1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/sock.h> 277 278 #include <linux/uaccess.h> 279 #include <asm/ioctls.h> 280 #include <net/busy_poll.h> 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 EXPORT_SYMBOL(sysctl_tcp_mem); 287 288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 289 EXPORT_SYMBOL(tcp_memory_allocated); 290 291 #if IS_ENABLED(CONFIG_SMC) 292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 293 EXPORT_SYMBOL(tcp_have_smc); 294 #endif 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 unsigned long tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 319 320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 321 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 322 323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 324 325 void tcp_enter_memory_pressure(struct sock *sk) 326 { 327 unsigned long val; 328 329 if (tcp_memory_pressure) 330 return; 331 val = jiffies; 332 333 if (!val) 334 val--; 335 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 337 } 338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 339 340 void tcp_leave_memory_pressure(struct sock *sk) 341 { 342 unsigned long val; 343 344 if (!tcp_memory_pressure) 345 return; 346 val = xchg(&tcp_memory_pressure, 0); 347 if (val) 348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 349 jiffies_to_msecs(jiffies - val)); 350 } 351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 352 353 /* Convert seconds to retransmits based on initial and max timeout */ 354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 355 { 356 u8 res = 0; 357 358 if (seconds > 0) { 359 int period = timeout; 360 361 res = 1; 362 while (seconds > period && res < 255) { 363 res++; 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return res; 371 } 372 373 /* Convert retransmits to seconds based on initial and max timeout */ 374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 375 { 376 int period = 0; 377 378 if (retrans > 0) { 379 period = timeout; 380 while (--retrans) { 381 timeout <<= 1; 382 if (timeout > rto_max) 383 timeout = rto_max; 384 period += timeout; 385 } 386 } 387 return period; 388 } 389 390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 391 { 392 u32 rate = READ_ONCE(tp->rate_delivered); 393 u32 intv = READ_ONCE(tp->rate_interval_us); 394 u64 rate64 = 0; 395 396 if (rate && intv) { 397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 398 do_div(rate64, intv); 399 } 400 return rate64; 401 } 402 403 /* Address-family independent initialization for a tcp_sock. 404 * 405 * NOTE: A lot of things set to zero explicitly by call to 406 * sk_alloc() so need not be done here. 407 */ 408 void tcp_init_sock(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 tp->out_of_order_queue = RB_ROOT; 414 sk->tcp_rtx_queue = RB_ROOT; 415 tcp_init_xmit_timers(sk); 416 INIT_LIST_HEAD(&tp->tsq_node); 417 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 tp->rack.reo_wnd_steps = 1; 445 446 sk->sk_state = TCP_CLOSE; 447 448 sk->sk_write_space = sk_stream_write_space; 449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 450 451 icsk->icsk_sync_mss = tcp_sync_mss; 452 453 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 454 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 455 456 sk_sockets_allocated_inc(sk); 457 sk->sk_route_forced_caps = NETIF_F_GSO; 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 462 { 463 struct sk_buff *skb = tcp_write_queue_tail(sk); 464 465 if (tsflags && skb) { 466 struct skb_shared_info *shinfo = skb_shinfo(skb); 467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 468 469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 470 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 471 tcb->txstamp_ack = 1; 472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 474 } 475 } 476 477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 478 int target, struct sock *sk) 479 { 480 return (tp->rcv_nxt - tp->copied_seq >= target) || 481 (sk->sk_prot->stream_memory_read ? 482 sk->sk_prot->stream_memory_read(sk) : false); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (tp->urg_seq == tp->copied_seq && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 611 break; 612 case SIOCOUTQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 617 answ = 0; 618 else 619 answ = tp->write_seq - tp->snd_una; 620 break; 621 case SIOCOUTQNSD: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = tp->write_seq - tp->snd_nxt; 629 break; 630 default: 631 return -ENOIOCTLCMD; 632 } 633 634 return put_user(answ, (int __user *)arg); 635 } 636 EXPORT_SYMBOL(tcp_ioctl); 637 638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 639 { 640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 641 tp->pushed_seq = tp->write_seq; 642 } 643 644 static inline bool forced_push(const struct tcp_sock *tp) 645 { 646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 647 } 648 649 static void skb_entail(struct sock *sk, struct sk_buff *skb) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 653 654 skb->csum = 0; 655 tcb->seq = tcb->end_seq = tp->write_seq; 656 tcb->tcp_flags = TCPHDR_ACK; 657 tcb->sacked = 0; 658 __skb_header_release(skb); 659 tcp_add_write_queue_tail(sk, skb); 660 sk->sk_wmem_queued += skb->truesize; 661 sk_mem_charge(sk, skb->truesize); 662 if (tp->nonagle & TCP_NAGLE_PUSH) 663 tp->nonagle &= ~TCP_NAGLE_PUSH; 664 665 tcp_slow_start_after_idle_check(sk); 666 } 667 668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 669 { 670 if (flags & MSG_OOB) 671 tp->snd_up = tp->write_seq; 672 } 673 674 /* If a not yet filled skb is pushed, do not send it if 675 * we have data packets in Qdisc or NIC queues : 676 * Because TX completion will happen shortly, it gives a chance 677 * to coalesce future sendmsg() payload into this skb, without 678 * need for a timer, and with no latency trade off. 679 * As packets containing data payload have a bigger truesize 680 * than pure acks (dataless) packets, the last checks prevent 681 * autocorking if we only have an ACK in Qdisc/NIC queues, 682 * or if TX completion was delayed after we processed ACK packet. 683 */ 684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 685 int size_goal) 686 { 687 return skb->len < size_goal && 688 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 689 !tcp_rtx_queue_empty(sk) && 690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 691 } 692 693 static void tcp_push(struct sock *sk, int flags, int mss_now, 694 int nonagle, int size_goal) 695 { 696 struct tcp_sock *tp = tcp_sk(sk); 697 struct sk_buff *skb; 698 699 skb = tcp_write_queue_tail(sk); 700 if (!skb) 701 return; 702 if (!(flags & MSG_MORE) || forced_push(tp)) 703 tcp_mark_push(tp, skb); 704 705 tcp_mark_urg(tp, flags); 706 707 if (tcp_should_autocork(sk, skb, size_goal)) { 708 709 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 713 } 714 /* It is possible TX completion already happened 715 * before we set TSQ_THROTTLED. 716 */ 717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 718 return; 719 } 720 721 if (flags & MSG_MORE) 722 nonagle = TCP_NAGLE_CORK; 723 724 __tcp_push_pending_frames(sk, mss_now, nonagle); 725 } 726 727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 728 unsigned int offset, size_t len) 729 { 730 struct tcp_splice_state *tss = rd_desc->arg.data; 731 int ret; 732 733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 734 min(rd_desc->count, len), tss->flags); 735 if (ret > 0) 736 rd_desc->count -= ret; 737 return ret; 738 } 739 740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 741 { 742 /* Store TCP splice context information in read_descriptor_t. */ 743 read_descriptor_t rd_desc = { 744 .arg.data = tss, 745 .count = tss->len, 746 }; 747 748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 749 } 750 751 /** 752 * tcp_splice_read - splice data from TCP socket to a pipe 753 * @sock: socket to splice from 754 * @ppos: position (not valid) 755 * @pipe: pipe to splice to 756 * @len: number of bytes to splice 757 * @flags: splice modifier flags 758 * 759 * Description: 760 * Will read pages from given socket and fill them into a pipe. 761 * 762 **/ 763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 764 struct pipe_inode_info *pipe, size_t len, 765 unsigned int flags) 766 { 767 struct sock *sk = sock->sk; 768 struct tcp_splice_state tss = { 769 .pipe = pipe, 770 .len = len, 771 .flags = flags, 772 }; 773 long timeo; 774 ssize_t spliced; 775 int ret; 776 777 sock_rps_record_flow(sk); 778 /* 779 * We can't seek on a socket input 780 */ 781 if (unlikely(*ppos)) 782 return -ESPIPE; 783 784 ret = spliced = 0; 785 786 lock_sock(sk); 787 788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 789 while (tss.len) { 790 ret = __tcp_splice_read(sk, &tss); 791 if (ret < 0) 792 break; 793 else if (!ret) { 794 if (spliced) 795 break; 796 if (sock_flag(sk, SOCK_DONE)) 797 break; 798 if (sk->sk_err) { 799 ret = sock_error(sk); 800 break; 801 } 802 if (sk->sk_shutdown & RCV_SHUTDOWN) 803 break; 804 if (sk->sk_state == TCP_CLOSE) { 805 /* 806 * This occurs when user tries to read 807 * from never connected socket. 808 */ 809 ret = -ENOTCONN; 810 break; 811 } 812 if (!timeo) { 813 ret = -EAGAIN; 814 break; 815 } 816 /* if __tcp_splice_read() got nothing while we have 817 * an skb in receive queue, we do not want to loop. 818 * This might happen with URG data. 819 */ 820 if (!skb_queue_empty(&sk->sk_receive_queue)) 821 break; 822 sk_wait_data(sk, &timeo, NULL); 823 if (signal_pending(current)) { 824 ret = sock_intr_errno(timeo); 825 break; 826 } 827 continue; 828 } 829 tss.len -= ret; 830 spliced += ret; 831 832 if (!timeo) 833 break; 834 release_sock(sk); 835 lock_sock(sk); 836 837 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 838 (sk->sk_shutdown & RCV_SHUTDOWN) || 839 signal_pending(current)) 840 break; 841 } 842 843 release_sock(sk); 844 845 if (spliced) 846 return spliced; 847 848 return ret; 849 } 850 EXPORT_SYMBOL(tcp_splice_read); 851 852 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 853 bool force_schedule) 854 { 855 struct sk_buff *skb; 856 857 if (likely(!size)) { 858 skb = sk->sk_tx_skb_cache; 859 if (skb) { 860 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 861 sk->sk_tx_skb_cache = NULL; 862 pskb_trim(skb, 0); 863 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 864 skb_shinfo(skb)->tx_flags = 0; 865 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 866 return skb; 867 } 868 } 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 939 size_t size, int flags) 940 { 941 struct tcp_sock *tp = tcp_sk(sk); 942 int mss_now, size_goal; 943 int err; 944 ssize_t copied; 945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 946 947 if (IS_ENABLED(CONFIG_DEBUG_VM) && 948 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 949 return -EINVAL; 950 951 /* Wait for a connection to finish. One exception is TCP Fast Open 952 * (passive side) where data is allowed to be sent before a connection 953 * is fully established. 954 */ 955 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 956 !tcp_passive_fastopen(sk)) { 957 err = sk_stream_wait_connect(sk, &timeo); 958 if (err != 0) 959 goto out_err; 960 } 961 962 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 963 964 mss_now = tcp_send_mss(sk, &size_goal, flags); 965 copied = 0; 966 967 err = -EPIPE; 968 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 969 goto out_err; 970 971 while (size > 0) { 972 struct sk_buff *skb = tcp_write_queue_tail(sk); 973 int copy, i; 974 bool can_coalesce; 975 976 if (!skb || (copy = size_goal - skb->len) <= 0 || 977 !tcp_skb_can_collapse_to(skb)) { 978 new_segment: 979 if (!sk_stream_memory_free(sk)) 980 goto wait_for_sndbuf; 981 982 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 983 tcp_rtx_and_write_queues_empty(sk)); 984 if (!skb) 985 goto wait_for_memory; 986 987 #ifdef CONFIG_TLS_DEVICE 988 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 989 #endif 990 skb_entail(sk, skb); 991 copy = size_goal; 992 } 993 994 if (copy > size) 995 copy = size; 996 997 i = skb_shinfo(skb)->nr_frags; 998 can_coalesce = skb_can_coalesce(skb, i, page, offset); 999 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1000 tcp_mark_push(tp, skb); 1001 goto new_segment; 1002 } 1003 if (!sk_wmem_schedule(sk, copy)) 1004 goto wait_for_memory; 1005 1006 if (can_coalesce) { 1007 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1008 } else { 1009 get_page(page); 1010 skb_fill_page_desc(skb, i, page, offset, copy); 1011 } 1012 1013 if (!(flags & MSG_NO_SHARED_FRAGS)) 1014 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1015 1016 skb->len += copy; 1017 skb->data_len += copy; 1018 skb->truesize += copy; 1019 sk->sk_wmem_queued += copy; 1020 sk_mem_charge(sk, copy); 1021 skb->ip_summed = CHECKSUM_PARTIAL; 1022 tp->write_seq += copy; 1023 TCP_SKB_CB(skb)->end_seq += copy; 1024 tcp_skb_pcount_set(skb, 0); 1025 1026 if (!copied) 1027 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1028 1029 copied += copy; 1030 offset += copy; 1031 size -= copy; 1032 if (!size) 1033 goto out; 1034 1035 if (skb->len < size_goal || (flags & MSG_OOB)) 1036 continue; 1037 1038 if (forced_push(tp)) { 1039 tcp_mark_push(tp, skb); 1040 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1041 } else if (skb == tcp_send_head(sk)) 1042 tcp_push_one(sk, mss_now); 1043 continue; 1044 1045 wait_for_sndbuf: 1046 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1047 wait_for_memory: 1048 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1049 TCP_NAGLE_PUSH, size_goal); 1050 1051 err = sk_stream_wait_memory(sk, &timeo); 1052 if (err != 0) 1053 goto do_error; 1054 1055 mss_now = tcp_send_mss(sk, &size_goal, flags); 1056 } 1057 1058 out: 1059 if (copied) { 1060 tcp_tx_timestamp(sk, sk->sk_tsflags); 1061 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1062 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1063 } 1064 return copied; 1065 1066 do_error: 1067 if (copied) 1068 goto out; 1069 out_err: 1070 /* make sure we wake any epoll edge trigger waiter */ 1071 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1072 err == -EAGAIN)) { 1073 sk->sk_write_space(sk); 1074 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1075 } 1076 return sk_stream_error(sk, flags, err); 1077 } 1078 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1079 1080 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1081 size_t size, int flags) 1082 { 1083 if (!(sk->sk_route_caps & NETIF_F_SG)) 1084 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1085 1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1087 1088 return do_tcp_sendpages(sk, page, offset, size, flags); 1089 } 1090 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1091 1092 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1093 size_t size, int flags) 1094 { 1095 int ret; 1096 1097 lock_sock(sk); 1098 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1099 release_sock(sk); 1100 1101 return ret; 1102 } 1103 EXPORT_SYMBOL(tcp_sendpage); 1104 1105 void tcp_free_fastopen_req(struct tcp_sock *tp) 1106 { 1107 if (tp->fastopen_req) { 1108 kfree(tp->fastopen_req); 1109 tp->fastopen_req = NULL; 1110 } 1111 } 1112 1113 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1114 int *copied, size_t size, 1115 struct ubuf_info *uarg) 1116 { 1117 struct tcp_sock *tp = tcp_sk(sk); 1118 struct inet_sock *inet = inet_sk(sk); 1119 struct sockaddr *uaddr = msg->msg_name; 1120 int err, flags; 1121 1122 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1123 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1124 uaddr->sa_family == AF_UNSPEC)) 1125 return -EOPNOTSUPP; 1126 if (tp->fastopen_req) 1127 return -EALREADY; /* Another Fast Open is in progress */ 1128 1129 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1130 sk->sk_allocation); 1131 if (unlikely(!tp->fastopen_req)) 1132 return -ENOBUFS; 1133 tp->fastopen_req->data = msg; 1134 tp->fastopen_req->size = size; 1135 tp->fastopen_req->uarg = uarg; 1136 1137 if (inet->defer_connect) { 1138 err = tcp_connect(sk); 1139 /* Same failure procedure as in tcp_v4/6_connect */ 1140 if (err) { 1141 tcp_set_state(sk, TCP_CLOSE); 1142 inet->inet_dport = 0; 1143 sk->sk_route_caps = 0; 1144 } 1145 } 1146 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1147 err = __inet_stream_connect(sk->sk_socket, uaddr, 1148 msg->msg_namelen, flags, 1); 1149 /* fastopen_req could already be freed in __inet_stream_connect 1150 * if the connection times out or gets rst 1151 */ 1152 if (tp->fastopen_req) { 1153 *copied = tp->fastopen_req->copied; 1154 tcp_free_fastopen_req(tp); 1155 inet->defer_connect = 0; 1156 } 1157 return err; 1158 } 1159 1160 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1161 { 1162 struct tcp_sock *tp = tcp_sk(sk); 1163 struct ubuf_info *uarg = NULL; 1164 struct sk_buff *skb; 1165 struct sockcm_cookie sockc; 1166 int flags, err, copied = 0; 1167 int mss_now = 0, size_goal, copied_syn = 0; 1168 bool process_backlog = false; 1169 bool zc = false; 1170 long timeo; 1171 1172 flags = msg->msg_flags; 1173 1174 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1175 skb = tcp_write_queue_tail(sk); 1176 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1177 if (!uarg) { 1178 err = -ENOBUFS; 1179 goto out_err; 1180 } 1181 1182 zc = sk->sk_route_caps & NETIF_F_SG; 1183 if (!zc) 1184 uarg->zerocopy = 0; 1185 } 1186 1187 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1188 !tp->repair) { 1189 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1190 if (err == -EINPROGRESS && copied_syn > 0) 1191 goto out; 1192 else if (err) 1193 goto out_err; 1194 } 1195 1196 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1197 1198 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1199 1200 /* Wait for a connection to finish. One exception is TCP Fast Open 1201 * (passive side) where data is allowed to be sent before a connection 1202 * is fully established. 1203 */ 1204 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1205 !tcp_passive_fastopen(sk)) { 1206 err = sk_stream_wait_connect(sk, &timeo); 1207 if (err != 0) 1208 goto do_error; 1209 } 1210 1211 if (unlikely(tp->repair)) { 1212 if (tp->repair_queue == TCP_RECV_QUEUE) { 1213 copied = tcp_send_rcvq(sk, msg, size); 1214 goto out_nopush; 1215 } 1216 1217 err = -EINVAL; 1218 if (tp->repair_queue == TCP_NO_QUEUE) 1219 goto out_err; 1220 1221 /* 'common' sending to sendq */ 1222 } 1223 1224 sockcm_init(&sockc, sk); 1225 if (msg->msg_controllen) { 1226 err = sock_cmsg_send(sk, msg, &sockc); 1227 if (unlikely(err)) { 1228 err = -EINVAL; 1229 goto out_err; 1230 } 1231 } 1232 1233 /* This should be in poll */ 1234 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1235 1236 /* Ok commence sending. */ 1237 copied = 0; 1238 1239 restart: 1240 mss_now = tcp_send_mss(sk, &size_goal, flags); 1241 1242 err = -EPIPE; 1243 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1244 goto do_error; 1245 1246 while (msg_data_left(msg)) { 1247 int copy = 0; 1248 1249 skb = tcp_write_queue_tail(sk); 1250 if (skb) 1251 copy = size_goal - skb->len; 1252 1253 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1254 bool first_skb; 1255 1256 new_segment: 1257 if (!sk_stream_memory_free(sk)) 1258 goto wait_for_sndbuf; 1259 1260 if (process_backlog && sk_flush_backlog(sk)) { 1261 process_backlog = false; 1262 goto restart; 1263 } 1264 first_skb = tcp_rtx_and_write_queues_empty(sk); 1265 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1266 first_skb); 1267 if (!skb) 1268 goto wait_for_memory; 1269 1270 process_backlog = true; 1271 skb->ip_summed = CHECKSUM_PARTIAL; 1272 1273 skb_entail(sk, skb); 1274 copy = size_goal; 1275 1276 /* All packets are restored as if they have 1277 * already been sent. skb_mstamp_ns isn't set to 1278 * avoid wrong rtt estimation. 1279 */ 1280 if (tp->repair) 1281 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1282 } 1283 1284 /* Try to append data to the end of skb. */ 1285 if (copy > msg_data_left(msg)) 1286 copy = msg_data_left(msg); 1287 1288 /* Where to copy to? */ 1289 if (skb_availroom(skb) > 0 && !zc) { 1290 /* We have some space in skb head. Superb! */ 1291 copy = min_t(int, copy, skb_availroom(skb)); 1292 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1293 if (err) 1294 goto do_fault; 1295 } else if (!zc) { 1296 bool merge = true; 1297 int i = skb_shinfo(skb)->nr_frags; 1298 struct page_frag *pfrag = sk_page_frag(sk); 1299 1300 if (!sk_page_frag_refill(sk, pfrag)) 1301 goto wait_for_memory; 1302 1303 if (!skb_can_coalesce(skb, i, pfrag->page, 1304 pfrag->offset)) { 1305 if (i >= sysctl_max_skb_frags) { 1306 tcp_mark_push(tp, skb); 1307 goto new_segment; 1308 } 1309 merge = false; 1310 } 1311 1312 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1313 1314 if (!sk_wmem_schedule(sk, copy)) 1315 goto wait_for_memory; 1316 1317 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1318 pfrag->page, 1319 pfrag->offset, 1320 copy); 1321 if (err) 1322 goto do_error; 1323 1324 /* Update the skb. */ 1325 if (merge) { 1326 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1327 } else { 1328 skb_fill_page_desc(skb, i, pfrag->page, 1329 pfrag->offset, copy); 1330 page_ref_inc(pfrag->page); 1331 } 1332 pfrag->offset += copy; 1333 } else { 1334 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1335 if (err == -EMSGSIZE || err == -EEXIST) { 1336 tcp_mark_push(tp, skb); 1337 goto new_segment; 1338 } 1339 if (err < 0) 1340 goto do_error; 1341 copy = err; 1342 } 1343 1344 if (!copied) 1345 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1346 1347 tp->write_seq += copy; 1348 TCP_SKB_CB(skb)->end_seq += copy; 1349 tcp_skb_pcount_set(skb, 0); 1350 1351 copied += copy; 1352 if (!msg_data_left(msg)) { 1353 if (unlikely(flags & MSG_EOR)) 1354 TCP_SKB_CB(skb)->eor = 1; 1355 goto out; 1356 } 1357 1358 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1359 continue; 1360 1361 if (forced_push(tp)) { 1362 tcp_mark_push(tp, skb); 1363 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1364 } else if (skb == tcp_send_head(sk)) 1365 tcp_push_one(sk, mss_now); 1366 continue; 1367 1368 wait_for_sndbuf: 1369 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1370 wait_for_memory: 1371 if (copied) 1372 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1373 TCP_NAGLE_PUSH, size_goal); 1374 1375 err = sk_stream_wait_memory(sk, &timeo); 1376 if (err != 0) 1377 goto do_error; 1378 1379 mss_now = tcp_send_mss(sk, &size_goal, flags); 1380 } 1381 1382 out: 1383 if (copied) { 1384 tcp_tx_timestamp(sk, sockc.tsflags); 1385 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1386 } 1387 out_nopush: 1388 sock_zerocopy_put(uarg); 1389 return copied + copied_syn; 1390 1391 do_fault: 1392 if (!skb->len) { 1393 tcp_unlink_write_queue(skb, sk); 1394 /* It is the one place in all of TCP, except connection 1395 * reset, where we can be unlinking the send_head. 1396 */ 1397 if (tcp_write_queue_empty(sk)) 1398 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1399 sk_wmem_free_skb(sk, skb); 1400 } 1401 1402 do_error: 1403 if (copied + copied_syn) 1404 goto out; 1405 out_err: 1406 sock_zerocopy_put_abort(uarg, true); 1407 err = sk_stream_error(sk, flags, err); 1408 /* make sure we wake any epoll edge trigger waiter */ 1409 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1410 err == -EAGAIN)) { 1411 sk->sk_write_space(sk); 1412 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1413 } 1414 return err; 1415 } 1416 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1417 1418 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1419 { 1420 int ret; 1421 1422 lock_sock(sk); 1423 ret = tcp_sendmsg_locked(sk, msg, size); 1424 release_sock(sk); 1425 1426 return ret; 1427 } 1428 EXPORT_SYMBOL(tcp_sendmsg); 1429 1430 /* 1431 * Handle reading urgent data. BSD has very simple semantics for 1432 * this, no blocking and very strange errors 8) 1433 */ 1434 1435 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1436 { 1437 struct tcp_sock *tp = tcp_sk(sk); 1438 1439 /* No URG data to read. */ 1440 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1441 tp->urg_data == TCP_URG_READ) 1442 return -EINVAL; /* Yes this is right ! */ 1443 1444 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1445 return -ENOTCONN; 1446 1447 if (tp->urg_data & TCP_URG_VALID) { 1448 int err = 0; 1449 char c = tp->urg_data; 1450 1451 if (!(flags & MSG_PEEK)) 1452 tp->urg_data = TCP_URG_READ; 1453 1454 /* Read urgent data. */ 1455 msg->msg_flags |= MSG_OOB; 1456 1457 if (len > 0) { 1458 if (!(flags & MSG_TRUNC)) 1459 err = memcpy_to_msg(msg, &c, 1); 1460 len = 1; 1461 } else 1462 msg->msg_flags |= MSG_TRUNC; 1463 1464 return err ? -EFAULT : len; 1465 } 1466 1467 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1468 return 0; 1469 1470 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1471 * the available implementations agree in this case: 1472 * this call should never block, independent of the 1473 * blocking state of the socket. 1474 * Mike <pall@rz.uni-karlsruhe.de> 1475 */ 1476 return -EAGAIN; 1477 } 1478 1479 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1480 { 1481 struct sk_buff *skb; 1482 int copied = 0, err = 0; 1483 1484 /* XXX -- need to support SO_PEEK_OFF */ 1485 1486 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1487 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1488 if (err) 1489 return err; 1490 copied += skb->len; 1491 } 1492 1493 skb_queue_walk(&sk->sk_write_queue, skb) { 1494 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1495 if (err) 1496 break; 1497 1498 copied += skb->len; 1499 } 1500 1501 return err ?: copied; 1502 } 1503 1504 /* Clean up the receive buffer for full frames taken by the user, 1505 * then send an ACK if necessary. COPIED is the number of bytes 1506 * tcp_recvmsg has given to the user so far, it speeds up the 1507 * calculation of whether or not we must ACK for the sake of 1508 * a window update. 1509 */ 1510 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 bool time_to_ack = false; 1514 1515 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1516 1517 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1518 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1519 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1520 1521 if (inet_csk_ack_scheduled(sk)) { 1522 const struct inet_connection_sock *icsk = inet_csk(sk); 1523 /* Delayed ACKs frequently hit locked sockets during bulk 1524 * receive. */ 1525 if (icsk->icsk_ack.blocked || 1526 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1527 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1528 /* 1529 * If this read emptied read buffer, we send ACK, if 1530 * connection is not bidirectional, user drained 1531 * receive buffer and there was a small segment 1532 * in queue. 1533 */ 1534 (copied > 0 && 1535 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1536 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1537 !inet_csk_in_pingpong_mode(sk))) && 1538 !atomic_read(&sk->sk_rmem_alloc))) 1539 time_to_ack = true; 1540 } 1541 1542 /* We send an ACK if we can now advertise a non-zero window 1543 * which has been raised "significantly". 1544 * 1545 * Even if window raised up to infinity, do not send window open ACK 1546 * in states, where we will not receive more. It is useless. 1547 */ 1548 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1549 __u32 rcv_window_now = tcp_receive_window(tp); 1550 1551 /* Optimize, __tcp_select_window() is not cheap. */ 1552 if (2*rcv_window_now <= tp->window_clamp) { 1553 __u32 new_window = __tcp_select_window(sk); 1554 1555 /* Send ACK now, if this read freed lots of space 1556 * in our buffer. Certainly, new_window is new window. 1557 * We can advertise it now, if it is not less than current one. 1558 * "Lots" means "at least twice" here. 1559 */ 1560 if (new_window && new_window >= 2 * rcv_window_now) 1561 time_to_ack = true; 1562 } 1563 } 1564 if (time_to_ack) 1565 tcp_send_ack(sk); 1566 } 1567 1568 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1569 { 1570 struct sk_buff *skb; 1571 u32 offset; 1572 1573 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1574 offset = seq - TCP_SKB_CB(skb)->seq; 1575 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1576 pr_err_once("%s: found a SYN, please report !\n", __func__); 1577 offset--; 1578 } 1579 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1580 *off = offset; 1581 return skb; 1582 } 1583 /* This looks weird, but this can happen if TCP collapsing 1584 * splitted a fat GRO packet, while we released socket lock 1585 * in skb_splice_bits() 1586 */ 1587 sk_eat_skb(sk, skb); 1588 } 1589 return NULL; 1590 } 1591 1592 /* 1593 * This routine provides an alternative to tcp_recvmsg() for routines 1594 * that would like to handle copying from skbuffs directly in 'sendfile' 1595 * fashion. 1596 * Note: 1597 * - It is assumed that the socket was locked by the caller. 1598 * - The routine does not block. 1599 * - At present, there is no support for reading OOB data 1600 * or for 'peeking' the socket using this routine 1601 * (although both would be easy to implement). 1602 */ 1603 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1604 sk_read_actor_t recv_actor) 1605 { 1606 struct sk_buff *skb; 1607 struct tcp_sock *tp = tcp_sk(sk); 1608 u32 seq = tp->copied_seq; 1609 u32 offset; 1610 int copied = 0; 1611 1612 if (sk->sk_state == TCP_LISTEN) 1613 return -ENOTCONN; 1614 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1615 if (offset < skb->len) { 1616 int used; 1617 size_t len; 1618 1619 len = skb->len - offset; 1620 /* Stop reading if we hit a patch of urgent data */ 1621 if (tp->urg_data) { 1622 u32 urg_offset = tp->urg_seq - seq; 1623 if (urg_offset < len) 1624 len = urg_offset; 1625 if (!len) 1626 break; 1627 } 1628 used = recv_actor(desc, skb, offset, len); 1629 if (used <= 0) { 1630 if (!copied) 1631 copied = used; 1632 break; 1633 } else if (used <= len) { 1634 seq += used; 1635 copied += used; 1636 offset += used; 1637 } 1638 /* If recv_actor drops the lock (e.g. TCP splice 1639 * receive) the skb pointer might be invalid when 1640 * getting here: tcp_collapse might have deleted it 1641 * while aggregating skbs from the socket queue. 1642 */ 1643 skb = tcp_recv_skb(sk, seq - 1, &offset); 1644 if (!skb) 1645 break; 1646 /* TCP coalescing might have appended data to the skb. 1647 * Try to splice more frags 1648 */ 1649 if (offset + 1 != skb->len) 1650 continue; 1651 } 1652 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1653 sk_eat_skb(sk, skb); 1654 ++seq; 1655 break; 1656 } 1657 sk_eat_skb(sk, skb); 1658 if (!desc->count) 1659 break; 1660 tp->copied_seq = seq; 1661 } 1662 tp->copied_seq = seq; 1663 1664 tcp_rcv_space_adjust(sk); 1665 1666 /* Clean up data we have read: This will do ACK frames. */ 1667 if (copied > 0) { 1668 tcp_recv_skb(sk, seq, &offset); 1669 tcp_cleanup_rbuf(sk, copied); 1670 } 1671 return copied; 1672 } 1673 EXPORT_SYMBOL(tcp_read_sock); 1674 1675 int tcp_peek_len(struct socket *sock) 1676 { 1677 return tcp_inq(sock->sk); 1678 } 1679 EXPORT_SYMBOL(tcp_peek_len); 1680 1681 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1682 int tcp_set_rcvlowat(struct sock *sk, int val) 1683 { 1684 int cap; 1685 1686 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1687 cap = sk->sk_rcvbuf >> 1; 1688 else 1689 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1690 val = min(val, cap); 1691 sk->sk_rcvlowat = val ? : 1; 1692 1693 /* Check if we need to signal EPOLLIN right now */ 1694 tcp_data_ready(sk); 1695 1696 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1697 return 0; 1698 1699 val <<= 1; 1700 if (val > sk->sk_rcvbuf) { 1701 sk->sk_rcvbuf = val; 1702 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1703 } 1704 return 0; 1705 } 1706 EXPORT_SYMBOL(tcp_set_rcvlowat); 1707 1708 #ifdef CONFIG_MMU 1709 static const struct vm_operations_struct tcp_vm_ops = { 1710 }; 1711 1712 int tcp_mmap(struct file *file, struct socket *sock, 1713 struct vm_area_struct *vma) 1714 { 1715 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1716 return -EPERM; 1717 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1718 1719 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1720 vma->vm_flags |= VM_MIXEDMAP; 1721 1722 vma->vm_ops = &tcp_vm_ops; 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(tcp_mmap); 1726 1727 static int tcp_zerocopy_receive(struct sock *sk, 1728 struct tcp_zerocopy_receive *zc) 1729 { 1730 unsigned long address = (unsigned long)zc->address; 1731 const skb_frag_t *frags = NULL; 1732 u32 length = 0, seq, offset; 1733 struct vm_area_struct *vma; 1734 struct sk_buff *skb = NULL; 1735 struct tcp_sock *tp; 1736 int inq; 1737 int ret; 1738 1739 if (address & (PAGE_SIZE - 1) || address != zc->address) 1740 return -EINVAL; 1741 1742 if (sk->sk_state == TCP_LISTEN) 1743 return -ENOTCONN; 1744 1745 sock_rps_record_flow(sk); 1746 1747 down_read(¤t->mm->mmap_sem); 1748 1749 ret = -EINVAL; 1750 vma = find_vma(current->mm, address); 1751 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1752 goto out; 1753 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1754 1755 tp = tcp_sk(sk); 1756 seq = tp->copied_seq; 1757 inq = tcp_inq(sk); 1758 zc->length = min_t(u32, zc->length, inq); 1759 zc->length &= ~(PAGE_SIZE - 1); 1760 if (zc->length) { 1761 zap_page_range(vma, address, zc->length); 1762 zc->recv_skip_hint = 0; 1763 } else { 1764 zc->recv_skip_hint = inq; 1765 } 1766 ret = 0; 1767 while (length + PAGE_SIZE <= zc->length) { 1768 if (zc->recv_skip_hint < PAGE_SIZE) { 1769 if (skb) { 1770 skb = skb->next; 1771 offset = seq - TCP_SKB_CB(skb)->seq; 1772 } else { 1773 skb = tcp_recv_skb(sk, seq, &offset); 1774 } 1775 1776 zc->recv_skip_hint = skb->len - offset; 1777 offset -= skb_headlen(skb); 1778 if ((int)offset < 0 || skb_has_frag_list(skb)) 1779 break; 1780 frags = skb_shinfo(skb)->frags; 1781 while (offset) { 1782 if (frags->size > offset) 1783 goto out; 1784 offset -= frags->size; 1785 frags++; 1786 } 1787 } 1788 if (frags->size != PAGE_SIZE || frags->page_offset) { 1789 int remaining = zc->recv_skip_hint; 1790 1791 while (remaining && (frags->size != PAGE_SIZE || 1792 frags->page_offset)) { 1793 remaining -= frags->size; 1794 frags++; 1795 } 1796 zc->recv_skip_hint -= remaining; 1797 break; 1798 } 1799 ret = vm_insert_page(vma, address + length, 1800 skb_frag_page(frags)); 1801 if (ret) 1802 break; 1803 length += PAGE_SIZE; 1804 seq += PAGE_SIZE; 1805 zc->recv_skip_hint -= PAGE_SIZE; 1806 frags++; 1807 } 1808 out: 1809 up_read(¤t->mm->mmap_sem); 1810 if (length) { 1811 tp->copied_seq = seq; 1812 tcp_rcv_space_adjust(sk); 1813 1814 /* Clean up data we have read: This will do ACK frames. */ 1815 tcp_recv_skb(sk, seq, &offset); 1816 tcp_cleanup_rbuf(sk, length); 1817 ret = 0; 1818 if (length == zc->length) 1819 zc->recv_skip_hint = 0; 1820 } else { 1821 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1822 ret = -EIO; 1823 } 1824 zc->length = length; 1825 return ret; 1826 } 1827 #endif 1828 1829 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1830 struct scm_timestamping_internal *tss) 1831 { 1832 if (skb->tstamp) 1833 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1834 else 1835 tss->ts[0] = (struct timespec64) {0}; 1836 1837 if (skb_hwtstamps(skb)->hwtstamp) 1838 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1839 else 1840 tss->ts[2] = (struct timespec64) {0}; 1841 } 1842 1843 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1844 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1845 struct scm_timestamping_internal *tss) 1846 { 1847 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1848 bool has_timestamping = false; 1849 1850 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1851 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1852 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1853 if (new_tstamp) { 1854 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1855 1856 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1857 sizeof(kts), &kts); 1858 } else { 1859 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1860 1861 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1862 sizeof(ts_old), &ts_old); 1863 } 1864 } else { 1865 if (new_tstamp) { 1866 struct __kernel_sock_timeval stv; 1867 1868 stv.tv_sec = tss->ts[0].tv_sec; 1869 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1870 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1871 sizeof(stv), &stv); 1872 } else { 1873 struct __kernel_old_timeval tv; 1874 1875 tv.tv_sec = tss->ts[0].tv_sec; 1876 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1877 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1878 sizeof(tv), &tv); 1879 } 1880 } 1881 } 1882 1883 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1884 has_timestamping = true; 1885 else 1886 tss->ts[0] = (struct timespec64) {0}; 1887 } 1888 1889 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1890 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1891 has_timestamping = true; 1892 else 1893 tss->ts[2] = (struct timespec64) {0}; 1894 } 1895 1896 if (has_timestamping) { 1897 tss->ts[1] = (struct timespec64) {0}; 1898 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1899 put_cmsg_scm_timestamping64(msg, tss); 1900 else 1901 put_cmsg_scm_timestamping(msg, tss); 1902 } 1903 } 1904 1905 static int tcp_inq_hint(struct sock *sk) 1906 { 1907 const struct tcp_sock *tp = tcp_sk(sk); 1908 u32 copied_seq = READ_ONCE(tp->copied_seq); 1909 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1910 int inq; 1911 1912 inq = rcv_nxt - copied_seq; 1913 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1914 lock_sock(sk); 1915 inq = tp->rcv_nxt - tp->copied_seq; 1916 release_sock(sk); 1917 } 1918 /* After receiving a FIN, tell the user-space to continue reading 1919 * by returning a non-zero inq. 1920 */ 1921 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1922 inq = 1; 1923 return inq; 1924 } 1925 1926 /* 1927 * This routine copies from a sock struct into the user buffer. 1928 * 1929 * Technical note: in 2.3 we work on _locked_ socket, so that 1930 * tricks with *seq access order and skb->users are not required. 1931 * Probably, code can be easily improved even more. 1932 */ 1933 1934 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1935 int flags, int *addr_len) 1936 { 1937 struct tcp_sock *tp = tcp_sk(sk); 1938 int copied = 0; 1939 u32 peek_seq; 1940 u32 *seq; 1941 unsigned long used; 1942 int err, inq; 1943 int target; /* Read at least this many bytes */ 1944 long timeo; 1945 struct sk_buff *skb, *last; 1946 u32 urg_hole = 0; 1947 struct scm_timestamping_internal tss; 1948 bool has_tss = false; 1949 bool has_cmsg; 1950 1951 if (unlikely(flags & MSG_ERRQUEUE)) 1952 return inet_recv_error(sk, msg, len, addr_len); 1953 1954 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1955 (sk->sk_state == TCP_ESTABLISHED)) 1956 sk_busy_loop(sk, nonblock); 1957 1958 lock_sock(sk); 1959 1960 err = -ENOTCONN; 1961 if (sk->sk_state == TCP_LISTEN) 1962 goto out; 1963 1964 has_cmsg = tp->recvmsg_inq; 1965 timeo = sock_rcvtimeo(sk, nonblock); 1966 1967 /* Urgent data needs to be handled specially. */ 1968 if (flags & MSG_OOB) 1969 goto recv_urg; 1970 1971 if (unlikely(tp->repair)) { 1972 err = -EPERM; 1973 if (!(flags & MSG_PEEK)) 1974 goto out; 1975 1976 if (tp->repair_queue == TCP_SEND_QUEUE) 1977 goto recv_sndq; 1978 1979 err = -EINVAL; 1980 if (tp->repair_queue == TCP_NO_QUEUE) 1981 goto out; 1982 1983 /* 'common' recv queue MSG_PEEK-ing */ 1984 } 1985 1986 seq = &tp->copied_seq; 1987 if (flags & MSG_PEEK) { 1988 peek_seq = tp->copied_seq; 1989 seq = &peek_seq; 1990 } 1991 1992 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1993 1994 do { 1995 u32 offset; 1996 1997 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1998 if (tp->urg_data && tp->urg_seq == *seq) { 1999 if (copied) 2000 break; 2001 if (signal_pending(current)) { 2002 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2003 break; 2004 } 2005 } 2006 2007 /* Next get a buffer. */ 2008 2009 last = skb_peek_tail(&sk->sk_receive_queue); 2010 skb_queue_walk(&sk->sk_receive_queue, skb) { 2011 last = skb; 2012 /* Now that we have two receive queues this 2013 * shouldn't happen. 2014 */ 2015 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2016 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2017 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2018 flags)) 2019 break; 2020 2021 offset = *seq - TCP_SKB_CB(skb)->seq; 2022 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2023 pr_err_once("%s: found a SYN, please report !\n", __func__); 2024 offset--; 2025 } 2026 if (offset < skb->len) 2027 goto found_ok_skb; 2028 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2029 goto found_fin_ok; 2030 WARN(!(flags & MSG_PEEK), 2031 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2032 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2033 } 2034 2035 /* Well, if we have backlog, try to process it now yet. */ 2036 2037 if (copied >= target && !sk->sk_backlog.tail) 2038 break; 2039 2040 if (copied) { 2041 if (sk->sk_err || 2042 sk->sk_state == TCP_CLOSE || 2043 (sk->sk_shutdown & RCV_SHUTDOWN) || 2044 !timeo || 2045 signal_pending(current)) 2046 break; 2047 } else { 2048 if (sock_flag(sk, SOCK_DONE)) 2049 break; 2050 2051 if (sk->sk_err) { 2052 copied = sock_error(sk); 2053 break; 2054 } 2055 2056 if (sk->sk_shutdown & RCV_SHUTDOWN) 2057 break; 2058 2059 if (sk->sk_state == TCP_CLOSE) { 2060 /* This occurs when user tries to read 2061 * from never connected socket. 2062 */ 2063 copied = -ENOTCONN; 2064 break; 2065 } 2066 2067 if (!timeo) { 2068 copied = -EAGAIN; 2069 break; 2070 } 2071 2072 if (signal_pending(current)) { 2073 copied = sock_intr_errno(timeo); 2074 break; 2075 } 2076 } 2077 2078 tcp_cleanup_rbuf(sk, copied); 2079 2080 if (copied >= target) { 2081 /* Do not sleep, just process backlog. */ 2082 release_sock(sk); 2083 lock_sock(sk); 2084 } else { 2085 sk_wait_data(sk, &timeo, last); 2086 } 2087 2088 if ((flags & MSG_PEEK) && 2089 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2090 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2091 current->comm, 2092 task_pid_nr(current)); 2093 peek_seq = tp->copied_seq; 2094 } 2095 continue; 2096 2097 found_ok_skb: 2098 /* Ok so how much can we use? */ 2099 used = skb->len - offset; 2100 if (len < used) 2101 used = len; 2102 2103 /* Do we have urgent data here? */ 2104 if (tp->urg_data) { 2105 u32 urg_offset = tp->urg_seq - *seq; 2106 if (urg_offset < used) { 2107 if (!urg_offset) { 2108 if (!sock_flag(sk, SOCK_URGINLINE)) { 2109 ++*seq; 2110 urg_hole++; 2111 offset++; 2112 used--; 2113 if (!used) 2114 goto skip_copy; 2115 } 2116 } else 2117 used = urg_offset; 2118 } 2119 } 2120 2121 if (!(flags & MSG_TRUNC)) { 2122 err = skb_copy_datagram_msg(skb, offset, msg, used); 2123 if (err) { 2124 /* Exception. Bailout! */ 2125 if (!copied) 2126 copied = -EFAULT; 2127 break; 2128 } 2129 } 2130 2131 *seq += used; 2132 copied += used; 2133 len -= used; 2134 2135 tcp_rcv_space_adjust(sk); 2136 2137 skip_copy: 2138 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2139 tp->urg_data = 0; 2140 tcp_fast_path_check(sk); 2141 } 2142 if (used + offset < skb->len) 2143 continue; 2144 2145 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2146 tcp_update_recv_tstamps(skb, &tss); 2147 has_tss = true; 2148 has_cmsg = true; 2149 } 2150 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2151 goto found_fin_ok; 2152 if (!(flags & MSG_PEEK)) 2153 sk_eat_skb(sk, skb); 2154 continue; 2155 2156 found_fin_ok: 2157 /* Process the FIN. */ 2158 ++*seq; 2159 if (!(flags & MSG_PEEK)) 2160 sk_eat_skb(sk, skb); 2161 break; 2162 } while (len > 0); 2163 2164 /* According to UNIX98, msg_name/msg_namelen are ignored 2165 * on connected socket. I was just happy when found this 8) --ANK 2166 */ 2167 2168 /* Clean up data we have read: This will do ACK frames. */ 2169 tcp_cleanup_rbuf(sk, copied); 2170 2171 release_sock(sk); 2172 2173 if (has_cmsg) { 2174 if (has_tss) 2175 tcp_recv_timestamp(msg, sk, &tss); 2176 if (tp->recvmsg_inq) { 2177 inq = tcp_inq_hint(sk); 2178 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2179 } 2180 } 2181 2182 return copied; 2183 2184 out: 2185 release_sock(sk); 2186 return err; 2187 2188 recv_urg: 2189 err = tcp_recv_urg(sk, msg, len, flags); 2190 goto out; 2191 2192 recv_sndq: 2193 err = tcp_peek_sndq(sk, msg, len); 2194 goto out; 2195 } 2196 EXPORT_SYMBOL(tcp_recvmsg); 2197 2198 void tcp_set_state(struct sock *sk, int state) 2199 { 2200 int oldstate = sk->sk_state; 2201 2202 /* We defined a new enum for TCP states that are exported in BPF 2203 * so as not force the internal TCP states to be frozen. The 2204 * following checks will detect if an internal state value ever 2205 * differs from the BPF value. If this ever happens, then we will 2206 * need to remap the internal value to the BPF value before calling 2207 * tcp_call_bpf_2arg. 2208 */ 2209 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2210 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2211 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2212 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2213 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2214 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2215 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2216 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2217 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2218 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2219 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2220 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2221 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2222 2223 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2224 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2225 2226 switch (state) { 2227 case TCP_ESTABLISHED: 2228 if (oldstate != TCP_ESTABLISHED) 2229 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2230 break; 2231 2232 case TCP_CLOSE: 2233 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2234 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2235 2236 sk->sk_prot->unhash(sk); 2237 if (inet_csk(sk)->icsk_bind_hash && 2238 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2239 inet_put_port(sk); 2240 /* fall through */ 2241 default: 2242 if (oldstate == TCP_ESTABLISHED) 2243 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2244 } 2245 2246 /* Change state AFTER socket is unhashed to avoid closed 2247 * socket sitting in hash tables. 2248 */ 2249 inet_sk_state_store(sk, state); 2250 } 2251 EXPORT_SYMBOL_GPL(tcp_set_state); 2252 2253 /* 2254 * State processing on a close. This implements the state shift for 2255 * sending our FIN frame. Note that we only send a FIN for some 2256 * states. A shutdown() may have already sent the FIN, or we may be 2257 * closed. 2258 */ 2259 2260 static const unsigned char new_state[16] = { 2261 /* current state: new state: action: */ 2262 [0 /* (Invalid) */] = TCP_CLOSE, 2263 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2264 [TCP_SYN_SENT] = TCP_CLOSE, 2265 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2266 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2267 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2268 [TCP_TIME_WAIT] = TCP_CLOSE, 2269 [TCP_CLOSE] = TCP_CLOSE, 2270 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2271 [TCP_LAST_ACK] = TCP_LAST_ACK, 2272 [TCP_LISTEN] = TCP_CLOSE, 2273 [TCP_CLOSING] = TCP_CLOSING, 2274 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2275 }; 2276 2277 static int tcp_close_state(struct sock *sk) 2278 { 2279 int next = (int)new_state[sk->sk_state]; 2280 int ns = next & TCP_STATE_MASK; 2281 2282 tcp_set_state(sk, ns); 2283 2284 return next & TCP_ACTION_FIN; 2285 } 2286 2287 /* 2288 * Shutdown the sending side of a connection. Much like close except 2289 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2290 */ 2291 2292 void tcp_shutdown(struct sock *sk, int how) 2293 { 2294 /* We need to grab some memory, and put together a FIN, 2295 * and then put it into the queue to be sent. 2296 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2297 */ 2298 if (!(how & SEND_SHUTDOWN)) 2299 return; 2300 2301 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2302 if ((1 << sk->sk_state) & 2303 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2304 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2305 /* Clear out any half completed packets. FIN if needed. */ 2306 if (tcp_close_state(sk)) 2307 tcp_send_fin(sk); 2308 } 2309 } 2310 EXPORT_SYMBOL(tcp_shutdown); 2311 2312 bool tcp_check_oom(struct sock *sk, int shift) 2313 { 2314 bool too_many_orphans, out_of_socket_memory; 2315 2316 too_many_orphans = tcp_too_many_orphans(sk, shift); 2317 out_of_socket_memory = tcp_out_of_memory(sk); 2318 2319 if (too_many_orphans) 2320 net_info_ratelimited("too many orphaned sockets\n"); 2321 if (out_of_socket_memory) 2322 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2323 return too_many_orphans || out_of_socket_memory; 2324 } 2325 2326 void tcp_close(struct sock *sk, long timeout) 2327 { 2328 struct sk_buff *skb; 2329 int data_was_unread = 0; 2330 int state; 2331 2332 lock_sock(sk); 2333 sk->sk_shutdown = SHUTDOWN_MASK; 2334 2335 if (sk->sk_state == TCP_LISTEN) { 2336 tcp_set_state(sk, TCP_CLOSE); 2337 2338 /* Special case. */ 2339 inet_csk_listen_stop(sk); 2340 2341 goto adjudge_to_death; 2342 } 2343 2344 /* We need to flush the recv. buffs. We do this only on the 2345 * descriptor close, not protocol-sourced closes, because the 2346 * reader process may not have drained the data yet! 2347 */ 2348 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2349 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2350 2351 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2352 len--; 2353 data_was_unread += len; 2354 __kfree_skb(skb); 2355 } 2356 2357 sk_mem_reclaim(sk); 2358 2359 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2360 if (sk->sk_state == TCP_CLOSE) 2361 goto adjudge_to_death; 2362 2363 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2364 * data was lost. To witness the awful effects of the old behavior of 2365 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2366 * GET in an FTP client, suspend the process, wait for the client to 2367 * advertise a zero window, then kill -9 the FTP client, wheee... 2368 * Note: timeout is always zero in such a case. 2369 */ 2370 if (unlikely(tcp_sk(sk)->repair)) { 2371 sk->sk_prot->disconnect(sk, 0); 2372 } else if (data_was_unread) { 2373 /* Unread data was tossed, zap the connection. */ 2374 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2375 tcp_set_state(sk, TCP_CLOSE); 2376 tcp_send_active_reset(sk, sk->sk_allocation); 2377 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2378 /* Check zero linger _after_ checking for unread data. */ 2379 sk->sk_prot->disconnect(sk, 0); 2380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2381 } else if (tcp_close_state(sk)) { 2382 /* We FIN if the application ate all the data before 2383 * zapping the connection. 2384 */ 2385 2386 /* RED-PEN. Formally speaking, we have broken TCP state 2387 * machine. State transitions: 2388 * 2389 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2390 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2391 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2392 * 2393 * are legal only when FIN has been sent (i.e. in window), 2394 * rather than queued out of window. Purists blame. 2395 * 2396 * F.e. "RFC state" is ESTABLISHED, 2397 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2398 * 2399 * The visible declinations are that sometimes 2400 * we enter time-wait state, when it is not required really 2401 * (harmless), do not send active resets, when they are 2402 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2403 * they look as CLOSING or LAST_ACK for Linux) 2404 * Probably, I missed some more holelets. 2405 * --ANK 2406 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2407 * in a single packet! (May consider it later but will 2408 * probably need API support or TCP_CORK SYN-ACK until 2409 * data is written and socket is closed.) 2410 */ 2411 tcp_send_fin(sk); 2412 } 2413 2414 sk_stream_wait_close(sk, timeout); 2415 2416 adjudge_to_death: 2417 state = sk->sk_state; 2418 sock_hold(sk); 2419 sock_orphan(sk); 2420 2421 local_bh_disable(); 2422 bh_lock_sock(sk); 2423 /* remove backlog if any, without releasing ownership. */ 2424 __release_sock(sk); 2425 2426 percpu_counter_inc(sk->sk_prot->orphan_count); 2427 2428 /* Have we already been destroyed by a softirq or backlog? */ 2429 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2430 goto out; 2431 2432 /* This is a (useful) BSD violating of the RFC. There is a 2433 * problem with TCP as specified in that the other end could 2434 * keep a socket open forever with no application left this end. 2435 * We use a 1 minute timeout (about the same as BSD) then kill 2436 * our end. If they send after that then tough - BUT: long enough 2437 * that we won't make the old 4*rto = almost no time - whoops 2438 * reset mistake. 2439 * 2440 * Nope, it was not mistake. It is really desired behaviour 2441 * f.e. on http servers, when such sockets are useless, but 2442 * consume significant resources. Let's do it with special 2443 * linger2 option. --ANK 2444 */ 2445 2446 if (sk->sk_state == TCP_FIN_WAIT2) { 2447 struct tcp_sock *tp = tcp_sk(sk); 2448 if (tp->linger2 < 0) { 2449 tcp_set_state(sk, TCP_CLOSE); 2450 tcp_send_active_reset(sk, GFP_ATOMIC); 2451 __NET_INC_STATS(sock_net(sk), 2452 LINUX_MIB_TCPABORTONLINGER); 2453 } else { 2454 const int tmo = tcp_fin_time(sk); 2455 2456 if (tmo > TCP_TIMEWAIT_LEN) { 2457 inet_csk_reset_keepalive_timer(sk, 2458 tmo - TCP_TIMEWAIT_LEN); 2459 } else { 2460 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2461 goto out; 2462 } 2463 } 2464 } 2465 if (sk->sk_state != TCP_CLOSE) { 2466 sk_mem_reclaim(sk); 2467 if (tcp_check_oom(sk, 0)) { 2468 tcp_set_state(sk, TCP_CLOSE); 2469 tcp_send_active_reset(sk, GFP_ATOMIC); 2470 __NET_INC_STATS(sock_net(sk), 2471 LINUX_MIB_TCPABORTONMEMORY); 2472 } else if (!check_net(sock_net(sk))) { 2473 /* Not possible to send reset; just close */ 2474 tcp_set_state(sk, TCP_CLOSE); 2475 } 2476 } 2477 2478 if (sk->sk_state == TCP_CLOSE) { 2479 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2480 /* We could get here with a non-NULL req if the socket is 2481 * aborted (e.g., closed with unread data) before 3WHS 2482 * finishes. 2483 */ 2484 if (req) 2485 reqsk_fastopen_remove(sk, req, false); 2486 inet_csk_destroy_sock(sk); 2487 } 2488 /* Otherwise, socket is reprieved until protocol close. */ 2489 2490 out: 2491 bh_unlock_sock(sk); 2492 local_bh_enable(); 2493 release_sock(sk); 2494 sock_put(sk); 2495 } 2496 EXPORT_SYMBOL(tcp_close); 2497 2498 /* These states need RST on ABORT according to RFC793 */ 2499 2500 static inline bool tcp_need_reset(int state) 2501 { 2502 return (1 << state) & 2503 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2504 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2505 } 2506 2507 static void tcp_rtx_queue_purge(struct sock *sk) 2508 { 2509 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2510 2511 while (p) { 2512 struct sk_buff *skb = rb_to_skb(p); 2513 2514 p = rb_next(p); 2515 /* Since we are deleting whole queue, no need to 2516 * list_del(&skb->tcp_tsorted_anchor) 2517 */ 2518 tcp_rtx_queue_unlink(skb, sk); 2519 sk_wmem_free_skb(sk, skb); 2520 } 2521 } 2522 2523 void tcp_write_queue_purge(struct sock *sk) 2524 { 2525 struct sk_buff *skb; 2526 2527 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2528 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2529 tcp_skb_tsorted_anchor_cleanup(skb); 2530 sk_wmem_free_skb(sk, skb); 2531 } 2532 tcp_rtx_queue_purge(sk); 2533 skb = sk->sk_tx_skb_cache; 2534 if (skb) { 2535 __kfree_skb(skb); 2536 sk->sk_tx_skb_cache = NULL; 2537 } 2538 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2539 sk_mem_reclaim(sk); 2540 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2541 tcp_sk(sk)->packets_out = 0; 2542 inet_csk(sk)->icsk_backoff = 0; 2543 } 2544 2545 int tcp_disconnect(struct sock *sk, int flags) 2546 { 2547 struct inet_sock *inet = inet_sk(sk); 2548 struct inet_connection_sock *icsk = inet_csk(sk); 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 int old_state = sk->sk_state; 2551 2552 if (old_state != TCP_CLOSE) 2553 tcp_set_state(sk, TCP_CLOSE); 2554 2555 /* ABORT function of RFC793 */ 2556 if (old_state == TCP_LISTEN) { 2557 inet_csk_listen_stop(sk); 2558 } else if (unlikely(tp->repair)) { 2559 sk->sk_err = ECONNABORTED; 2560 } else if (tcp_need_reset(old_state) || 2561 (tp->snd_nxt != tp->write_seq && 2562 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2563 /* The last check adjusts for discrepancy of Linux wrt. RFC 2564 * states 2565 */ 2566 tcp_send_active_reset(sk, gfp_any()); 2567 sk->sk_err = ECONNRESET; 2568 } else if (old_state == TCP_SYN_SENT) 2569 sk->sk_err = ECONNRESET; 2570 2571 tcp_clear_xmit_timers(sk); 2572 __skb_queue_purge(&sk->sk_receive_queue); 2573 if (sk->sk_rx_skb_cache) { 2574 __kfree_skb(sk->sk_rx_skb_cache); 2575 sk->sk_rx_skb_cache = NULL; 2576 } 2577 tp->copied_seq = tp->rcv_nxt; 2578 tp->urg_data = 0; 2579 tcp_write_queue_purge(sk); 2580 tcp_fastopen_active_disable_ofo_check(sk); 2581 skb_rbtree_purge(&tp->out_of_order_queue); 2582 2583 inet->inet_dport = 0; 2584 2585 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2586 inet_reset_saddr(sk); 2587 2588 sk->sk_shutdown = 0; 2589 sock_reset_flag(sk, SOCK_DONE); 2590 tp->srtt_us = 0; 2591 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2592 tp->rcv_rtt_last_tsecr = 0; 2593 tp->write_seq += tp->max_window + 2; 2594 if (tp->write_seq == 0) 2595 tp->write_seq = 1; 2596 icsk->icsk_backoff = 0; 2597 tp->snd_cwnd = 2; 2598 icsk->icsk_probes_out = 0; 2599 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2600 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2601 tp->snd_cwnd = TCP_INIT_CWND; 2602 tp->snd_cwnd_cnt = 0; 2603 tp->window_clamp = 0; 2604 tp->delivered_ce = 0; 2605 tcp_set_ca_state(sk, TCP_CA_Open); 2606 tp->is_sack_reneg = 0; 2607 tcp_clear_retrans(tp); 2608 inet_csk_delack_init(sk); 2609 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2610 * issue in __tcp_select_window() 2611 */ 2612 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2613 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2614 __sk_dst_reset(sk); 2615 dst_release(sk->sk_rx_dst); 2616 sk->sk_rx_dst = NULL; 2617 tcp_saved_syn_free(tp); 2618 tp->compressed_ack = 0; 2619 tp->bytes_sent = 0; 2620 tp->bytes_acked = 0; 2621 tp->bytes_received = 0; 2622 tp->bytes_retrans = 0; 2623 tp->duplicate_sack[0].start_seq = 0; 2624 tp->duplicate_sack[0].end_seq = 0; 2625 tp->dsack_dups = 0; 2626 tp->reord_seen = 0; 2627 tp->retrans_out = 0; 2628 tp->sacked_out = 0; 2629 tp->tlp_high_seq = 0; 2630 tp->last_oow_ack_time = 0; 2631 /* There's a bubble in the pipe until at least the first ACK. */ 2632 tp->app_limited = ~0U; 2633 tp->rack.mstamp = 0; 2634 tp->rack.advanced = 0; 2635 tp->rack.reo_wnd_steps = 1; 2636 tp->rack.last_delivered = 0; 2637 tp->rack.reo_wnd_persist = 0; 2638 tp->rack.dsack_seen = 0; 2639 tp->syn_data_acked = 0; 2640 tp->rx_opt.saw_tstamp = 0; 2641 tp->rx_opt.dsack = 0; 2642 tp->rx_opt.num_sacks = 0; 2643 2644 2645 /* Clean up fastopen related fields */ 2646 tcp_free_fastopen_req(tp); 2647 inet->defer_connect = 0; 2648 2649 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2650 2651 if (sk->sk_frag.page) { 2652 put_page(sk->sk_frag.page); 2653 sk->sk_frag.page = NULL; 2654 sk->sk_frag.offset = 0; 2655 } 2656 2657 sk->sk_error_report(sk); 2658 return 0; 2659 } 2660 EXPORT_SYMBOL(tcp_disconnect); 2661 2662 static inline bool tcp_can_repair_sock(const struct sock *sk) 2663 { 2664 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2665 (sk->sk_state != TCP_LISTEN); 2666 } 2667 2668 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2669 { 2670 struct tcp_repair_window opt; 2671 2672 if (!tp->repair) 2673 return -EPERM; 2674 2675 if (len != sizeof(opt)) 2676 return -EINVAL; 2677 2678 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2679 return -EFAULT; 2680 2681 if (opt.max_window < opt.snd_wnd) 2682 return -EINVAL; 2683 2684 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2685 return -EINVAL; 2686 2687 if (after(opt.rcv_wup, tp->rcv_nxt)) 2688 return -EINVAL; 2689 2690 tp->snd_wl1 = opt.snd_wl1; 2691 tp->snd_wnd = opt.snd_wnd; 2692 tp->max_window = opt.max_window; 2693 2694 tp->rcv_wnd = opt.rcv_wnd; 2695 tp->rcv_wup = opt.rcv_wup; 2696 2697 return 0; 2698 } 2699 2700 static int tcp_repair_options_est(struct sock *sk, 2701 struct tcp_repair_opt __user *optbuf, unsigned int len) 2702 { 2703 struct tcp_sock *tp = tcp_sk(sk); 2704 struct tcp_repair_opt opt; 2705 2706 while (len >= sizeof(opt)) { 2707 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2708 return -EFAULT; 2709 2710 optbuf++; 2711 len -= sizeof(opt); 2712 2713 switch (opt.opt_code) { 2714 case TCPOPT_MSS: 2715 tp->rx_opt.mss_clamp = opt.opt_val; 2716 tcp_mtup_init(sk); 2717 break; 2718 case TCPOPT_WINDOW: 2719 { 2720 u16 snd_wscale = opt.opt_val & 0xFFFF; 2721 u16 rcv_wscale = opt.opt_val >> 16; 2722 2723 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2724 return -EFBIG; 2725 2726 tp->rx_opt.snd_wscale = snd_wscale; 2727 tp->rx_opt.rcv_wscale = rcv_wscale; 2728 tp->rx_opt.wscale_ok = 1; 2729 } 2730 break; 2731 case TCPOPT_SACK_PERM: 2732 if (opt.opt_val != 0) 2733 return -EINVAL; 2734 2735 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2736 break; 2737 case TCPOPT_TIMESTAMP: 2738 if (opt.opt_val != 0) 2739 return -EINVAL; 2740 2741 tp->rx_opt.tstamp_ok = 1; 2742 break; 2743 } 2744 } 2745 2746 return 0; 2747 } 2748 2749 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2750 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2751 2752 static void tcp_enable_tx_delay(void) 2753 { 2754 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2755 static int __tcp_tx_delay_enabled = 0; 2756 2757 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2758 static_branch_enable(&tcp_tx_delay_enabled); 2759 pr_info("TCP_TX_DELAY enabled\n"); 2760 } 2761 } 2762 } 2763 2764 /* 2765 * Socket option code for TCP. 2766 */ 2767 static int do_tcp_setsockopt(struct sock *sk, int level, 2768 int optname, char __user *optval, unsigned int optlen) 2769 { 2770 struct tcp_sock *tp = tcp_sk(sk); 2771 struct inet_connection_sock *icsk = inet_csk(sk); 2772 struct net *net = sock_net(sk); 2773 int val; 2774 int err = 0; 2775 2776 /* These are data/string values, all the others are ints */ 2777 switch (optname) { 2778 case TCP_CONGESTION: { 2779 char name[TCP_CA_NAME_MAX]; 2780 2781 if (optlen < 1) 2782 return -EINVAL; 2783 2784 val = strncpy_from_user(name, optval, 2785 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2786 if (val < 0) 2787 return -EFAULT; 2788 name[val] = 0; 2789 2790 lock_sock(sk); 2791 err = tcp_set_congestion_control(sk, name, true, true, 2792 ns_capable(sock_net(sk)->user_ns, 2793 CAP_NET_ADMIN)); 2794 release_sock(sk); 2795 return err; 2796 } 2797 case TCP_ULP: { 2798 char name[TCP_ULP_NAME_MAX]; 2799 2800 if (optlen < 1) 2801 return -EINVAL; 2802 2803 val = strncpy_from_user(name, optval, 2804 min_t(long, TCP_ULP_NAME_MAX - 1, 2805 optlen)); 2806 if (val < 0) 2807 return -EFAULT; 2808 name[val] = 0; 2809 2810 lock_sock(sk); 2811 err = tcp_set_ulp(sk, name); 2812 release_sock(sk); 2813 return err; 2814 } 2815 case TCP_FASTOPEN_KEY: { 2816 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 2817 __u8 *backup_key = NULL; 2818 2819 /* Allow a backup key as well to facilitate key rotation 2820 * First key is the active one. 2821 */ 2822 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 2823 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 2824 return -EINVAL; 2825 2826 if (copy_from_user(key, optval, optlen)) 2827 return -EFAULT; 2828 2829 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 2830 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 2831 2832 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 2833 } 2834 default: 2835 /* fallthru */ 2836 break; 2837 } 2838 2839 if (optlen < sizeof(int)) 2840 return -EINVAL; 2841 2842 if (get_user(val, (int __user *)optval)) 2843 return -EFAULT; 2844 2845 lock_sock(sk); 2846 2847 switch (optname) { 2848 case TCP_MAXSEG: 2849 /* Values greater than interface MTU won't take effect. However 2850 * at the point when this call is done we typically don't yet 2851 * know which interface is going to be used 2852 */ 2853 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2854 err = -EINVAL; 2855 break; 2856 } 2857 tp->rx_opt.user_mss = val; 2858 break; 2859 2860 case TCP_NODELAY: 2861 if (val) { 2862 /* TCP_NODELAY is weaker than TCP_CORK, so that 2863 * this option on corked socket is remembered, but 2864 * it is not activated until cork is cleared. 2865 * 2866 * However, when TCP_NODELAY is set we make 2867 * an explicit push, which overrides even TCP_CORK 2868 * for currently queued segments. 2869 */ 2870 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2871 tcp_push_pending_frames(sk); 2872 } else { 2873 tp->nonagle &= ~TCP_NAGLE_OFF; 2874 } 2875 break; 2876 2877 case TCP_THIN_LINEAR_TIMEOUTS: 2878 if (val < 0 || val > 1) 2879 err = -EINVAL; 2880 else 2881 tp->thin_lto = val; 2882 break; 2883 2884 case TCP_THIN_DUPACK: 2885 if (val < 0 || val > 1) 2886 err = -EINVAL; 2887 break; 2888 2889 case TCP_REPAIR: 2890 if (!tcp_can_repair_sock(sk)) 2891 err = -EPERM; 2892 else if (val == TCP_REPAIR_ON) { 2893 tp->repair = 1; 2894 sk->sk_reuse = SK_FORCE_REUSE; 2895 tp->repair_queue = TCP_NO_QUEUE; 2896 } else if (val == TCP_REPAIR_OFF) { 2897 tp->repair = 0; 2898 sk->sk_reuse = SK_NO_REUSE; 2899 tcp_send_window_probe(sk); 2900 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2901 tp->repair = 0; 2902 sk->sk_reuse = SK_NO_REUSE; 2903 } else 2904 err = -EINVAL; 2905 2906 break; 2907 2908 case TCP_REPAIR_QUEUE: 2909 if (!tp->repair) 2910 err = -EPERM; 2911 else if ((unsigned int)val < TCP_QUEUES_NR) 2912 tp->repair_queue = val; 2913 else 2914 err = -EINVAL; 2915 break; 2916 2917 case TCP_QUEUE_SEQ: 2918 if (sk->sk_state != TCP_CLOSE) 2919 err = -EPERM; 2920 else if (tp->repair_queue == TCP_SEND_QUEUE) 2921 tp->write_seq = val; 2922 else if (tp->repair_queue == TCP_RECV_QUEUE) 2923 tp->rcv_nxt = val; 2924 else 2925 err = -EINVAL; 2926 break; 2927 2928 case TCP_REPAIR_OPTIONS: 2929 if (!tp->repair) 2930 err = -EINVAL; 2931 else if (sk->sk_state == TCP_ESTABLISHED) 2932 err = tcp_repair_options_est(sk, 2933 (struct tcp_repair_opt __user *)optval, 2934 optlen); 2935 else 2936 err = -EPERM; 2937 break; 2938 2939 case TCP_CORK: 2940 /* When set indicates to always queue non-full frames. 2941 * Later the user clears this option and we transmit 2942 * any pending partial frames in the queue. This is 2943 * meant to be used alongside sendfile() to get properly 2944 * filled frames when the user (for example) must write 2945 * out headers with a write() call first and then use 2946 * sendfile to send out the data parts. 2947 * 2948 * TCP_CORK can be set together with TCP_NODELAY and it is 2949 * stronger than TCP_NODELAY. 2950 */ 2951 if (val) { 2952 tp->nonagle |= TCP_NAGLE_CORK; 2953 } else { 2954 tp->nonagle &= ~TCP_NAGLE_CORK; 2955 if (tp->nonagle&TCP_NAGLE_OFF) 2956 tp->nonagle |= TCP_NAGLE_PUSH; 2957 tcp_push_pending_frames(sk); 2958 } 2959 break; 2960 2961 case TCP_KEEPIDLE: 2962 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2963 err = -EINVAL; 2964 else { 2965 tp->keepalive_time = val * HZ; 2966 if (sock_flag(sk, SOCK_KEEPOPEN) && 2967 !((1 << sk->sk_state) & 2968 (TCPF_CLOSE | TCPF_LISTEN))) { 2969 u32 elapsed = keepalive_time_elapsed(tp); 2970 if (tp->keepalive_time > elapsed) 2971 elapsed = tp->keepalive_time - elapsed; 2972 else 2973 elapsed = 0; 2974 inet_csk_reset_keepalive_timer(sk, elapsed); 2975 } 2976 } 2977 break; 2978 case TCP_KEEPINTVL: 2979 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2980 err = -EINVAL; 2981 else 2982 tp->keepalive_intvl = val * HZ; 2983 break; 2984 case TCP_KEEPCNT: 2985 if (val < 1 || val > MAX_TCP_KEEPCNT) 2986 err = -EINVAL; 2987 else 2988 tp->keepalive_probes = val; 2989 break; 2990 case TCP_SYNCNT: 2991 if (val < 1 || val > MAX_TCP_SYNCNT) 2992 err = -EINVAL; 2993 else 2994 icsk->icsk_syn_retries = val; 2995 break; 2996 2997 case TCP_SAVE_SYN: 2998 if (val < 0 || val > 1) 2999 err = -EINVAL; 3000 else 3001 tp->save_syn = val; 3002 break; 3003 3004 case TCP_LINGER2: 3005 if (val < 0) 3006 tp->linger2 = -1; 3007 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 3008 tp->linger2 = 0; 3009 else 3010 tp->linger2 = val * HZ; 3011 break; 3012 3013 case TCP_DEFER_ACCEPT: 3014 /* Translate value in seconds to number of retransmits */ 3015 icsk->icsk_accept_queue.rskq_defer_accept = 3016 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3017 TCP_RTO_MAX / HZ); 3018 break; 3019 3020 case TCP_WINDOW_CLAMP: 3021 if (!val) { 3022 if (sk->sk_state != TCP_CLOSE) { 3023 err = -EINVAL; 3024 break; 3025 } 3026 tp->window_clamp = 0; 3027 } else 3028 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3029 SOCK_MIN_RCVBUF / 2 : val; 3030 break; 3031 3032 case TCP_QUICKACK: 3033 if (!val) { 3034 inet_csk_enter_pingpong_mode(sk); 3035 } else { 3036 inet_csk_exit_pingpong_mode(sk); 3037 if ((1 << sk->sk_state) & 3038 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3039 inet_csk_ack_scheduled(sk)) { 3040 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3041 tcp_cleanup_rbuf(sk, 1); 3042 if (!(val & 1)) 3043 inet_csk_enter_pingpong_mode(sk); 3044 } 3045 } 3046 break; 3047 3048 #ifdef CONFIG_TCP_MD5SIG 3049 case TCP_MD5SIG: 3050 case TCP_MD5SIG_EXT: 3051 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3052 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3053 else 3054 err = -EINVAL; 3055 break; 3056 #endif 3057 case TCP_USER_TIMEOUT: 3058 /* Cap the max time in ms TCP will retry or probe the window 3059 * before giving up and aborting (ETIMEDOUT) a connection. 3060 */ 3061 if (val < 0) 3062 err = -EINVAL; 3063 else 3064 icsk->icsk_user_timeout = val; 3065 break; 3066 3067 case TCP_FASTOPEN: 3068 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3069 TCPF_LISTEN))) { 3070 tcp_fastopen_init_key_once(net); 3071 3072 fastopen_queue_tune(sk, val); 3073 } else { 3074 err = -EINVAL; 3075 } 3076 break; 3077 case TCP_FASTOPEN_CONNECT: 3078 if (val > 1 || val < 0) { 3079 err = -EINVAL; 3080 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3081 if (sk->sk_state == TCP_CLOSE) 3082 tp->fastopen_connect = val; 3083 else 3084 err = -EINVAL; 3085 } else { 3086 err = -EOPNOTSUPP; 3087 } 3088 break; 3089 case TCP_FASTOPEN_NO_COOKIE: 3090 if (val > 1 || val < 0) 3091 err = -EINVAL; 3092 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3093 err = -EINVAL; 3094 else 3095 tp->fastopen_no_cookie = val; 3096 break; 3097 case TCP_TIMESTAMP: 3098 if (!tp->repair) 3099 err = -EPERM; 3100 else 3101 tp->tsoffset = val - tcp_time_stamp_raw(); 3102 break; 3103 case TCP_REPAIR_WINDOW: 3104 err = tcp_repair_set_window(tp, optval, optlen); 3105 break; 3106 case TCP_NOTSENT_LOWAT: 3107 tp->notsent_lowat = val; 3108 sk->sk_write_space(sk); 3109 break; 3110 case TCP_INQ: 3111 if (val > 1 || val < 0) 3112 err = -EINVAL; 3113 else 3114 tp->recvmsg_inq = val; 3115 break; 3116 case TCP_TX_DELAY: 3117 if (val) 3118 tcp_enable_tx_delay(); 3119 tp->tcp_tx_delay = val; 3120 break; 3121 default: 3122 err = -ENOPROTOOPT; 3123 break; 3124 } 3125 3126 release_sock(sk); 3127 return err; 3128 } 3129 3130 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3131 unsigned int optlen) 3132 { 3133 const struct inet_connection_sock *icsk = inet_csk(sk); 3134 3135 if (level != SOL_TCP) 3136 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3137 optval, optlen); 3138 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3139 } 3140 EXPORT_SYMBOL(tcp_setsockopt); 3141 3142 #ifdef CONFIG_COMPAT 3143 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3144 char __user *optval, unsigned int optlen) 3145 { 3146 if (level != SOL_TCP) 3147 return inet_csk_compat_setsockopt(sk, level, optname, 3148 optval, optlen); 3149 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3150 } 3151 EXPORT_SYMBOL(compat_tcp_setsockopt); 3152 #endif 3153 3154 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3155 struct tcp_info *info) 3156 { 3157 u64 stats[__TCP_CHRONO_MAX], total = 0; 3158 enum tcp_chrono i; 3159 3160 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3161 stats[i] = tp->chrono_stat[i - 1]; 3162 if (i == tp->chrono_type) 3163 stats[i] += tcp_jiffies32 - tp->chrono_start; 3164 stats[i] *= USEC_PER_SEC / HZ; 3165 total += stats[i]; 3166 } 3167 3168 info->tcpi_busy_time = total; 3169 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3170 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3171 } 3172 3173 /* Return information about state of tcp endpoint in API format. */ 3174 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3175 { 3176 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3177 const struct inet_connection_sock *icsk = inet_csk(sk); 3178 unsigned long rate; 3179 u32 now; 3180 u64 rate64; 3181 bool slow; 3182 3183 memset(info, 0, sizeof(*info)); 3184 if (sk->sk_type != SOCK_STREAM) 3185 return; 3186 3187 info->tcpi_state = inet_sk_state_load(sk); 3188 3189 /* Report meaningful fields for all TCP states, including listeners */ 3190 rate = READ_ONCE(sk->sk_pacing_rate); 3191 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3192 info->tcpi_pacing_rate = rate64; 3193 3194 rate = READ_ONCE(sk->sk_max_pacing_rate); 3195 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3196 info->tcpi_max_pacing_rate = rate64; 3197 3198 info->tcpi_reordering = tp->reordering; 3199 info->tcpi_snd_cwnd = tp->snd_cwnd; 3200 3201 if (info->tcpi_state == TCP_LISTEN) { 3202 /* listeners aliased fields : 3203 * tcpi_unacked -> Number of children ready for accept() 3204 * tcpi_sacked -> max backlog 3205 */ 3206 info->tcpi_unacked = sk->sk_ack_backlog; 3207 info->tcpi_sacked = sk->sk_max_ack_backlog; 3208 return; 3209 } 3210 3211 slow = lock_sock_fast(sk); 3212 3213 info->tcpi_ca_state = icsk->icsk_ca_state; 3214 info->tcpi_retransmits = icsk->icsk_retransmits; 3215 info->tcpi_probes = icsk->icsk_probes_out; 3216 info->tcpi_backoff = icsk->icsk_backoff; 3217 3218 if (tp->rx_opt.tstamp_ok) 3219 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3220 if (tcp_is_sack(tp)) 3221 info->tcpi_options |= TCPI_OPT_SACK; 3222 if (tp->rx_opt.wscale_ok) { 3223 info->tcpi_options |= TCPI_OPT_WSCALE; 3224 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3225 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3226 } 3227 3228 if (tp->ecn_flags & TCP_ECN_OK) 3229 info->tcpi_options |= TCPI_OPT_ECN; 3230 if (tp->ecn_flags & TCP_ECN_SEEN) 3231 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3232 if (tp->syn_data_acked) 3233 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3234 3235 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3236 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3237 info->tcpi_snd_mss = tp->mss_cache; 3238 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3239 3240 info->tcpi_unacked = tp->packets_out; 3241 info->tcpi_sacked = tp->sacked_out; 3242 3243 info->tcpi_lost = tp->lost_out; 3244 info->tcpi_retrans = tp->retrans_out; 3245 3246 now = tcp_jiffies32; 3247 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3248 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3249 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3250 3251 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3252 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3253 info->tcpi_rtt = tp->srtt_us >> 3; 3254 info->tcpi_rttvar = tp->mdev_us >> 2; 3255 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3256 info->tcpi_advmss = tp->advmss; 3257 3258 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3259 info->tcpi_rcv_space = tp->rcvq_space.space; 3260 3261 info->tcpi_total_retrans = tp->total_retrans; 3262 3263 info->tcpi_bytes_acked = tp->bytes_acked; 3264 info->tcpi_bytes_received = tp->bytes_received; 3265 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3266 tcp_get_info_chrono_stats(tp, info); 3267 3268 info->tcpi_segs_out = tp->segs_out; 3269 info->tcpi_segs_in = tp->segs_in; 3270 3271 info->tcpi_min_rtt = tcp_min_rtt(tp); 3272 info->tcpi_data_segs_in = tp->data_segs_in; 3273 info->tcpi_data_segs_out = tp->data_segs_out; 3274 3275 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3276 rate64 = tcp_compute_delivery_rate(tp); 3277 if (rate64) 3278 info->tcpi_delivery_rate = rate64; 3279 info->tcpi_delivered = tp->delivered; 3280 info->tcpi_delivered_ce = tp->delivered_ce; 3281 info->tcpi_bytes_sent = tp->bytes_sent; 3282 info->tcpi_bytes_retrans = tp->bytes_retrans; 3283 info->tcpi_dsack_dups = tp->dsack_dups; 3284 info->tcpi_reord_seen = tp->reord_seen; 3285 unlock_sock_fast(sk, slow); 3286 } 3287 EXPORT_SYMBOL_GPL(tcp_get_info); 3288 3289 static size_t tcp_opt_stats_get_size(void) 3290 { 3291 return 3292 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3293 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3294 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3295 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3296 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3297 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3298 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3299 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3300 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3301 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3302 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3303 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3304 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3305 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3306 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3307 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3308 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3309 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3310 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3311 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3312 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3313 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3314 0; 3315 } 3316 3317 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3318 { 3319 const struct tcp_sock *tp = tcp_sk(sk); 3320 struct sk_buff *stats; 3321 struct tcp_info info; 3322 unsigned long rate; 3323 u64 rate64; 3324 3325 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3326 if (!stats) 3327 return NULL; 3328 3329 tcp_get_info_chrono_stats(tp, &info); 3330 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3331 info.tcpi_busy_time, TCP_NLA_PAD); 3332 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3333 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3334 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3335 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3336 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3337 tp->data_segs_out, TCP_NLA_PAD); 3338 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3339 tp->total_retrans, TCP_NLA_PAD); 3340 3341 rate = READ_ONCE(sk->sk_pacing_rate); 3342 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3343 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3344 3345 rate64 = tcp_compute_delivery_rate(tp); 3346 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3347 3348 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3349 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3350 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3351 3352 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3353 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3354 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3355 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3356 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3357 3358 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3359 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3360 3361 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3362 TCP_NLA_PAD); 3363 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3364 TCP_NLA_PAD); 3365 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3366 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3367 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3368 3369 return stats; 3370 } 3371 3372 static int do_tcp_getsockopt(struct sock *sk, int level, 3373 int optname, char __user *optval, int __user *optlen) 3374 { 3375 struct inet_connection_sock *icsk = inet_csk(sk); 3376 struct tcp_sock *tp = tcp_sk(sk); 3377 struct net *net = sock_net(sk); 3378 int val, len; 3379 3380 if (get_user(len, optlen)) 3381 return -EFAULT; 3382 3383 len = min_t(unsigned int, len, sizeof(int)); 3384 3385 if (len < 0) 3386 return -EINVAL; 3387 3388 switch (optname) { 3389 case TCP_MAXSEG: 3390 val = tp->mss_cache; 3391 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3392 val = tp->rx_opt.user_mss; 3393 if (tp->repair) 3394 val = tp->rx_opt.mss_clamp; 3395 break; 3396 case TCP_NODELAY: 3397 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3398 break; 3399 case TCP_CORK: 3400 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3401 break; 3402 case TCP_KEEPIDLE: 3403 val = keepalive_time_when(tp) / HZ; 3404 break; 3405 case TCP_KEEPINTVL: 3406 val = keepalive_intvl_when(tp) / HZ; 3407 break; 3408 case TCP_KEEPCNT: 3409 val = keepalive_probes(tp); 3410 break; 3411 case TCP_SYNCNT: 3412 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3413 break; 3414 case TCP_LINGER2: 3415 val = tp->linger2; 3416 if (val >= 0) 3417 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3418 break; 3419 case TCP_DEFER_ACCEPT: 3420 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3421 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3422 break; 3423 case TCP_WINDOW_CLAMP: 3424 val = tp->window_clamp; 3425 break; 3426 case TCP_INFO: { 3427 struct tcp_info info; 3428 3429 if (get_user(len, optlen)) 3430 return -EFAULT; 3431 3432 tcp_get_info(sk, &info); 3433 3434 len = min_t(unsigned int, len, sizeof(info)); 3435 if (put_user(len, optlen)) 3436 return -EFAULT; 3437 if (copy_to_user(optval, &info, len)) 3438 return -EFAULT; 3439 return 0; 3440 } 3441 case TCP_CC_INFO: { 3442 const struct tcp_congestion_ops *ca_ops; 3443 union tcp_cc_info info; 3444 size_t sz = 0; 3445 int attr; 3446 3447 if (get_user(len, optlen)) 3448 return -EFAULT; 3449 3450 ca_ops = icsk->icsk_ca_ops; 3451 if (ca_ops && ca_ops->get_info) 3452 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3453 3454 len = min_t(unsigned int, len, sz); 3455 if (put_user(len, optlen)) 3456 return -EFAULT; 3457 if (copy_to_user(optval, &info, len)) 3458 return -EFAULT; 3459 return 0; 3460 } 3461 case TCP_QUICKACK: 3462 val = !inet_csk_in_pingpong_mode(sk); 3463 break; 3464 3465 case TCP_CONGESTION: 3466 if (get_user(len, optlen)) 3467 return -EFAULT; 3468 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3469 if (put_user(len, optlen)) 3470 return -EFAULT; 3471 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3472 return -EFAULT; 3473 return 0; 3474 3475 case TCP_ULP: 3476 if (get_user(len, optlen)) 3477 return -EFAULT; 3478 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3479 if (!icsk->icsk_ulp_ops) { 3480 if (put_user(0, optlen)) 3481 return -EFAULT; 3482 return 0; 3483 } 3484 if (put_user(len, optlen)) 3485 return -EFAULT; 3486 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3487 return -EFAULT; 3488 return 0; 3489 3490 case TCP_FASTOPEN_KEY: { 3491 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3492 struct tcp_fastopen_context *ctx; 3493 unsigned int key_len = 0; 3494 3495 if (get_user(len, optlen)) 3496 return -EFAULT; 3497 3498 rcu_read_lock(); 3499 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3500 if (ctx) { 3501 key_len = tcp_fastopen_context_len(ctx) * 3502 TCP_FASTOPEN_KEY_LENGTH; 3503 memcpy(&key[0], &ctx->key[0], key_len); 3504 } 3505 rcu_read_unlock(); 3506 3507 len = min_t(unsigned int, len, key_len); 3508 if (put_user(len, optlen)) 3509 return -EFAULT; 3510 if (copy_to_user(optval, key, len)) 3511 return -EFAULT; 3512 return 0; 3513 } 3514 case TCP_THIN_LINEAR_TIMEOUTS: 3515 val = tp->thin_lto; 3516 break; 3517 3518 case TCP_THIN_DUPACK: 3519 val = 0; 3520 break; 3521 3522 case TCP_REPAIR: 3523 val = tp->repair; 3524 break; 3525 3526 case TCP_REPAIR_QUEUE: 3527 if (tp->repair) 3528 val = tp->repair_queue; 3529 else 3530 return -EINVAL; 3531 break; 3532 3533 case TCP_REPAIR_WINDOW: { 3534 struct tcp_repair_window opt; 3535 3536 if (get_user(len, optlen)) 3537 return -EFAULT; 3538 3539 if (len != sizeof(opt)) 3540 return -EINVAL; 3541 3542 if (!tp->repair) 3543 return -EPERM; 3544 3545 opt.snd_wl1 = tp->snd_wl1; 3546 opt.snd_wnd = tp->snd_wnd; 3547 opt.max_window = tp->max_window; 3548 opt.rcv_wnd = tp->rcv_wnd; 3549 opt.rcv_wup = tp->rcv_wup; 3550 3551 if (copy_to_user(optval, &opt, len)) 3552 return -EFAULT; 3553 return 0; 3554 } 3555 case TCP_QUEUE_SEQ: 3556 if (tp->repair_queue == TCP_SEND_QUEUE) 3557 val = tp->write_seq; 3558 else if (tp->repair_queue == TCP_RECV_QUEUE) 3559 val = tp->rcv_nxt; 3560 else 3561 return -EINVAL; 3562 break; 3563 3564 case TCP_USER_TIMEOUT: 3565 val = icsk->icsk_user_timeout; 3566 break; 3567 3568 case TCP_FASTOPEN: 3569 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3570 break; 3571 3572 case TCP_FASTOPEN_CONNECT: 3573 val = tp->fastopen_connect; 3574 break; 3575 3576 case TCP_FASTOPEN_NO_COOKIE: 3577 val = tp->fastopen_no_cookie; 3578 break; 3579 3580 case TCP_TX_DELAY: 3581 val = tp->tcp_tx_delay; 3582 break; 3583 3584 case TCP_TIMESTAMP: 3585 val = tcp_time_stamp_raw() + tp->tsoffset; 3586 break; 3587 case TCP_NOTSENT_LOWAT: 3588 val = tp->notsent_lowat; 3589 break; 3590 case TCP_INQ: 3591 val = tp->recvmsg_inq; 3592 break; 3593 case TCP_SAVE_SYN: 3594 val = tp->save_syn; 3595 break; 3596 case TCP_SAVED_SYN: { 3597 if (get_user(len, optlen)) 3598 return -EFAULT; 3599 3600 lock_sock(sk); 3601 if (tp->saved_syn) { 3602 if (len < tp->saved_syn[0]) { 3603 if (put_user(tp->saved_syn[0], optlen)) { 3604 release_sock(sk); 3605 return -EFAULT; 3606 } 3607 release_sock(sk); 3608 return -EINVAL; 3609 } 3610 len = tp->saved_syn[0]; 3611 if (put_user(len, optlen)) { 3612 release_sock(sk); 3613 return -EFAULT; 3614 } 3615 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3616 release_sock(sk); 3617 return -EFAULT; 3618 } 3619 tcp_saved_syn_free(tp); 3620 release_sock(sk); 3621 } else { 3622 release_sock(sk); 3623 len = 0; 3624 if (put_user(len, optlen)) 3625 return -EFAULT; 3626 } 3627 return 0; 3628 } 3629 #ifdef CONFIG_MMU 3630 case TCP_ZEROCOPY_RECEIVE: { 3631 struct tcp_zerocopy_receive zc; 3632 int err; 3633 3634 if (get_user(len, optlen)) 3635 return -EFAULT; 3636 if (len != sizeof(zc)) 3637 return -EINVAL; 3638 if (copy_from_user(&zc, optval, len)) 3639 return -EFAULT; 3640 lock_sock(sk); 3641 err = tcp_zerocopy_receive(sk, &zc); 3642 release_sock(sk); 3643 if (!err && copy_to_user(optval, &zc, len)) 3644 err = -EFAULT; 3645 return err; 3646 } 3647 #endif 3648 default: 3649 return -ENOPROTOOPT; 3650 } 3651 3652 if (put_user(len, optlen)) 3653 return -EFAULT; 3654 if (copy_to_user(optval, &val, len)) 3655 return -EFAULT; 3656 return 0; 3657 } 3658 3659 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3660 int __user *optlen) 3661 { 3662 struct inet_connection_sock *icsk = inet_csk(sk); 3663 3664 if (level != SOL_TCP) 3665 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3666 optval, optlen); 3667 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3668 } 3669 EXPORT_SYMBOL(tcp_getsockopt); 3670 3671 #ifdef CONFIG_COMPAT 3672 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3673 char __user *optval, int __user *optlen) 3674 { 3675 if (level != SOL_TCP) 3676 return inet_csk_compat_getsockopt(sk, level, optname, 3677 optval, optlen); 3678 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3679 } 3680 EXPORT_SYMBOL(compat_tcp_getsockopt); 3681 #endif 3682 3683 #ifdef CONFIG_TCP_MD5SIG 3684 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3685 static DEFINE_MUTEX(tcp_md5sig_mutex); 3686 static bool tcp_md5sig_pool_populated = false; 3687 3688 static void __tcp_alloc_md5sig_pool(void) 3689 { 3690 struct crypto_ahash *hash; 3691 int cpu; 3692 3693 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3694 if (IS_ERR(hash)) 3695 return; 3696 3697 for_each_possible_cpu(cpu) { 3698 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3699 struct ahash_request *req; 3700 3701 if (!scratch) { 3702 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3703 sizeof(struct tcphdr), 3704 GFP_KERNEL, 3705 cpu_to_node(cpu)); 3706 if (!scratch) 3707 return; 3708 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3709 } 3710 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3711 continue; 3712 3713 req = ahash_request_alloc(hash, GFP_KERNEL); 3714 if (!req) 3715 return; 3716 3717 ahash_request_set_callback(req, 0, NULL, NULL); 3718 3719 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3720 } 3721 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3722 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3723 */ 3724 smp_wmb(); 3725 tcp_md5sig_pool_populated = true; 3726 } 3727 3728 bool tcp_alloc_md5sig_pool(void) 3729 { 3730 if (unlikely(!tcp_md5sig_pool_populated)) { 3731 mutex_lock(&tcp_md5sig_mutex); 3732 3733 if (!tcp_md5sig_pool_populated) { 3734 __tcp_alloc_md5sig_pool(); 3735 if (tcp_md5sig_pool_populated) 3736 static_branch_inc(&tcp_md5_needed); 3737 } 3738 3739 mutex_unlock(&tcp_md5sig_mutex); 3740 } 3741 return tcp_md5sig_pool_populated; 3742 } 3743 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3744 3745 3746 /** 3747 * tcp_get_md5sig_pool - get md5sig_pool for this user 3748 * 3749 * We use percpu structure, so if we succeed, we exit with preemption 3750 * and BH disabled, to make sure another thread or softirq handling 3751 * wont try to get same context. 3752 */ 3753 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3754 { 3755 local_bh_disable(); 3756 3757 if (tcp_md5sig_pool_populated) { 3758 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3759 smp_rmb(); 3760 return this_cpu_ptr(&tcp_md5sig_pool); 3761 } 3762 local_bh_enable(); 3763 return NULL; 3764 } 3765 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3766 3767 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3768 const struct sk_buff *skb, unsigned int header_len) 3769 { 3770 struct scatterlist sg; 3771 const struct tcphdr *tp = tcp_hdr(skb); 3772 struct ahash_request *req = hp->md5_req; 3773 unsigned int i; 3774 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3775 skb_headlen(skb) - header_len : 0; 3776 const struct skb_shared_info *shi = skb_shinfo(skb); 3777 struct sk_buff *frag_iter; 3778 3779 sg_init_table(&sg, 1); 3780 3781 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3782 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3783 if (crypto_ahash_update(req)) 3784 return 1; 3785 3786 for (i = 0; i < shi->nr_frags; ++i) { 3787 const struct skb_frag_struct *f = &shi->frags[i]; 3788 unsigned int offset = f->page_offset; 3789 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3790 3791 sg_set_page(&sg, page, skb_frag_size(f), 3792 offset_in_page(offset)); 3793 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3794 if (crypto_ahash_update(req)) 3795 return 1; 3796 } 3797 3798 skb_walk_frags(skb, frag_iter) 3799 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3800 return 1; 3801 3802 return 0; 3803 } 3804 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3805 3806 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3807 { 3808 struct scatterlist sg; 3809 3810 sg_init_one(&sg, key->key, key->keylen); 3811 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3812 return crypto_ahash_update(hp->md5_req); 3813 } 3814 EXPORT_SYMBOL(tcp_md5_hash_key); 3815 3816 #endif 3817 3818 void tcp_done(struct sock *sk) 3819 { 3820 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3821 3822 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3823 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3824 3825 tcp_set_state(sk, TCP_CLOSE); 3826 tcp_clear_xmit_timers(sk); 3827 if (req) 3828 reqsk_fastopen_remove(sk, req, false); 3829 3830 sk->sk_shutdown = SHUTDOWN_MASK; 3831 3832 if (!sock_flag(sk, SOCK_DEAD)) 3833 sk->sk_state_change(sk); 3834 else 3835 inet_csk_destroy_sock(sk); 3836 } 3837 EXPORT_SYMBOL_GPL(tcp_done); 3838 3839 int tcp_abort(struct sock *sk, int err) 3840 { 3841 if (!sk_fullsock(sk)) { 3842 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3843 struct request_sock *req = inet_reqsk(sk); 3844 3845 local_bh_disable(); 3846 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3847 local_bh_enable(); 3848 return 0; 3849 } 3850 return -EOPNOTSUPP; 3851 } 3852 3853 /* Don't race with userspace socket closes such as tcp_close. */ 3854 lock_sock(sk); 3855 3856 if (sk->sk_state == TCP_LISTEN) { 3857 tcp_set_state(sk, TCP_CLOSE); 3858 inet_csk_listen_stop(sk); 3859 } 3860 3861 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3862 local_bh_disable(); 3863 bh_lock_sock(sk); 3864 3865 if (!sock_flag(sk, SOCK_DEAD)) { 3866 sk->sk_err = err; 3867 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3868 smp_wmb(); 3869 sk->sk_error_report(sk); 3870 if (tcp_need_reset(sk->sk_state)) 3871 tcp_send_active_reset(sk, GFP_ATOMIC); 3872 tcp_done(sk); 3873 } 3874 3875 bh_unlock_sock(sk); 3876 local_bh_enable(); 3877 tcp_write_queue_purge(sk); 3878 release_sock(sk); 3879 return 0; 3880 } 3881 EXPORT_SYMBOL_GPL(tcp_abort); 3882 3883 extern struct tcp_congestion_ops tcp_reno; 3884 3885 static __initdata unsigned long thash_entries; 3886 static int __init set_thash_entries(char *str) 3887 { 3888 ssize_t ret; 3889 3890 if (!str) 3891 return 0; 3892 3893 ret = kstrtoul(str, 0, &thash_entries); 3894 if (ret) 3895 return 0; 3896 3897 return 1; 3898 } 3899 __setup("thash_entries=", set_thash_entries); 3900 3901 static void __init tcp_init_mem(void) 3902 { 3903 unsigned long limit = nr_free_buffer_pages() / 16; 3904 3905 limit = max(limit, 128UL); 3906 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3907 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3908 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3909 } 3910 3911 void __init tcp_init(void) 3912 { 3913 int max_rshare, max_wshare, cnt; 3914 unsigned long limit; 3915 unsigned int i; 3916 3917 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3918 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3919 FIELD_SIZEOF(struct sk_buff, cb)); 3920 3921 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3922 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3923 inet_hashinfo_init(&tcp_hashinfo); 3924 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3925 thash_entries, 21, /* one slot per 2 MB*/ 3926 0, 64 * 1024); 3927 tcp_hashinfo.bind_bucket_cachep = 3928 kmem_cache_create("tcp_bind_bucket", 3929 sizeof(struct inet_bind_bucket), 0, 3930 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3931 3932 /* Size and allocate the main established and bind bucket 3933 * hash tables. 3934 * 3935 * The methodology is similar to that of the buffer cache. 3936 */ 3937 tcp_hashinfo.ehash = 3938 alloc_large_system_hash("TCP established", 3939 sizeof(struct inet_ehash_bucket), 3940 thash_entries, 3941 17, /* one slot per 128 KB of memory */ 3942 0, 3943 NULL, 3944 &tcp_hashinfo.ehash_mask, 3945 0, 3946 thash_entries ? 0 : 512 * 1024); 3947 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3948 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3949 3950 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3951 panic("TCP: failed to alloc ehash_locks"); 3952 tcp_hashinfo.bhash = 3953 alloc_large_system_hash("TCP bind", 3954 sizeof(struct inet_bind_hashbucket), 3955 tcp_hashinfo.ehash_mask + 1, 3956 17, /* one slot per 128 KB of memory */ 3957 0, 3958 &tcp_hashinfo.bhash_size, 3959 NULL, 3960 0, 3961 64 * 1024); 3962 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3963 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3964 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3965 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3966 } 3967 3968 3969 cnt = tcp_hashinfo.ehash_mask + 1; 3970 sysctl_tcp_max_orphans = cnt / 2; 3971 3972 tcp_init_mem(); 3973 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3974 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3975 max_wshare = min(4UL*1024*1024, limit); 3976 max_rshare = min(6UL*1024*1024, limit); 3977 3978 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3979 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3980 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3981 3982 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3983 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3984 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3985 3986 pr_info("Hash tables configured (established %u bind %u)\n", 3987 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3988 3989 tcp_v4_init(); 3990 tcp_metrics_init(); 3991 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3992 tcp_tasklet_init(); 3993 } 3994