change state AFTER socket is unhashed to avoid closed 2269 * socket sitting in hash tables. 2270 */ 2271 inet_sk_state_store(sk, state); 2272 } 2273 EXPORT_SYMBOL_GPL(tcp_set_state); 2274 2275 /* 2276 * State processing on a close. This implements the state shift for 2277 * sending our FIN frame. Note that we only send a FIN for some 2278 * states. A shutdown() may have already sent the FIN, or we may be 2279 * closed. 2280 */ 2281 2282 static const unsigned char new_state[16] = { 2283 /* current state: new state: action: */ 2284 [0 /* (Invalid) */] = TCP_CLOSE, 2285 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2286 [TCP_SYN_SENT] = TCP_CLOSE, 2287 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2288 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2289 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2290 [TCP_TIME_WAIT] = TCP_CLOSE, 2291 [TCP_CLOSE] = TCP_CLOSE, 2292 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2293 [TCP_LAST_ACK] = TCP_LAST_ACK, 2294 [TCP_LISTEN] = TCP_CLOSE, 2295 [TCP_CLOSING] = TCP_CLOSING, 2296 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2297 }; 2298 2299 static int tcp_close_state(struct sock *sk) 2300 { 2301 int next = (int)new_state[sk->sk_state]; 2302 int ns = next & TCP_STATE_MASK; 2303 2304 tcp_set_state(sk, ns); 2305 2306 return next & TCP_ACTION_FIN; 2307 } 2308 2309 /* 2310 * Shutdown the sending side of a connection. Much like close except 2311 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2312 */ 2313 2314 void tcp_shutdown(struct sock *sk, int how) 2315 { 2316 /* We need to grab some memory, and put together a FIN, 2317 * and then put it into the queue to be sent. 2318 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2319 */ 2320 if (!(how & SEND_SHUTDOWN)) 2321 return; 2322 2323 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2324 if ((1 << sk->sk_state) & 2325 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2326 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2327 /* Clear out any half completed packets. FIN if needed. */ 2328 if (tcp_close_state(sk)) 2329 tcp_send_fin(sk); 2330 } 2331 } 2332 EXPORT_SYMBOL(tcp_shutdown); 2333 2334 bool tcp_check_oom(struct sock *sk, int shift) 2335 { 2336 bool too_many_orphans, out_of_socket_memory; 2337 2338 too_many_orphans = tcp_too_many_orphans(sk, shift); 2339 out_of_socket_memory = tcp_out_of_memory(sk); 2340 2341 if (too_many_orphans) 2342 net_info_ratelimited("too many orphaned sockets\n"); 2343 if (out_of_socket_memory) 2344 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2345 return too_many_orphans || out_of_socket_memory; 2346 } 2347 2348 void tcp_close(struct sock *sk, long timeout) 2349 { 2350 struct sk_buff *skb; 2351 int data_was_unread = 0; 2352 int state; 2353 2354 lock_sock(sk); 2355 sk->sk_shutdown = SHUTDOWN_MASK; 2356 2357 if (sk->sk_state == TCP_LISTEN) { 2358 tcp_set_state(sk, TCP_CLOSE); 2359 2360 /* Special case. */ 2361 inet_csk_listen_stop(sk); 2362 2363 goto adjudge_to_death; 2364 } 2365 2366 /* We need to flush the recv. buffs. We do this only on the 2367 * descriptor close, not protocol-sourced closes, because the 2368 * reader process may not have drained the data yet! 2369 */ 2370 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2371 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2372 2373 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2374 len--; 2375 data_was_unread += len; 2376 __kfree_skb(skb); 2377 } 2378 2379 sk_mem_reclaim(sk); 2380 2381 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2382 if (sk->sk_state == TCP_CLOSE) 2383 goto adjudge_to_death; 2384 2385 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2386 * data was lost. To witness the awful effects of the old behavior of 2387 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2388 * GET in an FTP client, suspend the process, wait for the client to 2389 * advertise a zero window, then kill -9 the FTP client, wheee... 2390 * Note: timeout is always zero in such a case. 2391 */ 2392 if (unlikely(tcp_sk(sk)->repair)) { 2393 sk->sk_prot->disconnect(sk, 0); 2394 } else if (data_was_unread) { 2395 /* Unread data was tossed, zap the connection. */ 2396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2397 tcp_set_state(sk, TCP_CLOSE); 2398 tcp_send_active_reset(sk, sk->sk_allocation); 2399 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2400 /* Check zero linger _after_ checking for unread data. */ 2401 sk->sk_prot->disconnect(sk, 0); 2402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2403 } else if (tcp_close_state(sk)) { 2404 /* We FIN if the application ate all the data before 2405 * zapping the connection. 2406 */ 2407 2408 /* RED-PEN. Formally speaking, we have broken TCP state 2409 * machine. State transitions: 2410 * 2411 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2412 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2413 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2414 * 2415 * are legal only when FIN has been sent (i.e. in window), 2416 * rather than queued out of window. Purists blame. 2417 * 2418 * F.e. "RFC state" is ESTABLISHED, 2419 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2420 * 2421 * The visible declinations are that sometimes 2422 * we enter time-wait state, when it is not required really 2423 * (harmless), do not send active resets, when they are 2424 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2425 * they look as CLOSING or LAST_ACK for Linux) 2426 * Probably, I missed some more holelets. 2427 * --ANK 2428 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2429 * in a single packet! (May consider it later but will 2430 * probably need API support or TCP_CORK SYN-ACK until 2431 * data is written and socket is closed.) 2432 */ 2433 tcp_send_fin(sk); 2434 } 2435 2436 sk_stream_wait_close(sk, timeout); 2437 2438 adjudge_to_death: 2439 state = sk->sk_state; 2440 sock_hold(sk); 2441 sock_orphan(sk); 2442 2443 local_bh_disable(); 2444 bh_lock_sock(sk); 2445 /* remove backlog if any, without releasing ownership. */ 2446 __release_sock(sk); 2447 2448 percpu_counter_inc(sk->sk_prot->orphan_count); 2449 2450 /* Have we already been destroyed by a softirq or backlog? */ 2451 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2452 goto out; 2453 2454 /* This is a (useful) BSD violating of the RFC. There is a 2455 * problem with TCP as specified in that the other end could 2456 * keep a socket open forever with no application left this end. 2457 * We use a 1 minute timeout (about the same as BSD) then kill 2458 * our end. If they send after that then tough - BUT: long enough 2459 * that we won't make the old 4*rto = almost no time - whoops 2460 * reset mistake. 2461 * 2462 * Nope, it was not mistake. It is really desired behaviour 2463 * f.e. on http servers, when such sockets are useless, but 2464 * consume significant resources. Let's do it with special 2465 * linger2 option. --ANK 2466 */ 2467 2468 if (sk->sk_state == TCP_FIN_WAIT2) { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 if (tp->linger2 < 0) { 2471 tcp_set_state(sk, TCP_CLOSE); 2472 tcp_send_active_reset(sk, GFP_ATOMIC); 2473 __NET_INC_STATS(sock_net(sk), 2474 LINUX_MIB_TCPABORTONLINGER); 2475 } else { 2476 const int tmo = tcp_fin_time(sk); 2477 2478 if (tmo > TCP_TIMEWAIT_LEN) { 2479 inet_csk_reset_keepalive_timer(sk, 2480 tmo - TCP_TIMEWAIT_LEN); 2481 } else { 2482 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2483 goto out; 2484 } 2485 } 2486 } 2487 if (sk->sk_state != TCP_CLOSE) { 2488 sk_mem_reclaim(sk); 2489 if (tcp_check_oom(sk, 0)) { 2490 tcp_set_state(sk, TCP_CLOSE); 2491 tcp_send_active_reset(sk, GFP_ATOMIC); 2492 __NET_INC_STATS(sock_net(sk), 2493 LINUX_MIB_TCPABORTONMEMORY); 2494 } else if (!check_net(sock_net(sk))) { 2495 /* Not possible to send reset; just close */ 2496 tcp_set_state(sk, TCP_CLOSE); 2497 } 2498 } 2499 2500 if (sk->sk_state == TCP_CLOSE) { 2501 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2502 /* We could get here with a non-NULL req if the socket is 2503 * aborted (e.g., closed with unread data) before 3WHS 2504 * finishes. 2505 */ 2506 if (req) 2507 reqsk_fastopen_remove(sk, req, false); 2508 inet_csk_destroy_sock(sk); 2509 } 2510 /* Otherwise, socket is reprieved until protocol close. */ 2511 2512 out: 2513 bh_unlock_sock(sk); 2514 local_bh_enable(); 2515 release_sock(sk); 2516 sock_put(sk); 2517 } 2518 EXPORT_SYMBOL(tcp_close); 2519 2520 /* These states need RST on ABORT according to RFC793 */ 2521 2522 static inline bool tcp_need_reset(int state) 2523 { 2524 return (1 << state) & 2525 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2526 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2527 } 2528 2529 static void tcp_rtx_queue_purge(struct sock *sk) 2530 { 2531 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2532 2533 while (p) { 2534 struct sk_buff *skb = rb_to_skb(p); 2535 2536 p = rb_next(p); 2537 /* Since we are deleting whole queue, no need to 2538 * list_del(&skb->tcp_tsorted_anchor) 2539 */ 2540 tcp_rtx_queue_unlink(skb, sk); 2541 sk_wmem_free_skb(sk, skb); 2542 } 2543 } 2544 2545 void tcp_write_queue_purge(struct sock *sk) 2546 { 2547 struct sk_buff *skb; 2548 2549 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2550 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2551 tcp_skb_tsorted_anchor_cleanup(skb); 2552 sk_wmem_free_skb(sk, skb); 2553 } 2554 tcp_rtx_queue_purge(sk); 2555 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2556 sk_mem_reclaim(sk); 2557 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2558 tcp_sk(sk)->packets_out = 0; 2559 inet_csk(sk)->icsk_backoff = 0; 2560 } 2561 2562 int tcp_disconnect(struct sock *sk, int flags) 2563 { 2564 struct inet_sock *inet = inet_sk(sk); 2565 struct inet_connection_sock *icsk = inet_csk(sk); 2566 struct tcp_sock *tp = tcp_sk(sk); 2567 int old_state = sk->sk_state; 2568 2569 if (old_state != TCP_CLOSE) 2570 tcp_set_state(sk, TCP_CLOSE); 2571 2572 /* ABORT function of RFC793 */ 2573 if (old_state == TCP_LISTEN) { 2574 inet_csk_listen_stop(sk); 2575 } else if (unlikely(tp->repair)) { 2576 sk->sk_err = ECONNABORTED; 2577 } else if (tcp_need_reset(old_state) || 2578 (tp->snd_nxt != tp->write_seq && 2579 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2580 /* The last check adjusts for discrepancy of Linux wrt. RFC 2581 * states 2582 */ 2583 tcp_send_active_reset(sk, gfp_any()); 2584 sk->sk_err = ECONNRESET; 2585 } else if (old_state == TCP_SYN_SENT) 2586 sk->sk_err = ECONNRESET; 2587 2588 tcp_clear_xmit_timers(sk); 2589 __skb_queue_purge(&sk->sk_receive_queue); 2590 tp->copied_seq = tp->rcv_nxt; 2591 tp->urg_data = 0; 2592 tcp_write_queue_purge(sk); 2593 tcp_fastopen_active_disable_ofo_check(sk); 2594 skb_rbtree_purge(&tp->out_of_order_queue); 2595 2596 inet->inet_dport = 0; 2597 2598 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2599 inet_reset_saddr(sk); 2600 2601 sk->sk_shutdown = 0; 2602 sock_reset_flag(sk, SOCK_DONE); 2603 tp->srtt_us = 0; 2604 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2605 tp->rcv_rtt_last_tsecr = 0; 2606 tp->write_seq += tp->max_window + 2; 2607 if (tp->write_seq == 0) 2608 tp->write_seq = 1; 2609 icsk->icsk_backoff = 0; 2610 tp->snd_cwnd = 2; 2611 icsk->icsk_probes_out = 0; 2612 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2613 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2614 tp->snd_cwnd = TCP_INIT_CWND; 2615 tp->snd_cwnd_cnt = 0; 2616 tp->window_clamp = 0; 2617 tp->delivered_ce = 0; 2618 tcp_set_ca_state(sk, TCP_CA_Open); 2619 tp->is_sack_reneg = 0; 2620 tcp_clear_retrans(tp); 2621 inet_csk_delack_init(sk); 2622 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2623 * issue in __tcp_select_window() 2624 */ 2625 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2626 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2627 __sk_dst_reset(sk); 2628 dst_release(sk->sk_rx_dst); 2629 sk->sk_rx_dst = NULL; 2630 tcp_saved_syn_free(tp); 2631 tp->compressed_ack = 0; 2632 tp->bytes_sent = 0; 2633 tp->bytes_retrans = 0; 2634 tp->duplicate_sack[0].start_seq = 0; 2635 tp->duplicate_sack[0].end_seq = 0; 2636 tp->dsack_dups = 0; 2637 tp->reord_seen = 0; 2638 tp->retrans_out = 0; 2639 tp->sacked_out = 0; 2640 tp->tlp_high_seq = 0; 2641 tp->last_oow_ack_time = 0; 2642 /* There's a bubble in the pipe until at least the first ACK. */ 2643 tp->app_limited = ~0U; 2644 tp->rack.mstamp = 0; 2645 tp->rack.advanced = 0; 2646 tp->rack.reo_wnd_steps = 1; 2647 tp->rack.last_delivered = 0; 2648 tp->rack.reo_wnd_persist = 0; 2649 tp->rack.dsack_seen = 0; 2650 tp->syn_data_acked = 0; 2651 tp->rx_opt.saw_tstamp = 0; 2652 tp->rx_opt.dsack = 0; 2653 tp->rx_opt.num_sacks = 0; 2654 2655 2656 /* Clean up fastopen related fields */ 2657 tcp_free_fastopen_req(tp); 2658 inet->defer_connect = 0; 2659 2660 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2661 2662 if (sk->sk_frag.page) { 2663 put_page(sk->sk_frag.page); 2664 sk->sk_frag.page = NULL; 2665 sk->sk_frag.offset = 0; 2666 } 2667 2668 sk->sk_error_report(sk); 2669 return 0; 2670 } 2671 EXPORT_SYMBOL(tcp_disconnect); 2672 2673 static inline bool tcp_can_repair_sock(const struct sock *sk) 2674 { 2675 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2676 (sk->sk_state != TCP_LISTEN); 2677 } 2678 2679 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2680 { 2681 struct tcp_repair_window opt; 2682 2683 if (!tp->repair) 2684 return -EPERM; 2685 2686 if (len != sizeof(opt)) 2687 return -EINVAL; 2688 2689 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2690 return -EFAULT; 2691 2692 if (opt.max_window < opt.snd_wnd) 2693 return -EINVAL; 2694 2695 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2696 return -EINVAL; 2697 2698 if (after(opt.rcv_wup, tp->rcv_nxt)) 2699 return -EINVAL; 2700 2701 tp->snd_wl1 = opt.snd_wl1; 2702 tp->snd_wnd = opt.snd_wnd; 2703 tp->max_window = opt.max_window; 2704 2705 tp->rcv_wnd = opt.rcv_wnd; 2706 tp->rcv_wup = opt.rcv_wup; 2707 2708 return 0; 2709 } 2710 2711 static int tcp_repair_options_est(struct sock *sk, 2712 struct tcp_repair_opt __user *optbuf, unsigned int len) 2713 { 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 struct tcp_repair_opt opt; 2716 2717 while (len >= sizeof(opt)) { 2718 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2719 return -EFAULT; 2720 2721 optbuf++; 2722 len -= sizeof(opt); 2723 2724 switch (opt.opt_code) { 2725 case TCPOPT_MSS: 2726 tp->rx_opt.mss_clamp = opt.opt_val; 2727 tcp_mtup_init(sk); 2728 break; 2729 case TCPOPT_WINDOW: 2730 { 2731 u16 snd_wscale = opt.opt_val & 0xFFFF; 2732 u16 rcv_wscale = opt.opt_val >> 16; 2733 2734 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2735 return -EFBIG; 2736 2737 tp->rx_opt.snd_wscale = snd_wscale; 2738 tp->rx_opt.rcv_wscale = rcv_wscale; 2739 tp->rx_opt.wscale_ok = 1; 2740 } 2741 break; 2742 case TCPOPT_SACK_PERM: 2743 if (opt.opt_val != 0) 2744 return -EINVAL; 2745 2746 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2747 break; 2748 case TCPOPT_TIMESTAMP: 2749 if (opt.opt_val != 0) 2750 return -EINVAL; 2751 2752 tp->rx_opt.tstamp_ok = 1; 2753 break; 2754 } 2755 } 2756 2757 return 0; 2758 } 2759 2760 /* 2761 * Socket option code for TCP. 2762 */ 2763 static int do_tcp_setsockopt(struct sock *sk, int level, 2764 int optname, char __user *optval, unsigned int optlen) 2765 { 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 struct inet_connection_sock *icsk = inet_csk(sk); 2768 struct net *net = sock_net(sk); 2769 int val; 2770 int err = 0; 2771 2772 /* These are data/string values, all the others are ints */ 2773 switch (optname) { 2774 case TCP_CONGESTION: { 2775 char name[TCP_CA_NAME_MAX]; 2776 2777 if (optlen < 1) 2778 return -EINVAL; 2779 2780 val = strncpy_from_user(name, optval, 2781 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2782 if (val < 0) 2783 return -EFAULT; 2784 name[val] = 0; 2785 2786 lock_sock(sk); 2787 err = tcp_set_congestion_control(sk, name, true, true); 2788 release_sock(sk); 2789 return err; 2790 } 2791 case TCP_ULP: { 2792 char name[TCP_ULP_NAME_MAX]; 2793 2794 if (optlen < 1) 2795 return -EINVAL; 2796 2797 val = strncpy_from_user(name, optval, 2798 min_t(long, TCP_ULP_NAME_MAX - 1, 2799 optlen)); 2800 if (val < 0) 2801 return -EFAULT; 2802 name[val] = 0; 2803 2804 lock_sock(sk); 2805 err = tcp_set_ulp(sk, name); 2806 release_sock(sk); 2807 return err; 2808 } 2809 case TCP_FASTOPEN_KEY: { 2810 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2811 2812 if (optlen != sizeof(key)) 2813 return -EINVAL; 2814 2815 if (copy_from_user(key, optval, optlen)) 2816 return -EFAULT; 2817 2818 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2819 } 2820 default: 2821 /* fallthru */ 2822 break; 2823 } 2824 2825 if (optlen < sizeof(int)) 2826 return -EINVAL; 2827 2828 if (get_user(val, (int __user *)optval)) 2829 return -EFAULT; 2830 2831 lock_sock(sk); 2832 2833 switch (optname) { 2834 case TCP_MAXSEG: 2835 /* Values greater than interface MTU won't take effect. However 2836 * at the point when this call is done we typically don't yet 2837 * know which interface is going to be used 2838 */ 2839 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2840 err = -EINVAL; 2841 break; 2842 } 2843 tp->rx_opt.user_mss = val; 2844 break; 2845 2846 case TCP_NODELAY: 2847 if (val) { 2848 /* TCP_NODELAY is weaker than TCP_CORK, so that 2849 * this option on corked socket is remembered, but 2850 * it is not activated until cork is cleared. 2851 * 2852 * However, when TCP_NODELAY is set we make 2853 * an explicit push, which overrides even TCP_CORK 2854 * for currently queued segments. 2855 */ 2856 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2857 tcp_push_pending_frames(sk); 2858 } else { 2859 tp->nonagle &= ~TCP_NAGLE_OFF; 2860 } 2861 break; 2862 2863 case TCP_THIN_LINEAR_TIMEOUTS: 2864 if (val < 0 || val > 1) 2865 err = -EINVAL; 2866 else 2867 tp->thin_lto = val; 2868 break; 2869 2870 case TCP_THIN_DUPACK: 2871 if (val < 0 || val > 1) 2872 err = -EINVAL; 2873 break; 2874 2875 case TCP_REPAIR: 2876 if (!tcp_can_repair_sock(sk)) 2877 err = -EPERM; 2878 else if (val == TCP_REPAIR_ON) { 2879 tp->repair = 1; 2880 sk->sk_reuse = SK_FORCE_REUSE; 2881 tp->repair_queue = TCP_NO_QUEUE; 2882 } else if (val == TCP_REPAIR_OFF) { 2883 tp->repair = 0; 2884 sk->sk_reuse = SK_NO_REUSE; 2885 tcp_send_window_probe(sk); 2886 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2887 tp->repair = 0; 2888 sk->sk_reuse = SK_NO_REUSE; 2889 } else 2890 err = -EINVAL; 2891 2892 break; 2893 2894 case TCP_REPAIR_QUEUE: 2895 if (!tp->repair) 2896 err = -EPERM; 2897 else if ((unsigned int)val < TCP_QUEUES_NR) 2898 tp->repair_queue = val; 2899 else 2900 err = -EINVAL; 2901 break; 2902 2903 case TCP_QUEUE_SEQ: 2904 if (sk->sk_state != TCP_CLOSE) 2905 err = -EPERM; 2906 else if (tp->repair_queue == TCP_SEND_QUEUE) 2907 tp->write_seq = val; 2908 else if (tp->repair_queue == TCP_RECV_QUEUE) 2909 tp->rcv_nxt = val; 2910 else 2911 err = -EINVAL; 2912 break; 2913 2914 case TCP_REPAIR_OPTIONS: 2915 if (!tp->repair) 2916 err = -EINVAL; 2917 else if (sk->sk_state == TCP_ESTABLISHED) 2918 err = tcp_repair_options_est(sk, 2919 (struct tcp_repair_opt __user *)optval, 2920 optlen); 2921 else 2922 err = -EPERM; 2923 break; 2924 2925 case TCP_CORK: 2926 /* When set indicates to always queue non-full frames. 2927 * Later the user clears this option and we transmit 2928 * any pending partial frames in the queue. This is 2929 * meant to be used alongside sendfile() to get properly 2930 * filled frames when the user (for example) must write 2931 * out headers with a write() call first and then use 2932 * sendfile to send out the data parts. 2933 * 2934 * TCP_CORK can be set together with TCP_NODELAY and it is 2935 * stronger than TCP_NODELAY. 2936 */ 2937 if (val) { 2938 tp->nonagle |= TCP_NAGLE_CORK; 2939 } else { 2940 tp->nonagle &= ~TCP_NAGLE_CORK; 2941 if (tp->nonagle&TCP_NAGLE_OFF) 2942 tp->nonagle |= TCP_NAGLE_PUSH; 2943 tcp_push_pending_frames(sk); 2944 } 2945 break; 2946 2947 case TCP_KEEPIDLE: 2948 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2949 err = -EINVAL; 2950 else { 2951 tp->keepalive_time = val * HZ; 2952 if (sock_flag(sk, SOCK_KEEPOPEN) && 2953 !((1 << sk->sk_state) & 2954 (TCPF_CLOSE | TCPF_LISTEN))) { 2955 u32 elapsed = keepalive_time_elapsed(tp); 2956 if (tp->keepalive_time > elapsed) 2957 elapsed = tp->keepalive_time - elapsed; 2958 else 2959 elapsed = 0; 2960 inet_csk_reset_keepalive_timer(sk, elapsed); 2961 } 2962 } 2963 break; 2964 case TCP_KEEPINTVL: 2965 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2966 err = -EINVAL; 2967 else 2968 tp->keepalive_intvl = val * HZ; 2969 break; 2970 case TCP_KEEPCNT: 2971 if (val < 1 || val > MAX_TCP_KEEPCNT) 2972 err = -EINVAL; 2973 else 2974 tp->keepalive_probes = val; 2975 break; 2976 case TCP_SYNCNT: 2977 if (val < 1 || val > MAX_TCP_SYNCNT) 2978 err = -EINVAL; 2979 else 2980 icsk->icsk_syn_retries = val; 2981 break; 2982 2983 case TCP_SAVE_SYN: 2984 if (val < 0 || val > 1) 2985 err = -EINVAL; 2986 else 2987 tp->save_syn = val; 2988 break; 2989 2990 case TCP_LINGER2: 2991 if (val < 0) 2992 tp->linger2 = -1; 2993 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2994 tp->linger2 = 0; 2995 else 2996 tp->linger2 = val * HZ; 2997 break; 2998 2999 case TCP_DEFER_ACCEPT: 3000 /* Translate value in seconds to number of retransmits */ 3001 icsk->icsk_accept_queue.rskq_defer_accept = 3002 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3003 TCP_RTO_MAX / HZ); 3004 break; 3005 3006 case TCP_WINDOW_CLAMP: 3007 if (!val) { 3008 if (sk->sk_state != TCP_CLOSE) { 3009 err = -EINVAL; 3010 break; 3011 } 3012 tp->window_clamp = 0; 3013 } else 3014 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3015 SOCK_MIN_RCVBUF / 2 : val; 3016 break; 3017 3018 case TCP_QUICKACK: 3019 if (!val) { 3020 inet_csk_enter_pingpong_mode(sk); 3021 } else { 3022 inet_csk_exit_pingpong_mode(sk); 3023 if ((1 << sk->sk_state) & 3024 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3025 inet_csk_ack_scheduled(sk)) { 3026 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3027 tcp_cleanup_rbuf(sk, 1); 3028 if (!(val & 1)) 3029 inet_csk_enter_pingpong_mode(sk); 3030 } 3031 } 3032 break; 3033 3034 #ifdef CONFIG_TCP_MD5SIG 3035 case TCP_MD5SIG: 3036 case TCP_MD5SIG_EXT: 3037 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3038 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3039 else 3040 err = -EINVAL; 3041 break; 3042 #endif 3043 case TCP_USER_TIMEOUT: 3044 /* Cap the max time in ms TCP will retry or probe the window 3045 * before giving up and aborting (ETIMEDOUT) a connection. 3046 */ 3047 if (val < 0) 3048 err = -EINVAL; 3049 else 3050 icsk->icsk_user_timeout = val; 3051 break; 3052 3053 case TCP_FASTOPEN: 3054 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3055 TCPF_LISTEN))) { 3056 tcp_fastopen_init_key_once(net); 3057 3058 fastopen_queue_tune(sk, val); 3059 } else { 3060 err = -EINVAL; 3061 } 3062 break; 3063 case TCP_FASTOPEN_CONNECT: 3064 if (val > 1 || val < 0) { 3065 err = -EINVAL; 3066 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3067 if (sk->sk_state == TCP_CLOSE) 3068 tp->fastopen_connect = val; 3069 else 3070 err = -EINVAL; 3071 } else { 3072 err = -EOPNOTSUPP; 3073 } 3074 break; 3075 case TCP_FASTOPEN_NO_COOKIE: 3076 if (val > 1 || val < 0) 3077 err = -EINVAL; 3078 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3079 err = -EINVAL; 3080 else 3081 tp->fastopen_no_cookie = val; 3082 break; 3083 case TCP_TIMESTAMP: 3084 if (!tp->repair) 3085 err = -EPERM; 3086 else 3087 tp->tsoffset = val - tcp_time_stamp_raw(); 3088 break; 3089 case TCP_REPAIR_WINDOW: 3090 err = tcp_repair_set_window(tp, optval, optlen); 3091 break; 3092 case TCP_NOTSENT_LOWAT: 3093 tp->notsent_lowat = val; 3094 sk->sk_write_space(sk); 3095 break; 3096 case TCP_INQ: 3097 if (val > 1 || val < 0) 3098 err = -EINVAL; 3099 else 3100 tp->recvmsg_inq = val; 3101 break; 3102 default: 3103 err = -ENOPROTOOPT; 3104 break; 3105 } 3106 3107 release_sock(sk); 3108 return err; 3109 } 3110 3111 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3112 unsigned int optlen) 3113 { 3114 const struct inet_connection_sock *icsk = inet_csk(sk); 3115 3116 if (level != SOL_TCP) 3117 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3118 optval, optlen); 3119 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3120 } 3121 EXPORT_SYMBOL(tcp_setsockopt); 3122 3123 #ifdef CONFIG_COMPAT 3124 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3125 char __user *optval, unsigned int optlen) 3126 { 3127 if (level != SOL_TCP) 3128 return inet_csk_compat_setsockopt(sk, level, optname, 3129 optval, optlen); 3130 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3131 } 3132 EXPORT_SYMBOL(compat_tcp_setsockopt); 3133 #endif 3134 3135 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3136 struct tcp_info *info) 3137 { 3138 u64 stats[__TCP_CHRONO_MAX], total = 0; 3139 enum tcp_chrono i; 3140 3141 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3142 stats[i] = tp->chrono_stat[i - 1]; 3143 if (i == tp->chrono_type) 3144 stats[i] += tcp_jiffies32 - tp->chrono_start; 3145 stats[i] *= USEC_PER_SEC / HZ; 3146 total += stats[i]; 3147 } 3148 3149 info->tcpi_busy_time = total; 3150 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3151 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3152 } 3153 3154 /* Return information about state of tcp endpoint in API format. */ 3155 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3156 { 3157 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3158 const struct inet_connection_sock *icsk = inet_csk(sk); 3159 unsigned long rate; 3160 u32 now; 3161 u64 rate64; 3162 bool slow; 3163 3164 memset(info, 0, sizeof(*info)); 3165 if (sk->sk_type != SOCK_STREAM) 3166 return; 3167 3168 info->tcpi_state = inet_sk_state_load(sk); 3169 3170 /* Report meaningful fields for all TCP states, including listeners */ 3171 rate = READ_ONCE(sk->sk_pacing_rate); 3172 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3173 info->tcpi_pacing_rate = rate64; 3174 3175 rate = READ_ONCE(sk->sk_max_pacing_rate); 3176 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3177 info->tcpi_max_pacing_rate = rate64; 3178 3179 info->tcpi_reordering = tp->reordering; 3180 info->tcpi_snd_cwnd = tp->snd_cwnd; 3181 3182 if (info->tcpi_state == TCP_LISTEN) { 3183 /* listeners aliased fields : 3184 * tcpi_unacked -> Number of children ready for accept() 3185 * tcpi_sacked -> max backlog 3186 */ 3187 info->tcpi_unacked = sk->sk_ack_backlog; 3188 info->tcpi_sacked = sk->sk_max_ack_backlog; 3189 return; 3190 } 3191 3192 slow = lock_sock_fast(sk); 3193 3194 info->tcpi_ca_state = icsk->icsk_ca_state; 3195 info->tcpi_retransmits = icsk->icsk_retransmits; 3196 info->tcpi_probes = icsk->icsk_probes_out; 3197 info->tcpi_backoff = icsk->icsk_backoff; 3198 3199 if (tp->rx_opt.tstamp_ok) 3200 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3201 if (tcp_is_sack(tp)) 3202 info->tcpi_options |= TCPI_OPT_SACK; 3203 if (tp->rx_opt.wscale_ok) { 3204 info->tcpi_options |= TCPI_OPT_WSCALE; 3205 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3206 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3207 } 3208 3209 if (tp->ecn_flags & TCP_ECN_OK) 3210 info->tcpi_options |= TCPI_OPT_ECN; 3211 if (tp->ecn_flags & TCP_ECN_SEEN) 3212 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3213 if (tp->syn_data_acked) 3214 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3215 3216 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3217 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3218 info->tcpi_snd_mss = tp->mss_cache; 3219 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3220 3221 info->tcpi_unacked = tp->packets_out; 3222 info->tcpi_sacked = tp->sacked_out; 3223 3224 info->tcpi_lost = tp->lost_out; 3225 info->tcpi_retrans = tp->retrans_out; 3226 3227 now = tcp_jiffies32; 3228 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3229 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3230 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3231 3232 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3233 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3234 info->tcpi_rtt = tp->srtt_us >> 3; 3235 info->tcpi_rttvar = tp->mdev_us >> 2; 3236 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3237 info->tcpi_advmss = tp->advmss; 3238 3239 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3240 info->tcpi_rcv_space = tp->rcvq_space.space; 3241 3242 info->tcpi_total_retrans = tp->total_retrans; 3243 3244 info->tcpi_bytes_acked = tp->bytes_acked; 3245 info->tcpi_bytes_received = tp->bytes_received; 3246 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3247 tcp_get_info_chrono_stats(tp, info); 3248 3249 info->tcpi_segs_out = tp->segs_out; 3250 info->tcpi_segs_in = tp->segs_in; 3251 3252 info->tcpi_min_rtt = tcp_min_rtt(tp); 3253 info->tcpi_data_segs_in = tp->data_segs_in; 3254 info->tcpi_data_segs_out = tp->data_segs_out; 3255 3256 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3257 rate64 = tcp_compute_delivery_rate(tp); 3258 if (rate64) 3259 info->tcpi_delivery_rate = rate64; 3260 info->tcpi_delivered = tp->delivered; 3261 info->tcpi_delivered_ce = tp->delivered_ce; 3262 info->tcpi_bytes_sent = tp->bytes_sent; 3263 info->tcpi_bytes_retrans = tp->bytes_retrans; 3264 info->tcpi_dsack_dups = tp->dsack_dups; 3265 info->tcpi_reord_seen = tp->reord_seen; 3266 unlock_sock_fast(sk, slow); 3267 } 3268 EXPORT_SYMBOL_GPL(tcp_get_info); 3269 3270 static size_t tcp_opt_stats_get_size(void) 3271 { 3272 return 3273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3277 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3278 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3279 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3280 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3281 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3282 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3283 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3284 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3285 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3286 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3287 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3288 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3289 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3290 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3291 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3292 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3293 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3294 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3295 0; 3296 } 3297 3298 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3299 { 3300 const struct tcp_sock *tp = tcp_sk(sk); 3301 struct sk_buff *stats; 3302 struct tcp_info info; 3303 unsigned long rate; 3304 u64 rate64; 3305 3306 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3307 if (!stats) 3308 return NULL; 3309 3310 tcp_get_info_chrono_stats(tp, &info); 3311 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3312 info.tcpi_busy_time, TCP_NLA_PAD); 3313 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3314 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3315 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3316 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3317 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3318 tp->data_segs_out, TCP_NLA_PAD); 3319 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3320 tp->total_retrans, TCP_NLA_PAD); 3321 3322 rate = READ_ONCE(sk->sk_pacing_rate); 3323 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3324 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3325 3326 rate64 = tcp_compute_delivery_rate(tp); 3327 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3328 3329 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3330 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3331 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3332 3333 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3334 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3335 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3336 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3337 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3338 3339 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3340 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3341 3342 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3343 TCP_NLA_PAD); 3344 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3345 TCP_NLA_PAD); 3346 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3347 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3348 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3349 3350 return stats; 3351 } 3352 3353 static int do_tcp_getsockopt(struct sock *sk, int level, 3354 int optname, char __user *optval, int __user *optlen) 3355 { 3356 struct inet_connection_sock *icsk = inet_csk(sk); 3357 struct tcp_sock *tp = tcp_sk(sk); 3358 struct net *net = sock_net(sk); 3359 int val, len; 3360 3361 if (get_user(len, optlen)) 3362 return -EFAULT; 3363 3364 len = min_t(unsigned int, len, sizeof(int)); 3365 3366 if (len < 0) 3367 return -EINVAL; 3368 3369 switch (optname) { 3370 case TCP_MAXSEG: 3371 val = tp->mss_cache; 3372 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3373 val = tp->rx_opt.user_mss; 3374 if (tp->repair) 3375 val = tp->rx_opt.mss_clamp; 3376 break; 3377 case TCP_NODELAY: 3378 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3379 break; 3380 case TCP_CORK: 3381 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3382 break; 3383 case TCP_KEEPIDLE: 3384 val = keepalive_time_when(tp) / HZ; 3385 break; 3386 case TCP_KEEPINTVL: 3387 val = keepalive_intvl_when(tp) / HZ; 3388 break; 3389 case TCP_KEEPCNT: 3390 val = keepalive_probes(tp); 3391 break; 3392 case TCP_SYNCNT: 3393 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3394 break; 3395 case TCP_LINGER2: 3396 val = tp->linger2; 3397 if (val >= 0) 3398 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3399 break; 3400 case TCP_DEFER_ACCEPT: 3401 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3402 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3403 break; 3404 case TCP_WINDOW_CLAMP: 3405 val = tp->window_clamp; 3406 break; 3407 case TCP_INFO: { 3408 struct tcp_info info; 3409 3410 if (get_user(len, optlen)) 3411 return -EFAULT; 3412 3413 tcp_get_info(sk, &info); 3414 3415 len = min_t(unsigned int, len, sizeof(info)); 3416 if (put_user(len, optlen)) 3417 return -EFAULT; 3418 if (copy_to_user(optval, &info, len)) 3419 return -EFAULT; 3420 return 0; 3421 } 3422 case TCP_CC_INFO: { 3423 const struct tcp_congestion_ops *ca_ops; 3424 union tcp_cc_info info; 3425 size_t sz = 0; 3426 int attr; 3427 3428 if (get_user(len, optlen)) 3429 return -EFAULT; 3430 3431 ca_ops = icsk->icsk_ca_ops; 3432 if (ca_ops && ca_ops->get_info) 3433 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3434 3435 len = min_t(unsigned int, len, sz); 3436 if (put_user(len, optlen)) 3437 return -EFAULT; 3438 if (copy_to_user(optval, &info, len)) 3439 return -EFAULT; 3440 return 0; 3441 } 3442 case TCP_QUICKACK: 3443 val = !inet_csk_in_pingpong_mode(sk); 3444 break; 3445 3446 case TCP_CONGESTION: 3447 if (get_user(len, optlen)) 3448 return -EFAULT; 3449 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3450 if (put_user(len, optlen)) 3451 return -EFAULT; 3452 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3453 return -EFAULT; 3454 return 0; 3455 3456 case TCP_ULP: 3457 if (get_user(len, optlen)) 3458 return -EFAULT; 3459 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3460 if (!icsk->icsk_ulp_ops) { 3461 if (put_user(0, optlen)) 3462 return -EFAULT; 3463 return 0; 3464 } 3465 if (put_user(len, optlen)) 3466 return -EFAULT; 3467 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3468 return -EFAULT; 3469 return 0; 3470 3471 case TCP_FASTOPEN_KEY: { 3472 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3473 struct tcp_fastopen_context *ctx; 3474 3475 if (get_user(len, optlen)) 3476 return -EFAULT; 3477 3478 rcu_read_lock(); 3479 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3480 if (ctx) 3481 memcpy(key, ctx->key, sizeof(key)); 3482 else 3483 len = 0; 3484 rcu_read_unlock(); 3485 3486 len = min_t(unsigned int, len, sizeof(key)); 3487 if (put_user(len, optlen)) 3488 return -EFAULT; 3489 if (copy_to_user(optval, key, len)) 3490 return -EFAULT; 3491 return 0; 3492 } 3493 case TCP_THIN_LINEAR_TIMEOUTS: 3494 val = tp->thin_lto; 3495 break; 3496 3497 case TCP_THIN_DUPACK: 3498 val = 0; 3499 break; 3500 3501 case TCP_REPAIR: 3502 val = tp->repair; 3503 break; 3504 3505 case TCP_REPAIR_QUEUE: 3506 if (tp->repair) 3507 val = tp->repair_queue; 3508 else 3509 return -EINVAL; 3510 break; 3511 3512 case TCP_REPAIR_WINDOW: { 3513 struct tcp_repair_window opt; 3514 3515 if (get_user(len, optlen)) 3516 return -EFAULT; 3517 3518 if (len != sizeof(opt)) 3519 return -EINVAL; 3520 3521 if (!tp->repair) 3522 return -EPERM; 3523 3524 opt.snd_wl1 = tp->snd_wl1; 3525 opt.snd_wnd = tp->snd_wnd; 3526 opt.max_window = tp->max_window; 3527 opt.rcv_wnd = tp->rcv_wnd; 3528 opt.rcv_wup = tp->rcv_wup; 3529 3530 if (copy_to_user(optval, &opt, len)) 3531 return -EFAULT; 3532 return 0; 3533 } 3534 case TCP_QUEUE_SEQ: 3535 if (tp->repair_queue == TCP_SEND_QUEUE) 3536 val = tp->write_seq; 3537 else if (tp->repair_queue == TCP_RECV_QUEUE) 3538 val = tp->rcv_nxt; 3539 else 3540 return -EINVAL; 3541 break; 3542 3543 case TCP_USER_TIMEOUT: 3544 val = icsk->icsk_user_timeout; 3545 break; 3546 3547 case TCP_FASTOPEN: 3548 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3549 break; 3550 3551 case TCP_FASTOPEN_CONNECT: 3552 val = tp->fastopen_connect; 3553 break; 3554 3555 case TCP_FASTOPEN_NO_COOKIE: 3556 val = tp->fastopen_no_cookie; 3557 break; 3558 3559 case TCP_TIMESTAMP: 3560 val = tcp_time_stamp_raw() + tp->tsoffset; 3561 break; 3562 case TCP_NOTSENT_LOWAT: 3563 val = tp->notsent_lowat; 3564 break; 3565 case TCP_INQ: 3566 val = tp->recvmsg_inq; 3567 break; 3568 case TCP_SAVE_SYN: 3569 val = tp->save_syn; 3570 break; 3571 case TCP_SAVED_SYN: { 3572 if (get_user(len, optlen)) 3573 return -EFAULT; 3574 3575 lock_sock(sk); 3576 if (tp->saved_syn) { 3577 if (len < tp->saved_syn[0]) { 3578 if (put_user(tp->saved_syn[0], optlen)) { 3579 release_sock(sk); 3580 return -EFAULT; 3581 } 3582 release_sock(sk); 3583 return -EINVAL; 3584 } 3585 len = tp->saved_syn[0]; 3586 if (put_user(len, optlen)) { 3587 release_sock(sk); 3588 return -EFAULT; 3589 } 3590 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3591 release_sock(sk); 3592 return -EFAULT; 3593 } 3594 tcp_saved_syn_free(tp); 3595 release_sock(sk); 3596 } else { 3597 release_sock(sk); 3598 len = 0; 3599 if (put_user(len, optlen)) 3600 return -EFAULT; 3601 } 3602 return 0; 3603 } 3604 #ifdef CONFIG_MMU 3605 case TCP_ZEROCOPY_RECEIVE: { 3606 struct tcp_zerocopy_receive zc; 3607 int err; 3608 3609 if (get_user(len, optlen)) 3610 return -EFAULT; 3611 if (len != sizeof(zc)) 3612 return -EINVAL; 3613 if (copy_from_user(&zc, optval, len)) 3614 return -EFAULT; 3615 lock_sock(sk); 3616 err = tcp_zerocopy_receive(sk, &zc); 3617 release_sock(sk); 3618 if (!err && copy_to_user(optval, &zc, len)) 3619 err = -EFAULT; 3620 return err; 3621 } 3622 #endif 3623 default: 3624 return -ENOPROTOOPT; 3625 } 3626 3627 if (put_user(len, optlen)) 3628 return -EFAULT; 3629 if (copy_to_user(optval, &val, len)) 3630 return -EFAULT; 3631 return 0; 3632 } 3633 3634 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3635 int __user *optlen) 3636 { 3637 struct inet_connection_sock *icsk = inet_csk(sk); 3638 3639 if (level != SOL_TCP) 3640 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3641 optval, optlen); 3642 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3643 } 3644 EXPORT_SYMBOL(tcp_getsockopt); 3645 3646 #ifdef CONFIG_COMPAT 3647 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3648 char __user *optval, int __user *optlen) 3649 { 3650 if (level != SOL_TCP) 3651 return inet_csk_compat_getsockopt(sk, level, optname, 3652 optval, optlen); 3653 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3654 } 3655 EXPORT_SYMBOL(compat_tcp_getsockopt); 3656 #endif 3657 3658 #ifdef CONFIG_TCP_MD5SIG 3659 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3660 static DEFINE_MUTEX(tcp_md5sig_mutex); 3661 static bool tcp_md5sig_pool_populated = false; 3662 3663 static void __tcp_alloc_md5sig_pool(void) 3664 { 3665 struct crypto_ahash *hash; 3666 int cpu; 3667 3668 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3669 if (IS_ERR(hash)) 3670 return; 3671 3672 for_each_possible_cpu(cpu) { 3673 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3674 struct ahash_request *req; 3675 3676 if (!scratch) { 3677 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3678 sizeof(struct tcphdr), 3679 GFP_KERNEL, 3680 cpu_to_node(cpu)); 3681 if (!scratch) 3682 return; 3683 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3684 } 3685 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3686 continue; 3687 3688 req = ahash_request_alloc(hash, GFP_KERNEL); 3689 if (!req) 3690 return; 3691 3692 ahash_request_set_callback(req, 0, NULL, NULL); 3693 3694 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3695 } 3696 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3697 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3698 */ 3699 smp_wmb(); 3700 tcp_md5sig_pool_populated = true; 3701 } 3702 3703 bool tcp_alloc_md5sig_pool(void) 3704 { 3705 if (unlikely(!tcp_md5sig_pool_populated)) { 3706 mutex_lock(&tcp_md5sig_mutex); 3707 3708 if (!tcp_md5sig_pool_populated) { 3709 __tcp_alloc_md5sig_pool(); 3710 if (tcp_md5sig_pool_populated) 3711 static_branch_inc(&tcp_md5_needed); 3712 } 3713 3714 mutex_unlock(&tcp_md5sig_mutex); 3715 } 3716 return tcp_md5sig_pool_populated; 3717 } 3718 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3719 3720 3721 /** 3722 * tcp_get_md5sig_pool - get md5sig_pool for this user 3723 * 3724 * We use percpu structure, so if we succeed, we exit with preemption 3725 * and BH disabled, to make sure another thread or softirq handling 3726 * wont try to get same context. 3727 */ 3728 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3729 { 3730 local_bh_disable(); 3731 3732 if (tcp_md5sig_pool_populated) { 3733 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3734 smp_rmb(); 3735 return this_cpu_ptr(&tcp_md5sig_pool); 3736 } 3737 local_bh_enable(); 3738 return NULL; 3739 } 3740 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3741 3742 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3743 const struct sk_buff *skb, unsigned int header_len) 3744 { 3745 struct scatterlist sg; 3746 const struct tcphdr *tp = tcp_hdr(skb); 3747 struct ahash_request *req = hp->md5_req; 3748 unsigned int i; 3749 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3750 skb_headlen(skb) - header_len : 0; 3751 const struct skb_shared_info *shi = skb_shinfo(skb); 3752 struct sk_buff *frag_iter; 3753 3754 sg_init_table(&sg, 1); 3755 3756 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3757 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3758 if (crypto_ahash_update(req)) 3759 return 1; 3760 3761 for (i = 0; i < shi->nr_frags; ++i) { 3762 const struct skb_frag_struct *f = &shi->frags[i]; 3763 unsigned int offset = f->page_offset; 3764 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3765 3766 sg_set_page(&sg, page, skb_frag_size(f), 3767 offset_in_page(offset)); 3768 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3769 if (crypto_ahash_update(req)) 3770 return 1; 3771 } 3772 3773 skb_walk_frags(skb, frag_iter) 3774 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3775 return 1; 3776 3777 return 0; 3778 } 3779 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3780 3781 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3782 { 3783 struct scatterlist sg; 3784 3785 sg_init_one(&sg, key->key, key->keylen); 3786 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3787 return crypto_ahash_update(hp->md5_req); 3788 } 3789 EXPORT_SYMBOL(tcp_md5_hash_key); 3790 3791 #endif 3792 3793 void tcp_done(struct sock *sk) 3794 { 3795 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3796 3797 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3798 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3799 3800 tcp_set_state(sk, TCP_CLOSE); 3801 tcp_clear_xmit_timers(sk); 3802 if (req) 3803 reqsk_fastopen_remove(sk, req, false); 3804 3805 sk->sk_shutdown = SHUTDOWN_MASK; 3806 3807 if (!sock_flag(sk, SOCK_DEAD)) 3808 sk->sk_state_change(sk); 3809 else 3810 inet_csk_destroy_sock(sk); 3811 } 3812 EXPORT_SYMBOL_GPL(tcp_done); 3813 3814 int tcp_abort(struct sock *sk, int err) 3815 { 3816 if (!sk_fullsock(sk)) { 3817 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3818 struct request_sock *req = inet_reqsk(sk); 3819 3820 local_bh_disable(); 3821 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3822 local_bh_enable(); 3823 return 0; 3824 } 3825 return -EOPNOTSUPP; 3826 } 3827 3828 /* Don't race with userspace socket closes such as tcp_close. */ 3829 lock_sock(sk); 3830 3831 if (sk->sk_state == TCP_LISTEN) { 3832 tcp_set_state(sk, TCP_CLOSE); 3833 inet_csk_listen_stop(sk); 3834 } 3835 3836 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3837 local_bh_disable(); 3838 bh_lock_sock(sk); 3839 3840 if (!sock_flag(sk, SOCK_DEAD)) { 3841 sk->sk_err = err; 3842 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3843 smp_wmb(); 3844 sk->sk_error_report(sk); 3845 if (tcp_need_reset(sk->sk_state)) 3846 tcp_send_active_reset(sk, GFP_ATOMIC); 3847 tcp_done(sk); 3848 } 3849 3850 bh_unlock_sock(sk); 3851 local_bh_enable(); 3852 tcp_write_queue_purge(sk); 3853 release_sock(sk); 3854 return 0; 3855 } 3856 EXPORT_SYMBOL_GPL(tcp_abort); 3857 3858 extern struct tcp_congestion_ops tcp_reno; 3859 3860 static __initdata unsigned long thash_entries; 3861 static int __init set_thash_entries(char *str) 3862 { 3863 ssize_t ret; 3864 3865 if (!str) 3866 return 0; 3867 3868 ret = kstrtoul(str, 0, &thash_entries); 3869 if (ret) 3870 return 0; 3871 3872 return 1; 3873 } 3874 __setup("thash_entries=", set_thash_entries); 3875 3876 static void __init tcp_init_mem(void) 3877 { 3878 unsigned long limit = nr_free_buffer_pages() / 16; 3879 3880 limit = max(limit, 128UL); 3881 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3882 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3883 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3884 } 3885 3886 void __init tcp_init(void) 3887 { 3888 int max_rshare, max_wshare, cnt; 3889 unsigned long limit; 3890 unsigned int i; 3891 3892 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3893 FIELD_SIZEOF(struct sk_buff, cb)); 3894 3895 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3896 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3897 inet_hashinfo_init(&tcp_hashinfo); 3898 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3899 thash_entries, 21, /* one slot per 2 MB*/ 3900 0, 64 * 1024); 3901 tcp_hashinfo.bind_bucket_cachep = 3902 kmem_cache_create("tcp_bind_bucket", 3903 sizeof(struct inet_bind_bucket), 0, 3904 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3905 3906 /* Size and allocate the main established and bind bucket 3907 * hash tables. 3908 * 3909 * The methodology is similar to that of the buffer cache. 3910 */ 3911 tcp_hashinfo.ehash = 3912 alloc_large_system_hash("TCP established", 3913 sizeof(struct inet_ehash_bucket), 3914 thash_entries, 3915 17, /* one slot per 128 KB of memory */ 3916 0, 3917 NULL, 3918 &tcp_hashinfo.ehash_mask, 3919 0, 3920 thash_entries ? 0 : 512 * 1024); 3921 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3922 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3923 3924 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3925 panic("TCP: failed to alloc ehash_locks"); 3926 tcp_hashinfo.bhash = 3927 alloc_large_system_hash("TCP bind", 3928 sizeof(struct inet_bind_hashbucket), 3929 tcp_hashinfo.ehash_mask + 1, 3930 17, /* one slot per 128 KB of memory */ 3931 0, 3932 &tcp_hashinfo.bhash_size, 3933 NULL, 3934 0, 3935 64 * 1024); 3936 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3937 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3938 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3939 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3940 } 3941 3942 3943 cnt = tcp_hashinfo.ehash_mask + 1; 3944 sysctl_tcp_max_orphans = cnt / 2; 3945 3946 tcp_init_mem(); 3947 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3948 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3949 max_wshare = min(4UL*1024*1024, limit); 3950 max_rshare = min(6UL*1024*1024, limit); 3951 3952 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3953 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3954 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3955 3956 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3957 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3958 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3959 3960 pr_info("Hash tables configured (established %u bind %u)\n", 3961 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3962 3963 tcp_v4_init(); 3964 tcp_metrics_init(); 3965 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3966 tcp_tasklet_init(); 3967 } 3968