1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_IPV6_MOD(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_IPV6_MOD(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_IPV6_MOD(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us, rto_max_ms; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 438 439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 441 icsk->icsk_delack_max = TCP_DELACK_MAX; 442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 444 445 /* So many TCP implementations out there (incorrectly) count the 446 * initial SYN frame in their delayed-ACK and congestion control 447 * algorithms that we must have the following bandaid to talk 448 * efficiently to them. -DaveM 449 */ 450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 451 452 /* There's a bubble in the pipe until at least the first ACK. */ 453 tp->app_limited = ~0U; 454 tp->rate_app_limited = 1; 455 456 /* See draft-stevens-tcpca-spec-01 for discussion of the 457 * initialization of these values. 458 */ 459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 460 tp->snd_cwnd_clamp = ~0; 461 tp->mss_cache = TCP_MSS_DEFAULT; 462 463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 464 tcp_assign_congestion_control(sk); 465 466 tp->tsoffset = 0; 467 tp->rack.reo_wnd_steps = 1; 468 469 sk->sk_write_space = sk_stream_write_space; 470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 471 472 icsk->icsk_sync_mss = tcp_sync_mss; 473 474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 476 tcp_scaling_ratio_init(sk); 477 478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 479 sk_sockets_allocated_inc(sk); 480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 481 } 482 EXPORT_IPV6_MOD(tcp_init_sock); 483 484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 485 { 486 struct sk_buff *skb = tcp_write_queue_tail(sk); 487 u32 tsflags = sockc->tsflags; 488 489 if (tsflags && skb) { 490 struct skb_shared_info *shinfo = skb_shinfo(skb); 491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 492 493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 494 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 495 tcb->txstamp_ack |= TSTAMP_ACK_SK; 496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 498 } 499 500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 503 } 504 505 static bool tcp_stream_is_readable(struct sock *sk, int target) 506 { 507 if (tcp_epollin_ready(sk, target)) 508 return true; 509 return sk_is_readable(sk); 510 } 511 512 /* 513 * Wait for a TCP event. 514 * 515 * Note that we don't need to lock the socket, as the upper poll layers 516 * take care of normal races (between the test and the event) and we don't 517 * go look at any of the socket buffers directly. 518 */ 519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 520 { 521 __poll_t mask; 522 struct sock *sk = sock->sk; 523 const struct tcp_sock *tp = tcp_sk(sk); 524 u8 shutdown; 525 int state; 526 527 sock_poll_wait(file, sock, wait); 528 529 state = inet_sk_state_load(sk); 530 if (state == TCP_LISTEN) 531 return inet_csk_listen_poll(sk); 532 533 /* Socket is not locked. We are protected from async events 534 * by poll logic and correct handling of state changes 535 * made by other threads is impossible in any case. 536 */ 537 538 mask = 0; 539 540 /* 541 * EPOLLHUP is certainly not done right. But poll() doesn't 542 * have a notion of HUP in just one direction, and for a 543 * socket the read side is more interesting. 544 * 545 * Some poll() documentation says that EPOLLHUP is incompatible 546 * with the EPOLLOUT/POLLWR flags, so somebody should check this 547 * all. But careful, it tends to be safer to return too many 548 * bits than too few, and you can easily break real applications 549 * if you don't tell them that something has hung up! 550 * 551 * Check-me. 552 * 553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 554 * our fs/select.c). It means that after we received EOF, 555 * poll always returns immediately, making impossible poll() on write() 556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 557 * if and only if shutdown has been made in both directions. 558 * Actually, it is interesting to look how Solaris and DUX 559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 560 * then we could set it on SND_SHUTDOWN. BTW examples given 561 * in Stevens' books assume exactly this behaviour, it explains 562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 563 * 564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 565 * blocking on fresh not-connected or disconnected socket. --ANK 566 */ 567 shutdown = READ_ONCE(sk->sk_shutdown); 568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 569 mask |= EPOLLHUP; 570 if (shutdown & RCV_SHUTDOWN) 571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 572 573 /* Connected or passive Fast Open socket? */ 574 if (state != TCP_SYN_SENT && 575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 576 int target = sock_rcvlowat(sk, 0, INT_MAX); 577 u16 urg_data = READ_ONCE(tp->urg_data); 578 579 if (unlikely(urg_data) && 580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 581 !sock_flag(sk, SOCK_URGINLINE)) 582 target++; 583 584 if (tcp_stream_is_readable(sk, target)) 585 mask |= EPOLLIN | EPOLLRDNORM; 586 587 if (!(shutdown & SEND_SHUTDOWN)) { 588 if (__sk_stream_is_writeable(sk, 1)) { 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 } else { /* send SIGIO later */ 591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 593 594 /* Race breaker. If space is freed after 595 * wspace test but before the flags are set, 596 * IO signal will be lost. Memory barrier 597 * pairs with the input side. 598 */ 599 smp_mb__after_atomic(); 600 if (__sk_stream_is_writeable(sk, 1)) 601 mask |= EPOLLOUT | EPOLLWRNORM; 602 } 603 } else 604 mask |= EPOLLOUT | EPOLLWRNORM; 605 606 if (urg_data & TCP_URG_VALID) 607 mask |= EPOLLPRI; 608 } else if (state == TCP_SYN_SENT && 609 inet_test_bit(DEFER_CONNECT, sk)) { 610 /* Active TCP fastopen socket with defer_connect 611 * Return EPOLLOUT so application can call write() 612 * in order for kernel to generate SYN+data 613 */ 614 mask |= EPOLLOUT | EPOLLWRNORM; 615 } 616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 617 smp_rmb(); 618 if (READ_ONCE(sk->sk_err) || 619 !skb_queue_empty_lockless(&sk->sk_error_queue)) 620 mask |= EPOLLERR; 621 622 return mask; 623 } 624 EXPORT_SYMBOL(tcp_poll); 625 626 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 627 { 628 struct tcp_sock *tp = tcp_sk(sk); 629 int answ; 630 bool slow; 631 632 switch (cmd) { 633 case SIOCINQ: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 slow = lock_sock_fast(sk); 638 answ = tcp_inq(sk); 639 unlock_sock_fast(sk, slow); 640 break; 641 case SIOCATMARK: 642 answ = READ_ONCE(tp->urg_data) && 643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 644 break; 645 case SIOCOUTQ: 646 if (sk->sk_state == TCP_LISTEN) 647 return -EINVAL; 648 649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 650 answ = 0; 651 else 652 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 653 break; 654 case SIOCOUTQNSD: 655 if (sk->sk_state == TCP_LISTEN) 656 return -EINVAL; 657 658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 659 answ = 0; 660 else 661 answ = READ_ONCE(tp->write_seq) - 662 READ_ONCE(tp->snd_nxt); 663 break; 664 default: 665 return -ENOIOCTLCMD; 666 } 667 668 *karg = answ; 669 return 0; 670 } 671 EXPORT_IPV6_MOD(tcp_ioctl); 672 673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 674 { 675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 676 tp->pushed_seq = tp->write_seq; 677 } 678 679 static inline bool forced_push(const struct tcp_sock *tp) 680 { 681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 682 } 683 684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 688 689 tcb->seq = tcb->end_seq = tp->write_seq; 690 tcb->tcp_flags = TCPHDR_ACK; 691 __skb_header_release(skb); 692 tcp_add_write_queue_tail(sk, skb); 693 sk_wmem_queued_add(sk, skb->truesize); 694 sk_mem_charge(sk, skb->truesize); 695 if (tp->nonagle & TCP_NAGLE_PUSH) 696 tp->nonagle &= ~TCP_NAGLE_PUSH; 697 698 tcp_slow_start_after_idle_check(sk); 699 } 700 701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 702 { 703 if (flags & MSG_OOB) 704 tp->snd_up = tp->write_seq; 705 } 706 707 /* If a not yet filled skb is pushed, do not send it if 708 * we have data packets in Qdisc or NIC queues : 709 * Because TX completion will happen shortly, it gives a chance 710 * to coalesce future sendmsg() payload into this skb, without 711 * need for a timer, and with no latency trade off. 712 * As packets containing data payload have a bigger truesize 713 * than pure acks (dataless) packets, the last checks prevent 714 * autocorking if we only have an ACK in Qdisc/NIC queues, 715 * or if TX completion was delayed after we processed ACK packet. 716 */ 717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 718 int size_goal) 719 { 720 return skb->len < size_goal && 721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 722 !tcp_rtx_queue_empty(sk) && 723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 724 tcp_skb_can_collapse_to(skb); 725 } 726 727 void tcp_push(struct sock *sk, int flags, int mss_now, 728 int nonagle, int size_goal) 729 { 730 struct tcp_sock *tp = tcp_sk(sk); 731 struct sk_buff *skb; 732 733 skb = tcp_write_queue_tail(sk); 734 if (!skb) 735 return; 736 if (!(flags & MSG_MORE) || forced_push(tp)) 737 tcp_mark_push(tp, skb); 738 739 tcp_mark_urg(tp, flags); 740 741 if (tcp_should_autocork(sk, skb, size_goal)) { 742 743 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 747 smp_mb__after_atomic(); 748 } 749 /* It is possible TX completion already happened 750 * before we set TSQ_THROTTLED. 751 */ 752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 753 return; 754 } 755 756 if (flags & MSG_MORE) 757 nonagle = TCP_NAGLE_CORK; 758 759 __tcp_push_pending_frames(sk, mss_now, nonagle); 760 } 761 762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 763 unsigned int offset, size_t len) 764 { 765 struct tcp_splice_state *tss = rd_desc->arg.data; 766 int ret; 767 768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 769 min(rd_desc->count, len), tss->flags); 770 if (ret > 0) 771 rd_desc->count -= ret; 772 return ret; 773 } 774 775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 776 { 777 /* Store TCP splice context information in read_descriptor_t. */ 778 read_descriptor_t rd_desc = { 779 .arg.data = tss, 780 .count = tss->len, 781 }; 782 783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 784 } 785 786 /** 787 * tcp_splice_read - splice data from TCP socket to a pipe 788 * @sock: socket to splice from 789 * @ppos: position (not valid) 790 * @pipe: pipe to splice to 791 * @len: number of bytes to splice 792 * @flags: splice modifier flags 793 * 794 * Description: 795 * Will read pages from given socket and fill them into a pipe. 796 * 797 **/ 798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 799 struct pipe_inode_info *pipe, size_t len, 800 unsigned int flags) 801 { 802 struct sock *sk = sock->sk; 803 struct tcp_splice_state tss = { 804 .pipe = pipe, 805 .len = len, 806 .flags = flags, 807 }; 808 long timeo; 809 ssize_t spliced; 810 int ret; 811 812 sock_rps_record_flow(sk); 813 /* 814 * We can't seek on a socket input 815 */ 816 if (unlikely(*ppos)) 817 return -ESPIPE; 818 819 ret = spliced = 0; 820 821 lock_sock(sk); 822 823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 824 while (tss.len) { 825 ret = __tcp_splice_read(sk, &tss); 826 if (ret < 0) 827 break; 828 else if (!ret) { 829 if (spliced) 830 break; 831 if (sock_flag(sk, SOCK_DONE)) 832 break; 833 if (sk->sk_err) { 834 ret = sock_error(sk); 835 break; 836 } 837 if (sk->sk_shutdown & RCV_SHUTDOWN) 838 break; 839 if (sk->sk_state == TCP_CLOSE) { 840 /* 841 * This occurs when user tries to read 842 * from never connected socket. 843 */ 844 ret = -ENOTCONN; 845 break; 846 } 847 if (!timeo) { 848 ret = -EAGAIN; 849 break; 850 } 851 /* if __tcp_splice_read() got nothing while we have 852 * an skb in receive queue, we do not want to loop. 853 * This might happen with URG data. 854 */ 855 if (!skb_queue_empty(&sk->sk_receive_queue)) 856 break; 857 ret = sk_wait_data(sk, &timeo, NULL); 858 if (ret < 0) 859 break; 860 if (signal_pending(current)) { 861 ret = sock_intr_errno(timeo); 862 break; 863 } 864 continue; 865 } 866 tss.len -= ret; 867 spliced += ret; 868 869 if (!tss.len || !timeo) 870 break; 871 release_sock(sk); 872 lock_sock(sk); 873 874 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 875 (sk->sk_shutdown & RCV_SHUTDOWN) || 876 signal_pending(current)) 877 break; 878 } 879 880 release_sock(sk); 881 882 if (spliced) 883 return spliced; 884 885 return ret; 886 } 887 EXPORT_IPV6_MOD(tcp_splice_read); 888 889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 890 bool force_schedule) 891 { 892 struct sk_buff *skb; 893 894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 895 if (likely(skb)) { 896 bool mem_scheduled; 897 898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 899 if (force_schedule) { 900 mem_scheduled = true; 901 sk_forced_mem_schedule(sk, skb->truesize); 902 } else { 903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 904 } 905 if (likely(mem_scheduled)) { 906 skb_reserve(skb, MAX_TCP_HEADER); 907 skb->ip_summed = CHECKSUM_PARTIAL; 908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 909 return skb; 910 } 911 __kfree_skb(skb); 912 } else { 913 sk->sk_prot->enter_memory_pressure(sk); 914 sk_stream_moderate_sndbuf(sk); 915 } 916 return NULL; 917 } 918 919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 920 int large_allowed) 921 { 922 struct tcp_sock *tp = tcp_sk(sk); 923 u32 new_size_goal, size_goal; 924 925 if (!large_allowed) 926 return mss_now; 927 928 /* Note : tcp_tso_autosize() will eventually split this later */ 929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 930 931 /* We try hard to avoid divides here */ 932 size_goal = tp->gso_segs * mss_now; 933 if (unlikely(new_size_goal < size_goal || 934 new_size_goal >= size_goal + mss_now)) { 935 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 936 sk->sk_gso_max_segs); 937 size_goal = tp->gso_segs * mss_now; 938 } 939 940 return max(size_goal, mss_now); 941 } 942 943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 944 { 945 int mss_now; 946 947 mss_now = tcp_current_mss(sk); 948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 949 950 return mss_now; 951 } 952 953 /* In some cases, sendmsg() could have added an skb to the write queue, 954 * but failed adding payload on it. We need to remove it to consume less 955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 956 * epoll() users. Another reason is that tcp_write_xmit() does not like 957 * finding an empty skb in the write queue. 958 */ 959 void tcp_remove_empty_skb(struct sock *sk) 960 { 961 struct sk_buff *skb = tcp_write_queue_tail(sk); 962 963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 964 tcp_unlink_write_queue(skb, sk); 965 if (tcp_write_queue_empty(sk)) 966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 967 tcp_wmem_free_skb(sk, skb); 968 } 969 } 970 971 /* skb changing from pure zc to mixed, must charge zc */ 972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 973 { 974 if (unlikely(skb_zcopy_pure(skb))) { 975 u32 extra = skb->truesize - 976 SKB_TRUESIZE(skb_end_offset(skb)); 977 978 if (!sk_wmem_schedule(sk, extra)) 979 return -ENOMEM; 980 981 sk_mem_charge(sk, extra); 982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 983 } 984 return 0; 985 } 986 987 988 int tcp_wmem_schedule(struct sock *sk, int copy) 989 { 990 int left; 991 992 if (likely(sk_wmem_schedule(sk, copy))) 993 return copy; 994 995 /* We could be in trouble if we have nothing queued. 996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 997 * to guarantee some progress. 998 */ 999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 1000 if (left > 0) 1001 sk_forced_mem_schedule(sk, min(left, copy)); 1002 return min(copy, sk->sk_forward_alloc); 1003 } 1004 1005 void tcp_free_fastopen_req(struct tcp_sock *tp) 1006 { 1007 if (tp->fastopen_req) { 1008 kfree(tp->fastopen_req); 1009 tp->fastopen_req = NULL; 1010 } 1011 } 1012 1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1014 size_t size, struct ubuf_info *uarg) 1015 { 1016 struct tcp_sock *tp = tcp_sk(sk); 1017 struct inet_sock *inet = inet_sk(sk); 1018 struct sockaddr *uaddr = msg->msg_name; 1019 int err, flags; 1020 1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1022 TFO_CLIENT_ENABLE) || 1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1024 uaddr->sa_family == AF_UNSPEC)) 1025 return -EOPNOTSUPP; 1026 if (tp->fastopen_req) 1027 return -EALREADY; /* Another Fast Open is in progress */ 1028 1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1030 sk->sk_allocation); 1031 if (unlikely(!tp->fastopen_req)) 1032 return -ENOBUFS; 1033 tp->fastopen_req->data = msg; 1034 tp->fastopen_req->size = size; 1035 tp->fastopen_req->uarg = uarg; 1036 1037 if (inet_test_bit(DEFER_CONNECT, sk)) { 1038 err = tcp_connect(sk); 1039 /* Same failure procedure as in tcp_v4/6_connect */ 1040 if (err) { 1041 tcp_set_state(sk, TCP_CLOSE); 1042 inet->inet_dport = 0; 1043 sk->sk_route_caps = 0; 1044 } 1045 } 1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1047 err = __inet_stream_connect(sk->sk_socket, uaddr, 1048 msg->msg_namelen, flags, 1); 1049 /* fastopen_req could already be freed in __inet_stream_connect 1050 * if the connection times out or gets rst 1051 */ 1052 if (tp->fastopen_req) { 1053 *copied = tp->fastopen_req->copied; 1054 tcp_free_fastopen_req(tp); 1055 inet_clear_bit(DEFER_CONNECT, sk); 1056 } 1057 return err; 1058 } 1059 1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1061 { 1062 struct net_devmem_dmabuf_binding *binding = NULL; 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 struct ubuf_info *uarg = NULL; 1065 struct sk_buff *skb; 1066 struct sockcm_cookie sockc; 1067 int flags, err, copied = 0; 1068 int mss_now = 0, size_goal, copied_syn = 0; 1069 int process_backlog = 0; 1070 bool sockc_valid = true; 1071 int zc = 0; 1072 long timeo; 1073 1074 flags = msg->msg_flags; 1075 1076 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; 1077 if (msg->msg_controllen) { 1078 err = sock_cmsg_send(sk, msg, &sockc); 1079 if (unlikely(err)) 1080 /* Don't return error until MSG_FASTOPEN has been 1081 * processed; that may succeed even if the cmsg is 1082 * invalid. 1083 */ 1084 sockc_valid = false; 1085 } 1086 1087 if ((flags & MSG_ZEROCOPY) && size) { 1088 if (msg->msg_ubuf) { 1089 uarg = msg->msg_ubuf; 1090 if (sk->sk_route_caps & NETIF_F_SG) 1091 zc = MSG_ZEROCOPY; 1092 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1093 skb = tcp_write_queue_tail(sk); 1094 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb), 1095 sockc_valid && !!sockc.dmabuf_id); 1096 if (!uarg) { 1097 err = -ENOBUFS; 1098 goto out_err; 1099 } 1100 if (sk->sk_route_caps & NETIF_F_SG) 1101 zc = MSG_ZEROCOPY; 1102 else 1103 uarg_to_msgzc(uarg)->zerocopy = 0; 1104 1105 if (sockc_valid && sockc.dmabuf_id) { 1106 binding = net_devmem_get_binding(sk, sockc.dmabuf_id); 1107 if (IS_ERR(binding)) { 1108 err = PTR_ERR(binding); 1109 binding = NULL; 1110 goto out_err; 1111 } 1112 } 1113 } 1114 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1115 if (sk->sk_route_caps & NETIF_F_SG) 1116 zc = MSG_SPLICE_PAGES; 1117 } 1118 1119 if (sockc_valid && sockc.dmabuf_id && 1120 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) { 1121 err = -EINVAL; 1122 goto out_err; 1123 } 1124 1125 if (unlikely(flags & MSG_FASTOPEN || 1126 inet_test_bit(DEFER_CONNECT, sk)) && 1127 !tp->repair) { 1128 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1129 if (err == -EINPROGRESS && copied_syn > 0) 1130 goto out; 1131 else if (err) 1132 goto out_err; 1133 } 1134 1135 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1136 1137 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1138 1139 /* Wait for a connection to finish. One exception is TCP Fast Open 1140 * (passive side) where data is allowed to be sent before a connection 1141 * is fully established. 1142 */ 1143 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1144 !tcp_passive_fastopen(sk)) { 1145 err = sk_stream_wait_connect(sk, &timeo); 1146 if (err != 0) 1147 goto do_error; 1148 } 1149 1150 if (unlikely(tp->repair)) { 1151 if (tp->repair_queue == TCP_RECV_QUEUE) { 1152 copied = tcp_send_rcvq(sk, msg, size); 1153 goto out_nopush; 1154 } 1155 1156 err = -EINVAL; 1157 if (tp->repair_queue == TCP_NO_QUEUE) 1158 goto out_err; 1159 1160 /* 'common' sending to sendq */ 1161 } 1162 1163 if (!sockc_valid) { 1164 if (!err) 1165 err = -EINVAL; 1166 goto out_err; 1167 } 1168 1169 /* This should be in poll */ 1170 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1171 1172 /* Ok commence sending. */ 1173 copied = 0; 1174 1175 restart: 1176 mss_now = tcp_send_mss(sk, &size_goal, flags); 1177 1178 err = -EPIPE; 1179 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1180 goto do_error; 1181 1182 while (msg_data_left(msg)) { 1183 ssize_t copy = 0; 1184 1185 skb = tcp_write_queue_tail(sk); 1186 if (skb) 1187 copy = size_goal - skb->len; 1188 1189 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); 1190 1191 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1192 bool first_skb; 1193 1194 new_segment: 1195 if (!sk_stream_memory_free(sk)) 1196 goto wait_for_space; 1197 1198 if (unlikely(process_backlog >= 16)) { 1199 process_backlog = 0; 1200 if (sk_flush_backlog(sk)) 1201 goto restart; 1202 } 1203 first_skb = tcp_rtx_and_write_queues_empty(sk); 1204 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1205 first_skb); 1206 if (!skb) 1207 goto wait_for_space; 1208 1209 process_backlog++; 1210 1211 #ifdef CONFIG_SKB_DECRYPTED 1212 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1213 #endif 1214 tcp_skb_entail(sk, skb); 1215 copy = size_goal; 1216 1217 /* All packets are restored as if they have 1218 * already been sent. skb_mstamp_ns isn't set to 1219 * avoid wrong rtt estimation. 1220 */ 1221 if (tp->repair) 1222 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1223 } 1224 1225 /* Try to append data to the end of skb. */ 1226 if (copy > msg_data_left(msg)) 1227 copy = msg_data_left(msg); 1228 1229 if (zc == 0) { 1230 bool merge = true; 1231 int i = skb_shinfo(skb)->nr_frags; 1232 struct page_frag *pfrag = sk_page_frag(sk); 1233 1234 if (!sk_page_frag_refill(sk, pfrag)) 1235 goto wait_for_space; 1236 1237 if (!skb_can_coalesce(skb, i, pfrag->page, 1238 pfrag->offset)) { 1239 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1240 tcp_mark_push(tp, skb); 1241 goto new_segment; 1242 } 1243 merge = false; 1244 } 1245 1246 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1247 1248 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1249 if (tcp_downgrade_zcopy_pure(sk, skb)) 1250 goto wait_for_space; 1251 skb_zcopy_downgrade_managed(skb); 1252 } 1253 1254 copy = tcp_wmem_schedule(sk, copy); 1255 if (!copy) 1256 goto wait_for_space; 1257 1258 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1259 pfrag->page, 1260 pfrag->offset, 1261 copy); 1262 if (err) 1263 goto do_error; 1264 1265 /* Update the skb. */ 1266 if (merge) { 1267 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1268 } else { 1269 skb_fill_page_desc(skb, i, pfrag->page, 1270 pfrag->offset, copy); 1271 page_ref_inc(pfrag->page); 1272 } 1273 pfrag->offset += copy; 1274 } else if (zc == MSG_ZEROCOPY) { 1275 /* First append to a fragless skb builds initial 1276 * pure zerocopy skb 1277 */ 1278 if (!skb->len) 1279 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1280 1281 if (!skb_zcopy_pure(skb)) { 1282 copy = tcp_wmem_schedule(sk, copy); 1283 if (!copy) 1284 goto wait_for_space; 1285 } 1286 1287 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg, 1288 binding); 1289 if (err == -EMSGSIZE || err == -EEXIST) { 1290 tcp_mark_push(tp, skb); 1291 goto new_segment; 1292 } 1293 if (err < 0) 1294 goto do_error; 1295 copy = err; 1296 } else if (zc == MSG_SPLICE_PAGES) { 1297 /* Splice in data if we can; copy if we can't. */ 1298 if (tcp_downgrade_zcopy_pure(sk, skb)) 1299 goto wait_for_space; 1300 copy = tcp_wmem_schedule(sk, copy); 1301 if (!copy) 1302 goto wait_for_space; 1303 1304 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1305 sk->sk_allocation); 1306 if (err < 0) { 1307 if (err == -EMSGSIZE) { 1308 tcp_mark_push(tp, skb); 1309 goto new_segment; 1310 } 1311 goto do_error; 1312 } 1313 copy = err; 1314 1315 if (!(flags & MSG_NO_SHARED_FRAGS)) 1316 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1317 1318 sk_wmem_queued_add(sk, copy); 1319 sk_mem_charge(sk, copy); 1320 } 1321 1322 if (!copied) 1323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1324 1325 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1326 TCP_SKB_CB(skb)->end_seq += copy; 1327 tcp_skb_pcount_set(skb, 0); 1328 1329 copied += copy; 1330 if (!msg_data_left(msg)) { 1331 if (unlikely(flags & MSG_EOR)) 1332 TCP_SKB_CB(skb)->eor = 1; 1333 goto out; 1334 } 1335 1336 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1337 continue; 1338 1339 if (forced_push(tp)) { 1340 tcp_mark_push(tp, skb); 1341 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1342 } else if (skb == tcp_send_head(sk)) 1343 tcp_push_one(sk, mss_now); 1344 continue; 1345 1346 wait_for_space: 1347 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1348 tcp_remove_empty_skb(sk); 1349 if (copied) 1350 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1351 TCP_NAGLE_PUSH, size_goal); 1352 1353 err = sk_stream_wait_memory(sk, &timeo); 1354 if (err != 0) 1355 goto do_error; 1356 1357 mss_now = tcp_send_mss(sk, &size_goal, flags); 1358 } 1359 1360 out: 1361 if (copied) { 1362 tcp_tx_timestamp(sk, &sockc); 1363 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1364 } 1365 out_nopush: 1366 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1367 if (uarg && !msg->msg_ubuf) 1368 net_zcopy_put(uarg); 1369 if (binding) 1370 net_devmem_dmabuf_binding_put(binding); 1371 return copied + copied_syn; 1372 1373 do_error: 1374 tcp_remove_empty_skb(sk); 1375 1376 if (copied + copied_syn) 1377 goto out; 1378 out_err: 1379 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1380 if (uarg && !msg->msg_ubuf) 1381 net_zcopy_put_abort(uarg, true); 1382 err = sk_stream_error(sk, flags, err); 1383 /* make sure we wake any epoll edge trigger waiter */ 1384 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1385 sk->sk_write_space(sk); 1386 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1387 } 1388 if (binding) 1389 net_devmem_dmabuf_binding_put(binding); 1390 1391 return err; 1392 } 1393 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1394 1395 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1396 { 1397 int ret; 1398 1399 lock_sock(sk); 1400 ret = tcp_sendmsg_locked(sk, msg, size); 1401 release_sock(sk); 1402 1403 return ret; 1404 } 1405 EXPORT_SYMBOL(tcp_sendmsg); 1406 1407 void tcp_splice_eof(struct socket *sock) 1408 { 1409 struct sock *sk = sock->sk; 1410 struct tcp_sock *tp = tcp_sk(sk); 1411 int mss_now, size_goal; 1412 1413 if (!tcp_write_queue_tail(sk)) 1414 return; 1415 1416 lock_sock(sk); 1417 mss_now = tcp_send_mss(sk, &size_goal, 0); 1418 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1419 release_sock(sk); 1420 } 1421 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1422 1423 /* 1424 * Handle reading urgent data. BSD has very simple semantics for 1425 * this, no blocking and very strange errors 8) 1426 */ 1427 1428 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1429 { 1430 struct tcp_sock *tp = tcp_sk(sk); 1431 1432 /* No URG data to read. */ 1433 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1434 tp->urg_data == TCP_URG_READ) 1435 return -EINVAL; /* Yes this is right ! */ 1436 1437 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1438 return -ENOTCONN; 1439 1440 if (tp->urg_data & TCP_URG_VALID) { 1441 int err = 0; 1442 char c = tp->urg_data; 1443 1444 if (!(flags & MSG_PEEK)) 1445 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1446 1447 /* Read urgent data. */ 1448 msg->msg_flags |= MSG_OOB; 1449 1450 if (len > 0) { 1451 if (!(flags & MSG_TRUNC)) 1452 err = memcpy_to_msg(msg, &c, 1); 1453 len = 1; 1454 } else 1455 msg->msg_flags |= MSG_TRUNC; 1456 1457 return err ? -EFAULT : len; 1458 } 1459 1460 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1461 return 0; 1462 1463 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1464 * the available implementations agree in this case: 1465 * this call should never block, independent of the 1466 * blocking state of the socket. 1467 * Mike <pall@rz.uni-karlsruhe.de> 1468 */ 1469 return -EAGAIN; 1470 } 1471 1472 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1473 { 1474 struct sk_buff *skb; 1475 int copied = 0, err = 0; 1476 1477 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1478 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1479 if (err) 1480 return err; 1481 copied += skb->len; 1482 } 1483 1484 skb_queue_walk(&sk->sk_write_queue, skb) { 1485 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1486 if (err) 1487 break; 1488 1489 copied += skb->len; 1490 } 1491 1492 return err ?: copied; 1493 } 1494 1495 /* Clean up the receive buffer for full frames taken by the user, 1496 * then send an ACK if necessary. COPIED is the number of bytes 1497 * tcp_recvmsg has given to the user so far, it speeds up the 1498 * calculation of whether or not we must ACK for the sake of 1499 * a window update. 1500 */ 1501 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1502 { 1503 struct tcp_sock *tp = tcp_sk(sk); 1504 bool time_to_ack = false; 1505 1506 if (inet_csk_ack_scheduled(sk)) { 1507 const struct inet_connection_sock *icsk = inet_csk(sk); 1508 1509 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1510 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1511 /* 1512 * If this read emptied read buffer, we send ACK, if 1513 * connection is not bidirectional, user drained 1514 * receive buffer and there was a small segment 1515 * in queue. 1516 */ 1517 (copied > 0 && 1518 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1519 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1520 !inet_csk_in_pingpong_mode(sk))) && 1521 !atomic_read(&sk->sk_rmem_alloc))) 1522 time_to_ack = true; 1523 } 1524 1525 /* We send an ACK if we can now advertise a non-zero window 1526 * which has been raised "significantly". 1527 * 1528 * Even if window raised up to infinity, do not send window open ACK 1529 * in states, where we will not receive more. It is useless. 1530 */ 1531 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1532 __u32 rcv_window_now = tcp_receive_window(tp); 1533 1534 /* Optimize, __tcp_select_window() is not cheap. */ 1535 if (2*rcv_window_now <= tp->window_clamp) { 1536 __u32 new_window = __tcp_select_window(sk); 1537 1538 /* Send ACK now, if this read freed lots of space 1539 * in our buffer. Certainly, new_window is new window. 1540 * We can advertise it now, if it is not less than current one. 1541 * "Lots" means "at least twice" here. 1542 */ 1543 if (new_window && new_window >= 2 * rcv_window_now) 1544 time_to_ack = true; 1545 } 1546 } 1547 if (time_to_ack) 1548 tcp_send_ack(sk); 1549 } 1550 1551 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1552 { 1553 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1554 struct tcp_sock *tp = tcp_sk(sk); 1555 1556 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1557 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1558 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1559 __tcp_cleanup_rbuf(sk, copied); 1560 } 1561 1562 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1563 { 1564 __skb_unlink(skb, &sk->sk_receive_queue); 1565 if (likely(skb->destructor == sock_rfree)) { 1566 sock_rfree(skb); 1567 skb->destructor = NULL; 1568 skb->sk = NULL; 1569 return skb_attempt_defer_free(skb); 1570 } 1571 __kfree_skb(skb); 1572 } 1573 1574 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1575 { 1576 struct sk_buff *skb; 1577 u32 offset; 1578 1579 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1580 offset = seq - TCP_SKB_CB(skb)->seq; 1581 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1582 pr_err_once("%s: found a SYN, please report !\n", __func__); 1583 offset--; 1584 } 1585 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1586 *off = offset; 1587 return skb; 1588 } 1589 /* This looks weird, but this can happen if TCP collapsing 1590 * splitted a fat GRO packet, while we released socket lock 1591 * in skb_splice_bits() 1592 */ 1593 tcp_eat_recv_skb(sk, skb); 1594 } 1595 return NULL; 1596 } 1597 EXPORT_SYMBOL(tcp_recv_skb); 1598 1599 /* 1600 * This routine provides an alternative to tcp_recvmsg() for routines 1601 * that would like to handle copying from skbuffs directly in 'sendfile' 1602 * fashion. 1603 * Note: 1604 * - It is assumed that the socket was locked by the caller. 1605 * - The routine does not block. 1606 * - At present, there is no support for reading OOB data 1607 * or for 'peeking' the socket using this routine 1608 * (although both would be easy to implement). 1609 */ 1610 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1611 sk_read_actor_t recv_actor, bool noack, 1612 u32 *copied_seq) 1613 { 1614 struct sk_buff *skb; 1615 struct tcp_sock *tp = tcp_sk(sk); 1616 u32 seq = *copied_seq; 1617 u32 offset; 1618 int copied = 0; 1619 1620 if (sk->sk_state == TCP_LISTEN) 1621 return -ENOTCONN; 1622 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1623 if (offset < skb->len) { 1624 int used; 1625 size_t len; 1626 1627 len = skb->len - offset; 1628 /* Stop reading if we hit a patch of urgent data */ 1629 if (unlikely(tp->urg_data)) { 1630 u32 urg_offset = tp->urg_seq - seq; 1631 if (urg_offset < len) 1632 len = urg_offset; 1633 if (!len) 1634 break; 1635 } 1636 used = recv_actor(desc, skb, offset, len); 1637 if (used <= 0) { 1638 if (!copied) 1639 copied = used; 1640 break; 1641 } 1642 if (WARN_ON_ONCE(used > len)) 1643 used = len; 1644 seq += used; 1645 copied += used; 1646 offset += used; 1647 1648 /* If recv_actor drops the lock (e.g. TCP splice 1649 * receive) the skb pointer might be invalid when 1650 * getting here: tcp_collapse might have deleted it 1651 * while aggregating skbs from the socket queue. 1652 */ 1653 skb = tcp_recv_skb(sk, seq - 1, &offset); 1654 if (!skb) 1655 break; 1656 /* TCP coalescing might have appended data to the skb. 1657 * Try to splice more frags 1658 */ 1659 if (offset + 1 != skb->len) 1660 continue; 1661 } 1662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1663 tcp_eat_recv_skb(sk, skb); 1664 ++seq; 1665 break; 1666 } 1667 tcp_eat_recv_skb(sk, skb); 1668 if (!desc->count) 1669 break; 1670 WRITE_ONCE(*copied_seq, seq); 1671 } 1672 WRITE_ONCE(*copied_seq, seq); 1673 1674 if (noack) 1675 goto out; 1676 1677 tcp_rcv_space_adjust(sk); 1678 1679 /* Clean up data we have read: This will do ACK frames. */ 1680 if (copied > 0) { 1681 tcp_recv_skb(sk, seq, &offset); 1682 tcp_cleanup_rbuf(sk, copied); 1683 } 1684 out: 1685 return copied; 1686 } 1687 1688 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1689 sk_read_actor_t recv_actor) 1690 { 1691 return __tcp_read_sock(sk, desc, recv_actor, false, 1692 &tcp_sk(sk)->copied_seq); 1693 } 1694 EXPORT_SYMBOL(tcp_read_sock); 1695 1696 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1697 sk_read_actor_t recv_actor, bool noack, 1698 u32 *copied_seq) 1699 { 1700 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1701 } 1702 1703 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1704 { 1705 struct sk_buff *skb; 1706 int copied = 0; 1707 1708 if (sk->sk_state == TCP_LISTEN) 1709 return -ENOTCONN; 1710 1711 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1712 u8 tcp_flags; 1713 int used; 1714 1715 __skb_unlink(skb, &sk->sk_receive_queue); 1716 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1717 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1718 used = recv_actor(sk, skb); 1719 if (used < 0) { 1720 if (!copied) 1721 copied = used; 1722 break; 1723 } 1724 copied += used; 1725 1726 if (tcp_flags & TCPHDR_FIN) 1727 break; 1728 } 1729 return copied; 1730 } 1731 EXPORT_IPV6_MOD(tcp_read_skb); 1732 1733 void tcp_read_done(struct sock *sk, size_t len) 1734 { 1735 struct tcp_sock *tp = tcp_sk(sk); 1736 u32 seq = tp->copied_seq; 1737 struct sk_buff *skb; 1738 size_t left; 1739 u32 offset; 1740 1741 if (sk->sk_state == TCP_LISTEN) 1742 return; 1743 1744 left = len; 1745 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1746 int used; 1747 1748 used = min_t(size_t, skb->len - offset, left); 1749 seq += used; 1750 left -= used; 1751 1752 if (skb->len > offset + used) 1753 break; 1754 1755 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1756 tcp_eat_recv_skb(sk, skb); 1757 ++seq; 1758 break; 1759 } 1760 tcp_eat_recv_skb(sk, skb); 1761 } 1762 WRITE_ONCE(tp->copied_seq, seq); 1763 1764 tcp_rcv_space_adjust(sk); 1765 1766 /* Clean up data we have read: This will do ACK frames. */ 1767 if (left != len) 1768 tcp_cleanup_rbuf(sk, len - left); 1769 } 1770 EXPORT_SYMBOL(tcp_read_done); 1771 1772 int tcp_peek_len(struct socket *sock) 1773 { 1774 return tcp_inq(sock->sk); 1775 } 1776 EXPORT_IPV6_MOD(tcp_peek_len); 1777 1778 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1779 int tcp_set_rcvlowat(struct sock *sk, int val) 1780 { 1781 int space, cap; 1782 1783 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1784 cap = sk->sk_rcvbuf >> 1; 1785 else 1786 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1787 val = min(val, cap); 1788 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1789 1790 /* Check if we need to signal EPOLLIN right now */ 1791 tcp_data_ready(sk); 1792 1793 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1794 return 0; 1795 1796 space = tcp_space_from_win(sk, val); 1797 if (space > sk->sk_rcvbuf) { 1798 WRITE_ONCE(sk->sk_rcvbuf, space); 1799 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1800 } 1801 return 0; 1802 } 1803 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1804 1805 void tcp_update_recv_tstamps(struct sk_buff *skb, 1806 struct scm_timestamping_internal *tss) 1807 { 1808 if (skb->tstamp) 1809 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1810 else 1811 tss->ts[0] = (struct timespec64) {0}; 1812 1813 if (skb_hwtstamps(skb)->hwtstamp) 1814 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1815 else 1816 tss->ts[2] = (struct timespec64) {0}; 1817 } 1818 1819 #ifdef CONFIG_MMU 1820 static const struct vm_operations_struct tcp_vm_ops = { 1821 }; 1822 1823 int tcp_mmap(struct file *file, struct socket *sock, 1824 struct vm_area_struct *vma) 1825 { 1826 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1827 return -EPERM; 1828 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1829 1830 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1831 vm_flags_set(vma, VM_MIXEDMAP); 1832 1833 vma->vm_ops = &tcp_vm_ops; 1834 return 0; 1835 } 1836 EXPORT_IPV6_MOD(tcp_mmap); 1837 1838 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1839 u32 *offset_frag) 1840 { 1841 skb_frag_t *frag; 1842 1843 if (unlikely(offset_skb >= skb->len)) 1844 return NULL; 1845 1846 offset_skb -= skb_headlen(skb); 1847 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1848 return NULL; 1849 1850 frag = skb_shinfo(skb)->frags; 1851 while (offset_skb) { 1852 if (skb_frag_size(frag) > offset_skb) { 1853 *offset_frag = offset_skb; 1854 return frag; 1855 } 1856 offset_skb -= skb_frag_size(frag); 1857 ++frag; 1858 } 1859 *offset_frag = 0; 1860 return frag; 1861 } 1862 1863 static bool can_map_frag(const skb_frag_t *frag) 1864 { 1865 struct page *page; 1866 1867 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1868 return false; 1869 1870 page = skb_frag_page(frag); 1871 1872 if (PageCompound(page) || page->mapping) 1873 return false; 1874 1875 return true; 1876 } 1877 1878 static int find_next_mappable_frag(const skb_frag_t *frag, 1879 int remaining_in_skb) 1880 { 1881 int offset = 0; 1882 1883 if (likely(can_map_frag(frag))) 1884 return 0; 1885 1886 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1887 offset += skb_frag_size(frag); 1888 ++frag; 1889 } 1890 return offset; 1891 } 1892 1893 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1894 struct tcp_zerocopy_receive *zc, 1895 struct sk_buff *skb, u32 offset) 1896 { 1897 u32 frag_offset, partial_frag_remainder = 0; 1898 int mappable_offset; 1899 skb_frag_t *frag; 1900 1901 /* worst case: skip to next skb. try to improve on this case below */ 1902 zc->recv_skip_hint = skb->len - offset; 1903 1904 /* Find the frag containing this offset (and how far into that frag) */ 1905 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1906 if (!frag) 1907 return; 1908 1909 if (frag_offset) { 1910 struct skb_shared_info *info = skb_shinfo(skb); 1911 1912 /* We read part of the last frag, must recvmsg() rest of skb. */ 1913 if (frag == &info->frags[info->nr_frags - 1]) 1914 return; 1915 1916 /* Else, we must at least read the remainder in this frag. */ 1917 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1918 zc->recv_skip_hint -= partial_frag_remainder; 1919 ++frag; 1920 } 1921 1922 /* partial_frag_remainder: If part way through a frag, must read rest. 1923 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1924 * in partial_frag_remainder. 1925 */ 1926 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1927 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1928 } 1929 1930 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1931 int flags, struct scm_timestamping_internal *tss, 1932 int *cmsg_flags); 1933 static int receive_fallback_to_copy(struct sock *sk, 1934 struct tcp_zerocopy_receive *zc, int inq, 1935 struct scm_timestamping_internal *tss) 1936 { 1937 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1938 struct msghdr msg = {}; 1939 int err; 1940 1941 zc->length = 0; 1942 zc->recv_skip_hint = 0; 1943 1944 if (copy_address != zc->copybuf_address) 1945 return -EINVAL; 1946 1947 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1948 &msg.msg_iter); 1949 if (err) 1950 return err; 1951 1952 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1953 tss, &zc->msg_flags); 1954 if (err < 0) 1955 return err; 1956 1957 zc->copybuf_len = err; 1958 if (likely(zc->copybuf_len)) { 1959 struct sk_buff *skb; 1960 u32 offset; 1961 1962 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1963 if (skb) 1964 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1965 } 1966 return 0; 1967 } 1968 1969 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1970 struct sk_buff *skb, u32 copylen, 1971 u32 *offset, u32 *seq) 1972 { 1973 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1974 struct msghdr msg = {}; 1975 int err; 1976 1977 if (copy_address != zc->copybuf_address) 1978 return -EINVAL; 1979 1980 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1981 &msg.msg_iter); 1982 if (err) 1983 return err; 1984 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1985 if (err) 1986 return err; 1987 zc->recv_skip_hint -= copylen; 1988 *offset += copylen; 1989 *seq += copylen; 1990 return (__s32)copylen; 1991 } 1992 1993 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1994 struct sock *sk, 1995 struct sk_buff *skb, 1996 u32 *seq, 1997 s32 copybuf_len, 1998 struct scm_timestamping_internal *tss) 1999 { 2000 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2001 2002 if (!copylen) 2003 return 0; 2004 /* skb is null if inq < PAGE_SIZE. */ 2005 if (skb) { 2006 offset = *seq - TCP_SKB_CB(skb)->seq; 2007 } else { 2008 skb = tcp_recv_skb(sk, *seq, &offset); 2009 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2010 tcp_update_recv_tstamps(skb, tss); 2011 zc->msg_flags |= TCP_CMSG_TS; 2012 } 2013 } 2014 2015 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2016 seq); 2017 return zc->copybuf_len < 0 ? 0 : copylen; 2018 } 2019 2020 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2021 struct page **pending_pages, 2022 unsigned long pages_remaining, 2023 unsigned long *address, 2024 u32 *length, 2025 u32 *seq, 2026 struct tcp_zerocopy_receive *zc, 2027 u32 total_bytes_to_map, 2028 int err) 2029 { 2030 /* At least one page did not map. Try zapping if we skipped earlier. */ 2031 if (err == -EBUSY && 2032 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2033 u32 maybe_zap_len; 2034 2035 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2036 *length + /* Mapped or pending */ 2037 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2038 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2039 err = 0; 2040 } 2041 2042 if (!err) { 2043 unsigned long leftover_pages = pages_remaining; 2044 int bytes_mapped; 2045 2046 /* We called zap_page_range_single, try to reinsert. */ 2047 err = vm_insert_pages(vma, *address, 2048 pending_pages, 2049 &pages_remaining); 2050 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2051 *seq += bytes_mapped; 2052 *address += bytes_mapped; 2053 } 2054 if (err) { 2055 /* Either we were unable to zap, OR we zapped, retried an 2056 * insert, and still had an issue. Either ways, pages_remaining 2057 * is the number of pages we were unable to map, and we unroll 2058 * some state we speculatively touched before. 2059 */ 2060 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2061 2062 *length -= bytes_not_mapped; 2063 zc->recv_skip_hint += bytes_not_mapped; 2064 } 2065 return err; 2066 } 2067 2068 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2069 struct page **pages, 2070 unsigned int pages_to_map, 2071 unsigned long *address, 2072 u32 *length, 2073 u32 *seq, 2074 struct tcp_zerocopy_receive *zc, 2075 u32 total_bytes_to_map) 2076 { 2077 unsigned long pages_remaining = pages_to_map; 2078 unsigned int pages_mapped; 2079 unsigned int bytes_mapped; 2080 int err; 2081 2082 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2083 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2084 bytes_mapped = PAGE_SIZE * pages_mapped; 2085 /* Even if vm_insert_pages fails, it may have partially succeeded in 2086 * mapping (some but not all of the pages). 2087 */ 2088 *seq += bytes_mapped; 2089 *address += bytes_mapped; 2090 2091 if (likely(!err)) 2092 return 0; 2093 2094 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2095 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2096 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2097 err); 2098 } 2099 2100 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2101 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2102 struct tcp_zerocopy_receive *zc, 2103 struct scm_timestamping_internal *tss) 2104 { 2105 unsigned long msg_control_addr; 2106 struct msghdr cmsg_dummy; 2107 2108 msg_control_addr = (unsigned long)zc->msg_control; 2109 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2110 cmsg_dummy.msg_controllen = 2111 (__kernel_size_t)zc->msg_controllen; 2112 cmsg_dummy.msg_flags = in_compat_syscall() 2113 ? MSG_CMSG_COMPAT : 0; 2114 cmsg_dummy.msg_control_is_user = true; 2115 zc->msg_flags = 0; 2116 if (zc->msg_control == msg_control_addr && 2117 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2118 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2119 zc->msg_control = (__u64) 2120 ((uintptr_t)cmsg_dummy.msg_control_user); 2121 zc->msg_controllen = 2122 (__u64)cmsg_dummy.msg_controllen; 2123 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2124 } 2125 } 2126 2127 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2128 unsigned long address, 2129 bool *mmap_locked) 2130 { 2131 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2132 2133 if (vma) { 2134 if (vma->vm_ops != &tcp_vm_ops) { 2135 vma_end_read(vma); 2136 return NULL; 2137 } 2138 *mmap_locked = false; 2139 return vma; 2140 } 2141 2142 mmap_read_lock(mm); 2143 vma = vma_lookup(mm, address); 2144 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2145 mmap_read_unlock(mm); 2146 return NULL; 2147 } 2148 *mmap_locked = true; 2149 return vma; 2150 } 2151 2152 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2153 static int tcp_zerocopy_receive(struct sock *sk, 2154 struct tcp_zerocopy_receive *zc, 2155 struct scm_timestamping_internal *tss) 2156 { 2157 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2158 unsigned long address = (unsigned long)zc->address; 2159 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2160 s32 copybuf_len = zc->copybuf_len; 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 const skb_frag_t *frags = NULL; 2163 unsigned int pages_to_map = 0; 2164 struct vm_area_struct *vma; 2165 struct sk_buff *skb = NULL; 2166 u32 seq = tp->copied_seq; 2167 u32 total_bytes_to_map; 2168 int inq = tcp_inq(sk); 2169 bool mmap_locked; 2170 int ret; 2171 2172 zc->copybuf_len = 0; 2173 zc->msg_flags = 0; 2174 2175 if (address & (PAGE_SIZE - 1) || address != zc->address) 2176 return -EINVAL; 2177 2178 if (sk->sk_state == TCP_LISTEN) 2179 return -ENOTCONN; 2180 2181 sock_rps_record_flow(sk); 2182 2183 if (inq && inq <= copybuf_len) 2184 return receive_fallback_to_copy(sk, zc, inq, tss); 2185 2186 if (inq < PAGE_SIZE) { 2187 zc->length = 0; 2188 zc->recv_skip_hint = inq; 2189 if (!inq && sock_flag(sk, SOCK_DONE)) 2190 return -EIO; 2191 return 0; 2192 } 2193 2194 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2195 if (!vma) 2196 return -EINVAL; 2197 2198 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2199 avail_len = min_t(u32, vma_len, inq); 2200 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2201 if (total_bytes_to_map) { 2202 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2203 zap_page_range_single(vma, address, total_bytes_to_map, 2204 NULL); 2205 zc->length = total_bytes_to_map; 2206 zc->recv_skip_hint = 0; 2207 } else { 2208 zc->length = avail_len; 2209 zc->recv_skip_hint = avail_len; 2210 } 2211 ret = 0; 2212 while (length + PAGE_SIZE <= zc->length) { 2213 int mappable_offset; 2214 struct page *page; 2215 2216 if (zc->recv_skip_hint < PAGE_SIZE) { 2217 u32 offset_frag; 2218 2219 if (skb) { 2220 if (zc->recv_skip_hint > 0) 2221 break; 2222 skb = skb->next; 2223 offset = seq - TCP_SKB_CB(skb)->seq; 2224 } else { 2225 skb = tcp_recv_skb(sk, seq, &offset); 2226 } 2227 2228 if (!skb_frags_readable(skb)) 2229 break; 2230 2231 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2232 tcp_update_recv_tstamps(skb, tss); 2233 zc->msg_flags |= TCP_CMSG_TS; 2234 } 2235 zc->recv_skip_hint = skb->len - offset; 2236 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2237 if (!frags || offset_frag) 2238 break; 2239 } 2240 2241 mappable_offset = find_next_mappable_frag(frags, 2242 zc->recv_skip_hint); 2243 if (mappable_offset) { 2244 zc->recv_skip_hint = mappable_offset; 2245 break; 2246 } 2247 page = skb_frag_page(frags); 2248 if (WARN_ON_ONCE(!page)) 2249 break; 2250 2251 prefetchw(page); 2252 pages[pages_to_map++] = page; 2253 length += PAGE_SIZE; 2254 zc->recv_skip_hint -= PAGE_SIZE; 2255 frags++; 2256 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2257 zc->recv_skip_hint < PAGE_SIZE) { 2258 /* Either full batch, or we're about to go to next skb 2259 * (and we cannot unroll failed ops across skbs). 2260 */ 2261 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2262 pages_to_map, 2263 &address, &length, 2264 &seq, zc, 2265 total_bytes_to_map); 2266 if (ret) 2267 goto out; 2268 pages_to_map = 0; 2269 } 2270 } 2271 if (pages_to_map) { 2272 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2273 &address, &length, &seq, 2274 zc, total_bytes_to_map); 2275 } 2276 out: 2277 if (mmap_locked) 2278 mmap_read_unlock(current->mm); 2279 else 2280 vma_end_read(vma); 2281 /* Try to copy straggler data. */ 2282 if (!ret) 2283 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2284 2285 if (length + copylen) { 2286 WRITE_ONCE(tp->copied_seq, seq); 2287 tcp_rcv_space_adjust(sk); 2288 2289 /* Clean up data we have read: This will do ACK frames. */ 2290 tcp_recv_skb(sk, seq, &offset); 2291 tcp_cleanup_rbuf(sk, length + copylen); 2292 ret = 0; 2293 if (length == zc->length) 2294 zc->recv_skip_hint = 0; 2295 } else { 2296 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2297 ret = -EIO; 2298 } 2299 zc->length = length; 2300 return ret; 2301 } 2302 #endif 2303 2304 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2305 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2306 struct scm_timestamping_internal *tss) 2307 { 2308 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2309 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2310 bool has_timestamping = false; 2311 2312 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2313 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2314 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2315 if (new_tstamp) { 2316 struct __kernel_timespec kts = { 2317 .tv_sec = tss->ts[0].tv_sec, 2318 .tv_nsec = tss->ts[0].tv_nsec, 2319 }; 2320 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2321 sizeof(kts), &kts); 2322 } else { 2323 struct __kernel_old_timespec ts_old = { 2324 .tv_sec = tss->ts[0].tv_sec, 2325 .tv_nsec = tss->ts[0].tv_nsec, 2326 }; 2327 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2328 sizeof(ts_old), &ts_old); 2329 } 2330 } else { 2331 if (new_tstamp) { 2332 struct __kernel_sock_timeval stv = { 2333 .tv_sec = tss->ts[0].tv_sec, 2334 .tv_usec = tss->ts[0].tv_nsec / 1000, 2335 }; 2336 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2337 sizeof(stv), &stv); 2338 } else { 2339 struct __kernel_old_timeval tv = { 2340 .tv_sec = tss->ts[0].tv_sec, 2341 .tv_usec = tss->ts[0].tv_nsec / 1000, 2342 }; 2343 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2344 sizeof(tv), &tv); 2345 } 2346 } 2347 } 2348 2349 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2350 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2351 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2352 has_timestamping = true; 2353 else 2354 tss->ts[0] = (struct timespec64) {0}; 2355 } 2356 2357 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2358 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2359 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2360 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2361 has_timestamping = true; 2362 else 2363 tss->ts[2] = (struct timespec64) {0}; 2364 } 2365 2366 if (has_timestamping) { 2367 tss->ts[1] = (struct timespec64) {0}; 2368 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2369 put_cmsg_scm_timestamping64(msg, tss); 2370 else 2371 put_cmsg_scm_timestamping(msg, tss); 2372 } 2373 } 2374 2375 static int tcp_inq_hint(struct sock *sk) 2376 { 2377 const struct tcp_sock *tp = tcp_sk(sk); 2378 u32 copied_seq = READ_ONCE(tp->copied_seq); 2379 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2380 int inq; 2381 2382 inq = rcv_nxt - copied_seq; 2383 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2384 lock_sock(sk); 2385 inq = tp->rcv_nxt - tp->copied_seq; 2386 release_sock(sk); 2387 } 2388 /* After receiving a FIN, tell the user-space to continue reading 2389 * by returning a non-zero inq. 2390 */ 2391 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2392 inq = 1; 2393 return inq; 2394 } 2395 2396 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2397 struct tcp_xa_pool { 2398 u8 max; /* max <= MAX_SKB_FRAGS */ 2399 u8 idx; /* idx <= max */ 2400 __u32 tokens[MAX_SKB_FRAGS]; 2401 netmem_ref netmems[MAX_SKB_FRAGS]; 2402 }; 2403 2404 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2405 { 2406 int i; 2407 2408 /* Commit part that has been copied to user space. */ 2409 for (i = 0; i < p->idx; i++) 2410 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2411 (__force void *)p->netmems[i], GFP_KERNEL); 2412 /* Rollback what has been pre-allocated and is no longer needed. */ 2413 for (; i < p->max; i++) 2414 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2415 2416 p->max = 0; 2417 p->idx = 0; 2418 } 2419 2420 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2421 { 2422 if (!p->max) 2423 return; 2424 2425 xa_lock_bh(&sk->sk_user_frags); 2426 2427 tcp_xa_pool_commit_locked(sk, p); 2428 2429 xa_unlock_bh(&sk->sk_user_frags); 2430 } 2431 2432 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2433 unsigned int max_frags) 2434 { 2435 int err, k; 2436 2437 if (p->idx < p->max) 2438 return 0; 2439 2440 xa_lock_bh(&sk->sk_user_frags); 2441 2442 tcp_xa_pool_commit_locked(sk, p); 2443 2444 for (k = 0; k < max_frags; k++) { 2445 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2446 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2447 if (err) 2448 break; 2449 } 2450 2451 xa_unlock_bh(&sk->sk_user_frags); 2452 2453 p->max = k; 2454 p->idx = 0; 2455 return k ? 0 : err; 2456 } 2457 2458 /* On error, returns the -errno. On success, returns number of bytes sent to the 2459 * user. May not consume all of @remaining_len. 2460 */ 2461 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2462 unsigned int offset, struct msghdr *msg, 2463 int remaining_len) 2464 { 2465 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2466 struct tcp_xa_pool tcp_xa_pool; 2467 unsigned int start; 2468 int i, copy, n; 2469 int sent = 0; 2470 int err = 0; 2471 2472 tcp_xa_pool.max = 0; 2473 tcp_xa_pool.idx = 0; 2474 do { 2475 start = skb_headlen(skb); 2476 2477 if (skb_frags_readable(skb)) { 2478 err = -ENODEV; 2479 goto out; 2480 } 2481 2482 /* Copy header. */ 2483 copy = start - offset; 2484 if (copy > 0) { 2485 copy = min(copy, remaining_len); 2486 2487 n = copy_to_iter(skb->data + offset, copy, 2488 &msg->msg_iter); 2489 if (n != copy) { 2490 err = -EFAULT; 2491 goto out; 2492 } 2493 2494 offset += copy; 2495 remaining_len -= copy; 2496 2497 /* First a dmabuf_cmsg for # bytes copied to user 2498 * buffer. 2499 */ 2500 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2501 dmabuf_cmsg.frag_size = copy; 2502 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2503 SO_DEVMEM_LINEAR, 2504 sizeof(dmabuf_cmsg), 2505 &dmabuf_cmsg); 2506 if (err) 2507 goto out; 2508 2509 sent += copy; 2510 2511 if (remaining_len == 0) 2512 goto out; 2513 } 2514 2515 /* after that, send information of dmabuf pages through a 2516 * sequence of cmsg 2517 */ 2518 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2520 struct net_iov *niov; 2521 u64 frag_offset; 2522 int end; 2523 2524 /* !skb_frags_readable() should indicate that ALL the 2525 * frags in this skb are dmabuf net_iovs. We're checking 2526 * for that flag above, but also check individual frags 2527 * here. If the tcp stack is not setting 2528 * skb_frags_readable() correctly, we still don't want 2529 * to crash here. 2530 */ 2531 if (!skb_frag_net_iov(frag)) { 2532 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2533 err = -ENODEV; 2534 goto out; 2535 } 2536 2537 niov = skb_frag_net_iov(frag); 2538 if (!net_is_devmem_iov(niov)) { 2539 err = -ENODEV; 2540 goto out; 2541 } 2542 2543 end = start + skb_frag_size(frag); 2544 copy = end - offset; 2545 2546 if (copy > 0) { 2547 copy = min(copy, remaining_len); 2548 2549 frag_offset = net_iov_virtual_addr(niov) + 2550 skb_frag_off(frag) + offset - 2551 start; 2552 dmabuf_cmsg.frag_offset = frag_offset; 2553 dmabuf_cmsg.frag_size = copy; 2554 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2555 skb_shinfo(skb)->nr_frags - i); 2556 if (err) 2557 goto out; 2558 2559 /* Will perform the exchange later */ 2560 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2561 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2562 2563 offset += copy; 2564 remaining_len -= copy; 2565 2566 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2567 SO_DEVMEM_DMABUF, 2568 sizeof(dmabuf_cmsg), 2569 &dmabuf_cmsg); 2570 if (err) 2571 goto out; 2572 2573 atomic_long_inc(&niov->pp_ref_count); 2574 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2575 2576 sent += copy; 2577 2578 if (remaining_len == 0) 2579 goto out; 2580 } 2581 start = end; 2582 } 2583 2584 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2585 if (!remaining_len) 2586 goto out; 2587 2588 /* if remaining_len is not satisfied yet, we need to go to the 2589 * next frag in the frag_list to satisfy remaining_len. 2590 */ 2591 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2592 2593 offset = offset - start; 2594 } while (skb); 2595 2596 if (remaining_len) { 2597 err = -EFAULT; 2598 goto out; 2599 } 2600 2601 out: 2602 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2603 if (!sent) 2604 sent = err; 2605 2606 return sent; 2607 } 2608 2609 /* 2610 * This routine copies from a sock struct into the user buffer. 2611 * 2612 * Technical note: in 2.3 we work on _locked_ socket, so that 2613 * tricks with *seq access order and skb->users are not required. 2614 * Probably, code can be easily improved even more. 2615 */ 2616 2617 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2618 int flags, struct scm_timestamping_internal *tss, 2619 int *cmsg_flags) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 int last_copied_dmabuf = -1; /* uninitialized */ 2623 int copied = 0; 2624 u32 peek_seq; 2625 u32 *seq; 2626 unsigned long used; 2627 int err; 2628 int target; /* Read at least this many bytes */ 2629 long timeo; 2630 struct sk_buff *skb, *last; 2631 u32 peek_offset = 0; 2632 u32 urg_hole = 0; 2633 2634 err = -ENOTCONN; 2635 if (sk->sk_state == TCP_LISTEN) 2636 goto out; 2637 2638 if (tp->recvmsg_inq) { 2639 *cmsg_flags = TCP_CMSG_INQ; 2640 msg->msg_get_inq = 1; 2641 } 2642 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2643 2644 /* Urgent data needs to be handled specially. */ 2645 if (flags & MSG_OOB) 2646 goto recv_urg; 2647 2648 if (unlikely(tp->repair)) { 2649 err = -EPERM; 2650 if (!(flags & MSG_PEEK)) 2651 goto out; 2652 2653 if (tp->repair_queue == TCP_SEND_QUEUE) 2654 goto recv_sndq; 2655 2656 err = -EINVAL; 2657 if (tp->repair_queue == TCP_NO_QUEUE) 2658 goto out; 2659 2660 /* 'common' recv queue MSG_PEEK-ing */ 2661 } 2662 2663 seq = &tp->copied_seq; 2664 if (flags & MSG_PEEK) { 2665 peek_offset = max(sk_peek_offset(sk, flags), 0); 2666 peek_seq = tp->copied_seq + peek_offset; 2667 seq = &peek_seq; 2668 } 2669 2670 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2671 2672 do { 2673 u32 offset; 2674 2675 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2676 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2677 if (copied) 2678 break; 2679 if (signal_pending(current)) { 2680 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2681 break; 2682 } 2683 } 2684 2685 /* Next get a buffer. */ 2686 2687 last = skb_peek_tail(&sk->sk_receive_queue); 2688 skb_queue_walk(&sk->sk_receive_queue, skb) { 2689 last = skb; 2690 /* Now that we have two receive queues this 2691 * shouldn't happen. 2692 */ 2693 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2694 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2695 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2696 flags)) 2697 break; 2698 2699 offset = *seq - TCP_SKB_CB(skb)->seq; 2700 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2701 pr_err_once("%s: found a SYN, please report !\n", __func__); 2702 offset--; 2703 } 2704 if (offset < skb->len) 2705 goto found_ok_skb; 2706 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2707 goto found_fin_ok; 2708 WARN(!(flags & MSG_PEEK), 2709 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2710 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2711 } 2712 2713 /* Well, if we have backlog, try to process it now yet. */ 2714 2715 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2716 break; 2717 2718 if (copied) { 2719 if (!timeo || 2720 sk->sk_err || 2721 sk->sk_state == TCP_CLOSE || 2722 (sk->sk_shutdown & RCV_SHUTDOWN) || 2723 signal_pending(current)) 2724 break; 2725 } else { 2726 if (sock_flag(sk, SOCK_DONE)) 2727 break; 2728 2729 if (sk->sk_err) { 2730 copied = sock_error(sk); 2731 break; 2732 } 2733 2734 if (sk->sk_shutdown & RCV_SHUTDOWN) 2735 break; 2736 2737 if (sk->sk_state == TCP_CLOSE) { 2738 /* This occurs when user tries to read 2739 * from never connected socket. 2740 */ 2741 copied = -ENOTCONN; 2742 break; 2743 } 2744 2745 if (!timeo) { 2746 copied = -EAGAIN; 2747 break; 2748 } 2749 2750 if (signal_pending(current)) { 2751 copied = sock_intr_errno(timeo); 2752 break; 2753 } 2754 } 2755 2756 if (copied >= target) { 2757 /* Do not sleep, just process backlog. */ 2758 __sk_flush_backlog(sk); 2759 } else { 2760 tcp_cleanup_rbuf(sk, copied); 2761 err = sk_wait_data(sk, &timeo, last); 2762 if (err < 0) { 2763 err = copied ? : err; 2764 goto out; 2765 } 2766 } 2767 2768 if ((flags & MSG_PEEK) && 2769 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2770 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2771 current->comm, 2772 task_pid_nr(current)); 2773 peek_seq = tp->copied_seq + peek_offset; 2774 } 2775 continue; 2776 2777 found_ok_skb: 2778 /* Ok so how much can we use? */ 2779 used = skb->len - offset; 2780 if (len < used) 2781 used = len; 2782 2783 /* Do we have urgent data here? */ 2784 if (unlikely(tp->urg_data)) { 2785 u32 urg_offset = tp->urg_seq - *seq; 2786 if (urg_offset < used) { 2787 if (!urg_offset) { 2788 if (!sock_flag(sk, SOCK_URGINLINE)) { 2789 WRITE_ONCE(*seq, *seq + 1); 2790 urg_hole++; 2791 offset++; 2792 used--; 2793 if (!used) 2794 goto skip_copy; 2795 } 2796 } else 2797 used = urg_offset; 2798 } 2799 } 2800 2801 if (!(flags & MSG_TRUNC)) { 2802 if (last_copied_dmabuf != -1 && 2803 last_copied_dmabuf != !skb_frags_readable(skb)) 2804 break; 2805 2806 if (skb_frags_readable(skb)) { 2807 err = skb_copy_datagram_msg(skb, offset, msg, 2808 used); 2809 if (err) { 2810 /* Exception. Bailout! */ 2811 if (!copied) 2812 copied = -EFAULT; 2813 break; 2814 } 2815 } else { 2816 if (!(flags & MSG_SOCK_DEVMEM)) { 2817 /* dmabuf skbs can only be received 2818 * with the MSG_SOCK_DEVMEM flag. 2819 */ 2820 if (!copied) 2821 copied = -EFAULT; 2822 2823 break; 2824 } 2825 2826 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2827 used); 2828 if (err <= 0) { 2829 if (!copied) 2830 copied = -EFAULT; 2831 2832 break; 2833 } 2834 used = err; 2835 } 2836 } 2837 2838 last_copied_dmabuf = !skb_frags_readable(skb); 2839 2840 WRITE_ONCE(*seq, *seq + used); 2841 copied += used; 2842 len -= used; 2843 if (flags & MSG_PEEK) 2844 sk_peek_offset_fwd(sk, used); 2845 else 2846 sk_peek_offset_bwd(sk, used); 2847 tcp_rcv_space_adjust(sk); 2848 2849 skip_copy: 2850 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2851 WRITE_ONCE(tp->urg_data, 0); 2852 tcp_fast_path_check(sk); 2853 } 2854 2855 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2856 tcp_update_recv_tstamps(skb, tss); 2857 *cmsg_flags |= TCP_CMSG_TS; 2858 } 2859 2860 if (used + offset < skb->len) 2861 continue; 2862 2863 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2864 goto found_fin_ok; 2865 if (!(flags & MSG_PEEK)) 2866 tcp_eat_recv_skb(sk, skb); 2867 continue; 2868 2869 found_fin_ok: 2870 /* Process the FIN. */ 2871 WRITE_ONCE(*seq, *seq + 1); 2872 if (!(flags & MSG_PEEK)) 2873 tcp_eat_recv_skb(sk, skb); 2874 break; 2875 } while (len > 0); 2876 2877 /* According to UNIX98, msg_name/msg_namelen are ignored 2878 * on connected socket. I was just happy when found this 8) --ANK 2879 */ 2880 2881 /* Clean up data we have read: This will do ACK frames. */ 2882 tcp_cleanup_rbuf(sk, copied); 2883 return copied; 2884 2885 out: 2886 return err; 2887 2888 recv_urg: 2889 err = tcp_recv_urg(sk, msg, len, flags); 2890 goto out; 2891 2892 recv_sndq: 2893 err = tcp_peek_sndq(sk, msg, len); 2894 goto out; 2895 } 2896 2897 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2898 int *addr_len) 2899 { 2900 int cmsg_flags = 0, ret; 2901 struct scm_timestamping_internal tss; 2902 2903 if (unlikely(flags & MSG_ERRQUEUE)) 2904 return inet_recv_error(sk, msg, len, addr_len); 2905 2906 if (sk_can_busy_loop(sk) && 2907 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2908 sk->sk_state == TCP_ESTABLISHED) 2909 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2910 2911 lock_sock(sk); 2912 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2913 release_sock(sk); 2914 2915 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2916 if (cmsg_flags & TCP_CMSG_TS) 2917 tcp_recv_timestamp(msg, sk, &tss); 2918 if (msg->msg_get_inq) { 2919 msg->msg_inq = tcp_inq_hint(sk); 2920 if (cmsg_flags & TCP_CMSG_INQ) 2921 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2922 sizeof(msg->msg_inq), &msg->msg_inq); 2923 } 2924 } 2925 return ret; 2926 } 2927 EXPORT_IPV6_MOD(tcp_recvmsg); 2928 2929 void tcp_set_state(struct sock *sk, int state) 2930 { 2931 int oldstate = sk->sk_state; 2932 2933 /* We defined a new enum for TCP states that are exported in BPF 2934 * so as not force the internal TCP states to be frozen. The 2935 * following checks will detect if an internal state value ever 2936 * differs from the BPF value. If this ever happens, then we will 2937 * need to remap the internal value to the BPF value before calling 2938 * tcp_call_bpf_2arg. 2939 */ 2940 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2941 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2942 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2943 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2944 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2945 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2946 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2947 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2948 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2949 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2950 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2951 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2952 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2953 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2954 2955 /* bpf uapi header bpf.h defines an anonymous enum with values 2956 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2957 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2958 * But clang built vmlinux does not have this enum in DWARF 2959 * since clang removes the above code before generating IR/debuginfo. 2960 * Let us explicitly emit the type debuginfo to ensure the 2961 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2962 * regardless of which compiler is used. 2963 */ 2964 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2965 2966 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2967 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2968 2969 switch (state) { 2970 case TCP_ESTABLISHED: 2971 if (oldstate != TCP_ESTABLISHED) 2972 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2973 break; 2974 case TCP_CLOSE_WAIT: 2975 if (oldstate == TCP_SYN_RECV) 2976 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2977 break; 2978 2979 case TCP_CLOSE: 2980 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2981 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2982 2983 sk->sk_prot->unhash(sk); 2984 if (inet_csk(sk)->icsk_bind_hash && 2985 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2986 inet_put_port(sk); 2987 fallthrough; 2988 default: 2989 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2990 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2991 } 2992 2993 /* Change state AFTER socket is unhashed to avoid closed 2994 * socket sitting in hash tables. 2995 */ 2996 inet_sk_state_store(sk, state); 2997 } 2998 EXPORT_SYMBOL_GPL(tcp_set_state); 2999 3000 /* 3001 * State processing on a close. This implements the state shift for 3002 * sending our FIN frame. Note that we only send a FIN for some 3003 * states. A shutdown() may have already sent the FIN, or we may be 3004 * closed. 3005 */ 3006 3007 static const unsigned char new_state[16] = { 3008 /* current state: new state: action: */ 3009 [0 /* (Invalid) */] = TCP_CLOSE, 3010 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3011 [TCP_SYN_SENT] = TCP_CLOSE, 3012 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3013 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3014 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3015 [TCP_TIME_WAIT] = TCP_CLOSE, 3016 [TCP_CLOSE] = TCP_CLOSE, 3017 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3018 [TCP_LAST_ACK] = TCP_LAST_ACK, 3019 [TCP_LISTEN] = TCP_CLOSE, 3020 [TCP_CLOSING] = TCP_CLOSING, 3021 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3022 }; 3023 3024 static int tcp_close_state(struct sock *sk) 3025 { 3026 int next = (int)new_state[sk->sk_state]; 3027 int ns = next & TCP_STATE_MASK; 3028 3029 tcp_set_state(sk, ns); 3030 3031 return next & TCP_ACTION_FIN; 3032 } 3033 3034 /* 3035 * Shutdown the sending side of a connection. Much like close except 3036 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3037 */ 3038 3039 void tcp_shutdown(struct sock *sk, int how) 3040 { 3041 /* We need to grab some memory, and put together a FIN, 3042 * and then put it into the queue to be sent. 3043 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3044 */ 3045 if (!(how & SEND_SHUTDOWN)) 3046 return; 3047 3048 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3049 if ((1 << sk->sk_state) & 3050 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3051 TCPF_CLOSE_WAIT)) { 3052 /* Clear out any half completed packets. FIN if needed. */ 3053 if (tcp_close_state(sk)) 3054 tcp_send_fin(sk); 3055 } 3056 } 3057 EXPORT_IPV6_MOD(tcp_shutdown); 3058 3059 int tcp_orphan_count_sum(void) 3060 { 3061 int i, total = 0; 3062 3063 for_each_possible_cpu(i) 3064 total += per_cpu(tcp_orphan_count, i); 3065 3066 return max(total, 0); 3067 } 3068 3069 static int tcp_orphan_cache; 3070 static struct timer_list tcp_orphan_timer; 3071 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3072 3073 static void tcp_orphan_update(struct timer_list *unused) 3074 { 3075 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3076 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3077 } 3078 3079 static bool tcp_too_many_orphans(int shift) 3080 { 3081 return READ_ONCE(tcp_orphan_cache) << shift > 3082 READ_ONCE(sysctl_tcp_max_orphans); 3083 } 3084 3085 static bool tcp_out_of_memory(const struct sock *sk) 3086 { 3087 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3088 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3089 return true; 3090 return false; 3091 } 3092 3093 bool tcp_check_oom(const struct sock *sk, int shift) 3094 { 3095 bool too_many_orphans, out_of_socket_memory; 3096 3097 too_many_orphans = tcp_too_many_orphans(shift); 3098 out_of_socket_memory = tcp_out_of_memory(sk); 3099 3100 if (too_many_orphans) 3101 net_info_ratelimited("too many orphaned sockets\n"); 3102 if (out_of_socket_memory) 3103 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3104 return too_many_orphans || out_of_socket_memory; 3105 } 3106 3107 void __tcp_close(struct sock *sk, long timeout) 3108 { 3109 struct sk_buff *skb; 3110 int data_was_unread = 0; 3111 int state; 3112 3113 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3114 3115 if (sk->sk_state == TCP_LISTEN) { 3116 tcp_set_state(sk, TCP_CLOSE); 3117 3118 /* Special case. */ 3119 inet_csk_listen_stop(sk); 3120 3121 goto adjudge_to_death; 3122 } 3123 3124 /* We need to flush the recv. buffs. We do this only on the 3125 * descriptor close, not protocol-sourced closes, because the 3126 * reader process may not have drained the data yet! 3127 */ 3128 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3129 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3130 3131 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3132 len--; 3133 data_was_unread += len; 3134 __kfree_skb(skb); 3135 } 3136 3137 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3138 if (sk->sk_state == TCP_CLOSE) 3139 goto adjudge_to_death; 3140 3141 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3142 * data was lost. To witness the awful effects of the old behavior of 3143 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3144 * GET in an FTP client, suspend the process, wait for the client to 3145 * advertise a zero window, then kill -9 the FTP client, wheee... 3146 * Note: timeout is always zero in such a case. 3147 */ 3148 if (unlikely(tcp_sk(sk)->repair)) { 3149 sk->sk_prot->disconnect(sk, 0); 3150 } else if (data_was_unread) { 3151 /* Unread data was tossed, zap the connection. */ 3152 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3153 tcp_set_state(sk, TCP_CLOSE); 3154 tcp_send_active_reset(sk, sk->sk_allocation, 3155 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3156 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3157 /* Check zero linger _after_ checking for unread data. */ 3158 sk->sk_prot->disconnect(sk, 0); 3159 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3160 } else if (tcp_close_state(sk)) { 3161 /* We FIN if the application ate all the data before 3162 * zapping the connection. 3163 */ 3164 3165 /* RED-PEN. Formally speaking, we have broken TCP state 3166 * machine. State transitions: 3167 * 3168 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3169 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3170 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3171 * 3172 * are legal only when FIN has been sent (i.e. in window), 3173 * rather than queued out of window. Purists blame. 3174 * 3175 * F.e. "RFC state" is ESTABLISHED, 3176 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3177 * 3178 * The visible declinations are that sometimes 3179 * we enter time-wait state, when it is not required really 3180 * (harmless), do not send active resets, when they are 3181 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3182 * they look as CLOSING or LAST_ACK for Linux) 3183 * Probably, I missed some more holelets. 3184 * --ANK 3185 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3186 * in a single packet! (May consider it later but will 3187 * probably need API support or TCP_CORK SYN-ACK until 3188 * data is written and socket is closed.) 3189 */ 3190 tcp_send_fin(sk); 3191 } 3192 3193 sk_stream_wait_close(sk, timeout); 3194 3195 adjudge_to_death: 3196 state = sk->sk_state; 3197 sock_hold(sk); 3198 sock_orphan(sk); 3199 3200 local_bh_disable(); 3201 bh_lock_sock(sk); 3202 /* remove backlog if any, without releasing ownership. */ 3203 __release_sock(sk); 3204 3205 this_cpu_inc(tcp_orphan_count); 3206 3207 /* Have we already been destroyed by a softirq or backlog? */ 3208 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3209 goto out; 3210 3211 /* This is a (useful) BSD violating of the RFC. There is a 3212 * problem with TCP as specified in that the other end could 3213 * keep a socket open forever with no application left this end. 3214 * We use a 1 minute timeout (about the same as BSD) then kill 3215 * our end. If they send after that then tough - BUT: long enough 3216 * that we won't make the old 4*rto = almost no time - whoops 3217 * reset mistake. 3218 * 3219 * Nope, it was not mistake. It is really desired behaviour 3220 * f.e. on http servers, when such sockets are useless, but 3221 * consume significant resources. Let's do it with special 3222 * linger2 option. --ANK 3223 */ 3224 3225 if (sk->sk_state == TCP_FIN_WAIT2) { 3226 struct tcp_sock *tp = tcp_sk(sk); 3227 if (READ_ONCE(tp->linger2) < 0) { 3228 tcp_set_state(sk, TCP_CLOSE); 3229 tcp_send_active_reset(sk, GFP_ATOMIC, 3230 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3231 __NET_INC_STATS(sock_net(sk), 3232 LINUX_MIB_TCPABORTONLINGER); 3233 } else { 3234 const int tmo = tcp_fin_time(sk); 3235 3236 if (tmo > TCP_TIMEWAIT_LEN) { 3237 tcp_reset_keepalive_timer(sk, 3238 tmo - TCP_TIMEWAIT_LEN); 3239 } else { 3240 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3241 goto out; 3242 } 3243 } 3244 } 3245 if (sk->sk_state != TCP_CLOSE) { 3246 if (tcp_check_oom(sk, 0)) { 3247 tcp_set_state(sk, TCP_CLOSE); 3248 tcp_send_active_reset(sk, GFP_ATOMIC, 3249 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3250 __NET_INC_STATS(sock_net(sk), 3251 LINUX_MIB_TCPABORTONMEMORY); 3252 } else if (!check_net(sock_net(sk))) { 3253 /* Not possible to send reset; just close */ 3254 tcp_set_state(sk, TCP_CLOSE); 3255 } 3256 } 3257 3258 if (sk->sk_state == TCP_CLOSE) { 3259 struct request_sock *req; 3260 3261 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3262 lockdep_sock_is_held(sk)); 3263 /* We could get here with a non-NULL req if the socket is 3264 * aborted (e.g., closed with unread data) before 3WHS 3265 * finishes. 3266 */ 3267 if (req) 3268 reqsk_fastopen_remove(sk, req, false); 3269 inet_csk_destroy_sock(sk); 3270 } 3271 /* Otherwise, socket is reprieved until protocol close. */ 3272 3273 out: 3274 bh_unlock_sock(sk); 3275 local_bh_enable(); 3276 } 3277 3278 void tcp_close(struct sock *sk, long timeout) 3279 { 3280 lock_sock(sk); 3281 __tcp_close(sk, timeout); 3282 release_sock(sk); 3283 if (!sk->sk_net_refcnt) 3284 inet_csk_clear_xmit_timers_sync(sk); 3285 sock_put(sk); 3286 } 3287 EXPORT_SYMBOL(tcp_close); 3288 3289 /* These states need RST on ABORT according to RFC793 */ 3290 3291 static inline bool tcp_need_reset(int state) 3292 { 3293 return (1 << state) & 3294 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3295 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3296 } 3297 3298 static void tcp_rtx_queue_purge(struct sock *sk) 3299 { 3300 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3301 3302 tcp_sk(sk)->highest_sack = NULL; 3303 while (p) { 3304 struct sk_buff *skb = rb_to_skb(p); 3305 3306 p = rb_next(p); 3307 /* Since we are deleting whole queue, no need to 3308 * list_del(&skb->tcp_tsorted_anchor) 3309 */ 3310 tcp_rtx_queue_unlink(skb, sk); 3311 tcp_wmem_free_skb(sk, skb); 3312 } 3313 } 3314 3315 void tcp_write_queue_purge(struct sock *sk) 3316 { 3317 struct sk_buff *skb; 3318 3319 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3320 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3321 tcp_skb_tsorted_anchor_cleanup(skb); 3322 tcp_wmem_free_skb(sk, skb); 3323 } 3324 tcp_rtx_queue_purge(sk); 3325 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3326 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3327 tcp_sk(sk)->packets_out = 0; 3328 inet_csk(sk)->icsk_backoff = 0; 3329 } 3330 3331 int tcp_disconnect(struct sock *sk, int flags) 3332 { 3333 struct inet_sock *inet = inet_sk(sk); 3334 struct inet_connection_sock *icsk = inet_csk(sk); 3335 struct tcp_sock *tp = tcp_sk(sk); 3336 int old_state = sk->sk_state; 3337 u32 seq; 3338 3339 if (old_state != TCP_CLOSE) 3340 tcp_set_state(sk, TCP_CLOSE); 3341 3342 /* ABORT function of RFC793 */ 3343 if (old_state == TCP_LISTEN) { 3344 inet_csk_listen_stop(sk); 3345 } else if (unlikely(tp->repair)) { 3346 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3347 } else if (tcp_need_reset(old_state)) { 3348 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3349 WRITE_ONCE(sk->sk_err, ECONNRESET); 3350 } else if (tp->snd_nxt != tp->write_seq && 3351 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3352 /* The last check adjusts for discrepancy of Linux wrt. RFC 3353 * states 3354 */ 3355 tcp_send_active_reset(sk, gfp_any(), 3356 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3357 WRITE_ONCE(sk->sk_err, ECONNRESET); 3358 } else if (old_state == TCP_SYN_SENT) 3359 WRITE_ONCE(sk->sk_err, ECONNRESET); 3360 3361 tcp_clear_xmit_timers(sk); 3362 __skb_queue_purge(&sk->sk_receive_queue); 3363 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3364 WRITE_ONCE(tp->urg_data, 0); 3365 sk_set_peek_off(sk, -1); 3366 tcp_write_queue_purge(sk); 3367 tcp_fastopen_active_disable_ofo_check(sk); 3368 skb_rbtree_purge(&tp->out_of_order_queue); 3369 3370 inet->inet_dport = 0; 3371 3372 inet_bhash2_reset_saddr(sk); 3373 3374 WRITE_ONCE(sk->sk_shutdown, 0); 3375 sock_reset_flag(sk, SOCK_DONE); 3376 tp->srtt_us = 0; 3377 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3378 tp->rcv_rtt_last_tsecr = 0; 3379 3380 seq = tp->write_seq + tp->max_window + 2; 3381 if (!seq) 3382 seq = 1; 3383 WRITE_ONCE(tp->write_seq, seq); 3384 3385 icsk->icsk_backoff = 0; 3386 icsk->icsk_probes_out = 0; 3387 icsk->icsk_probes_tstamp = 0; 3388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3389 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3390 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3391 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3392 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3393 tp->snd_cwnd_cnt = 0; 3394 tp->is_cwnd_limited = 0; 3395 tp->max_packets_out = 0; 3396 tp->window_clamp = 0; 3397 tp->delivered = 0; 3398 tp->delivered_ce = 0; 3399 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3400 icsk->icsk_ca_ops->release(sk); 3401 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3402 icsk->icsk_ca_initialized = 0; 3403 tcp_set_ca_state(sk, TCP_CA_Open); 3404 tp->is_sack_reneg = 0; 3405 tcp_clear_retrans(tp); 3406 tp->total_retrans = 0; 3407 inet_csk_delack_init(sk); 3408 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3409 * issue in __tcp_select_window() 3410 */ 3411 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3412 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3413 __sk_dst_reset(sk); 3414 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3415 tcp_saved_syn_free(tp); 3416 tp->compressed_ack = 0; 3417 tp->segs_in = 0; 3418 tp->segs_out = 0; 3419 tp->bytes_sent = 0; 3420 tp->bytes_acked = 0; 3421 tp->bytes_received = 0; 3422 tp->bytes_retrans = 0; 3423 tp->data_segs_in = 0; 3424 tp->data_segs_out = 0; 3425 tp->duplicate_sack[0].start_seq = 0; 3426 tp->duplicate_sack[0].end_seq = 0; 3427 tp->dsack_dups = 0; 3428 tp->reord_seen = 0; 3429 tp->retrans_out = 0; 3430 tp->sacked_out = 0; 3431 tp->tlp_high_seq = 0; 3432 tp->last_oow_ack_time = 0; 3433 tp->plb_rehash = 0; 3434 /* There's a bubble in the pipe until at least the first ACK. */ 3435 tp->app_limited = ~0U; 3436 tp->rate_app_limited = 1; 3437 tp->rack.mstamp = 0; 3438 tp->rack.advanced = 0; 3439 tp->rack.reo_wnd_steps = 1; 3440 tp->rack.last_delivered = 0; 3441 tp->rack.reo_wnd_persist = 0; 3442 tp->rack.dsack_seen = 0; 3443 tp->syn_data_acked = 0; 3444 tp->syn_fastopen_child = 0; 3445 tp->rx_opt.saw_tstamp = 0; 3446 tp->rx_opt.dsack = 0; 3447 tp->rx_opt.num_sacks = 0; 3448 tp->rcv_ooopack = 0; 3449 3450 3451 /* Clean up fastopen related fields */ 3452 tcp_free_fastopen_req(tp); 3453 inet_clear_bit(DEFER_CONNECT, sk); 3454 tp->fastopen_client_fail = 0; 3455 3456 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3457 3458 if (sk->sk_frag.page) { 3459 put_page(sk->sk_frag.page); 3460 sk->sk_frag.page = NULL; 3461 sk->sk_frag.offset = 0; 3462 } 3463 sk_error_report(sk); 3464 return 0; 3465 } 3466 EXPORT_SYMBOL(tcp_disconnect); 3467 3468 static inline bool tcp_can_repair_sock(const struct sock *sk) 3469 { 3470 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3471 (sk->sk_state != TCP_LISTEN); 3472 } 3473 3474 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3475 { 3476 struct tcp_repair_window opt; 3477 3478 if (!tp->repair) 3479 return -EPERM; 3480 3481 if (len != sizeof(opt)) 3482 return -EINVAL; 3483 3484 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3485 return -EFAULT; 3486 3487 if (opt.max_window < opt.snd_wnd) 3488 return -EINVAL; 3489 3490 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3491 return -EINVAL; 3492 3493 if (after(opt.rcv_wup, tp->rcv_nxt)) 3494 return -EINVAL; 3495 3496 tp->snd_wl1 = opt.snd_wl1; 3497 tp->snd_wnd = opt.snd_wnd; 3498 tp->max_window = opt.max_window; 3499 3500 tp->rcv_wnd = opt.rcv_wnd; 3501 tp->rcv_wup = opt.rcv_wup; 3502 3503 return 0; 3504 } 3505 3506 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3507 unsigned int len) 3508 { 3509 struct tcp_sock *tp = tcp_sk(sk); 3510 struct tcp_repair_opt opt; 3511 size_t offset = 0; 3512 3513 while (len >= sizeof(opt)) { 3514 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3515 return -EFAULT; 3516 3517 offset += sizeof(opt); 3518 len -= sizeof(opt); 3519 3520 switch (opt.opt_code) { 3521 case TCPOPT_MSS: 3522 tp->rx_opt.mss_clamp = opt.opt_val; 3523 tcp_mtup_init(sk); 3524 break; 3525 case TCPOPT_WINDOW: 3526 { 3527 u16 snd_wscale = opt.opt_val & 0xFFFF; 3528 u16 rcv_wscale = opt.opt_val >> 16; 3529 3530 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3531 return -EFBIG; 3532 3533 tp->rx_opt.snd_wscale = snd_wscale; 3534 tp->rx_opt.rcv_wscale = rcv_wscale; 3535 tp->rx_opt.wscale_ok = 1; 3536 } 3537 break; 3538 case TCPOPT_SACK_PERM: 3539 if (opt.opt_val != 0) 3540 return -EINVAL; 3541 3542 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3543 break; 3544 case TCPOPT_TIMESTAMP: 3545 if (opt.opt_val != 0) 3546 return -EINVAL; 3547 3548 tp->rx_opt.tstamp_ok = 1; 3549 break; 3550 } 3551 } 3552 3553 return 0; 3554 } 3555 3556 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3557 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3558 3559 static void tcp_enable_tx_delay(void) 3560 { 3561 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3562 static int __tcp_tx_delay_enabled = 0; 3563 3564 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3565 static_branch_enable(&tcp_tx_delay_enabled); 3566 pr_info("TCP_TX_DELAY enabled\n"); 3567 } 3568 } 3569 } 3570 3571 /* When set indicates to always queue non-full frames. Later the user clears 3572 * this option and we transmit any pending partial frames in the queue. This is 3573 * meant to be used alongside sendfile() to get properly filled frames when the 3574 * user (for example) must write out headers with a write() call first and then 3575 * use sendfile to send out the data parts. 3576 * 3577 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3578 * TCP_NODELAY. 3579 */ 3580 void __tcp_sock_set_cork(struct sock *sk, bool on) 3581 { 3582 struct tcp_sock *tp = tcp_sk(sk); 3583 3584 if (on) { 3585 tp->nonagle |= TCP_NAGLE_CORK; 3586 } else { 3587 tp->nonagle &= ~TCP_NAGLE_CORK; 3588 if (tp->nonagle & TCP_NAGLE_OFF) 3589 tp->nonagle |= TCP_NAGLE_PUSH; 3590 tcp_push_pending_frames(sk); 3591 } 3592 } 3593 3594 void tcp_sock_set_cork(struct sock *sk, bool on) 3595 { 3596 lock_sock(sk); 3597 __tcp_sock_set_cork(sk, on); 3598 release_sock(sk); 3599 } 3600 EXPORT_SYMBOL(tcp_sock_set_cork); 3601 3602 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3603 * remembered, but it is not activated until cork is cleared. 3604 * 3605 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3606 * even TCP_CORK for currently queued segments. 3607 */ 3608 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3609 { 3610 if (on) { 3611 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3612 tcp_push_pending_frames(sk); 3613 } else { 3614 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3615 } 3616 } 3617 3618 void tcp_sock_set_nodelay(struct sock *sk) 3619 { 3620 lock_sock(sk); 3621 __tcp_sock_set_nodelay(sk, true); 3622 release_sock(sk); 3623 } 3624 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3625 3626 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3627 { 3628 if (!val) { 3629 inet_csk_enter_pingpong_mode(sk); 3630 return; 3631 } 3632 3633 inet_csk_exit_pingpong_mode(sk); 3634 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3635 inet_csk_ack_scheduled(sk)) { 3636 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3637 tcp_cleanup_rbuf(sk, 1); 3638 if (!(val & 1)) 3639 inet_csk_enter_pingpong_mode(sk); 3640 } 3641 } 3642 3643 void tcp_sock_set_quickack(struct sock *sk, int val) 3644 { 3645 lock_sock(sk); 3646 __tcp_sock_set_quickack(sk, val); 3647 release_sock(sk); 3648 } 3649 EXPORT_SYMBOL(tcp_sock_set_quickack); 3650 3651 int tcp_sock_set_syncnt(struct sock *sk, int val) 3652 { 3653 if (val < 1 || val > MAX_TCP_SYNCNT) 3654 return -EINVAL; 3655 3656 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3657 return 0; 3658 } 3659 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3660 3661 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3662 { 3663 /* Cap the max time in ms TCP will retry or probe the window 3664 * before giving up and aborting (ETIMEDOUT) a connection. 3665 */ 3666 if (val < 0) 3667 return -EINVAL; 3668 3669 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3670 return 0; 3671 } 3672 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3673 3674 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3675 { 3676 struct tcp_sock *tp = tcp_sk(sk); 3677 3678 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3679 return -EINVAL; 3680 3681 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3682 WRITE_ONCE(tp->keepalive_time, val * HZ); 3683 if (sock_flag(sk, SOCK_KEEPOPEN) && 3684 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3685 u32 elapsed = keepalive_time_elapsed(tp); 3686 3687 if (tp->keepalive_time > elapsed) 3688 elapsed = tp->keepalive_time - elapsed; 3689 else 3690 elapsed = 0; 3691 tcp_reset_keepalive_timer(sk, elapsed); 3692 } 3693 3694 return 0; 3695 } 3696 3697 int tcp_sock_set_keepidle(struct sock *sk, int val) 3698 { 3699 int err; 3700 3701 lock_sock(sk); 3702 err = tcp_sock_set_keepidle_locked(sk, val); 3703 release_sock(sk); 3704 return err; 3705 } 3706 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3707 3708 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3709 { 3710 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3711 return -EINVAL; 3712 3713 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3714 return 0; 3715 } 3716 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3717 3718 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3719 { 3720 if (val < 1 || val > MAX_TCP_KEEPCNT) 3721 return -EINVAL; 3722 3723 /* Paired with READ_ONCE() in keepalive_probes() */ 3724 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3725 return 0; 3726 } 3727 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3728 3729 int tcp_set_window_clamp(struct sock *sk, int val) 3730 { 3731 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3732 struct tcp_sock *tp = tcp_sk(sk); 3733 3734 if (!val) { 3735 if (sk->sk_state != TCP_CLOSE) 3736 return -EINVAL; 3737 WRITE_ONCE(tp->window_clamp, 0); 3738 return 0; 3739 } 3740 3741 old_window_clamp = tp->window_clamp; 3742 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3743 3744 if (new_window_clamp == old_window_clamp) 3745 return 0; 3746 3747 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3748 3749 /* Need to apply the reserved mem provisioning only 3750 * when shrinking the window clamp. 3751 */ 3752 if (new_window_clamp < old_window_clamp) { 3753 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3754 } else { 3755 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3756 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3757 } 3758 return 0; 3759 } 3760 3761 /* 3762 * Socket option code for TCP. 3763 */ 3764 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3765 sockptr_t optval, unsigned int optlen) 3766 { 3767 struct tcp_sock *tp = tcp_sk(sk); 3768 struct inet_connection_sock *icsk = inet_csk(sk); 3769 struct net *net = sock_net(sk); 3770 int val; 3771 int err = 0; 3772 3773 /* These are data/string values, all the others are ints */ 3774 switch (optname) { 3775 case TCP_CONGESTION: { 3776 char name[TCP_CA_NAME_MAX]; 3777 3778 if (optlen < 1) 3779 return -EINVAL; 3780 3781 val = strncpy_from_sockptr(name, optval, 3782 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3783 if (val < 0) 3784 return -EFAULT; 3785 name[val] = 0; 3786 3787 sockopt_lock_sock(sk); 3788 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3789 sockopt_ns_capable(sock_net(sk)->user_ns, 3790 CAP_NET_ADMIN)); 3791 sockopt_release_sock(sk); 3792 return err; 3793 } 3794 case TCP_ULP: { 3795 char name[TCP_ULP_NAME_MAX]; 3796 3797 if (optlen < 1) 3798 return -EINVAL; 3799 3800 val = strncpy_from_sockptr(name, optval, 3801 min_t(long, TCP_ULP_NAME_MAX - 1, 3802 optlen)); 3803 if (val < 0) 3804 return -EFAULT; 3805 name[val] = 0; 3806 3807 sockopt_lock_sock(sk); 3808 err = tcp_set_ulp(sk, name); 3809 sockopt_release_sock(sk); 3810 return err; 3811 } 3812 case TCP_FASTOPEN_KEY: { 3813 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3814 __u8 *backup_key = NULL; 3815 3816 /* Allow a backup key as well to facilitate key rotation 3817 * First key is the active one. 3818 */ 3819 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3820 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3821 return -EINVAL; 3822 3823 if (copy_from_sockptr(key, optval, optlen)) 3824 return -EFAULT; 3825 3826 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3827 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3828 3829 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3830 } 3831 default: 3832 /* fallthru */ 3833 break; 3834 } 3835 3836 if (optlen < sizeof(int)) 3837 return -EINVAL; 3838 3839 if (copy_from_sockptr(&val, optval, sizeof(val))) 3840 return -EFAULT; 3841 3842 /* Handle options that can be set without locking the socket. */ 3843 switch (optname) { 3844 case TCP_SYNCNT: 3845 return tcp_sock_set_syncnt(sk, val); 3846 case TCP_USER_TIMEOUT: 3847 return tcp_sock_set_user_timeout(sk, val); 3848 case TCP_KEEPINTVL: 3849 return tcp_sock_set_keepintvl(sk, val); 3850 case TCP_KEEPCNT: 3851 return tcp_sock_set_keepcnt(sk, val); 3852 case TCP_LINGER2: 3853 if (val < 0) 3854 WRITE_ONCE(tp->linger2, -1); 3855 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3856 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3857 else 3858 WRITE_ONCE(tp->linger2, val * HZ); 3859 return 0; 3860 case TCP_DEFER_ACCEPT: 3861 /* Translate value in seconds to number of retransmits */ 3862 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3863 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3864 TCP_RTO_MAX / HZ)); 3865 return 0; 3866 case TCP_RTO_MAX_MS: 3867 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3868 return -EINVAL; 3869 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3870 return 0; 3871 case TCP_RTO_MIN_US: { 3872 int rto_min = usecs_to_jiffies(val); 3873 3874 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3875 return -EINVAL; 3876 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3877 return 0; 3878 } 3879 case TCP_DELACK_MAX_US: { 3880 int delack_max = usecs_to_jiffies(val); 3881 3882 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3883 return -EINVAL; 3884 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3885 return 0; 3886 } 3887 } 3888 3889 sockopt_lock_sock(sk); 3890 3891 switch (optname) { 3892 case TCP_MAXSEG: 3893 /* Values greater than interface MTU won't take effect. However 3894 * at the point when this call is done we typically don't yet 3895 * know which interface is going to be used 3896 */ 3897 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3898 err = -EINVAL; 3899 break; 3900 } 3901 tp->rx_opt.user_mss = val; 3902 break; 3903 3904 case TCP_NODELAY: 3905 __tcp_sock_set_nodelay(sk, val); 3906 break; 3907 3908 case TCP_THIN_LINEAR_TIMEOUTS: 3909 if (val < 0 || val > 1) 3910 err = -EINVAL; 3911 else 3912 tp->thin_lto = val; 3913 break; 3914 3915 case TCP_THIN_DUPACK: 3916 if (val < 0 || val > 1) 3917 err = -EINVAL; 3918 break; 3919 3920 case TCP_REPAIR: 3921 if (!tcp_can_repair_sock(sk)) 3922 err = -EPERM; 3923 else if (val == TCP_REPAIR_ON) { 3924 tp->repair = 1; 3925 sk->sk_reuse = SK_FORCE_REUSE; 3926 tp->repair_queue = TCP_NO_QUEUE; 3927 } else if (val == TCP_REPAIR_OFF) { 3928 tp->repair = 0; 3929 sk->sk_reuse = SK_NO_REUSE; 3930 tcp_send_window_probe(sk); 3931 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3932 tp->repair = 0; 3933 sk->sk_reuse = SK_NO_REUSE; 3934 } else 3935 err = -EINVAL; 3936 3937 break; 3938 3939 case TCP_REPAIR_QUEUE: 3940 if (!tp->repair) 3941 err = -EPERM; 3942 else if ((unsigned int)val < TCP_QUEUES_NR) 3943 tp->repair_queue = val; 3944 else 3945 err = -EINVAL; 3946 break; 3947 3948 case TCP_QUEUE_SEQ: 3949 if (sk->sk_state != TCP_CLOSE) { 3950 err = -EPERM; 3951 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3952 if (!tcp_rtx_queue_empty(sk)) 3953 err = -EPERM; 3954 else 3955 WRITE_ONCE(tp->write_seq, val); 3956 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3957 if (tp->rcv_nxt != tp->copied_seq) { 3958 err = -EPERM; 3959 } else { 3960 WRITE_ONCE(tp->rcv_nxt, val); 3961 WRITE_ONCE(tp->copied_seq, val); 3962 } 3963 } else { 3964 err = -EINVAL; 3965 } 3966 break; 3967 3968 case TCP_REPAIR_OPTIONS: 3969 if (!tp->repair) 3970 err = -EINVAL; 3971 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3972 err = tcp_repair_options_est(sk, optval, optlen); 3973 else 3974 err = -EPERM; 3975 break; 3976 3977 case TCP_CORK: 3978 __tcp_sock_set_cork(sk, val); 3979 break; 3980 3981 case TCP_KEEPIDLE: 3982 err = tcp_sock_set_keepidle_locked(sk, val); 3983 break; 3984 case TCP_SAVE_SYN: 3985 /* 0: disable, 1: enable, 2: start from ether_header */ 3986 if (val < 0 || val > 2) 3987 err = -EINVAL; 3988 else 3989 tp->save_syn = val; 3990 break; 3991 3992 case TCP_WINDOW_CLAMP: 3993 err = tcp_set_window_clamp(sk, val); 3994 break; 3995 3996 case TCP_QUICKACK: 3997 __tcp_sock_set_quickack(sk, val); 3998 break; 3999 4000 case TCP_AO_REPAIR: 4001 if (!tcp_can_repair_sock(sk)) { 4002 err = -EPERM; 4003 break; 4004 } 4005 err = tcp_ao_set_repair(sk, optval, optlen); 4006 break; 4007 #ifdef CONFIG_TCP_AO 4008 case TCP_AO_ADD_KEY: 4009 case TCP_AO_DEL_KEY: 4010 case TCP_AO_INFO: { 4011 /* If this is the first TCP-AO setsockopt() on the socket, 4012 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 4013 * in any state. 4014 */ 4015 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 4016 goto ao_parse; 4017 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 4018 lockdep_sock_is_held(sk))) 4019 goto ao_parse; 4020 if (tp->repair) 4021 goto ao_parse; 4022 err = -EISCONN; 4023 break; 4024 ao_parse: 4025 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 4026 break; 4027 } 4028 #endif 4029 #ifdef CONFIG_TCP_MD5SIG 4030 case TCP_MD5SIG: 4031 case TCP_MD5SIG_EXT: 4032 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4033 break; 4034 #endif 4035 case TCP_FASTOPEN: 4036 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4037 TCPF_LISTEN))) { 4038 tcp_fastopen_init_key_once(net); 4039 4040 fastopen_queue_tune(sk, val); 4041 } else { 4042 err = -EINVAL; 4043 } 4044 break; 4045 case TCP_FASTOPEN_CONNECT: 4046 if (val > 1 || val < 0) { 4047 err = -EINVAL; 4048 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4049 TFO_CLIENT_ENABLE) { 4050 if (sk->sk_state == TCP_CLOSE) 4051 tp->fastopen_connect = val; 4052 else 4053 err = -EINVAL; 4054 } else { 4055 err = -EOPNOTSUPP; 4056 } 4057 break; 4058 case TCP_FASTOPEN_NO_COOKIE: 4059 if (val > 1 || val < 0) 4060 err = -EINVAL; 4061 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4062 err = -EINVAL; 4063 else 4064 tp->fastopen_no_cookie = val; 4065 break; 4066 case TCP_TIMESTAMP: 4067 if (!tp->repair) { 4068 err = -EPERM; 4069 break; 4070 } 4071 /* val is an opaque field, 4072 * and low order bit contains usec_ts enable bit. 4073 * Its a best effort, and we do not care if user makes an error. 4074 */ 4075 tp->tcp_usec_ts = val & 1; 4076 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4077 break; 4078 case TCP_REPAIR_WINDOW: 4079 err = tcp_repair_set_window(tp, optval, optlen); 4080 break; 4081 case TCP_NOTSENT_LOWAT: 4082 WRITE_ONCE(tp->notsent_lowat, val); 4083 sk->sk_write_space(sk); 4084 break; 4085 case TCP_INQ: 4086 if (val > 1 || val < 0) 4087 err = -EINVAL; 4088 else 4089 tp->recvmsg_inq = val; 4090 break; 4091 case TCP_TX_DELAY: 4092 if (val) 4093 tcp_enable_tx_delay(); 4094 WRITE_ONCE(tp->tcp_tx_delay, val); 4095 break; 4096 default: 4097 err = -ENOPROTOOPT; 4098 break; 4099 } 4100 4101 sockopt_release_sock(sk); 4102 return err; 4103 } 4104 4105 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4106 unsigned int optlen) 4107 { 4108 const struct inet_connection_sock *icsk = inet_csk(sk); 4109 4110 if (level != SOL_TCP) 4111 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4112 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4113 optval, optlen); 4114 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4115 } 4116 EXPORT_IPV6_MOD(tcp_setsockopt); 4117 4118 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4119 struct tcp_info *info) 4120 { 4121 u64 stats[__TCP_CHRONO_MAX], total = 0; 4122 enum tcp_chrono i; 4123 4124 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4125 stats[i] = tp->chrono_stat[i - 1]; 4126 if (i == tp->chrono_type) 4127 stats[i] += tcp_jiffies32 - tp->chrono_start; 4128 stats[i] *= USEC_PER_SEC / HZ; 4129 total += stats[i]; 4130 } 4131 4132 info->tcpi_busy_time = total; 4133 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4134 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4135 } 4136 4137 /* Return information about state of tcp endpoint in API format. */ 4138 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4139 { 4140 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4141 const struct inet_connection_sock *icsk = inet_csk(sk); 4142 unsigned long rate; 4143 u32 now; 4144 u64 rate64; 4145 bool slow; 4146 4147 memset(info, 0, sizeof(*info)); 4148 if (sk->sk_type != SOCK_STREAM) 4149 return; 4150 4151 info->tcpi_state = inet_sk_state_load(sk); 4152 4153 /* Report meaningful fields for all TCP states, including listeners */ 4154 rate = READ_ONCE(sk->sk_pacing_rate); 4155 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4156 info->tcpi_pacing_rate = rate64; 4157 4158 rate = READ_ONCE(sk->sk_max_pacing_rate); 4159 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4160 info->tcpi_max_pacing_rate = rate64; 4161 4162 info->tcpi_reordering = tp->reordering; 4163 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4164 4165 if (info->tcpi_state == TCP_LISTEN) { 4166 /* listeners aliased fields : 4167 * tcpi_unacked -> Number of children ready for accept() 4168 * tcpi_sacked -> max backlog 4169 */ 4170 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4171 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4172 return; 4173 } 4174 4175 slow = lock_sock_fast(sk); 4176 4177 info->tcpi_ca_state = icsk->icsk_ca_state; 4178 info->tcpi_retransmits = icsk->icsk_retransmits; 4179 info->tcpi_probes = icsk->icsk_probes_out; 4180 info->tcpi_backoff = icsk->icsk_backoff; 4181 4182 if (tp->rx_opt.tstamp_ok) 4183 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4184 if (tcp_is_sack(tp)) 4185 info->tcpi_options |= TCPI_OPT_SACK; 4186 if (tp->rx_opt.wscale_ok) { 4187 info->tcpi_options |= TCPI_OPT_WSCALE; 4188 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4189 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4190 } 4191 4192 if (tcp_ecn_mode_any(tp)) 4193 info->tcpi_options |= TCPI_OPT_ECN; 4194 if (tp->ecn_flags & TCP_ECN_SEEN) 4195 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4196 if (tp->syn_data_acked) 4197 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4198 if (tp->tcp_usec_ts) 4199 info->tcpi_options |= TCPI_OPT_USEC_TS; 4200 if (tp->syn_fastopen_child) 4201 info->tcpi_options |= TCPI_OPT_TFO_CHILD; 4202 4203 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4204 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4205 tcp_delack_max(sk))); 4206 info->tcpi_snd_mss = tp->mss_cache; 4207 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4208 4209 info->tcpi_unacked = tp->packets_out; 4210 info->tcpi_sacked = tp->sacked_out; 4211 4212 info->tcpi_lost = tp->lost_out; 4213 info->tcpi_retrans = tp->retrans_out; 4214 4215 now = tcp_jiffies32; 4216 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4217 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4218 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4219 4220 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4221 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4222 info->tcpi_rtt = tp->srtt_us >> 3; 4223 info->tcpi_rttvar = tp->mdev_us >> 2; 4224 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4225 info->tcpi_advmss = tp->advmss; 4226 4227 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4228 info->tcpi_rcv_space = tp->rcvq_space.space; 4229 4230 info->tcpi_total_retrans = tp->total_retrans; 4231 4232 info->tcpi_bytes_acked = tp->bytes_acked; 4233 info->tcpi_bytes_received = tp->bytes_received; 4234 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4235 tcp_get_info_chrono_stats(tp, info); 4236 4237 info->tcpi_segs_out = tp->segs_out; 4238 4239 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4240 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4241 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4242 4243 info->tcpi_min_rtt = tcp_min_rtt(tp); 4244 info->tcpi_data_segs_out = tp->data_segs_out; 4245 4246 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4247 rate64 = tcp_compute_delivery_rate(tp); 4248 if (rate64) 4249 info->tcpi_delivery_rate = rate64; 4250 info->tcpi_delivered = tp->delivered; 4251 info->tcpi_delivered_ce = tp->delivered_ce; 4252 info->tcpi_bytes_sent = tp->bytes_sent; 4253 info->tcpi_bytes_retrans = tp->bytes_retrans; 4254 info->tcpi_dsack_dups = tp->dsack_dups; 4255 info->tcpi_reord_seen = tp->reord_seen; 4256 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4257 info->tcpi_snd_wnd = tp->snd_wnd; 4258 info->tcpi_rcv_wnd = tp->rcv_wnd; 4259 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4260 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4261 4262 info->tcpi_total_rto = tp->total_rto; 4263 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4264 info->tcpi_total_rto_time = tp->total_rto_time; 4265 if (tp->rto_stamp) 4266 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4267 4268 unlock_sock_fast(sk, slow); 4269 } 4270 EXPORT_SYMBOL_GPL(tcp_get_info); 4271 4272 static size_t tcp_opt_stats_get_size(void) 4273 { 4274 return 4275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4277 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4278 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4279 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4280 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4281 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4282 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4283 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4284 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4285 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4286 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4287 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4288 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4289 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4290 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4291 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4292 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4293 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4294 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4295 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4296 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4297 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4298 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4299 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4300 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4301 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4302 0; 4303 } 4304 4305 /* Returns TTL or hop limit of an incoming packet from skb. */ 4306 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4307 { 4308 if (skb->protocol == htons(ETH_P_IP)) 4309 return ip_hdr(skb)->ttl; 4310 else if (skb->protocol == htons(ETH_P_IPV6)) 4311 return ipv6_hdr(skb)->hop_limit; 4312 else 4313 return 0; 4314 } 4315 4316 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4317 const struct sk_buff *orig_skb, 4318 const struct sk_buff *ack_skb) 4319 { 4320 const struct tcp_sock *tp = tcp_sk(sk); 4321 struct sk_buff *stats; 4322 struct tcp_info info; 4323 unsigned long rate; 4324 u64 rate64; 4325 4326 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4327 if (!stats) 4328 return NULL; 4329 4330 tcp_get_info_chrono_stats(tp, &info); 4331 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4332 info.tcpi_busy_time, TCP_NLA_PAD); 4333 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4334 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4335 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4336 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4337 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4338 tp->data_segs_out, TCP_NLA_PAD); 4339 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4340 tp->total_retrans, TCP_NLA_PAD); 4341 4342 rate = READ_ONCE(sk->sk_pacing_rate); 4343 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4344 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4345 4346 rate64 = tcp_compute_delivery_rate(tp); 4347 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4348 4349 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4350 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4351 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4352 4353 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4354 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4355 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4356 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4357 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4358 4359 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4360 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4361 4362 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4363 TCP_NLA_PAD); 4364 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4365 TCP_NLA_PAD); 4366 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4367 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4368 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4369 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4370 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4371 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4372 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4373 TCP_NLA_PAD); 4374 if (ack_skb) 4375 nla_put_u8(stats, TCP_NLA_TTL, 4376 tcp_skb_ttl_or_hop_limit(ack_skb)); 4377 4378 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4379 return stats; 4380 } 4381 4382 int do_tcp_getsockopt(struct sock *sk, int level, 4383 int optname, sockptr_t optval, sockptr_t optlen) 4384 { 4385 struct inet_connection_sock *icsk = inet_csk(sk); 4386 struct tcp_sock *tp = tcp_sk(sk); 4387 struct net *net = sock_net(sk); 4388 int val, len; 4389 4390 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4391 return -EFAULT; 4392 4393 if (len < 0) 4394 return -EINVAL; 4395 4396 len = min_t(unsigned int, len, sizeof(int)); 4397 4398 switch (optname) { 4399 case TCP_MAXSEG: 4400 val = tp->mss_cache; 4401 if (tp->rx_opt.user_mss && 4402 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4403 val = tp->rx_opt.user_mss; 4404 if (tp->repair) 4405 val = tp->rx_opt.mss_clamp; 4406 break; 4407 case TCP_NODELAY: 4408 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4409 break; 4410 case TCP_CORK: 4411 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4412 break; 4413 case TCP_KEEPIDLE: 4414 val = keepalive_time_when(tp) / HZ; 4415 break; 4416 case TCP_KEEPINTVL: 4417 val = keepalive_intvl_when(tp) / HZ; 4418 break; 4419 case TCP_KEEPCNT: 4420 val = keepalive_probes(tp); 4421 break; 4422 case TCP_SYNCNT: 4423 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4424 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4425 break; 4426 case TCP_LINGER2: 4427 val = READ_ONCE(tp->linger2); 4428 if (val >= 0) 4429 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4430 break; 4431 case TCP_DEFER_ACCEPT: 4432 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4433 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4434 TCP_RTO_MAX / HZ); 4435 break; 4436 case TCP_WINDOW_CLAMP: 4437 val = READ_ONCE(tp->window_clamp); 4438 break; 4439 case TCP_INFO: { 4440 struct tcp_info info; 4441 4442 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4443 return -EFAULT; 4444 4445 tcp_get_info(sk, &info); 4446 4447 len = min_t(unsigned int, len, sizeof(info)); 4448 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4449 return -EFAULT; 4450 if (copy_to_sockptr(optval, &info, len)) 4451 return -EFAULT; 4452 return 0; 4453 } 4454 case TCP_CC_INFO: { 4455 const struct tcp_congestion_ops *ca_ops; 4456 union tcp_cc_info info; 4457 size_t sz = 0; 4458 int attr; 4459 4460 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4461 return -EFAULT; 4462 4463 ca_ops = icsk->icsk_ca_ops; 4464 if (ca_ops && ca_ops->get_info) 4465 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4466 4467 len = min_t(unsigned int, len, sz); 4468 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4469 return -EFAULT; 4470 if (copy_to_sockptr(optval, &info, len)) 4471 return -EFAULT; 4472 return 0; 4473 } 4474 case TCP_QUICKACK: 4475 val = !inet_csk_in_pingpong_mode(sk); 4476 break; 4477 4478 case TCP_CONGESTION: 4479 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4480 return -EFAULT; 4481 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4482 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4483 return -EFAULT; 4484 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4485 return -EFAULT; 4486 return 0; 4487 4488 case TCP_ULP: 4489 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4490 return -EFAULT; 4491 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4492 if (!icsk->icsk_ulp_ops) { 4493 len = 0; 4494 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4495 return -EFAULT; 4496 return 0; 4497 } 4498 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4499 return -EFAULT; 4500 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4501 return -EFAULT; 4502 return 0; 4503 4504 case TCP_FASTOPEN_KEY: { 4505 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4506 unsigned int key_len; 4507 4508 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4509 return -EFAULT; 4510 4511 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4512 TCP_FASTOPEN_KEY_LENGTH; 4513 len = min_t(unsigned int, len, key_len); 4514 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4515 return -EFAULT; 4516 if (copy_to_sockptr(optval, key, len)) 4517 return -EFAULT; 4518 return 0; 4519 } 4520 case TCP_THIN_LINEAR_TIMEOUTS: 4521 val = tp->thin_lto; 4522 break; 4523 4524 case TCP_THIN_DUPACK: 4525 val = 0; 4526 break; 4527 4528 case TCP_REPAIR: 4529 val = tp->repair; 4530 break; 4531 4532 case TCP_REPAIR_QUEUE: 4533 if (tp->repair) 4534 val = tp->repair_queue; 4535 else 4536 return -EINVAL; 4537 break; 4538 4539 case TCP_REPAIR_WINDOW: { 4540 struct tcp_repair_window opt; 4541 4542 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4543 return -EFAULT; 4544 4545 if (len != sizeof(opt)) 4546 return -EINVAL; 4547 4548 if (!tp->repair) 4549 return -EPERM; 4550 4551 opt.snd_wl1 = tp->snd_wl1; 4552 opt.snd_wnd = tp->snd_wnd; 4553 opt.max_window = tp->max_window; 4554 opt.rcv_wnd = tp->rcv_wnd; 4555 opt.rcv_wup = tp->rcv_wup; 4556 4557 if (copy_to_sockptr(optval, &opt, len)) 4558 return -EFAULT; 4559 return 0; 4560 } 4561 case TCP_QUEUE_SEQ: 4562 if (tp->repair_queue == TCP_SEND_QUEUE) 4563 val = tp->write_seq; 4564 else if (tp->repair_queue == TCP_RECV_QUEUE) 4565 val = tp->rcv_nxt; 4566 else 4567 return -EINVAL; 4568 break; 4569 4570 case TCP_USER_TIMEOUT: 4571 val = READ_ONCE(icsk->icsk_user_timeout); 4572 break; 4573 4574 case TCP_FASTOPEN: 4575 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4576 break; 4577 4578 case TCP_FASTOPEN_CONNECT: 4579 val = tp->fastopen_connect; 4580 break; 4581 4582 case TCP_FASTOPEN_NO_COOKIE: 4583 val = tp->fastopen_no_cookie; 4584 break; 4585 4586 case TCP_TX_DELAY: 4587 val = READ_ONCE(tp->tcp_tx_delay); 4588 break; 4589 4590 case TCP_TIMESTAMP: 4591 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4592 if (tp->tcp_usec_ts) 4593 val |= 1; 4594 else 4595 val &= ~1; 4596 break; 4597 case TCP_NOTSENT_LOWAT: 4598 val = READ_ONCE(tp->notsent_lowat); 4599 break; 4600 case TCP_INQ: 4601 val = tp->recvmsg_inq; 4602 break; 4603 case TCP_SAVE_SYN: 4604 val = tp->save_syn; 4605 break; 4606 case TCP_SAVED_SYN: { 4607 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4608 return -EFAULT; 4609 4610 sockopt_lock_sock(sk); 4611 if (tp->saved_syn) { 4612 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4613 len = tcp_saved_syn_len(tp->saved_syn); 4614 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4615 sockopt_release_sock(sk); 4616 return -EFAULT; 4617 } 4618 sockopt_release_sock(sk); 4619 return -EINVAL; 4620 } 4621 len = tcp_saved_syn_len(tp->saved_syn); 4622 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4623 sockopt_release_sock(sk); 4624 return -EFAULT; 4625 } 4626 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4627 sockopt_release_sock(sk); 4628 return -EFAULT; 4629 } 4630 tcp_saved_syn_free(tp); 4631 sockopt_release_sock(sk); 4632 } else { 4633 sockopt_release_sock(sk); 4634 len = 0; 4635 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4636 return -EFAULT; 4637 } 4638 return 0; 4639 } 4640 #ifdef CONFIG_MMU 4641 case TCP_ZEROCOPY_RECEIVE: { 4642 struct scm_timestamping_internal tss; 4643 struct tcp_zerocopy_receive zc = {}; 4644 int err; 4645 4646 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4647 return -EFAULT; 4648 if (len < 0 || 4649 len < offsetofend(struct tcp_zerocopy_receive, length)) 4650 return -EINVAL; 4651 if (unlikely(len > sizeof(zc))) { 4652 err = check_zeroed_sockptr(optval, sizeof(zc), 4653 len - sizeof(zc)); 4654 if (err < 1) 4655 return err == 0 ? -EINVAL : err; 4656 len = sizeof(zc); 4657 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4658 return -EFAULT; 4659 } 4660 if (copy_from_sockptr(&zc, optval, len)) 4661 return -EFAULT; 4662 if (zc.reserved) 4663 return -EINVAL; 4664 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4665 return -EINVAL; 4666 sockopt_lock_sock(sk); 4667 err = tcp_zerocopy_receive(sk, &zc, &tss); 4668 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4669 &zc, &len, err); 4670 sockopt_release_sock(sk); 4671 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4672 goto zerocopy_rcv_cmsg; 4673 switch (len) { 4674 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4675 goto zerocopy_rcv_cmsg; 4676 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4677 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4678 case offsetofend(struct tcp_zerocopy_receive, flags): 4679 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4680 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4681 case offsetofend(struct tcp_zerocopy_receive, err): 4682 goto zerocopy_rcv_sk_err; 4683 case offsetofend(struct tcp_zerocopy_receive, inq): 4684 goto zerocopy_rcv_inq; 4685 case offsetofend(struct tcp_zerocopy_receive, length): 4686 default: 4687 goto zerocopy_rcv_out; 4688 } 4689 zerocopy_rcv_cmsg: 4690 if (zc.msg_flags & TCP_CMSG_TS) 4691 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4692 else 4693 zc.msg_flags = 0; 4694 zerocopy_rcv_sk_err: 4695 if (!err) 4696 zc.err = sock_error(sk); 4697 zerocopy_rcv_inq: 4698 zc.inq = tcp_inq_hint(sk); 4699 zerocopy_rcv_out: 4700 if (!err && copy_to_sockptr(optval, &zc, len)) 4701 err = -EFAULT; 4702 return err; 4703 } 4704 #endif 4705 case TCP_AO_REPAIR: 4706 if (!tcp_can_repair_sock(sk)) 4707 return -EPERM; 4708 return tcp_ao_get_repair(sk, optval, optlen); 4709 case TCP_AO_GET_KEYS: 4710 case TCP_AO_INFO: { 4711 int err; 4712 4713 sockopt_lock_sock(sk); 4714 if (optname == TCP_AO_GET_KEYS) 4715 err = tcp_ao_get_mkts(sk, optval, optlen); 4716 else 4717 err = tcp_ao_get_sock_info(sk, optval, optlen); 4718 sockopt_release_sock(sk); 4719 4720 return err; 4721 } 4722 case TCP_IS_MPTCP: 4723 val = 0; 4724 break; 4725 case TCP_RTO_MAX_MS: 4726 val = jiffies_to_msecs(tcp_rto_max(sk)); 4727 break; 4728 case TCP_RTO_MIN_US: 4729 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4730 break; 4731 case TCP_DELACK_MAX_US: 4732 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4733 break; 4734 default: 4735 return -ENOPROTOOPT; 4736 } 4737 4738 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4739 return -EFAULT; 4740 if (copy_to_sockptr(optval, &val, len)) 4741 return -EFAULT; 4742 return 0; 4743 } 4744 4745 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4746 { 4747 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4748 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4749 */ 4750 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4751 return true; 4752 4753 return false; 4754 } 4755 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4756 4757 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4758 int __user *optlen) 4759 { 4760 struct inet_connection_sock *icsk = inet_csk(sk); 4761 4762 if (level != SOL_TCP) 4763 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4764 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4765 optval, optlen); 4766 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4767 USER_SOCKPTR(optlen)); 4768 } 4769 EXPORT_IPV6_MOD(tcp_getsockopt); 4770 4771 #ifdef CONFIG_TCP_MD5SIG 4772 int tcp_md5_sigpool_id = -1; 4773 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); 4774 4775 int tcp_md5_alloc_sigpool(void) 4776 { 4777 size_t scratch_size; 4778 int ret; 4779 4780 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4781 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4782 if (ret >= 0) { 4783 /* As long as any md5 sigpool was allocated, the return 4784 * id would stay the same. Re-write the id only for the case 4785 * when previously all MD5 keys were deleted and this call 4786 * allocates the first MD5 key, which may return a different 4787 * sigpool id than was used previously. 4788 */ 4789 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4790 return 0; 4791 } 4792 return ret; 4793 } 4794 4795 void tcp_md5_release_sigpool(void) 4796 { 4797 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4798 } 4799 4800 void tcp_md5_add_sigpool(void) 4801 { 4802 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4803 } 4804 4805 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4806 const struct tcp_md5sig_key *key) 4807 { 4808 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4809 struct scatterlist sg; 4810 4811 sg_init_one(&sg, key->key, keylen); 4812 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4813 4814 /* We use data_race() because tcp_md5_do_add() might change 4815 * key->key under us 4816 */ 4817 return data_race(crypto_ahash_update(hp->req)); 4818 } 4819 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4820 4821 /* Called with rcu_read_lock() */ 4822 static enum skb_drop_reason 4823 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4824 const void *saddr, const void *daddr, 4825 int family, int l3index, const __u8 *hash_location) 4826 { 4827 /* This gets called for each TCP segment that has TCP-MD5 option. 4828 * We have 3 drop cases: 4829 * o No MD5 hash and one expected. 4830 * o MD5 hash and we're not expecting one. 4831 * o MD5 hash and its wrong. 4832 */ 4833 const struct tcp_sock *tp = tcp_sk(sk); 4834 struct tcp_md5sig_key *key; 4835 u8 newhash[16]; 4836 int genhash; 4837 4838 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4839 4840 if (!key && hash_location) { 4841 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4842 trace_tcp_hash_md5_unexpected(sk, skb); 4843 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4844 } 4845 4846 /* Check the signature. 4847 * To support dual stack listeners, we need to handle 4848 * IPv4-mapped case. 4849 */ 4850 if (family == AF_INET) 4851 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4852 else 4853 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4854 NULL, skb); 4855 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4856 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4857 trace_tcp_hash_md5_mismatch(sk, skb); 4858 return SKB_DROP_REASON_TCP_MD5FAILURE; 4859 } 4860 return SKB_NOT_DROPPED_YET; 4861 } 4862 #else 4863 static inline enum skb_drop_reason 4864 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4865 const void *saddr, const void *daddr, 4866 int family, int l3index, const __u8 *hash_location) 4867 { 4868 return SKB_NOT_DROPPED_YET; 4869 } 4870 4871 #endif 4872 4873 /* Called with rcu_read_lock() */ 4874 enum skb_drop_reason 4875 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4876 const struct sk_buff *skb, 4877 const void *saddr, const void *daddr, 4878 int family, int dif, int sdif) 4879 { 4880 const struct tcphdr *th = tcp_hdr(skb); 4881 const struct tcp_ao_hdr *aoh; 4882 const __u8 *md5_location; 4883 int l3index; 4884 4885 /* Invalid option or two times meet any of auth options */ 4886 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4887 trace_tcp_hash_bad_header(sk, skb); 4888 return SKB_DROP_REASON_TCP_AUTH_HDR; 4889 } 4890 4891 if (req) { 4892 if (tcp_rsk_used_ao(req) != !!aoh) { 4893 u8 keyid, rnext, maclen; 4894 4895 if (aoh) { 4896 keyid = aoh->keyid; 4897 rnext = aoh->rnext_keyid; 4898 maclen = tcp_ao_hdr_maclen(aoh); 4899 } else { 4900 keyid = rnext = maclen = 0; 4901 } 4902 4903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4904 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4905 return SKB_DROP_REASON_TCP_AOFAILURE; 4906 } 4907 } 4908 4909 /* sdif set, means packet ingressed via a device 4910 * in an L3 domain and dif is set to the l3mdev 4911 */ 4912 l3index = sdif ? dif : 0; 4913 4914 /* Fast path: unsigned segments */ 4915 if (likely(!md5_location && !aoh)) { 4916 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4917 * for the remote peer. On TCP-AO established connection 4918 * the last key is impossible to remove, so there's 4919 * always at least one current_key. 4920 */ 4921 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4922 trace_tcp_hash_ao_required(sk, skb); 4923 return SKB_DROP_REASON_TCP_AONOTFOUND; 4924 } 4925 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4927 trace_tcp_hash_md5_required(sk, skb); 4928 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4929 } 4930 return SKB_NOT_DROPPED_YET; 4931 } 4932 4933 if (aoh) 4934 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4935 4936 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4937 l3index, md5_location); 4938 } 4939 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 4940 4941 void tcp_done(struct sock *sk) 4942 { 4943 struct request_sock *req; 4944 4945 /* We might be called with a new socket, after 4946 * inet_csk_prepare_forced_close() has been called 4947 * so we can not use lockdep_sock_is_held(sk) 4948 */ 4949 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4950 4951 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4952 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4953 4954 tcp_set_state(sk, TCP_CLOSE); 4955 tcp_clear_xmit_timers(sk); 4956 if (req) 4957 reqsk_fastopen_remove(sk, req, false); 4958 4959 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4960 4961 if (!sock_flag(sk, SOCK_DEAD)) 4962 sk->sk_state_change(sk); 4963 else 4964 inet_csk_destroy_sock(sk); 4965 } 4966 EXPORT_SYMBOL_GPL(tcp_done); 4967 4968 int tcp_abort(struct sock *sk, int err) 4969 { 4970 int state = inet_sk_state_load(sk); 4971 4972 if (state == TCP_NEW_SYN_RECV) { 4973 struct request_sock *req = inet_reqsk(sk); 4974 4975 local_bh_disable(); 4976 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4977 local_bh_enable(); 4978 return 0; 4979 } 4980 if (state == TCP_TIME_WAIT) { 4981 struct inet_timewait_sock *tw = inet_twsk(sk); 4982 4983 refcount_inc(&tw->tw_refcnt); 4984 local_bh_disable(); 4985 inet_twsk_deschedule_put(tw); 4986 local_bh_enable(); 4987 return 0; 4988 } 4989 4990 /* BPF context ensures sock locking. */ 4991 if (!has_current_bpf_ctx()) 4992 /* Don't race with userspace socket closes such as tcp_close. */ 4993 lock_sock(sk); 4994 4995 /* Avoid closing the same socket twice. */ 4996 if (sk->sk_state == TCP_CLOSE) { 4997 if (!has_current_bpf_ctx()) 4998 release_sock(sk); 4999 return -ENOENT; 5000 } 5001 5002 if (sk->sk_state == TCP_LISTEN) { 5003 tcp_set_state(sk, TCP_CLOSE); 5004 inet_csk_listen_stop(sk); 5005 } 5006 5007 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 5008 local_bh_disable(); 5009 bh_lock_sock(sk); 5010 5011 if (tcp_need_reset(sk->sk_state)) 5012 tcp_send_active_reset(sk, GFP_ATOMIC, 5013 SK_RST_REASON_TCP_STATE); 5014 tcp_done_with_error(sk, err); 5015 5016 bh_unlock_sock(sk); 5017 local_bh_enable(); 5018 if (!has_current_bpf_ctx()) 5019 release_sock(sk); 5020 return 0; 5021 } 5022 EXPORT_SYMBOL_GPL(tcp_abort); 5023 5024 extern struct tcp_congestion_ops tcp_reno; 5025 5026 static __initdata unsigned long thash_entries; 5027 static int __init set_thash_entries(char *str) 5028 { 5029 ssize_t ret; 5030 5031 if (!str) 5032 return 0; 5033 5034 ret = kstrtoul(str, 0, &thash_entries); 5035 if (ret) 5036 return 0; 5037 5038 return 1; 5039 } 5040 __setup("thash_entries=", set_thash_entries); 5041 5042 static void __init tcp_init_mem(void) 5043 { 5044 unsigned long limit = nr_free_buffer_pages() / 16; 5045 5046 limit = max(limit, 128UL); 5047 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5048 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5049 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5050 } 5051 5052 static void __init tcp_struct_check(void) 5053 { 5054 /* TX read-mostly hotpath cache lines */ 5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5062 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 5063 5064 /* TXRX read-mostly hotpath cache lines */ 5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5070 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5071 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5073 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5074 5075 /* RX read-mostly hotpath cache lines */ 5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5087 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5088 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5089 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); 5090 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); 5091 #else 5092 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5093 #endif 5094 5095 /* TX read-write hotpath cache lines */ 5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5107 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5108 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5109 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5111 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5112 5113 /* TXRX read-write hotpath cache lines */ 5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5125 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5126 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5127 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5128 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5129 5130 /* 32bit arches with 8byte alignment on u64 fields might need padding 5131 * before tcp_clock_cache. 5132 */ 5133 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5134 5135 /* RX read-write hotpath cache lines */ 5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5144 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5145 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5146 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5147 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5148 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5149 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5150 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5151 } 5152 5153 void __init tcp_init(void) 5154 { 5155 int max_rshare, max_wshare, cnt; 5156 unsigned long limit; 5157 unsigned int i; 5158 5159 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5160 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5161 sizeof_field(struct sk_buff, cb)); 5162 5163 tcp_struct_check(); 5164 5165 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5166 5167 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5168 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5169 5170 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5171 thash_entries, 21, /* one slot per 2 MB*/ 5172 0, 64 * 1024); 5173 tcp_hashinfo.bind_bucket_cachep = 5174 kmem_cache_create("tcp_bind_bucket", 5175 sizeof(struct inet_bind_bucket), 0, 5176 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5177 SLAB_ACCOUNT, 5178 NULL); 5179 tcp_hashinfo.bind2_bucket_cachep = 5180 kmem_cache_create("tcp_bind2_bucket", 5181 sizeof(struct inet_bind2_bucket), 0, 5182 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5183 SLAB_ACCOUNT, 5184 NULL); 5185 5186 /* Size and allocate the main established and bind bucket 5187 * hash tables. 5188 * 5189 * The methodology is similar to that of the buffer cache. 5190 */ 5191 tcp_hashinfo.ehash = 5192 alloc_large_system_hash("TCP established", 5193 sizeof(struct inet_ehash_bucket), 5194 thash_entries, 5195 17, /* one slot per 128 KB of memory */ 5196 0, 5197 NULL, 5198 &tcp_hashinfo.ehash_mask, 5199 0, 5200 thash_entries ? 0 : 512 * 1024); 5201 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5202 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5203 5204 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5205 panic("TCP: failed to alloc ehash_locks"); 5206 tcp_hashinfo.bhash = 5207 alloc_large_system_hash("TCP bind", 5208 2 * sizeof(struct inet_bind_hashbucket), 5209 tcp_hashinfo.ehash_mask + 1, 5210 17, /* one slot per 128 KB of memory */ 5211 0, 5212 &tcp_hashinfo.bhash_size, 5213 NULL, 5214 0, 5215 64 * 1024); 5216 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5217 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5218 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5219 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5220 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5221 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5222 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5223 } 5224 5225 tcp_hashinfo.pernet = false; 5226 5227 cnt = tcp_hashinfo.ehash_mask + 1; 5228 sysctl_tcp_max_orphans = cnt / 2; 5229 5230 tcp_init_mem(); 5231 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5232 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5233 max_wshare = min(4UL*1024*1024, limit); 5234 max_rshare = min(32UL*1024*1024, limit); 5235 5236 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5237 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5238 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5239 5240 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5241 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5242 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5243 5244 pr_info("Hash tables configured (established %u bind %u)\n", 5245 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5246 5247 tcp_v4_init(); 5248 tcp_metrics_init(); 5249 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5250 tcp_tasklet_init(); 5251 mptcp_init(); 5252 } 5253