1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/sock.h> 277 278 #include <linux/uaccess.h> 279 #include <asm/ioctls.h> 280 #include <net/busy_poll.h> 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 EXPORT_SYMBOL(sysctl_tcp_mem); 287 288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 289 EXPORT_SYMBOL(tcp_memory_allocated); 290 291 #if IS_ENABLED(CONFIG_SMC) 292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 293 EXPORT_SYMBOL(tcp_have_smc); 294 #endif 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 unsigned long tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 319 320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 321 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 322 323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 324 325 void tcp_enter_memory_pressure(struct sock *sk) 326 { 327 unsigned long val; 328 329 if (READ_ONCE(tcp_memory_pressure)) 330 return; 331 val = jiffies; 332 333 if (!val) 334 val--; 335 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 337 } 338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 339 340 void tcp_leave_memory_pressure(struct sock *sk) 341 { 342 unsigned long val; 343 344 if (!READ_ONCE(tcp_memory_pressure)) 345 return; 346 val = xchg(&tcp_memory_pressure, 0); 347 if (val) 348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 349 jiffies_to_msecs(jiffies - val)); 350 } 351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 352 353 /* Convert seconds to retransmits based on initial and max timeout */ 354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 355 { 356 u8 res = 0; 357 358 if (seconds > 0) { 359 int period = timeout; 360 361 res = 1; 362 while (seconds > period && res < 255) { 363 res++; 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return res; 371 } 372 373 /* Convert retransmits to seconds based on initial and max timeout */ 374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 375 { 376 int period = 0; 377 378 if (retrans > 0) { 379 period = timeout; 380 while (--retrans) { 381 timeout <<= 1; 382 if (timeout > rto_max) 383 timeout = rto_max; 384 period += timeout; 385 } 386 } 387 return period; 388 } 389 390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 391 { 392 u32 rate = READ_ONCE(tp->rate_delivered); 393 u32 intv = READ_ONCE(tp->rate_interval_us); 394 u64 rate64 = 0; 395 396 if (rate && intv) { 397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 398 do_div(rate64, intv); 399 } 400 return rate64; 401 } 402 403 /* Address-family independent initialization for a tcp_sock. 404 * 405 * NOTE: A lot of things set to zero explicitly by call to 406 * sk_alloc() so need not be done here. 407 */ 408 void tcp_init_sock(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 tp->out_of_order_queue = RB_ROOT; 414 sk->tcp_rtx_queue = RB_ROOT; 415 tcp_init_xmit_timers(sk); 416 INIT_LIST_HEAD(&tp->tsq_node); 417 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 tp->rack.reo_wnd_steps = 1; 445 446 sk->sk_state = TCP_CLOSE; 447 448 sk->sk_write_space = sk_stream_write_space; 449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 450 451 icsk->icsk_sync_mss = tcp_sync_mss; 452 453 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 454 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 455 456 sk_sockets_allocated_inc(sk); 457 sk->sk_route_forced_caps = NETIF_F_GSO; 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 462 { 463 struct sk_buff *skb = tcp_write_queue_tail(sk); 464 465 if (tsflags && skb) { 466 struct skb_shared_info *shinfo = skb_shinfo(skb); 467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 468 469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 470 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 471 tcb->txstamp_ack = 1; 472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 474 } 475 } 476 477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 478 int target, struct sock *sk) 479 { 480 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) || 481 (sk->sk_prot->stream_memory_read ? 482 sk->sk_prot->stream_memory_read(sk) : false); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && 611 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 612 break; 613 case SIOCOUTQ: 614 if (sk->sk_state == TCP_LISTEN) 615 return -EINVAL; 616 617 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 618 answ = 0; 619 else 620 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 621 break; 622 case SIOCOUTQNSD: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - 630 READ_ONCE(tp->snd_nxt); 631 break; 632 default: 633 return -ENOIOCTLCMD; 634 } 635 636 return put_user(answ, (int __user *)arg); 637 } 638 EXPORT_SYMBOL(tcp_ioctl); 639 640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 641 { 642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 643 tp->pushed_seq = tp->write_seq; 644 } 645 646 static inline bool forced_push(const struct tcp_sock *tp) 647 { 648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 649 } 650 651 static void skb_entail(struct sock *sk, struct sk_buff *skb) 652 { 653 struct tcp_sock *tp = tcp_sk(sk); 654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 655 656 skb->csum = 0; 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 tcb->sacked = 0; 660 __skb_header_release(skb); 661 tcp_add_write_queue_tail(sk, skb); 662 sk_wmem_queued_add(sk, skb->truesize); 663 sk_mem_charge(sk, skb->truesize); 664 if (tp->nonagle & TCP_NAGLE_PUSH) 665 tp->nonagle &= ~TCP_NAGLE_PUSH; 666 667 tcp_slow_start_after_idle_check(sk); 668 } 669 670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 671 { 672 if (flags & MSG_OOB) 673 tp->snd_up = tp->write_seq; 674 } 675 676 /* If a not yet filled skb is pushed, do not send it if 677 * we have data packets in Qdisc or NIC queues : 678 * Because TX completion will happen shortly, it gives a chance 679 * to coalesce future sendmsg() payload into this skb, without 680 * need for a timer, and with no latency trade off. 681 * As packets containing data payload have a bigger truesize 682 * than pure acks (dataless) packets, the last checks prevent 683 * autocorking if we only have an ACK in Qdisc/NIC queues, 684 * or if TX completion was delayed after we processed ACK packet. 685 */ 686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 687 int size_goal) 688 { 689 return skb->len < size_goal && 690 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 691 !tcp_rtx_queue_empty(sk) && 692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 693 } 694 695 static void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ 765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 ret = -ENOTCONN; 812 break; 813 } 814 if (!timeo) { 815 ret = -EAGAIN; 816 break; 817 } 818 /* if __tcp_splice_read() got nothing while we have 819 * an skb in receive queue, we do not want to loop. 820 * This might happen with URG data. 821 */ 822 if (!skb_queue_empty(&sk->sk_receive_queue)) 823 break; 824 sk_wait_data(sk, &timeo, NULL); 825 if (signal_pending(current)) { 826 ret = sock_intr_errno(timeo); 827 break; 828 } 829 continue; 830 } 831 tss.len -= ret; 832 spliced += ret; 833 834 if (!timeo) 835 break; 836 release_sock(sk); 837 lock_sock(sk); 838 839 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 840 (sk->sk_shutdown & RCV_SHUTDOWN) || 841 signal_pending(current)) 842 break; 843 } 844 845 release_sock(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (likely(!size)) { 860 skb = sk->sk_tx_skb_cache; 861 if (skb) { 862 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 863 sk->sk_tx_skb_cache = NULL; 864 pskb_trim(skb, 0); 865 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 866 skb_shinfo(skb)->tx_flags = 0; 867 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 868 return skb; 869 } 870 } 871 /* The TCP header must be at least 32-bit aligned. */ 872 size = ALIGN(size, 4); 873 874 if (unlikely(tcp_under_memory_pressure(sk))) 875 sk_mem_reclaim_partial(sk); 876 877 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 878 if (likely(skb)) { 879 bool mem_scheduled; 880 881 if (force_schedule) { 882 mem_scheduled = true; 883 sk_forced_mem_schedule(sk, skb->truesize); 884 } else { 885 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 886 } 887 if (likely(mem_scheduled)) { 888 skb_reserve(skb, sk->sk_prot->max_header); 889 /* 890 * Make sure that we have exactly size bytes 891 * available to the caller, no more, no less. 892 */ 893 skb->reserved_tailroom = skb->end - skb->tail - size; 894 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 895 return skb; 896 } 897 __kfree_skb(skb); 898 } else { 899 sk->sk_prot->enter_memory_pressure(sk); 900 sk_stream_moderate_sndbuf(sk); 901 } 902 return NULL; 903 } 904 905 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 906 int large_allowed) 907 { 908 struct tcp_sock *tp = tcp_sk(sk); 909 u32 new_size_goal, size_goal; 910 911 if (!large_allowed) 912 return mss_now; 913 914 /* Note : tcp_tso_autosize() will eventually split this later */ 915 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 916 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 917 918 /* We try hard to avoid divides here */ 919 size_goal = tp->gso_segs * mss_now; 920 if (unlikely(new_size_goal < size_goal || 921 new_size_goal >= size_goal + mss_now)) { 922 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 923 sk->sk_gso_max_segs); 924 size_goal = tp->gso_segs * mss_now; 925 } 926 927 return max(size_goal, mss_now); 928 } 929 930 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 931 { 932 int mss_now; 933 934 mss_now = tcp_current_mss(sk); 935 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 936 937 return mss_now; 938 } 939 940 /* In some cases, both sendpage() and sendmsg() could have added 941 * an skb to the write queue, but failed adding payload on it. 942 * We need to remove it to consume less memory, but more 943 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 944 * users. 945 */ 946 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 947 { 948 if (skb && !skb->len) { 949 tcp_unlink_write_queue(skb, sk); 950 if (tcp_write_queue_empty(sk)) 951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 952 sk_wmem_free_skb(sk, skb); 953 } 954 } 955 956 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 957 size_t size, int flags) 958 { 959 struct tcp_sock *tp = tcp_sk(sk); 960 int mss_now, size_goal; 961 int err; 962 ssize_t copied; 963 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 964 965 if (IS_ENABLED(CONFIG_DEBUG_VM) && 966 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 967 return -EINVAL; 968 969 /* Wait for a connection to finish. One exception is TCP Fast Open 970 * (passive side) where data is allowed to be sent before a connection 971 * is fully established. 972 */ 973 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 974 !tcp_passive_fastopen(sk)) { 975 err = sk_stream_wait_connect(sk, &timeo); 976 if (err != 0) 977 goto out_err; 978 } 979 980 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 981 982 mss_now = tcp_send_mss(sk, &size_goal, flags); 983 copied = 0; 984 985 err = -EPIPE; 986 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 987 goto out_err; 988 989 while (size > 0) { 990 struct sk_buff *skb = tcp_write_queue_tail(sk); 991 int copy, i; 992 bool can_coalesce; 993 994 if (!skb || (copy = size_goal - skb->len) <= 0 || 995 !tcp_skb_can_collapse_to(skb)) { 996 new_segment: 997 if (!sk_stream_memory_free(sk)) 998 goto wait_for_sndbuf; 999 1000 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1001 tcp_rtx_and_write_queues_empty(sk)); 1002 if (!skb) 1003 goto wait_for_memory; 1004 1005 #ifdef CONFIG_TLS_DEVICE 1006 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1007 #endif 1008 skb_entail(sk, skb); 1009 copy = size_goal; 1010 } 1011 1012 if (copy > size) 1013 copy = size; 1014 1015 i = skb_shinfo(skb)->nr_frags; 1016 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1017 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1018 tcp_mark_push(tp, skb); 1019 goto new_segment; 1020 } 1021 if (!sk_wmem_schedule(sk, copy)) 1022 goto wait_for_memory; 1023 1024 if (can_coalesce) { 1025 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1026 } else { 1027 get_page(page); 1028 skb_fill_page_desc(skb, i, page, offset, copy); 1029 } 1030 1031 if (!(flags & MSG_NO_SHARED_FRAGS)) 1032 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1033 1034 skb->len += copy; 1035 skb->data_len += copy; 1036 skb->truesize += copy; 1037 sk_wmem_queued_add(sk, copy); 1038 sk_mem_charge(sk, copy); 1039 skb->ip_summed = CHECKSUM_PARTIAL; 1040 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1041 TCP_SKB_CB(skb)->end_seq += copy; 1042 tcp_skb_pcount_set(skb, 0); 1043 1044 if (!copied) 1045 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1046 1047 copied += copy; 1048 offset += copy; 1049 size -= copy; 1050 if (!size) 1051 goto out; 1052 1053 if (skb->len < size_goal || (flags & MSG_OOB)) 1054 continue; 1055 1056 if (forced_push(tp)) { 1057 tcp_mark_push(tp, skb); 1058 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1059 } else if (skb == tcp_send_head(sk)) 1060 tcp_push_one(sk, mss_now); 1061 continue; 1062 1063 wait_for_sndbuf: 1064 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1065 wait_for_memory: 1066 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1067 TCP_NAGLE_PUSH, size_goal); 1068 1069 err = sk_stream_wait_memory(sk, &timeo); 1070 if (err != 0) 1071 goto do_error; 1072 1073 mss_now = tcp_send_mss(sk, &size_goal, flags); 1074 } 1075 1076 out: 1077 if (copied) { 1078 tcp_tx_timestamp(sk, sk->sk_tsflags); 1079 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1080 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1081 } 1082 return copied; 1083 1084 do_error: 1085 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1086 if (copied) 1087 goto out; 1088 out_err: 1089 /* make sure we wake any epoll edge trigger waiter */ 1090 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1091 err == -EAGAIN)) { 1092 sk->sk_write_space(sk); 1093 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1094 } 1095 return sk_stream_error(sk, flags, err); 1096 } 1097 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1098 1099 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1100 size_t size, int flags) 1101 { 1102 if (!(sk->sk_route_caps & NETIF_F_SG)) 1103 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1104 1105 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1106 1107 return do_tcp_sendpages(sk, page, offset, size, flags); 1108 } 1109 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1110 1111 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1112 size_t size, int flags) 1113 { 1114 int ret; 1115 1116 lock_sock(sk); 1117 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1118 release_sock(sk); 1119 1120 return ret; 1121 } 1122 EXPORT_SYMBOL(tcp_sendpage); 1123 1124 void tcp_free_fastopen_req(struct tcp_sock *tp) 1125 { 1126 if (tp->fastopen_req) { 1127 kfree(tp->fastopen_req); 1128 tp->fastopen_req = NULL; 1129 } 1130 } 1131 1132 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1133 int *copied, size_t size, 1134 struct ubuf_info *uarg) 1135 { 1136 struct tcp_sock *tp = tcp_sk(sk); 1137 struct inet_sock *inet = inet_sk(sk); 1138 struct sockaddr *uaddr = msg->msg_name; 1139 int err, flags; 1140 1141 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1142 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1143 uaddr->sa_family == AF_UNSPEC)) 1144 return -EOPNOTSUPP; 1145 if (tp->fastopen_req) 1146 return -EALREADY; /* Another Fast Open is in progress */ 1147 1148 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1149 sk->sk_allocation); 1150 if (unlikely(!tp->fastopen_req)) 1151 return -ENOBUFS; 1152 tp->fastopen_req->data = msg; 1153 tp->fastopen_req->size = size; 1154 tp->fastopen_req->uarg = uarg; 1155 1156 if (inet->defer_connect) { 1157 err = tcp_connect(sk); 1158 /* Same failure procedure as in tcp_v4/6_connect */ 1159 if (err) { 1160 tcp_set_state(sk, TCP_CLOSE); 1161 inet->inet_dport = 0; 1162 sk->sk_route_caps = 0; 1163 } 1164 } 1165 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1166 err = __inet_stream_connect(sk->sk_socket, uaddr, 1167 msg->msg_namelen, flags, 1); 1168 /* fastopen_req could already be freed in __inet_stream_connect 1169 * if the connection times out or gets rst 1170 */ 1171 if (tp->fastopen_req) { 1172 *copied = tp->fastopen_req->copied; 1173 tcp_free_fastopen_req(tp); 1174 inet->defer_connect = 0; 1175 } 1176 return err; 1177 } 1178 1179 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1180 { 1181 struct tcp_sock *tp = tcp_sk(sk); 1182 struct ubuf_info *uarg = NULL; 1183 struct sk_buff *skb; 1184 struct sockcm_cookie sockc; 1185 int flags, err, copied = 0; 1186 int mss_now = 0, size_goal, copied_syn = 0; 1187 int process_backlog = 0; 1188 bool zc = false; 1189 long timeo; 1190 1191 flags = msg->msg_flags; 1192 1193 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1194 skb = tcp_write_queue_tail(sk); 1195 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1196 if (!uarg) { 1197 err = -ENOBUFS; 1198 goto out_err; 1199 } 1200 1201 zc = sk->sk_route_caps & NETIF_F_SG; 1202 if (!zc) 1203 uarg->zerocopy = 0; 1204 } 1205 1206 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1207 !tp->repair) { 1208 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1209 if (err == -EINPROGRESS && copied_syn > 0) 1210 goto out; 1211 else if (err) 1212 goto out_err; 1213 } 1214 1215 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1216 1217 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1218 1219 /* Wait for a connection to finish. One exception is TCP Fast Open 1220 * (passive side) where data is allowed to be sent before a connection 1221 * is fully established. 1222 */ 1223 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1224 !tcp_passive_fastopen(sk)) { 1225 err = sk_stream_wait_connect(sk, &timeo); 1226 if (err != 0) 1227 goto do_error; 1228 } 1229 1230 if (unlikely(tp->repair)) { 1231 if (tp->repair_queue == TCP_RECV_QUEUE) { 1232 copied = tcp_send_rcvq(sk, msg, size); 1233 goto out_nopush; 1234 } 1235 1236 err = -EINVAL; 1237 if (tp->repair_queue == TCP_NO_QUEUE) 1238 goto out_err; 1239 1240 /* 'common' sending to sendq */ 1241 } 1242 1243 sockcm_init(&sockc, sk); 1244 if (msg->msg_controllen) { 1245 err = sock_cmsg_send(sk, msg, &sockc); 1246 if (unlikely(err)) { 1247 err = -EINVAL; 1248 goto out_err; 1249 } 1250 } 1251 1252 /* This should be in poll */ 1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1254 1255 /* Ok commence sending. */ 1256 copied = 0; 1257 1258 restart: 1259 mss_now = tcp_send_mss(sk, &size_goal, flags); 1260 1261 err = -EPIPE; 1262 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1263 goto do_error; 1264 1265 while (msg_data_left(msg)) { 1266 int copy = 0; 1267 1268 skb = tcp_write_queue_tail(sk); 1269 if (skb) 1270 copy = size_goal - skb->len; 1271 1272 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1273 bool first_skb; 1274 1275 new_segment: 1276 if (!sk_stream_memory_free(sk)) 1277 goto wait_for_sndbuf; 1278 1279 if (unlikely(process_backlog >= 16)) { 1280 process_backlog = 0; 1281 if (sk_flush_backlog(sk)) 1282 goto restart; 1283 } 1284 first_skb = tcp_rtx_and_write_queues_empty(sk); 1285 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1286 first_skb); 1287 if (!skb) 1288 goto wait_for_memory; 1289 1290 process_backlog++; 1291 skb->ip_summed = CHECKSUM_PARTIAL; 1292 1293 skb_entail(sk, skb); 1294 copy = size_goal; 1295 1296 /* All packets are restored as if they have 1297 * already been sent. skb_mstamp_ns isn't set to 1298 * avoid wrong rtt estimation. 1299 */ 1300 if (tp->repair) 1301 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1302 } 1303 1304 /* Try to append data to the end of skb. */ 1305 if (copy > msg_data_left(msg)) 1306 copy = msg_data_left(msg); 1307 1308 /* Where to copy to? */ 1309 if (skb_availroom(skb) > 0 && !zc) { 1310 /* We have some space in skb head. Superb! */ 1311 copy = min_t(int, copy, skb_availroom(skb)); 1312 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1313 if (err) 1314 goto do_fault; 1315 } else if (!zc) { 1316 bool merge = true; 1317 int i = skb_shinfo(skb)->nr_frags; 1318 struct page_frag *pfrag = sk_page_frag(sk); 1319 1320 if (!sk_page_frag_refill(sk, pfrag)) 1321 goto wait_for_memory; 1322 1323 if (!skb_can_coalesce(skb, i, pfrag->page, 1324 pfrag->offset)) { 1325 if (i >= sysctl_max_skb_frags) { 1326 tcp_mark_push(tp, skb); 1327 goto new_segment; 1328 } 1329 merge = false; 1330 } 1331 1332 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1333 1334 if (!sk_wmem_schedule(sk, copy)) 1335 goto wait_for_memory; 1336 1337 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1338 pfrag->page, 1339 pfrag->offset, 1340 copy); 1341 if (err) 1342 goto do_error; 1343 1344 /* Update the skb. */ 1345 if (merge) { 1346 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1347 } else { 1348 skb_fill_page_desc(skb, i, pfrag->page, 1349 pfrag->offset, copy); 1350 page_ref_inc(pfrag->page); 1351 } 1352 pfrag->offset += copy; 1353 } else { 1354 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1355 if (err == -EMSGSIZE || err == -EEXIST) { 1356 tcp_mark_push(tp, skb); 1357 goto new_segment; 1358 } 1359 if (err < 0) 1360 goto do_error; 1361 copy = err; 1362 } 1363 1364 if (!copied) 1365 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1366 1367 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1368 TCP_SKB_CB(skb)->end_seq += copy; 1369 tcp_skb_pcount_set(skb, 0); 1370 1371 copied += copy; 1372 if (!msg_data_left(msg)) { 1373 if (unlikely(flags & MSG_EOR)) 1374 TCP_SKB_CB(skb)->eor = 1; 1375 goto out; 1376 } 1377 1378 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1379 continue; 1380 1381 if (forced_push(tp)) { 1382 tcp_mark_push(tp, skb); 1383 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1384 } else if (skb == tcp_send_head(sk)) 1385 tcp_push_one(sk, mss_now); 1386 continue; 1387 1388 wait_for_sndbuf: 1389 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1390 wait_for_memory: 1391 if (copied) 1392 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1393 TCP_NAGLE_PUSH, size_goal); 1394 1395 err = sk_stream_wait_memory(sk, &timeo); 1396 if (err != 0) 1397 goto do_error; 1398 1399 mss_now = tcp_send_mss(sk, &size_goal, flags); 1400 } 1401 1402 out: 1403 if (copied) { 1404 tcp_tx_timestamp(sk, sockc.tsflags); 1405 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1406 } 1407 out_nopush: 1408 sock_zerocopy_put(uarg); 1409 return copied + copied_syn; 1410 1411 do_error: 1412 skb = tcp_write_queue_tail(sk); 1413 do_fault: 1414 tcp_remove_empty_skb(sk, skb); 1415 1416 if (copied + copied_syn) 1417 goto out; 1418 out_err: 1419 sock_zerocopy_put_abort(uarg, true); 1420 err = sk_stream_error(sk, flags, err); 1421 /* make sure we wake any epoll edge trigger waiter */ 1422 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1423 err == -EAGAIN)) { 1424 sk->sk_write_space(sk); 1425 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1426 } 1427 return err; 1428 } 1429 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1430 1431 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1432 { 1433 int ret; 1434 1435 lock_sock(sk); 1436 ret = tcp_sendmsg_locked(sk, msg, size); 1437 release_sock(sk); 1438 1439 return ret; 1440 } 1441 EXPORT_SYMBOL(tcp_sendmsg); 1442 1443 /* 1444 * Handle reading urgent data. BSD has very simple semantics for 1445 * this, no blocking and very strange errors 8) 1446 */ 1447 1448 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1449 { 1450 struct tcp_sock *tp = tcp_sk(sk); 1451 1452 /* No URG data to read. */ 1453 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1454 tp->urg_data == TCP_URG_READ) 1455 return -EINVAL; /* Yes this is right ! */ 1456 1457 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1458 return -ENOTCONN; 1459 1460 if (tp->urg_data & TCP_URG_VALID) { 1461 int err = 0; 1462 char c = tp->urg_data; 1463 1464 if (!(flags & MSG_PEEK)) 1465 tp->urg_data = TCP_URG_READ; 1466 1467 /* Read urgent data. */ 1468 msg->msg_flags |= MSG_OOB; 1469 1470 if (len > 0) { 1471 if (!(flags & MSG_TRUNC)) 1472 err = memcpy_to_msg(msg, &c, 1); 1473 len = 1; 1474 } else 1475 msg->msg_flags |= MSG_TRUNC; 1476 1477 return err ? -EFAULT : len; 1478 } 1479 1480 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1481 return 0; 1482 1483 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1484 * the available implementations agree in this case: 1485 * this call should never block, independent of the 1486 * blocking state of the socket. 1487 * Mike <pall@rz.uni-karlsruhe.de> 1488 */ 1489 return -EAGAIN; 1490 } 1491 1492 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1493 { 1494 struct sk_buff *skb; 1495 int copied = 0, err = 0; 1496 1497 /* XXX -- need to support SO_PEEK_OFF */ 1498 1499 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1500 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1501 if (err) 1502 return err; 1503 copied += skb->len; 1504 } 1505 1506 skb_queue_walk(&sk->sk_write_queue, skb) { 1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1508 if (err) 1509 break; 1510 1511 copied += skb->len; 1512 } 1513 1514 return err ?: copied; 1515 } 1516 1517 /* Clean up the receive buffer for full frames taken by the user, 1518 * then send an ACK if necessary. COPIED is the number of bytes 1519 * tcp_recvmsg has given to the user so far, it speeds up the 1520 * calculation of whether or not we must ACK for the sake of 1521 * a window update. 1522 */ 1523 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 bool time_to_ack = false; 1527 1528 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1529 1530 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1531 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1532 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1533 1534 if (inet_csk_ack_scheduled(sk)) { 1535 const struct inet_connection_sock *icsk = inet_csk(sk); 1536 /* Delayed ACKs frequently hit locked sockets during bulk 1537 * receive. */ 1538 if (icsk->icsk_ack.blocked || 1539 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1540 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1541 /* 1542 * If this read emptied read buffer, we send ACK, if 1543 * connection is not bidirectional, user drained 1544 * receive buffer and there was a small segment 1545 * in queue. 1546 */ 1547 (copied > 0 && 1548 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1549 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1550 !inet_csk_in_pingpong_mode(sk))) && 1551 !atomic_read(&sk->sk_rmem_alloc))) 1552 time_to_ack = true; 1553 } 1554 1555 /* We send an ACK if we can now advertise a non-zero window 1556 * which has been raised "significantly". 1557 * 1558 * Even if window raised up to infinity, do not send window open ACK 1559 * in states, where we will not receive more. It is useless. 1560 */ 1561 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1562 __u32 rcv_window_now = tcp_receive_window(tp); 1563 1564 /* Optimize, __tcp_select_window() is not cheap. */ 1565 if (2*rcv_window_now <= tp->window_clamp) { 1566 __u32 new_window = __tcp_select_window(sk); 1567 1568 /* Send ACK now, if this read freed lots of space 1569 * in our buffer. Certainly, new_window is new window. 1570 * We can advertise it now, if it is not less than current one. 1571 * "Lots" means "at least twice" here. 1572 */ 1573 if (new_window && new_window >= 2 * rcv_window_now) 1574 time_to_ack = true; 1575 } 1576 } 1577 if (time_to_ack) 1578 tcp_send_ack(sk); 1579 } 1580 1581 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1582 { 1583 struct sk_buff *skb; 1584 u32 offset; 1585 1586 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1587 offset = seq - TCP_SKB_CB(skb)->seq; 1588 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1589 pr_err_once("%s: found a SYN, please report !\n", __func__); 1590 offset--; 1591 } 1592 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1593 *off = offset; 1594 return skb; 1595 } 1596 /* This looks weird, but this can happen if TCP collapsing 1597 * splitted a fat GRO packet, while we released socket lock 1598 * in skb_splice_bits() 1599 */ 1600 sk_eat_skb(sk, skb); 1601 } 1602 return NULL; 1603 } 1604 1605 /* 1606 * This routine provides an alternative to tcp_recvmsg() for routines 1607 * that would like to handle copying from skbuffs directly in 'sendfile' 1608 * fashion. 1609 * Note: 1610 * - It is assumed that the socket was locked by the caller. 1611 * - The routine does not block. 1612 * - At present, there is no support for reading OOB data 1613 * or for 'peeking' the socket using this routine 1614 * (although both would be easy to implement). 1615 */ 1616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1617 sk_read_actor_t recv_actor) 1618 { 1619 struct sk_buff *skb; 1620 struct tcp_sock *tp = tcp_sk(sk); 1621 u32 seq = tp->copied_seq; 1622 u32 offset; 1623 int copied = 0; 1624 1625 if (sk->sk_state == TCP_LISTEN) 1626 return -ENOTCONN; 1627 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1628 if (offset < skb->len) { 1629 int used; 1630 size_t len; 1631 1632 len = skb->len - offset; 1633 /* Stop reading if we hit a patch of urgent data */ 1634 if (tp->urg_data) { 1635 u32 urg_offset = tp->urg_seq - seq; 1636 if (urg_offset < len) 1637 len = urg_offset; 1638 if (!len) 1639 break; 1640 } 1641 used = recv_actor(desc, skb, offset, len); 1642 if (used <= 0) { 1643 if (!copied) 1644 copied = used; 1645 break; 1646 } else if (used <= len) { 1647 seq += used; 1648 copied += used; 1649 offset += used; 1650 } 1651 /* If recv_actor drops the lock (e.g. TCP splice 1652 * receive) the skb pointer might be invalid when 1653 * getting here: tcp_collapse might have deleted it 1654 * while aggregating skbs from the socket queue. 1655 */ 1656 skb = tcp_recv_skb(sk, seq - 1, &offset); 1657 if (!skb) 1658 break; 1659 /* TCP coalescing might have appended data to the skb. 1660 * Try to splice more frags 1661 */ 1662 if (offset + 1 != skb->len) 1663 continue; 1664 } 1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1666 sk_eat_skb(sk, skb); 1667 ++seq; 1668 break; 1669 } 1670 sk_eat_skb(sk, skb); 1671 if (!desc->count) 1672 break; 1673 WRITE_ONCE(tp->copied_seq, seq); 1674 } 1675 WRITE_ONCE(tp->copied_seq, seq); 1676 1677 tcp_rcv_space_adjust(sk); 1678 1679 /* Clean up data we have read: This will do ACK frames. */ 1680 if (copied > 0) { 1681 tcp_recv_skb(sk, seq, &offset); 1682 tcp_cleanup_rbuf(sk, copied); 1683 } 1684 return copied; 1685 } 1686 EXPORT_SYMBOL(tcp_read_sock); 1687 1688 int tcp_peek_len(struct socket *sock) 1689 { 1690 return tcp_inq(sock->sk); 1691 } 1692 EXPORT_SYMBOL(tcp_peek_len); 1693 1694 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1695 int tcp_set_rcvlowat(struct sock *sk, int val) 1696 { 1697 int cap; 1698 1699 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1700 cap = sk->sk_rcvbuf >> 1; 1701 else 1702 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1703 val = min(val, cap); 1704 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1705 1706 /* Check if we need to signal EPOLLIN right now */ 1707 tcp_data_ready(sk); 1708 1709 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1710 return 0; 1711 1712 val <<= 1; 1713 if (val > sk->sk_rcvbuf) { 1714 WRITE_ONCE(sk->sk_rcvbuf, val); 1715 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1716 } 1717 return 0; 1718 } 1719 EXPORT_SYMBOL(tcp_set_rcvlowat); 1720 1721 #ifdef CONFIG_MMU 1722 static const struct vm_operations_struct tcp_vm_ops = { 1723 }; 1724 1725 int tcp_mmap(struct file *file, struct socket *sock, 1726 struct vm_area_struct *vma) 1727 { 1728 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1729 return -EPERM; 1730 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1731 1732 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1733 vma->vm_flags |= VM_MIXEDMAP; 1734 1735 vma->vm_ops = &tcp_vm_ops; 1736 return 0; 1737 } 1738 EXPORT_SYMBOL(tcp_mmap); 1739 1740 static int tcp_zerocopy_receive(struct sock *sk, 1741 struct tcp_zerocopy_receive *zc) 1742 { 1743 unsigned long address = (unsigned long)zc->address; 1744 u32 length = 0, seq, offset, zap_len; 1745 const skb_frag_t *frags = NULL; 1746 struct vm_area_struct *vma; 1747 struct sk_buff *skb = NULL; 1748 struct tcp_sock *tp; 1749 int inq; 1750 int ret; 1751 1752 if (address & (PAGE_SIZE - 1) || address != zc->address) 1753 return -EINVAL; 1754 1755 if (sk->sk_state == TCP_LISTEN) 1756 return -ENOTCONN; 1757 1758 sock_rps_record_flow(sk); 1759 1760 down_read(¤t->mm->mmap_sem); 1761 1762 ret = -EINVAL; 1763 vma = find_vma(current->mm, address); 1764 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1765 goto out; 1766 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1767 1768 tp = tcp_sk(sk); 1769 seq = tp->copied_seq; 1770 inq = tcp_inq(sk); 1771 zc->length = min_t(u32, zc->length, inq); 1772 zap_len = zc->length & ~(PAGE_SIZE - 1); 1773 if (zap_len) { 1774 zap_page_range(vma, address, zap_len); 1775 zc->recv_skip_hint = 0; 1776 } else { 1777 zc->recv_skip_hint = zc->length; 1778 } 1779 ret = 0; 1780 while (length + PAGE_SIZE <= zc->length) { 1781 if (zc->recv_skip_hint < PAGE_SIZE) { 1782 if (skb) { 1783 skb = skb->next; 1784 offset = seq - TCP_SKB_CB(skb)->seq; 1785 } else { 1786 skb = tcp_recv_skb(sk, seq, &offset); 1787 } 1788 1789 zc->recv_skip_hint = skb->len - offset; 1790 offset -= skb_headlen(skb); 1791 if ((int)offset < 0 || skb_has_frag_list(skb)) 1792 break; 1793 frags = skb_shinfo(skb)->frags; 1794 while (offset) { 1795 if (skb_frag_size(frags) > offset) 1796 goto out; 1797 offset -= skb_frag_size(frags); 1798 frags++; 1799 } 1800 } 1801 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1802 int remaining = zc->recv_skip_hint; 1803 1804 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1805 skb_frag_off(frags))) { 1806 remaining -= skb_frag_size(frags); 1807 frags++; 1808 } 1809 zc->recv_skip_hint -= remaining; 1810 break; 1811 } 1812 ret = vm_insert_page(vma, address + length, 1813 skb_frag_page(frags)); 1814 if (ret) 1815 break; 1816 length += PAGE_SIZE; 1817 seq += PAGE_SIZE; 1818 zc->recv_skip_hint -= PAGE_SIZE; 1819 frags++; 1820 } 1821 out: 1822 up_read(¤t->mm->mmap_sem); 1823 if (length) { 1824 WRITE_ONCE(tp->copied_seq, seq); 1825 tcp_rcv_space_adjust(sk); 1826 1827 /* Clean up data we have read: This will do ACK frames. */ 1828 tcp_recv_skb(sk, seq, &offset); 1829 tcp_cleanup_rbuf(sk, length); 1830 ret = 0; 1831 if (length == zc->length) 1832 zc->recv_skip_hint = 0; 1833 } else { 1834 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1835 ret = -EIO; 1836 } 1837 zc->length = length; 1838 return ret; 1839 } 1840 #endif 1841 1842 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1843 struct scm_timestamping_internal *tss) 1844 { 1845 if (skb->tstamp) 1846 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1847 else 1848 tss->ts[0] = (struct timespec64) {0}; 1849 1850 if (skb_hwtstamps(skb)->hwtstamp) 1851 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1852 else 1853 tss->ts[2] = (struct timespec64) {0}; 1854 } 1855 1856 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1857 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1858 struct scm_timestamping_internal *tss) 1859 { 1860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1861 bool has_timestamping = false; 1862 1863 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1864 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1865 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1866 if (new_tstamp) { 1867 struct __kernel_timespec kts = { 1868 .tv_sec = tss->ts[0].tv_sec, 1869 .tv_nsec = tss->ts[0].tv_nsec, 1870 }; 1871 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1872 sizeof(kts), &kts); 1873 } else { 1874 struct __kernel_old_timespec ts_old = { 1875 .tv_sec = tss->ts[0].tv_sec, 1876 .tv_nsec = tss->ts[0].tv_nsec, 1877 }; 1878 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1879 sizeof(ts_old), &ts_old); 1880 } 1881 } else { 1882 if (new_tstamp) { 1883 struct __kernel_sock_timeval stv = { 1884 .tv_sec = tss->ts[0].tv_sec, 1885 .tv_usec = tss->ts[0].tv_nsec / 1000, 1886 }; 1887 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1888 sizeof(stv), &stv); 1889 } else { 1890 struct __kernel_old_timeval tv = { 1891 .tv_sec = tss->ts[0].tv_sec, 1892 .tv_usec = tss->ts[0].tv_nsec / 1000, 1893 }; 1894 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1895 sizeof(tv), &tv); 1896 } 1897 } 1898 } 1899 1900 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1901 has_timestamping = true; 1902 else 1903 tss->ts[0] = (struct timespec64) {0}; 1904 } 1905 1906 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1907 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1908 has_timestamping = true; 1909 else 1910 tss->ts[2] = (struct timespec64) {0}; 1911 } 1912 1913 if (has_timestamping) { 1914 tss->ts[1] = (struct timespec64) {0}; 1915 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1916 put_cmsg_scm_timestamping64(msg, tss); 1917 else 1918 put_cmsg_scm_timestamping(msg, tss); 1919 } 1920 } 1921 1922 static int tcp_inq_hint(struct sock *sk) 1923 { 1924 const struct tcp_sock *tp = tcp_sk(sk); 1925 u32 copied_seq = READ_ONCE(tp->copied_seq); 1926 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1927 int inq; 1928 1929 inq = rcv_nxt - copied_seq; 1930 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1931 lock_sock(sk); 1932 inq = tp->rcv_nxt - tp->copied_seq; 1933 release_sock(sk); 1934 } 1935 /* After receiving a FIN, tell the user-space to continue reading 1936 * by returning a non-zero inq. 1937 */ 1938 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1939 inq = 1; 1940 return inq; 1941 } 1942 1943 /* 1944 * This routine copies from a sock struct into the user buffer. 1945 * 1946 * Technical note: in 2.3 we work on _locked_ socket, so that 1947 * tricks with *seq access order and skb->users are not required. 1948 * Probably, code can be easily improved even more. 1949 */ 1950 1951 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1952 int flags, int *addr_len) 1953 { 1954 struct tcp_sock *tp = tcp_sk(sk); 1955 int copied = 0; 1956 u32 peek_seq; 1957 u32 *seq; 1958 unsigned long used; 1959 int err, inq; 1960 int target; /* Read at least this many bytes */ 1961 long timeo; 1962 struct sk_buff *skb, *last; 1963 u32 urg_hole = 0; 1964 struct scm_timestamping_internal tss; 1965 int cmsg_flags; 1966 1967 if (unlikely(flags & MSG_ERRQUEUE)) 1968 return inet_recv_error(sk, msg, len, addr_len); 1969 1970 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 1971 (sk->sk_state == TCP_ESTABLISHED)) 1972 sk_busy_loop(sk, nonblock); 1973 1974 lock_sock(sk); 1975 1976 err = -ENOTCONN; 1977 if (sk->sk_state == TCP_LISTEN) 1978 goto out; 1979 1980 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 1981 timeo = sock_rcvtimeo(sk, nonblock); 1982 1983 /* Urgent data needs to be handled specially. */ 1984 if (flags & MSG_OOB) 1985 goto recv_urg; 1986 1987 if (unlikely(tp->repair)) { 1988 err = -EPERM; 1989 if (!(flags & MSG_PEEK)) 1990 goto out; 1991 1992 if (tp->repair_queue == TCP_SEND_QUEUE) 1993 goto recv_sndq; 1994 1995 err = -EINVAL; 1996 if (tp->repair_queue == TCP_NO_QUEUE) 1997 goto out; 1998 1999 /* 'common' recv queue MSG_PEEK-ing */ 2000 } 2001 2002 seq = &tp->copied_seq; 2003 if (flags & MSG_PEEK) { 2004 peek_seq = tp->copied_seq; 2005 seq = &peek_seq; 2006 } 2007 2008 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2009 2010 do { 2011 u32 offset; 2012 2013 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2014 if (tp->urg_data && tp->urg_seq == *seq) { 2015 if (copied) 2016 break; 2017 if (signal_pending(current)) { 2018 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2019 break; 2020 } 2021 } 2022 2023 /* Next get a buffer. */ 2024 2025 last = skb_peek_tail(&sk->sk_receive_queue); 2026 skb_queue_walk(&sk->sk_receive_queue, skb) { 2027 last = skb; 2028 /* Now that we have two receive queues this 2029 * shouldn't happen. 2030 */ 2031 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2032 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2033 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2034 flags)) 2035 break; 2036 2037 offset = *seq - TCP_SKB_CB(skb)->seq; 2038 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2039 pr_err_once("%s: found a SYN, please report !\n", __func__); 2040 offset--; 2041 } 2042 if (offset < skb->len) 2043 goto found_ok_skb; 2044 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2045 goto found_fin_ok; 2046 WARN(!(flags & MSG_PEEK), 2047 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2048 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2049 } 2050 2051 /* Well, if we have backlog, try to process it now yet. */ 2052 2053 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2054 break; 2055 2056 if (copied) { 2057 if (sk->sk_err || 2058 sk->sk_state == TCP_CLOSE || 2059 (sk->sk_shutdown & RCV_SHUTDOWN) || 2060 !timeo || 2061 signal_pending(current)) 2062 break; 2063 } else { 2064 if (sock_flag(sk, SOCK_DONE)) 2065 break; 2066 2067 if (sk->sk_err) { 2068 copied = sock_error(sk); 2069 break; 2070 } 2071 2072 if (sk->sk_shutdown & RCV_SHUTDOWN) 2073 break; 2074 2075 if (sk->sk_state == TCP_CLOSE) { 2076 /* This occurs when user tries to read 2077 * from never connected socket. 2078 */ 2079 copied = -ENOTCONN; 2080 break; 2081 } 2082 2083 if (!timeo) { 2084 copied = -EAGAIN; 2085 break; 2086 } 2087 2088 if (signal_pending(current)) { 2089 copied = sock_intr_errno(timeo); 2090 break; 2091 } 2092 } 2093 2094 tcp_cleanup_rbuf(sk, copied); 2095 2096 if (copied >= target) { 2097 /* Do not sleep, just process backlog. */ 2098 release_sock(sk); 2099 lock_sock(sk); 2100 } else { 2101 sk_wait_data(sk, &timeo, last); 2102 } 2103 2104 if ((flags & MSG_PEEK) && 2105 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2106 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2107 current->comm, 2108 task_pid_nr(current)); 2109 peek_seq = tp->copied_seq; 2110 } 2111 continue; 2112 2113 found_ok_skb: 2114 /* Ok so how much can we use? */ 2115 used = skb->len - offset; 2116 if (len < used) 2117 used = len; 2118 2119 /* Do we have urgent data here? */ 2120 if (tp->urg_data) { 2121 u32 urg_offset = tp->urg_seq - *seq; 2122 if (urg_offset < used) { 2123 if (!urg_offset) { 2124 if (!sock_flag(sk, SOCK_URGINLINE)) { 2125 WRITE_ONCE(*seq, *seq + 1); 2126 urg_hole++; 2127 offset++; 2128 used--; 2129 if (!used) 2130 goto skip_copy; 2131 } 2132 } else 2133 used = urg_offset; 2134 } 2135 } 2136 2137 if (!(flags & MSG_TRUNC)) { 2138 err = skb_copy_datagram_msg(skb, offset, msg, used); 2139 if (err) { 2140 /* Exception. Bailout! */ 2141 if (!copied) 2142 copied = -EFAULT; 2143 break; 2144 } 2145 } 2146 2147 WRITE_ONCE(*seq, *seq + used); 2148 copied += used; 2149 len -= used; 2150 2151 tcp_rcv_space_adjust(sk); 2152 2153 skip_copy: 2154 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2155 tp->urg_data = 0; 2156 tcp_fast_path_check(sk); 2157 } 2158 if (used + offset < skb->len) 2159 continue; 2160 2161 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2162 tcp_update_recv_tstamps(skb, &tss); 2163 cmsg_flags |= 2; 2164 } 2165 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2166 goto found_fin_ok; 2167 if (!(flags & MSG_PEEK)) 2168 sk_eat_skb(sk, skb); 2169 continue; 2170 2171 found_fin_ok: 2172 /* Process the FIN. */ 2173 WRITE_ONCE(*seq, *seq + 1); 2174 if (!(flags & MSG_PEEK)) 2175 sk_eat_skb(sk, skb); 2176 break; 2177 } while (len > 0); 2178 2179 /* According to UNIX98, msg_name/msg_namelen are ignored 2180 * on connected socket. I was just happy when found this 8) --ANK 2181 */ 2182 2183 /* Clean up data we have read: This will do ACK frames. */ 2184 tcp_cleanup_rbuf(sk, copied); 2185 2186 release_sock(sk); 2187 2188 if (cmsg_flags) { 2189 if (cmsg_flags & 2) 2190 tcp_recv_timestamp(msg, sk, &tss); 2191 if (cmsg_flags & 1) { 2192 inq = tcp_inq_hint(sk); 2193 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2194 } 2195 } 2196 2197 return copied; 2198 2199 out: 2200 release_sock(sk); 2201 return err; 2202 2203 recv_urg: 2204 err = tcp_recv_urg(sk, msg, len, flags); 2205 goto out; 2206 2207 recv_sndq: 2208 err = tcp_peek_sndq(sk, msg, len); 2209 goto out; 2210 } 2211 EXPORT_SYMBOL(tcp_recvmsg); 2212 2213 void tcp_set_state(struct sock *sk, int state) 2214 { 2215 int oldstate = sk->sk_state; 2216 2217 /* We defined a new enum for TCP states that are exported in BPF 2218 * so as not force the internal TCP states to be frozen. The 2219 * following checks will detect if an internal state value ever 2220 * differs from the BPF value. If this ever happens, then we will 2221 * need to remap the internal value to the BPF value before calling 2222 * tcp_call_bpf_2arg. 2223 */ 2224 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2225 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2226 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2227 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2228 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2229 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2230 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2231 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2232 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2233 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2234 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2235 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2236 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2237 2238 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2239 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2240 2241 switch (state) { 2242 case TCP_ESTABLISHED: 2243 if (oldstate != TCP_ESTABLISHED) 2244 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2245 break; 2246 2247 case TCP_CLOSE: 2248 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2249 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2250 2251 sk->sk_prot->unhash(sk); 2252 if (inet_csk(sk)->icsk_bind_hash && 2253 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2254 inet_put_port(sk); 2255 /* fall through */ 2256 default: 2257 if (oldstate == TCP_ESTABLISHED) 2258 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2259 } 2260 2261 /* Change state AFTER socket is unhashed to avoid closed 2262 * socket sitting in hash tables. 2263 */ 2264 inet_sk_state_store(sk, state); 2265 } 2266 EXPORT_SYMBOL_GPL(tcp_set_state); 2267 2268 /* 2269 * State processing on a close. This implements the state shift for 2270 * sending our FIN frame. Note that we only send a FIN for some 2271 * states. A shutdown() may have already sent the FIN, or we may be 2272 * closed. 2273 */ 2274 2275 static const unsigned char new_state[16] = { 2276 /* current state: new state: action: */ 2277 [0 /* (Invalid) */] = TCP_CLOSE, 2278 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2279 [TCP_SYN_SENT] = TCP_CLOSE, 2280 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2281 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2282 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2283 [TCP_TIME_WAIT] = TCP_CLOSE, 2284 [TCP_CLOSE] = TCP_CLOSE, 2285 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2286 [TCP_LAST_ACK] = TCP_LAST_ACK, 2287 [TCP_LISTEN] = TCP_CLOSE, 2288 [TCP_CLOSING] = TCP_CLOSING, 2289 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2290 }; 2291 2292 static int tcp_close_state(struct sock *sk) 2293 { 2294 int next = (int)new_state[sk->sk_state]; 2295 int ns = next & TCP_STATE_MASK; 2296 2297 tcp_set_state(sk, ns); 2298 2299 return next & TCP_ACTION_FIN; 2300 } 2301 2302 /* 2303 * Shutdown the sending side of a connection. Much like close except 2304 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2305 */ 2306 2307 void tcp_shutdown(struct sock *sk, int how) 2308 { 2309 /* We need to grab some memory, and put together a FIN, 2310 * and then put it into the queue to be sent. 2311 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2312 */ 2313 if (!(how & SEND_SHUTDOWN)) 2314 return; 2315 2316 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2317 if ((1 << sk->sk_state) & 2318 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2319 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2320 /* Clear out any half completed packets. FIN if needed. */ 2321 if (tcp_close_state(sk)) 2322 tcp_send_fin(sk); 2323 } 2324 } 2325 EXPORT_SYMBOL(tcp_shutdown); 2326 2327 bool tcp_check_oom(struct sock *sk, int shift) 2328 { 2329 bool too_many_orphans, out_of_socket_memory; 2330 2331 too_many_orphans = tcp_too_many_orphans(sk, shift); 2332 out_of_socket_memory = tcp_out_of_memory(sk); 2333 2334 if (too_many_orphans) 2335 net_info_ratelimited("too many orphaned sockets\n"); 2336 if (out_of_socket_memory) 2337 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2338 return too_many_orphans || out_of_socket_memory; 2339 } 2340 2341 void tcp_close(struct sock *sk, long timeout) 2342 { 2343 struct sk_buff *skb; 2344 int data_was_unread = 0; 2345 int state; 2346 2347 lock_sock(sk); 2348 sk->sk_shutdown = SHUTDOWN_MASK; 2349 2350 if (sk->sk_state == TCP_LISTEN) { 2351 tcp_set_state(sk, TCP_CLOSE); 2352 2353 /* Special case. */ 2354 inet_csk_listen_stop(sk); 2355 2356 goto adjudge_to_death; 2357 } 2358 2359 /* We need to flush the recv. buffs. We do this only on the 2360 * descriptor close, not protocol-sourced closes, because the 2361 * reader process may not have drained the data yet! 2362 */ 2363 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2364 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2365 2366 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2367 len--; 2368 data_was_unread += len; 2369 __kfree_skb(skb); 2370 } 2371 2372 sk_mem_reclaim(sk); 2373 2374 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2375 if (sk->sk_state == TCP_CLOSE) 2376 goto adjudge_to_death; 2377 2378 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2379 * data was lost. To witness the awful effects of the old behavior of 2380 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2381 * GET in an FTP client, suspend the process, wait for the client to 2382 * advertise a zero window, then kill -9 the FTP client, wheee... 2383 * Note: timeout is always zero in such a case. 2384 */ 2385 if (unlikely(tcp_sk(sk)->repair)) { 2386 sk->sk_prot->disconnect(sk, 0); 2387 } else if (data_was_unread) { 2388 /* Unread data was tossed, zap the connection. */ 2389 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2390 tcp_set_state(sk, TCP_CLOSE); 2391 tcp_send_active_reset(sk, sk->sk_allocation); 2392 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2393 /* Check zero linger _after_ checking for unread data. */ 2394 sk->sk_prot->disconnect(sk, 0); 2395 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2396 } else if (tcp_close_state(sk)) { 2397 /* We FIN if the application ate all the data before 2398 * zapping the connection. 2399 */ 2400 2401 /* RED-PEN. Formally speaking, we have broken TCP state 2402 * machine. State transitions: 2403 * 2404 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2405 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2406 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2407 * 2408 * are legal only when FIN has been sent (i.e. in window), 2409 * rather than queued out of window. Purists blame. 2410 * 2411 * F.e. "RFC state" is ESTABLISHED, 2412 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2413 * 2414 * The visible declinations are that sometimes 2415 * we enter time-wait state, when it is not required really 2416 * (harmless), do not send active resets, when they are 2417 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2418 * they look as CLOSING or LAST_ACK for Linux) 2419 * Probably, I missed some more holelets. 2420 * --ANK 2421 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2422 * in a single packet! (May consider it later but will 2423 * probably need API support or TCP_CORK SYN-ACK until 2424 * data is written and socket is closed.) 2425 */ 2426 tcp_send_fin(sk); 2427 } 2428 2429 sk_stream_wait_close(sk, timeout); 2430 2431 adjudge_to_death: 2432 state = sk->sk_state; 2433 sock_hold(sk); 2434 sock_orphan(sk); 2435 2436 local_bh_disable(); 2437 bh_lock_sock(sk); 2438 /* remove backlog if any, without releasing ownership. */ 2439 __release_sock(sk); 2440 2441 percpu_counter_inc(sk->sk_prot->orphan_count); 2442 2443 /* Have we already been destroyed by a softirq or backlog? */ 2444 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2445 goto out; 2446 2447 /* This is a (useful) BSD violating of the RFC. There is a 2448 * problem with TCP as specified in that the other end could 2449 * keep a socket open forever with no application left this end. 2450 * We use a 1 minute timeout (about the same as BSD) then kill 2451 * our end. If they send after that then tough - BUT: long enough 2452 * that we won't make the old 4*rto = almost no time - whoops 2453 * reset mistake. 2454 * 2455 * Nope, it was not mistake. It is really desired behaviour 2456 * f.e. on http servers, when such sockets are useless, but 2457 * consume significant resources. Let's do it with special 2458 * linger2 option. --ANK 2459 */ 2460 2461 if (sk->sk_state == TCP_FIN_WAIT2) { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 if (tp->linger2 < 0) { 2464 tcp_set_state(sk, TCP_CLOSE); 2465 tcp_send_active_reset(sk, GFP_ATOMIC); 2466 __NET_INC_STATS(sock_net(sk), 2467 LINUX_MIB_TCPABORTONLINGER); 2468 } else { 2469 const int tmo = tcp_fin_time(sk); 2470 2471 if (tmo > TCP_TIMEWAIT_LEN) { 2472 inet_csk_reset_keepalive_timer(sk, 2473 tmo - TCP_TIMEWAIT_LEN); 2474 } else { 2475 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2476 goto out; 2477 } 2478 } 2479 } 2480 if (sk->sk_state != TCP_CLOSE) { 2481 sk_mem_reclaim(sk); 2482 if (tcp_check_oom(sk, 0)) { 2483 tcp_set_state(sk, TCP_CLOSE); 2484 tcp_send_active_reset(sk, GFP_ATOMIC); 2485 __NET_INC_STATS(sock_net(sk), 2486 LINUX_MIB_TCPABORTONMEMORY); 2487 } else if (!check_net(sock_net(sk))) { 2488 /* Not possible to send reset; just close */ 2489 tcp_set_state(sk, TCP_CLOSE); 2490 } 2491 } 2492 2493 if (sk->sk_state == TCP_CLOSE) { 2494 struct request_sock *req; 2495 2496 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2497 lockdep_sock_is_held(sk)); 2498 /* We could get here with a non-NULL req if the socket is 2499 * aborted (e.g., closed with unread data) before 3WHS 2500 * finishes. 2501 */ 2502 if (req) 2503 reqsk_fastopen_remove(sk, req, false); 2504 inet_csk_destroy_sock(sk); 2505 } 2506 /* Otherwise, socket is reprieved until protocol close. */ 2507 2508 out: 2509 bh_unlock_sock(sk); 2510 local_bh_enable(); 2511 release_sock(sk); 2512 sock_put(sk); 2513 } 2514 EXPORT_SYMBOL(tcp_close); 2515 2516 /* These states need RST on ABORT according to RFC793 */ 2517 2518 static inline bool tcp_need_reset(int state) 2519 { 2520 return (1 << state) & 2521 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2522 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2523 } 2524 2525 static void tcp_rtx_queue_purge(struct sock *sk) 2526 { 2527 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2528 2529 while (p) { 2530 struct sk_buff *skb = rb_to_skb(p); 2531 2532 p = rb_next(p); 2533 /* Since we are deleting whole queue, no need to 2534 * list_del(&skb->tcp_tsorted_anchor) 2535 */ 2536 tcp_rtx_queue_unlink(skb, sk); 2537 sk_wmem_free_skb(sk, skb); 2538 } 2539 } 2540 2541 void tcp_write_queue_purge(struct sock *sk) 2542 { 2543 struct sk_buff *skb; 2544 2545 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2546 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2547 tcp_skb_tsorted_anchor_cleanup(skb); 2548 sk_wmem_free_skb(sk, skb); 2549 } 2550 tcp_rtx_queue_purge(sk); 2551 skb = sk->sk_tx_skb_cache; 2552 if (skb) { 2553 __kfree_skb(skb); 2554 sk->sk_tx_skb_cache = NULL; 2555 } 2556 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2557 sk_mem_reclaim(sk); 2558 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2559 tcp_sk(sk)->packets_out = 0; 2560 inet_csk(sk)->icsk_backoff = 0; 2561 } 2562 2563 int tcp_disconnect(struct sock *sk, int flags) 2564 { 2565 struct inet_sock *inet = inet_sk(sk); 2566 struct inet_connection_sock *icsk = inet_csk(sk); 2567 struct tcp_sock *tp = tcp_sk(sk); 2568 int old_state = sk->sk_state; 2569 u32 seq; 2570 2571 if (old_state != TCP_CLOSE) 2572 tcp_set_state(sk, TCP_CLOSE); 2573 2574 /* ABORT function of RFC793 */ 2575 if (old_state == TCP_LISTEN) { 2576 inet_csk_listen_stop(sk); 2577 } else if (unlikely(tp->repair)) { 2578 sk->sk_err = ECONNABORTED; 2579 } else if (tcp_need_reset(old_state) || 2580 (tp->snd_nxt != tp->write_seq && 2581 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2582 /* The last check adjusts for discrepancy of Linux wrt. RFC 2583 * states 2584 */ 2585 tcp_send_active_reset(sk, gfp_any()); 2586 sk->sk_err = ECONNRESET; 2587 } else if (old_state == TCP_SYN_SENT) 2588 sk->sk_err = ECONNRESET; 2589 2590 tcp_clear_xmit_timers(sk); 2591 __skb_queue_purge(&sk->sk_receive_queue); 2592 if (sk->sk_rx_skb_cache) { 2593 __kfree_skb(sk->sk_rx_skb_cache); 2594 sk->sk_rx_skb_cache = NULL; 2595 } 2596 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2597 tp->urg_data = 0; 2598 tcp_write_queue_purge(sk); 2599 tcp_fastopen_active_disable_ofo_check(sk); 2600 skb_rbtree_purge(&tp->out_of_order_queue); 2601 2602 inet->inet_dport = 0; 2603 2604 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2605 inet_reset_saddr(sk); 2606 2607 sk->sk_shutdown = 0; 2608 sock_reset_flag(sk, SOCK_DONE); 2609 tp->srtt_us = 0; 2610 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2611 tp->rcv_rtt_last_tsecr = 0; 2612 2613 seq = tp->write_seq + tp->max_window + 2; 2614 if (!seq) 2615 seq = 1; 2616 WRITE_ONCE(tp->write_seq, seq); 2617 2618 icsk->icsk_backoff = 0; 2619 tp->snd_cwnd = 2; 2620 icsk->icsk_probes_out = 0; 2621 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2622 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2623 tp->snd_cwnd = TCP_INIT_CWND; 2624 tp->snd_cwnd_cnt = 0; 2625 tp->window_clamp = 0; 2626 tp->delivered_ce = 0; 2627 tcp_set_ca_state(sk, TCP_CA_Open); 2628 tp->is_sack_reneg = 0; 2629 tcp_clear_retrans(tp); 2630 inet_csk_delack_init(sk); 2631 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2632 * issue in __tcp_select_window() 2633 */ 2634 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2635 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2636 __sk_dst_reset(sk); 2637 dst_release(sk->sk_rx_dst); 2638 sk->sk_rx_dst = NULL; 2639 tcp_saved_syn_free(tp); 2640 tp->compressed_ack = 0; 2641 tp->bytes_sent = 0; 2642 tp->bytes_acked = 0; 2643 tp->bytes_received = 0; 2644 tp->bytes_retrans = 0; 2645 tp->duplicate_sack[0].start_seq = 0; 2646 tp->duplicate_sack[0].end_seq = 0; 2647 tp->dsack_dups = 0; 2648 tp->reord_seen = 0; 2649 tp->retrans_out = 0; 2650 tp->sacked_out = 0; 2651 tp->tlp_high_seq = 0; 2652 tp->last_oow_ack_time = 0; 2653 /* There's a bubble in the pipe until at least the first ACK. */ 2654 tp->app_limited = ~0U; 2655 tp->rack.mstamp = 0; 2656 tp->rack.advanced = 0; 2657 tp->rack.reo_wnd_steps = 1; 2658 tp->rack.last_delivered = 0; 2659 tp->rack.reo_wnd_persist = 0; 2660 tp->rack.dsack_seen = 0; 2661 tp->syn_data_acked = 0; 2662 tp->rx_opt.saw_tstamp = 0; 2663 tp->rx_opt.dsack = 0; 2664 tp->rx_opt.num_sacks = 0; 2665 tp->rcv_ooopack = 0; 2666 2667 2668 /* Clean up fastopen related fields */ 2669 tcp_free_fastopen_req(tp); 2670 inet->defer_connect = 0; 2671 tp->fastopen_client_fail = 0; 2672 2673 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2674 2675 if (sk->sk_frag.page) { 2676 put_page(sk->sk_frag.page); 2677 sk->sk_frag.page = NULL; 2678 sk->sk_frag.offset = 0; 2679 } 2680 2681 sk->sk_error_report(sk); 2682 return 0; 2683 } 2684 EXPORT_SYMBOL(tcp_disconnect); 2685 2686 static inline bool tcp_can_repair_sock(const struct sock *sk) 2687 { 2688 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2689 (sk->sk_state != TCP_LISTEN); 2690 } 2691 2692 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2693 { 2694 struct tcp_repair_window opt; 2695 2696 if (!tp->repair) 2697 return -EPERM; 2698 2699 if (len != sizeof(opt)) 2700 return -EINVAL; 2701 2702 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2703 return -EFAULT; 2704 2705 if (opt.max_window < opt.snd_wnd) 2706 return -EINVAL; 2707 2708 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2709 return -EINVAL; 2710 2711 if (after(opt.rcv_wup, tp->rcv_nxt)) 2712 return -EINVAL; 2713 2714 tp->snd_wl1 = opt.snd_wl1; 2715 tp->snd_wnd = opt.snd_wnd; 2716 tp->max_window = opt.max_window; 2717 2718 tp->rcv_wnd = opt.rcv_wnd; 2719 tp->rcv_wup = opt.rcv_wup; 2720 2721 return 0; 2722 } 2723 2724 static int tcp_repair_options_est(struct sock *sk, 2725 struct tcp_repair_opt __user *optbuf, unsigned int len) 2726 { 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 struct tcp_repair_opt opt; 2729 2730 while (len >= sizeof(opt)) { 2731 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2732 return -EFAULT; 2733 2734 optbuf++; 2735 len -= sizeof(opt); 2736 2737 switch (opt.opt_code) { 2738 case TCPOPT_MSS: 2739 tp->rx_opt.mss_clamp = opt.opt_val; 2740 tcp_mtup_init(sk); 2741 break; 2742 case TCPOPT_WINDOW: 2743 { 2744 u16 snd_wscale = opt.opt_val & 0xFFFF; 2745 u16 rcv_wscale = opt.opt_val >> 16; 2746 2747 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2748 return -EFBIG; 2749 2750 tp->rx_opt.snd_wscale = snd_wscale; 2751 tp->rx_opt.rcv_wscale = rcv_wscale; 2752 tp->rx_opt.wscale_ok = 1; 2753 } 2754 break; 2755 case TCPOPT_SACK_PERM: 2756 if (opt.opt_val != 0) 2757 return -EINVAL; 2758 2759 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2760 break; 2761 case TCPOPT_TIMESTAMP: 2762 if (opt.opt_val != 0) 2763 return -EINVAL; 2764 2765 tp->rx_opt.tstamp_ok = 1; 2766 break; 2767 } 2768 } 2769 2770 return 0; 2771 } 2772 2773 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2774 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2775 2776 static void tcp_enable_tx_delay(void) 2777 { 2778 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2779 static int __tcp_tx_delay_enabled = 0; 2780 2781 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2782 static_branch_enable(&tcp_tx_delay_enabled); 2783 pr_info("TCP_TX_DELAY enabled\n"); 2784 } 2785 } 2786 } 2787 2788 /* 2789 * Socket option code for TCP. 2790 */ 2791 static int do_tcp_setsockopt(struct sock *sk, int level, 2792 int optname, char __user *optval, unsigned int optlen) 2793 { 2794 struct tcp_sock *tp = tcp_sk(sk); 2795 struct inet_connection_sock *icsk = inet_csk(sk); 2796 struct net *net = sock_net(sk); 2797 int val; 2798 int err = 0; 2799 2800 /* These are data/string values, all the others are ints */ 2801 switch (optname) { 2802 case TCP_CONGESTION: { 2803 char name[TCP_CA_NAME_MAX]; 2804 2805 if (optlen < 1) 2806 return -EINVAL; 2807 2808 val = strncpy_from_user(name, optval, 2809 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2810 if (val < 0) 2811 return -EFAULT; 2812 name[val] = 0; 2813 2814 lock_sock(sk); 2815 err = tcp_set_congestion_control(sk, name, true, true, 2816 ns_capable(sock_net(sk)->user_ns, 2817 CAP_NET_ADMIN)); 2818 release_sock(sk); 2819 return err; 2820 } 2821 case TCP_ULP: { 2822 char name[TCP_ULP_NAME_MAX]; 2823 2824 if (optlen < 1) 2825 return -EINVAL; 2826 2827 val = strncpy_from_user(name, optval, 2828 min_t(long, TCP_ULP_NAME_MAX - 1, 2829 optlen)); 2830 if (val < 0) 2831 return -EFAULT; 2832 name[val] = 0; 2833 2834 lock_sock(sk); 2835 err = tcp_set_ulp(sk, name); 2836 release_sock(sk); 2837 return err; 2838 } 2839 case TCP_FASTOPEN_KEY: { 2840 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 2841 __u8 *backup_key = NULL; 2842 2843 /* Allow a backup key as well to facilitate key rotation 2844 * First key is the active one. 2845 */ 2846 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 2847 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 2848 return -EINVAL; 2849 2850 if (copy_from_user(key, optval, optlen)) 2851 return -EFAULT; 2852 2853 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 2854 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 2855 2856 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 2857 } 2858 default: 2859 /* fallthru */ 2860 break; 2861 } 2862 2863 if (optlen < sizeof(int)) 2864 return -EINVAL; 2865 2866 if (get_user(val, (int __user *)optval)) 2867 return -EFAULT; 2868 2869 lock_sock(sk); 2870 2871 switch (optname) { 2872 case TCP_MAXSEG: 2873 /* Values greater than interface MTU won't take effect. However 2874 * at the point when this call is done we typically don't yet 2875 * know which interface is going to be used 2876 */ 2877 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2878 err = -EINVAL; 2879 break; 2880 } 2881 tp->rx_opt.user_mss = val; 2882 break; 2883 2884 case TCP_NODELAY: 2885 if (val) { 2886 /* TCP_NODELAY is weaker than TCP_CORK, so that 2887 * this option on corked socket is remembered, but 2888 * it is not activated until cork is cleared. 2889 * 2890 * However, when TCP_NODELAY is set we make 2891 * an explicit push, which overrides even TCP_CORK 2892 * for currently queued segments. 2893 */ 2894 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2895 tcp_push_pending_frames(sk); 2896 } else { 2897 tp->nonagle &= ~TCP_NAGLE_OFF; 2898 } 2899 break; 2900 2901 case TCP_THIN_LINEAR_TIMEOUTS: 2902 if (val < 0 || val > 1) 2903 err = -EINVAL; 2904 else 2905 tp->thin_lto = val; 2906 break; 2907 2908 case TCP_THIN_DUPACK: 2909 if (val < 0 || val > 1) 2910 err = -EINVAL; 2911 break; 2912 2913 case TCP_REPAIR: 2914 if (!tcp_can_repair_sock(sk)) 2915 err = -EPERM; 2916 else if (val == TCP_REPAIR_ON) { 2917 tp->repair = 1; 2918 sk->sk_reuse = SK_FORCE_REUSE; 2919 tp->repair_queue = TCP_NO_QUEUE; 2920 } else if (val == TCP_REPAIR_OFF) { 2921 tp->repair = 0; 2922 sk->sk_reuse = SK_NO_REUSE; 2923 tcp_send_window_probe(sk); 2924 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2925 tp->repair = 0; 2926 sk->sk_reuse = SK_NO_REUSE; 2927 } else 2928 err = -EINVAL; 2929 2930 break; 2931 2932 case TCP_REPAIR_QUEUE: 2933 if (!tp->repair) 2934 err = -EPERM; 2935 else if ((unsigned int)val < TCP_QUEUES_NR) 2936 tp->repair_queue = val; 2937 else 2938 err = -EINVAL; 2939 break; 2940 2941 case TCP_QUEUE_SEQ: 2942 if (sk->sk_state != TCP_CLOSE) 2943 err = -EPERM; 2944 else if (tp->repair_queue == TCP_SEND_QUEUE) 2945 WRITE_ONCE(tp->write_seq, val); 2946 else if (tp->repair_queue == TCP_RECV_QUEUE) 2947 WRITE_ONCE(tp->rcv_nxt, val); 2948 else 2949 err = -EINVAL; 2950 break; 2951 2952 case TCP_REPAIR_OPTIONS: 2953 if (!tp->repair) 2954 err = -EINVAL; 2955 else if (sk->sk_state == TCP_ESTABLISHED) 2956 err = tcp_repair_options_est(sk, 2957 (struct tcp_repair_opt __user *)optval, 2958 optlen); 2959 else 2960 err = -EPERM; 2961 break; 2962 2963 case TCP_CORK: 2964 /* When set indicates to always queue non-full frames. 2965 * Later the user clears this option and we transmit 2966 * any pending partial frames in the queue. This is 2967 * meant to be used alongside sendfile() to get properly 2968 * filled frames when the user (for example) must write 2969 * out headers with a write() call first and then use 2970 * sendfile to send out the data parts. 2971 * 2972 * TCP_CORK can be set together with TCP_NODELAY and it is 2973 * stronger than TCP_NODELAY. 2974 */ 2975 if (val) { 2976 tp->nonagle |= TCP_NAGLE_CORK; 2977 } else { 2978 tp->nonagle &= ~TCP_NAGLE_CORK; 2979 if (tp->nonagle&TCP_NAGLE_OFF) 2980 tp->nonagle |= TCP_NAGLE_PUSH; 2981 tcp_push_pending_frames(sk); 2982 } 2983 break; 2984 2985 case TCP_KEEPIDLE: 2986 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2987 err = -EINVAL; 2988 else { 2989 tp->keepalive_time = val * HZ; 2990 if (sock_flag(sk, SOCK_KEEPOPEN) && 2991 !((1 << sk->sk_state) & 2992 (TCPF_CLOSE | TCPF_LISTEN))) { 2993 u32 elapsed = keepalive_time_elapsed(tp); 2994 if (tp->keepalive_time > elapsed) 2995 elapsed = tp->keepalive_time - elapsed; 2996 else 2997 elapsed = 0; 2998 inet_csk_reset_keepalive_timer(sk, elapsed); 2999 } 3000 } 3001 break; 3002 case TCP_KEEPINTVL: 3003 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3004 err = -EINVAL; 3005 else 3006 tp->keepalive_intvl = val * HZ; 3007 break; 3008 case TCP_KEEPCNT: 3009 if (val < 1 || val > MAX_TCP_KEEPCNT) 3010 err = -EINVAL; 3011 else 3012 tp->keepalive_probes = val; 3013 break; 3014 case TCP_SYNCNT: 3015 if (val < 1 || val > MAX_TCP_SYNCNT) 3016 err = -EINVAL; 3017 else 3018 icsk->icsk_syn_retries = val; 3019 break; 3020 3021 case TCP_SAVE_SYN: 3022 if (val < 0 || val > 1) 3023 err = -EINVAL; 3024 else 3025 tp->save_syn = val; 3026 break; 3027 3028 case TCP_LINGER2: 3029 if (val < 0) 3030 tp->linger2 = -1; 3031 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 3032 tp->linger2 = 0; 3033 else 3034 tp->linger2 = val * HZ; 3035 break; 3036 3037 case TCP_DEFER_ACCEPT: 3038 /* Translate value in seconds to number of retransmits */ 3039 icsk->icsk_accept_queue.rskq_defer_accept = 3040 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3041 TCP_RTO_MAX / HZ); 3042 break; 3043 3044 case TCP_WINDOW_CLAMP: 3045 if (!val) { 3046 if (sk->sk_state != TCP_CLOSE) { 3047 err = -EINVAL; 3048 break; 3049 } 3050 tp->window_clamp = 0; 3051 } else 3052 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3053 SOCK_MIN_RCVBUF / 2 : val; 3054 break; 3055 3056 case TCP_QUICKACK: 3057 if (!val) { 3058 inet_csk_enter_pingpong_mode(sk); 3059 } else { 3060 inet_csk_exit_pingpong_mode(sk); 3061 if ((1 << sk->sk_state) & 3062 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3063 inet_csk_ack_scheduled(sk)) { 3064 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3065 tcp_cleanup_rbuf(sk, 1); 3066 if (!(val & 1)) 3067 inet_csk_enter_pingpong_mode(sk); 3068 } 3069 } 3070 break; 3071 3072 #ifdef CONFIG_TCP_MD5SIG 3073 case TCP_MD5SIG: 3074 case TCP_MD5SIG_EXT: 3075 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3076 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3077 else 3078 err = -EINVAL; 3079 break; 3080 #endif 3081 case TCP_USER_TIMEOUT: 3082 /* Cap the max time in ms TCP will retry or probe the window 3083 * before giving up and aborting (ETIMEDOUT) a connection. 3084 */ 3085 if (val < 0) 3086 err = -EINVAL; 3087 else 3088 icsk->icsk_user_timeout = val; 3089 break; 3090 3091 case TCP_FASTOPEN: 3092 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3093 TCPF_LISTEN))) { 3094 tcp_fastopen_init_key_once(net); 3095 3096 fastopen_queue_tune(sk, val); 3097 } else { 3098 err = -EINVAL; 3099 } 3100 break; 3101 case TCP_FASTOPEN_CONNECT: 3102 if (val > 1 || val < 0) { 3103 err = -EINVAL; 3104 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3105 if (sk->sk_state == TCP_CLOSE) 3106 tp->fastopen_connect = val; 3107 else 3108 err = -EINVAL; 3109 } else { 3110 err = -EOPNOTSUPP; 3111 } 3112 break; 3113 case TCP_FASTOPEN_NO_COOKIE: 3114 if (val > 1 || val < 0) 3115 err = -EINVAL; 3116 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3117 err = -EINVAL; 3118 else 3119 tp->fastopen_no_cookie = val; 3120 break; 3121 case TCP_TIMESTAMP: 3122 if (!tp->repair) 3123 err = -EPERM; 3124 else 3125 tp->tsoffset = val - tcp_time_stamp_raw(); 3126 break; 3127 case TCP_REPAIR_WINDOW: 3128 err = tcp_repair_set_window(tp, optval, optlen); 3129 break; 3130 case TCP_NOTSENT_LOWAT: 3131 tp->notsent_lowat = val; 3132 sk->sk_write_space(sk); 3133 break; 3134 case TCP_INQ: 3135 if (val > 1 || val < 0) 3136 err = -EINVAL; 3137 else 3138 tp->recvmsg_inq = val; 3139 break; 3140 case TCP_TX_DELAY: 3141 if (val) 3142 tcp_enable_tx_delay(); 3143 tp->tcp_tx_delay = val; 3144 break; 3145 default: 3146 err = -ENOPROTOOPT; 3147 break; 3148 } 3149 3150 release_sock(sk); 3151 return err; 3152 } 3153 3154 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3155 unsigned int optlen) 3156 { 3157 const struct inet_connection_sock *icsk = inet_csk(sk); 3158 3159 if (level != SOL_TCP) 3160 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3161 optval, optlen); 3162 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3163 } 3164 EXPORT_SYMBOL(tcp_setsockopt); 3165 3166 #ifdef CONFIG_COMPAT 3167 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3168 char __user *optval, unsigned int optlen) 3169 { 3170 if (level != SOL_TCP) 3171 return inet_csk_compat_setsockopt(sk, level, optname, 3172 optval, optlen); 3173 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3174 } 3175 EXPORT_SYMBOL(compat_tcp_setsockopt); 3176 #endif 3177 3178 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3179 struct tcp_info *info) 3180 { 3181 u64 stats[__TCP_CHRONO_MAX], total = 0; 3182 enum tcp_chrono i; 3183 3184 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3185 stats[i] = tp->chrono_stat[i - 1]; 3186 if (i == tp->chrono_type) 3187 stats[i] += tcp_jiffies32 - tp->chrono_start; 3188 stats[i] *= USEC_PER_SEC / HZ; 3189 total += stats[i]; 3190 } 3191 3192 info->tcpi_busy_time = total; 3193 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3194 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3195 } 3196 3197 /* Return information about state of tcp endpoint in API format. */ 3198 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3199 { 3200 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3201 const struct inet_connection_sock *icsk = inet_csk(sk); 3202 unsigned long rate; 3203 u32 now; 3204 u64 rate64; 3205 bool slow; 3206 3207 memset(info, 0, sizeof(*info)); 3208 if (sk->sk_type != SOCK_STREAM) 3209 return; 3210 3211 info->tcpi_state = inet_sk_state_load(sk); 3212 3213 /* Report meaningful fields for all TCP states, including listeners */ 3214 rate = READ_ONCE(sk->sk_pacing_rate); 3215 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3216 info->tcpi_pacing_rate = rate64; 3217 3218 rate = READ_ONCE(sk->sk_max_pacing_rate); 3219 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3220 info->tcpi_max_pacing_rate = rate64; 3221 3222 info->tcpi_reordering = tp->reordering; 3223 info->tcpi_snd_cwnd = tp->snd_cwnd; 3224 3225 if (info->tcpi_state == TCP_LISTEN) { 3226 /* listeners aliased fields : 3227 * tcpi_unacked -> Number of children ready for accept() 3228 * tcpi_sacked -> max backlog 3229 */ 3230 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3231 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3232 return; 3233 } 3234 3235 slow = lock_sock_fast(sk); 3236 3237 info->tcpi_ca_state = icsk->icsk_ca_state; 3238 info->tcpi_retransmits = icsk->icsk_retransmits; 3239 info->tcpi_probes = icsk->icsk_probes_out; 3240 info->tcpi_backoff = icsk->icsk_backoff; 3241 3242 if (tp->rx_opt.tstamp_ok) 3243 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3244 if (tcp_is_sack(tp)) 3245 info->tcpi_options |= TCPI_OPT_SACK; 3246 if (tp->rx_opt.wscale_ok) { 3247 info->tcpi_options |= TCPI_OPT_WSCALE; 3248 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3249 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3250 } 3251 3252 if (tp->ecn_flags & TCP_ECN_OK) 3253 info->tcpi_options |= TCPI_OPT_ECN; 3254 if (tp->ecn_flags & TCP_ECN_SEEN) 3255 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3256 if (tp->syn_data_acked) 3257 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3258 3259 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3260 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3261 info->tcpi_snd_mss = tp->mss_cache; 3262 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3263 3264 info->tcpi_unacked = tp->packets_out; 3265 info->tcpi_sacked = tp->sacked_out; 3266 3267 info->tcpi_lost = tp->lost_out; 3268 info->tcpi_retrans = tp->retrans_out; 3269 3270 now = tcp_jiffies32; 3271 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3272 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3273 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3274 3275 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3276 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3277 info->tcpi_rtt = tp->srtt_us >> 3; 3278 info->tcpi_rttvar = tp->mdev_us >> 2; 3279 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3280 info->tcpi_advmss = tp->advmss; 3281 3282 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3283 info->tcpi_rcv_space = tp->rcvq_space.space; 3284 3285 info->tcpi_total_retrans = tp->total_retrans; 3286 3287 info->tcpi_bytes_acked = tp->bytes_acked; 3288 info->tcpi_bytes_received = tp->bytes_received; 3289 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3290 tcp_get_info_chrono_stats(tp, info); 3291 3292 info->tcpi_segs_out = tp->segs_out; 3293 info->tcpi_segs_in = tp->segs_in; 3294 3295 info->tcpi_min_rtt = tcp_min_rtt(tp); 3296 info->tcpi_data_segs_in = tp->data_segs_in; 3297 info->tcpi_data_segs_out = tp->data_segs_out; 3298 3299 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3300 rate64 = tcp_compute_delivery_rate(tp); 3301 if (rate64) 3302 info->tcpi_delivery_rate = rate64; 3303 info->tcpi_delivered = tp->delivered; 3304 info->tcpi_delivered_ce = tp->delivered_ce; 3305 info->tcpi_bytes_sent = tp->bytes_sent; 3306 info->tcpi_bytes_retrans = tp->bytes_retrans; 3307 info->tcpi_dsack_dups = tp->dsack_dups; 3308 info->tcpi_reord_seen = tp->reord_seen; 3309 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3310 info->tcpi_snd_wnd = tp->snd_wnd; 3311 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3312 unlock_sock_fast(sk, slow); 3313 } 3314 EXPORT_SYMBOL_GPL(tcp_get_info); 3315 3316 static size_t tcp_opt_stats_get_size(void) 3317 { 3318 return 3319 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3320 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3321 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3322 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3323 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3324 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3325 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3326 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3327 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3328 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3329 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3330 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3331 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3332 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3333 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3334 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3335 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3336 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3337 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3338 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3339 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3340 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3341 0; 3342 } 3343 3344 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3345 { 3346 const struct tcp_sock *tp = tcp_sk(sk); 3347 struct sk_buff *stats; 3348 struct tcp_info info; 3349 unsigned long rate; 3350 u64 rate64; 3351 3352 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3353 if (!stats) 3354 return NULL; 3355 3356 tcp_get_info_chrono_stats(tp, &info); 3357 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3358 info.tcpi_busy_time, TCP_NLA_PAD); 3359 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3360 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3361 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3362 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3363 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3364 tp->data_segs_out, TCP_NLA_PAD); 3365 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3366 tp->total_retrans, TCP_NLA_PAD); 3367 3368 rate = READ_ONCE(sk->sk_pacing_rate); 3369 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3370 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3371 3372 rate64 = tcp_compute_delivery_rate(tp); 3373 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3374 3375 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3376 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3377 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3378 3379 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3380 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3381 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3382 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3383 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3384 3385 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3386 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3387 3388 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3389 TCP_NLA_PAD); 3390 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3391 TCP_NLA_PAD); 3392 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3393 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3394 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3395 3396 return stats; 3397 } 3398 3399 static int do_tcp_getsockopt(struct sock *sk, int level, 3400 int optname, char __user *optval, int __user *optlen) 3401 { 3402 struct inet_connection_sock *icsk = inet_csk(sk); 3403 struct tcp_sock *tp = tcp_sk(sk); 3404 struct net *net = sock_net(sk); 3405 int val, len; 3406 3407 if (get_user(len, optlen)) 3408 return -EFAULT; 3409 3410 len = min_t(unsigned int, len, sizeof(int)); 3411 3412 if (len < 0) 3413 return -EINVAL; 3414 3415 switch (optname) { 3416 case TCP_MAXSEG: 3417 val = tp->mss_cache; 3418 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3419 val = tp->rx_opt.user_mss; 3420 if (tp->repair) 3421 val = tp->rx_opt.mss_clamp; 3422 break; 3423 case TCP_NODELAY: 3424 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3425 break; 3426 case TCP_CORK: 3427 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3428 break; 3429 case TCP_KEEPIDLE: 3430 val = keepalive_time_when(tp) / HZ; 3431 break; 3432 case TCP_KEEPINTVL: 3433 val = keepalive_intvl_when(tp) / HZ; 3434 break; 3435 case TCP_KEEPCNT: 3436 val = keepalive_probes(tp); 3437 break; 3438 case TCP_SYNCNT: 3439 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3440 break; 3441 case TCP_LINGER2: 3442 val = tp->linger2; 3443 if (val >= 0) 3444 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3445 break; 3446 case TCP_DEFER_ACCEPT: 3447 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3448 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3449 break; 3450 case TCP_WINDOW_CLAMP: 3451 val = tp->window_clamp; 3452 break; 3453 case TCP_INFO: { 3454 struct tcp_info info; 3455 3456 if (get_user(len, optlen)) 3457 return -EFAULT; 3458 3459 tcp_get_info(sk, &info); 3460 3461 len = min_t(unsigned int, len, sizeof(info)); 3462 if (put_user(len, optlen)) 3463 return -EFAULT; 3464 if (copy_to_user(optval, &info, len)) 3465 return -EFAULT; 3466 return 0; 3467 } 3468 case TCP_CC_INFO: { 3469 const struct tcp_congestion_ops *ca_ops; 3470 union tcp_cc_info info; 3471 size_t sz = 0; 3472 int attr; 3473 3474 if (get_user(len, optlen)) 3475 return -EFAULT; 3476 3477 ca_ops = icsk->icsk_ca_ops; 3478 if (ca_ops && ca_ops->get_info) 3479 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3480 3481 len = min_t(unsigned int, len, sz); 3482 if (put_user(len, optlen)) 3483 return -EFAULT; 3484 if (copy_to_user(optval, &info, len)) 3485 return -EFAULT; 3486 return 0; 3487 } 3488 case TCP_QUICKACK: 3489 val = !inet_csk_in_pingpong_mode(sk); 3490 break; 3491 3492 case TCP_CONGESTION: 3493 if (get_user(len, optlen)) 3494 return -EFAULT; 3495 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3496 if (put_user(len, optlen)) 3497 return -EFAULT; 3498 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3499 return -EFAULT; 3500 return 0; 3501 3502 case TCP_ULP: 3503 if (get_user(len, optlen)) 3504 return -EFAULT; 3505 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3506 if (!icsk->icsk_ulp_ops) { 3507 if (put_user(0, optlen)) 3508 return -EFAULT; 3509 return 0; 3510 } 3511 if (put_user(len, optlen)) 3512 return -EFAULT; 3513 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3514 return -EFAULT; 3515 return 0; 3516 3517 case TCP_FASTOPEN_KEY: { 3518 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3519 struct tcp_fastopen_context *ctx; 3520 unsigned int key_len = 0; 3521 3522 if (get_user(len, optlen)) 3523 return -EFAULT; 3524 3525 rcu_read_lock(); 3526 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3527 if (ctx) { 3528 key_len = tcp_fastopen_context_len(ctx) * 3529 TCP_FASTOPEN_KEY_LENGTH; 3530 memcpy(&key[0], &ctx->key[0], key_len); 3531 } 3532 rcu_read_unlock(); 3533 3534 len = min_t(unsigned int, len, key_len); 3535 if (put_user(len, optlen)) 3536 return -EFAULT; 3537 if (copy_to_user(optval, key, len)) 3538 return -EFAULT; 3539 return 0; 3540 } 3541 case TCP_THIN_LINEAR_TIMEOUTS: 3542 val = tp->thin_lto; 3543 break; 3544 3545 case TCP_THIN_DUPACK: 3546 val = 0; 3547 break; 3548 3549 case TCP_REPAIR: 3550 val = tp->repair; 3551 break; 3552 3553 case TCP_REPAIR_QUEUE: 3554 if (tp->repair) 3555 val = tp->repair_queue; 3556 else 3557 return -EINVAL; 3558 break; 3559 3560 case TCP_REPAIR_WINDOW: { 3561 struct tcp_repair_window opt; 3562 3563 if (get_user(len, optlen)) 3564 return -EFAULT; 3565 3566 if (len != sizeof(opt)) 3567 return -EINVAL; 3568 3569 if (!tp->repair) 3570 return -EPERM; 3571 3572 opt.snd_wl1 = tp->snd_wl1; 3573 opt.snd_wnd = tp->snd_wnd; 3574 opt.max_window = tp->max_window; 3575 opt.rcv_wnd = tp->rcv_wnd; 3576 opt.rcv_wup = tp->rcv_wup; 3577 3578 if (copy_to_user(optval, &opt, len)) 3579 return -EFAULT; 3580 return 0; 3581 } 3582 case TCP_QUEUE_SEQ: 3583 if (tp->repair_queue == TCP_SEND_QUEUE) 3584 val = tp->write_seq; 3585 else if (tp->repair_queue == TCP_RECV_QUEUE) 3586 val = tp->rcv_nxt; 3587 else 3588 return -EINVAL; 3589 break; 3590 3591 case TCP_USER_TIMEOUT: 3592 val = icsk->icsk_user_timeout; 3593 break; 3594 3595 case TCP_FASTOPEN: 3596 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3597 break; 3598 3599 case TCP_FASTOPEN_CONNECT: 3600 val = tp->fastopen_connect; 3601 break; 3602 3603 case TCP_FASTOPEN_NO_COOKIE: 3604 val = tp->fastopen_no_cookie; 3605 break; 3606 3607 case TCP_TX_DELAY: 3608 val = tp->tcp_tx_delay; 3609 break; 3610 3611 case TCP_TIMESTAMP: 3612 val = tcp_time_stamp_raw() + tp->tsoffset; 3613 break; 3614 case TCP_NOTSENT_LOWAT: 3615 val = tp->notsent_lowat; 3616 break; 3617 case TCP_INQ: 3618 val = tp->recvmsg_inq; 3619 break; 3620 case TCP_SAVE_SYN: 3621 val = tp->save_syn; 3622 break; 3623 case TCP_SAVED_SYN: { 3624 if (get_user(len, optlen)) 3625 return -EFAULT; 3626 3627 lock_sock(sk); 3628 if (tp->saved_syn) { 3629 if (len < tp->saved_syn[0]) { 3630 if (put_user(tp->saved_syn[0], optlen)) { 3631 release_sock(sk); 3632 return -EFAULT; 3633 } 3634 release_sock(sk); 3635 return -EINVAL; 3636 } 3637 len = tp->saved_syn[0]; 3638 if (put_user(len, optlen)) { 3639 release_sock(sk); 3640 return -EFAULT; 3641 } 3642 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3643 release_sock(sk); 3644 return -EFAULT; 3645 } 3646 tcp_saved_syn_free(tp); 3647 release_sock(sk); 3648 } else { 3649 release_sock(sk); 3650 len = 0; 3651 if (put_user(len, optlen)) 3652 return -EFAULT; 3653 } 3654 return 0; 3655 } 3656 #ifdef CONFIG_MMU 3657 case TCP_ZEROCOPY_RECEIVE: { 3658 struct tcp_zerocopy_receive zc; 3659 int err; 3660 3661 if (get_user(len, optlen)) 3662 return -EFAULT; 3663 if (len != sizeof(zc)) 3664 return -EINVAL; 3665 if (copy_from_user(&zc, optval, len)) 3666 return -EFAULT; 3667 lock_sock(sk); 3668 err = tcp_zerocopy_receive(sk, &zc); 3669 release_sock(sk); 3670 if (!err && copy_to_user(optval, &zc, len)) 3671 err = -EFAULT; 3672 return err; 3673 } 3674 #endif 3675 default: 3676 return -ENOPROTOOPT; 3677 } 3678 3679 if (put_user(len, optlen)) 3680 return -EFAULT; 3681 if (copy_to_user(optval, &val, len)) 3682 return -EFAULT; 3683 return 0; 3684 } 3685 3686 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3687 int __user *optlen) 3688 { 3689 struct inet_connection_sock *icsk = inet_csk(sk); 3690 3691 if (level != SOL_TCP) 3692 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3693 optval, optlen); 3694 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3695 } 3696 EXPORT_SYMBOL(tcp_getsockopt); 3697 3698 #ifdef CONFIG_COMPAT 3699 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3700 char __user *optval, int __user *optlen) 3701 { 3702 if (level != SOL_TCP) 3703 return inet_csk_compat_getsockopt(sk, level, optname, 3704 optval, optlen); 3705 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3706 } 3707 EXPORT_SYMBOL(compat_tcp_getsockopt); 3708 #endif 3709 3710 #ifdef CONFIG_TCP_MD5SIG 3711 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3712 static DEFINE_MUTEX(tcp_md5sig_mutex); 3713 static bool tcp_md5sig_pool_populated = false; 3714 3715 static void __tcp_alloc_md5sig_pool(void) 3716 { 3717 struct crypto_ahash *hash; 3718 int cpu; 3719 3720 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3721 if (IS_ERR(hash)) 3722 return; 3723 3724 for_each_possible_cpu(cpu) { 3725 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3726 struct ahash_request *req; 3727 3728 if (!scratch) { 3729 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3730 sizeof(struct tcphdr), 3731 GFP_KERNEL, 3732 cpu_to_node(cpu)); 3733 if (!scratch) 3734 return; 3735 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3736 } 3737 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3738 continue; 3739 3740 req = ahash_request_alloc(hash, GFP_KERNEL); 3741 if (!req) 3742 return; 3743 3744 ahash_request_set_callback(req, 0, NULL, NULL); 3745 3746 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3747 } 3748 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3749 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3750 */ 3751 smp_wmb(); 3752 tcp_md5sig_pool_populated = true; 3753 } 3754 3755 bool tcp_alloc_md5sig_pool(void) 3756 { 3757 if (unlikely(!tcp_md5sig_pool_populated)) { 3758 mutex_lock(&tcp_md5sig_mutex); 3759 3760 if (!tcp_md5sig_pool_populated) { 3761 __tcp_alloc_md5sig_pool(); 3762 if (tcp_md5sig_pool_populated) 3763 static_branch_inc(&tcp_md5_needed); 3764 } 3765 3766 mutex_unlock(&tcp_md5sig_mutex); 3767 } 3768 return tcp_md5sig_pool_populated; 3769 } 3770 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3771 3772 3773 /** 3774 * tcp_get_md5sig_pool - get md5sig_pool for this user 3775 * 3776 * We use percpu structure, so if we succeed, we exit with preemption 3777 * and BH disabled, to make sure another thread or softirq handling 3778 * wont try to get same context. 3779 */ 3780 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3781 { 3782 local_bh_disable(); 3783 3784 if (tcp_md5sig_pool_populated) { 3785 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3786 smp_rmb(); 3787 return this_cpu_ptr(&tcp_md5sig_pool); 3788 } 3789 local_bh_enable(); 3790 return NULL; 3791 } 3792 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3793 3794 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3795 const struct sk_buff *skb, unsigned int header_len) 3796 { 3797 struct scatterlist sg; 3798 const struct tcphdr *tp = tcp_hdr(skb); 3799 struct ahash_request *req = hp->md5_req; 3800 unsigned int i; 3801 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3802 skb_headlen(skb) - header_len : 0; 3803 const struct skb_shared_info *shi = skb_shinfo(skb); 3804 struct sk_buff *frag_iter; 3805 3806 sg_init_table(&sg, 1); 3807 3808 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3809 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3810 if (crypto_ahash_update(req)) 3811 return 1; 3812 3813 for (i = 0; i < shi->nr_frags; ++i) { 3814 const skb_frag_t *f = &shi->frags[i]; 3815 unsigned int offset = skb_frag_off(f); 3816 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3817 3818 sg_set_page(&sg, page, skb_frag_size(f), 3819 offset_in_page(offset)); 3820 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3821 if (crypto_ahash_update(req)) 3822 return 1; 3823 } 3824 3825 skb_walk_frags(skb, frag_iter) 3826 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3827 return 1; 3828 3829 return 0; 3830 } 3831 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3832 3833 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3834 { 3835 struct scatterlist sg; 3836 3837 sg_init_one(&sg, key->key, key->keylen); 3838 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3839 return crypto_ahash_update(hp->md5_req); 3840 } 3841 EXPORT_SYMBOL(tcp_md5_hash_key); 3842 3843 #endif 3844 3845 void tcp_done(struct sock *sk) 3846 { 3847 struct request_sock *req; 3848 3849 /* We might be called with a new socket, after 3850 * inet_csk_prepare_forced_close() has been called 3851 * so we can not use lockdep_sock_is_held(sk) 3852 */ 3853 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 3854 3855 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3856 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3857 3858 tcp_set_state(sk, TCP_CLOSE); 3859 tcp_clear_xmit_timers(sk); 3860 if (req) 3861 reqsk_fastopen_remove(sk, req, false); 3862 3863 sk->sk_shutdown = SHUTDOWN_MASK; 3864 3865 if (!sock_flag(sk, SOCK_DEAD)) 3866 sk->sk_state_change(sk); 3867 else 3868 inet_csk_destroy_sock(sk); 3869 } 3870 EXPORT_SYMBOL_GPL(tcp_done); 3871 3872 int tcp_abort(struct sock *sk, int err) 3873 { 3874 if (!sk_fullsock(sk)) { 3875 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3876 struct request_sock *req = inet_reqsk(sk); 3877 3878 local_bh_disable(); 3879 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3880 local_bh_enable(); 3881 return 0; 3882 } 3883 return -EOPNOTSUPP; 3884 } 3885 3886 /* Don't race with userspace socket closes such as tcp_close. */ 3887 lock_sock(sk); 3888 3889 if (sk->sk_state == TCP_LISTEN) { 3890 tcp_set_state(sk, TCP_CLOSE); 3891 inet_csk_listen_stop(sk); 3892 } 3893 3894 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3895 local_bh_disable(); 3896 bh_lock_sock(sk); 3897 3898 if (!sock_flag(sk, SOCK_DEAD)) { 3899 sk->sk_err = err; 3900 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3901 smp_wmb(); 3902 sk->sk_error_report(sk); 3903 if (tcp_need_reset(sk->sk_state)) 3904 tcp_send_active_reset(sk, GFP_ATOMIC); 3905 tcp_done(sk); 3906 } 3907 3908 bh_unlock_sock(sk); 3909 local_bh_enable(); 3910 tcp_write_queue_purge(sk); 3911 release_sock(sk); 3912 return 0; 3913 } 3914 EXPORT_SYMBOL_GPL(tcp_abort); 3915 3916 extern struct tcp_congestion_ops tcp_reno; 3917 3918 static __initdata unsigned long thash_entries; 3919 static int __init set_thash_entries(char *str) 3920 { 3921 ssize_t ret; 3922 3923 if (!str) 3924 return 0; 3925 3926 ret = kstrtoul(str, 0, &thash_entries); 3927 if (ret) 3928 return 0; 3929 3930 return 1; 3931 } 3932 __setup("thash_entries=", set_thash_entries); 3933 3934 static void __init tcp_init_mem(void) 3935 { 3936 unsigned long limit = nr_free_buffer_pages() / 16; 3937 3938 limit = max(limit, 128UL); 3939 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3940 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3941 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3942 } 3943 3944 void __init tcp_init(void) 3945 { 3946 int max_rshare, max_wshare, cnt; 3947 unsigned long limit; 3948 unsigned int i; 3949 3950 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3951 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3952 sizeof_field(struct sk_buff, cb)); 3953 3954 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3955 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3956 inet_hashinfo_init(&tcp_hashinfo); 3957 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3958 thash_entries, 21, /* one slot per 2 MB*/ 3959 0, 64 * 1024); 3960 tcp_hashinfo.bind_bucket_cachep = 3961 kmem_cache_create("tcp_bind_bucket", 3962 sizeof(struct inet_bind_bucket), 0, 3963 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3964 3965 /* Size and allocate the main established and bind bucket 3966 * hash tables. 3967 * 3968 * The methodology is similar to that of the buffer cache. 3969 */ 3970 tcp_hashinfo.ehash = 3971 alloc_large_system_hash("TCP established", 3972 sizeof(struct inet_ehash_bucket), 3973 thash_entries, 3974 17, /* one slot per 128 KB of memory */ 3975 0, 3976 NULL, 3977 &tcp_hashinfo.ehash_mask, 3978 0, 3979 thash_entries ? 0 : 512 * 1024); 3980 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3981 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3982 3983 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3984 panic("TCP: failed to alloc ehash_locks"); 3985 tcp_hashinfo.bhash = 3986 alloc_large_system_hash("TCP bind", 3987 sizeof(struct inet_bind_hashbucket), 3988 tcp_hashinfo.ehash_mask + 1, 3989 17, /* one slot per 128 KB of memory */ 3990 0, 3991 &tcp_hashinfo.bhash_size, 3992 NULL, 3993 0, 3994 64 * 1024); 3995 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3996 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3997 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3998 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3999 } 4000 4001 4002 cnt = tcp_hashinfo.ehash_mask + 1; 4003 sysctl_tcp_max_orphans = cnt / 2; 4004 4005 tcp_init_mem(); 4006 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4007 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4008 max_wshare = min(4UL*1024*1024, limit); 4009 max_rshare = min(6UL*1024*1024, limit); 4010 4011 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4012 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4013 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4014 4015 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4016 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4017 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4018 4019 pr_info("Hash tables configured (established %u bind %u)\n", 4020 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4021 4022 tcp_v4_init(); 4023 tcp_metrics_init(); 4024 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4025 tcp_tasklet_init(); 4026 } 4027