xref: /linux/net/ipv4/tcp.c (revision 6ebe6dbd6886af07b102aca42e44edbee94a22d9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291 
292 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323 
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	unsigned long val;
327 
328 	if (tcp_memory_pressure)
329 		return;
330 	val = jiffies;
331 
332 	if (!val)
333 		val--;
334 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338 
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (!tcp_memory_pressure)
344 		return;
345 	val = xchg(&tcp_memory_pressure, 0);
346 	if (val)
347 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 			      jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351 
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 	u8 res = 0;
356 
357 	if (seconds > 0) {
358 		int period = timeout;
359 
360 		res = 1;
361 		while (seconds > period && res < 255) {
362 			res++;
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return res;
370 }
371 
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 	int period = 0;
376 
377 	if (retrans > 0) {
378 		period = timeout;
379 		while (--retrans) {
380 			timeout <<= 1;
381 			if (timeout > rto_max)
382 				timeout = rto_max;
383 			period += timeout;
384 		}
385 	}
386 	return period;
387 }
388 
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 	u32 rate = READ_ONCE(tp->rate_delivered);
392 	u32 intv = READ_ONCE(tp->rate_interval_us);
393 	u64 rate64 = 0;
394 
395 	if (rate && intv) {
396 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 		do_div(rate64, intv);
398 	}
399 	return rate64;
400 }
401 
402 /* Address-family independent initialization for a tcp_sock.
403  *
404  * NOTE: A lot of things set to zero explicitly by call to
405  *       sk_alloc() so need not be done here.
406  */
407 void tcp_init_sock(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	struct tcp_sock *tp = tcp_sk(sk);
411 
412 	tp->out_of_order_queue = RB_ROOT;
413 	sk->tcp_rtx_queue = RB_ROOT;
414 	tcp_init_xmit_timers(sk);
415 	INIT_LIST_HEAD(&tp->tsq_node);
416 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417 
418 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421 
422 	/* So many TCP implementations out there (incorrectly) count the
423 	 * initial SYN frame in their delayed-ACK and congestion control
424 	 * algorithms that we must have the following bandaid to talk
425 	 * efficiently to them.  -DaveM
426 	 */
427 	tp->snd_cwnd = TCP_INIT_CWND;
428 
429 	/* There's a bubble in the pipe until at least the first ACK. */
430 	tp->app_limited = ~0U;
431 
432 	/* See draft-stevens-tcpca-spec-01 for discussion of the
433 	 * initialization of these values.
434 	 */
435 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 	tp->snd_cwnd_clamp = ~0;
437 	tp->mss_cache = TCP_MSS_DEFAULT;
438 
439 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 	tcp_assign_congestion_control(sk);
441 
442 	tp->tsoffset = 0;
443 	tp->rack.reo_wnd_steps = 1;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 }
457 EXPORT_SYMBOL(tcp_init_sock);
458 
459 void tcp_init_transfer(struct sock *sk, int bpf_op)
460 {
461 	struct inet_connection_sock *icsk = inet_csk(sk);
462 
463 	tcp_mtup_init(sk);
464 	icsk->icsk_af_ops->rebuild_header(sk);
465 	tcp_init_metrics(sk);
466 	tcp_call_bpf(sk, bpf_op);
467 	tcp_init_congestion_control(sk);
468 	tcp_init_buffer_space(sk);
469 }
470 
471 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
472 {
473 	struct sk_buff *skb = tcp_write_queue_tail(sk);
474 
475 	if (tsflags && skb) {
476 		struct skb_shared_info *shinfo = skb_shinfo(skb);
477 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
478 
479 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
480 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
481 			tcb->txstamp_ack = 1;
482 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
483 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
484 	}
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	unsigned int mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_rps_record_flow(sk);
502 
503 	sock_poll_wait(file, sk_sleep(sk), wait);
504 
505 	state = inet_sk_state_load(sk);
506 	if (state == TCP_LISTEN)
507 		return inet_csk_listen_poll(sk);
508 
509 	/* Socket is not locked. We are protected from async events
510 	 * by poll logic and correct handling of state changes
511 	 * made by other threads is impossible in any case.
512 	 */
513 
514 	mask = 0;
515 
516 	/*
517 	 * POLLHUP is certainly not done right. But poll() doesn't
518 	 * have a notion of HUP in just one direction, and for a
519 	 * socket the read side is more interesting.
520 	 *
521 	 * Some poll() documentation says that POLLHUP is incompatible
522 	 * with the POLLOUT/POLLWR flags, so somebody should check this
523 	 * all. But careful, it tends to be safer to return too many
524 	 * bits than too few, and you can easily break real applications
525 	 * if you don't tell them that something has hung up!
526 	 *
527 	 * Check-me.
528 	 *
529 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
530 	 * our fs/select.c). It means that after we received EOF,
531 	 * poll always returns immediately, making impossible poll() on write()
532 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
533 	 * if and only if shutdown has been made in both directions.
534 	 * Actually, it is interesting to look how Solaris and DUX
535 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
536 	 * then we could set it on SND_SHUTDOWN. BTW examples given
537 	 * in Stevens' books assume exactly this behaviour, it explains
538 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
539 	 *
540 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
541 	 * blocking on fresh not-connected or disconnected socket. --ANK
542 	 */
543 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
544 		mask |= POLLHUP;
545 	if (sk->sk_shutdown & RCV_SHUTDOWN)
546 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
547 
548 	/* Connected or passive Fast Open socket? */
549 	if (state != TCP_SYN_SENT &&
550 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
551 		int target = sock_rcvlowat(sk, 0, INT_MAX);
552 
553 		if (tp->urg_seq == tp->copied_seq &&
554 		    !sock_flag(sk, SOCK_URGINLINE) &&
555 		    tp->urg_data)
556 			target++;
557 
558 		if (tp->rcv_nxt - tp->copied_seq >= target)
559 			mask |= POLLIN | POLLRDNORM;
560 
561 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
562 			if (sk_stream_is_writeable(sk)) {
563 				mask |= POLLOUT | POLLWRNORM;
564 			} else {  /* send SIGIO later */
565 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
566 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
567 
568 				/* Race breaker. If space is freed after
569 				 * wspace test but before the flags are set,
570 				 * IO signal will be lost. Memory barrier
571 				 * pairs with the input side.
572 				 */
573 				smp_mb__after_atomic();
574 				if (sk_stream_is_writeable(sk))
575 					mask |= POLLOUT | POLLWRNORM;
576 			}
577 		} else
578 			mask |= POLLOUT | POLLWRNORM;
579 
580 		if (tp->urg_data & TCP_URG_VALID)
581 			mask |= POLLPRI;
582 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
583 		/* Active TCP fastopen socket with defer_connect
584 		 * Return POLLOUT so application can call write()
585 		 * in order for kernel to generate SYN+data
586 		 */
587 		mask |= POLLOUT | POLLWRNORM;
588 	}
589 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
590 	smp_rmb();
591 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
592 		mask |= POLLERR;
593 
594 	return mask;
595 }
596 EXPORT_SYMBOL(tcp_poll);
597 
598 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
599 {
600 	struct tcp_sock *tp = tcp_sk(sk);
601 	int answ;
602 	bool slow;
603 
604 	switch (cmd) {
605 	case SIOCINQ:
606 		if (sk->sk_state == TCP_LISTEN)
607 			return -EINVAL;
608 
609 		slow = lock_sock_fast(sk);
610 		answ = tcp_inq(sk);
611 		unlock_sock_fast(sk, slow);
612 		break;
613 	case SIOCATMARK:
614 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
615 		break;
616 	case SIOCOUTQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 			answ = 0;
622 		else
623 			answ = tp->write_seq - tp->snd_una;
624 		break;
625 	case SIOCOUTQNSD:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = tp->write_seq - tp->snd_nxt;
633 		break;
634 	default:
635 		return -ENOIOCTLCMD;
636 	}
637 
638 	return put_user(answ, (int __user *)arg);
639 }
640 EXPORT_SYMBOL(tcp_ioctl);
641 
642 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
643 {
644 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
645 	tp->pushed_seq = tp->write_seq;
646 }
647 
648 static inline bool forced_push(const struct tcp_sock *tp)
649 {
650 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
651 }
652 
653 static void skb_entail(struct sock *sk, struct sk_buff *skb)
654 {
655 	struct tcp_sock *tp = tcp_sk(sk);
656 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
657 
658 	skb->csum    = 0;
659 	tcb->seq     = tcb->end_seq = tp->write_seq;
660 	tcb->tcp_flags = TCPHDR_ACK;
661 	tcb->sacked  = 0;
662 	__skb_header_release(skb);
663 	tcp_add_write_queue_tail(sk, skb);
664 	sk->sk_wmem_queued += skb->truesize;
665 	sk_mem_charge(sk, skb->truesize);
666 	if (tp->nonagle & TCP_NAGLE_PUSH)
667 		tp->nonagle &= ~TCP_NAGLE_PUSH;
668 
669 	tcp_slow_start_after_idle_check(sk);
670 }
671 
672 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
673 {
674 	if (flags & MSG_OOB)
675 		tp->snd_up = tp->write_seq;
676 }
677 
678 /* If a not yet filled skb is pushed, do not send it if
679  * we have data packets in Qdisc or NIC queues :
680  * Because TX completion will happen shortly, it gives a chance
681  * to coalesce future sendmsg() payload into this skb, without
682  * need for a timer, and with no latency trade off.
683  * As packets containing data payload have a bigger truesize
684  * than pure acks (dataless) packets, the last checks prevent
685  * autocorking if we only have an ACK in Qdisc/NIC queues,
686  * or if TX completion was delayed after we processed ACK packet.
687  */
688 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
689 				int size_goal)
690 {
691 	return skb->len < size_goal &&
692 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
693 	       skb != tcp_write_queue_head(sk) &&
694 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
695 }
696 
697 static void tcp_push(struct sock *sk, int flags, int mss_now,
698 		     int nonagle, int size_goal)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 	struct sk_buff *skb;
702 
703 	skb = tcp_write_queue_tail(sk);
704 	if (!skb)
705 		return;
706 	if (!(flags & MSG_MORE) || forced_push(tp))
707 		tcp_mark_push(tp, skb);
708 
709 	tcp_mark_urg(tp, flags);
710 
711 	if (tcp_should_autocork(sk, skb, size_goal)) {
712 
713 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
714 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
716 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 		}
718 		/* It is possible TX completion already happened
719 		 * before we set TSQ_THROTTLED.
720 		 */
721 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
722 			return;
723 	}
724 
725 	if (flags & MSG_MORE)
726 		nonagle = TCP_NAGLE_CORK;
727 
728 	__tcp_push_pending_frames(sk, mss_now, nonagle);
729 }
730 
731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
732 				unsigned int offset, size_t len)
733 {
734 	struct tcp_splice_state *tss = rd_desc->arg.data;
735 	int ret;
736 
737 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
738 			      min(rd_desc->count, len), tss->flags);
739 	if (ret > 0)
740 		rd_desc->count -= ret;
741 	return ret;
742 }
743 
744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 {
746 	/* Store TCP splice context information in read_descriptor_t. */
747 	read_descriptor_t rd_desc = {
748 		.arg.data = tss,
749 		.count	  = tss->len,
750 	};
751 
752 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 }
754 
755 /**
756  *  tcp_splice_read - splice data from TCP socket to a pipe
757  * @sock:	socket to splice from
758  * @ppos:	position (not valid)
759  * @pipe:	pipe to splice to
760  * @len:	number of bytes to splice
761  * @flags:	splice modifier flags
762  *
763  * Description:
764  *    Will read pages from given socket and fill them into a pipe.
765  *
766  **/
767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
768 			struct pipe_inode_info *pipe, size_t len,
769 			unsigned int flags)
770 {
771 	struct sock *sk = sock->sk;
772 	struct tcp_splice_state tss = {
773 		.pipe = pipe,
774 		.len = len,
775 		.flags = flags,
776 	};
777 	long timeo;
778 	ssize_t spliced;
779 	int ret;
780 
781 	sock_rps_record_flow(sk);
782 	/*
783 	 * We can't seek on a socket input
784 	 */
785 	if (unlikely(*ppos))
786 		return -ESPIPE;
787 
788 	ret = spliced = 0;
789 
790 	lock_sock(sk);
791 
792 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 	while (tss.len) {
794 		ret = __tcp_splice_read(sk, &tss);
795 		if (ret < 0)
796 			break;
797 		else if (!ret) {
798 			if (spliced)
799 				break;
800 			if (sock_flag(sk, SOCK_DONE))
801 				break;
802 			if (sk->sk_err) {
803 				ret = sock_error(sk);
804 				break;
805 			}
806 			if (sk->sk_shutdown & RCV_SHUTDOWN)
807 				break;
808 			if (sk->sk_state == TCP_CLOSE) {
809 				/*
810 				 * This occurs when user tries to read
811 				 * from never connected socket.
812 				 */
813 				if (!sock_flag(sk, SOCK_DONE))
814 					ret = -ENOTCONN;
815 				break;
816 			}
817 			if (!timeo) {
818 				ret = -EAGAIN;
819 				break;
820 			}
821 			/* if __tcp_splice_read() got nothing while we have
822 			 * an skb in receive queue, we do not want to loop.
823 			 * This might happen with URG data.
824 			 */
825 			if (!skb_queue_empty(&sk->sk_receive_queue))
826 				break;
827 			sk_wait_data(sk, &timeo, NULL);
828 			if (signal_pending(current)) {
829 				ret = sock_intr_errno(timeo);
830 				break;
831 			}
832 			continue;
833 		}
834 		tss.len -= ret;
835 		spliced += ret;
836 
837 		if (!timeo)
838 			break;
839 		release_sock(sk);
840 		lock_sock(sk);
841 
842 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
843 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
844 		    signal_pending(current))
845 			break;
846 	}
847 
848 	release_sock(sk);
849 
850 	if (spliced)
851 		return spliced;
852 
853 	return ret;
854 }
855 EXPORT_SYMBOL(tcp_splice_read);
856 
857 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
858 				    bool force_schedule)
859 {
860 	struct sk_buff *skb;
861 
862 	/* The TCP header must be at least 32-bit aligned.  */
863 	size = ALIGN(size, 4);
864 
865 	if (unlikely(tcp_under_memory_pressure(sk)))
866 		sk_mem_reclaim_partial(sk);
867 
868 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
869 	if (likely(skb)) {
870 		bool mem_scheduled;
871 
872 		if (force_schedule) {
873 			mem_scheduled = true;
874 			sk_forced_mem_schedule(sk, skb->truesize);
875 		} else {
876 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
877 		}
878 		if (likely(mem_scheduled)) {
879 			skb_reserve(skb, sk->sk_prot->max_header);
880 			/*
881 			 * Make sure that we have exactly size bytes
882 			 * available to the caller, no more, no less.
883 			 */
884 			skb->reserved_tailroom = skb->end - skb->tail - size;
885 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
886 			return skb;
887 		}
888 		__kfree_skb(skb);
889 	} else {
890 		sk->sk_prot->enter_memory_pressure(sk);
891 		sk_stream_moderate_sndbuf(sk);
892 	}
893 	return NULL;
894 }
895 
896 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
897 				       int large_allowed)
898 {
899 	struct tcp_sock *tp = tcp_sk(sk);
900 	u32 new_size_goal, size_goal;
901 
902 	if (!large_allowed || !sk_can_gso(sk))
903 		return mss_now;
904 
905 	/* Note : tcp_tso_autosize() will eventually split this later */
906 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
907 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
908 
909 	/* We try hard to avoid divides here */
910 	size_goal = tp->gso_segs * mss_now;
911 	if (unlikely(new_size_goal < size_goal ||
912 		     new_size_goal >= size_goal + mss_now)) {
913 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914 				     sk->sk_gso_max_segs);
915 		size_goal = tp->gso_segs * mss_now;
916 	}
917 
918 	return max(size_goal, mss_now);
919 }
920 
921 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922 {
923 	int mss_now;
924 
925 	mss_now = tcp_current_mss(sk);
926 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927 
928 	return mss_now;
929 }
930 
931 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
932 			 size_t size, int flags)
933 {
934 	struct tcp_sock *tp = tcp_sk(sk);
935 	int mss_now, size_goal;
936 	int err;
937 	ssize_t copied;
938 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
939 
940 	/* Wait for a connection to finish. One exception is TCP Fast Open
941 	 * (passive side) where data is allowed to be sent before a connection
942 	 * is fully established.
943 	 */
944 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
945 	    !tcp_passive_fastopen(sk)) {
946 		err = sk_stream_wait_connect(sk, &timeo);
947 		if (err != 0)
948 			goto out_err;
949 	}
950 
951 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
952 
953 	mss_now = tcp_send_mss(sk, &size_goal, flags);
954 	copied = 0;
955 
956 	err = -EPIPE;
957 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
958 		goto out_err;
959 
960 	while (size > 0) {
961 		struct sk_buff *skb = tcp_write_queue_tail(sk);
962 		int copy, i;
963 		bool can_coalesce;
964 
965 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
966 		    !tcp_skb_can_collapse_to(skb)) {
967 new_segment:
968 			if (!sk_stream_memory_free(sk))
969 				goto wait_for_sndbuf;
970 
971 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
972 					tcp_rtx_and_write_queues_empty(sk));
973 			if (!skb)
974 				goto wait_for_memory;
975 
976 			skb_entail(sk, skb);
977 			copy = size_goal;
978 		}
979 
980 		if (copy > size)
981 			copy = size;
982 
983 		i = skb_shinfo(skb)->nr_frags;
984 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
985 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
986 			tcp_mark_push(tp, skb);
987 			goto new_segment;
988 		}
989 		if (!sk_wmem_schedule(sk, copy))
990 			goto wait_for_memory;
991 
992 		if (can_coalesce) {
993 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
994 		} else {
995 			get_page(page);
996 			skb_fill_page_desc(skb, i, page, offset, copy);
997 		}
998 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
999 
1000 		skb->len += copy;
1001 		skb->data_len += copy;
1002 		skb->truesize += copy;
1003 		sk->sk_wmem_queued += copy;
1004 		sk_mem_charge(sk, copy);
1005 		skb->ip_summed = CHECKSUM_PARTIAL;
1006 		tp->write_seq += copy;
1007 		TCP_SKB_CB(skb)->end_seq += copy;
1008 		tcp_skb_pcount_set(skb, 0);
1009 
1010 		if (!copied)
1011 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1012 
1013 		copied += copy;
1014 		offset += copy;
1015 		size -= copy;
1016 		if (!size)
1017 			goto out;
1018 
1019 		if (skb->len < size_goal || (flags & MSG_OOB))
1020 			continue;
1021 
1022 		if (forced_push(tp)) {
1023 			tcp_mark_push(tp, skb);
1024 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1025 		} else if (skb == tcp_send_head(sk))
1026 			tcp_push_one(sk, mss_now);
1027 		continue;
1028 
1029 wait_for_sndbuf:
1030 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1031 wait_for_memory:
1032 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1033 			 TCP_NAGLE_PUSH, size_goal);
1034 
1035 		err = sk_stream_wait_memory(sk, &timeo);
1036 		if (err != 0)
1037 			goto do_error;
1038 
1039 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1040 	}
1041 
1042 out:
1043 	if (copied) {
1044 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1045 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1046 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1047 	}
1048 	return copied;
1049 
1050 do_error:
1051 	if (copied)
1052 		goto out;
1053 out_err:
1054 	/* make sure we wake any epoll edge trigger waiter */
1055 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1056 		     err == -EAGAIN)) {
1057 		sk->sk_write_space(sk);
1058 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1059 	}
1060 	return sk_stream_error(sk, flags, err);
1061 }
1062 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1063 
1064 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1065 			size_t size, int flags)
1066 {
1067 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1068 	    !sk_check_csum_caps(sk))
1069 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1070 
1071 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1072 
1073 	return do_tcp_sendpages(sk, page, offset, size, flags);
1074 }
1075 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1076 
1077 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1078 		 size_t size, int flags)
1079 {
1080 	int ret;
1081 
1082 	lock_sock(sk);
1083 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1084 	release_sock(sk);
1085 
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL(tcp_sendpage);
1089 
1090 /* Do not bother using a page frag for very small frames.
1091  * But use this heuristic only for the first skb in write queue.
1092  *
1093  * Having no payload in skb->head allows better SACK shifting
1094  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1095  * write queue has less skbs.
1096  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1097  * This also speeds up tso_fragment(), since it wont fallback
1098  * to tcp_fragment().
1099  */
1100 static int linear_payload_sz(bool first_skb)
1101 {
1102 	if (first_skb)
1103 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1104 	return 0;
1105 }
1106 
1107 static int select_size(const struct sock *sk, bool sg, bool first_skb, bool zc)
1108 {
1109 	const struct tcp_sock *tp = tcp_sk(sk);
1110 	int tmp = tp->mss_cache;
1111 
1112 	if (sg) {
1113 		if (zc)
1114 			return 0;
1115 
1116 		if (sk_can_gso(sk)) {
1117 			tmp = linear_payload_sz(first_skb);
1118 		} else {
1119 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1120 
1121 			if (tmp >= pgbreak &&
1122 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1123 				tmp = pgbreak;
1124 		}
1125 	}
1126 
1127 	return tmp;
1128 }
1129 
1130 void tcp_free_fastopen_req(struct tcp_sock *tp)
1131 {
1132 	if (tp->fastopen_req) {
1133 		kfree(tp->fastopen_req);
1134 		tp->fastopen_req = NULL;
1135 	}
1136 }
1137 
1138 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1139 				int *copied, size_t size)
1140 {
1141 	struct tcp_sock *tp = tcp_sk(sk);
1142 	struct inet_sock *inet = inet_sk(sk);
1143 	struct sockaddr *uaddr = msg->msg_name;
1144 	int err, flags;
1145 
1146 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1147 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1148 	     uaddr->sa_family == AF_UNSPEC))
1149 		return -EOPNOTSUPP;
1150 	if (tp->fastopen_req)
1151 		return -EALREADY; /* Another Fast Open is in progress */
1152 
1153 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1154 				   sk->sk_allocation);
1155 	if (unlikely(!tp->fastopen_req))
1156 		return -ENOBUFS;
1157 	tp->fastopen_req->data = msg;
1158 	tp->fastopen_req->size = size;
1159 
1160 	if (inet->defer_connect) {
1161 		err = tcp_connect(sk);
1162 		/* Same failure procedure as in tcp_v4/6_connect */
1163 		if (err) {
1164 			tcp_set_state(sk, TCP_CLOSE);
1165 			inet->inet_dport = 0;
1166 			sk->sk_route_caps = 0;
1167 		}
1168 	}
1169 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1170 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1171 				    msg->msg_namelen, flags, 1);
1172 	/* fastopen_req could already be freed in __inet_stream_connect
1173 	 * if the connection times out or gets rst
1174 	 */
1175 	if (tp->fastopen_req) {
1176 		*copied = tp->fastopen_req->copied;
1177 		tcp_free_fastopen_req(tp);
1178 		inet->defer_connect = 0;
1179 	}
1180 	return err;
1181 }
1182 
1183 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 	struct ubuf_info *uarg = NULL;
1187 	struct sk_buff *skb;
1188 	struct sockcm_cookie sockc;
1189 	int flags, err, copied = 0;
1190 	int mss_now = 0, size_goal, copied_syn = 0;
1191 	bool process_backlog = false;
1192 	bool sg, zc = false;
1193 	long timeo;
1194 
1195 	flags = msg->msg_flags;
1196 
1197 	if (flags & MSG_ZEROCOPY && size) {
1198 		if (sk->sk_state != TCP_ESTABLISHED) {
1199 			err = -EINVAL;
1200 			goto out_err;
1201 		}
1202 
1203 		skb = tcp_write_queue_tail(sk);
1204 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1205 		if (!uarg) {
1206 			err = -ENOBUFS;
1207 			goto out_err;
1208 		}
1209 
1210 		zc = sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG;
1211 		if (!zc)
1212 			uarg->zerocopy = 0;
1213 	}
1214 
1215 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1216 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1217 		if (err == -EINPROGRESS && copied_syn > 0)
1218 			goto out;
1219 		else if (err)
1220 			goto out_err;
1221 	}
1222 
1223 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1224 
1225 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1226 
1227 	/* Wait for a connection to finish. One exception is TCP Fast Open
1228 	 * (passive side) where data is allowed to be sent before a connection
1229 	 * is fully established.
1230 	 */
1231 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1232 	    !tcp_passive_fastopen(sk)) {
1233 		err = sk_stream_wait_connect(sk, &timeo);
1234 		if (err != 0)
1235 			goto do_error;
1236 	}
1237 
1238 	if (unlikely(tp->repair)) {
1239 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1240 			copied = tcp_send_rcvq(sk, msg, size);
1241 			goto out_nopush;
1242 		}
1243 
1244 		err = -EINVAL;
1245 		if (tp->repair_queue == TCP_NO_QUEUE)
1246 			goto out_err;
1247 
1248 		/* 'common' sending to sendq */
1249 	}
1250 
1251 	sockc.tsflags = sk->sk_tsflags;
1252 	if (msg->msg_controllen) {
1253 		err = sock_cmsg_send(sk, msg, &sockc);
1254 		if (unlikely(err)) {
1255 			err = -EINVAL;
1256 			goto out_err;
1257 		}
1258 	}
1259 
1260 	/* This should be in poll */
1261 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1262 
1263 	/* Ok commence sending. */
1264 	copied = 0;
1265 
1266 restart:
1267 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1268 
1269 	err = -EPIPE;
1270 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1271 		goto do_error;
1272 
1273 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1274 
1275 	while (msg_data_left(msg)) {
1276 		int copy = 0;
1277 		int max = size_goal;
1278 
1279 		skb = tcp_write_queue_tail(sk);
1280 		if (skb) {
1281 			if (skb->ip_summed == CHECKSUM_NONE)
1282 				max = mss_now;
1283 			copy = max - skb->len;
1284 		}
1285 
1286 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1287 			bool first_skb;
1288 			int linear;
1289 
1290 new_segment:
1291 			/* Allocate new segment. If the interface is SG,
1292 			 * allocate skb fitting to single page.
1293 			 */
1294 			if (!sk_stream_memory_free(sk))
1295 				goto wait_for_sndbuf;
1296 
1297 			if (process_backlog && sk_flush_backlog(sk)) {
1298 				process_backlog = false;
1299 				goto restart;
1300 			}
1301 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1302 			linear = select_size(sk, sg, first_skb, zc);
1303 			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1304 						  first_skb);
1305 			if (!skb)
1306 				goto wait_for_memory;
1307 
1308 			process_backlog = true;
1309 			/*
1310 			 * Check whether we can use HW checksum.
1311 			 */
1312 			if (sk_check_csum_caps(sk))
1313 				skb->ip_summed = CHECKSUM_PARTIAL;
1314 
1315 			skb_entail(sk, skb);
1316 			copy = size_goal;
1317 			max = size_goal;
1318 
1319 			/* All packets are restored as if they have
1320 			 * already been sent. skb_mstamp isn't set to
1321 			 * avoid wrong rtt estimation.
1322 			 */
1323 			if (tp->repair)
1324 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1325 		}
1326 
1327 		/* Try to append data to the end of skb. */
1328 		if (copy > msg_data_left(msg))
1329 			copy = msg_data_left(msg);
1330 
1331 		/* Where to copy to? */
1332 		if (skb_availroom(skb) > 0 && !zc) {
1333 			/* We have some space in skb head. Superb! */
1334 			copy = min_t(int, copy, skb_availroom(skb));
1335 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1336 			if (err)
1337 				goto do_fault;
1338 		} else if (!zc) {
1339 			bool merge = true;
1340 			int i = skb_shinfo(skb)->nr_frags;
1341 			struct page_frag *pfrag = sk_page_frag(sk);
1342 
1343 			if (!sk_page_frag_refill(sk, pfrag))
1344 				goto wait_for_memory;
1345 
1346 			if (!skb_can_coalesce(skb, i, pfrag->page,
1347 					      pfrag->offset)) {
1348 				if (i >= sysctl_max_skb_frags || !sg) {
1349 					tcp_mark_push(tp, skb);
1350 					goto new_segment;
1351 				}
1352 				merge = false;
1353 			}
1354 
1355 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1356 
1357 			if (!sk_wmem_schedule(sk, copy))
1358 				goto wait_for_memory;
1359 
1360 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1361 						       pfrag->page,
1362 						       pfrag->offset,
1363 						       copy);
1364 			if (err)
1365 				goto do_error;
1366 
1367 			/* Update the skb. */
1368 			if (merge) {
1369 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1370 			} else {
1371 				skb_fill_page_desc(skb, i, pfrag->page,
1372 						   pfrag->offset, copy);
1373 				page_ref_inc(pfrag->page);
1374 			}
1375 			pfrag->offset += copy;
1376 		} else {
1377 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1378 			if (err == -EMSGSIZE || err == -EEXIST) {
1379 				tcp_mark_push(tp, skb);
1380 				goto new_segment;
1381 			}
1382 			if (err < 0)
1383 				goto do_error;
1384 			copy = err;
1385 		}
1386 
1387 		if (!copied)
1388 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1389 
1390 		tp->write_seq += copy;
1391 		TCP_SKB_CB(skb)->end_seq += copy;
1392 		tcp_skb_pcount_set(skb, 0);
1393 
1394 		copied += copy;
1395 		if (!msg_data_left(msg)) {
1396 			if (unlikely(flags & MSG_EOR))
1397 				TCP_SKB_CB(skb)->eor = 1;
1398 			goto out;
1399 		}
1400 
1401 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1402 			continue;
1403 
1404 		if (forced_push(tp)) {
1405 			tcp_mark_push(tp, skb);
1406 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1407 		} else if (skb == tcp_send_head(sk))
1408 			tcp_push_one(sk, mss_now);
1409 		continue;
1410 
1411 wait_for_sndbuf:
1412 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1413 wait_for_memory:
1414 		if (copied)
1415 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1416 				 TCP_NAGLE_PUSH, size_goal);
1417 
1418 		err = sk_stream_wait_memory(sk, &timeo);
1419 		if (err != 0)
1420 			goto do_error;
1421 
1422 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1423 	}
1424 
1425 out:
1426 	if (copied) {
1427 		tcp_tx_timestamp(sk, sockc.tsflags);
1428 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1429 	}
1430 out_nopush:
1431 	sock_zerocopy_put(uarg);
1432 	return copied + copied_syn;
1433 
1434 do_fault:
1435 	if (!skb->len) {
1436 		tcp_unlink_write_queue(skb, sk);
1437 		/* It is the one place in all of TCP, except connection
1438 		 * reset, where we can be unlinking the send_head.
1439 		 */
1440 		tcp_check_send_head(sk, skb);
1441 		sk_wmem_free_skb(sk, skb);
1442 	}
1443 
1444 do_error:
1445 	if (copied + copied_syn)
1446 		goto out;
1447 out_err:
1448 	sock_zerocopy_put_abort(uarg);
1449 	err = sk_stream_error(sk, flags, err);
1450 	/* make sure we wake any epoll edge trigger waiter */
1451 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1452 		     err == -EAGAIN)) {
1453 		sk->sk_write_space(sk);
1454 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1455 	}
1456 	return err;
1457 }
1458 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1459 
1460 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1461 {
1462 	int ret;
1463 
1464 	lock_sock(sk);
1465 	ret = tcp_sendmsg_locked(sk, msg, size);
1466 	release_sock(sk);
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(tcp_sendmsg);
1471 
1472 /*
1473  *	Handle reading urgent data. BSD has very simple semantics for
1474  *	this, no blocking and very strange errors 8)
1475  */
1476 
1477 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1478 {
1479 	struct tcp_sock *tp = tcp_sk(sk);
1480 
1481 	/* No URG data to read. */
1482 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1483 	    tp->urg_data == TCP_URG_READ)
1484 		return -EINVAL;	/* Yes this is right ! */
1485 
1486 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1487 		return -ENOTCONN;
1488 
1489 	if (tp->urg_data & TCP_URG_VALID) {
1490 		int err = 0;
1491 		char c = tp->urg_data;
1492 
1493 		if (!(flags & MSG_PEEK))
1494 			tp->urg_data = TCP_URG_READ;
1495 
1496 		/* Read urgent data. */
1497 		msg->msg_flags |= MSG_OOB;
1498 
1499 		if (len > 0) {
1500 			if (!(flags & MSG_TRUNC))
1501 				err = memcpy_to_msg(msg, &c, 1);
1502 			len = 1;
1503 		} else
1504 			msg->msg_flags |= MSG_TRUNC;
1505 
1506 		return err ? -EFAULT : len;
1507 	}
1508 
1509 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1510 		return 0;
1511 
1512 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1513 	 * the available implementations agree in this case:
1514 	 * this call should never block, independent of the
1515 	 * blocking state of the socket.
1516 	 * Mike <pall@rz.uni-karlsruhe.de>
1517 	 */
1518 	return -EAGAIN;
1519 }
1520 
1521 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1522 {
1523 	struct sk_buff *skb;
1524 	int copied = 0, err = 0;
1525 
1526 	/* XXX -- need to support SO_PEEK_OFF */
1527 
1528 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1529 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 		if (err)
1531 			return err;
1532 		copied += skb->len;
1533 	}
1534 
1535 	skb_queue_walk(&sk->sk_write_queue, skb) {
1536 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1537 		if (err)
1538 			break;
1539 
1540 		copied += skb->len;
1541 	}
1542 
1543 	return err ?: copied;
1544 }
1545 
1546 /* Clean up the receive buffer for full frames taken by the user,
1547  * then send an ACK if necessary.  COPIED is the number of bytes
1548  * tcp_recvmsg has given to the user so far, it speeds up the
1549  * calculation of whether or not we must ACK for the sake of
1550  * a window update.
1551  */
1552 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1553 {
1554 	struct tcp_sock *tp = tcp_sk(sk);
1555 	bool time_to_ack = false;
1556 
1557 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1558 
1559 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1560 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1561 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1562 
1563 	if (inet_csk_ack_scheduled(sk)) {
1564 		const struct inet_connection_sock *icsk = inet_csk(sk);
1565 		   /* Delayed ACKs frequently hit locked sockets during bulk
1566 		    * receive. */
1567 		if (icsk->icsk_ack.blocked ||
1568 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1569 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1570 		    /*
1571 		     * If this read emptied read buffer, we send ACK, if
1572 		     * connection is not bidirectional, user drained
1573 		     * receive buffer and there was a small segment
1574 		     * in queue.
1575 		     */
1576 		    (copied > 0 &&
1577 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1578 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1579 		       !icsk->icsk_ack.pingpong)) &&
1580 		      !atomic_read(&sk->sk_rmem_alloc)))
1581 			time_to_ack = true;
1582 	}
1583 
1584 	/* We send an ACK if we can now advertise a non-zero window
1585 	 * which has been raised "significantly".
1586 	 *
1587 	 * Even if window raised up to infinity, do not send window open ACK
1588 	 * in states, where we will not receive more. It is useless.
1589 	 */
1590 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1591 		__u32 rcv_window_now = tcp_receive_window(tp);
1592 
1593 		/* Optimize, __tcp_select_window() is not cheap. */
1594 		if (2*rcv_window_now <= tp->window_clamp) {
1595 			__u32 new_window = __tcp_select_window(sk);
1596 
1597 			/* Send ACK now, if this read freed lots of space
1598 			 * in our buffer. Certainly, new_window is new window.
1599 			 * We can advertise it now, if it is not less than current one.
1600 			 * "Lots" means "at least twice" here.
1601 			 */
1602 			if (new_window && new_window >= 2 * rcv_window_now)
1603 				time_to_ack = true;
1604 		}
1605 	}
1606 	if (time_to_ack)
1607 		tcp_send_ack(sk);
1608 }
1609 
1610 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1611 {
1612 	struct sk_buff *skb;
1613 	u32 offset;
1614 
1615 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1616 		offset = seq - TCP_SKB_CB(skb)->seq;
1617 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1618 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1619 			offset--;
1620 		}
1621 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1622 			*off = offset;
1623 			return skb;
1624 		}
1625 		/* This looks weird, but this can happen if TCP collapsing
1626 		 * splitted a fat GRO packet, while we released socket lock
1627 		 * in skb_splice_bits()
1628 		 */
1629 		sk_eat_skb(sk, skb);
1630 	}
1631 	return NULL;
1632 }
1633 
1634 /*
1635  * This routine provides an alternative to tcp_recvmsg() for routines
1636  * that would like to handle copying from skbuffs directly in 'sendfile'
1637  * fashion.
1638  * Note:
1639  *	- It is assumed that the socket was locked by the caller.
1640  *	- The routine does not block.
1641  *	- At present, there is no support for reading OOB data
1642  *	  or for 'peeking' the socket using this routine
1643  *	  (although both would be easy to implement).
1644  */
1645 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1646 		  sk_read_actor_t recv_actor)
1647 {
1648 	struct sk_buff *skb;
1649 	struct tcp_sock *tp = tcp_sk(sk);
1650 	u32 seq = tp->copied_seq;
1651 	u32 offset;
1652 	int copied = 0;
1653 
1654 	if (sk->sk_state == TCP_LISTEN)
1655 		return -ENOTCONN;
1656 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1657 		if (offset < skb->len) {
1658 			int used;
1659 			size_t len;
1660 
1661 			len = skb->len - offset;
1662 			/* Stop reading if we hit a patch of urgent data */
1663 			if (tp->urg_data) {
1664 				u32 urg_offset = tp->urg_seq - seq;
1665 				if (urg_offset < len)
1666 					len = urg_offset;
1667 				if (!len)
1668 					break;
1669 			}
1670 			used = recv_actor(desc, skb, offset, len);
1671 			if (used <= 0) {
1672 				if (!copied)
1673 					copied = used;
1674 				break;
1675 			} else if (used <= len) {
1676 				seq += used;
1677 				copied += used;
1678 				offset += used;
1679 			}
1680 			/* If recv_actor drops the lock (e.g. TCP splice
1681 			 * receive) the skb pointer might be invalid when
1682 			 * getting here: tcp_collapse might have deleted it
1683 			 * while aggregating skbs from the socket queue.
1684 			 */
1685 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1686 			if (!skb)
1687 				break;
1688 			/* TCP coalescing might have appended data to the skb.
1689 			 * Try to splice more frags
1690 			 */
1691 			if (offset + 1 != skb->len)
1692 				continue;
1693 		}
1694 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1695 			sk_eat_skb(sk, skb);
1696 			++seq;
1697 			break;
1698 		}
1699 		sk_eat_skb(sk, skb);
1700 		if (!desc->count)
1701 			break;
1702 		tp->copied_seq = seq;
1703 	}
1704 	tp->copied_seq = seq;
1705 
1706 	tcp_rcv_space_adjust(sk);
1707 
1708 	/* Clean up data we have read: This will do ACK frames. */
1709 	if (copied > 0) {
1710 		tcp_recv_skb(sk, seq, &offset);
1711 		tcp_cleanup_rbuf(sk, copied);
1712 	}
1713 	return copied;
1714 }
1715 EXPORT_SYMBOL(tcp_read_sock);
1716 
1717 int tcp_peek_len(struct socket *sock)
1718 {
1719 	return tcp_inq(sock->sk);
1720 }
1721 EXPORT_SYMBOL(tcp_peek_len);
1722 
1723 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1724 				    struct scm_timestamping *tss)
1725 {
1726 	if (skb->tstamp)
1727 		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1728 	else
1729 		tss->ts[0] = (struct timespec) {0};
1730 
1731 	if (skb_hwtstamps(skb)->hwtstamp)
1732 		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1733 	else
1734 		tss->ts[2] = (struct timespec) {0};
1735 }
1736 
1737 /* Similar to __sock_recv_timestamp, but does not require an skb */
1738 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1739 			struct scm_timestamping *tss)
1740 {
1741 	struct timeval tv;
1742 	bool has_timestamping = false;
1743 
1744 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1745 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1746 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1747 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1748 					 sizeof(tss->ts[0]), &tss->ts[0]);
1749 			} else {
1750 				tv.tv_sec = tss->ts[0].tv_sec;
1751 				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1752 
1753 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1754 					 sizeof(tv), &tv);
1755 			}
1756 		}
1757 
1758 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1759 			has_timestamping = true;
1760 		else
1761 			tss->ts[0] = (struct timespec) {0};
1762 	}
1763 
1764 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1765 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1766 			has_timestamping = true;
1767 		else
1768 			tss->ts[2] = (struct timespec) {0};
1769 	}
1770 
1771 	if (has_timestamping) {
1772 		tss->ts[1] = (struct timespec) {0};
1773 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1774 			 sizeof(*tss), tss);
1775 	}
1776 }
1777 
1778 /*
1779  *	This routine copies from a sock struct into the user buffer.
1780  *
1781  *	Technical note: in 2.3 we work on _locked_ socket, so that
1782  *	tricks with *seq access order and skb->users are not required.
1783  *	Probably, code can be easily improved even more.
1784  */
1785 
1786 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1787 		int flags, int *addr_len)
1788 {
1789 	struct tcp_sock *tp = tcp_sk(sk);
1790 	int copied = 0;
1791 	u32 peek_seq;
1792 	u32 *seq;
1793 	unsigned long used;
1794 	int err;
1795 	int target;		/* Read at least this many bytes */
1796 	long timeo;
1797 	struct sk_buff *skb, *last;
1798 	u32 urg_hole = 0;
1799 	struct scm_timestamping tss;
1800 	bool has_tss = false;
1801 
1802 	if (unlikely(flags & MSG_ERRQUEUE))
1803 		return inet_recv_error(sk, msg, len, addr_len);
1804 
1805 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1806 	    (sk->sk_state == TCP_ESTABLISHED))
1807 		sk_busy_loop(sk, nonblock);
1808 
1809 	lock_sock(sk);
1810 
1811 	err = -ENOTCONN;
1812 	if (sk->sk_state == TCP_LISTEN)
1813 		goto out;
1814 
1815 	timeo = sock_rcvtimeo(sk, nonblock);
1816 
1817 	/* Urgent data needs to be handled specially. */
1818 	if (flags & MSG_OOB)
1819 		goto recv_urg;
1820 
1821 	if (unlikely(tp->repair)) {
1822 		err = -EPERM;
1823 		if (!(flags & MSG_PEEK))
1824 			goto out;
1825 
1826 		if (tp->repair_queue == TCP_SEND_QUEUE)
1827 			goto recv_sndq;
1828 
1829 		err = -EINVAL;
1830 		if (tp->repair_queue == TCP_NO_QUEUE)
1831 			goto out;
1832 
1833 		/* 'common' recv queue MSG_PEEK-ing */
1834 	}
1835 
1836 	seq = &tp->copied_seq;
1837 	if (flags & MSG_PEEK) {
1838 		peek_seq = tp->copied_seq;
1839 		seq = &peek_seq;
1840 	}
1841 
1842 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1843 
1844 	do {
1845 		u32 offset;
1846 
1847 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1848 		if (tp->urg_data && tp->urg_seq == *seq) {
1849 			if (copied)
1850 				break;
1851 			if (signal_pending(current)) {
1852 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1853 				break;
1854 			}
1855 		}
1856 
1857 		/* Next get a buffer. */
1858 
1859 		last = skb_peek_tail(&sk->sk_receive_queue);
1860 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1861 			last = skb;
1862 			/* Now that we have two receive queues this
1863 			 * shouldn't happen.
1864 			 */
1865 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1866 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1867 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1868 				 flags))
1869 				break;
1870 
1871 			offset = *seq - TCP_SKB_CB(skb)->seq;
1872 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1873 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1874 				offset--;
1875 			}
1876 			if (offset < skb->len)
1877 				goto found_ok_skb;
1878 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1879 				goto found_fin_ok;
1880 			WARN(!(flags & MSG_PEEK),
1881 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1882 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1883 		}
1884 
1885 		/* Well, if we have backlog, try to process it now yet. */
1886 
1887 		if (copied >= target && !sk->sk_backlog.tail)
1888 			break;
1889 
1890 		if (copied) {
1891 			if (sk->sk_err ||
1892 			    sk->sk_state == TCP_CLOSE ||
1893 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1894 			    !timeo ||
1895 			    signal_pending(current))
1896 				break;
1897 		} else {
1898 			if (sock_flag(sk, SOCK_DONE))
1899 				break;
1900 
1901 			if (sk->sk_err) {
1902 				copied = sock_error(sk);
1903 				break;
1904 			}
1905 
1906 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1907 				break;
1908 
1909 			if (sk->sk_state == TCP_CLOSE) {
1910 				if (!sock_flag(sk, SOCK_DONE)) {
1911 					/* This occurs when user tries to read
1912 					 * from never connected socket.
1913 					 */
1914 					copied = -ENOTCONN;
1915 					break;
1916 				}
1917 				break;
1918 			}
1919 
1920 			if (!timeo) {
1921 				copied = -EAGAIN;
1922 				break;
1923 			}
1924 
1925 			if (signal_pending(current)) {
1926 				copied = sock_intr_errno(timeo);
1927 				break;
1928 			}
1929 		}
1930 
1931 		tcp_cleanup_rbuf(sk, copied);
1932 
1933 		if (copied >= target) {
1934 			/* Do not sleep, just process backlog. */
1935 			release_sock(sk);
1936 			lock_sock(sk);
1937 		} else {
1938 			sk_wait_data(sk, &timeo, last);
1939 		}
1940 
1941 		if ((flags & MSG_PEEK) &&
1942 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1943 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1944 					    current->comm,
1945 					    task_pid_nr(current));
1946 			peek_seq = tp->copied_seq;
1947 		}
1948 		continue;
1949 
1950 	found_ok_skb:
1951 		/* Ok so how much can we use? */
1952 		used = skb->len - offset;
1953 		if (len < used)
1954 			used = len;
1955 
1956 		/* Do we have urgent data here? */
1957 		if (tp->urg_data) {
1958 			u32 urg_offset = tp->urg_seq - *seq;
1959 			if (urg_offset < used) {
1960 				if (!urg_offset) {
1961 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1962 						++*seq;
1963 						urg_hole++;
1964 						offset++;
1965 						used--;
1966 						if (!used)
1967 							goto skip_copy;
1968 					}
1969 				} else
1970 					used = urg_offset;
1971 			}
1972 		}
1973 
1974 		if (!(flags & MSG_TRUNC)) {
1975 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1976 			if (err) {
1977 				/* Exception. Bailout! */
1978 				if (!copied)
1979 					copied = -EFAULT;
1980 				break;
1981 			}
1982 		}
1983 
1984 		*seq += used;
1985 		copied += used;
1986 		len -= used;
1987 
1988 		tcp_rcv_space_adjust(sk);
1989 
1990 skip_copy:
1991 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1992 			tp->urg_data = 0;
1993 			tcp_fast_path_check(sk);
1994 		}
1995 		if (used + offset < skb->len)
1996 			continue;
1997 
1998 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1999 			tcp_update_recv_tstamps(skb, &tss);
2000 			has_tss = true;
2001 		}
2002 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2003 			goto found_fin_ok;
2004 		if (!(flags & MSG_PEEK))
2005 			sk_eat_skb(sk, skb);
2006 		continue;
2007 
2008 	found_fin_ok:
2009 		/* Process the FIN. */
2010 		++*seq;
2011 		if (!(flags & MSG_PEEK))
2012 			sk_eat_skb(sk, skb);
2013 		break;
2014 	} while (len > 0);
2015 
2016 	/* According to UNIX98, msg_name/msg_namelen are ignored
2017 	 * on connected socket. I was just happy when found this 8) --ANK
2018 	 */
2019 
2020 	if (has_tss)
2021 		tcp_recv_timestamp(msg, sk, &tss);
2022 
2023 	/* Clean up data we have read: This will do ACK frames. */
2024 	tcp_cleanup_rbuf(sk, copied);
2025 
2026 	release_sock(sk);
2027 	return copied;
2028 
2029 out:
2030 	release_sock(sk);
2031 	return err;
2032 
2033 recv_urg:
2034 	err = tcp_recv_urg(sk, msg, len, flags);
2035 	goto out;
2036 
2037 recv_sndq:
2038 	err = tcp_peek_sndq(sk, msg, len);
2039 	goto out;
2040 }
2041 EXPORT_SYMBOL(tcp_recvmsg);
2042 
2043 void tcp_set_state(struct sock *sk, int state)
2044 {
2045 	int oldstate = sk->sk_state;
2046 
2047 	switch (state) {
2048 	case TCP_ESTABLISHED:
2049 		if (oldstate != TCP_ESTABLISHED)
2050 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2051 		break;
2052 
2053 	case TCP_CLOSE:
2054 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2055 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2056 
2057 		sk->sk_prot->unhash(sk);
2058 		if (inet_csk(sk)->icsk_bind_hash &&
2059 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2060 			inet_put_port(sk);
2061 		/* fall through */
2062 	default:
2063 		if (oldstate == TCP_ESTABLISHED)
2064 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2065 	}
2066 
2067 	/* Change state AFTER socket is unhashed to avoid closed
2068 	 * socket sitting in hash tables.
2069 	 */
2070 	inet_sk_state_store(sk, state);
2071 
2072 #ifdef STATE_TRACE
2073 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2074 #endif
2075 }
2076 EXPORT_SYMBOL_GPL(tcp_set_state);
2077 
2078 /*
2079  *	State processing on a close. This implements the state shift for
2080  *	sending our FIN frame. Note that we only send a FIN for some
2081  *	states. A shutdown() may have already sent the FIN, or we may be
2082  *	closed.
2083  */
2084 
2085 static const unsigned char new_state[16] = {
2086   /* current state:        new state:      action:	*/
2087   [0 /* (Invalid) */]	= TCP_CLOSE,
2088   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2089   [TCP_SYN_SENT]	= TCP_CLOSE,
2090   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2091   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2092   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2093   [TCP_TIME_WAIT]	= TCP_CLOSE,
2094   [TCP_CLOSE]		= TCP_CLOSE,
2095   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2096   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2097   [TCP_LISTEN]		= TCP_CLOSE,
2098   [TCP_CLOSING]		= TCP_CLOSING,
2099   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2100 };
2101 
2102 static int tcp_close_state(struct sock *sk)
2103 {
2104 	int next = (int)new_state[sk->sk_state];
2105 	int ns = next & TCP_STATE_MASK;
2106 
2107 	tcp_set_state(sk, ns);
2108 
2109 	return next & TCP_ACTION_FIN;
2110 }
2111 
2112 /*
2113  *	Shutdown the sending side of a connection. Much like close except
2114  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2115  */
2116 
2117 void tcp_shutdown(struct sock *sk, int how)
2118 {
2119 	/*	We need to grab some memory, and put together a FIN,
2120 	 *	and then put it into the queue to be sent.
2121 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2122 	 */
2123 	if (!(how & SEND_SHUTDOWN))
2124 		return;
2125 
2126 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2127 	if ((1 << sk->sk_state) &
2128 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2129 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2130 		/* Clear out any half completed packets.  FIN if needed. */
2131 		if (tcp_close_state(sk))
2132 			tcp_send_fin(sk);
2133 	}
2134 }
2135 EXPORT_SYMBOL(tcp_shutdown);
2136 
2137 bool tcp_check_oom(struct sock *sk, int shift)
2138 {
2139 	bool too_many_orphans, out_of_socket_memory;
2140 
2141 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2142 	out_of_socket_memory = tcp_out_of_memory(sk);
2143 
2144 	if (too_many_orphans)
2145 		net_info_ratelimited("too many orphaned sockets\n");
2146 	if (out_of_socket_memory)
2147 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2148 	return too_many_orphans || out_of_socket_memory;
2149 }
2150 
2151 void tcp_close(struct sock *sk, long timeout)
2152 {
2153 	struct sk_buff *skb;
2154 	int data_was_unread = 0;
2155 	int state;
2156 
2157 	lock_sock(sk);
2158 	sk->sk_shutdown = SHUTDOWN_MASK;
2159 
2160 	if (sk->sk_state == TCP_LISTEN) {
2161 		tcp_set_state(sk, TCP_CLOSE);
2162 
2163 		/* Special case. */
2164 		inet_csk_listen_stop(sk);
2165 
2166 		goto adjudge_to_death;
2167 	}
2168 
2169 	/*  We need to flush the recv. buffs.  We do this only on the
2170 	 *  descriptor close, not protocol-sourced closes, because the
2171 	 *  reader process may not have drained the data yet!
2172 	 */
2173 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2174 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2175 
2176 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2177 			len--;
2178 		data_was_unread += len;
2179 		__kfree_skb(skb);
2180 	}
2181 
2182 	sk_mem_reclaim(sk);
2183 
2184 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2185 	if (sk->sk_state == TCP_CLOSE)
2186 		goto adjudge_to_death;
2187 
2188 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2189 	 * data was lost. To witness the awful effects of the old behavior of
2190 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2191 	 * GET in an FTP client, suspend the process, wait for the client to
2192 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2193 	 * Note: timeout is always zero in such a case.
2194 	 */
2195 	if (unlikely(tcp_sk(sk)->repair)) {
2196 		sk->sk_prot->disconnect(sk, 0);
2197 	} else if (data_was_unread) {
2198 		/* Unread data was tossed, zap the connection. */
2199 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2200 		tcp_set_state(sk, TCP_CLOSE);
2201 		tcp_send_active_reset(sk, sk->sk_allocation);
2202 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2203 		/* Check zero linger _after_ checking for unread data. */
2204 		sk->sk_prot->disconnect(sk, 0);
2205 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2206 	} else if (tcp_close_state(sk)) {
2207 		/* We FIN if the application ate all the data before
2208 		 * zapping the connection.
2209 		 */
2210 
2211 		/* RED-PEN. Formally speaking, we have broken TCP state
2212 		 * machine. State transitions:
2213 		 *
2214 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2215 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2216 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2217 		 *
2218 		 * are legal only when FIN has been sent (i.e. in window),
2219 		 * rather than queued out of window. Purists blame.
2220 		 *
2221 		 * F.e. "RFC state" is ESTABLISHED,
2222 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2223 		 *
2224 		 * The visible declinations are that sometimes
2225 		 * we enter time-wait state, when it is not required really
2226 		 * (harmless), do not send active resets, when they are
2227 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2228 		 * they look as CLOSING or LAST_ACK for Linux)
2229 		 * Probably, I missed some more holelets.
2230 		 * 						--ANK
2231 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2232 		 * in a single packet! (May consider it later but will
2233 		 * probably need API support or TCP_CORK SYN-ACK until
2234 		 * data is written and socket is closed.)
2235 		 */
2236 		tcp_send_fin(sk);
2237 	}
2238 
2239 	sk_stream_wait_close(sk, timeout);
2240 
2241 adjudge_to_death:
2242 	state = sk->sk_state;
2243 	sock_hold(sk);
2244 	sock_orphan(sk);
2245 
2246 	/* It is the last release_sock in its life. It will remove backlog. */
2247 	release_sock(sk);
2248 
2249 
2250 	/* Now socket is owned by kernel and we acquire BH lock
2251 	 *  to finish close. No need to check for user refs.
2252 	 */
2253 	local_bh_disable();
2254 	bh_lock_sock(sk);
2255 	WARN_ON(sock_owned_by_user(sk));
2256 
2257 	percpu_counter_inc(sk->sk_prot->orphan_count);
2258 
2259 	/* Have we already been destroyed by a softirq or backlog? */
2260 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2261 		goto out;
2262 
2263 	/*	This is a (useful) BSD violating of the RFC. There is a
2264 	 *	problem with TCP as specified in that the other end could
2265 	 *	keep a socket open forever with no application left this end.
2266 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2267 	 *	our end. If they send after that then tough - BUT: long enough
2268 	 *	that we won't make the old 4*rto = almost no time - whoops
2269 	 *	reset mistake.
2270 	 *
2271 	 *	Nope, it was not mistake. It is really desired behaviour
2272 	 *	f.e. on http servers, when such sockets are useless, but
2273 	 *	consume significant resources. Let's do it with special
2274 	 *	linger2	option.					--ANK
2275 	 */
2276 
2277 	if (sk->sk_state == TCP_FIN_WAIT2) {
2278 		struct tcp_sock *tp = tcp_sk(sk);
2279 		if (tp->linger2 < 0) {
2280 			tcp_set_state(sk, TCP_CLOSE);
2281 			tcp_send_active_reset(sk, GFP_ATOMIC);
2282 			__NET_INC_STATS(sock_net(sk),
2283 					LINUX_MIB_TCPABORTONLINGER);
2284 		} else {
2285 			const int tmo = tcp_fin_time(sk);
2286 
2287 			if (tmo > TCP_TIMEWAIT_LEN) {
2288 				inet_csk_reset_keepalive_timer(sk,
2289 						tmo - TCP_TIMEWAIT_LEN);
2290 			} else {
2291 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2292 				goto out;
2293 			}
2294 		}
2295 	}
2296 	if (sk->sk_state != TCP_CLOSE) {
2297 		sk_mem_reclaim(sk);
2298 		if (tcp_check_oom(sk, 0)) {
2299 			tcp_set_state(sk, TCP_CLOSE);
2300 			tcp_send_active_reset(sk, GFP_ATOMIC);
2301 			__NET_INC_STATS(sock_net(sk),
2302 					LINUX_MIB_TCPABORTONMEMORY);
2303 		}
2304 	}
2305 
2306 	if (sk->sk_state == TCP_CLOSE) {
2307 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2308 		/* We could get here with a non-NULL req if the socket is
2309 		 * aborted (e.g., closed with unread data) before 3WHS
2310 		 * finishes.
2311 		 */
2312 		if (req)
2313 			reqsk_fastopen_remove(sk, req, false);
2314 		inet_csk_destroy_sock(sk);
2315 	}
2316 	/* Otherwise, socket is reprieved until protocol close. */
2317 
2318 out:
2319 	bh_unlock_sock(sk);
2320 	local_bh_enable();
2321 	sock_put(sk);
2322 }
2323 EXPORT_SYMBOL(tcp_close);
2324 
2325 /* These states need RST on ABORT according to RFC793 */
2326 
2327 static inline bool tcp_need_reset(int state)
2328 {
2329 	return (1 << state) &
2330 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2331 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2332 }
2333 
2334 static void tcp_rtx_queue_purge(struct sock *sk)
2335 {
2336 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2337 
2338 	while (p) {
2339 		struct sk_buff *skb = rb_to_skb(p);
2340 
2341 		p = rb_next(p);
2342 		/* Since we are deleting whole queue, no need to
2343 		 * list_del(&skb->tcp_tsorted_anchor)
2344 		 */
2345 		tcp_rtx_queue_unlink(skb, sk);
2346 		sk_wmem_free_skb(sk, skb);
2347 	}
2348 }
2349 
2350 void tcp_write_queue_purge(struct sock *sk)
2351 {
2352 	struct sk_buff *skb;
2353 
2354 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2355 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2356 		tcp_skb_tsorted_anchor_cleanup(skb);
2357 		sk_wmem_free_skb(sk, skb);
2358 	}
2359 	tcp_rtx_queue_purge(sk);
2360 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2361 	sk_mem_reclaim(sk);
2362 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2363 }
2364 
2365 int tcp_disconnect(struct sock *sk, int flags)
2366 {
2367 	struct inet_sock *inet = inet_sk(sk);
2368 	struct inet_connection_sock *icsk = inet_csk(sk);
2369 	struct tcp_sock *tp = tcp_sk(sk);
2370 	int err = 0;
2371 	int old_state = sk->sk_state;
2372 
2373 	if (old_state != TCP_CLOSE)
2374 		tcp_set_state(sk, TCP_CLOSE);
2375 
2376 	/* ABORT function of RFC793 */
2377 	if (old_state == TCP_LISTEN) {
2378 		inet_csk_listen_stop(sk);
2379 	} else if (unlikely(tp->repair)) {
2380 		sk->sk_err = ECONNABORTED;
2381 	} else if (tcp_need_reset(old_state) ||
2382 		   (tp->snd_nxt != tp->write_seq &&
2383 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2384 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2385 		 * states
2386 		 */
2387 		tcp_send_active_reset(sk, gfp_any());
2388 		sk->sk_err = ECONNRESET;
2389 	} else if (old_state == TCP_SYN_SENT)
2390 		sk->sk_err = ECONNRESET;
2391 
2392 	tcp_clear_xmit_timers(sk);
2393 	__skb_queue_purge(&sk->sk_receive_queue);
2394 	tcp_write_queue_purge(sk);
2395 	tcp_fastopen_active_disable_ofo_check(sk);
2396 	skb_rbtree_purge(&tp->out_of_order_queue);
2397 
2398 	inet->inet_dport = 0;
2399 
2400 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2401 		inet_reset_saddr(sk);
2402 
2403 	sk->sk_shutdown = 0;
2404 	sock_reset_flag(sk, SOCK_DONE);
2405 	tp->srtt_us = 0;
2406 	tp->write_seq += tp->max_window + 2;
2407 	if (tp->write_seq == 0)
2408 		tp->write_seq = 1;
2409 	icsk->icsk_backoff = 0;
2410 	tp->snd_cwnd = 2;
2411 	icsk->icsk_probes_out = 0;
2412 	tp->packets_out = 0;
2413 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2414 	tp->snd_cwnd_cnt = 0;
2415 	tp->window_clamp = 0;
2416 	tcp_set_ca_state(sk, TCP_CA_Open);
2417 	tp->is_sack_reneg = 0;
2418 	tcp_clear_retrans(tp);
2419 	inet_csk_delack_init(sk);
2420 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2421 	 * issue in __tcp_select_window()
2422 	 */
2423 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2424 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2425 	__sk_dst_reset(sk);
2426 	dst_release(sk->sk_rx_dst);
2427 	sk->sk_rx_dst = NULL;
2428 	tcp_saved_syn_free(tp);
2429 
2430 	/* Clean up fastopen related fields */
2431 	tcp_free_fastopen_req(tp);
2432 	inet->defer_connect = 0;
2433 
2434 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2435 
2436 	sk->sk_error_report(sk);
2437 	return err;
2438 }
2439 EXPORT_SYMBOL(tcp_disconnect);
2440 
2441 static inline bool tcp_can_repair_sock(const struct sock *sk)
2442 {
2443 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2444 		(sk->sk_state != TCP_LISTEN);
2445 }
2446 
2447 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2448 {
2449 	struct tcp_repair_window opt;
2450 
2451 	if (!tp->repair)
2452 		return -EPERM;
2453 
2454 	if (len != sizeof(opt))
2455 		return -EINVAL;
2456 
2457 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2458 		return -EFAULT;
2459 
2460 	if (opt.max_window < opt.snd_wnd)
2461 		return -EINVAL;
2462 
2463 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2464 		return -EINVAL;
2465 
2466 	if (after(opt.rcv_wup, tp->rcv_nxt))
2467 		return -EINVAL;
2468 
2469 	tp->snd_wl1	= opt.snd_wl1;
2470 	tp->snd_wnd	= opt.snd_wnd;
2471 	tp->max_window	= opt.max_window;
2472 
2473 	tp->rcv_wnd	= opt.rcv_wnd;
2474 	tp->rcv_wup	= opt.rcv_wup;
2475 
2476 	return 0;
2477 }
2478 
2479 static int tcp_repair_options_est(struct sock *sk,
2480 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2481 {
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 	struct tcp_repair_opt opt;
2484 
2485 	while (len >= sizeof(opt)) {
2486 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2487 			return -EFAULT;
2488 
2489 		optbuf++;
2490 		len -= sizeof(opt);
2491 
2492 		switch (opt.opt_code) {
2493 		case TCPOPT_MSS:
2494 			tp->rx_opt.mss_clamp = opt.opt_val;
2495 			tcp_mtup_init(sk);
2496 			break;
2497 		case TCPOPT_WINDOW:
2498 			{
2499 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2500 				u16 rcv_wscale = opt.opt_val >> 16;
2501 
2502 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2503 					return -EFBIG;
2504 
2505 				tp->rx_opt.snd_wscale = snd_wscale;
2506 				tp->rx_opt.rcv_wscale = rcv_wscale;
2507 				tp->rx_opt.wscale_ok = 1;
2508 			}
2509 			break;
2510 		case TCPOPT_SACK_PERM:
2511 			if (opt.opt_val != 0)
2512 				return -EINVAL;
2513 
2514 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2515 			break;
2516 		case TCPOPT_TIMESTAMP:
2517 			if (opt.opt_val != 0)
2518 				return -EINVAL;
2519 
2520 			tp->rx_opt.tstamp_ok = 1;
2521 			break;
2522 		}
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 /*
2529  *	Socket option code for TCP.
2530  */
2531 static int do_tcp_setsockopt(struct sock *sk, int level,
2532 		int optname, char __user *optval, unsigned int optlen)
2533 {
2534 	struct tcp_sock *tp = tcp_sk(sk);
2535 	struct inet_connection_sock *icsk = inet_csk(sk);
2536 	struct net *net = sock_net(sk);
2537 	int val;
2538 	int err = 0;
2539 
2540 	/* These are data/string values, all the others are ints */
2541 	switch (optname) {
2542 	case TCP_CONGESTION: {
2543 		char name[TCP_CA_NAME_MAX];
2544 
2545 		if (optlen < 1)
2546 			return -EINVAL;
2547 
2548 		val = strncpy_from_user(name, optval,
2549 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2550 		if (val < 0)
2551 			return -EFAULT;
2552 		name[val] = 0;
2553 
2554 		lock_sock(sk);
2555 		err = tcp_set_congestion_control(sk, name, true, true);
2556 		release_sock(sk);
2557 		return err;
2558 	}
2559 	case TCP_ULP: {
2560 		char name[TCP_ULP_NAME_MAX];
2561 
2562 		if (optlen < 1)
2563 			return -EINVAL;
2564 
2565 		val = strncpy_from_user(name, optval,
2566 					min_t(long, TCP_ULP_NAME_MAX - 1,
2567 					      optlen));
2568 		if (val < 0)
2569 			return -EFAULT;
2570 		name[val] = 0;
2571 
2572 		lock_sock(sk);
2573 		err = tcp_set_ulp(sk, name);
2574 		release_sock(sk);
2575 		return err;
2576 	}
2577 	case TCP_FASTOPEN_KEY: {
2578 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2579 
2580 		if (optlen != sizeof(key))
2581 			return -EINVAL;
2582 
2583 		if (copy_from_user(key, optval, optlen))
2584 			return -EFAULT;
2585 
2586 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2587 	}
2588 	default:
2589 		/* fallthru */
2590 		break;
2591 	}
2592 
2593 	if (optlen < sizeof(int))
2594 		return -EINVAL;
2595 
2596 	if (get_user(val, (int __user *)optval))
2597 		return -EFAULT;
2598 
2599 	lock_sock(sk);
2600 
2601 	switch (optname) {
2602 	case TCP_MAXSEG:
2603 		/* Values greater than interface MTU won't take effect. However
2604 		 * at the point when this call is done we typically don't yet
2605 		 * know which interface is going to be used
2606 		 */
2607 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2608 			err = -EINVAL;
2609 			break;
2610 		}
2611 		tp->rx_opt.user_mss = val;
2612 		break;
2613 
2614 	case TCP_NODELAY:
2615 		if (val) {
2616 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2617 			 * this option on corked socket is remembered, but
2618 			 * it is not activated until cork is cleared.
2619 			 *
2620 			 * However, when TCP_NODELAY is set we make
2621 			 * an explicit push, which overrides even TCP_CORK
2622 			 * for currently queued segments.
2623 			 */
2624 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2625 			tcp_push_pending_frames(sk);
2626 		} else {
2627 			tp->nonagle &= ~TCP_NAGLE_OFF;
2628 		}
2629 		break;
2630 
2631 	case TCP_THIN_LINEAR_TIMEOUTS:
2632 		if (val < 0 || val > 1)
2633 			err = -EINVAL;
2634 		else
2635 			tp->thin_lto = val;
2636 		break;
2637 
2638 	case TCP_THIN_DUPACK:
2639 		if (val < 0 || val > 1)
2640 			err = -EINVAL;
2641 		break;
2642 
2643 	case TCP_REPAIR:
2644 		if (!tcp_can_repair_sock(sk))
2645 			err = -EPERM;
2646 		else if (val == 1) {
2647 			tp->repair = 1;
2648 			sk->sk_reuse = SK_FORCE_REUSE;
2649 			tp->repair_queue = TCP_NO_QUEUE;
2650 		} else if (val == 0) {
2651 			tp->repair = 0;
2652 			sk->sk_reuse = SK_NO_REUSE;
2653 			tcp_send_window_probe(sk);
2654 		} else
2655 			err = -EINVAL;
2656 
2657 		break;
2658 
2659 	case TCP_REPAIR_QUEUE:
2660 		if (!tp->repair)
2661 			err = -EPERM;
2662 		else if (val < TCP_QUEUES_NR)
2663 			tp->repair_queue = val;
2664 		else
2665 			err = -EINVAL;
2666 		break;
2667 
2668 	case TCP_QUEUE_SEQ:
2669 		if (sk->sk_state != TCP_CLOSE)
2670 			err = -EPERM;
2671 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2672 			tp->write_seq = val;
2673 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2674 			tp->rcv_nxt = val;
2675 		else
2676 			err = -EINVAL;
2677 		break;
2678 
2679 	case TCP_REPAIR_OPTIONS:
2680 		if (!tp->repair)
2681 			err = -EINVAL;
2682 		else if (sk->sk_state == TCP_ESTABLISHED)
2683 			err = tcp_repair_options_est(sk,
2684 					(struct tcp_repair_opt __user *)optval,
2685 					optlen);
2686 		else
2687 			err = -EPERM;
2688 		break;
2689 
2690 	case TCP_CORK:
2691 		/* When set indicates to always queue non-full frames.
2692 		 * Later the user clears this option and we transmit
2693 		 * any pending partial frames in the queue.  This is
2694 		 * meant to be used alongside sendfile() to get properly
2695 		 * filled frames when the user (for example) must write
2696 		 * out headers with a write() call first and then use
2697 		 * sendfile to send out the data parts.
2698 		 *
2699 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2700 		 * stronger than TCP_NODELAY.
2701 		 */
2702 		if (val) {
2703 			tp->nonagle |= TCP_NAGLE_CORK;
2704 		} else {
2705 			tp->nonagle &= ~TCP_NAGLE_CORK;
2706 			if (tp->nonagle&TCP_NAGLE_OFF)
2707 				tp->nonagle |= TCP_NAGLE_PUSH;
2708 			tcp_push_pending_frames(sk);
2709 		}
2710 		break;
2711 
2712 	case TCP_KEEPIDLE:
2713 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2714 			err = -EINVAL;
2715 		else {
2716 			tp->keepalive_time = val * HZ;
2717 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2718 			    !((1 << sk->sk_state) &
2719 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2720 				u32 elapsed = keepalive_time_elapsed(tp);
2721 				if (tp->keepalive_time > elapsed)
2722 					elapsed = tp->keepalive_time - elapsed;
2723 				else
2724 					elapsed = 0;
2725 				inet_csk_reset_keepalive_timer(sk, elapsed);
2726 			}
2727 		}
2728 		break;
2729 	case TCP_KEEPINTVL:
2730 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2731 			err = -EINVAL;
2732 		else
2733 			tp->keepalive_intvl = val * HZ;
2734 		break;
2735 	case TCP_KEEPCNT:
2736 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2737 			err = -EINVAL;
2738 		else
2739 			tp->keepalive_probes = val;
2740 		break;
2741 	case TCP_SYNCNT:
2742 		if (val < 1 || val > MAX_TCP_SYNCNT)
2743 			err = -EINVAL;
2744 		else
2745 			icsk->icsk_syn_retries = val;
2746 		break;
2747 
2748 	case TCP_SAVE_SYN:
2749 		if (val < 0 || val > 1)
2750 			err = -EINVAL;
2751 		else
2752 			tp->save_syn = val;
2753 		break;
2754 
2755 	case TCP_LINGER2:
2756 		if (val < 0)
2757 			tp->linger2 = -1;
2758 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2759 			tp->linger2 = 0;
2760 		else
2761 			tp->linger2 = val * HZ;
2762 		break;
2763 
2764 	case TCP_DEFER_ACCEPT:
2765 		/* Translate value in seconds to number of retransmits */
2766 		icsk->icsk_accept_queue.rskq_defer_accept =
2767 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2768 					TCP_RTO_MAX / HZ);
2769 		break;
2770 
2771 	case TCP_WINDOW_CLAMP:
2772 		if (!val) {
2773 			if (sk->sk_state != TCP_CLOSE) {
2774 				err = -EINVAL;
2775 				break;
2776 			}
2777 			tp->window_clamp = 0;
2778 		} else
2779 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2780 						SOCK_MIN_RCVBUF / 2 : val;
2781 		break;
2782 
2783 	case TCP_QUICKACK:
2784 		if (!val) {
2785 			icsk->icsk_ack.pingpong = 1;
2786 		} else {
2787 			icsk->icsk_ack.pingpong = 0;
2788 			if ((1 << sk->sk_state) &
2789 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2790 			    inet_csk_ack_scheduled(sk)) {
2791 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2792 				tcp_cleanup_rbuf(sk, 1);
2793 				if (!(val & 1))
2794 					icsk->icsk_ack.pingpong = 1;
2795 			}
2796 		}
2797 		break;
2798 
2799 #ifdef CONFIG_TCP_MD5SIG
2800 	case TCP_MD5SIG:
2801 	case TCP_MD5SIG_EXT:
2802 		/* Read the IP->Key mappings from userspace */
2803 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2804 		break;
2805 #endif
2806 	case TCP_USER_TIMEOUT:
2807 		/* Cap the max time in ms TCP will retry or probe the window
2808 		 * before giving up and aborting (ETIMEDOUT) a connection.
2809 		 */
2810 		if (val < 0)
2811 			err = -EINVAL;
2812 		else
2813 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2814 		break;
2815 
2816 	case TCP_FASTOPEN:
2817 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2818 		    TCPF_LISTEN))) {
2819 			tcp_fastopen_init_key_once(net);
2820 
2821 			fastopen_queue_tune(sk, val);
2822 		} else {
2823 			err = -EINVAL;
2824 		}
2825 		break;
2826 	case TCP_FASTOPEN_CONNECT:
2827 		if (val > 1 || val < 0) {
2828 			err = -EINVAL;
2829 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2830 			if (sk->sk_state == TCP_CLOSE)
2831 				tp->fastopen_connect = val;
2832 			else
2833 				err = -EINVAL;
2834 		} else {
2835 			err = -EOPNOTSUPP;
2836 		}
2837 		break;
2838 	case TCP_FASTOPEN_NO_COOKIE:
2839 		if (val > 1 || val < 0)
2840 			err = -EINVAL;
2841 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2842 			err = -EINVAL;
2843 		else
2844 			tp->fastopen_no_cookie = val;
2845 		break;
2846 	case TCP_TIMESTAMP:
2847 		if (!tp->repair)
2848 			err = -EPERM;
2849 		else
2850 			tp->tsoffset = val - tcp_time_stamp_raw();
2851 		break;
2852 	case TCP_REPAIR_WINDOW:
2853 		err = tcp_repair_set_window(tp, optval, optlen);
2854 		break;
2855 	case TCP_NOTSENT_LOWAT:
2856 		tp->notsent_lowat = val;
2857 		sk->sk_write_space(sk);
2858 		break;
2859 	default:
2860 		err = -ENOPROTOOPT;
2861 		break;
2862 	}
2863 
2864 	release_sock(sk);
2865 	return err;
2866 }
2867 
2868 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2869 		   unsigned int optlen)
2870 {
2871 	const struct inet_connection_sock *icsk = inet_csk(sk);
2872 
2873 	if (level != SOL_TCP)
2874 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2875 						     optval, optlen);
2876 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2877 }
2878 EXPORT_SYMBOL(tcp_setsockopt);
2879 
2880 #ifdef CONFIG_COMPAT
2881 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2882 			  char __user *optval, unsigned int optlen)
2883 {
2884 	if (level != SOL_TCP)
2885 		return inet_csk_compat_setsockopt(sk, level, optname,
2886 						  optval, optlen);
2887 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2888 }
2889 EXPORT_SYMBOL(compat_tcp_setsockopt);
2890 #endif
2891 
2892 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2893 				      struct tcp_info *info)
2894 {
2895 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2896 	enum tcp_chrono i;
2897 
2898 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2899 		stats[i] = tp->chrono_stat[i - 1];
2900 		if (i == tp->chrono_type)
2901 			stats[i] += tcp_jiffies32 - tp->chrono_start;
2902 		stats[i] *= USEC_PER_SEC / HZ;
2903 		total += stats[i];
2904 	}
2905 
2906 	info->tcpi_busy_time = total;
2907 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2908 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2909 }
2910 
2911 /* Return information about state of tcp endpoint in API format. */
2912 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2913 {
2914 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2915 	const struct inet_connection_sock *icsk = inet_csk(sk);
2916 	u32 now;
2917 	u64 rate64;
2918 	bool slow;
2919 	u32 rate;
2920 
2921 	memset(info, 0, sizeof(*info));
2922 	if (sk->sk_type != SOCK_STREAM)
2923 		return;
2924 
2925 	info->tcpi_state = inet_sk_state_load(sk);
2926 
2927 	/* Report meaningful fields for all TCP states, including listeners */
2928 	rate = READ_ONCE(sk->sk_pacing_rate);
2929 	rate64 = rate != ~0U ? rate : ~0ULL;
2930 	info->tcpi_pacing_rate = rate64;
2931 
2932 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2933 	rate64 = rate != ~0U ? rate : ~0ULL;
2934 	info->tcpi_max_pacing_rate = rate64;
2935 
2936 	info->tcpi_reordering = tp->reordering;
2937 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2938 
2939 	if (info->tcpi_state == TCP_LISTEN) {
2940 		/* listeners aliased fields :
2941 		 * tcpi_unacked -> Number of children ready for accept()
2942 		 * tcpi_sacked  -> max backlog
2943 		 */
2944 		info->tcpi_unacked = sk->sk_ack_backlog;
2945 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2946 		return;
2947 	}
2948 
2949 	slow = lock_sock_fast(sk);
2950 
2951 	info->tcpi_ca_state = icsk->icsk_ca_state;
2952 	info->tcpi_retransmits = icsk->icsk_retransmits;
2953 	info->tcpi_probes = icsk->icsk_probes_out;
2954 	info->tcpi_backoff = icsk->icsk_backoff;
2955 
2956 	if (tp->rx_opt.tstamp_ok)
2957 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2958 	if (tcp_is_sack(tp))
2959 		info->tcpi_options |= TCPI_OPT_SACK;
2960 	if (tp->rx_opt.wscale_ok) {
2961 		info->tcpi_options |= TCPI_OPT_WSCALE;
2962 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2963 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2964 	}
2965 
2966 	if (tp->ecn_flags & TCP_ECN_OK)
2967 		info->tcpi_options |= TCPI_OPT_ECN;
2968 	if (tp->ecn_flags & TCP_ECN_SEEN)
2969 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2970 	if (tp->syn_data_acked)
2971 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2972 
2973 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2974 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2975 	info->tcpi_snd_mss = tp->mss_cache;
2976 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2977 
2978 	info->tcpi_unacked = tp->packets_out;
2979 	info->tcpi_sacked = tp->sacked_out;
2980 
2981 	info->tcpi_lost = tp->lost_out;
2982 	info->tcpi_retrans = tp->retrans_out;
2983 
2984 	now = tcp_jiffies32;
2985 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2986 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2987 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2988 
2989 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2990 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2991 	info->tcpi_rtt = tp->srtt_us >> 3;
2992 	info->tcpi_rttvar = tp->mdev_us >> 2;
2993 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2994 	info->tcpi_advmss = tp->advmss;
2995 
2996 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2997 	info->tcpi_rcv_space = tp->rcvq_space.space;
2998 
2999 	info->tcpi_total_retrans = tp->total_retrans;
3000 
3001 	info->tcpi_bytes_acked = tp->bytes_acked;
3002 	info->tcpi_bytes_received = tp->bytes_received;
3003 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3004 	tcp_get_info_chrono_stats(tp, info);
3005 
3006 	info->tcpi_segs_out = tp->segs_out;
3007 	info->tcpi_segs_in = tp->segs_in;
3008 
3009 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3010 	info->tcpi_data_segs_in = tp->data_segs_in;
3011 	info->tcpi_data_segs_out = tp->data_segs_out;
3012 
3013 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3014 	rate64 = tcp_compute_delivery_rate(tp);
3015 	if (rate64)
3016 		info->tcpi_delivery_rate = rate64;
3017 	unlock_sock_fast(sk, slow);
3018 }
3019 EXPORT_SYMBOL_GPL(tcp_get_info);
3020 
3021 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3022 {
3023 	const struct tcp_sock *tp = tcp_sk(sk);
3024 	struct sk_buff *stats;
3025 	struct tcp_info info;
3026 	u64 rate64;
3027 	u32 rate;
3028 
3029 	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3030 			  3 * nla_total_size(sizeof(u32)) +
3031 			  2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3032 	if (!stats)
3033 		return NULL;
3034 
3035 	tcp_get_info_chrono_stats(tp, &info);
3036 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3037 			  info.tcpi_busy_time, TCP_NLA_PAD);
3038 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3039 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3040 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3041 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3042 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3043 			  tp->data_segs_out, TCP_NLA_PAD);
3044 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3045 			  tp->total_retrans, TCP_NLA_PAD);
3046 
3047 	rate = READ_ONCE(sk->sk_pacing_rate);
3048 	rate64 = rate != ~0U ? rate : ~0ULL;
3049 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3050 
3051 	rate64 = tcp_compute_delivery_rate(tp);
3052 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3053 
3054 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3055 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3056 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3057 
3058 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3059 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3060 	return stats;
3061 }
3062 
3063 static int do_tcp_getsockopt(struct sock *sk, int level,
3064 		int optname, char __user *optval, int __user *optlen)
3065 {
3066 	struct inet_connection_sock *icsk = inet_csk(sk);
3067 	struct tcp_sock *tp = tcp_sk(sk);
3068 	struct net *net = sock_net(sk);
3069 	int val, len;
3070 
3071 	if (get_user(len, optlen))
3072 		return -EFAULT;
3073 
3074 	len = min_t(unsigned int, len, sizeof(int));
3075 
3076 	if (len < 0)
3077 		return -EINVAL;
3078 
3079 	switch (optname) {
3080 	case TCP_MAXSEG:
3081 		val = tp->mss_cache;
3082 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3083 			val = tp->rx_opt.user_mss;
3084 		if (tp->repair)
3085 			val = tp->rx_opt.mss_clamp;
3086 		break;
3087 	case TCP_NODELAY:
3088 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3089 		break;
3090 	case TCP_CORK:
3091 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3092 		break;
3093 	case TCP_KEEPIDLE:
3094 		val = keepalive_time_when(tp) / HZ;
3095 		break;
3096 	case TCP_KEEPINTVL:
3097 		val = keepalive_intvl_when(tp) / HZ;
3098 		break;
3099 	case TCP_KEEPCNT:
3100 		val = keepalive_probes(tp);
3101 		break;
3102 	case TCP_SYNCNT:
3103 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3104 		break;
3105 	case TCP_LINGER2:
3106 		val = tp->linger2;
3107 		if (val >= 0)
3108 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3109 		break;
3110 	case TCP_DEFER_ACCEPT:
3111 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3112 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3113 		break;
3114 	case TCP_WINDOW_CLAMP:
3115 		val = tp->window_clamp;
3116 		break;
3117 	case TCP_INFO: {
3118 		struct tcp_info info;
3119 
3120 		if (get_user(len, optlen))
3121 			return -EFAULT;
3122 
3123 		tcp_get_info(sk, &info);
3124 
3125 		len = min_t(unsigned int, len, sizeof(info));
3126 		if (put_user(len, optlen))
3127 			return -EFAULT;
3128 		if (copy_to_user(optval, &info, len))
3129 			return -EFAULT;
3130 		return 0;
3131 	}
3132 	case TCP_CC_INFO: {
3133 		const struct tcp_congestion_ops *ca_ops;
3134 		union tcp_cc_info info;
3135 		size_t sz = 0;
3136 		int attr;
3137 
3138 		if (get_user(len, optlen))
3139 			return -EFAULT;
3140 
3141 		ca_ops = icsk->icsk_ca_ops;
3142 		if (ca_ops && ca_ops->get_info)
3143 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3144 
3145 		len = min_t(unsigned int, len, sz);
3146 		if (put_user(len, optlen))
3147 			return -EFAULT;
3148 		if (copy_to_user(optval, &info, len))
3149 			return -EFAULT;
3150 		return 0;
3151 	}
3152 	case TCP_QUICKACK:
3153 		val = !icsk->icsk_ack.pingpong;
3154 		break;
3155 
3156 	case TCP_CONGESTION:
3157 		if (get_user(len, optlen))
3158 			return -EFAULT;
3159 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3160 		if (put_user(len, optlen))
3161 			return -EFAULT;
3162 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3163 			return -EFAULT;
3164 		return 0;
3165 
3166 	case TCP_ULP:
3167 		if (get_user(len, optlen))
3168 			return -EFAULT;
3169 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3170 		if (!icsk->icsk_ulp_ops) {
3171 			if (put_user(0, optlen))
3172 				return -EFAULT;
3173 			return 0;
3174 		}
3175 		if (put_user(len, optlen))
3176 			return -EFAULT;
3177 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3178 			return -EFAULT;
3179 		return 0;
3180 
3181 	case TCP_FASTOPEN_KEY: {
3182 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3183 		struct tcp_fastopen_context *ctx;
3184 
3185 		if (get_user(len, optlen))
3186 			return -EFAULT;
3187 
3188 		rcu_read_lock();
3189 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3190 		if (ctx)
3191 			memcpy(key, ctx->key, sizeof(key));
3192 		else
3193 			len = 0;
3194 		rcu_read_unlock();
3195 
3196 		len = min_t(unsigned int, len, sizeof(key));
3197 		if (put_user(len, optlen))
3198 			return -EFAULT;
3199 		if (copy_to_user(optval, key, len))
3200 			return -EFAULT;
3201 		return 0;
3202 	}
3203 	case TCP_THIN_LINEAR_TIMEOUTS:
3204 		val = tp->thin_lto;
3205 		break;
3206 
3207 	case TCP_THIN_DUPACK:
3208 		val = 0;
3209 		break;
3210 
3211 	case TCP_REPAIR:
3212 		val = tp->repair;
3213 		break;
3214 
3215 	case TCP_REPAIR_QUEUE:
3216 		if (tp->repair)
3217 			val = tp->repair_queue;
3218 		else
3219 			return -EINVAL;
3220 		break;
3221 
3222 	case TCP_REPAIR_WINDOW: {
3223 		struct tcp_repair_window opt;
3224 
3225 		if (get_user(len, optlen))
3226 			return -EFAULT;
3227 
3228 		if (len != sizeof(opt))
3229 			return -EINVAL;
3230 
3231 		if (!tp->repair)
3232 			return -EPERM;
3233 
3234 		opt.snd_wl1	= tp->snd_wl1;
3235 		opt.snd_wnd	= tp->snd_wnd;
3236 		opt.max_window	= tp->max_window;
3237 		opt.rcv_wnd	= tp->rcv_wnd;
3238 		opt.rcv_wup	= tp->rcv_wup;
3239 
3240 		if (copy_to_user(optval, &opt, len))
3241 			return -EFAULT;
3242 		return 0;
3243 	}
3244 	case TCP_QUEUE_SEQ:
3245 		if (tp->repair_queue == TCP_SEND_QUEUE)
3246 			val = tp->write_seq;
3247 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3248 			val = tp->rcv_nxt;
3249 		else
3250 			return -EINVAL;
3251 		break;
3252 
3253 	case TCP_USER_TIMEOUT:
3254 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3255 		break;
3256 
3257 	case TCP_FASTOPEN:
3258 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3259 		break;
3260 
3261 	case TCP_FASTOPEN_CONNECT:
3262 		val = tp->fastopen_connect;
3263 		break;
3264 
3265 	case TCP_FASTOPEN_NO_COOKIE:
3266 		val = tp->fastopen_no_cookie;
3267 		break;
3268 
3269 	case TCP_TIMESTAMP:
3270 		val = tcp_time_stamp_raw() + tp->tsoffset;
3271 		break;
3272 	case TCP_NOTSENT_LOWAT:
3273 		val = tp->notsent_lowat;
3274 		break;
3275 	case TCP_SAVE_SYN:
3276 		val = tp->save_syn;
3277 		break;
3278 	case TCP_SAVED_SYN: {
3279 		if (get_user(len, optlen))
3280 			return -EFAULT;
3281 
3282 		lock_sock(sk);
3283 		if (tp->saved_syn) {
3284 			if (len < tp->saved_syn[0]) {
3285 				if (put_user(tp->saved_syn[0], optlen)) {
3286 					release_sock(sk);
3287 					return -EFAULT;
3288 				}
3289 				release_sock(sk);
3290 				return -EINVAL;
3291 			}
3292 			len = tp->saved_syn[0];
3293 			if (put_user(len, optlen)) {
3294 				release_sock(sk);
3295 				return -EFAULT;
3296 			}
3297 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3298 				release_sock(sk);
3299 				return -EFAULT;
3300 			}
3301 			tcp_saved_syn_free(tp);
3302 			release_sock(sk);
3303 		} else {
3304 			release_sock(sk);
3305 			len = 0;
3306 			if (put_user(len, optlen))
3307 				return -EFAULT;
3308 		}
3309 		return 0;
3310 	}
3311 	default:
3312 		return -ENOPROTOOPT;
3313 	}
3314 
3315 	if (put_user(len, optlen))
3316 		return -EFAULT;
3317 	if (copy_to_user(optval, &val, len))
3318 		return -EFAULT;
3319 	return 0;
3320 }
3321 
3322 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3323 		   int __user *optlen)
3324 {
3325 	struct inet_connection_sock *icsk = inet_csk(sk);
3326 
3327 	if (level != SOL_TCP)
3328 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3329 						     optval, optlen);
3330 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3331 }
3332 EXPORT_SYMBOL(tcp_getsockopt);
3333 
3334 #ifdef CONFIG_COMPAT
3335 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3336 			  char __user *optval, int __user *optlen)
3337 {
3338 	if (level != SOL_TCP)
3339 		return inet_csk_compat_getsockopt(sk, level, optname,
3340 						  optval, optlen);
3341 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3342 }
3343 EXPORT_SYMBOL(compat_tcp_getsockopt);
3344 #endif
3345 
3346 #ifdef CONFIG_TCP_MD5SIG
3347 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3348 static DEFINE_MUTEX(tcp_md5sig_mutex);
3349 static bool tcp_md5sig_pool_populated = false;
3350 
3351 static void __tcp_alloc_md5sig_pool(void)
3352 {
3353 	struct crypto_ahash *hash;
3354 	int cpu;
3355 
3356 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3357 	if (IS_ERR(hash))
3358 		return;
3359 
3360 	for_each_possible_cpu(cpu) {
3361 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3362 		struct ahash_request *req;
3363 
3364 		if (!scratch) {
3365 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3366 					       sizeof(struct tcphdr),
3367 					       GFP_KERNEL,
3368 					       cpu_to_node(cpu));
3369 			if (!scratch)
3370 				return;
3371 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3372 		}
3373 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3374 			continue;
3375 
3376 		req = ahash_request_alloc(hash, GFP_KERNEL);
3377 		if (!req)
3378 			return;
3379 
3380 		ahash_request_set_callback(req, 0, NULL, NULL);
3381 
3382 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3383 	}
3384 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3385 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3386 	 */
3387 	smp_wmb();
3388 	tcp_md5sig_pool_populated = true;
3389 }
3390 
3391 bool tcp_alloc_md5sig_pool(void)
3392 {
3393 	if (unlikely(!tcp_md5sig_pool_populated)) {
3394 		mutex_lock(&tcp_md5sig_mutex);
3395 
3396 		if (!tcp_md5sig_pool_populated)
3397 			__tcp_alloc_md5sig_pool();
3398 
3399 		mutex_unlock(&tcp_md5sig_mutex);
3400 	}
3401 	return tcp_md5sig_pool_populated;
3402 }
3403 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3404 
3405 
3406 /**
3407  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3408  *
3409  *	We use percpu structure, so if we succeed, we exit with preemption
3410  *	and BH disabled, to make sure another thread or softirq handling
3411  *	wont try to get same context.
3412  */
3413 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3414 {
3415 	local_bh_disable();
3416 
3417 	if (tcp_md5sig_pool_populated) {
3418 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3419 		smp_rmb();
3420 		return this_cpu_ptr(&tcp_md5sig_pool);
3421 	}
3422 	local_bh_enable();
3423 	return NULL;
3424 }
3425 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3426 
3427 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3428 			  const struct sk_buff *skb, unsigned int header_len)
3429 {
3430 	struct scatterlist sg;
3431 	const struct tcphdr *tp = tcp_hdr(skb);
3432 	struct ahash_request *req = hp->md5_req;
3433 	unsigned int i;
3434 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3435 					   skb_headlen(skb) - header_len : 0;
3436 	const struct skb_shared_info *shi = skb_shinfo(skb);
3437 	struct sk_buff *frag_iter;
3438 
3439 	sg_init_table(&sg, 1);
3440 
3441 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3442 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3443 	if (crypto_ahash_update(req))
3444 		return 1;
3445 
3446 	for (i = 0; i < shi->nr_frags; ++i) {
3447 		const struct skb_frag_struct *f = &shi->frags[i];
3448 		unsigned int offset = f->page_offset;
3449 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3450 
3451 		sg_set_page(&sg, page, skb_frag_size(f),
3452 			    offset_in_page(offset));
3453 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3454 		if (crypto_ahash_update(req))
3455 			return 1;
3456 	}
3457 
3458 	skb_walk_frags(skb, frag_iter)
3459 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3460 			return 1;
3461 
3462 	return 0;
3463 }
3464 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3465 
3466 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3467 {
3468 	struct scatterlist sg;
3469 
3470 	sg_init_one(&sg, key->key, key->keylen);
3471 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3472 	return crypto_ahash_update(hp->md5_req);
3473 }
3474 EXPORT_SYMBOL(tcp_md5_hash_key);
3475 
3476 #endif
3477 
3478 void tcp_done(struct sock *sk)
3479 {
3480 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3481 
3482 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3483 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3484 
3485 	tcp_set_state(sk, TCP_CLOSE);
3486 	tcp_clear_xmit_timers(sk);
3487 	if (req)
3488 		reqsk_fastopen_remove(sk, req, false);
3489 
3490 	sk->sk_shutdown = SHUTDOWN_MASK;
3491 
3492 	if (!sock_flag(sk, SOCK_DEAD))
3493 		sk->sk_state_change(sk);
3494 	else
3495 		inet_csk_destroy_sock(sk);
3496 }
3497 EXPORT_SYMBOL_GPL(tcp_done);
3498 
3499 int tcp_abort(struct sock *sk, int err)
3500 {
3501 	if (!sk_fullsock(sk)) {
3502 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3503 			struct request_sock *req = inet_reqsk(sk);
3504 
3505 			local_bh_disable();
3506 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3507 							  req);
3508 			local_bh_enable();
3509 			return 0;
3510 		}
3511 		return -EOPNOTSUPP;
3512 	}
3513 
3514 	/* Don't race with userspace socket closes such as tcp_close. */
3515 	lock_sock(sk);
3516 
3517 	if (sk->sk_state == TCP_LISTEN) {
3518 		tcp_set_state(sk, TCP_CLOSE);
3519 		inet_csk_listen_stop(sk);
3520 	}
3521 
3522 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3523 	local_bh_disable();
3524 	bh_lock_sock(sk);
3525 
3526 	if (!sock_flag(sk, SOCK_DEAD)) {
3527 		sk->sk_err = err;
3528 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3529 		smp_wmb();
3530 		sk->sk_error_report(sk);
3531 		if (tcp_need_reset(sk->sk_state))
3532 			tcp_send_active_reset(sk, GFP_ATOMIC);
3533 		tcp_done(sk);
3534 	}
3535 
3536 	bh_unlock_sock(sk);
3537 	local_bh_enable();
3538 	release_sock(sk);
3539 	return 0;
3540 }
3541 EXPORT_SYMBOL_GPL(tcp_abort);
3542 
3543 extern struct tcp_congestion_ops tcp_reno;
3544 
3545 static __initdata unsigned long thash_entries;
3546 static int __init set_thash_entries(char *str)
3547 {
3548 	ssize_t ret;
3549 
3550 	if (!str)
3551 		return 0;
3552 
3553 	ret = kstrtoul(str, 0, &thash_entries);
3554 	if (ret)
3555 		return 0;
3556 
3557 	return 1;
3558 }
3559 __setup("thash_entries=", set_thash_entries);
3560 
3561 static void __init tcp_init_mem(void)
3562 {
3563 	unsigned long limit = nr_free_buffer_pages() / 16;
3564 
3565 	limit = max(limit, 128UL);
3566 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3567 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3568 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3569 }
3570 
3571 void __init tcp_init(void)
3572 {
3573 	int max_rshare, max_wshare, cnt;
3574 	unsigned long limit;
3575 	unsigned int i;
3576 
3577 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3578 		     FIELD_SIZEOF(struct sk_buff, cb));
3579 
3580 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3581 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3582 	inet_hashinfo_init(&tcp_hashinfo);
3583 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3584 			    thash_entries, 21,  /* one slot per 2 MB*/
3585 			    0, 64 * 1024);
3586 	tcp_hashinfo.bind_bucket_cachep =
3587 		kmem_cache_create("tcp_bind_bucket",
3588 				  sizeof(struct inet_bind_bucket), 0,
3589 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3590 
3591 	/* Size and allocate the main established and bind bucket
3592 	 * hash tables.
3593 	 *
3594 	 * The methodology is similar to that of the buffer cache.
3595 	 */
3596 	tcp_hashinfo.ehash =
3597 		alloc_large_system_hash("TCP established",
3598 					sizeof(struct inet_ehash_bucket),
3599 					thash_entries,
3600 					17, /* one slot per 128 KB of memory */
3601 					0,
3602 					NULL,
3603 					&tcp_hashinfo.ehash_mask,
3604 					0,
3605 					thash_entries ? 0 : 512 * 1024);
3606 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3607 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3608 
3609 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3610 		panic("TCP: failed to alloc ehash_locks");
3611 	tcp_hashinfo.bhash =
3612 		alloc_large_system_hash("TCP bind",
3613 					sizeof(struct inet_bind_hashbucket),
3614 					tcp_hashinfo.ehash_mask + 1,
3615 					17, /* one slot per 128 KB of memory */
3616 					0,
3617 					&tcp_hashinfo.bhash_size,
3618 					NULL,
3619 					0,
3620 					64 * 1024);
3621 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3622 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3623 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3624 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3625 	}
3626 
3627 
3628 	cnt = tcp_hashinfo.ehash_mask + 1;
3629 	sysctl_tcp_max_orphans = cnt / 2;
3630 
3631 	tcp_init_mem();
3632 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3633 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3634 	max_wshare = min(4UL*1024*1024, limit);
3635 	max_rshare = min(6UL*1024*1024, limit);
3636 
3637 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3638 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3639 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3640 
3641 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3642 	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3643 	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3644 
3645 	pr_info("Hash tables configured (established %u bind %u)\n",
3646 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3647 
3648 	tcp_v4_init();
3649 	tcp_metrics_init();
3650 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3651 	tcp_tasklet_init();
3652 }
3653