xref: /linux/net/ipv4/tcp.c (revision 6bab77ced3ffbce3d6c5b5bcce17da7c8a3f8266)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us, rto_max_ms;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 
436 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438 
439 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 	icsk->icsk_delack_max = TCP_DELACK_MAX;
442 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444 
445 	/* So many TCP implementations out there (incorrectly) count the
446 	 * initial SYN frame in their delayed-ACK and congestion control
447 	 * algorithms that we must have the following bandaid to talk
448 	 * efficiently to them.  -DaveM
449 	 */
450 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451 
452 	/* There's a bubble in the pipe until at least the first ACK. */
453 	tp->app_limited = ~0U;
454 	tp->rate_app_limited = 1;
455 
456 	/* See draft-stevens-tcpca-spec-01 for discussion of the
457 	 * initialization of these values.
458 	 */
459 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 	tp->snd_cwnd_clamp = ~0;
461 	tp->mss_cache = TCP_MSS_DEFAULT;
462 
463 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 	tcp_assign_congestion_control(sk);
465 
466 	tp->tsoffset = 0;
467 	tp->rack.reo_wnd_steps = 1;
468 
469 	sk->sk_write_space = sk_stream_write_space;
470 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471 
472 	icsk->icsk_sync_mss = tcp_sync_mss;
473 
474 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 	tcp_scaling_ratio_init(sk);
477 
478 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 	sk_sockets_allocated_inc(sk);
480 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483 
484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 	struct sk_buff *skb = tcp_write_queue_tail(sk);
487 	u32 tsflags = sockc->tsflags;
488 
489 	if (tsflags && skb) {
490 		struct skb_shared_info *shinfo = skb_shinfo(skb);
491 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492 
493 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 	}
499 
500 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504 
505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 	if (tcp_epollin_ready(sk, target))
508 		return true;
509 	return sk_is_readable(sk);
510 }
511 
512 /*
513  *	Wait for a TCP event.
514  *
515  *	Note that we don't need to lock the socket, as the upper poll layers
516  *	take care of normal races (between the test and the event) and we don't
517  *	go look at any of the socket buffers directly.
518  */
519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 	__poll_t mask;
522 	struct sock *sk = sock->sk;
523 	const struct tcp_sock *tp = tcp_sk(sk);
524 	u8 shutdown;
525 	int state;
526 
527 	sock_poll_wait(file, sock, wait);
528 
529 	state = inet_sk_state_load(sk);
530 	if (state == TCP_LISTEN)
531 		return inet_csk_listen_poll(sk);
532 
533 	/* Socket is not locked. We are protected from async events
534 	 * by poll logic and correct handling of state changes
535 	 * made by other threads is impossible in any case.
536 	 */
537 
538 	mask = 0;
539 
540 	/*
541 	 * EPOLLHUP is certainly not done right. But poll() doesn't
542 	 * have a notion of HUP in just one direction, and for a
543 	 * socket the read side is more interesting.
544 	 *
545 	 * Some poll() documentation says that EPOLLHUP is incompatible
546 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 	 * all. But careful, it tends to be safer to return too many
548 	 * bits than too few, and you can easily break real applications
549 	 * if you don't tell them that something has hung up!
550 	 *
551 	 * Check-me.
552 	 *
553 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 	 * our fs/select.c). It means that after we received EOF,
555 	 * poll always returns immediately, making impossible poll() on write()
556 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 	 * if and only if shutdown has been made in both directions.
558 	 * Actually, it is interesting to look how Solaris and DUX
559 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 	 * then we could set it on SND_SHUTDOWN. BTW examples given
561 	 * in Stevens' books assume exactly this behaviour, it explains
562 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
563 	 *
564 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 	 * blocking on fresh not-connected or disconnected socket. --ANK
566 	 */
567 	shutdown = READ_ONCE(sk->sk_shutdown);
568 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 		mask |= EPOLLHUP;
570 	if (shutdown & RCV_SHUTDOWN)
571 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572 
573 	/* Connected or passive Fast Open socket? */
574 	if (state != TCP_SYN_SENT &&
575 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 		int target = sock_rcvlowat(sk, 0, INT_MAX);
577 		u16 urg_data = READ_ONCE(tp->urg_data);
578 
579 		if (unlikely(urg_data) &&
580 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 		    !sock_flag(sk, SOCK_URGINLINE))
582 			target++;
583 
584 		if (tcp_stream_is_readable(sk, target))
585 			mask |= EPOLLIN | EPOLLRDNORM;
586 
587 		if (!(shutdown & SEND_SHUTDOWN)) {
588 			if (__sk_stream_is_writeable(sk, 1)) {
589 				mask |= EPOLLOUT | EPOLLWRNORM;
590 			} else {  /* send SIGIO later */
591 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593 
594 				/* Race breaker. If space is freed after
595 				 * wspace test but before the flags are set,
596 				 * IO signal will be lost. Memory barrier
597 				 * pairs with the input side.
598 				 */
599 				smp_mb__after_atomic();
600 				if (__sk_stream_is_writeable(sk, 1))
601 					mask |= EPOLLOUT | EPOLLWRNORM;
602 			}
603 		} else
604 			mask |= EPOLLOUT | EPOLLWRNORM;
605 
606 		if (urg_data & TCP_URG_VALID)
607 			mask |= EPOLLPRI;
608 	} else if (state == TCP_SYN_SENT &&
609 		   inet_test_bit(DEFER_CONNECT, sk)) {
610 		/* Active TCP fastopen socket with defer_connect
611 		 * Return EPOLLOUT so application can call write()
612 		 * in order for kernel to generate SYN+data
613 		 */
614 		mask |= EPOLLOUT | EPOLLWRNORM;
615 	}
616 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 	smp_rmb();
618 	if (READ_ONCE(sk->sk_err) ||
619 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
620 		mask |= EPOLLERR;
621 
622 	return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625 
626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 	struct tcp_sock *tp = tcp_sk(sk);
629 	int answ;
630 	bool slow;
631 
632 	switch (cmd) {
633 	case SIOCINQ:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		slow = lock_sock_fast(sk);
638 		answ = tcp_inq(sk);
639 		unlock_sock_fast(sk, slow);
640 		break;
641 	case SIOCATMARK:
642 		answ = READ_ONCE(tp->urg_data) &&
643 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 		break;
645 	case SIOCOUTQ:
646 		if (sk->sk_state == TCP_LISTEN)
647 			return -EINVAL;
648 
649 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 			answ = 0;
651 		else
652 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 		break;
654 	case SIOCOUTQNSD:
655 		if (sk->sk_state == TCP_LISTEN)
656 			return -EINVAL;
657 
658 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 			answ = 0;
660 		else
661 			answ = READ_ONCE(tp->write_seq) -
662 			       READ_ONCE(tp->snd_nxt);
663 		break;
664 	default:
665 		return -ENOIOCTLCMD;
666 	}
667 
668 	*karg = answ;
669 	return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672 
673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 	tp->pushed_seq = tp->write_seq;
677 }
678 
679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683 
684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 	struct tcp_sock *tp = tcp_sk(sk);
687 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688 
689 	tcb->seq     = tcb->end_seq = tp->write_seq;
690 	tcb->tcp_flags = TCPHDR_ACK;
691 	__skb_header_release(skb);
692 	tcp_add_write_queue_tail(sk, skb);
693 	sk_wmem_queued_add(sk, skb->truesize);
694 	sk_mem_charge(sk, skb->truesize);
695 	if (tp->nonagle & TCP_NAGLE_PUSH)
696 		tp->nonagle &= ~TCP_NAGLE_PUSH;
697 
698 	tcp_slow_start_after_idle_check(sk);
699 }
700 
701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 	if (flags & MSG_OOB)
704 		tp->snd_up = tp->write_seq;
705 }
706 
707 /* If a not yet filled skb is pushed, do not send it if
708  * we have data packets in Qdisc or NIC queues :
709  * Because TX completion will happen shortly, it gives a chance
710  * to coalesce future sendmsg() payload into this skb, without
711  * need for a timer, and with no latency trade off.
712  * As packets containing data payload have a bigger truesize
713  * than pure acks (dataless) packets, the last checks prevent
714  * autocorking if we only have an ACK in Qdisc/NIC queues,
715  * or if TX completion was delayed after we processed ACK packet.
716  */
717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 				int size_goal)
719 {
720 	return skb->len < size_goal &&
721 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 	       !tcp_rtx_queue_empty(sk) &&
723 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 	       tcp_skb_can_collapse_to(skb);
725 }
726 
727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 	      int nonagle, int size_goal)
729 {
730 	struct tcp_sock *tp = tcp_sk(sk);
731 	struct sk_buff *skb;
732 
733 	skb = tcp_write_queue_tail(sk);
734 	if (!skb)
735 		return;
736 	if (!(flags & MSG_MORE) || forced_push(tp))
737 		tcp_mark_push(tp, skb);
738 
739 	tcp_mark_urg(tp, flags);
740 
741 	if (tcp_should_autocork(sk, skb, size_goal)) {
742 
743 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
744 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 			smp_mb__after_atomic();
748 		}
749 		/* It is possible TX completion already happened
750 		 * before we set TSQ_THROTTLED.
751 		 */
752 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 			return;
754 	}
755 
756 	if (flags & MSG_MORE)
757 		nonagle = TCP_NAGLE_CORK;
758 
759 	__tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761 
762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 				unsigned int offset, size_t len)
764 {
765 	struct tcp_splice_state *tss = rd_desc->arg.data;
766 	int ret;
767 
768 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 			      min(rd_desc->count, len), tss->flags);
770 	if (ret > 0)
771 		rd_desc->count -= ret;
772 	return ret;
773 }
774 
775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 	/* Store TCP splice context information in read_descriptor_t. */
778 	read_descriptor_t rd_desc = {
779 		.arg.data = tss,
780 		.count	  = tss->len,
781 	};
782 
783 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785 
786 /**
787  *  tcp_splice_read - splice data from TCP socket to a pipe
788  * @sock:	socket to splice from
789  * @ppos:	position (not valid)
790  * @pipe:	pipe to splice to
791  * @len:	number of bytes to splice
792  * @flags:	splice modifier flags
793  *
794  * Description:
795  *    Will read pages from given socket and fill them into a pipe.
796  *
797  **/
798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 			struct pipe_inode_info *pipe, size_t len,
800 			unsigned int flags)
801 {
802 	struct sock *sk = sock->sk;
803 	struct tcp_splice_state tss = {
804 		.pipe = pipe,
805 		.len = len,
806 		.flags = flags,
807 	};
808 	long timeo;
809 	ssize_t spliced;
810 	int ret;
811 
812 	sock_rps_record_flow(sk);
813 	/*
814 	 * We can't seek on a socket input
815 	 */
816 	if (unlikely(*ppos))
817 		return -ESPIPE;
818 
819 	ret = spliced = 0;
820 
821 	lock_sock(sk);
822 
823 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 	while (tss.len) {
825 		ret = __tcp_splice_read(sk, &tss);
826 		if (ret < 0)
827 			break;
828 		else if (!ret) {
829 			if (spliced)
830 				break;
831 			if (sock_flag(sk, SOCK_DONE))
832 				break;
833 			if (sk->sk_err) {
834 				ret = sock_error(sk);
835 				break;
836 			}
837 			if (sk->sk_shutdown & RCV_SHUTDOWN)
838 				break;
839 			if (sk->sk_state == TCP_CLOSE) {
840 				/*
841 				 * This occurs when user tries to read
842 				 * from never connected socket.
843 				 */
844 				ret = -ENOTCONN;
845 				break;
846 			}
847 			if (!timeo) {
848 				ret = -EAGAIN;
849 				break;
850 			}
851 			/* if __tcp_splice_read() got nothing while we have
852 			 * an skb in receive queue, we do not want to loop.
853 			 * This might happen with URG data.
854 			 */
855 			if (!skb_queue_empty(&sk->sk_receive_queue))
856 				break;
857 			ret = sk_wait_data(sk, &timeo, NULL);
858 			if (ret < 0)
859 				break;
860 			if (signal_pending(current)) {
861 				ret = sock_intr_errno(timeo);
862 				break;
863 			}
864 			continue;
865 		}
866 		tss.len -= ret;
867 		spliced += ret;
868 
869 		if (!tss.len || !timeo)
870 			break;
871 		release_sock(sk);
872 		lock_sock(sk);
873 
874 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 		    signal_pending(current))
877 			break;
878 	}
879 
880 	release_sock(sk);
881 
882 	if (spliced)
883 		return spliced;
884 
885 	return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888 
889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 				     bool force_schedule)
891 {
892 	struct sk_buff *skb;
893 
894 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 	if (likely(skb)) {
896 		bool mem_scheduled;
897 
898 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 		if (force_schedule) {
900 			mem_scheduled = true;
901 			sk_forced_mem_schedule(sk, skb->truesize);
902 		} else {
903 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 		}
905 		if (likely(mem_scheduled)) {
906 			skb_reserve(skb, MAX_TCP_HEADER);
907 			skb->ip_summed = CHECKSUM_PARTIAL;
908 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 			return skb;
910 		}
911 		__kfree_skb(skb);
912 	} else {
913 		sk->sk_prot->enter_memory_pressure(sk);
914 		sk_stream_moderate_sndbuf(sk);
915 	}
916 	return NULL;
917 }
918 
919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 				       int large_allowed)
921 {
922 	struct tcp_sock *tp = tcp_sk(sk);
923 	u32 new_size_goal, size_goal;
924 
925 	if (!large_allowed)
926 		return mss_now;
927 
928 	/* Note : tcp_tso_autosize() will eventually split this later */
929 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930 
931 	/* We try hard to avoid divides here */
932 	size_goal = tp->gso_segs * mss_now;
933 	if (unlikely(new_size_goal < size_goal ||
934 		     new_size_goal >= size_goal + mss_now)) {
935 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 				     sk->sk_gso_max_segs);
937 		size_goal = tp->gso_segs * mss_now;
938 	}
939 
940 	return max(size_goal, mss_now);
941 }
942 
943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 	int mss_now;
946 
947 	mss_now = tcp_current_mss(sk);
948 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949 
950 	return mss_now;
951 }
952 
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954  * but failed adding payload on it. We need to remove it to consume less
955  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956  * epoll() users. Another reason is that tcp_write_xmit() does not like
957  * finding an empty skb in the write queue.
958  */
959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 	struct sk_buff *skb = tcp_write_queue_tail(sk);
962 
963 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 		tcp_unlink_write_queue(skb, sk);
965 		if (tcp_write_queue_empty(sk))
966 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 		tcp_wmem_free_skb(sk, skb);
968 	}
969 }
970 
971 /* skb changing from pure zc to mixed, must charge zc */
972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 	if (unlikely(skb_zcopy_pure(skb))) {
975 		u32 extra = skb->truesize -
976 			    SKB_TRUESIZE(skb_end_offset(skb));
977 
978 		if (!sk_wmem_schedule(sk, extra))
979 			return -ENOMEM;
980 
981 		sk_mem_charge(sk, extra);
982 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 	}
984 	return 0;
985 }
986 
987 
988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 	int left;
991 
992 	if (likely(sk_wmem_schedule(sk, copy)))
993 		return copy;
994 
995 	/* We could be in trouble if we have nothing queued.
996 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 	 * to guarantee some progress.
998 	 */
999 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 	if (left > 0)
1001 		sk_forced_mem_schedule(sk, min(left, copy));
1002 	return min(copy, sk->sk_forward_alloc);
1003 }
1004 
1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 	if (tp->fastopen_req) {
1008 		kfree(tp->fastopen_req);
1009 		tp->fastopen_req = NULL;
1010 	}
1011 }
1012 
1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 			 size_t size, struct ubuf_info *uarg)
1015 {
1016 	struct tcp_sock *tp = tcp_sk(sk);
1017 	struct inet_sock *inet = inet_sk(sk);
1018 	struct sockaddr *uaddr = msg->msg_name;
1019 	int err, flags;
1020 
1021 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 	      TFO_CLIENT_ENABLE) ||
1023 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 	     uaddr->sa_family == AF_UNSPEC))
1025 		return -EOPNOTSUPP;
1026 	if (tp->fastopen_req)
1027 		return -EALREADY; /* Another Fast Open is in progress */
1028 
1029 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 				   sk->sk_allocation);
1031 	if (unlikely(!tp->fastopen_req))
1032 		return -ENOBUFS;
1033 	tp->fastopen_req->data = msg;
1034 	tp->fastopen_req->size = size;
1035 	tp->fastopen_req->uarg = uarg;
1036 
1037 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 		err = tcp_connect(sk);
1039 		/* Same failure procedure as in tcp_v4/6_connect */
1040 		if (err) {
1041 			tcp_set_state(sk, TCP_CLOSE);
1042 			inet->inet_dport = 0;
1043 			sk->sk_route_caps = 0;
1044 		}
1045 	}
1046 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 				    msg->msg_namelen, flags, 1);
1049 	/* fastopen_req could already be freed in __inet_stream_connect
1050 	 * if the connection times out or gets rst
1051 	 */
1052 	if (tp->fastopen_req) {
1053 		*copied = tp->fastopen_req->copied;
1054 		tcp_free_fastopen_req(tp);
1055 		inet_clear_bit(DEFER_CONNECT, sk);
1056 	}
1057 	return err;
1058 }
1059 
1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 	struct net_devmem_dmabuf_binding *binding = NULL;
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 	struct ubuf_info *uarg = NULL;
1065 	struct sk_buff *skb;
1066 	struct sockcm_cookie sockc;
1067 	int flags, err, copied = 0;
1068 	int mss_now = 0, size_goal, copied_syn = 0;
1069 	int process_backlog = 0;
1070 	bool sockc_valid = true;
1071 	int zc = 0;
1072 	long timeo;
1073 
1074 	flags = msg->msg_flags;
1075 
1076 	sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1077 	if (msg->msg_controllen) {
1078 		err = sock_cmsg_send(sk, msg, &sockc);
1079 		if (unlikely(err))
1080 			/* Don't return error until MSG_FASTOPEN has been
1081 			 * processed; that may succeed even if the cmsg is
1082 			 * invalid.
1083 			 */
1084 			sockc_valid = false;
1085 	}
1086 
1087 	if ((flags & MSG_ZEROCOPY) && size) {
1088 		if (msg->msg_ubuf) {
1089 			uarg = msg->msg_ubuf;
1090 			if (sk->sk_route_caps & NETIF_F_SG)
1091 				zc = MSG_ZEROCOPY;
1092 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1093 			skb = tcp_write_queue_tail(sk);
1094 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1095 						    sockc_valid && !!sockc.dmabuf_id);
1096 			if (!uarg) {
1097 				err = -ENOBUFS;
1098 				goto out_err;
1099 			}
1100 			if (sk->sk_route_caps & NETIF_F_SG)
1101 				zc = MSG_ZEROCOPY;
1102 			else
1103 				uarg_to_msgzc(uarg)->zerocopy = 0;
1104 
1105 			if (sockc_valid && sockc.dmabuf_id) {
1106 				binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1107 				if (IS_ERR(binding)) {
1108 					err = PTR_ERR(binding);
1109 					binding = NULL;
1110 					goto out_err;
1111 				}
1112 			}
1113 		}
1114 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1115 		if (sk->sk_route_caps & NETIF_F_SG)
1116 			zc = MSG_SPLICE_PAGES;
1117 	}
1118 
1119 	if (sockc_valid && sockc.dmabuf_id &&
1120 	    (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1121 		err = -EINVAL;
1122 		goto out_err;
1123 	}
1124 
1125 	if (unlikely(flags & MSG_FASTOPEN ||
1126 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1127 	    !tp->repair) {
1128 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1129 		if (err == -EINPROGRESS && copied_syn > 0)
1130 			goto out;
1131 		else if (err)
1132 			goto out_err;
1133 	}
1134 
1135 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1136 
1137 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1138 
1139 	/* Wait for a connection to finish. One exception is TCP Fast Open
1140 	 * (passive side) where data is allowed to be sent before a connection
1141 	 * is fully established.
1142 	 */
1143 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1144 	    !tcp_passive_fastopen(sk)) {
1145 		err = sk_stream_wait_connect(sk, &timeo);
1146 		if (err != 0)
1147 			goto do_error;
1148 	}
1149 
1150 	if (unlikely(tp->repair)) {
1151 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1152 			copied = tcp_send_rcvq(sk, msg, size);
1153 			goto out_nopush;
1154 		}
1155 
1156 		err = -EINVAL;
1157 		if (tp->repair_queue == TCP_NO_QUEUE)
1158 			goto out_err;
1159 
1160 		/* 'common' sending to sendq */
1161 	}
1162 
1163 	if (!sockc_valid) {
1164 		if (!err)
1165 			err = -EINVAL;
1166 		goto out_err;
1167 	}
1168 
1169 	/* This should be in poll */
1170 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1171 
1172 	/* Ok commence sending. */
1173 	copied = 0;
1174 
1175 restart:
1176 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1177 
1178 	err = -EPIPE;
1179 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1180 		goto do_error;
1181 
1182 	while (msg_data_left(msg)) {
1183 		ssize_t copy = 0;
1184 
1185 		skb = tcp_write_queue_tail(sk);
1186 		if (skb)
1187 			copy = size_goal - skb->len;
1188 
1189 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1190 
1191 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1192 			bool first_skb;
1193 
1194 new_segment:
1195 			if (!sk_stream_memory_free(sk))
1196 				goto wait_for_space;
1197 
1198 			if (unlikely(process_backlog >= 16)) {
1199 				process_backlog = 0;
1200 				if (sk_flush_backlog(sk))
1201 					goto restart;
1202 			}
1203 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1204 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1205 						   first_skb);
1206 			if (!skb)
1207 				goto wait_for_space;
1208 
1209 			process_backlog++;
1210 
1211 #ifdef CONFIG_SKB_DECRYPTED
1212 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1213 #endif
1214 			tcp_skb_entail(sk, skb);
1215 			copy = size_goal;
1216 
1217 			/* All packets are restored as if they have
1218 			 * already been sent. skb_mstamp_ns isn't set to
1219 			 * avoid wrong rtt estimation.
1220 			 */
1221 			if (tp->repair)
1222 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1223 		}
1224 
1225 		/* Try to append data to the end of skb. */
1226 		if (copy > msg_data_left(msg))
1227 			copy = msg_data_left(msg);
1228 
1229 		if (zc == 0) {
1230 			bool merge = true;
1231 			int i = skb_shinfo(skb)->nr_frags;
1232 			struct page_frag *pfrag = sk_page_frag(sk);
1233 
1234 			if (!sk_page_frag_refill(sk, pfrag))
1235 				goto wait_for_space;
1236 
1237 			if (!skb_can_coalesce(skb, i, pfrag->page,
1238 					      pfrag->offset)) {
1239 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1240 					tcp_mark_push(tp, skb);
1241 					goto new_segment;
1242 				}
1243 				merge = false;
1244 			}
1245 
1246 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1247 
1248 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1249 				if (tcp_downgrade_zcopy_pure(sk, skb))
1250 					goto wait_for_space;
1251 				skb_zcopy_downgrade_managed(skb);
1252 			}
1253 
1254 			copy = tcp_wmem_schedule(sk, copy);
1255 			if (!copy)
1256 				goto wait_for_space;
1257 
1258 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1259 						       pfrag->page,
1260 						       pfrag->offset,
1261 						       copy);
1262 			if (err)
1263 				goto do_error;
1264 
1265 			/* Update the skb. */
1266 			if (merge) {
1267 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1268 			} else {
1269 				skb_fill_page_desc(skb, i, pfrag->page,
1270 						   pfrag->offset, copy);
1271 				page_ref_inc(pfrag->page);
1272 			}
1273 			pfrag->offset += copy;
1274 		} else if (zc == MSG_ZEROCOPY)  {
1275 			/* First append to a fragless skb builds initial
1276 			 * pure zerocopy skb
1277 			 */
1278 			if (!skb->len)
1279 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1280 
1281 			if (!skb_zcopy_pure(skb)) {
1282 				copy = tcp_wmem_schedule(sk, copy);
1283 				if (!copy)
1284 					goto wait_for_space;
1285 			}
1286 
1287 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1288 						       binding);
1289 			if (err == -EMSGSIZE || err == -EEXIST) {
1290 				tcp_mark_push(tp, skb);
1291 				goto new_segment;
1292 			}
1293 			if (err < 0)
1294 				goto do_error;
1295 			copy = err;
1296 		} else if (zc == MSG_SPLICE_PAGES) {
1297 			/* Splice in data if we can; copy if we can't. */
1298 			if (tcp_downgrade_zcopy_pure(sk, skb))
1299 				goto wait_for_space;
1300 			copy = tcp_wmem_schedule(sk, copy);
1301 			if (!copy)
1302 				goto wait_for_space;
1303 
1304 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1305 						   sk->sk_allocation);
1306 			if (err < 0) {
1307 				if (err == -EMSGSIZE) {
1308 					tcp_mark_push(tp, skb);
1309 					goto new_segment;
1310 				}
1311 				goto do_error;
1312 			}
1313 			copy = err;
1314 
1315 			if (!(flags & MSG_NO_SHARED_FRAGS))
1316 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1317 
1318 			sk_wmem_queued_add(sk, copy);
1319 			sk_mem_charge(sk, copy);
1320 		}
1321 
1322 		if (!copied)
1323 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1324 
1325 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1326 		TCP_SKB_CB(skb)->end_seq += copy;
1327 		tcp_skb_pcount_set(skb, 0);
1328 
1329 		copied += copy;
1330 		if (!msg_data_left(msg)) {
1331 			if (unlikely(flags & MSG_EOR))
1332 				TCP_SKB_CB(skb)->eor = 1;
1333 			goto out;
1334 		}
1335 
1336 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1337 			continue;
1338 
1339 		if (forced_push(tp)) {
1340 			tcp_mark_push(tp, skb);
1341 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1342 		} else if (skb == tcp_send_head(sk))
1343 			tcp_push_one(sk, mss_now);
1344 		continue;
1345 
1346 wait_for_space:
1347 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1348 		tcp_remove_empty_skb(sk);
1349 		if (copied)
1350 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1351 				 TCP_NAGLE_PUSH, size_goal);
1352 
1353 		err = sk_stream_wait_memory(sk, &timeo);
1354 		if (err != 0)
1355 			goto do_error;
1356 
1357 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1358 	}
1359 
1360 out:
1361 	if (copied) {
1362 		tcp_tx_timestamp(sk, &sockc);
1363 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1364 	}
1365 out_nopush:
1366 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1367 	if (uarg && !msg->msg_ubuf)
1368 		net_zcopy_put(uarg);
1369 	if (binding)
1370 		net_devmem_dmabuf_binding_put(binding);
1371 	return copied + copied_syn;
1372 
1373 do_error:
1374 	tcp_remove_empty_skb(sk);
1375 
1376 	if (copied + copied_syn)
1377 		goto out;
1378 out_err:
1379 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1380 	if (uarg && !msg->msg_ubuf)
1381 		net_zcopy_put_abort(uarg, true);
1382 	err = sk_stream_error(sk, flags, err);
1383 	/* make sure we wake any epoll edge trigger waiter */
1384 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1385 		sk->sk_write_space(sk);
1386 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1387 	}
1388 	if (binding)
1389 		net_devmem_dmabuf_binding_put(binding);
1390 
1391 	return err;
1392 }
1393 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1394 
1395 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1396 {
1397 	int ret;
1398 
1399 	lock_sock(sk);
1400 	ret = tcp_sendmsg_locked(sk, msg, size);
1401 	release_sock(sk);
1402 
1403 	return ret;
1404 }
1405 EXPORT_SYMBOL(tcp_sendmsg);
1406 
1407 void tcp_splice_eof(struct socket *sock)
1408 {
1409 	struct sock *sk = sock->sk;
1410 	struct tcp_sock *tp = tcp_sk(sk);
1411 	int mss_now, size_goal;
1412 
1413 	if (!tcp_write_queue_tail(sk))
1414 		return;
1415 
1416 	lock_sock(sk);
1417 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1418 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1419 	release_sock(sk);
1420 }
1421 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1422 
1423 /*
1424  *	Handle reading urgent data. BSD has very simple semantics for
1425  *	this, no blocking and very strange errors 8)
1426  */
1427 
1428 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	/* No URG data to read. */
1433 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1434 	    tp->urg_data == TCP_URG_READ)
1435 		return -EINVAL;	/* Yes this is right ! */
1436 
1437 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1438 		return -ENOTCONN;
1439 
1440 	if (tp->urg_data & TCP_URG_VALID) {
1441 		int err = 0;
1442 		char c = tp->urg_data;
1443 
1444 		if (!(flags & MSG_PEEK))
1445 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1446 
1447 		/* Read urgent data. */
1448 		msg->msg_flags |= MSG_OOB;
1449 
1450 		if (len > 0) {
1451 			if (!(flags & MSG_TRUNC))
1452 				err = memcpy_to_msg(msg, &c, 1);
1453 			len = 1;
1454 		} else
1455 			msg->msg_flags |= MSG_TRUNC;
1456 
1457 		return err ? -EFAULT : len;
1458 	}
1459 
1460 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1461 		return 0;
1462 
1463 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1464 	 * the available implementations agree in this case:
1465 	 * this call should never block, independent of the
1466 	 * blocking state of the socket.
1467 	 * Mike <pall@rz.uni-karlsruhe.de>
1468 	 */
1469 	return -EAGAIN;
1470 }
1471 
1472 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1473 {
1474 	struct sk_buff *skb;
1475 	int copied = 0, err = 0;
1476 
1477 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1478 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1479 		if (err)
1480 			return err;
1481 		copied += skb->len;
1482 	}
1483 
1484 	skb_queue_walk(&sk->sk_write_queue, skb) {
1485 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1486 		if (err)
1487 			break;
1488 
1489 		copied += skb->len;
1490 	}
1491 
1492 	return err ?: copied;
1493 }
1494 
1495 /* Clean up the receive buffer for full frames taken by the user,
1496  * then send an ACK if necessary.  COPIED is the number of bytes
1497  * tcp_recvmsg has given to the user so far, it speeds up the
1498  * calculation of whether or not we must ACK for the sake of
1499  * a window update.
1500  */
1501 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1502 {
1503 	struct tcp_sock *tp = tcp_sk(sk);
1504 	bool time_to_ack = false;
1505 
1506 	if (inet_csk_ack_scheduled(sk)) {
1507 		const struct inet_connection_sock *icsk = inet_csk(sk);
1508 
1509 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1510 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1511 		    /*
1512 		     * If this read emptied read buffer, we send ACK, if
1513 		     * connection is not bidirectional, user drained
1514 		     * receive buffer and there was a small segment
1515 		     * in queue.
1516 		     */
1517 		    (copied > 0 &&
1518 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1519 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1520 		       !inet_csk_in_pingpong_mode(sk))) &&
1521 		      !atomic_read(&sk->sk_rmem_alloc)))
1522 			time_to_ack = true;
1523 	}
1524 
1525 	/* We send an ACK if we can now advertise a non-zero window
1526 	 * which has been raised "significantly".
1527 	 *
1528 	 * Even if window raised up to infinity, do not send window open ACK
1529 	 * in states, where we will not receive more. It is useless.
1530 	 */
1531 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1532 		__u32 rcv_window_now = tcp_receive_window(tp);
1533 
1534 		/* Optimize, __tcp_select_window() is not cheap. */
1535 		if (2*rcv_window_now <= tp->window_clamp) {
1536 			__u32 new_window = __tcp_select_window(sk);
1537 
1538 			/* Send ACK now, if this read freed lots of space
1539 			 * in our buffer. Certainly, new_window is new window.
1540 			 * We can advertise it now, if it is not less than current one.
1541 			 * "Lots" means "at least twice" here.
1542 			 */
1543 			if (new_window && new_window >= 2 * rcv_window_now)
1544 				time_to_ack = true;
1545 		}
1546 	}
1547 	if (time_to_ack)
1548 		tcp_send_ack(sk);
1549 }
1550 
1551 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1552 {
1553 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1554 	struct tcp_sock *tp = tcp_sk(sk);
1555 
1556 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1557 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1558 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1559 	__tcp_cleanup_rbuf(sk, copied);
1560 }
1561 
1562 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1563 {
1564 	__skb_unlink(skb, &sk->sk_receive_queue);
1565 	if (likely(skb->destructor == sock_rfree)) {
1566 		sock_rfree(skb);
1567 		skb->destructor = NULL;
1568 		skb->sk = NULL;
1569 		return skb_attempt_defer_free(skb);
1570 	}
1571 	__kfree_skb(skb);
1572 }
1573 
1574 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1575 {
1576 	struct sk_buff *skb;
1577 	u32 offset;
1578 
1579 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1580 		offset = seq - TCP_SKB_CB(skb)->seq;
1581 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1582 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1583 			offset--;
1584 		}
1585 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1586 			*off = offset;
1587 			return skb;
1588 		}
1589 		/* This looks weird, but this can happen if TCP collapsing
1590 		 * splitted a fat GRO packet, while we released socket lock
1591 		 * in skb_splice_bits()
1592 		 */
1593 		tcp_eat_recv_skb(sk, skb);
1594 	}
1595 	return NULL;
1596 }
1597 EXPORT_SYMBOL(tcp_recv_skb);
1598 
1599 /*
1600  * This routine provides an alternative to tcp_recvmsg() for routines
1601  * that would like to handle copying from skbuffs directly in 'sendfile'
1602  * fashion.
1603  * Note:
1604  *	- It is assumed that the socket was locked by the caller.
1605  *	- The routine does not block.
1606  *	- At present, there is no support for reading OOB data
1607  *	  or for 'peeking' the socket using this routine
1608  *	  (although both would be easy to implement).
1609  */
1610 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1611 			   sk_read_actor_t recv_actor, bool noack,
1612 			   u32 *copied_seq)
1613 {
1614 	struct sk_buff *skb;
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 	u32 seq = *copied_seq;
1617 	u32 offset;
1618 	int copied = 0;
1619 
1620 	if (sk->sk_state == TCP_LISTEN)
1621 		return -ENOTCONN;
1622 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1623 		if (offset < skb->len) {
1624 			int used;
1625 			size_t len;
1626 
1627 			len = skb->len - offset;
1628 			/* Stop reading if we hit a patch of urgent data */
1629 			if (unlikely(tp->urg_data)) {
1630 				u32 urg_offset = tp->urg_seq - seq;
1631 				if (urg_offset < len)
1632 					len = urg_offset;
1633 				if (!len)
1634 					break;
1635 			}
1636 			used = recv_actor(desc, skb, offset, len);
1637 			if (used <= 0) {
1638 				if (!copied)
1639 					copied = used;
1640 				break;
1641 			}
1642 			if (WARN_ON_ONCE(used > len))
1643 				used = len;
1644 			seq += used;
1645 			copied += used;
1646 			offset += used;
1647 
1648 			/* If recv_actor drops the lock (e.g. TCP splice
1649 			 * receive) the skb pointer might be invalid when
1650 			 * getting here: tcp_collapse might have deleted it
1651 			 * while aggregating skbs from the socket queue.
1652 			 */
1653 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1654 			if (!skb)
1655 				break;
1656 			/* TCP coalescing might have appended data to the skb.
1657 			 * Try to splice more frags
1658 			 */
1659 			if (offset + 1 != skb->len)
1660 				continue;
1661 		}
1662 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1663 			tcp_eat_recv_skb(sk, skb);
1664 			++seq;
1665 			break;
1666 		}
1667 		tcp_eat_recv_skb(sk, skb);
1668 		if (!desc->count)
1669 			break;
1670 		WRITE_ONCE(*copied_seq, seq);
1671 	}
1672 	WRITE_ONCE(*copied_seq, seq);
1673 
1674 	if (noack)
1675 		goto out;
1676 
1677 	tcp_rcv_space_adjust(sk);
1678 
1679 	/* Clean up data we have read: This will do ACK frames. */
1680 	if (copied > 0) {
1681 		tcp_recv_skb(sk, seq, &offset);
1682 		tcp_cleanup_rbuf(sk, copied);
1683 	}
1684 out:
1685 	return copied;
1686 }
1687 
1688 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1689 		  sk_read_actor_t recv_actor)
1690 {
1691 	return __tcp_read_sock(sk, desc, recv_actor, false,
1692 			       &tcp_sk(sk)->copied_seq);
1693 }
1694 EXPORT_SYMBOL(tcp_read_sock);
1695 
1696 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1697 			sk_read_actor_t recv_actor, bool noack,
1698 			u32 *copied_seq)
1699 {
1700 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1701 }
1702 
1703 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1704 {
1705 	struct sk_buff *skb;
1706 	int copied = 0;
1707 
1708 	if (sk->sk_state == TCP_LISTEN)
1709 		return -ENOTCONN;
1710 
1711 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1712 		u8 tcp_flags;
1713 		int used;
1714 
1715 		__skb_unlink(skb, &sk->sk_receive_queue);
1716 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1717 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1718 		used = recv_actor(sk, skb);
1719 		if (used < 0) {
1720 			if (!copied)
1721 				copied = used;
1722 			break;
1723 		}
1724 		copied += used;
1725 
1726 		if (tcp_flags & TCPHDR_FIN)
1727 			break;
1728 	}
1729 	return copied;
1730 }
1731 EXPORT_IPV6_MOD(tcp_read_skb);
1732 
1733 void tcp_read_done(struct sock *sk, size_t len)
1734 {
1735 	struct tcp_sock *tp = tcp_sk(sk);
1736 	u32 seq = tp->copied_seq;
1737 	struct sk_buff *skb;
1738 	size_t left;
1739 	u32 offset;
1740 
1741 	if (sk->sk_state == TCP_LISTEN)
1742 		return;
1743 
1744 	left = len;
1745 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1746 		int used;
1747 
1748 		used = min_t(size_t, skb->len - offset, left);
1749 		seq += used;
1750 		left -= used;
1751 
1752 		if (skb->len > offset + used)
1753 			break;
1754 
1755 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1756 			tcp_eat_recv_skb(sk, skb);
1757 			++seq;
1758 			break;
1759 		}
1760 		tcp_eat_recv_skb(sk, skb);
1761 	}
1762 	WRITE_ONCE(tp->copied_seq, seq);
1763 
1764 	tcp_rcv_space_adjust(sk);
1765 
1766 	/* Clean up data we have read: This will do ACK frames. */
1767 	if (left != len)
1768 		tcp_cleanup_rbuf(sk, len - left);
1769 }
1770 EXPORT_SYMBOL(tcp_read_done);
1771 
1772 int tcp_peek_len(struct socket *sock)
1773 {
1774 	return tcp_inq(sock->sk);
1775 }
1776 EXPORT_IPV6_MOD(tcp_peek_len);
1777 
1778 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1779 int tcp_set_rcvlowat(struct sock *sk, int val)
1780 {
1781 	int space, cap;
1782 
1783 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1784 		cap = sk->sk_rcvbuf >> 1;
1785 	else
1786 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1787 	val = min(val, cap);
1788 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1789 
1790 	/* Check if we need to signal EPOLLIN right now */
1791 	tcp_data_ready(sk);
1792 
1793 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1794 		return 0;
1795 
1796 	space = tcp_space_from_win(sk, val);
1797 	if (space > sk->sk_rcvbuf) {
1798 		WRITE_ONCE(sk->sk_rcvbuf, space);
1799 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1800 	}
1801 	return 0;
1802 }
1803 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1804 
1805 void tcp_update_recv_tstamps(struct sk_buff *skb,
1806 			     struct scm_timestamping_internal *tss)
1807 {
1808 	if (skb->tstamp)
1809 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1810 	else
1811 		tss->ts[0] = (struct timespec64) {0};
1812 
1813 	if (skb_hwtstamps(skb)->hwtstamp)
1814 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1815 	else
1816 		tss->ts[2] = (struct timespec64) {0};
1817 }
1818 
1819 #ifdef CONFIG_MMU
1820 static const struct vm_operations_struct tcp_vm_ops = {
1821 };
1822 
1823 int tcp_mmap(struct file *file, struct socket *sock,
1824 	     struct vm_area_struct *vma)
1825 {
1826 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1827 		return -EPERM;
1828 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1829 
1830 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1831 	vm_flags_set(vma, VM_MIXEDMAP);
1832 
1833 	vma->vm_ops = &tcp_vm_ops;
1834 	return 0;
1835 }
1836 EXPORT_IPV6_MOD(tcp_mmap);
1837 
1838 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1839 				       u32 *offset_frag)
1840 {
1841 	skb_frag_t *frag;
1842 
1843 	if (unlikely(offset_skb >= skb->len))
1844 		return NULL;
1845 
1846 	offset_skb -= skb_headlen(skb);
1847 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1848 		return NULL;
1849 
1850 	frag = skb_shinfo(skb)->frags;
1851 	while (offset_skb) {
1852 		if (skb_frag_size(frag) > offset_skb) {
1853 			*offset_frag = offset_skb;
1854 			return frag;
1855 		}
1856 		offset_skb -= skb_frag_size(frag);
1857 		++frag;
1858 	}
1859 	*offset_frag = 0;
1860 	return frag;
1861 }
1862 
1863 static bool can_map_frag(const skb_frag_t *frag)
1864 {
1865 	struct page *page;
1866 
1867 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1868 		return false;
1869 
1870 	page = skb_frag_page(frag);
1871 
1872 	if (PageCompound(page) || page->mapping)
1873 		return false;
1874 
1875 	return true;
1876 }
1877 
1878 static int find_next_mappable_frag(const skb_frag_t *frag,
1879 				   int remaining_in_skb)
1880 {
1881 	int offset = 0;
1882 
1883 	if (likely(can_map_frag(frag)))
1884 		return 0;
1885 
1886 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1887 		offset += skb_frag_size(frag);
1888 		++frag;
1889 	}
1890 	return offset;
1891 }
1892 
1893 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1894 					  struct tcp_zerocopy_receive *zc,
1895 					  struct sk_buff *skb, u32 offset)
1896 {
1897 	u32 frag_offset, partial_frag_remainder = 0;
1898 	int mappable_offset;
1899 	skb_frag_t *frag;
1900 
1901 	/* worst case: skip to next skb. try to improve on this case below */
1902 	zc->recv_skip_hint = skb->len - offset;
1903 
1904 	/* Find the frag containing this offset (and how far into that frag) */
1905 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1906 	if (!frag)
1907 		return;
1908 
1909 	if (frag_offset) {
1910 		struct skb_shared_info *info = skb_shinfo(skb);
1911 
1912 		/* We read part of the last frag, must recvmsg() rest of skb. */
1913 		if (frag == &info->frags[info->nr_frags - 1])
1914 			return;
1915 
1916 		/* Else, we must at least read the remainder in this frag. */
1917 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1918 		zc->recv_skip_hint -= partial_frag_remainder;
1919 		++frag;
1920 	}
1921 
1922 	/* partial_frag_remainder: If part way through a frag, must read rest.
1923 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1924 	 * in partial_frag_remainder.
1925 	 */
1926 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1927 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1928 }
1929 
1930 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1931 			      int flags, struct scm_timestamping_internal *tss,
1932 			      int *cmsg_flags);
1933 static int receive_fallback_to_copy(struct sock *sk,
1934 				    struct tcp_zerocopy_receive *zc, int inq,
1935 				    struct scm_timestamping_internal *tss)
1936 {
1937 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1938 	struct msghdr msg = {};
1939 	int err;
1940 
1941 	zc->length = 0;
1942 	zc->recv_skip_hint = 0;
1943 
1944 	if (copy_address != zc->copybuf_address)
1945 		return -EINVAL;
1946 
1947 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1948 			  &msg.msg_iter);
1949 	if (err)
1950 		return err;
1951 
1952 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1953 				 tss, &zc->msg_flags);
1954 	if (err < 0)
1955 		return err;
1956 
1957 	zc->copybuf_len = err;
1958 	if (likely(zc->copybuf_len)) {
1959 		struct sk_buff *skb;
1960 		u32 offset;
1961 
1962 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1963 		if (skb)
1964 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1965 	}
1966 	return 0;
1967 }
1968 
1969 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1970 				   struct sk_buff *skb, u32 copylen,
1971 				   u32 *offset, u32 *seq)
1972 {
1973 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1974 	struct msghdr msg = {};
1975 	int err;
1976 
1977 	if (copy_address != zc->copybuf_address)
1978 		return -EINVAL;
1979 
1980 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1981 			  &msg.msg_iter);
1982 	if (err)
1983 		return err;
1984 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1985 	if (err)
1986 		return err;
1987 	zc->recv_skip_hint -= copylen;
1988 	*offset += copylen;
1989 	*seq += copylen;
1990 	return (__s32)copylen;
1991 }
1992 
1993 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1994 				  struct sock *sk,
1995 				  struct sk_buff *skb,
1996 				  u32 *seq,
1997 				  s32 copybuf_len,
1998 				  struct scm_timestamping_internal *tss)
1999 {
2000 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2001 
2002 	if (!copylen)
2003 		return 0;
2004 	/* skb is null if inq < PAGE_SIZE. */
2005 	if (skb) {
2006 		offset = *seq - TCP_SKB_CB(skb)->seq;
2007 	} else {
2008 		skb = tcp_recv_skb(sk, *seq, &offset);
2009 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2010 			tcp_update_recv_tstamps(skb, tss);
2011 			zc->msg_flags |= TCP_CMSG_TS;
2012 		}
2013 	}
2014 
2015 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2016 						  seq);
2017 	return zc->copybuf_len < 0 ? 0 : copylen;
2018 }
2019 
2020 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2021 					      struct page **pending_pages,
2022 					      unsigned long pages_remaining,
2023 					      unsigned long *address,
2024 					      u32 *length,
2025 					      u32 *seq,
2026 					      struct tcp_zerocopy_receive *zc,
2027 					      u32 total_bytes_to_map,
2028 					      int err)
2029 {
2030 	/* At least one page did not map. Try zapping if we skipped earlier. */
2031 	if (err == -EBUSY &&
2032 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2033 		u32 maybe_zap_len;
2034 
2035 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2036 				*length + /* Mapped or pending */
2037 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2038 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2039 		err = 0;
2040 	}
2041 
2042 	if (!err) {
2043 		unsigned long leftover_pages = pages_remaining;
2044 		int bytes_mapped;
2045 
2046 		/* We called zap_page_range_single, try to reinsert. */
2047 		err = vm_insert_pages(vma, *address,
2048 				      pending_pages,
2049 				      &pages_remaining);
2050 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2051 		*seq += bytes_mapped;
2052 		*address += bytes_mapped;
2053 	}
2054 	if (err) {
2055 		/* Either we were unable to zap, OR we zapped, retried an
2056 		 * insert, and still had an issue. Either ways, pages_remaining
2057 		 * is the number of pages we were unable to map, and we unroll
2058 		 * some state we speculatively touched before.
2059 		 */
2060 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2061 
2062 		*length -= bytes_not_mapped;
2063 		zc->recv_skip_hint += bytes_not_mapped;
2064 	}
2065 	return err;
2066 }
2067 
2068 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2069 					struct page **pages,
2070 					unsigned int pages_to_map,
2071 					unsigned long *address,
2072 					u32 *length,
2073 					u32 *seq,
2074 					struct tcp_zerocopy_receive *zc,
2075 					u32 total_bytes_to_map)
2076 {
2077 	unsigned long pages_remaining = pages_to_map;
2078 	unsigned int pages_mapped;
2079 	unsigned int bytes_mapped;
2080 	int err;
2081 
2082 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2083 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2084 	bytes_mapped = PAGE_SIZE * pages_mapped;
2085 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2086 	 * mapping (some but not all of the pages).
2087 	 */
2088 	*seq += bytes_mapped;
2089 	*address += bytes_mapped;
2090 
2091 	if (likely(!err))
2092 		return 0;
2093 
2094 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2095 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2096 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2097 		err);
2098 }
2099 
2100 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2101 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2102 				      struct tcp_zerocopy_receive *zc,
2103 				      struct scm_timestamping_internal *tss)
2104 {
2105 	unsigned long msg_control_addr;
2106 	struct msghdr cmsg_dummy;
2107 
2108 	msg_control_addr = (unsigned long)zc->msg_control;
2109 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2110 	cmsg_dummy.msg_controllen =
2111 		(__kernel_size_t)zc->msg_controllen;
2112 	cmsg_dummy.msg_flags = in_compat_syscall()
2113 		? MSG_CMSG_COMPAT : 0;
2114 	cmsg_dummy.msg_control_is_user = true;
2115 	zc->msg_flags = 0;
2116 	if (zc->msg_control == msg_control_addr &&
2117 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2118 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2119 		zc->msg_control = (__u64)
2120 			((uintptr_t)cmsg_dummy.msg_control_user);
2121 		zc->msg_controllen =
2122 			(__u64)cmsg_dummy.msg_controllen;
2123 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2124 	}
2125 }
2126 
2127 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2128 					   unsigned long address,
2129 					   bool *mmap_locked)
2130 {
2131 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2132 
2133 	if (vma) {
2134 		if (vma->vm_ops != &tcp_vm_ops) {
2135 			vma_end_read(vma);
2136 			return NULL;
2137 		}
2138 		*mmap_locked = false;
2139 		return vma;
2140 	}
2141 
2142 	mmap_read_lock(mm);
2143 	vma = vma_lookup(mm, address);
2144 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2145 		mmap_read_unlock(mm);
2146 		return NULL;
2147 	}
2148 	*mmap_locked = true;
2149 	return vma;
2150 }
2151 
2152 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2153 static int tcp_zerocopy_receive(struct sock *sk,
2154 				struct tcp_zerocopy_receive *zc,
2155 				struct scm_timestamping_internal *tss)
2156 {
2157 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2158 	unsigned long address = (unsigned long)zc->address;
2159 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2160 	s32 copybuf_len = zc->copybuf_len;
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 	const skb_frag_t *frags = NULL;
2163 	unsigned int pages_to_map = 0;
2164 	struct vm_area_struct *vma;
2165 	struct sk_buff *skb = NULL;
2166 	u32 seq = tp->copied_seq;
2167 	u32 total_bytes_to_map;
2168 	int inq = tcp_inq(sk);
2169 	bool mmap_locked;
2170 	int ret;
2171 
2172 	zc->copybuf_len = 0;
2173 	zc->msg_flags = 0;
2174 
2175 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2176 		return -EINVAL;
2177 
2178 	if (sk->sk_state == TCP_LISTEN)
2179 		return -ENOTCONN;
2180 
2181 	sock_rps_record_flow(sk);
2182 
2183 	if (inq && inq <= copybuf_len)
2184 		return receive_fallback_to_copy(sk, zc, inq, tss);
2185 
2186 	if (inq < PAGE_SIZE) {
2187 		zc->length = 0;
2188 		zc->recv_skip_hint = inq;
2189 		if (!inq && sock_flag(sk, SOCK_DONE))
2190 			return -EIO;
2191 		return 0;
2192 	}
2193 
2194 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2195 	if (!vma)
2196 		return -EINVAL;
2197 
2198 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2199 	avail_len = min_t(u32, vma_len, inq);
2200 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2201 	if (total_bytes_to_map) {
2202 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2203 			zap_page_range_single(vma, address, total_bytes_to_map,
2204 					      NULL);
2205 		zc->length = total_bytes_to_map;
2206 		zc->recv_skip_hint = 0;
2207 	} else {
2208 		zc->length = avail_len;
2209 		zc->recv_skip_hint = avail_len;
2210 	}
2211 	ret = 0;
2212 	while (length + PAGE_SIZE <= zc->length) {
2213 		int mappable_offset;
2214 		struct page *page;
2215 
2216 		if (zc->recv_skip_hint < PAGE_SIZE) {
2217 			u32 offset_frag;
2218 
2219 			if (skb) {
2220 				if (zc->recv_skip_hint > 0)
2221 					break;
2222 				skb = skb->next;
2223 				offset = seq - TCP_SKB_CB(skb)->seq;
2224 			} else {
2225 				skb = tcp_recv_skb(sk, seq, &offset);
2226 			}
2227 
2228 			if (!skb_frags_readable(skb))
2229 				break;
2230 
2231 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2232 				tcp_update_recv_tstamps(skb, tss);
2233 				zc->msg_flags |= TCP_CMSG_TS;
2234 			}
2235 			zc->recv_skip_hint = skb->len - offset;
2236 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2237 			if (!frags || offset_frag)
2238 				break;
2239 		}
2240 
2241 		mappable_offset = find_next_mappable_frag(frags,
2242 							  zc->recv_skip_hint);
2243 		if (mappable_offset) {
2244 			zc->recv_skip_hint = mappable_offset;
2245 			break;
2246 		}
2247 		page = skb_frag_page(frags);
2248 		if (WARN_ON_ONCE(!page))
2249 			break;
2250 
2251 		prefetchw(page);
2252 		pages[pages_to_map++] = page;
2253 		length += PAGE_SIZE;
2254 		zc->recv_skip_hint -= PAGE_SIZE;
2255 		frags++;
2256 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2257 		    zc->recv_skip_hint < PAGE_SIZE) {
2258 			/* Either full batch, or we're about to go to next skb
2259 			 * (and we cannot unroll failed ops across skbs).
2260 			 */
2261 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2262 							   pages_to_map,
2263 							   &address, &length,
2264 							   &seq, zc,
2265 							   total_bytes_to_map);
2266 			if (ret)
2267 				goto out;
2268 			pages_to_map = 0;
2269 		}
2270 	}
2271 	if (pages_to_map) {
2272 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2273 						   &address, &length, &seq,
2274 						   zc, total_bytes_to_map);
2275 	}
2276 out:
2277 	if (mmap_locked)
2278 		mmap_read_unlock(current->mm);
2279 	else
2280 		vma_end_read(vma);
2281 	/* Try to copy straggler data. */
2282 	if (!ret)
2283 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2284 
2285 	if (length + copylen) {
2286 		WRITE_ONCE(tp->copied_seq, seq);
2287 		tcp_rcv_space_adjust(sk);
2288 
2289 		/* Clean up data we have read: This will do ACK frames. */
2290 		tcp_recv_skb(sk, seq, &offset);
2291 		tcp_cleanup_rbuf(sk, length + copylen);
2292 		ret = 0;
2293 		if (length == zc->length)
2294 			zc->recv_skip_hint = 0;
2295 	} else {
2296 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2297 			ret = -EIO;
2298 	}
2299 	zc->length = length;
2300 	return ret;
2301 }
2302 #endif
2303 
2304 /* Similar to __sock_recv_timestamp, but does not require an skb */
2305 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2306 			struct scm_timestamping_internal *tss)
2307 {
2308 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2309 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2310 	bool has_timestamping = false;
2311 
2312 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2313 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2314 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2315 				if (new_tstamp) {
2316 					struct __kernel_timespec kts = {
2317 						.tv_sec = tss->ts[0].tv_sec,
2318 						.tv_nsec = tss->ts[0].tv_nsec,
2319 					};
2320 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2321 						 sizeof(kts), &kts);
2322 				} else {
2323 					struct __kernel_old_timespec ts_old = {
2324 						.tv_sec = tss->ts[0].tv_sec,
2325 						.tv_nsec = tss->ts[0].tv_nsec,
2326 					};
2327 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2328 						 sizeof(ts_old), &ts_old);
2329 				}
2330 			} else {
2331 				if (new_tstamp) {
2332 					struct __kernel_sock_timeval stv = {
2333 						.tv_sec = tss->ts[0].tv_sec,
2334 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2335 					};
2336 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2337 						 sizeof(stv), &stv);
2338 				} else {
2339 					struct __kernel_old_timeval tv = {
2340 						.tv_sec = tss->ts[0].tv_sec,
2341 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2342 					};
2343 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2344 						 sizeof(tv), &tv);
2345 				}
2346 			}
2347 		}
2348 
2349 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2350 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2351 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2352 			has_timestamping = true;
2353 		else
2354 			tss->ts[0] = (struct timespec64) {0};
2355 	}
2356 
2357 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2358 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2359 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2360 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2361 			has_timestamping = true;
2362 		else
2363 			tss->ts[2] = (struct timespec64) {0};
2364 	}
2365 
2366 	if (has_timestamping) {
2367 		tss->ts[1] = (struct timespec64) {0};
2368 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2369 			put_cmsg_scm_timestamping64(msg, tss);
2370 		else
2371 			put_cmsg_scm_timestamping(msg, tss);
2372 	}
2373 }
2374 
2375 static int tcp_inq_hint(struct sock *sk)
2376 {
2377 	const struct tcp_sock *tp = tcp_sk(sk);
2378 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2379 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2380 	int inq;
2381 
2382 	inq = rcv_nxt - copied_seq;
2383 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2384 		lock_sock(sk);
2385 		inq = tp->rcv_nxt - tp->copied_seq;
2386 		release_sock(sk);
2387 	}
2388 	/* After receiving a FIN, tell the user-space to continue reading
2389 	 * by returning a non-zero inq.
2390 	 */
2391 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2392 		inq = 1;
2393 	return inq;
2394 }
2395 
2396 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2397 struct tcp_xa_pool {
2398 	u8		max; /* max <= MAX_SKB_FRAGS */
2399 	u8		idx; /* idx <= max */
2400 	__u32		tokens[MAX_SKB_FRAGS];
2401 	netmem_ref	netmems[MAX_SKB_FRAGS];
2402 };
2403 
2404 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2405 {
2406 	int i;
2407 
2408 	/* Commit part that has been copied to user space. */
2409 	for (i = 0; i < p->idx; i++)
2410 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2411 			     (__force void *)p->netmems[i], GFP_KERNEL);
2412 	/* Rollback what has been pre-allocated and is no longer needed. */
2413 	for (; i < p->max; i++)
2414 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2415 
2416 	p->max = 0;
2417 	p->idx = 0;
2418 }
2419 
2420 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2421 {
2422 	if (!p->max)
2423 		return;
2424 
2425 	xa_lock_bh(&sk->sk_user_frags);
2426 
2427 	tcp_xa_pool_commit_locked(sk, p);
2428 
2429 	xa_unlock_bh(&sk->sk_user_frags);
2430 }
2431 
2432 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2433 			      unsigned int max_frags)
2434 {
2435 	int err, k;
2436 
2437 	if (p->idx < p->max)
2438 		return 0;
2439 
2440 	xa_lock_bh(&sk->sk_user_frags);
2441 
2442 	tcp_xa_pool_commit_locked(sk, p);
2443 
2444 	for (k = 0; k < max_frags; k++) {
2445 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2446 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2447 		if (err)
2448 			break;
2449 	}
2450 
2451 	xa_unlock_bh(&sk->sk_user_frags);
2452 
2453 	p->max = k;
2454 	p->idx = 0;
2455 	return k ? 0 : err;
2456 }
2457 
2458 /* On error, returns the -errno. On success, returns number of bytes sent to the
2459  * user. May not consume all of @remaining_len.
2460  */
2461 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2462 			      unsigned int offset, struct msghdr *msg,
2463 			      int remaining_len)
2464 {
2465 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2466 	struct tcp_xa_pool tcp_xa_pool;
2467 	unsigned int start;
2468 	int i, copy, n;
2469 	int sent = 0;
2470 	int err = 0;
2471 
2472 	tcp_xa_pool.max = 0;
2473 	tcp_xa_pool.idx = 0;
2474 	do {
2475 		start = skb_headlen(skb);
2476 
2477 		if (skb_frags_readable(skb)) {
2478 			err = -ENODEV;
2479 			goto out;
2480 		}
2481 
2482 		/* Copy header. */
2483 		copy = start - offset;
2484 		if (copy > 0) {
2485 			copy = min(copy, remaining_len);
2486 
2487 			n = copy_to_iter(skb->data + offset, copy,
2488 					 &msg->msg_iter);
2489 			if (n != copy) {
2490 				err = -EFAULT;
2491 				goto out;
2492 			}
2493 
2494 			offset += copy;
2495 			remaining_len -= copy;
2496 
2497 			/* First a dmabuf_cmsg for # bytes copied to user
2498 			 * buffer.
2499 			 */
2500 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2501 			dmabuf_cmsg.frag_size = copy;
2502 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2503 					       SO_DEVMEM_LINEAR,
2504 					       sizeof(dmabuf_cmsg),
2505 					       &dmabuf_cmsg);
2506 			if (err)
2507 				goto out;
2508 
2509 			sent += copy;
2510 
2511 			if (remaining_len == 0)
2512 				goto out;
2513 		}
2514 
2515 		/* after that, send information of dmabuf pages through a
2516 		 * sequence of cmsg
2517 		 */
2518 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2519 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2520 			struct net_iov *niov;
2521 			u64 frag_offset;
2522 			int end;
2523 
2524 			/* !skb_frags_readable() should indicate that ALL the
2525 			 * frags in this skb are dmabuf net_iovs. We're checking
2526 			 * for that flag above, but also check individual frags
2527 			 * here. If the tcp stack is not setting
2528 			 * skb_frags_readable() correctly, we still don't want
2529 			 * to crash here.
2530 			 */
2531 			if (!skb_frag_net_iov(frag)) {
2532 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2533 				err = -ENODEV;
2534 				goto out;
2535 			}
2536 
2537 			niov = skb_frag_net_iov(frag);
2538 			if (!net_is_devmem_iov(niov)) {
2539 				err = -ENODEV;
2540 				goto out;
2541 			}
2542 
2543 			end = start + skb_frag_size(frag);
2544 			copy = end - offset;
2545 
2546 			if (copy > 0) {
2547 				copy = min(copy, remaining_len);
2548 
2549 				frag_offset = net_iov_virtual_addr(niov) +
2550 					      skb_frag_off(frag) + offset -
2551 					      start;
2552 				dmabuf_cmsg.frag_offset = frag_offset;
2553 				dmabuf_cmsg.frag_size = copy;
2554 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2555 							 skb_shinfo(skb)->nr_frags - i);
2556 				if (err)
2557 					goto out;
2558 
2559 				/* Will perform the exchange later */
2560 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2561 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2562 
2563 				offset += copy;
2564 				remaining_len -= copy;
2565 
2566 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2567 						       SO_DEVMEM_DMABUF,
2568 						       sizeof(dmabuf_cmsg),
2569 						       &dmabuf_cmsg);
2570 				if (err)
2571 					goto out;
2572 
2573 				atomic_long_inc(&niov->pp_ref_count);
2574 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2575 
2576 				sent += copy;
2577 
2578 				if (remaining_len == 0)
2579 					goto out;
2580 			}
2581 			start = end;
2582 		}
2583 
2584 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2585 		if (!remaining_len)
2586 			goto out;
2587 
2588 		/* if remaining_len is not satisfied yet, we need to go to the
2589 		 * next frag in the frag_list to satisfy remaining_len.
2590 		 */
2591 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2592 
2593 		offset = offset - start;
2594 	} while (skb);
2595 
2596 	if (remaining_len) {
2597 		err = -EFAULT;
2598 		goto out;
2599 	}
2600 
2601 out:
2602 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2603 	if (!sent)
2604 		sent = err;
2605 
2606 	return sent;
2607 }
2608 
2609 /*
2610  *	This routine copies from a sock struct into the user buffer.
2611  *
2612  *	Technical note: in 2.3 we work on _locked_ socket, so that
2613  *	tricks with *seq access order and skb->users are not required.
2614  *	Probably, code can be easily improved even more.
2615  */
2616 
2617 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2618 			      int flags, struct scm_timestamping_internal *tss,
2619 			      int *cmsg_flags)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 	int last_copied_dmabuf = -1; /* uninitialized */
2623 	int copied = 0;
2624 	u32 peek_seq;
2625 	u32 *seq;
2626 	unsigned long used;
2627 	int err;
2628 	int target;		/* Read at least this many bytes */
2629 	long timeo;
2630 	struct sk_buff *skb, *last;
2631 	u32 peek_offset = 0;
2632 	u32 urg_hole = 0;
2633 
2634 	err = -ENOTCONN;
2635 	if (sk->sk_state == TCP_LISTEN)
2636 		goto out;
2637 
2638 	if (tp->recvmsg_inq) {
2639 		*cmsg_flags = TCP_CMSG_INQ;
2640 		msg->msg_get_inq = 1;
2641 	}
2642 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2643 
2644 	/* Urgent data needs to be handled specially. */
2645 	if (flags & MSG_OOB)
2646 		goto recv_urg;
2647 
2648 	if (unlikely(tp->repair)) {
2649 		err = -EPERM;
2650 		if (!(flags & MSG_PEEK))
2651 			goto out;
2652 
2653 		if (tp->repair_queue == TCP_SEND_QUEUE)
2654 			goto recv_sndq;
2655 
2656 		err = -EINVAL;
2657 		if (tp->repair_queue == TCP_NO_QUEUE)
2658 			goto out;
2659 
2660 		/* 'common' recv queue MSG_PEEK-ing */
2661 	}
2662 
2663 	seq = &tp->copied_seq;
2664 	if (flags & MSG_PEEK) {
2665 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2666 		peek_seq = tp->copied_seq + peek_offset;
2667 		seq = &peek_seq;
2668 	}
2669 
2670 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2671 
2672 	do {
2673 		u32 offset;
2674 
2675 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2676 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2677 			if (copied)
2678 				break;
2679 			if (signal_pending(current)) {
2680 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2681 				break;
2682 			}
2683 		}
2684 
2685 		/* Next get a buffer. */
2686 
2687 		last = skb_peek_tail(&sk->sk_receive_queue);
2688 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2689 			last = skb;
2690 			/* Now that we have two receive queues this
2691 			 * shouldn't happen.
2692 			 */
2693 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2694 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2695 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2696 				 flags))
2697 				break;
2698 
2699 			offset = *seq - TCP_SKB_CB(skb)->seq;
2700 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2701 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2702 				offset--;
2703 			}
2704 			if (offset < skb->len)
2705 				goto found_ok_skb;
2706 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2707 				goto found_fin_ok;
2708 			WARN(!(flags & MSG_PEEK),
2709 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2710 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2711 		}
2712 
2713 		/* Well, if we have backlog, try to process it now yet. */
2714 
2715 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2716 			break;
2717 
2718 		if (copied) {
2719 			if (!timeo ||
2720 			    sk->sk_err ||
2721 			    sk->sk_state == TCP_CLOSE ||
2722 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2723 			    signal_pending(current))
2724 				break;
2725 		} else {
2726 			if (sock_flag(sk, SOCK_DONE))
2727 				break;
2728 
2729 			if (sk->sk_err) {
2730 				copied = sock_error(sk);
2731 				break;
2732 			}
2733 
2734 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2735 				break;
2736 
2737 			if (sk->sk_state == TCP_CLOSE) {
2738 				/* This occurs when user tries to read
2739 				 * from never connected socket.
2740 				 */
2741 				copied = -ENOTCONN;
2742 				break;
2743 			}
2744 
2745 			if (!timeo) {
2746 				copied = -EAGAIN;
2747 				break;
2748 			}
2749 
2750 			if (signal_pending(current)) {
2751 				copied = sock_intr_errno(timeo);
2752 				break;
2753 			}
2754 		}
2755 
2756 		if (copied >= target) {
2757 			/* Do not sleep, just process backlog. */
2758 			__sk_flush_backlog(sk);
2759 		} else {
2760 			tcp_cleanup_rbuf(sk, copied);
2761 			err = sk_wait_data(sk, &timeo, last);
2762 			if (err < 0) {
2763 				err = copied ? : err;
2764 				goto out;
2765 			}
2766 		}
2767 
2768 		if ((flags & MSG_PEEK) &&
2769 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2770 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2771 					    current->comm,
2772 					    task_pid_nr(current));
2773 			peek_seq = tp->copied_seq + peek_offset;
2774 		}
2775 		continue;
2776 
2777 found_ok_skb:
2778 		/* Ok so how much can we use? */
2779 		used = skb->len - offset;
2780 		if (len < used)
2781 			used = len;
2782 
2783 		/* Do we have urgent data here? */
2784 		if (unlikely(tp->urg_data)) {
2785 			u32 urg_offset = tp->urg_seq - *seq;
2786 			if (urg_offset < used) {
2787 				if (!urg_offset) {
2788 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2789 						WRITE_ONCE(*seq, *seq + 1);
2790 						urg_hole++;
2791 						offset++;
2792 						used--;
2793 						if (!used)
2794 							goto skip_copy;
2795 					}
2796 				} else
2797 					used = urg_offset;
2798 			}
2799 		}
2800 
2801 		if (!(flags & MSG_TRUNC)) {
2802 			if (last_copied_dmabuf != -1 &&
2803 			    last_copied_dmabuf != !skb_frags_readable(skb))
2804 				break;
2805 
2806 			if (skb_frags_readable(skb)) {
2807 				err = skb_copy_datagram_msg(skb, offset, msg,
2808 							    used);
2809 				if (err) {
2810 					/* Exception. Bailout! */
2811 					if (!copied)
2812 						copied = -EFAULT;
2813 					break;
2814 				}
2815 			} else {
2816 				if (!(flags & MSG_SOCK_DEVMEM)) {
2817 					/* dmabuf skbs can only be received
2818 					 * with the MSG_SOCK_DEVMEM flag.
2819 					 */
2820 					if (!copied)
2821 						copied = -EFAULT;
2822 
2823 					break;
2824 				}
2825 
2826 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2827 							 used);
2828 				if (err <= 0) {
2829 					if (!copied)
2830 						copied = -EFAULT;
2831 
2832 					break;
2833 				}
2834 				used = err;
2835 			}
2836 		}
2837 
2838 		last_copied_dmabuf = !skb_frags_readable(skb);
2839 
2840 		WRITE_ONCE(*seq, *seq + used);
2841 		copied += used;
2842 		len -= used;
2843 		if (flags & MSG_PEEK)
2844 			sk_peek_offset_fwd(sk, used);
2845 		else
2846 			sk_peek_offset_bwd(sk, used);
2847 		tcp_rcv_space_adjust(sk);
2848 
2849 skip_copy:
2850 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2851 			WRITE_ONCE(tp->urg_data, 0);
2852 			tcp_fast_path_check(sk);
2853 		}
2854 
2855 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2856 			tcp_update_recv_tstamps(skb, tss);
2857 			*cmsg_flags |= TCP_CMSG_TS;
2858 		}
2859 
2860 		if (used + offset < skb->len)
2861 			continue;
2862 
2863 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2864 			goto found_fin_ok;
2865 		if (!(flags & MSG_PEEK))
2866 			tcp_eat_recv_skb(sk, skb);
2867 		continue;
2868 
2869 found_fin_ok:
2870 		/* Process the FIN. */
2871 		WRITE_ONCE(*seq, *seq + 1);
2872 		if (!(flags & MSG_PEEK))
2873 			tcp_eat_recv_skb(sk, skb);
2874 		break;
2875 	} while (len > 0);
2876 
2877 	/* According to UNIX98, msg_name/msg_namelen are ignored
2878 	 * on connected socket. I was just happy when found this 8) --ANK
2879 	 */
2880 
2881 	/* Clean up data we have read: This will do ACK frames. */
2882 	tcp_cleanup_rbuf(sk, copied);
2883 	return copied;
2884 
2885 out:
2886 	return err;
2887 
2888 recv_urg:
2889 	err = tcp_recv_urg(sk, msg, len, flags);
2890 	goto out;
2891 
2892 recv_sndq:
2893 	err = tcp_peek_sndq(sk, msg, len);
2894 	goto out;
2895 }
2896 
2897 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2898 		int *addr_len)
2899 {
2900 	int cmsg_flags = 0, ret;
2901 	struct scm_timestamping_internal tss;
2902 
2903 	if (unlikely(flags & MSG_ERRQUEUE))
2904 		return inet_recv_error(sk, msg, len, addr_len);
2905 
2906 	if (sk_can_busy_loop(sk) &&
2907 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2908 	    sk->sk_state == TCP_ESTABLISHED)
2909 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2910 
2911 	lock_sock(sk);
2912 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2913 	release_sock(sk);
2914 
2915 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2916 		if (cmsg_flags & TCP_CMSG_TS)
2917 			tcp_recv_timestamp(msg, sk, &tss);
2918 		if (msg->msg_get_inq) {
2919 			msg->msg_inq = tcp_inq_hint(sk);
2920 			if (cmsg_flags & TCP_CMSG_INQ)
2921 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2922 					 sizeof(msg->msg_inq), &msg->msg_inq);
2923 		}
2924 	}
2925 	return ret;
2926 }
2927 EXPORT_IPV6_MOD(tcp_recvmsg);
2928 
2929 void tcp_set_state(struct sock *sk, int state)
2930 {
2931 	int oldstate = sk->sk_state;
2932 
2933 	/* We defined a new enum for TCP states that are exported in BPF
2934 	 * so as not force the internal TCP states to be frozen. The
2935 	 * following checks will detect if an internal state value ever
2936 	 * differs from the BPF value. If this ever happens, then we will
2937 	 * need to remap the internal value to the BPF value before calling
2938 	 * tcp_call_bpf_2arg.
2939 	 */
2940 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2941 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2942 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2943 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2944 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2945 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2946 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2947 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2948 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2949 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2950 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2951 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2952 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2953 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2954 
2955 	/* bpf uapi header bpf.h defines an anonymous enum with values
2956 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2957 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2958 	 * But clang built vmlinux does not have this enum in DWARF
2959 	 * since clang removes the above code before generating IR/debuginfo.
2960 	 * Let us explicitly emit the type debuginfo to ensure the
2961 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2962 	 * regardless of which compiler is used.
2963 	 */
2964 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2965 
2966 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2967 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2968 
2969 	switch (state) {
2970 	case TCP_ESTABLISHED:
2971 		if (oldstate != TCP_ESTABLISHED)
2972 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2973 		break;
2974 	case TCP_CLOSE_WAIT:
2975 		if (oldstate == TCP_SYN_RECV)
2976 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2977 		break;
2978 
2979 	case TCP_CLOSE:
2980 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2981 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2982 
2983 		sk->sk_prot->unhash(sk);
2984 		if (inet_csk(sk)->icsk_bind_hash &&
2985 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2986 			inet_put_port(sk);
2987 		fallthrough;
2988 	default:
2989 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2990 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2991 	}
2992 
2993 	/* Change state AFTER socket is unhashed to avoid closed
2994 	 * socket sitting in hash tables.
2995 	 */
2996 	inet_sk_state_store(sk, state);
2997 }
2998 EXPORT_SYMBOL_GPL(tcp_set_state);
2999 
3000 /*
3001  *	State processing on a close. This implements the state shift for
3002  *	sending our FIN frame. Note that we only send a FIN for some
3003  *	states. A shutdown() may have already sent the FIN, or we may be
3004  *	closed.
3005  */
3006 
3007 static const unsigned char new_state[16] = {
3008   /* current state:        new state:      action:	*/
3009   [0 /* (Invalid) */]	= TCP_CLOSE,
3010   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3011   [TCP_SYN_SENT]	= TCP_CLOSE,
3012   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3013   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
3014   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
3015   [TCP_TIME_WAIT]	= TCP_CLOSE,
3016   [TCP_CLOSE]		= TCP_CLOSE,
3017   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
3018   [TCP_LAST_ACK]	= TCP_LAST_ACK,
3019   [TCP_LISTEN]		= TCP_CLOSE,
3020   [TCP_CLOSING]		= TCP_CLOSING,
3021   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3022 };
3023 
3024 static int tcp_close_state(struct sock *sk)
3025 {
3026 	int next = (int)new_state[sk->sk_state];
3027 	int ns = next & TCP_STATE_MASK;
3028 
3029 	tcp_set_state(sk, ns);
3030 
3031 	return next & TCP_ACTION_FIN;
3032 }
3033 
3034 /*
3035  *	Shutdown the sending side of a connection. Much like close except
3036  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3037  */
3038 
3039 void tcp_shutdown(struct sock *sk, int how)
3040 {
3041 	/*	We need to grab some memory, and put together a FIN,
3042 	 *	and then put it into the queue to be sent.
3043 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3044 	 */
3045 	if (!(how & SEND_SHUTDOWN))
3046 		return;
3047 
3048 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3049 	if ((1 << sk->sk_state) &
3050 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3051 	     TCPF_CLOSE_WAIT)) {
3052 		/* Clear out any half completed packets.  FIN if needed. */
3053 		if (tcp_close_state(sk))
3054 			tcp_send_fin(sk);
3055 	}
3056 }
3057 EXPORT_IPV6_MOD(tcp_shutdown);
3058 
3059 int tcp_orphan_count_sum(void)
3060 {
3061 	int i, total = 0;
3062 
3063 	for_each_possible_cpu(i)
3064 		total += per_cpu(tcp_orphan_count, i);
3065 
3066 	return max(total, 0);
3067 }
3068 
3069 static int tcp_orphan_cache;
3070 static struct timer_list tcp_orphan_timer;
3071 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3072 
3073 static void tcp_orphan_update(struct timer_list *unused)
3074 {
3075 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3076 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3077 }
3078 
3079 static bool tcp_too_many_orphans(int shift)
3080 {
3081 	return READ_ONCE(tcp_orphan_cache) << shift >
3082 		READ_ONCE(sysctl_tcp_max_orphans);
3083 }
3084 
3085 static bool tcp_out_of_memory(const struct sock *sk)
3086 {
3087 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3088 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3089 		return true;
3090 	return false;
3091 }
3092 
3093 bool tcp_check_oom(const struct sock *sk, int shift)
3094 {
3095 	bool too_many_orphans, out_of_socket_memory;
3096 
3097 	too_many_orphans = tcp_too_many_orphans(shift);
3098 	out_of_socket_memory = tcp_out_of_memory(sk);
3099 
3100 	if (too_many_orphans)
3101 		net_info_ratelimited("too many orphaned sockets\n");
3102 	if (out_of_socket_memory)
3103 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3104 	return too_many_orphans || out_of_socket_memory;
3105 }
3106 
3107 void __tcp_close(struct sock *sk, long timeout)
3108 {
3109 	struct sk_buff *skb;
3110 	int data_was_unread = 0;
3111 	int state;
3112 
3113 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3114 
3115 	if (sk->sk_state == TCP_LISTEN) {
3116 		tcp_set_state(sk, TCP_CLOSE);
3117 
3118 		/* Special case. */
3119 		inet_csk_listen_stop(sk);
3120 
3121 		goto adjudge_to_death;
3122 	}
3123 
3124 	/*  We need to flush the recv. buffs.  We do this only on the
3125 	 *  descriptor close, not protocol-sourced closes, because the
3126 	 *  reader process may not have drained the data yet!
3127 	 */
3128 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3129 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3130 
3131 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3132 			len--;
3133 		data_was_unread += len;
3134 		__kfree_skb(skb);
3135 	}
3136 
3137 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3138 	if (sk->sk_state == TCP_CLOSE)
3139 		goto adjudge_to_death;
3140 
3141 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3142 	 * data was lost. To witness the awful effects of the old behavior of
3143 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3144 	 * GET in an FTP client, suspend the process, wait for the client to
3145 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3146 	 * Note: timeout is always zero in such a case.
3147 	 */
3148 	if (unlikely(tcp_sk(sk)->repair)) {
3149 		sk->sk_prot->disconnect(sk, 0);
3150 	} else if (data_was_unread) {
3151 		/* Unread data was tossed, zap the connection. */
3152 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3153 		tcp_set_state(sk, TCP_CLOSE);
3154 		tcp_send_active_reset(sk, sk->sk_allocation,
3155 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3156 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3157 		/* Check zero linger _after_ checking for unread data. */
3158 		sk->sk_prot->disconnect(sk, 0);
3159 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3160 	} else if (tcp_close_state(sk)) {
3161 		/* We FIN if the application ate all the data before
3162 		 * zapping the connection.
3163 		 */
3164 
3165 		/* RED-PEN. Formally speaking, we have broken TCP state
3166 		 * machine. State transitions:
3167 		 *
3168 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3169 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3170 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3171 		 *
3172 		 * are legal only when FIN has been sent (i.e. in window),
3173 		 * rather than queued out of window. Purists blame.
3174 		 *
3175 		 * F.e. "RFC state" is ESTABLISHED,
3176 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3177 		 *
3178 		 * The visible declinations are that sometimes
3179 		 * we enter time-wait state, when it is not required really
3180 		 * (harmless), do not send active resets, when they are
3181 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3182 		 * they look as CLOSING or LAST_ACK for Linux)
3183 		 * Probably, I missed some more holelets.
3184 		 * 						--ANK
3185 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3186 		 * in a single packet! (May consider it later but will
3187 		 * probably need API support or TCP_CORK SYN-ACK until
3188 		 * data is written and socket is closed.)
3189 		 */
3190 		tcp_send_fin(sk);
3191 	}
3192 
3193 	sk_stream_wait_close(sk, timeout);
3194 
3195 adjudge_to_death:
3196 	state = sk->sk_state;
3197 	sock_hold(sk);
3198 	sock_orphan(sk);
3199 
3200 	local_bh_disable();
3201 	bh_lock_sock(sk);
3202 	/* remove backlog if any, without releasing ownership. */
3203 	__release_sock(sk);
3204 
3205 	this_cpu_inc(tcp_orphan_count);
3206 
3207 	/* Have we already been destroyed by a softirq or backlog? */
3208 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3209 		goto out;
3210 
3211 	/*	This is a (useful) BSD violating of the RFC. There is a
3212 	 *	problem with TCP as specified in that the other end could
3213 	 *	keep a socket open forever with no application left this end.
3214 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3215 	 *	our end. If they send after that then tough - BUT: long enough
3216 	 *	that we won't make the old 4*rto = almost no time - whoops
3217 	 *	reset mistake.
3218 	 *
3219 	 *	Nope, it was not mistake. It is really desired behaviour
3220 	 *	f.e. on http servers, when such sockets are useless, but
3221 	 *	consume significant resources. Let's do it with special
3222 	 *	linger2	option.					--ANK
3223 	 */
3224 
3225 	if (sk->sk_state == TCP_FIN_WAIT2) {
3226 		struct tcp_sock *tp = tcp_sk(sk);
3227 		if (READ_ONCE(tp->linger2) < 0) {
3228 			tcp_set_state(sk, TCP_CLOSE);
3229 			tcp_send_active_reset(sk, GFP_ATOMIC,
3230 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3231 			__NET_INC_STATS(sock_net(sk),
3232 					LINUX_MIB_TCPABORTONLINGER);
3233 		} else {
3234 			const int tmo = tcp_fin_time(sk);
3235 
3236 			if (tmo > TCP_TIMEWAIT_LEN) {
3237 				tcp_reset_keepalive_timer(sk,
3238 						tmo - TCP_TIMEWAIT_LEN);
3239 			} else {
3240 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3241 				goto out;
3242 			}
3243 		}
3244 	}
3245 	if (sk->sk_state != TCP_CLOSE) {
3246 		if (tcp_check_oom(sk, 0)) {
3247 			tcp_set_state(sk, TCP_CLOSE);
3248 			tcp_send_active_reset(sk, GFP_ATOMIC,
3249 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3250 			__NET_INC_STATS(sock_net(sk),
3251 					LINUX_MIB_TCPABORTONMEMORY);
3252 		} else if (!check_net(sock_net(sk))) {
3253 			/* Not possible to send reset; just close */
3254 			tcp_set_state(sk, TCP_CLOSE);
3255 		}
3256 	}
3257 
3258 	if (sk->sk_state == TCP_CLOSE) {
3259 		struct request_sock *req;
3260 
3261 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3262 						lockdep_sock_is_held(sk));
3263 		/* We could get here with a non-NULL req if the socket is
3264 		 * aborted (e.g., closed with unread data) before 3WHS
3265 		 * finishes.
3266 		 */
3267 		if (req)
3268 			reqsk_fastopen_remove(sk, req, false);
3269 		inet_csk_destroy_sock(sk);
3270 	}
3271 	/* Otherwise, socket is reprieved until protocol close. */
3272 
3273 out:
3274 	bh_unlock_sock(sk);
3275 	local_bh_enable();
3276 }
3277 
3278 void tcp_close(struct sock *sk, long timeout)
3279 {
3280 	lock_sock(sk);
3281 	__tcp_close(sk, timeout);
3282 	release_sock(sk);
3283 	if (!sk->sk_net_refcnt)
3284 		inet_csk_clear_xmit_timers_sync(sk);
3285 	sock_put(sk);
3286 }
3287 EXPORT_SYMBOL(tcp_close);
3288 
3289 /* These states need RST on ABORT according to RFC793 */
3290 
3291 static inline bool tcp_need_reset(int state)
3292 {
3293 	return (1 << state) &
3294 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3295 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3296 }
3297 
3298 static void tcp_rtx_queue_purge(struct sock *sk)
3299 {
3300 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3301 
3302 	tcp_sk(sk)->highest_sack = NULL;
3303 	while (p) {
3304 		struct sk_buff *skb = rb_to_skb(p);
3305 
3306 		p = rb_next(p);
3307 		/* Since we are deleting whole queue, no need to
3308 		 * list_del(&skb->tcp_tsorted_anchor)
3309 		 */
3310 		tcp_rtx_queue_unlink(skb, sk);
3311 		tcp_wmem_free_skb(sk, skb);
3312 	}
3313 }
3314 
3315 void tcp_write_queue_purge(struct sock *sk)
3316 {
3317 	struct sk_buff *skb;
3318 
3319 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3320 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3321 		tcp_skb_tsorted_anchor_cleanup(skb);
3322 		tcp_wmem_free_skb(sk, skb);
3323 	}
3324 	tcp_rtx_queue_purge(sk);
3325 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3326 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3327 	tcp_sk(sk)->packets_out = 0;
3328 	inet_csk(sk)->icsk_backoff = 0;
3329 }
3330 
3331 int tcp_disconnect(struct sock *sk, int flags)
3332 {
3333 	struct inet_sock *inet = inet_sk(sk);
3334 	struct inet_connection_sock *icsk = inet_csk(sk);
3335 	struct tcp_sock *tp = tcp_sk(sk);
3336 	int old_state = sk->sk_state;
3337 	u32 seq;
3338 
3339 	if (old_state != TCP_CLOSE)
3340 		tcp_set_state(sk, TCP_CLOSE);
3341 
3342 	/* ABORT function of RFC793 */
3343 	if (old_state == TCP_LISTEN) {
3344 		inet_csk_listen_stop(sk);
3345 	} else if (unlikely(tp->repair)) {
3346 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3347 	} else if (tcp_need_reset(old_state)) {
3348 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3349 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3350 	} else if (tp->snd_nxt != tp->write_seq &&
3351 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3352 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3353 		 * states
3354 		 */
3355 		tcp_send_active_reset(sk, gfp_any(),
3356 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3357 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3358 	} else if (old_state == TCP_SYN_SENT)
3359 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3360 
3361 	tcp_clear_xmit_timers(sk);
3362 	__skb_queue_purge(&sk->sk_receive_queue);
3363 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3364 	WRITE_ONCE(tp->urg_data, 0);
3365 	sk_set_peek_off(sk, -1);
3366 	tcp_write_queue_purge(sk);
3367 	tcp_fastopen_active_disable_ofo_check(sk);
3368 	skb_rbtree_purge(&tp->out_of_order_queue);
3369 
3370 	inet->inet_dport = 0;
3371 
3372 	inet_bhash2_reset_saddr(sk);
3373 
3374 	WRITE_ONCE(sk->sk_shutdown, 0);
3375 	sock_reset_flag(sk, SOCK_DONE);
3376 	tp->srtt_us = 0;
3377 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3378 	tp->rcv_rtt_last_tsecr = 0;
3379 
3380 	seq = tp->write_seq + tp->max_window + 2;
3381 	if (!seq)
3382 		seq = 1;
3383 	WRITE_ONCE(tp->write_seq, seq);
3384 
3385 	icsk->icsk_backoff = 0;
3386 	icsk->icsk_probes_out = 0;
3387 	icsk->icsk_probes_tstamp = 0;
3388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3389 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3390 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3391 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3392 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3393 	tp->snd_cwnd_cnt = 0;
3394 	tp->is_cwnd_limited = 0;
3395 	tp->max_packets_out = 0;
3396 	tp->window_clamp = 0;
3397 	tp->delivered = 0;
3398 	tp->delivered_ce = 0;
3399 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3400 		icsk->icsk_ca_ops->release(sk);
3401 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3402 	icsk->icsk_ca_initialized = 0;
3403 	tcp_set_ca_state(sk, TCP_CA_Open);
3404 	tp->is_sack_reneg = 0;
3405 	tcp_clear_retrans(tp);
3406 	tp->total_retrans = 0;
3407 	inet_csk_delack_init(sk);
3408 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3409 	 * issue in __tcp_select_window()
3410 	 */
3411 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3412 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3413 	__sk_dst_reset(sk);
3414 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3415 	tcp_saved_syn_free(tp);
3416 	tp->compressed_ack = 0;
3417 	tp->segs_in = 0;
3418 	tp->segs_out = 0;
3419 	tp->bytes_sent = 0;
3420 	tp->bytes_acked = 0;
3421 	tp->bytes_received = 0;
3422 	tp->bytes_retrans = 0;
3423 	tp->data_segs_in = 0;
3424 	tp->data_segs_out = 0;
3425 	tp->duplicate_sack[0].start_seq = 0;
3426 	tp->duplicate_sack[0].end_seq = 0;
3427 	tp->dsack_dups = 0;
3428 	tp->reord_seen = 0;
3429 	tp->retrans_out = 0;
3430 	tp->sacked_out = 0;
3431 	tp->tlp_high_seq = 0;
3432 	tp->last_oow_ack_time = 0;
3433 	tp->plb_rehash = 0;
3434 	/* There's a bubble in the pipe until at least the first ACK. */
3435 	tp->app_limited = ~0U;
3436 	tp->rate_app_limited = 1;
3437 	tp->rack.mstamp = 0;
3438 	tp->rack.advanced = 0;
3439 	tp->rack.reo_wnd_steps = 1;
3440 	tp->rack.last_delivered = 0;
3441 	tp->rack.reo_wnd_persist = 0;
3442 	tp->rack.dsack_seen = 0;
3443 	tp->syn_data_acked = 0;
3444 	tp->syn_fastopen_child = 0;
3445 	tp->rx_opt.saw_tstamp = 0;
3446 	tp->rx_opt.dsack = 0;
3447 	tp->rx_opt.num_sacks = 0;
3448 	tp->rcv_ooopack = 0;
3449 
3450 
3451 	/* Clean up fastopen related fields */
3452 	tcp_free_fastopen_req(tp);
3453 	inet_clear_bit(DEFER_CONNECT, sk);
3454 	tp->fastopen_client_fail = 0;
3455 
3456 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3457 
3458 	if (sk->sk_frag.page) {
3459 		put_page(sk->sk_frag.page);
3460 		sk->sk_frag.page = NULL;
3461 		sk->sk_frag.offset = 0;
3462 	}
3463 	sk_error_report(sk);
3464 	return 0;
3465 }
3466 EXPORT_SYMBOL(tcp_disconnect);
3467 
3468 static inline bool tcp_can_repair_sock(const struct sock *sk)
3469 {
3470 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3471 		(sk->sk_state != TCP_LISTEN);
3472 }
3473 
3474 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3475 {
3476 	struct tcp_repair_window opt;
3477 
3478 	if (!tp->repair)
3479 		return -EPERM;
3480 
3481 	if (len != sizeof(opt))
3482 		return -EINVAL;
3483 
3484 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3485 		return -EFAULT;
3486 
3487 	if (opt.max_window < opt.snd_wnd)
3488 		return -EINVAL;
3489 
3490 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3491 		return -EINVAL;
3492 
3493 	if (after(opt.rcv_wup, tp->rcv_nxt))
3494 		return -EINVAL;
3495 
3496 	tp->snd_wl1	= opt.snd_wl1;
3497 	tp->snd_wnd	= opt.snd_wnd;
3498 	tp->max_window	= opt.max_window;
3499 
3500 	tp->rcv_wnd	= opt.rcv_wnd;
3501 	tp->rcv_wup	= opt.rcv_wup;
3502 
3503 	return 0;
3504 }
3505 
3506 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3507 		unsigned int len)
3508 {
3509 	struct tcp_sock *tp = tcp_sk(sk);
3510 	struct tcp_repair_opt opt;
3511 	size_t offset = 0;
3512 
3513 	while (len >= sizeof(opt)) {
3514 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3515 			return -EFAULT;
3516 
3517 		offset += sizeof(opt);
3518 		len -= sizeof(opt);
3519 
3520 		switch (opt.opt_code) {
3521 		case TCPOPT_MSS:
3522 			tp->rx_opt.mss_clamp = opt.opt_val;
3523 			tcp_mtup_init(sk);
3524 			break;
3525 		case TCPOPT_WINDOW:
3526 			{
3527 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3528 				u16 rcv_wscale = opt.opt_val >> 16;
3529 
3530 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3531 					return -EFBIG;
3532 
3533 				tp->rx_opt.snd_wscale = snd_wscale;
3534 				tp->rx_opt.rcv_wscale = rcv_wscale;
3535 				tp->rx_opt.wscale_ok = 1;
3536 			}
3537 			break;
3538 		case TCPOPT_SACK_PERM:
3539 			if (opt.opt_val != 0)
3540 				return -EINVAL;
3541 
3542 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3543 			break;
3544 		case TCPOPT_TIMESTAMP:
3545 			if (opt.opt_val != 0)
3546 				return -EINVAL;
3547 
3548 			tp->rx_opt.tstamp_ok = 1;
3549 			break;
3550 		}
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3557 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3558 
3559 static void tcp_enable_tx_delay(void)
3560 {
3561 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3562 		static int __tcp_tx_delay_enabled = 0;
3563 
3564 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3565 			static_branch_enable(&tcp_tx_delay_enabled);
3566 			pr_info("TCP_TX_DELAY enabled\n");
3567 		}
3568 	}
3569 }
3570 
3571 /* When set indicates to always queue non-full frames.  Later the user clears
3572  * this option and we transmit any pending partial frames in the queue.  This is
3573  * meant to be used alongside sendfile() to get properly filled frames when the
3574  * user (for example) must write out headers with a write() call first and then
3575  * use sendfile to send out the data parts.
3576  *
3577  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3578  * TCP_NODELAY.
3579  */
3580 void __tcp_sock_set_cork(struct sock *sk, bool on)
3581 {
3582 	struct tcp_sock *tp = tcp_sk(sk);
3583 
3584 	if (on) {
3585 		tp->nonagle |= TCP_NAGLE_CORK;
3586 	} else {
3587 		tp->nonagle &= ~TCP_NAGLE_CORK;
3588 		if (tp->nonagle & TCP_NAGLE_OFF)
3589 			tp->nonagle |= TCP_NAGLE_PUSH;
3590 		tcp_push_pending_frames(sk);
3591 	}
3592 }
3593 
3594 void tcp_sock_set_cork(struct sock *sk, bool on)
3595 {
3596 	lock_sock(sk);
3597 	__tcp_sock_set_cork(sk, on);
3598 	release_sock(sk);
3599 }
3600 EXPORT_SYMBOL(tcp_sock_set_cork);
3601 
3602 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3603  * remembered, but it is not activated until cork is cleared.
3604  *
3605  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3606  * even TCP_CORK for currently queued segments.
3607  */
3608 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3609 {
3610 	if (on) {
3611 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3612 		tcp_push_pending_frames(sk);
3613 	} else {
3614 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3615 	}
3616 }
3617 
3618 void tcp_sock_set_nodelay(struct sock *sk)
3619 {
3620 	lock_sock(sk);
3621 	__tcp_sock_set_nodelay(sk, true);
3622 	release_sock(sk);
3623 }
3624 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3625 
3626 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3627 {
3628 	if (!val) {
3629 		inet_csk_enter_pingpong_mode(sk);
3630 		return;
3631 	}
3632 
3633 	inet_csk_exit_pingpong_mode(sk);
3634 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3635 	    inet_csk_ack_scheduled(sk)) {
3636 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3637 		tcp_cleanup_rbuf(sk, 1);
3638 		if (!(val & 1))
3639 			inet_csk_enter_pingpong_mode(sk);
3640 	}
3641 }
3642 
3643 void tcp_sock_set_quickack(struct sock *sk, int val)
3644 {
3645 	lock_sock(sk);
3646 	__tcp_sock_set_quickack(sk, val);
3647 	release_sock(sk);
3648 }
3649 EXPORT_SYMBOL(tcp_sock_set_quickack);
3650 
3651 int tcp_sock_set_syncnt(struct sock *sk, int val)
3652 {
3653 	if (val < 1 || val > MAX_TCP_SYNCNT)
3654 		return -EINVAL;
3655 
3656 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3657 	return 0;
3658 }
3659 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3660 
3661 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3662 {
3663 	/* Cap the max time in ms TCP will retry or probe the window
3664 	 * before giving up and aborting (ETIMEDOUT) a connection.
3665 	 */
3666 	if (val < 0)
3667 		return -EINVAL;
3668 
3669 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3670 	return 0;
3671 }
3672 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3673 
3674 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3675 {
3676 	struct tcp_sock *tp = tcp_sk(sk);
3677 
3678 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3679 		return -EINVAL;
3680 
3681 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3682 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3683 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3684 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3685 		u32 elapsed = keepalive_time_elapsed(tp);
3686 
3687 		if (tp->keepalive_time > elapsed)
3688 			elapsed = tp->keepalive_time - elapsed;
3689 		else
3690 			elapsed = 0;
3691 		tcp_reset_keepalive_timer(sk, elapsed);
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 int tcp_sock_set_keepidle(struct sock *sk, int val)
3698 {
3699 	int err;
3700 
3701 	lock_sock(sk);
3702 	err = tcp_sock_set_keepidle_locked(sk, val);
3703 	release_sock(sk);
3704 	return err;
3705 }
3706 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3707 
3708 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3709 {
3710 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3711 		return -EINVAL;
3712 
3713 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3714 	return 0;
3715 }
3716 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3717 
3718 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3719 {
3720 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3721 		return -EINVAL;
3722 
3723 	/* Paired with READ_ONCE() in keepalive_probes() */
3724 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3725 	return 0;
3726 }
3727 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3728 
3729 int tcp_set_window_clamp(struct sock *sk, int val)
3730 {
3731 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3732 	struct tcp_sock *tp = tcp_sk(sk);
3733 
3734 	if (!val) {
3735 		if (sk->sk_state != TCP_CLOSE)
3736 			return -EINVAL;
3737 		WRITE_ONCE(tp->window_clamp, 0);
3738 		return 0;
3739 	}
3740 
3741 	old_window_clamp = tp->window_clamp;
3742 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3743 
3744 	if (new_window_clamp == old_window_clamp)
3745 		return 0;
3746 
3747 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3748 
3749 	/* Need to apply the reserved mem provisioning only
3750 	 * when shrinking the window clamp.
3751 	 */
3752 	if (new_window_clamp < old_window_clamp) {
3753 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3754 	} else {
3755 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3756 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3757 	}
3758 	return 0;
3759 }
3760 
3761 /*
3762  *	Socket option code for TCP.
3763  */
3764 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3765 		      sockptr_t optval, unsigned int optlen)
3766 {
3767 	struct tcp_sock *tp = tcp_sk(sk);
3768 	struct inet_connection_sock *icsk = inet_csk(sk);
3769 	struct net *net = sock_net(sk);
3770 	int val;
3771 	int err = 0;
3772 
3773 	/* These are data/string values, all the others are ints */
3774 	switch (optname) {
3775 	case TCP_CONGESTION: {
3776 		char name[TCP_CA_NAME_MAX];
3777 
3778 		if (optlen < 1)
3779 			return -EINVAL;
3780 
3781 		val = strncpy_from_sockptr(name, optval,
3782 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3783 		if (val < 0)
3784 			return -EFAULT;
3785 		name[val] = 0;
3786 
3787 		sockopt_lock_sock(sk);
3788 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3789 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3790 								    CAP_NET_ADMIN));
3791 		sockopt_release_sock(sk);
3792 		return err;
3793 	}
3794 	case TCP_ULP: {
3795 		char name[TCP_ULP_NAME_MAX];
3796 
3797 		if (optlen < 1)
3798 			return -EINVAL;
3799 
3800 		val = strncpy_from_sockptr(name, optval,
3801 					min_t(long, TCP_ULP_NAME_MAX - 1,
3802 					      optlen));
3803 		if (val < 0)
3804 			return -EFAULT;
3805 		name[val] = 0;
3806 
3807 		sockopt_lock_sock(sk);
3808 		err = tcp_set_ulp(sk, name);
3809 		sockopt_release_sock(sk);
3810 		return err;
3811 	}
3812 	case TCP_FASTOPEN_KEY: {
3813 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3814 		__u8 *backup_key = NULL;
3815 
3816 		/* Allow a backup key as well to facilitate key rotation
3817 		 * First key is the active one.
3818 		 */
3819 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3820 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3821 			return -EINVAL;
3822 
3823 		if (copy_from_sockptr(key, optval, optlen))
3824 			return -EFAULT;
3825 
3826 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3827 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3828 
3829 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3830 	}
3831 	default:
3832 		/* fallthru */
3833 		break;
3834 	}
3835 
3836 	if (optlen < sizeof(int))
3837 		return -EINVAL;
3838 
3839 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3840 		return -EFAULT;
3841 
3842 	/* Handle options that can be set without locking the socket. */
3843 	switch (optname) {
3844 	case TCP_SYNCNT:
3845 		return tcp_sock_set_syncnt(sk, val);
3846 	case TCP_USER_TIMEOUT:
3847 		return tcp_sock_set_user_timeout(sk, val);
3848 	case TCP_KEEPINTVL:
3849 		return tcp_sock_set_keepintvl(sk, val);
3850 	case TCP_KEEPCNT:
3851 		return tcp_sock_set_keepcnt(sk, val);
3852 	case TCP_LINGER2:
3853 		if (val < 0)
3854 			WRITE_ONCE(tp->linger2, -1);
3855 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3856 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3857 		else
3858 			WRITE_ONCE(tp->linger2, val * HZ);
3859 		return 0;
3860 	case TCP_DEFER_ACCEPT:
3861 		/* Translate value in seconds to number of retransmits */
3862 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3863 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3864 					   TCP_RTO_MAX / HZ));
3865 		return 0;
3866 	case TCP_RTO_MAX_MS:
3867 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3868 			return -EINVAL;
3869 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3870 		return 0;
3871 	case TCP_RTO_MIN_US: {
3872 		int rto_min = usecs_to_jiffies(val);
3873 
3874 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3875 			return -EINVAL;
3876 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3877 		return 0;
3878 	}
3879 	case TCP_DELACK_MAX_US: {
3880 		int delack_max = usecs_to_jiffies(val);
3881 
3882 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3883 			return -EINVAL;
3884 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3885 		return 0;
3886 	}
3887 	}
3888 
3889 	sockopt_lock_sock(sk);
3890 
3891 	switch (optname) {
3892 	case TCP_MAXSEG:
3893 		/* Values greater than interface MTU won't take effect. However
3894 		 * at the point when this call is done we typically don't yet
3895 		 * know which interface is going to be used
3896 		 */
3897 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3898 			err = -EINVAL;
3899 			break;
3900 		}
3901 		tp->rx_opt.user_mss = val;
3902 		break;
3903 
3904 	case TCP_NODELAY:
3905 		__tcp_sock_set_nodelay(sk, val);
3906 		break;
3907 
3908 	case TCP_THIN_LINEAR_TIMEOUTS:
3909 		if (val < 0 || val > 1)
3910 			err = -EINVAL;
3911 		else
3912 			tp->thin_lto = val;
3913 		break;
3914 
3915 	case TCP_THIN_DUPACK:
3916 		if (val < 0 || val > 1)
3917 			err = -EINVAL;
3918 		break;
3919 
3920 	case TCP_REPAIR:
3921 		if (!tcp_can_repair_sock(sk))
3922 			err = -EPERM;
3923 		else if (val == TCP_REPAIR_ON) {
3924 			tp->repair = 1;
3925 			sk->sk_reuse = SK_FORCE_REUSE;
3926 			tp->repair_queue = TCP_NO_QUEUE;
3927 		} else if (val == TCP_REPAIR_OFF) {
3928 			tp->repair = 0;
3929 			sk->sk_reuse = SK_NO_REUSE;
3930 			tcp_send_window_probe(sk);
3931 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3932 			tp->repair = 0;
3933 			sk->sk_reuse = SK_NO_REUSE;
3934 		} else
3935 			err = -EINVAL;
3936 
3937 		break;
3938 
3939 	case TCP_REPAIR_QUEUE:
3940 		if (!tp->repair)
3941 			err = -EPERM;
3942 		else if ((unsigned int)val < TCP_QUEUES_NR)
3943 			tp->repair_queue = val;
3944 		else
3945 			err = -EINVAL;
3946 		break;
3947 
3948 	case TCP_QUEUE_SEQ:
3949 		if (sk->sk_state != TCP_CLOSE) {
3950 			err = -EPERM;
3951 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3952 			if (!tcp_rtx_queue_empty(sk))
3953 				err = -EPERM;
3954 			else
3955 				WRITE_ONCE(tp->write_seq, val);
3956 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3957 			if (tp->rcv_nxt != tp->copied_seq) {
3958 				err = -EPERM;
3959 			} else {
3960 				WRITE_ONCE(tp->rcv_nxt, val);
3961 				WRITE_ONCE(tp->copied_seq, val);
3962 			}
3963 		} else {
3964 			err = -EINVAL;
3965 		}
3966 		break;
3967 
3968 	case TCP_REPAIR_OPTIONS:
3969 		if (!tp->repair)
3970 			err = -EINVAL;
3971 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3972 			err = tcp_repair_options_est(sk, optval, optlen);
3973 		else
3974 			err = -EPERM;
3975 		break;
3976 
3977 	case TCP_CORK:
3978 		__tcp_sock_set_cork(sk, val);
3979 		break;
3980 
3981 	case TCP_KEEPIDLE:
3982 		err = tcp_sock_set_keepidle_locked(sk, val);
3983 		break;
3984 	case TCP_SAVE_SYN:
3985 		/* 0: disable, 1: enable, 2: start from ether_header */
3986 		if (val < 0 || val > 2)
3987 			err = -EINVAL;
3988 		else
3989 			tp->save_syn = val;
3990 		break;
3991 
3992 	case TCP_WINDOW_CLAMP:
3993 		err = tcp_set_window_clamp(sk, val);
3994 		break;
3995 
3996 	case TCP_QUICKACK:
3997 		__tcp_sock_set_quickack(sk, val);
3998 		break;
3999 
4000 	case TCP_AO_REPAIR:
4001 		if (!tcp_can_repair_sock(sk)) {
4002 			err = -EPERM;
4003 			break;
4004 		}
4005 		err = tcp_ao_set_repair(sk, optval, optlen);
4006 		break;
4007 #ifdef CONFIG_TCP_AO
4008 	case TCP_AO_ADD_KEY:
4009 	case TCP_AO_DEL_KEY:
4010 	case TCP_AO_INFO: {
4011 		/* If this is the first TCP-AO setsockopt() on the socket,
4012 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4013 		 * in any state.
4014 		 */
4015 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4016 			goto ao_parse;
4017 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4018 					      lockdep_sock_is_held(sk)))
4019 			goto ao_parse;
4020 		if (tp->repair)
4021 			goto ao_parse;
4022 		err = -EISCONN;
4023 		break;
4024 ao_parse:
4025 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4026 		break;
4027 	}
4028 #endif
4029 #ifdef CONFIG_TCP_MD5SIG
4030 	case TCP_MD5SIG:
4031 	case TCP_MD5SIG_EXT:
4032 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4033 		break;
4034 #endif
4035 	case TCP_FASTOPEN:
4036 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4037 		    TCPF_LISTEN))) {
4038 			tcp_fastopen_init_key_once(net);
4039 
4040 			fastopen_queue_tune(sk, val);
4041 		} else {
4042 			err = -EINVAL;
4043 		}
4044 		break;
4045 	case TCP_FASTOPEN_CONNECT:
4046 		if (val > 1 || val < 0) {
4047 			err = -EINVAL;
4048 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4049 			   TFO_CLIENT_ENABLE) {
4050 			if (sk->sk_state == TCP_CLOSE)
4051 				tp->fastopen_connect = val;
4052 			else
4053 				err = -EINVAL;
4054 		} else {
4055 			err = -EOPNOTSUPP;
4056 		}
4057 		break;
4058 	case TCP_FASTOPEN_NO_COOKIE:
4059 		if (val > 1 || val < 0)
4060 			err = -EINVAL;
4061 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4062 			err = -EINVAL;
4063 		else
4064 			tp->fastopen_no_cookie = val;
4065 		break;
4066 	case TCP_TIMESTAMP:
4067 		if (!tp->repair) {
4068 			err = -EPERM;
4069 			break;
4070 		}
4071 		/* val is an opaque field,
4072 		 * and low order bit contains usec_ts enable bit.
4073 		 * Its a best effort, and we do not care if user makes an error.
4074 		 */
4075 		tp->tcp_usec_ts = val & 1;
4076 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4077 		break;
4078 	case TCP_REPAIR_WINDOW:
4079 		err = tcp_repair_set_window(tp, optval, optlen);
4080 		break;
4081 	case TCP_NOTSENT_LOWAT:
4082 		WRITE_ONCE(tp->notsent_lowat, val);
4083 		sk->sk_write_space(sk);
4084 		break;
4085 	case TCP_INQ:
4086 		if (val > 1 || val < 0)
4087 			err = -EINVAL;
4088 		else
4089 			tp->recvmsg_inq = val;
4090 		break;
4091 	case TCP_TX_DELAY:
4092 		if (val)
4093 			tcp_enable_tx_delay();
4094 		WRITE_ONCE(tp->tcp_tx_delay, val);
4095 		break;
4096 	default:
4097 		err = -ENOPROTOOPT;
4098 		break;
4099 	}
4100 
4101 	sockopt_release_sock(sk);
4102 	return err;
4103 }
4104 
4105 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4106 		   unsigned int optlen)
4107 {
4108 	const struct inet_connection_sock *icsk = inet_csk(sk);
4109 
4110 	if (level != SOL_TCP)
4111 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4112 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4113 								optval, optlen);
4114 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4115 }
4116 EXPORT_IPV6_MOD(tcp_setsockopt);
4117 
4118 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4119 				      struct tcp_info *info)
4120 {
4121 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4122 	enum tcp_chrono i;
4123 
4124 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4125 		stats[i] = tp->chrono_stat[i - 1];
4126 		if (i == tp->chrono_type)
4127 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4128 		stats[i] *= USEC_PER_SEC / HZ;
4129 		total += stats[i];
4130 	}
4131 
4132 	info->tcpi_busy_time = total;
4133 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4134 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4135 }
4136 
4137 /* Return information about state of tcp endpoint in API format. */
4138 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4139 {
4140 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4141 	const struct inet_connection_sock *icsk = inet_csk(sk);
4142 	unsigned long rate;
4143 	u32 now;
4144 	u64 rate64;
4145 	bool slow;
4146 
4147 	memset(info, 0, sizeof(*info));
4148 	if (sk->sk_type != SOCK_STREAM)
4149 		return;
4150 
4151 	info->tcpi_state = inet_sk_state_load(sk);
4152 
4153 	/* Report meaningful fields for all TCP states, including listeners */
4154 	rate = READ_ONCE(sk->sk_pacing_rate);
4155 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4156 	info->tcpi_pacing_rate = rate64;
4157 
4158 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4159 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4160 	info->tcpi_max_pacing_rate = rate64;
4161 
4162 	info->tcpi_reordering = tp->reordering;
4163 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4164 
4165 	if (info->tcpi_state == TCP_LISTEN) {
4166 		/* listeners aliased fields :
4167 		 * tcpi_unacked -> Number of children ready for accept()
4168 		 * tcpi_sacked  -> max backlog
4169 		 */
4170 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4171 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4172 		return;
4173 	}
4174 
4175 	slow = lock_sock_fast(sk);
4176 
4177 	info->tcpi_ca_state = icsk->icsk_ca_state;
4178 	info->tcpi_retransmits = icsk->icsk_retransmits;
4179 	info->tcpi_probes = icsk->icsk_probes_out;
4180 	info->tcpi_backoff = icsk->icsk_backoff;
4181 
4182 	if (tp->rx_opt.tstamp_ok)
4183 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4184 	if (tcp_is_sack(tp))
4185 		info->tcpi_options |= TCPI_OPT_SACK;
4186 	if (tp->rx_opt.wscale_ok) {
4187 		info->tcpi_options |= TCPI_OPT_WSCALE;
4188 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4189 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4190 	}
4191 
4192 	if (tcp_ecn_mode_any(tp))
4193 		info->tcpi_options |= TCPI_OPT_ECN;
4194 	if (tp->ecn_flags & TCP_ECN_SEEN)
4195 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4196 	if (tp->syn_data_acked)
4197 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4198 	if (tp->tcp_usec_ts)
4199 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4200 	if (tp->syn_fastopen_child)
4201 		info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4202 
4203 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4204 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4205 						tcp_delack_max(sk)));
4206 	info->tcpi_snd_mss = tp->mss_cache;
4207 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4208 
4209 	info->tcpi_unacked = tp->packets_out;
4210 	info->tcpi_sacked = tp->sacked_out;
4211 
4212 	info->tcpi_lost = tp->lost_out;
4213 	info->tcpi_retrans = tp->retrans_out;
4214 
4215 	now = tcp_jiffies32;
4216 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4217 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4218 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4219 
4220 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4221 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4222 	info->tcpi_rtt = tp->srtt_us >> 3;
4223 	info->tcpi_rttvar = tp->mdev_us >> 2;
4224 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4225 	info->tcpi_advmss = tp->advmss;
4226 
4227 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4228 	info->tcpi_rcv_space = tp->rcvq_space.space;
4229 
4230 	info->tcpi_total_retrans = tp->total_retrans;
4231 
4232 	info->tcpi_bytes_acked = tp->bytes_acked;
4233 	info->tcpi_bytes_received = tp->bytes_received;
4234 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4235 	tcp_get_info_chrono_stats(tp, info);
4236 
4237 	info->tcpi_segs_out = tp->segs_out;
4238 
4239 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4240 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4241 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4242 
4243 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4244 	info->tcpi_data_segs_out = tp->data_segs_out;
4245 
4246 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4247 	rate64 = tcp_compute_delivery_rate(tp);
4248 	if (rate64)
4249 		info->tcpi_delivery_rate = rate64;
4250 	info->tcpi_delivered = tp->delivered;
4251 	info->tcpi_delivered_ce = tp->delivered_ce;
4252 	info->tcpi_bytes_sent = tp->bytes_sent;
4253 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4254 	info->tcpi_dsack_dups = tp->dsack_dups;
4255 	info->tcpi_reord_seen = tp->reord_seen;
4256 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4257 	info->tcpi_snd_wnd = tp->snd_wnd;
4258 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4259 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4260 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4261 
4262 	info->tcpi_total_rto = tp->total_rto;
4263 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4264 	info->tcpi_total_rto_time = tp->total_rto_time;
4265 	if (tp->rto_stamp)
4266 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4267 
4268 	unlock_sock_fast(sk, slow);
4269 }
4270 EXPORT_SYMBOL_GPL(tcp_get_info);
4271 
4272 static size_t tcp_opt_stats_get_size(void)
4273 {
4274 	return
4275 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4276 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4277 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4278 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4279 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4280 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4281 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4282 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4283 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4284 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4285 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4286 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4287 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4288 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4289 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4290 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4291 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4292 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4293 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4294 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4295 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4296 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4297 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4298 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4299 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4300 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4301 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4302 		0;
4303 }
4304 
4305 /* Returns TTL or hop limit of an incoming packet from skb. */
4306 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4307 {
4308 	if (skb->protocol == htons(ETH_P_IP))
4309 		return ip_hdr(skb)->ttl;
4310 	else if (skb->protocol == htons(ETH_P_IPV6))
4311 		return ipv6_hdr(skb)->hop_limit;
4312 	else
4313 		return 0;
4314 }
4315 
4316 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4317 					       const struct sk_buff *orig_skb,
4318 					       const struct sk_buff *ack_skb)
4319 {
4320 	const struct tcp_sock *tp = tcp_sk(sk);
4321 	struct sk_buff *stats;
4322 	struct tcp_info info;
4323 	unsigned long rate;
4324 	u64 rate64;
4325 
4326 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4327 	if (!stats)
4328 		return NULL;
4329 
4330 	tcp_get_info_chrono_stats(tp, &info);
4331 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4332 			  info.tcpi_busy_time, TCP_NLA_PAD);
4333 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4334 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4335 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4336 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4337 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4338 			  tp->data_segs_out, TCP_NLA_PAD);
4339 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4340 			  tp->total_retrans, TCP_NLA_PAD);
4341 
4342 	rate = READ_ONCE(sk->sk_pacing_rate);
4343 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4344 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4345 
4346 	rate64 = tcp_compute_delivery_rate(tp);
4347 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4348 
4349 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4350 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4351 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4352 
4353 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4354 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4355 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4356 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4357 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4358 
4359 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4360 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4361 
4362 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4363 			  TCP_NLA_PAD);
4364 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4365 			  TCP_NLA_PAD);
4366 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4367 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4368 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4369 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4370 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4371 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4372 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4373 			  TCP_NLA_PAD);
4374 	if (ack_skb)
4375 		nla_put_u8(stats, TCP_NLA_TTL,
4376 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4377 
4378 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4379 	return stats;
4380 }
4381 
4382 int do_tcp_getsockopt(struct sock *sk, int level,
4383 		      int optname, sockptr_t optval, sockptr_t optlen)
4384 {
4385 	struct inet_connection_sock *icsk = inet_csk(sk);
4386 	struct tcp_sock *tp = tcp_sk(sk);
4387 	struct net *net = sock_net(sk);
4388 	int val, len;
4389 
4390 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4391 		return -EFAULT;
4392 
4393 	if (len < 0)
4394 		return -EINVAL;
4395 
4396 	len = min_t(unsigned int, len, sizeof(int));
4397 
4398 	switch (optname) {
4399 	case TCP_MAXSEG:
4400 		val = tp->mss_cache;
4401 		if (tp->rx_opt.user_mss &&
4402 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4403 			val = tp->rx_opt.user_mss;
4404 		if (tp->repair)
4405 			val = tp->rx_opt.mss_clamp;
4406 		break;
4407 	case TCP_NODELAY:
4408 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4409 		break;
4410 	case TCP_CORK:
4411 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4412 		break;
4413 	case TCP_KEEPIDLE:
4414 		val = keepalive_time_when(tp) / HZ;
4415 		break;
4416 	case TCP_KEEPINTVL:
4417 		val = keepalive_intvl_when(tp) / HZ;
4418 		break;
4419 	case TCP_KEEPCNT:
4420 		val = keepalive_probes(tp);
4421 		break;
4422 	case TCP_SYNCNT:
4423 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4424 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4425 		break;
4426 	case TCP_LINGER2:
4427 		val = READ_ONCE(tp->linger2);
4428 		if (val >= 0)
4429 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4430 		break;
4431 	case TCP_DEFER_ACCEPT:
4432 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4433 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4434 				      TCP_RTO_MAX / HZ);
4435 		break;
4436 	case TCP_WINDOW_CLAMP:
4437 		val = READ_ONCE(tp->window_clamp);
4438 		break;
4439 	case TCP_INFO: {
4440 		struct tcp_info info;
4441 
4442 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4443 			return -EFAULT;
4444 
4445 		tcp_get_info(sk, &info);
4446 
4447 		len = min_t(unsigned int, len, sizeof(info));
4448 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4449 			return -EFAULT;
4450 		if (copy_to_sockptr(optval, &info, len))
4451 			return -EFAULT;
4452 		return 0;
4453 	}
4454 	case TCP_CC_INFO: {
4455 		const struct tcp_congestion_ops *ca_ops;
4456 		union tcp_cc_info info;
4457 		size_t sz = 0;
4458 		int attr;
4459 
4460 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4461 			return -EFAULT;
4462 
4463 		ca_ops = icsk->icsk_ca_ops;
4464 		if (ca_ops && ca_ops->get_info)
4465 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4466 
4467 		len = min_t(unsigned int, len, sz);
4468 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4469 			return -EFAULT;
4470 		if (copy_to_sockptr(optval, &info, len))
4471 			return -EFAULT;
4472 		return 0;
4473 	}
4474 	case TCP_QUICKACK:
4475 		val = !inet_csk_in_pingpong_mode(sk);
4476 		break;
4477 
4478 	case TCP_CONGESTION:
4479 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4480 			return -EFAULT;
4481 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4482 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4483 			return -EFAULT;
4484 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4485 			return -EFAULT;
4486 		return 0;
4487 
4488 	case TCP_ULP:
4489 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4490 			return -EFAULT;
4491 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4492 		if (!icsk->icsk_ulp_ops) {
4493 			len = 0;
4494 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4495 				return -EFAULT;
4496 			return 0;
4497 		}
4498 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4499 			return -EFAULT;
4500 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4501 			return -EFAULT;
4502 		return 0;
4503 
4504 	case TCP_FASTOPEN_KEY: {
4505 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4506 		unsigned int key_len;
4507 
4508 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4509 			return -EFAULT;
4510 
4511 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4512 				TCP_FASTOPEN_KEY_LENGTH;
4513 		len = min_t(unsigned int, len, key_len);
4514 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4515 			return -EFAULT;
4516 		if (copy_to_sockptr(optval, key, len))
4517 			return -EFAULT;
4518 		return 0;
4519 	}
4520 	case TCP_THIN_LINEAR_TIMEOUTS:
4521 		val = tp->thin_lto;
4522 		break;
4523 
4524 	case TCP_THIN_DUPACK:
4525 		val = 0;
4526 		break;
4527 
4528 	case TCP_REPAIR:
4529 		val = tp->repair;
4530 		break;
4531 
4532 	case TCP_REPAIR_QUEUE:
4533 		if (tp->repair)
4534 			val = tp->repair_queue;
4535 		else
4536 			return -EINVAL;
4537 		break;
4538 
4539 	case TCP_REPAIR_WINDOW: {
4540 		struct tcp_repair_window opt;
4541 
4542 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4543 			return -EFAULT;
4544 
4545 		if (len != sizeof(opt))
4546 			return -EINVAL;
4547 
4548 		if (!tp->repair)
4549 			return -EPERM;
4550 
4551 		opt.snd_wl1	= tp->snd_wl1;
4552 		opt.snd_wnd	= tp->snd_wnd;
4553 		opt.max_window	= tp->max_window;
4554 		opt.rcv_wnd	= tp->rcv_wnd;
4555 		opt.rcv_wup	= tp->rcv_wup;
4556 
4557 		if (copy_to_sockptr(optval, &opt, len))
4558 			return -EFAULT;
4559 		return 0;
4560 	}
4561 	case TCP_QUEUE_SEQ:
4562 		if (tp->repair_queue == TCP_SEND_QUEUE)
4563 			val = tp->write_seq;
4564 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4565 			val = tp->rcv_nxt;
4566 		else
4567 			return -EINVAL;
4568 		break;
4569 
4570 	case TCP_USER_TIMEOUT:
4571 		val = READ_ONCE(icsk->icsk_user_timeout);
4572 		break;
4573 
4574 	case TCP_FASTOPEN:
4575 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4576 		break;
4577 
4578 	case TCP_FASTOPEN_CONNECT:
4579 		val = tp->fastopen_connect;
4580 		break;
4581 
4582 	case TCP_FASTOPEN_NO_COOKIE:
4583 		val = tp->fastopen_no_cookie;
4584 		break;
4585 
4586 	case TCP_TX_DELAY:
4587 		val = READ_ONCE(tp->tcp_tx_delay);
4588 		break;
4589 
4590 	case TCP_TIMESTAMP:
4591 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4592 		if (tp->tcp_usec_ts)
4593 			val |= 1;
4594 		else
4595 			val &= ~1;
4596 		break;
4597 	case TCP_NOTSENT_LOWAT:
4598 		val = READ_ONCE(tp->notsent_lowat);
4599 		break;
4600 	case TCP_INQ:
4601 		val = tp->recvmsg_inq;
4602 		break;
4603 	case TCP_SAVE_SYN:
4604 		val = tp->save_syn;
4605 		break;
4606 	case TCP_SAVED_SYN: {
4607 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4608 			return -EFAULT;
4609 
4610 		sockopt_lock_sock(sk);
4611 		if (tp->saved_syn) {
4612 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4613 				len = tcp_saved_syn_len(tp->saved_syn);
4614 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4615 					sockopt_release_sock(sk);
4616 					return -EFAULT;
4617 				}
4618 				sockopt_release_sock(sk);
4619 				return -EINVAL;
4620 			}
4621 			len = tcp_saved_syn_len(tp->saved_syn);
4622 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4623 				sockopt_release_sock(sk);
4624 				return -EFAULT;
4625 			}
4626 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4627 				sockopt_release_sock(sk);
4628 				return -EFAULT;
4629 			}
4630 			tcp_saved_syn_free(tp);
4631 			sockopt_release_sock(sk);
4632 		} else {
4633 			sockopt_release_sock(sk);
4634 			len = 0;
4635 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4636 				return -EFAULT;
4637 		}
4638 		return 0;
4639 	}
4640 #ifdef CONFIG_MMU
4641 	case TCP_ZEROCOPY_RECEIVE: {
4642 		struct scm_timestamping_internal tss;
4643 		struct tcp_zerocopy_receive zc = {};
4644 		int err;
4645 
4646 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4647 			return -EFAULT;
4648 		if (len < 0 ||
4649 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4650 			return -EINVAL;
4651 		if (unlikely(len > sizeof(zc))) {
4652 			err = check_zeroed_sockptr(optval, sizeof(zc),
4653 						   len - sizeof(zc));
4654 			if (err < 1)
4655 				return err == 0 ? -EINVAL : err;
4656 			len = sizeof(zc);
4657 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4658 				return -EFAULT;
4659 		}
4660 		if (copy_from_sockptr(&zc, optval, len))
4661 			return -EFAULT;
4662 		if (zc.reserved)
4663 			return -EINVAL;
4664 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4665 			return -EINVAL;
4666 		sockopt_lock_sock(sk);
4667 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4668 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4669 							  &zc, &len, err);
4670 		sockopt_release_sock(sk);
4671 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4672 			goto zerocopy_rcv_cmsg;
4673 		switch (len) {
4674 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4675 			goto zerocopy_rcv_cmsg;
4676 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4677 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4678 		case offsetofend(struct tcp_zerocopy_receive, flags):
4679 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4680 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4681 		case offsetofend(struct tcp_zerocopy_receive, err):
4682 			goto zerocopy_rcv_sk_err;
4683 		case offsetofend(struct tcp_zerocopy_receive, inq):
4684 			goto zerocopy_rcv_inq;
4685 		case offsetofend(struct tcp_zerocopy_receive, length):
4686 		default:
4687 			goto zerocopy_rcv_out;
4688 		}
4689 zerocopy_rcv_cmsg:
4690 		if (zc.msg_flags & TCP_CMSG_TS)
4691 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4692 		else
4693 			zc.msg_flags = 0;
4694 zerocopy_rcv_sk_err:
4695 		if (!err)
4696 			zc.err = sock_error(sk);
4697 zerocopy_rcv_inq:
4698 		zc.inq = tcp_inq_hint(sk);
4699 zerocopy_rcv_out:
4700 		if (!err && copy_to_sockptr(optval, &zc, len))
4701 			err = -EFAULT;
4702 		return err;
4703 	}
4704 #endif
4705 	case TCP_AO_REPAIR:
4706 		if (!tcp_can_repair_sock(sk))
4707 			return -EPERM;
4708 		return tcp_ao_get_repair(sk, optval, optlen);
4709 	case TCP_AO_GET_KEYS:
4710 	case TCP_AO_INFO: {
4711 		int err;
4712 
4713 		sockopt_lock_sock(sk);
4714 		if (optname == TCP_AO_GET_KEYS)
4715 			err = tcp_ao_get_mkts(sk, optval, optlen);
4716 		else
4717 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4718 		sockopt_release_sock(sk);
4719 
4720 		return err;
4721 	}
4722 	case TCP_IS_MPTCP:
4723 		val = 0;
4724 		break;
4725 	case TCP_RTO_MAX_MS:
4726 		val = jiffies_to_msecs(tcp_rto_max(sk));
4727 		break;
4728 	case TCP_RTO_MIN_US:
4729 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4730 		break;
4731 	case TCP_DELACK_MAX_US:
4732 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4733 		break;
4734 	default:
4735 		return -ENOPROTOOPT;
4736 	}
4737 
4738 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4739 		return -EFAULT;
4740 	if (copy_to_sockptr(optval, &val, len))
4741 		return -EFAULT;
4742 	return 0;
4743 }
4744 
4745 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4746 {
4747 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4748 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4749 	 */
4750 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4751 		return true;
4752 
4753 	return false;
4754 }
4755 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4756 
4757 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4758 		   int __user *optlen)
4759 {
4760 	struct inet_connection_sock *icsk = inet_csk(sk);
4761 
4762 	if (level != SOL_TCP)
4763 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4764 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4765 								optval, optlen);
4766 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4767 				 USER_SOCKPTR(optlen));
4768 }
4769 EXPORT_IPV6_MOD(tcp_getsockopt);
4770 
4771 #ifdef CONFIG_TCP_MD5SIG
4772 int tcp_md5_sigpool_id = -1;
4773 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4774 
4775 int tcp_md5_alloc_sigpool(void)
4776 {
4777 	size_t scratch_size;
4778 	int ret;
4779 
4780 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4781 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4782 	if (ret >= 0) {
4783 		/* As long as any md5 sigpool was allocated, the return
4784 		 * id would stay the same. Re-write the id only for the case
4785 		 * when previously all MD5 keys were deleted and this call
4786 		 * allocates the first MD5 key, which may return a different
4787 		 * sigpool id than was used previously.
4788 		 */
4789 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4790 		return 0;
4791 	}
4792 	return ret;
4793 }
4794 
4795 void tcp_md5_release_sigpool(void)
4796 {
4797 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4798 }
4799 
4800 void tcp_md5_add_sigpool(void)
4801 {
4802 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4803 }
4804 
4805 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4806 		     const struct tcp_md5sig_key *key)
4807 {
4808 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4809 	struct scatterlist sg;
4810 
4811 	sg_init_one(&sg, key->key, keylen);
4812 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4813 
4814 	/* We use data_race() because tcp_md5_do_add() might change
4815 	 * key->key under us
4816 	 */
4817 	return data_race(crypto_ahash_update(hp->req));
4818 }
4819 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4820 
4821 /* Called with rcu_read_lock() */
4822 static enum skb_drop_reason
4823 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4824 		     const void *saddr, const void *daddr,
4825 		     int family, int l3index, const __u8 *hash_location)
4826 {
4827 	/* This gets called for each TCP segment that has TCP-MD5 option.
4828 	 * We have 3 drop cases:
4829 	 * o No MD5 hash and one expected.
4830 	 * o MD5 hash and we're not expecting one.
4831 	 * o MD5 hash and its wrong.
4832 	 */
4833 	const struct tcp_sock *tp = tcp_sk(sk);
4834 	struct tcp_md5sig_key *key;
4835 	u8 newhash[16];
4836 	int genhash;
4837 
4838 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4839 
4840 	if (!key && hash_location) {
4841 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4842 		trace_tcp_hash_md5_unexpected(sk, skb);
4843 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4844 	}
4845 
4846 	/* Check the signature.
4847 	 * To support dual stack listeners, we need to handle
4848 	 * IPv4-mapped case.
4849 	 */
4850 	if (family == AF_INET)
4851 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4852 	else
4853 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4854 							 NULL, skb);
4855 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4856 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4857 		trace_tcp_hash_md5_mismatch(sk, skb);
4858 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4859 	}
4860 	return SKB_NOT_DROPPED_YET;
4861 }
4862 #else
4863 static inline enum skb_drop_reason
4864 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4865 		     const void *saddr, const void *daddr,
4866 		     int family, int l3index, const __u8 *hash_location)
4867 {
4868 	return SKB_NOT_DROPPED_YET;
4869 }
4870 
4871 #endif
4872 
4873 /* Called with rcu_read_lock() */
4874 enum skb_drop_reason
4875 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4876 		 const struct sk_buff *skb,
4877 		 const void *saddr, const void *daddr,
4878 		 int family, int dif, int sdif)
4879 {
4880 	const struct tcphdr *th = tcp_hdr(skb);
4881 	const struct tcp_ao_hdr *aoh;
4882 	const __u8 *md5_location;
4883 	int l3index;
4884 
4885 	/* Invalid option or two times meet any of auth options */
4886 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4887 		trace_tcp_hash_bad_header(sk, skb);
4888 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4889 	}
4890 
4891 	if (req) {
4892 		if (tcp_rsk_used_ao(req) != !!aoh) {
4893 			u8 keyid, rnext, maclen;
4894 
4895 			if (aoh) {
4896 				keyid = aoh->keyid;
4897 				rnext = aoh->rnext_keyid;
4898 				maclen = tcp_ao_hdr_maclen(aoh);
4899 			} else {
4900 				keyid = rnext = maclen = 0;
4901 			}
4902 
4903 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4904 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4905 			return SKB_DROP_REASON_TCP_AOFAILURE;
4906 		}
4907 	}
4908 
4909 	/* sdif set, means packet ingressed via a device
4910 	 * in an L3 domain and dif is set to the l3mdev
4911 	 */
4912 	l3index = sdif ? dif : 0;
4913 
4914 	/* Fast path: unsigned segments */
4915 	if (likely(!md5_location && !aoh)) {
4916 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4917 		 * for the remote peer. On TCP-AO established connection
4918 		 * the last key is impossible to remove, so there's
4919 		 * always at least one current_key.
4920 		 */
4921 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4922 			trace_tcp_hash_ao_required(sk, skb);
4923 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4924 		}
4925 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4926 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4927 			trace_tcp_hash_md5_required(sk, skb);
4928 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4929 		}
4930 		return SKB_NOT_DROPPED_YET;
4931 	}
4932 
4933 	if (aoh)
4934 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4935 
4936 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4937 				    l3index, md5_location);
4938 }
4939 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4940 
4941 void tcp_done(struct sock *sk)
4942 {
4943 	struct request_sock *req;
4944 
4945 	/* We might be called with a new socket, after
4946 	 * inet_csk_prepare_forced_close() has been called
4947 	 * so we can not use lockdep_sock_is_held(sk)
4948 	 */
4949 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4950 
4951 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4952 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4953 
4954 	tcp_set_state(sk, TCP_CLOSE);
4955 	tcp_clear_xmit_timers(sk);
4956 	if (req)
4957 		reqsk_fastopen_remove(sk, req, false);
4958 
4959 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4960 
4961 	if (!sock_flag(sk, SOCK_DEAD))
4962 		sk->sk_state_change(sk);
4963 	else
4964 		inet_csk_destroy_sock(sk);
4965 }
4966 EXPORT_SYMBOL_GPL(tcp_done);
4967 
4968 int tcp_abort(struct sock *sk, int err)
4969 {
4970 	int state = inet_sk_state_load(sk);
4971 
4972 	if (state == TCP_NEW_SYN_RECV) {
4973 		struct request_sock *req = inet_reqsk(sk);
4974 
4975 		local_bh_disable();
4976 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4977 		local_bh_enable();
4978 		return 0;
4979 	}
4980 	if (state == TCP_TIME_WAIT) {
4981 		struct inet_timewait_sock *tw = inet_twsk(sk);
4982 
4983 		refcount_inc(&tw->tw_refcnt);
4984 		local_bh_disable();
4985 		inet_twsk_deschedule_put(tw);
4986 		local_bh_enable();
4987 		return 0;
4988 	}
4989 
4990 	/* BPF context ensures sock locking. */
4991 	if (!has_current_bpf_ctx())
4992 		/* Don't race with userspace socket closes such as tcp_close. */
4993 		lock_sock(sk);
4994 
4995 	/* Avoid closing the same socket twice. */
4996 	if (sk->sk_state == TCP_CLOSE) {
4997 		if (!has_current_bpf_ctx())
4998 			release_sock(sk);
4999 		return -ENOENT;
5000 	}
5001 
5002 	if (sk->sk_state == TCP_LISTEN) {
5003 		tcp_set_state(sk, TCP_CLOSE);
5004 		inet_csk_listen_stop(sk);
5005 	}
5006 
5007 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
5008 	local_bh_disable();
5009 	bh_lock_sock(sk);
5010 
5011 	if (tcp_need_reset(sk->sk_state))
5012 		tcp_send_active_reset(sk, GFP_ATOMIC,
5013 				      SK_RST_REASON_TCP_STATE);
5014 	tcp_done_with_error(sk, err);
5015 
5016 	bh_unlock_sock(sk);
5017 	local_bh_enable();
5018 	if (!has_current_bpf_ctx())
5019 		release_sock(sk);
5020 	return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(tcp_abort);
5023 
5024 extern struct tcp_congestion_ops tcp_reno;
5025 
5026 static __initdata unsigned long thash_entries;
5027 static int __init set_thash_entries(char *str)
5028 {
5029 	ssize_t ret;
5030 
5031 	if (!str)
5032 		return 0;
5033 
5034 	ret = kstrtoul(str, 0, &thash_entries);
5035 	if (ret)
5036 		return 0;
5037 
5038 	return 1;
5039 }
5040 __setup("thash_entries=", set_thash_entries);
5041 
5042 static void __init tcp_init_mem(void)
5043 {
5044 	unsigned long limit = nr_free_buffer_pages() / 16;
5045 
5046 	limit = max(limit, 128UL);
5047 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5048 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5049 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5050 }
5051 
5052 static void __init tcp_struct_check(void)
5053 {
5054 	/* TX read-mostly hotpath cache lines */
5055 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5056 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5057 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5058 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5059 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5060 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5061 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5062 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5063 
5064 	/* TXRX read-mostly hotpath cache lines */
5065 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5067 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5068 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5069 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5070 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5071 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5072 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5073 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5074 
5075 	/* RX read-mostly hotpath cache lines */
5076 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5077 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5078 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5079 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5080 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5081 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5082 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5083 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5084 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5085 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5086 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5087 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5088 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5089 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5090 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5091 #else
5092 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5093 #endif
5094 
5095 	/* TX read-write hotpath cache lines */
5096 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5097 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5098 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5099 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5100 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5101 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5102 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5103 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5104 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5105 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5106 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5107 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5108 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5109 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5110 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5111 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5112 
5113 	/* TXRX read-write hotpath cache lines */
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5118 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5120 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5121 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5122 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5123 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5124 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5125 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5126 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5127 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5128 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5129 
5130 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5131 	 * before tcp_clock_cache.
5132 	 */
5133 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5134 
5135 	/* RX read-write hotpath cache lines */
5136 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5137 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5138 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5139 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5140 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5141 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5142 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5143 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5144 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5145 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5146 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5147 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5148 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5149 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5150 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5151 }
5152 
5153 void __init tcp_init(void)
5154 {
5155 	int max_rshare, max_wshare, cnt;
5156 	unsigned long limit;
5157 	unsigned int i;
5158 
5159 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5160 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5161 		     sizeof_field(struct sk_buff, cb));
5162 
5163 	tcp_struct_check();
5164 
5165 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5166 
5167 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5168 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5169 
5170 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5171 			    thash_entries, 21,  /* one slot per 2 MB*/
5172 			    0, 64 * 1024);
5173 	tcp_hashinfo.bind_bucket_cachep =
5174 		kmem_cache_create("tcp_bind_bucket",
5175 				  sizeof(struct inet_bind_bucket), 0,
5176 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5177 				  SLAB_ACCOUNT,
5178 				  NULL);
5179 	tcp_hashinfo.bind2_bucket_cachep =
5180 		kmem_cache_create("tcp_bind2_bucket",
5181 				  sizeof(struct inet_bind2_bucket), 0,
5182 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5183 				  SLAB_ACCOUNT,
5184 				  NULL);
5185 
5186 	/* Size and allocate the main established and bind bucket
5187 	 * hash tables.
5188 	 *
5189 	 * The methodology is similar to that of the buffer cache.
5190 	 */
5191 	tcp_hashinfo.ehash =
5192 		alloc_large_system_hash("TCP established",
5193 					sizeof(struct inet_ehash_bucket),
5194 					thash_entries,
5195 					17, /* one slot per 128 KB of memory */
5196 					0,
5197 					NULL,
5198 					&tcp_hashinfo.ehash_mask,
5199 					0,
5200 					thash_entries ? 0 : 512 * 1024);
5201 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5202 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5203 
5204 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5205 		panic("TCP: failed to alloc ehash_locks");
5206 	tcp_hashinfo.bhash =
5207 		alloc_large_system_hash("TCP bind",
5208 					2 * sizeof(struct inet_bind_hashbucket),
5209 					tcp_hashinfo.ehash_mask + 1,
5210 					17, /* one slot per 128 KB of memory */
5211 					0,
5212 					&tcp_hashinfo.bhash_size,
5213 					NULL,
5214 					0,
5215 					64 * 1024);
5216 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5217 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5218 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5219 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5220 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5221 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5222 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5223 	}
5224 
5225 	tcp_hashinfo.pernet = false;
5226 
5227 	cnt = tcp_hashinfo.ehash_mask + 1;
5228 	sysctl_tcp_max_orphans = cnt / 2;
5229 
5230 	tcp_init_mem();
5231 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5232 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5233 	max_wshare = min(4UL*1024*1024, limit);
5234 	max_rshare = min(32UL*1024*1024, limit);
5235 
5236 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5237 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5238 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5239 
5240 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5241 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5242 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5243 
5244 	pr_info("Hash tables configured (established %u bind %u)\n",
5245 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5246 
5247 	tcp_v4_init();
5248 	tcp_metrics_init();
5249 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5250 	tcp_tasklet_init();
5251 	mptcp_init();
5252 }
5253