1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Socket is not locked. We are protected from async events by poll logic and 498 * correct handling of state changes made by other threads is impossible in 499 * any case. 500 */ 501 __poll_t tcp_poll_mask(struct socket *sock, __poll_t events) 502 { 503 struct sock *sk = sock->sk; 504 const struct tcp_sock *tp = tcp_sk(sk); 505 __poll_t mask = 0; 506 int state; 507 508 state = inet_sk_state_load(sk); 509 if (state == TCP_LISTEN) 510 return inet_csk_listen_poll(sk); 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (tp->urg_seq == tp->copied_seq && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll_mask); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 611 break; 612 case SIOCOUTQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 617 answ = 0; 618 else 619 answ = tp->write_seq - tp->snd_una; 620 break; 621 case SIOCOUTQNSD: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = tp->write_seq - tp->snd_nxt; 629 break; 630 default: 631 return -ENOIOCTLCMD; 632 } 633 634 return put_user(answ, (int __user *)arg); 635 } 636 EXPORT_SYMBOL(tcp_ioctl); 637 638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 639 { 640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 641 tp->pushed_seq = tp->write_seq; 642 } 643 644 static inline bool forced_push(const struct tcp_sock *tp) 645 { 646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 647 } 648 649 static void skb_entail(struct sock *sk, struct sk_buff *skb) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 653 654 skb->csum = 0; 655 tcb->seq = tcb->end_seq = tp->write_seq; 656 tcb->tcp_flags = TCPHDR_ACK; 657 tcb->sacked = 0; 658 __skb_header_release(skb); 659 tcp_add_write_queue_tail(sk, skb); 660 sk->sk_wmem_queued += skb->truesize; 661 sk_mem_charge(sk, skb->truesize); 662 if (tp->nonagle & TCP_NAGLE_PUSH) 663 tp->nonagle &= ~TCP_NAGLE_PUSH; 664 665 tcp_slow_start_after_idle_check(sk); 666 } 667 668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 669 { 670 if (flags & MSG_OOB) 671 tp->snd_up = tp->write_seq; 672 } 673 674 /* If a not yet filled skb is pushed, do not send it if 675 * we have data packets in Qdisc or NIC queues : 676 * Because TX completion will happen shortly, it gives a chance 677 * to coalesce future sendmsg() payload into this skb, without 678 * need for a timer, and with no latency trade off. 679 * As packets containing data payload have a bigger truesize 680 * than pure acks (dataless) packets, the last checks prevent 681 * autocorking if we only have an ACK in Qdisc/NIC queues, 682 * or if TX completion was delayed after we processed ACK packet. 683 */ 684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 685 int size_goal) 686 { 687 return skb->len < size_goal && 688 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 689 !tcp_rtx_queue_empty(sk) && 690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 691 } 692 693 static void tcp_push(struct sock *sk, int flags, int mss_now, 694 int nonagle, int size_goal) 695 { 696 struct tcp_sock *tp = tcp_sk(sk); 697 struct sk_buff *skb; 698 699 skb = tcp_write_queue_tail(sk); 700 if (!skb) 701 return; 702 if (!(flags & MSG_MORE) || forced_push(tp)) 703 tcp_mark_push(tp, skb); 704 705 tcp_mark_urg(tp, flags); 706 707 if (tcp_should_autocork(sk, skb, size_goal)) { 708 709 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 713 } 714 /* It is possible TX completion already happened 715 * before we set TSQ_THROTTLED. 716 */ 717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 718 return; 719 } 720 721 if (flags & MSG_MORE) 722 nonagle = TCP_NAGLE_CORK; 723 724 __tcp_push_pending_frames(sk, mss_now, nonagle); 725 } 726 727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 728 unsigned int offset, size_t len) 729 { 730 struct tcp_splice_state *tss = rd_desc->arg.data; 731 int ret; 732 733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 734 min(rd_desc->count, len), tss->flags); 735 if (ret > 0) 736 rd_desc->count -= ret; 737 return ret; 738 } 739 740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 741 { 742 /* Store TCP splice context information in read_descriptor_t. */ 743 read_descriptor_t rd_desc = { 744 .arg.data = tss, 745 .count = tss->len, 746 }; 747 748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 749 } 750 751 /** 752 * tcp_splice_read - splice data from TCP socket to a pipe 753 * @sock: socket to splice from 754 * @ppos: position (not valid) 755 * @pipe: pipe to splice to 756 * @len: number of bytes to splice 757 * @flags: splice modifier flags 758 * 759 * Description: 760 * Will read pages from given socket and fill them into a pipe. 761 * 762 **/ 763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 764 struct pipe_inode_info *pipe, size_t len, 765 unsigned int flags) 766 { 767 struct sock *sk = sock->sk; 768 struct tcp_splice_state tss = { 769 .pipe = pipe, 770 .len = len, 771 .flags = flags, 772 }; 773 long timeo; 774 ssize_t spliced; 775 int ret; 776 777 sock_rps_record_flow(sk); 778 /* 779 * We can't seek on a socket input 780 */ 781 if (unlikely(*ppos)) 782 return -ESPIPE; 783 784 ret = spliced = 0; 785 786 lock_sock(sk); 787 788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 789 while (tss.len) { 790 ret = __tcp_splice_read(sk, &tss); 791 if (ret < 0) 792 break; 793 else if (!ret) { 794 if (spliced) 795 break; 796 if (sock_flag(sk, SOCK_DONE)) 797 break; 798 if (sk->sk_err) { 799 ret = sock_error(sk); 800 break; 801 } 802 if (sk->sk_shutdown & RCV_SHUTDOWN) 803 break; 804 if (sk->sk_state == TCP_CLOSE) { 805 /* 806 * This occurs when user tries to read 807 * from never connected socket. 808 */ 809 if (!sock_flag(sk, SOCK_DONE)) 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 /* The TCP header must be at least 32-bit aligned. */ 859 size = ALIGN(size, 4); 860 861 if (unlikely(tcp_under_memory_pressure(sk))) 862 sk_mem_reclaim_partial(sk); 863 864 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 865 if (likely(skb)) { 866 bool mem_scheduled; 867 868 if (force_schedule) { 869 mem_scheduled = true; 870 sk_forced_mem_schedule(sk, skb->truesize); 871 } else { 872 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 873 } 874 if (likely(mem_scheduled)) { 875 skb_reserve(skb, sk->sk_prot->max_header); 876 /* 877 * Make sure that we have exactly size bytes 878 * available to the caller, no more, no less. 879 */ 880 skb->reserved_tailroom = skb->end - skb->tail - size; 881 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 882 return skb; 883 } 884 __kfree_skb(skb); 885 } else { 886 sk->sk_prot->enter_memory_pressure(sk); 887 sk_stream_moderate_sndbuf(sk); 888 } 889 return NULL; 890 } 891 892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 893 int large_allowed) 894 { 895 struct tcp_sock *tp = tcp_sk(sk); 896 u32 new_size_goal, size_goal; 897 898 if (!large_allowed) 899 return mss_now; 900 901 /* Note : tcp_tso_autosize() will eventually split this later */ 902 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 903 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 904 905 /* We try hard to avoid divides here */ 906 size_goal = tp->gso_segs * mss_now; 907 if (unlikely(new_size_goal < size_goal || 908 new_size_goal >= size_goal + mss_now)) { 909 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 910 sk->sk_gso_max_segs); 911 size_goal = tp->gso_segs * mss_now; 912 } 913 914 return max(size_goal, mss_now); 915 } 916 917 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 918 { 919 int mss_now; 920 921 mss_now = tcp_current_mss(sk); 922 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 923 924 return mss_now; 925 } 926 927 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 928 size_t size, int flags) 929 { 930 struct tcp_sock *tp = tcp_sk(sk); 931 int mss_now, size_goal; 932 int err; 933 ssize_t copied; 934 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 935 936 /* Wait for a connection to finish. One exception is TCP Fast Open 937 * (passive side) where data is allowed to be sent before a connection 938 * is fully established. 939 */ 940 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 941 !tcp_passive_fastopen(sk)) { 942 err = sk_stream_wait_connect(sk, &timeo); 943 if (err != 0) 944 goto out_err; 945 } 946 947 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 948 949 mss_now = tcp_send_mss(sk, &size_goal, flags); 950 copied = 0; 951 952 err = -EPIPE; 953 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 954 goto out_err; 955 956 while (size > 0) { 957 struct sk_buff *skb = tcp_write_queue_tail(sk); 958 int copy, i; 959 bool can_coalesce; 960 961 if (!skb || (copy = size_goal - skb->len) <= 0 || 962 !tcp_skb_can_collapse_to(skb)) { 963 new_segment: 964 if (!sk_stream_memory_free(sk)) 965 goto wait_for_sndbuf; 966 967 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 968 tcp_rtx_and_write_queues_empty(sk)); 969 if (!skb) 970 goto wait_for_memory; 971 972 skb_entail(sk, skb); 973 copy = size_goal; 974 } 975 976 if (copy > size) 977 copy = size; 978 979 i = skb_shinfo(skb)->nr_frags; 980 can_coalesce = skb_can_coalesce(skb, i, page, offset); 981 if (!can_coalesce && i >= sysctl_max_skb_frags) { 982 tcp_mark_push(tp, skb); 983 goto new_segment; 984 } 985 if (!sk_wmem_schedule(sk, copy)) 986 goto wait_for_memory; 987 988 if (can_coalesce) { 989 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 990 } else { 991 get_page(page); 992 skb_fill_page_desc(skb, i, page, offset, copy); 993 } 994 995 if (!(flags & MSG_NO_SHARED_FRAGS)) 996 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 997 998 skb->len += copy; 999 skb->data_len += copy; 1000 skb->truesize += copy; 1001 sk->sk_wmem_queued += copy; 1002 sk_mem_charge(sk, copy); 1003 skb->ip_summed = CHECKSUM_PARTIAL; 1004 tp->write_seq += copy; 1005 TCP_SKB_CB(skb)->end_seq += copy; 1006 tcp_skb_pcount_set(skb, 0); 1007 1008 if (!copied) 1009 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1010 1011 copied += copy; 1012 offset += copy; 1013 size -= copy; 1014 if (!size) 1015 goto out; 1016 1017 if (skb->len < size_goal || (flags & MSG_OOB)) 1018 continue; 1019 1020 if (forced_push(tp)) { 1021 tcp_mark_push(tp, skb); 1022 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1023 } else if (skb == tcp_send_head(sk)) 1024 tcp_push_one(sk, mss_now); 1025 continue; 1026 1027 wait_for_sndbuf: 1028 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1029 wait_for_memory: 1030 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1031 TCP_NAGLE_PUSH, size_goal); 1032 1033 err = sk_stream_wait_memory(sk, &timeo); 1034 if (err != 0) 1035 goto do_error; 1036 1037 mss_now = tcp_send_mss(sk, &size_goal, flags); 1038 } 1039 1040 out: 1041 if (copied) { 1042 tcp_tx_timestamp(sk, sk->sk_tsflags); 1043 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1044 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1045 } 1046 return copied; 1047 1048 do_error: 1049 if (copied) 1050 goto out; 1051 out_err: 1052 /* make sure we wake any epoll edge trigger waiter */ 1053 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1054 err == -EAGAIN)) { 1055 sk->sk_write_space(sk); 1056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1057 } 1058 return sk_stream_error(sk, flags, err); 1059 } 1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1061 1062 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1063 size_t size, int flags) 1064 { 1065 if (!(sk->sk_route_caps & NETIF_F_SG)) 1066 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1067 1068 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1069 1070 return do_tcp_sendpages(sk, page, offset, size, flags); 1071 } 1072 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1073 1074 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1075 size_t size, int flags) 1076 { 1077 int ret; 1078 1079 lock_sock(sk); 1080 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1081 release_sock(sk); 1082 1083 return ret; 1084 } 1085 EXPORT_SYMBOL(tcp_sendpage); 1086 1087 /* Do not bother using a page frag for very small frames. 1088 * But use this heuristic only for the first skb in write queue. 1089 * 1090 * Having no payload in skb->head allows better SACK shifting 1091 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1092 * write queue has less skbs. 1093 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1094 * This also speeds up tso_fragment(), since it wont fallback 1095 * to tcp_fragment(). 1096 */ 1097 static int linear_payload_sz(bool first_skb) 1098 { 1099 if (first_skb) 1100 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1101 return 0; 1102 } 1103 1104 static int select_size(bool first_skb, bool zc) 1105 { 1106 if (zc) 1107 return 0; 1108 return linear_payload_sz(first_skb); 1109 } 1110 1111 void tcp_free_fastopen_req(struct tcp_sock *tp) 1112 { 1113 if (tp->fastopen_req) { 1114 kfree(tp->fastopen_req); 1115 tp->fastopen_req = NULL; 1116 } 1117 } 1118 1119 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1120 int *copied, size_t size) 1121 { 1122 struct tcp_sock *tp = tcp_sk(sk); 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct sockaddr *uaddr = msg->msg_name; 1125 int err, flags; 1126 1127 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1128 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1129 uaddr->sa_family == AF_UNSPEC)) 1130 return -EOPNOTSUPP; 1131 if (tp->fastopen_req) 1132 return -EALREADY; /* Another Fast Open is in progress */ 1133 1134 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1135 sk->sk_allocation); 1136 if (unlikely(!tp->fastopen_req)) 1137 return -ENOBUFS; 1138 tp->fastopen_req->data = msg; 1139 tp->fastopen_req->size = size; 1140 1141 if (inet->defer_connect) { 1142 err = tcp_connect(sk); 1143 /* Same failure procedure as in tcp_v4/6_connect */ 1144 if (err) { 1145 tcp_set_state(sk, TCP_CLOSE); 1146 inet->inet_dport = 0; 1147 sk->sk_route_caps = 0; 1148 } 1149 } 1150 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1151 err = __inet_stream_connect(sk->sk_socket, uaddr, 1152 msg->msg_namelen, flags, 1); 1153 /* fastopen_req could already be freed in __inet_stream_connect 1154 * if the connection times out or gets rst 1155 */ 1156 if (tp->fastopen_req) { 1157 *copied = tp->fastopen_req->copied; 1158 tcp_free_fastopen_req(tp); 1159 inet->defer_connect = 0; 1160 } 1161 return err; 1162 } 1163 1164 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1165 { 1166 struct tcp_sock *tp = tcp_sk(sk); 1167 struct ubuf_info *uarg = NULL; 1168 struct sk_buff *skb; 1169 struct sockcm_cookie sockc; 1170 int flags, err, copied = 0; 1171 int mss_now = 0, size_goal, copied_syn = 0; 1172 bool process_backlog = false; 1173 bool zc = false; 1174 long timeo; 1175 1176 flags = msg->msg_flags; 1177 1178 if (flags & MSG_ZEROCOPY && size) { 1179 if (sk->sk_state != TCP_ESTABLISHED) { 1180 err = -EINVAL; 1181 goto out_err; 1182 } 1183 1184 skb = tcp_write_queue_tail(sk); 1185 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1186 if (!uarg) { 1187 err = -ENOBUFS; 1188 goto out_err; 1189 } 1190 1191 zc = sk->sk_route_caps & NETIF_F_SG; 1192 if (!zc) 1193 uarg->zerocopy = 0; 1194 } 1195 1196 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1197 !tp->repair) { 1198 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1199 if (err == -EINPROGRESS && copied_syn > 0) 1200 goto out; 1201 else if (err) 1202 goto out_err; 1203 } 1204 1205 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1206 1207 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1208 1209 /* Wait for a connection to finish. One exception is TCP Fast Open 1210 * (passive side) where data is allowed to be sent before a connection 1211 * is fully established. 1212 */ 1213 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1214 !tcp_passive_fastopen(sk)) { 1215 err = sk_stream_wait_connect(sk, &timeo); 1216 if (err != 0) 1217 goto do_error; 1218 } 1219 1220 if (unlikely(tp->repair)) { 1221 if (tp->repair_queue == TCP_RECV_QUEUE) { 1222 copied = tcp_send_rcvq(sk, msg, size); 1223 goto out_nopush; 1224 } 1225 1226 err = -EINVAL; 1227 if (tp->repair_queue == TCP_NO_QUEUE) 1228 goto out_err; 1229 1230 /* 'common' sending to sendq */ 1231 } 1232 1233 sockc.tsflags = sk->sk_tsflags; 1234 if (msg->msg_controllen) { 1235 err = sock_cmsg_send(sk, msg, &sockc); 1236 if (unlikely(err)) { 1237 err = -EINVAL; 1238 goto out_err; 1239 } 1240 } 1241 1242 /* This should be in poll */ 1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1244 1245 /* Ok commence sending. */ 1246 copied = 0; 1247 1248 restart: 1249 mss_now = tcp_send_mss(sk, &size_goal, flags); 1250 1251 err = -EPIPE; 1252 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1253 goto do_error; 1254 1255 while (msg_data_left(msg)) { 1256 int copy = 0; 1257 1258 skb = tcp_write_queue_tail(sk); 1259 if (skb) 1260 copy = size_goal - skb->len; 1261 1262 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1263 bool first_skb; 1264 int linear; 1265 1266 new_segment: 1267 /* Allocate new segment. If the interface is SG, 1268 * allocate skb fitting to single page. 1269 */ 1270 if (!sk_stream_memory_free(sk)) 1271 goto wait_for_sndbuf; 1272 1273 if (process_backlog && sk_flush_backlog(sk)) { 1274 process_backlog = false; 1275 goto restart; 1276 } 1277 first_skb = tcp_rtx_and_write_queues_empty(sk); 1278 linear = select_size(first_skb, zc); 1279 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1280 first_skb); 1281 if (!skb) 1282 goto wait_for_memory; 1283 1284 process_backlog = true; 1285 skb->ip_summed = CHECKSUM_PARTIAL; 1286 1287 skb_entail(sk, skb); 1288 copy = size_goal; 1289 1290 /* All packets are restored as if they have 1291 * already been sent. skb_mstamp isn't set to 1292 * avoid wrong rtt estimation. 1293 */ 1294 if (tp->repair) 1295 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1296 } 1297 1298 /* Try to append data to the end of skb. */ 1299 if (copy > msg_data_left(msg)) 1300 copy = msg_data_left(msg); 1301 1302 /* Where to copy to? */ 1303 if (skb_availroom(skb) > 0 && !zc) { 1304 /* We have some space in skb head. Superb! */ 1305 copy = min_t(int, copy, skb_availroom(skb)); 1306 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1307 if (err) 1308 goto do_fault; 1309 } else if (!zc) { 1310 bool merge = true; 1311 int i = skb_shinfo(skb)->nr_frags; 1312 struct page_frag *pfrag = sk_page_frag(sk); 1313 1314 if (!sk_page_frag_refill(sk, pfrag)) 1315 goto wait_for_memory; 1316 1317 if (!skb_can_coalesce(skb, i, pfrag->page, 1318 pfrag->offset)) { 1319 if (i >= sysctl_max_skb_frags) { 1320 tcp_mark_push(tp, skb); 1321 goto new_segment; 1322 } 1323 merge = false; 1324 } 1325 1326 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1327 1328 if (!sk_wmem_schedule(sk, copy)) 1329 goto wait_for_memory; 1330 1331 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1332 pfrag->page, 1333 pfrag->offset, 1334 copy); 1335 if (err) 1336 goto do_error; 1337 1338 /* Update the skb. */ 1339 if (merge) { 1340 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1341 } else { 1342 skb_fill_page_desc(skb, i, pfrag->page, 1343 pfrag->offset, copy); 1344 page_ref_inc(pfrag->page); 1345 } 1346 pfrag->offset += copy; 1347 } else { 1348 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1349 if (err == -EMSGSIZE || err == -EEXIST) { 1350 tcp_mark_push(tp, skb); 1351 goto new_segment; 1352 } 1353 if (err < 0) 1354 goto do_error; 1355 copy = err; 1356 } 1357 1358 if (!copied) 1359 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1360 1361 tp->write_seq += copy; 1362 TCP_SKB_CB(skb)->end_seq += copy; 1363 tcp_skb_pcount_set(skb, 0); 1364 1365 copied += copy; 1366 if (!msg_data_left(msg)) { 1367 if (unlikely(flags & MSG_EOR)) 1368 TCP_SKB_CB(skb)->eor = 1; 1369 goto out; 1370 } 1371 1372 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1373 continue; 1374 1375 if (forced_push(tp)) { 1376 tcp_mark_push(tp, skb); 1377 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1378 } else if (skb == tcp_send_head(sk)) 1379 tcp_push_one(sk, mss_now); 1380 continue; 1381 1382 wait_for_sndbuf: 1383 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1384 wait_for_memory: 1385 if (copied) 1386 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1387 TCP_NAGLE_PUSH, size_goal); 1388 1389 err = sk_stream_wait_memory(sk, &timeo); 1390 if (err != 0) 1391 goto do_error; 1392 1393 mss_now = tcp_send_mss(sk, &size_goal, flags); 1394 } 1395 1396 out: 1397 if (copied) { 1398 tcp_tx_timestamp(sk, sockc.tsflags); 1399 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1400 } 1401 out_nopush: 1402 sock_zerocopy_put(uarg); 1403 return copied + copied_syn; 1404 1405 do_fault: 1406 if (!skb->len) { 1407 tcp_unlink_write_queue(skb, sk); 1408 /* It is the one place in all of TCP, except connection 1409 * reset, where we can be unlinking the send_head. 1410 */ 1411 tcp_check_send_head(sk, skb); 1412 sk_wmem_free_skb(sk, skb); 1413 } 1414 1415 do_error: 1416 if (copied + copied_syn) 1417 goto out; 1418 out_err: 1419 sock_zerocopy_put_abort(uarg); 1420 err = sk_stream_error(sk, flags, err); 1421 /* make sure we wake any epoll edge trigger waiter */ 1422 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1423 err == -EAGAIN)) { 1424 sk->sk_write_space(sk); 1425 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1426 } 1427 return err; 1428 } 1429 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1430 1431 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1432 { 1433 int ret; 1434 1435 lock_sock(sk); 1436 ret = tcp_sendmsg_locked(sk, msg, size); 1437 release_sock(sk); 1438 1439 return ret; 1440 } 1441 EXPORT_SYMBOL(tcp_sendmsg); 1442 1443 /* 1444 * Handle reading urgent data. BSD has very simple semantics for 1445 * this, no blocking and very strange errors 8) 1446 */ 1447 1448 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1449 { 1450 struct tcp_sock *tp = tcp_sk(sk); 1451 1452 /* No URG data to read. */ 1453 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1454 tp->urg_data == TCP_URG_READ) 1455 return -EINVAL; /* Yes this is right ! */ 1456 1457 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1458 return -ENOTCONN; 1459 1460 if (tp->urg_data & TCP_URG_VALID) { 1461 int err = 0; 1462 char c = tp->urg_data; 1463 1464 if (!(flags & MSG_PEEK)) 1465 tp->urg_data = TCP_URG_READ; 1466 1467 /* Read urgent data. */ 1468 msg->msg_flags |= MSG_OOB; 1469 1470 if (len > 0) { 1471 if (!(flags & MSG_TRUNC)) 1472 err = memcpy_to_msg(msg, &c, 1); 1473 len = 1; 1474 } else 1475 msg->msg_flags |= MSG_TRUNC; 1476 1477 return err ? -EFAULT : len; 1478 } 1479 1480 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1481 return 0; 1482 1483 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1484 * the available implementations agree in this case: 1485 * this call should never block, independent of the 1486 * blocking state of the socket. 1487 * Mike <pall@rz.uni-karlsruhe.de> 1488 */ 1489 return -EAGAIN; 1490 } 1491 1492 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1493 { 1494 struct sk_buff *skb; 1495 int copied = 0, err = 0; 1496 1497 /* XXX -- need to support SO_PEEK_OFF */ 1498 1499 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1500 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1501 if (err) 1502 return err; 1503 copied += skb->len; 1504 } 1505 1506 skb_queue_walk(&sk->sk_write_queue, skb) { 1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1508 if (err) 1509 break; 1510 1511 copied += skb->len; 1512 } 1513 1514 return err ?: copied; 1515 } 1516 1517 /* Clean up the receive buffer for full frames taken by the user, 1518 * then send an ACK if necessary. COPIED is the number of bytes 1519 * tcp_recvmsg has given to the user so far, it speeds up the 1520 * calculation of whether or not we must ACK for the sake of 1521 * a window update. 1522 */ 1523 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 bool time_to_ack = false; 1527 1528 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1529 1530 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1531 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1532 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1533 1534 if (inet_csk_ack_scheduled(sk)) { 1535 const struct inet_connection_sock *icsk = inet_csk(sk); 1536 /* Delayed ACKs frequently hit locked sockets during bulk 1537 * receive. */ 1538 if (icsk->icsk_ack.blocked || 1539 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1540 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1541 /* 1542 * If this read emptied read buffer, we send ACK, if 1543 * connection is not bidirectional, user drained 1544 * receive buffer and there was a small segment 1545 * in queue. 1546 */ 1547 (copied > 0 && 1548 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1549 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1550 !icsk->icsk_ack.pingpong)) && 1551 !atomic_read(&sk->sk_rmem_alloc))) 1552 time_to_ack = true; 1553 } 1554 1555 /* We send an ACK if we can now advertise a non-zero window 1556 * which has been raised "significantly". 1557 * 1558 * Even if window raised up to infinity, do not send window open ACK 1559 * in states, where we will not receive more. It is useless. 1560 */ 1561 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1562 __u32 rcv_window_now = tcp_receive_window(tp); 1563 1564 /* Optimize, __tcp_select_window() is not cheap. */ 1565 if (2*rcv_window_now <= tp->window_clamp) { 1566 __u32 new_window = __tcp_select_window(sk); 1567 1568 /* Send ACK now, if this read freed lots of space 1569 * in our buffer. Certainly, new_window is new window. 1570 * We can advertise it now, if it is not less than current one. 1571 * "Lots" means "at least twice" here. 1572 */ 1573 if (new_window && new_window >= 2 * rcv_window_now) 1574 time_to_ack = true; 1575 } 1576 } 1577 if (time_to_ack) 1578 tcp_send_ack(sk); 1579 } 1580 1581 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1582 { 1583 struct sk_buff *skb; 1584 u32 offset; 1585 1586 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1587 offset = seq - TCP_SKB_CB(skb)->seq; 1588 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1589 pr_err_once("%s: found a SYN, please report !\n", __func__); 1590 offset--; 1591 } 1592 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1593 *off = offset; 1594 return skb; 1595 } 1596 /* This looks weird, but this can happen if TCP collapsing 1597 * splitted a fat GRO packet, while we released socket lock 1598 * in skb_splice_bits() 1599 */ 1600 sk_eat_skb(sk, skb); 1601 } 1602 return NULL; 1603 } 1604 1605 /* 1606 * This routine provides an alternative to tcp_recvmsg() for routines 1607 * that would like to handle copying from skbuffs directly in 'sendfile' 1608 * fashion. 1609 * Note: 1610 * - It is assumed that the socket was locked by the caller. 1611 * - The routine does not block. 1612 * - At present, there is no support for reading OOB data 1613 * or for 'peeking' the socket using this routine 1614 * (although both would be easy to implement). 1615 */ 1616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1617 sk_read_actor_t recv_actor) 1618 { 1619 struct sk_buff *skb; 1620 struct tcp_sock *tp = tcp_sk(sk); 1621 u32 seq = tp->copied_seq; 1622 u32 offset; 1623 int copied = 0; 1624 1625 if (sk->sk_state == TCP_LISTEN) 1626 return -ENOTCONN; 1627 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1628 if (offset < skb->len) { 1629 int used; 1630 size_t len; 1631 1632 len = skb->len - offset; 1633 /* Stop reading if we hit a patch of urgent data */ 1634 if (tp->urg_data) { 1635 u32 urg_offset = tp->urg_seq - seq; 1636 if (urg_offset < len) 1637 len = urg_offset; 1638 if (!len) 1639 break; 1640 } 1641 used = recv_actor(desc, skb, offset, len); 1642 if (used <= 0) { 1643 if (!copied) 1644 copied = used; 1645 break; 1646 } else if (used <= len) { 1647 seq += used; 1648 copied += used; 1649 offset += used; 1650 } 1651 /* If recv_actor drops the lock (e.g. TCP splice 1652 * receive) the skb pointer might be invalid when 1653 * getting here: tcp_collapse might have deleted it 1654 * while aggregating skbs from the socket queue. 1655 */ 1656 skb = tcp_recv_skb(sk, seq - 1, &offset); 1657 if (!skb) 1658 break; 1659 /* TCP coalescing might have appended data to the skb. 1660 * Try to splice more frags 1661 */ 1662 if (offset + 1 != skb->len) 1663 continue; 1664 } 1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1666 sk_eat_skb(sk, skb); 1667 ++seq; 1668 break; 1669 } 1670 sk_eat_skb(sk, skb); 1671 if (!desc->count) 1672 break; 1673 tp->copied_seq = seq; 1674 } 1675 tp->copied_seq = seq; 1676 1677 tcp_rcv_space_adjust(sk); 1678 1679 /* Clean up data we have read: This will do ACK frames. */ 1680 if (copied > 0) { 1681 tcp_recv_skb(sk, seq, &offset); 1682 tcp_cleanup_rbuf(sk, copied); 1683 } 1684 return copied; 1685 } 1686 EXPORT_SYMBOL(tcp_read_sock); 1687 1688 int tcp_peek_len(struct socket *sock) 1689 { 1690 return tcp_inq(sock->sk); 1691 } 1692 EXPORT_SYMBOL(tcp_peek_len); 1693 1694 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1695 int tcp_set_rcvlowat(struct sock *sk, int val) 1696 { 1697 int cap; 1698 1699 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1700 cap = sk->sk_rcvbuf >> 1; 1701 else 1702 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1703 val = min(val, cap); 1704 sk->sk_rcvlowat = val ? : 1; 1705 1706 /* Check if we need to signal EPOLLIN right now */ 1707 tcp_data_ready(sk); 1708 1709 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1710 return 0; 1711 1712 val <<= 1; 1713 if (val > sk->sk_rcvbuf) { 1714 sk->sk_rcvbuf = val; 1715 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1716 } 1717 return 0; 1718 } 1719 EXPORT_SYMBOL(tcp_set_rcvlowat); 1720 1721 #ifdef CONFIG_MMU 1722 static const struct vm_operations_struct tcp_vm_ops = { 1723 }; 1724 1725 int tcp_mmap(struct file *file, struct socket *sock, 1726 struct vm_area_struct *vma) 1727 { 1728 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1729 return -EPERM; 1730 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1731 1732 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1733 vma->vm_flags |= VM_MIXEDMAP; 1734 1735 vma->vm_ops = &tcp_vm_ops; 1736 return 0; 1737 } 1738 EXPORT_SYMBOL(tcp_mmap); 1739 1740 static int tcp_zerocopy_receive(struct sock *sk, 1741 struct tcp_zerocopy_receive *zc) 1742 { 1743 unsigned long address = (unsigned long)zc->address; 1744 const skb_frag_t *frags = NULL; 1745 u32 length = 0, seq, offset; 1746 struct vm_area_struct *vma; 1747 struct sk_buff *skb = NULL; 1748 struct tcp_sock *tp; 1749 int ret; 1750 1751 if (address & (PAGE_SIZE - 1) || address != zc->address) 1752 return -EINVAL; 1753 1754 if (sk->sk_state == TCP_LISTEN) 1755 return -ENOTCONN; 1756 1757 sock_rps_record_flow(sk); 1758 1759 down_read(¤t->mm->mmap_sem); 1760 1761 ret = -EINVAL; 1762 vma = find_vma(current->mm, address); 1763 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1764 goto out; 1765 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1766 1767 tp = tcp_sk(sk); 1768 seq = tp->copied_seq; 1769 zc->length = min_t(u32, zc->length, tcp_inq(sk)); 1770 zc->length &= ~(PAGE_SIZE - 1); 1771 1772 zap_page_range(vma, address, zc->length); 1773 1774 zc->recv_skip_hint = 0; 1775 ret = 0; 1776 while (length + PAGE_SIZE <= zc->length) { 1777 if (zc->recv_skip_hint < PAGE_SIZE) { 1778 if (skb) { 1779 skb = skb->next; 1780 offset = seq - TCP_SKB_CB(skb)->seq; 1781 } else { 1782 skb = tcp_recv_skb(sk, seq, &offset); 1783 } 1784 1785 zc->recv_skip_hint = skb->len - offset; 1786 offset -= skb_headlen(skb); 1787 if ((int)offset < 0 || skb_has_frag_list(skb)) 1788 break; 1789 frags = skb_shinfo(skb)->frags; 1790 while (offset) { 1791 if (frags->size > offset) 1792 goto out; 1793 offset -= frags->size; 1794 frags++; 1795 } 1796 } 1797 if (frags->size != PAGE_SIZE || frags->page_offset) 1798 break; 1799 ret = vm_insert_page(vma, address + length, 1800 skb_frag_page(frags)); 1801 if (ret) 1802 break; 1803 length += PAGE_SIZE; 1804 seq += PAGE_SIZE; 1805 zc->recv_skip_hint -= PAGE_SIZE; 1806 frags++; 1807 } 1808 out: 1809 up_read(¤t->mm->mmap_sem); 1810 if (length) { 1811 tp->copied_seq = seq; 1812 tcp_rcv_space_adjust(sk); 1813 1814 /* Clean up data we have read: This will do ACK frames. */ 1815 tcp_recv_skb(sk, seq, &offset); 1816 tcp_cleanup_rbuf(sk, length); 1817 ret = 0; 1818 if (length == zc->length) 1819 zc->recv_skip_hint = 0; 1820 } else { 1821 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1822 ret = -EIO; 1823 } 1824 zc->length = length; 1825 return ret; 1826 } 1827 #endif 1828 1829 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1830 struct scm_timestamping *tss) 1831 { 1832 if (skb->tstamp) 1833 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1834 else 1835 tss->ts[0] = (struct timespec) {0}; 1836 1837 if (skb_hwtstamps(skb)->hwtstamp) 1838 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1839 else 1840 tss->ts[2] = (struct timespec) {0}; 1841 } 1842 1843 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1844 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1845 struct scm_timestamping *tss) 1846 { 1847 struct timeval tv; 1848 bool has_timestamping = false; 1849 1850 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1851 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1852 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1853 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1854 sizeof(tss->ts[0]), &tss->ts[0]); 1855 } else { 1856 tv.tv_sec = tss->ts[0].tv_sec; 1857 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1858 1859 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1860 sizeof(tv), &tv); 1861 } 1862 } 1863 1864 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1865 has_timestamping = true; 1866 else 1867 tss->ts[0] = (struct timespec) {0}; 1868 } 1869 1870 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1871 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1872 has_timestamping = true; 1873 else 1874 tss->ts[2] = (struct timespec) {0}; 1875 } 1876 1877 if (has_timestamping) { 1878 tss->ts[1] = (struct timespec) {0}; 1879 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1880 sizeof(*tss), tss); 1881 } 1882 } 1883 1884 static int tcp_inq_hint(struct sock *sk) 1885 { 1886 const struct tcp_sock *tp = tcp_sk(sk); 1887 u32 copied_seq = READ_ONCE(tp->copied_seq); 1888 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1889 int inq; 1890 1891 inq = rcv_nxt - copied_seq; 1892 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1893 lock_sock(sk); 1894 inq = tp->rcv_nxt - tp->copied_seq; 1895 release_sock(sk); 1896 } 1897 return inq; 1898 } 1899 1900 /* 1901 * This routine copies from a sock struct into the user buffer. 1902 * 1903 * Technical note: in 2.3 we work on _locked_ socket, so that 1904 * tricks with *seq access order and skb->users are not required. 1905 * Probably, code can be easily improved even more. 1906 */ 1907 1908 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1909 int flags, int *addr_len) 1910 { 1911 struct tcp_sock *tp = tcp_sk(sk); 1912 int copied = 0; 1913 u32 peek_seq; 1914 u32 *seq; 1915 unsigned long used; 1916 int err, inq; 1917 int target; /* Read at least this many bytes */ 1918 long timeo; 1919 struct sk_buff *skb, *last; 1920 u32 urg_hole = 0; 1921 struct scm_timestamping tss; 1922 bool has_tss = false; 1923 bool has_cmsg; 1924 1925 if (unlikely(flags & MSG_ERRQUEUE)) 1926 return inet_recv_error(sk, msg, len, addr_len); 1927 1928 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1929 (sk->sk_state == TCP_ESTABLISHED)) 1930 sk_busy_loop(sk, nonblock); 1931 1932 lock_sock(sk); 1933 1934 err = -ENOTCONN; 1935 if (sk->sk_state == TCP_LISTEN) 1936 goto out; 1937 1938 has_cmsg = tp->recvmsg_inq; 1939 timeo = sock_rcvtimeo(sk, nonblock); 1940 1941 /* Urgent data needs to be handled specially. */ 1942 if (flags & MSG_OOB) 1943 goto recv_urg; 1944 1945 if (unlikely(tp->repair)) { 1946 err = -EPERM; 1947 if (!(flags & MSG_PEEK)) 1948 goto out; 1949 1950 if (tp->repair_queue == TCP_SEND_QUEUE) 1951 goto recv_sndq; 1952 1953 err = -EINVAL; 1954 if (tp->repair_queue == TCP_NO_QUEUE) 1955 goto out; 1956 1957 /* 'common' recv queue MSG_PEEK-ing */ 1958 } 1959 1960 seq = &tp->copied_seq; 1961 if (flags & MSG_PEEK) { 1962 peek_seq = tp->copied_seq; 1963 seq = &peek_seq; 1964 } 1965 1966 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1967 1968 do { 1969 u32 offset; 1970 1971 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1972 if (tp->urg_data && tp->urg_seq == *seq) { 1973 if (copied) 1974 break; 1975 if (signal_pending(current)) { 1976 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1977 break; 1978 } 1979 } 1980 1981 /* Next get a buffer. */ 1982 1983 last = skb_peek_tail(&sk->sk_receive_queue); 1984 skb_queue_walk(&sk->sk_receive_queue, skb) { 1985 last = skb; 1986 /* Now that we have two receive queues this 1987 * shouldn't happen. 1988 */ 1989 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1990 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1991 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1992 flags)) 1993 break; 1994 1995 offset = *seq - TCP_SKB_CB(skb)->seq; 1996 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1997 pr_err_once("%s: found a SYN, please report !\n", __func__); 1998 offset--; 1999 } 2000 if (offset < skb->len) 2001 goto found_ok_skb; 2002 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2003 goto found_fin_ok; 2004 WARN(!(flags & MSG_PEEK), 2005 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 2006 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2007 } 2008 2009 /* Well, if we have backlog, try to process it now yet. */ 2010 2011 if (copied >= target && !sk->sk_backlog.tail) 2012 break; 2013 2014 if (copied) { 2015 if (sk->sk_err || 2016 sk->sk_state == TCP_CLOSE || 2017 (sk->sk_shutdown & RCV_SHUTDOWN) || 2018 !timeo || 2019 signal_pending(current)) 2020 break; 2021 } else { 2022 if (sock_flag(sk, SOCK_DONE)) 2023 break; 2024 2025 if (sk->sk_err) { 2026 copied = sock_error(sk); 2027 break; 2028 } 2029 2030 if (sk->sk_shutdown & RCV_SHUTDOWN) 2031 break; 2032 2033 if (sk->sk_state == TCP_CLOSE) { 2034 if (!sock_flag(sk, SOCK_DONE)) { 2035 /* This occurs when user tries to read 2036 * from never connected socket. 2037 */ 2038 copied = -ENOTCONN; 2039 break; 2040 } 2041 break; 2042 } 2043 2044 if (!timeo) { 2045 copied = -EAGAIN; 2046 break; 2047 } 2048 2049 if (signal_pending(current)) { 2050 copied = sock_intr_errno(timeo); 2051 break; 2052 } 2053 } 2054 2055 tcp_cleanup_rbuf(sk, copied); 2056 2057 if (copied >= target) { 2058 /* Do not sleep, just process backlog. */ 2059 release_sock(sk); 2060 lock_sock(sk); 2061 } else { 2062 sk_wait_data(sk, &timeo, last); 2063 } 2064 2065 if ((flags & MSG_PEEK) && 2066 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2067 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2068 current->comm, 2069 task_pid_nr(current)); 2070 peek_seq = tp->copied_seq; 2071 } 2072 continue; 2073 2074 found_ok_skb: 2075 /* Ok so how much can we use? */ 2076 used = skb->len - offset; 2077 if (len < used) 2078 used = len; 2079 2080 /* Do we have urgent data here? */ 2081 if (tp->urg_data) { 2082 u32 urg_offset = tp->urg_seq - *seq; 2083 if (urg_offset < used) { 2084 if (!urg_offset) { 2085 if (!sock_flag(sk, SOCK_URGINLINE)) { 2086 ++*seq; 2087 urg_hole++; 2088 offset++; 2089 used--; 2090 if (!used) 2091 goto skip_copy; 2092 } 2093 } else 2094 used = urg_offset; 2095 } 2096 } 2097 2098 if (!(flags & MSG_TRUNC)) { 2099 err = skb_copy_datagram_msg(skb, offset, msg, used); 2100 if (err) { 2101 /* Exception. Bailout! */ 2102 if (!copied) 2103 copied = -EFAULT; 2104 break; 2105 } 2106 } 2107 2108 *seq += used; 2109 copied += used; 2110 len -= used; 2111 2112 tcp_rcv_space_adjust(sk); 2113 2114 skip_copy: 2115 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2116 tp->urg_data = 0; 2117 tcp_fast_path_check(sk); 2118 } 2119 if (used + offset < skb->len) 2120 continue; 2121 2122 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2123 tcp_update_recv_tstamps(skb, &tss); 2124 has_tss = true; 2125 has_cmsg = true; 2126 } 2127 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2128 goto found_fin_ok; 2129 if (!(flags & MSG_PEEK)) 2130 sk_eat_skb(sk, skb); 2131 continue; 2132 2133 found_fin_ok: 2134 /* Process the FIN. */ 2135 ++*seq; 2136 if (!(flags & MSG_PEEK)) 2137 sk_eat_skb(sk, skb); 2138 break; 2139 } while (len > 0); 2140 2141 /* According to UNIX98, msg_name/msg_namelen are ignored 2142 * on connected socket. I was just happy when found this 8) --ANK 2143 */ 2144 2145 /* Clean up data we have read: This will do ACK frames. */ 2146 tcp_cleanup_rbuf(sk, copied); 2147 2148 release_sock(sk); 2149 2150 if (has_cmsg) { 2151 if (has_tss) 2152 tcp_recv_timestamp(msg, sk, &tss); 2153 if (tp->recvmsg_inq) { 2154 inq = tcp_inq_hint(sk); 2155 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2156 } 2157 } 2158 2159 return copied; 2160 2161 out: 2162 release_sock(sk); 2163 return err; 2164 2165 recv_urg: 2166 err = tcp_recv_urg(sk, msg, len, flags); 2167 goto out; 2168 2169 recv_sndq: 2170 err = tcp_peek_sndq(sk, msg, len); 2171 goto out; 2172 } 2173 EXPORT_SYMBOL(tcp_recvmsg); 2174 2175 void tcp_set_state(struct sock *sk, int state) 2176 { 2177 int oldstate = sk->sk_state; 2178 2179 /* We defined a new enum for TCP states that are exported in BPF 2180 * so as not force the internal TCP states to be frozen. The 2181 * following checks will detect if an internal state value ever 2182 * differs from the BPF value. If this ever happens, then we will 2183 * need to remap the internal value to the BPF value before calling 2184 * tcp_call_bpf_2arg. 2185 */ 2186 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2187 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2188 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2189 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2190 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2191 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2192 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2193 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2194 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2195 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2196 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2197 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2198 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2199 2200 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2201 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2202 2203 switch (state) { 2204 case TCP_ESTABLISHED: 2205 if (oldstate != TCP_ESTABLISHED) 2206 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2207 break; 2208 2209 case TCP_CLOSE: 2210 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2211 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2212 2213 sk->sk_prot->unhash(sk); 2214 if (inet_csk(sk)->icsk_bind_hash && 2215 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2216 inet_put_port(sk); 2217 /* fall through */ 2218 default: 2219 if (oldstate == TCP_ESTABLISHED) 2220 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2221 } 2222 2223 /* Change state AFTER socket is unhashed to avoid closed 2224 * socket sitting in hash tables. 2225 */ 2226 inet_sk_state_store(sk, state); 2227 2228 #ifdef STATE_TRACE 2229 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2230 #endif 2231 } 2232 EXPORT_SYMBOL_GPL(tcp_set_state); 2233 2234 /* 2235 * State processing on a close. This implements the state shift for 2236 * sending our FIN frame. Note that we only send a FIN for some 2237 * states. A shutdown() may have already sent the FIN, or we may be 2238 * closed. 2239 */ 2240 2241 static const unsigned char new_state[16] = { 2242 /* current state: new state: action: */ 2243 [0 /* (Invalid) */] = TCP_CLOSE, 2244 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2245 [TCP_SYN_SENT] = TCP_CLOSE, 2246 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2247 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2248 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2249 [TCP_TIME_WAIT] = TCP_CLOSE, 2250 [TCP_CLOSE] = TCP_CLOSE, 2251 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2252 [TCP_LAST_ACK] = TCP_LAST_ACK, 2253 [TCP_LISTEN] = TCP_CLOSE, 2254 [TCP_CLOSING] = TCP_CLOSING, 2255 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2256 }; 2257 2258 static int tcp_close_state(struct sock *sk) 2259 { 2260 int next = (int)new_state[sk->sk_state]; 2261 int ns = next & TCP_STATE_MASK; 2262 2263 tcp_set_state(sk, ns); 2264 2265 return next & TCP_ACTION_FIN; 2266 } 2267 2268 /* 2269 * Shutdown the sending side of a connection. Much like close except 2270 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2271 */ 2272 2273 void tcp_shutdown(struct sock *sk, int how) 2274 { 2275 /* We need to grab some memory, and put together a FIN, 2276 * and then put it into the queue to be sent. 2277 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2278 */ 2279 if (!(how & SEND_SHUTDOWN)) 2280 return; 2281 2282 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2283 if ((1 << sk->sk_state) & 2284 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2285 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2286 /* Clear out any half completed packets. FIN if needed. */ 2287 if (tcp_close_state(sk)) 2288 tcp_send_fin(sk); 2289 } 2290 } 2291 EXPORT_SYMBOL(tcp_shutdown); 2292 2293 bool tcp_check_oom(struct sock *sk, int shift) 2294 { 2295 bool too_many_orphans, out_of_socket_memory; 2296 2297 too_many_orphans = tcp_too_many_orphans(sk, shift); 2298 out_of_socket_memory = tcp_out_of_memory(sk); 2299 2300 if (too_many_orphans) 2301 net_info_ratelimited("too many orphaned sockets\n"); 2302 if (out_of_socket_memory) 2303 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2304 return too_many_orphans || out_of_socket_memory; 2305 } 2306 2307 void tcp_close(struct sock *sk, long timeout) 2308 { 2309 struct sk_buff *skb; 2310 int data_was_unread = 0; 2311 int state; 2312 2313 lock_sock(sk); 2314 sk->sk_shutdown = SHUTDOWN_MASK; 2315 2316 if (sk->sk_state == TCP_LISTEN) { 2317 tcp_set_state(sk, TCP_CLOSE); 2318 2319 /* Special case. */ 2320 inet_csk_listen_stop(sk); 2321 2322 goto adjudge_to_death; 2323 } 2324 2325 /* We need to flush the recv. buffs. We do this only on the 2326 * descriptor close, not protocol-sourced closes, because the 2327 * reader process may not have drained the data yet! 2328 */ 2329 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2330 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2331 2332 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2333 len--; 2334 data_was_unread += len; 2335 __kfree_skb(skb); 2336 } 2337 2338 sk_mem_reclaim(sk); 2339 2340 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2341 if (sk->sk_state == TCP_CLOSE) 2342 goto adjudge_to_death; 2343 2344 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2345 * data was lost. To witness the awful effects of the old behavior of 2346 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2347 * GET in an FTP client, suspend the process, wait for the client to 2348 * advertise a zero window, then kill -9 the FTP client, wheee... 2349 * Note: timeout is always zero in such a case. 2350 */ 2351 if (unlikely(tcp_sk(sk)->repair)) { 2352 sk->sk_prot->disconnect(sk, 0); 2353 } else if (data_was_unread) { 2354 /* Unread data was tossed, zap the connection. */ 2355 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2356 tcp_set_state(sk, TCP_CLOSE); 2357 tcp_send_active_reset(sk, sk->sk_allocation); 2358 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2359 /* Check zero linger _after_ checking for unread data. */ 2360 sk->sk_prot->disconnect(sk, 0); 2361 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2362 } else if (tcp_close_state(sk)) { 2363 /* We FIN if the application ate all the data before 2364 * zapping the connection. 2365 */ 2366 2367 /* RED-PEN. Formally speaking, we have broken TCP state 2368 * machine. State transitions: 2369 * 2370 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2371 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2372 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2373 * 2374 * are legal only when FIN has been sent (i.e. in window), 2375 * rather than queued out of window. Purists blame. 2376 * 2377 * F.e. "RFC state" is ESTABLISHED, 2378 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2379 * 2380 * The visible declinations are that sometimes 2381 * we enter time-wait state, when it is not required really 2382 * (harmless), do not send active resets, when they are 2383 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2384 * they look as CLOSING or LAST_ACK for Linux) 2385 * Probably, I missed some more holelets. 2386 * --ANK 2387 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2388 * in a single packet! (May consider it later but will 2389 * probably need API support or TCP_CORK SYN-ACK until 2390 * data is written and socket is closed.) 2391 */ 2392 tcp_send_fin(sk); 2393 } 2394 2395 sk_stream_wait_close(sk, timeout); 2396 2397 adjudge_to_death: 2398 state = sk->sk_state; 2399 sock_hold(sk); 2400 sock_orphan(sk); 2401 2402 /* It is the last release_sock in its life. It will remove backlog. */ 2403 release_sock(sk); 2404 2405 2406 /* Now socket is owned by kernel and we acquire BH lock 2407 * to finish close. No need to check for user refs. 2408 */ 2409 local_bh_disable(); 2410 bh_lock_sock(sk); 2411 WARN_ON(sock_owned_by_user(sk)); 2412 2413 percpu_counter_inc(sk->sk_prot->orphan_count); 2414 2415 /* Have we already been destroyed by a softirq or backlog? */ 2416 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2417 goto out; 2418 2419 /* This is a (useful) BSD violating of the RFC. There is a 2420 * problem with TCP as specified in that the other end could 2421 * keep a socket open forever with no application left this end. 2422 * We use a 1 minute timeout (about the same as BSD) then kill 2423 * our end. If they send after that then tough - BUT: long enough 2424 * that we won't make the old 4*rto = almost no time - whoops 2425 * reset mistake. 2426 * 2427 * Nope, it was not mistake. It is really desired behaviour 2428 * f.e. on http servers, when such sockets are useless, but 2429 * consume significant resources. Let's do it with special 2430 * linger2 option. --ANK 2431 */ 2432 2433 if (sk->sk_state == TCP_FIN_WAIT2) { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 if (tp->linger2 < 0) { 2436 tcp_set_state(sk, TCP_CLOSE); 2437 tcp_send_active_reset(sk, GFP_ATOMIC); 2438 __NET_INC_STATS(sock_net(sk), 2439 LINUX_MIB_TCPABORTONLINGER); 2440 } else { 2441 const int tmo = tcp_fin_time(sk); 2442 2443 if (tmo > TCP_TIMEWAIT_LEN) { 2444 inet_csk_reset_keepalive_timer(sk, 2445 tmo - TCP_TIMEWAIT_LEN); 2446 } else { 2447 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2448 goto out; 2449 } 2450 } 2451 } 2452 if (sk->sk_state != TCP_CLOSE) { 2453 sk_mem_reclaim(sk); 2454 if (tcp_check_oom(sk, 0)) { 2455 tcp_set_state(sk, TCP_CLOSE); 2456 tcp_send_active_reset(sk, GFP_ATOMIC); 2457 __NET_INC_STATS(sock_net(sk), 2458 LINUX_MIB_TCPABORTONMEMORY); 2459 } else if (!check_net(sock_net(sk))) { 2460 /* Not possible to send reset; just close */ 2461 tcp_set_state(sk, TCP_CLOSE); 2462 } 2463 } 2464 2465 if (sk->sk_state == TCP_CLOSE) { 2466 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2467 /* We could get here with a non-NULL req if the socket is 2468 * aborted (e.g., closed with unread data) before 3WHS 2469 * finishes. 2470 */ 2471 if (req) 2472 reqsk_fastopen_remove(sk, req, false); 2473 inet_csk_destroy_sock(sk); 2474 } 2475 /* Otherwise, socket is reprieved until protocol close. */ 2476 2477 out: 2478 bh_unlock_sock(sk); 2479 local_bh_enable(); 2480 sock_put(sk); 2481 } 2482 EXPORT_SYMBOL(tcp_close); 2483 2484 /* These states need RST on ABORT according to RFC793 */ 2485 2486 static inline bool tcp_need_reset(int state) 2487 { 2488 return (1 << state) & 2489 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2490 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2491 } 2492 2493 static void tcp_rtx_queue_purge(struct sock *sk) 2494 { 2495 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2496 2497 while (p) { 2498 struct sk_buff *skb = rb_to_skb(p); 2499 2500 p = rb_next(p); 2501 /* Since we are deleting whole queue, no need to 2502 * list_del(&skb->tcp_tsorted_anchor) 2503 */ 2504 tcp_rtx_queue_unlink(skb, sk); 2505 sk_wmem_free_skb(sk, skb); 2506 } 2507 } 2508 2509 void tcp_write_queue_purge(struct sock *sk) 2510 { 2511 struct sk_buff *skb; 2512 2513 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2514 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2515 tcp_skb_tsorted_anchor_cleanup(skb); 2516 sk_wmem_free_skb(sk, skb); 2517 } 2518 tcp_rtx_queue_purge(sk); 2519 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2520 sk_mem_reclaim(sk); 2521 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2522 tcp_sk(sk)->packets_out = 0; 2523 } 2524 2525 int tcp_disconnect(struct sock *sk, int flags) 2526 { 2527 struct inet_sock *inet = inet_sk(sk); 2528 struct inet_connection_sock *icsk = inet_csk(sk); 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 int err = 0; 2531 int old_state = sk->sk_state; 2532 2533 if (old_state != TCP_CLOSE) 2534 tcp_set_state(sk, TCP_CLOSE); 2535 2536 /* ABORT function of RFC793 */ 2537 if (old_state == TCP_LISTEN) { 2538 inet_csk_listen_stop(sk); 2539 } else if (unlikely(tp->repair)) { 2540 sk->sk_err = ECONNABORTED; 2541 } else if (tcp_need_reset(old_state) || 2542 (tp->snd_nxt != tp->write_seq && 2543 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2544 /* The last check adjusts for discrepancy of Linux wrt. RFC 2545 * states 2546 */ 2547 tcp_send_active_reset(sk, gfp_any()); 2548 sk->sk_err = ECONNRESET; 2549 } else if (old_state == TCP_SYN_SENT) 2550 sk->sk_err = ECONNRESET; 2551 2552 tcp_clear_xmit_timers(sk); 2553 __skb_queue_purge(&sk->sk_receive_queue); 2554 tcp_write_queue_purge(sk); 2555 tcp_fastopen_active_disable_ofo_check(sk); 2556 skb_rbtree_purge(&tp->out_of_order_queue); 2557 2558 inet->inet_dport = 0; 2559 2560 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2561 inet_reset_saddr(sk); 2562 2563 sk->sk_shutdown = 0; 2564 sock_reset_flag(sk, SOCK_DONE); 2565 tp->srtt_us = 0; 2566 tp->write_seq += tp->max_window + 2; 2567 if (tp->write_seq == 0) 2568 tp->write_seq = 1; 2569 icsk->icsk_backoff = 0; 2570 tp->snd_cwnd = 2; 2571 icsk->icsk_probes_out = 0; 2572 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2573 tp->snd_cwnd_cnt = 0; 2574 tp->window_clamp = 0; 2575 tp->delivered_ce = 0; 2576 tcp_set_ca_state(sk, TCP_CA_Open); 2577 tp->is_sack_reneg = 0; 2578 tcp_clear_retrans(tp); 2579 inet_csk_delack_init(sk); 2580 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2581 * issue in __tcp_select_window() 2582 */ 2583 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2584 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2585 __sk_dst_reset(sk); 2586 dst_release(sk->sk_rx_dst); 2587 sk->sk_rx_dst = NULL; 2588 tcp_saved_syn_free(tp); 2589 tp->compressed_ack = 0; 2590 2591 /* Clean up fastopen related fields */ 2592 tcp_free_fastopen_req(tp); 2593 inet->defer_connect = 0; 2594 2595 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2596 2597 if (sk->sk_frag.page) { 2598 put_page(sk->sk_frag.page); 2599 sk->sk_frag.page = NULL; 2600 sk->sk_frag.offset = 0; 2601 } 2602 2603 sk->sk_error_report(sk); 2604 return err; 2605 } 2606 EXPORT_SYMBOL(tcp_disconnect); 2607 2608 static inline bool tcp_can_repair_sock(const struct sock *sk) 2609 { 2610 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2611 (sk->sk_state != TCP_LISTEN); 2612 } 2613 2614 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2615 { 2616 struct tcp_repair_window opt; 2617 2618 if (!tp->repair) 2619 return -EPERM; 2620 2621 if (len != sizeof(opt)) 2622 return -EINVAL; 2623 2624 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2625 return -EFAULT; 2626 2627 if (opt.max_window < opt.snd_wnd) 2628 return -EINVAL; 2629 2630 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2631 return -EINVAL; 2632 2633 if (after(opt.rcv_wup, tp->rcv_nxt)) 2634 return -EINVAL; 2635 2636 tp->snd_wl1 = opt.snd_wl1; 2637 tp->snd_wnd = opt.snd_wnd; 2638 tp->max_window = opt.max_window; 2639 2640 tp->rcv_wnd = opt.rcv_wnd; 2641 tp->rcv_wup = opt.rcv_wup; 2642 2643 return 0; 2644 } 2645 2646 static int tcp_repair_options_est(struct sock *sk, 2647 struct tcp_repair_opt __user *optbuf, unsigned int len) 2648 { 2649 struct tcp_sock *tp = tcp_sk(sk); 2650 struct tcp_repair_opt opt; 2651 2652 while (len >= sizeof(opt)) { 2653 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2654 return -EFAULT; 2655 2656 optbuf++; 2657 len -= sizeof(opt); 2658 2659 switch (opt.opt_code) { 2660 case TCPOPT_MSS: 2661 tp->rx_opt.mss_clamp = opt.opt_val; 2662 tcp_mtup_init(sk); 2663 break; 2664 case TCPOPT_WINDOW: 2665 { 2666 u16 snd_wscale = opt.opt_val & 0xFFFF; 2667 u16 rcv_wscale = opt.opt_val >> 16; 2668 2669 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2670 return -EFBIG; 2671 2672 tp->rx_opt.snd_wscale = snd_wscale; 2673 tp->rx_opt.rcv_wscale = rcv_wscale; 2674 tp->rx_opt.wscale_ok = 1; 2675 } 2676 break; 2677 case TCPOPT_SACK_PERM: 2678 if (opt.opt_val != 0) 2679 return -EINVAL; 2680 2681 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2682 break; 2683 case TCPOPT_TIMESTAMP: 2684 if (opt.opt_val != 0) 2685 return -EINVAL; 2686 2687 tp->rx_opt.tstamp_ok = 1; 2688 break; 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 /* 2696 * Socket option code for TCP. 2697 */ 2698 static int do_tcp_setsockopt(struct sock *sk, int level, 2699 int optname, char __user *optval, unsigned int optlen) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 struct inet_connection_sock *icsk = inet_csk(sk); 2703 struct net *net = sock_net(sk); 2704 int val; 2705 int err = 0; 2706 2707 /* These are data/string values, all the others are ints */ 2708 switch (optname) { 2709 case TCP_CONGESTION: { 2710 char name[TCP_CA_NAME_MAX]; 2711 2712 if (optlen < 1) 2713 return -EINVAL; 2714 2715 val = strncpy_from_user(name, optval, 2716 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2717 if (val < 0) 2718 return -EFAULT; 2719 name[val] = 0; 2720 2721 lock_sock(sk); 2722 err = tcp_set_congestion_control(sk, name, true, true); 2723 release_sock(sk); 2724 return err; 2725 } 2726 case TCP_ULP: { 2727 char name[TCP_ULP_NAME_MAX]; 2728 2729 if (optlen < 1) 2730 return -EINVAL; 2731 2732 val = strncpy_from_user(name, optval, 2733 min_t(long, TCP_ULP_NAME_MAX - 1, 2734 optlen)); 2735 if (val < 0) 2736 return -EFAULT; 2737 name[val] = 0; 2738 2739 lock_sock(sk); 2740 err = tcp_set_ulp(sk, name); 2741 release_sock(sk); 2742 return err; 2743 } 2744 case TCP_FASTOPEN_KEY: { 2745 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2746 2747 if (optlen != sizeof(key)) 2748 return -EINVAL; 2749 2750 if (copy_from_user(key, optval, optlen)) 2751 return -EFAULT; 2752 2753 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2754 } 2755 default: 2756 /* fallthru */ 2757 break; 2758 } 2759 2760 if (optlen < sizeof(int)) 2761 return -EINVAL; 2762 2763 if (get_user(val, (int __user *)optval)) 2764 return -EFAULT; 2765 2766 lock_sock(sk); 2767 2768 switch (optname) { 2769 case TCP_MAXSEG: 2770 /* Values greater than interface MTU won't take effect. However 2771 * at the point when this call is done we typically don't yet 2772 * know which interface is going to be used 2773 */ 2774 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2775 err = -EINVAL; 2776 break; 2777 } 2778 tp->rx_opt.user_mss = val; 2779 break; 2780 2781 case TCP_NODELAY: 2782 if (val) { 2783 /* TCP_NODELAY is weaker than TCP_CORK, so that 2784 * this option on corked socket is remembered, but 2785 * it is not activated until cork is cleared. 2786 * 2787 * However, when TCP_NODELAY is set we make 2788 * an explicit push, which overrides even TCP_CORK 2789 * for currently queued segments. 2790 */ 2791 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2792 tcp_push_pending_frames(sk); 2793 } else { 2794 tp->nonagle &= ~TCP_NAGLE_OFF; 2795 } 2796 break; 2797 2798 case TCP_THIN_LINEAR_TIMEOUTS: 2799 if (val < 0 || val > 1) 2800 err = -EINVAL; 2801 else 2802 tp->thin_lto = val; 2803 break; 2804 2805 case TCP_THIN_DUPACK: 2806 if (val < 0 || val > 1) 2807 err = -EINVAL; 2808 break; 2809 2810 case TCP_REPAIR: 2811 if (!tcp_can_repair_sock(sk)) 2812 err = -EPERM; 2813 else if (val == 1) { 2814 tp->repair = 1; 2815 sk->sk_reuse = SK_FORCE_REUSE; 2816 tp->repair_queue = TCP_NO_QUEUE; 2817 } else if (val == 0) { 2818 tp->repair = 0; 2819 sk->sk_reuse = SK_NO_REUSE; 2820 tcp_send_window_probe(sk); 2821 } else 2822 err = -EINVAL; 2823 2824 break; 2825 2826 case TCP_REPAIR_QUEUE: 2827 if (!tp->repair) 2828 err = -EPERM; 2829 else if ((unsigned int)val < TCP_QUEUES_NR) 2830 tp->repair_queue = val; 2831 else 2832 err = -EINVAL; 2833 break; 2834 2835 case TCP_QUEUE_SEQ: 2836 if (sk->sk_state != TCP_CLOSE) 2837 err = -EPERM; 2838 else if (tp->repair_queue == TCP_SEND_QUEUE) 2839 tp->write_seq = val; 2840 else if (tp->repair_queue == TCP_RECV_QUEUE) 2841 tp->rcv_nxt = val; 2842 else 2843 err = -EINVAL; 2844 break; 2845 2846 case TCP_REPAIR_OPTIONS: 2847 if (!tp->repair) 2848 err = -EINVAL; 2849 else if (sk->sk_state == TCP_ESTABLISHED) 2850 err = tcp_repair_options_est(sk, 2851 (struct tcp_repair_opt __user *)optval, 2852 optlen); 2853 else 2854 err = -EPERM; 2855 break; 2856 2857 case TCP_CORK: 2858 /* When set indicates to always queue non-full frames. 2859 * Later the user clears this option and we transmit 2860 * any pending partial frames in the queue. This is 2861 * meant to be used alongside sendfile() to get properly 2862 * filled frames when the user (for example) must write 2863 * out headers with a write() call first and then use 2864 * sendfile to send out the data parts. 2865 * 2866 * TCP_CORK can be set together with TCP_NODELAY and it is 2867 * stronger than TCP_NODELAY. 2868 */ 2869 if (val) { 2870 tp->nonagle |= TCP_NAGLE_CORK; 2871 } else { 2872 tp->nonagle &= ~TCP_NAGLE_CORK; 2873 if (tp->nonagle&TCP_NAGLE_OFF) 2874 tp->nonagle |= TCP_NAGLE_PUSH; 2875 tcp_push_pending_frames(sk); 2876 } 2877 break; 2878 2879 case TCP_KEEPIDLE: 2880 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2881 err = -EINVAL; 2882 else { 2883 tp->keepalive_time = val * HZ; 2884 if (sock_flag(sk, SOCK_KEEPOPEN) && 2885 !((1 << sk->sk_state) & 2886 (TCPF_CLOSE | TCPF_LISTEN))) { 2887 u32 elapsed = keepalive_time_elapsed(tp); 2888 if (tp->keepalive_time > elapsed) 2889 elapsed = tp->keepalive_time - elapsed; 2890 else 2891 elapsed = 0; 2892 inet_csk_reset_keepalive_timer(sk, elapsed); 2893 } 2894 } 2895 break; 2896 case TCP_KEEPINTVL: 2897 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2898 err = -EINVAL; 2899 else 2900 tp->keepalive_intvl = val * HZ; 2901 break; 2902 case TCP_KEEPCNT: 2903 if (val < 1 || val > MAX_TCP_KEEPCNT) 2904 err = -EINVAL; 2905 else 2906 tp->keepalive_probes = val; 2907 break; 2908 case TCP_SYNCNT: 2909 if (val < 1 || val > MAX_TCP_SYNCNT) 2910 err = -EINVAL; 2911 else 2912 icsk->icsk_syn_retries = val; 2913 break; 2914 2915 case TCP_SAVE_SYN: 2916 if (val < 0 || val > 1) 2917 err = -EINVAL; 2918 else 2919 tp->save_syn = val; 2920 break; 2921 2922 case TCP_LINGER2: 2923 if (val < 0) 2924 tp->linger2 = -1; 2925 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2926 tp->linger2 = 0; 2927 else 2928 tp->linger2 = val * HZ; 2929 break; 2930 2931 case TCP_DEFER_ACCEPT: 2932 /* Translate value in seconds to number of retransmits */ 2933 icsk->icsk_accept_queue.rskq_defer_accept = 2934 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2935 TCP_RTO_MAX / HZ); 2936 break; 2937 2938 case TCP_WINDOW_CLAMP: 2939 if (!val) { 2940 if (sk->sk_state != TCP_CLOSE) { 2941 err = -EINVAL; 2942 break; 2943 } 2944 tp->window_clamp = 0; 2945 } else 2946 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2947 SOCK_MIN_RCVBUF / 2 : val; 2948 break; 2949 2950 case TCP_QUICKACK: 2951 if (!val) { 2952 icsk->icsk_ack.pingpong = 1; 2953 } else { 2954 icsk->icsk_ack.pingpong = 0; 2955 if ((1 << sk->sk_state) & 2956 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2957 inet_csk_ack_scheduled(sk)) { 2958 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2959 tcp_cleanup_rbuf(sk, 1); 2960 if (!(val & 1)) 2961 icsk->icsk_ack.pingpong = 1; 2962 } 2963 } 2964 break; 2965 2966 #ifdef CONFIG_TCP_MD5SIG 2967 case TCP_MD5SIG: 2968 case TCP_MD5SIG_EXT: 2969 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 2970 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2971 else 2972 err = -EINVAL; 2973 break; 2974 #endif 2975 case TCP_USER_TIMEOUT: 2976 /* Cap the max time in ms TCP will retry or probe the window 2977 * before giving up and aborting (ETIMEDOUT) a connection. 2978 */ 2979 if (val < 0) 2980 err = -EINVAL; 2981 else 2982 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2983 break; 2984 2985 case TCP_FASTOPEN: 2986 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2987 TCPF_LISTEN))) { 2988 tcp_fastopen_init_key_once(net); 2989 2990 fastopen_queue_tune(sk, val); 2991 } else { 2992 err = -EINVAL; 2993 } 2994 break; 2995 case TCP_FASTOPEN_CONNECT: 2996 if (val > 1 || val < 0) { 2997 err = -EINVAL; 2998 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2999 if (sk->sk_state == TCP_CLOSE) 3000 tp->fastopen_connect = val; 3001 else 3002 err = -EINVAL; 3003 } else { 3004 err = -EOPNOTSUPP; 3005 } 3006 break; 3007 case TCP_FASTOPEN_NO_COOKIE: 3008 if (val > 1 || val < 0) 3009 err = -EINVAL; 3010 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3011 err = -EINVAL; 3012 else 3013 tp->fastopen_no_cookie = val; 3014 break; 3015 case TCP_TIMESTAMP: 3016 if (!tp->repair) 3017 err = -EPERM; 3018 else 3019 tp->tsoffset = val - tcp_time_stamp_raw(); 3020 break; 3021 case TCP_REPAIR_WINDOW: 3022 err = tcp_repair_set_window(tp, optval, optlen); 3023 break; 3024 case TCP_NOTSENT_LOWAT: 3025 tp->notsent_lowat = val; 3026 sk->sk_write_space(sk); 3027 break; 3028 case TCP_INQ: 3029 if (val > 1 || val < 0) 3030 err = -EINVAL; 3031 else 3032 tp->recvmsg_inq = val; 3033 break; 3034 default: 3035 err = -ENOPROTOOPT; 3036 break; 3037 } 3038 3039 release_sock(sk); 3040 return err; 3041 } 3042 3043 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3044 unsigned int optlen) 3045 { 3046 const struct inet_connection_sock *icsk = inet_csk(sk); 3047 3048 if (level != SOL_TCP) 3049 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3050 optval, optlen); 3051 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3052 } 3053 EXPORT_SYMBOL(tcp_setsockopt); 3054 3055 #ifdef CONFIG_COMPAT 3056 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3057 char __user *optval, unsigned int optlen) 3058 { 3059 if (level != SOL_TCP) 3060 return inet_csk_compat_setsockopt(sk, level, optname, 3061 optval, optlen); 3062 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3063 } 3064 EXPORT_SYMBOL(compat_tcp_setsockopt); 3065 #endif 3066 3067 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3068 struct tcp_info *info) 3069 { 3070 u64 stats[__TCP_CHRONO_MAX], total = 0; 3071 enum tcp_chrono i; 3072 3073 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3074 stats[i] = tp->chrono_stat[i - 1]; 3075 if (i == tp->chrono_type) 3076 stats[i] += tcp_jiffies32 - tp->chrono_start; 3077 stats[i] *= USEC_PER_SEC / HZ; 3078 total += stats[i]; 3079 } 3080 3081 info->tcpi_busy_time = total; 3082 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3083 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3084 } 3085 3086 /* Return information about state of tcp endpoint in API format. */ 3087 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3088 { 3089 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3090 const struct inet_connection_sock *icsk = inet_csk(sk); 3091 u32 now; 3092 u64 rate64; 3093 bool slow; 3094 u32 rate; 3095 3096 memset(info, 0, sizeof(*info)); 3097 if (sk->sk_type != SOCK_STREAM) 3098 return; 3099 3100 info->tcpi_state = inet_sk_state_load(sk); 3101 3102 /* Report meaningful fields for all TCP states, including listeners */ 3103 rate = READ_ONCE(sk->sk_pacing_rate); 3104 rate64 = rate != ~0U ? rate : ~0ULL; 3105 info->tcpi_pacing_rate = rate64; 3106 3107 rate = READ_ONCE(sk->sk_max_pacing_rate); 3108 rate64 = rate != ~0U ? rate : ~0ULL; 3109 info->tcpi_max_pacing_rate = rate64; 3110 3111 info->tcpi_reordering = tp->reordering; 3112 info->tcpi_snd_cwnd = tp->snd_cwnd; 3113 3114 if (info->tcpi_state == TCP_LISTEN) { 3115 /* listeners aliased fields : 3116 * tcpi_unacked -> Number of children ready for accept() 3117 * tcpi_sacked -> max backlog 3118 */ 3119 info->tcpi_unacked = sk->sk_ack_backlog; 3120 info->tcpi_sacked = sk->sk_max_ack_backlog; 3121 return; 3122 } 3123 3124 slow = lock_sock_fast(sk); 3125 3126 info->tcpi_ca_state = icsk->icsk_ca_state; 3127 info->tcpi_retransmits = icsk->icsk_retransmits; 3128 info->tcpi_probes = icsk->icsk_probes_out; 3129 info->tcpi_backoff = icsk->icsk_backoff; 3130 3131 if (tp->rx_opt.tstamp_ok) 3132 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3133 if (tcp_is_sack(tp)) 3134 info->tcpi_options |= TCPI_OPT_SACK; 3135 if (tp->rx_opt.wscale_ok) { 3136 info->tcpi_options |= TCPI_OPT_WSCALE; 3137 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3138 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3139 } 3140 3141 if (tp->ecn_flags & TCP_ECN_OK) 3142 info->tcpi_options |= TCPI_OPT_ECN; 3143 if (tp->ecn_flags & TCP_ECN_SEEN) 3144 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3145 if (tp->syn_data_acked) 3146 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3147 3148 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3149 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3150 info->tcpi_snd_mss = tp->mss_cache; 3151 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3152 3153 info->tcpi_unacked = tp->packets_out; 3154 info->tcpi_sacked = tp->sacked_out; 3155 3156 info->tcpi_lost = tp->lost_out; 3157 info->tcpi_retrans = tp->retrans_out; 3158 3159 now = tcp_jiffies32; 3160 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3161 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3162 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3163 3164 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3165 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3166 info->tcpi_rtt = tp->srtt_us >> 3; 3167 info->tcpi_rttvar = tp->mdev_us >> 2; 3168 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3169 info->tcpi_advmss = tp->advmss; 3170 3171 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3172 info->tcpi_rcv_space = tp->rcvq_space.space; 3173 3174 info->tcpi_total_retrans = tp->total_retrans; 3175 3176 info->tcpi_bytes_acked = tp->bytes_acked; 3177 info->tcpi_bytes_received = tp->bytes_received; 3178 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3179 tcp_get_info_chrono_stats(tp, info); 3180 3181 info->tcpi_segs_out = tp->segs_out; 3182 info->tcpi_segs_in = tp->segs_in; 3183 3184 info->tcpi_min_rtt = tcp_min_rtt(tp); 3185 info->tcpi_data_segs_in = tp->data_segs_in; 3186 info->tcpi_data_segs_out = tp->data_segs_out; 3187 3188 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3189 rate64 = tcp_compute_delivery_rate(tp); 3190 if (rate64) 3191 info->tcpi_delivery_rate = rate64; 3192 info->tcpi_delivered = tp->delivered; 3193 info->tcpi_delivered_ce = tp->delivered_ce; 3194 unlock_sock_fast(sk, slow); 3195 } 3196 EXPORT_SYMBOL_GPL(tcp_get_info); 3197 3198 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3199 { 3200 const struct tcp_sock *tp = tcp_sk(sk); 3201 struct sk_buff *stats; 3202 struct tcp_info info; 3203 u64 rate64; 3204 u32 rate; 3205 3206 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3207 7 * nla_total_size(sizeof(u32)) + 3208 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3209 if (!stats) 3210 return NULL; 3211 3212 tcp_get_info_chrono_stats(tp, &info); 3213 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3214 info.tcpi_busy_time, TCP_NLA_PAD); 3215 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3216 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3217 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3218 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3219 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3220 tp->data_segs_out, TCP_NLA_PAD); 3221 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3222 tp->total_retrans, TCP_NLA_PAD); 3223 3224 rate = READ_ONCE(sk->sk_pacing_rate); 3225 rate64 = rate != ~0U ? rate : ~0ULL; 3226 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3227 3228 rate64 = tcp_compute_delivery_rate(tp); 3229 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3230 3231 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3232 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3233 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3234 3235 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3236 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3237 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3238 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3239 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3240 3241 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3242 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3243 3244 return stats; 3245 } 3246 3247 static int do_tcp_getsockopt(struct sock *sk, int level, 3248 int optname, char __user *optval, int __user *optlen) 3249 { 3250 struct inet_connection_sock *icsk = inet_csk(sk); 3251 struct tcp_sock *tp = tcp_sk(sk); 3252 struct net *net = sock_net(sk); 3253 int val, len; 3254 3255 if (get_user(len, optlen)) 3256 return -EFAULT; 3257 3258 len = min_t(unsigned int, len, sizeof(int)); 3259 3260 if (len < 0) 3261 return -EINVAL; 3262 3263 switch (optname) { 3264 case TCP_MAXSEG: 3265 val = tp->mss_cache; 3266 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3267 val = tp->rx_opt.user_mss; 3268 if (tp->repair) 3269 val = tp->rx_opt.mss_clamp; 3270 break; 3271 case TCP_NODELAY: 3272 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3273 break; 3274 case TCP_CORK: 3275 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3276 break; 3277 case TCP_KEEPIDLE: 3278 val = keepalive_time_when(tp) / HZ; 3279 break; 3280 case TCP_KEEPINTVL: 3281 val = keepalive_intvl_when(tp) / HZ; 3282 break; 3283 case TCP_KEEPCNT: 3284 val = keepalive_probes(tp); 3285 break; 3286 case TCP_SYNCNT: 3287 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3288 break; 3289 case TCP_LINGER2: 3290 val = tp->linger2; 3291 if (val >= 0) 3292 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3293 break; 3294 case TCP_DEFER_ACCEPT: 3295 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3296 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3297 break; 3298 case TCP_WINDOW_CLAMP: 3299 val = tp->window_clamp; 3300 break; 3301 case TCP_INFO: { 3302 struct tcp_info info; 3303 3304 if (get_user(len, optlen)) 3305 return -EFAULT; 3306 3307 tcp_get_info(sk, &info); 3308 3309 len = min_t(unsigned int, len, sizeof(info)); 3310 if (put_user(len, optlen)) 3311 return -EFAULT; 3312 if (copy_to_user(optval, &info, len)) 3313 return -EFAULT; 3314 return 0; 3315 } 3316 case TCP_CC_INFO: { 3317 const struct tcp_congestion_ops *ca_ops; 3318 union tcp_cc_info info; 3319 size_t sz = 0; 3320 int attr; 3321 3322 if (get_user(len, optlen)) 3323 return -EFAULT; 3324 3325 ca_ops = icsk->icsk_ca_ops; 3326 if (ca_ops && ca_ops->get_info) 3327 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3328 3329 len = min_t(unsigned int, len, sz); 3330 if (put_user(len, optlen)) 3331 return -EFAULT; 3332 if (copy_to_user(optval, &info, len)) 3333 return -EFAULT; 3334 return 0; 3335 } 3336 case TCP_QUICKACK: 3337 val = !icsk->icsk_ack.pingpong; 3338 break; 3339 3340 case TCP_CONGESTION: 3341 if (get_user(len, optlen)) 3342 return -EFAULT; 3343 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3344 if (put_user(len, optlen)) 3345 return -EFAULT; 3346 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3347 return -EFAULT; 3348 return 0; 3349 3350 case TCP_ULP: 3351 if (get_user(len, optlen)) 3352 return -EFAULT; 3353 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3354 if (!icsk->icsk_ulp_ops) { 3355 if (put_user(0, optlen)) 3356 return -EFAULT; 3357 return 0; 3358 } 3359 if (put_user(len, optlen)) 3360 return -EFAULT; 3361 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3362 return -EFAULT; 3363 return 0; 3364 3365 case TCP_FASTOPEN_KEY: { 3366 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3367 struct tcp_fastopen_context *ctx; 3368 3369 if (get_user(len, optlen)) 3370 return -EFAULT; 3371 3372 rcu_read_lock(); 3373 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3374 if (ctx) 3375 memcpy(key, ctx->key, sizeof(key)); 3376 else 3377 len = 0; 3378 rcu_read_unlock(); 3379 3380 len = min_t(unsigned int, len, sizeof(key)); 3381 if (put_user(len, optlen)) 3382 return -EFAULT; 3383 if (copy_to_user(optval, key, len)) 3384 return -EFAULT; 3385 return 0; 3386 } 3387 case TCP_THIN_LINEAR_TIMEOUTS: 3388 val = tp->thin_lto; 3389 break; 3390 3391 case TCP_THIN_DUPACK: 3392 val = 0; 3393 break; 3394 3395 case TCP_REPAIR: 3396 val = tp->repair; 3397 break; 3398 3399 case TCP_REPAIR_QUEUE: 3400 if (tp->repair) 3401 val = tp->repair_queue; 3402 else 3403 return -EINVAL; 3404 break; 3405 3406 case TCP_REPAIR_WINDOW: { 3407 struct tcp_repair_window opt; 3408 3409 if (get_user(len, optlen)) 3410 return -EFAULT; 3411 3412 if (len != sizeof(opt)) 3413 return -EINVAL; 3414 3415 if (!tp->repair) 3416 return -EPERM; 3417 3418 opt.snd_wl1 = tp->snd_wl1; 3419 opt.snd_wnd = tp->snd_wnd; 3420 opt.max_window = tp->max_window; 3421 opt.rcv_wnd = tp->rcv_wnd; 3422 opt.rcv_wup = tp->rcv_wup; 3423 3424 if (copy_to_user(optval, &opt, len)) 3425 return -EFAULT; 3426 return 0; 3427 } 3428 case TCP_QUEUE_SEQ: 3429 if (tp->repair_queue == TCP_SEND_QUEUE) 3430 val = tp->write_seq; 3431 else if (tp->repair_queue == TCP_RECV_QUEUE) 3432 val = tp->rcv_nxt; 3433 else 3434 return -EINVAL; 3435 break; 3436 3437 case TCP_USER_TIMEOUT: 3438 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3439 break; 3440 3441 case TCP_FASTOPEN: 3442 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3443 break; 3444 3445 case TCP_FASTOPEN_CONNECT: 3446 val = tp->fastopen_connect; 3447 break; 3448 3449 case TCP_FASTOPEN_NO_COOKIE: 3450 val = tp->fastopen_no_cookie; 3451 break; 3452 3453 case TCP_TIMESTAMP: 3454 val = tcp_time_stamp_raw() + tp->tsoffset; 3455 break; 3456 case TCP_NOTSENT_LOWAT: 3457 val = tp->notsent_lowat; 3458 break; 3459 case TCP_INQ: 3460 val = tp->recvmsg_inq; 3461 break; 3462 case TCP_SAVE_SYN: 3463 val = tp->save_syn; 3464 break; 3465 case TCP_SAVED_SYN: { 3466 if (get_user(len, optlen)) 3467 return -EFAULT; 3468 3469 lock_sock(sk); 3470 if (tp->saved_syn) { 3471 if (len < tp->saved_syn[0]) { 3472 if (put_user(tp->saved_syn[0], optlen)) { 3473 release_sock(sk); 3474 return -EFAULT; 3475 } 3476 release_sock(sk); 3477 return -EINVAL; 3478 } 3479 len = tp->saved_syn[0]; 3480 if (put_user(len, optlen)) { 3481 release_sock(sk); 3482 return -EFAULT; 3483 } 3484 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3485 release_sock(sk); 3486 return -EFAULT; 3487 } 3488 tcp_saved_syn_free(tp); 3489 release_sock(sk); 3490 } else { 3491 release_sock(sk); 3492 len = 0; 3493 if (put_user(len, optlen)) 3494 return -EFAULT; 3495 } 3496 return 0; 3497 } 3498 #ifdef CONFIG_MMU 3499 case TCP_ZEROCOPY_RECEIVE: { 3500 struct tcp_zerocopy_receive zc; 3501 int err; 3502 3503 if (get_user(len, optlen)) 3504 return -EFAULT; 3505 if (len != sizeof(zc)) 3506 return -EINVAL; 3507 if (copy_from_user(&zc, optval, len)) 3508 return -EFAULT; 3509 lock_sock(sk); 3510 err = tcp_zerocopy_receive(sk, &zc); 3511 release_sock(sk); 3512 if (!err && copy_to_user(optval, &zc, len)) 3513 err = -EFAULT; 3514 return err; 3515 } 3516 #endif 3517 default: 3518 return -ENOPROTOOPT; 3519 } 3520 3521 if (put_user(len, optlen)) 3522 return -EFAULT; 3523 if (copy_to_user(optval, &val, len)) 3524 return -EFAULT; 3525 return 0; 3526 } 3527 3528 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3529 int __user *optlen) 3530 { 3531 struct inet_connection_sock *icsk = inet_csk(sk); 3532 3533 if (level != SOL_TCP) 3534 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3535 optval, optlen); 3536 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3537 } 3538 EXPORT_SYMBOL(tcp_getsockopt); 3539 3540 #ifdef CONFIG_COMPAT 3541 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3542 char __user *optval, int __user *optlen) 3543 { 3544 if (level != SOL_TCP) 3545 return inet_csk_compat_getsockopt(sk, level, optname, 3546 optval, optlen); 3547 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3548 } 3549 EXPORT_SYMBOL(compat_tcp_getsockopt); 3550 #endif 3551 3552 #ifdef CONFIG_TCP_MD5SIG 3553 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3554 static DEFINE_MUTEX(tcp_md5sig_mutex); 3555 static bool tcp_md5sig_pool_populated = false; 3556 3557 static void __tcp_alloc_md5sig_pool(void) 3558 { 3559 struct crypto_ahash *hash; 3560 int cpu; 3561 3562 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3563 if (IS_ERR(hash)) 3564 return; 3565 3566 for_each_possible_cpu(cpu) { 3567 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3568 struct ahash_request *req; 3569 3570 if (!scratch) { 3571 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3572 sizeof(struct tcphdr), 3573 GFP_KERNEL, 3574 cpu_to_node(cpu)); 3575 if (!scratch) 3576 return; 3577 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3578 } 3579 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3580 continue; 3581 3582 req = ahash_request_alloc(hash, GFP_KERNEL); 3583 if (!req) 3584 return; 3585 3586 ahash_request_set_callback(req, 0, NULL, NULL); 3587 3588 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3589 } 3590 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3591 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3592 */ 3593 smp_wmb(); 3594 tcp_md5sig_pool_populated = true; 3595 } 3596 3597 bool tcp_alloc_md5sig_pool(void) 3598 { 3599 if (unlikely(!tcp_md5sig_pool_populated)) { 3600 mutex_lock(&tcp_md5sig_mutex); 3601 3602 if (!tcp_md5sig_pool_populated) 3603 __tcp_alloc_md5sig_pool(); 3604 3605 mutex_unlock(&tcp_md5sig_mutex); 3606 } 3607 return tcp_md5sig_pool_populated; 3608 } 3609 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3610 3611 3612 /** 3613 * tcp_get_md5sig_pool - get md5sig_pool for this user 3614 * 3615 * We use percpu structure, so if we succeed, we exit with preemption 3616 * and BH disabled, to make sure another thread or softirq handling 3617 * wont try to get same context. 3618 */ 3619 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3620 { 3621 local_bh_disable(); 3622 3623 if (tcp_md5sig_pool_populated) { 3624 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3625 smp_rmb(); 3626 return this_cpu_ptr(&tcp_md5sig_pool); 3627 } 3628 local_bh_enable(); 3629 return NULL; 3630 } 3631 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3632 3633 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3634 const struct sk_buff *skb, unsigned int header_len) 3635 { 3636 struct scatterlist sg; 3637 const struct tcphdr *tp = tcp_hdr(skb); 3638 struct ahash_request *req = hp->md5_req; 3639 unsigned int i; 3640 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3641 skb_headlen(skb) - header_len : 0; 3642 const struct skb_shared_info *shi = skb_shinfo(skb); 3643 struct sk_buff *frag_iter; 3644 3645 sg_init_table(&sg, 1); 3646 3647 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3648 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3649 if (crypto_ahash_update(req)) 3650 return 1; 3651 3652 for (i = 0; i < shi->nr_frags; ++i) { 3653 const struct skb_frag_struct *f = &shi->frags[i]; 3654 unsigned int offset = f->page_offset; 3655 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3656 3657 sg_set_page(&sg, page, skb_frag_size(f), 3658 offset_in_page(offset)); 3659 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3660 if (crypto_ahash_update(req)) 3661 return 1; 3662 } 3663 3664 skb_walk_frags(skb, frag_iter) 3665 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3666 return 1; 3667 3668 return 0; 3669 } 3670 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3671 3672 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3673 { 3674 struct scatterlist sg; 3675 3676 sg_init_one(&sg, key->key, key->keylen); 3677 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3678 return crypto_ahash_update(hp->md5_req); 3679 } 3680 EXPORT_SYMBOL(tcp_md5_hash_key); 3681 3682 #endif 3683 3684 void tcp_done(struct sock *sk) 3685 { 3686 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3687 3688 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3689 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3690 3691 tcp_set_state(sk, TCP_CLOSE); 3692 tcp_clear_xmit_timers(sk); 3693 if (req) 3694 reqsk_fastopen_remove(sk, req, false); 3695 3696 sk->sk_shutdown = SHUTDOWN_MASK; 3697 3698 if (!sock_flag(sk, SOCK_DEAD)) 3699 sk->sk_state_change(sk); 3700 else 3701 inet_csk_destroy_sock(sk); 3702 } 3703 EXPORT_SYMBOL_GPL(tcp_done); 3704 3705 int tcp_abort(struct sock *sk, int err) 3706 { 3707 if (!sk_fullsock(sk)) { 3708 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3709 struct request_sock *req = inet_reqsk(sk); 3710 3711 local_bh_disable(); 3712 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3713 req); 3714 local_bh_enable(); 3715 return 0; 3716 } 3717 return -EOPNOTSUPP; 3718 } 3719 3720 /* Don't race with userspace socket closes such as tcp_close. */ 3721 lock_sock(sk); 3722 3723 if (sk->sk_state == TCP_LISTEN) { 3724 tcp_set_state(sk, TCP_CLOSE); 3725 inet_csk_listen_stop(sk); 3726 } 3727 3728 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3729 local_bh_disable(); 3730 bh_lock_sock(sk); 3731 3732 if (!sock_flag(sk, SOCK_DEAD)) { 3733 sk->sk_err = err; 3734 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3735 smp_wmb(); 3736 sk->sk_error_report(sk); 3737 if (tcp_need_reset(sk->sk_state)) 3738 tcp_send_active_reset(sk, GFP_ATOMIC); 3739 tcp_done(sk); 3740 } 3741 3742 bh_unlock_sock(sk); 3743 local_bh_enable(); 3744 tcp_write_queue_purge(sk); 3745 release_sock(sk); 3746 return 0; 3747 } 3748 EXPORT_SYMBOL_GPL(tcp_abort); 3749 3750 extern struct tcp_congestion_ops tcp_reno; 3751 3752 static __initdata unsigned long thash_entries; 3753 static int __init set_thash_entries(char *str) 3754 { 3755 ssize_t ret; 3756 3757 if (!str) 3758 return 0; 3759 3760 ret = kstrtoul(str, 0, &thash_entries); 3761 if (ret) 3762 return 0; 3763 3764 return 1; 3765 } 3766 __setup("thash_entries=", set_thash_entries); 3767 3768 static void __init tcp_init_mem(void) 3769 { 3770 unsigned long limit = nr_free_buffer_pages() / 16; 3771 3772 limit = max(limit, 128UL); 3773 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3774 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3775 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3776 } 3777 3778 void __init tcp_init(void) 3779 { 3780 int max_rshare, max_wshare, cnt; 3781 unsigned long limit; 3782 unsigned int i; 3783 3784 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3785 FIELD_SIZEOF(struct sk_buff, cb)); 3786 3787 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3788 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3789 inet_hashinfo_init(&tcp_hashinfo); 3790 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3791 thash_entries, 21, /* one slot per 2 MB*/ 3792 0, 64 * 1024); 3793 tcp_hashinfo.bind_bucket_cachep = 3794 kmem_cache_create("tcp_bind_bucket", 3795 sizeof(struct inet_bind_bucket), 0, 3796 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3797 3798 /* Size and allocate the main established and bind bucket 3799 * hash tables. 3800 * 3801 * The methodology is similar to that of the buffer cache. 3802 */ 3803 tcp_hashinfo.ehash = 3804 alloc_large_system_hash("TCP established", 3805 sizeof(struct inet_ehash_bucket), 3806 thash_entries, 3807 17, /* one slot per 128 KB of memory */ 3808 0, 3809 NULL, 3810 &tcp_hashinfo.ehash_mask, 3811 0, 3812 thash_entries ? 0 : 512 * 1024); 3813 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3814 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3815 3816 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3817 panic("TCP: failed to alloc ehash_locks"); 3818 tcp_hashinfo.bhash = 3819 alloc_large_system_hash("TCP bind", 3820 sizeof(struct inet_bind_hashbucket), 3821 tcp_hashinfo.ehash_mask + 1, 3822 17, /* one slot per 128 KB of memory */ 3823 0, 3824 &tcp_hashinfo.bhash_size, 3825 NULL, 3826 0, 3827 64 * 1024); 3828 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3829 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3830 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3831 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3832 } 3833 3834 3835 cnt = tcp_hashinfo.ehash_mask + 1; 3836 sysctl_tcp_max_orphans = cnt / 2; 3837 3838 tcp_init_mem(); 3839 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3840 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3841 max_wshare = min(4UL*1024*1024, limit); 3842 max_rshare = min(6UL*1024*1024, limit); 3843 3844 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3845 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3846 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3847 3848 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3849 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3850 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3851 3852 pr_info("Hash tables configured (established %u bind %u)\n", 3853 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3854 3855 tcp_v4_init(); 3856 tcp_metrics_init(); 3857 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3858 tcp_tasklet_init(); 3859 } 3860