xref: /linux/net/ipv4/tcp.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <net/rps.h>
286 
287 /* Track pending CMSGs. */
288 enum {
289 	TCP_CMSG_INQ = 1,
290 	TCP_CMSG_TS = 2
291 };
292 
293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
295 
296 DEFINE_PER_CPU(u32, tcp_tw_isn);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
298 
299 long sysctl_tcp_mem[3] __read_mostly;
300 EXPORT_SYMBOL(sysctl_tcp_mem);
301 
302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
306 
307 #if IS_ENABLED(CONFIG_SMC)
308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
309 EXPORT_SYMBOL(tcp_have_smc);
310 #endif
311 
312 /*
313  * Current number of TCP sockets.
314  */
315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
316 EXPORT_SYMBOL(tcp_sockets_allocated);
317 
318 /*
319  * TCP splice context
320  */
321 struct tcp_splice_state {
322 	struct pipe_inode_info *pipe;
323 	size_t len;
324 	unsigned int flags;
325 };
326 
327 /*
328  * Pressure flag: try to collapse.
329  * Technical note: it is used by multiple contexts non atomically.
330  * All the __sk_mem_schedule() is of this nature: accounting
331  * is strict, actions are advisory and have some latency.
332  */
333 unsigned long tcp_memory_pressure __read_mostly;
334 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
335 
336 void tcp_enter_memory_pressure(struct sock *sk)
337 {
338 	unsigned long val;
339 
340 	if (READ_ONCE(tcp_memory_pressure))
341 		return;
342 	val = jiffies;
343 
344 	if (!val)
345 		val--;
346 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
347 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
348 }
349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
350 
351 void tcp_leave_memory_pressure(struct sock *sk)
352 {
353 	unsigned long val;
354 
355 	if (!READ_ONCE(tcp_memory_pressure))
356 		return;
357 	val = xchg(&tcp_memory_pressure, 0);
358 	if (val)
359 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
360 			      jiffies_to_msecs(jiffies - val));
361 }
362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
363 
364 /* Convert seconds to retransmits based on initial and max timeout */
365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
366 {
367 	u8 res = 0;
368 
369 	if (seconds > 0) {
370 		int period = timeout;
371 
372 		res = 1;
373 		while (seconds > period && res < 255) {
374 			res++;
375 			timeout <<= 1;
376 			if (timeout > rto_max)
377 				timeout = rto_max;
378 			period += timeout;
379 		}
380 	}
381 	return res;
382 }
383 
384 /* Convert retransmits to seconds based on initial and max timeout */
385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
386 {
387 	int period = 0;
388 
389 	if (retrans > 0) {
390 		period = timeout;
391 		while (--retrans) {
392 			timeout <<= 1;
393 			if (timeout > rto_max)
394 				timeout = rto_max;
395 			period += timeout;
396 		}
397 	}
398 	return period;
399 }
400 
401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
402 {
403 	u32 rate = READ_ONCE(tp->rate_delivered);
404 	u32 intv = READ_ONCE(tp->rate_interval_us);
405 	u64 rate64 = 0;
406 
407 	if (rate && intv) {
408 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
409 		do_div(rate64, intv);
410 	}
411 	return rate64;
412 }
413 
414 /* Address-family independent initialization for a tcp_sock.
415  *
416  * NOTE: A lot of things set to zero explicitly by call to
417  *       sk_alloc() so need not be done here.
418  */
419 void tcp_init_sock(struct sock *sk)
420 {
421 	struct inet_connection_sock *icsk = inet_csk(sk);
422 	struct tcp_sock *tp = tcp_sk(sk);
423 
424 	tp->out_of_order_queue = RB_ROOT;
425 	sk->tcp_rtx_queue = RB_ROOT;
426 	tcp_init_xmit_timers(sk);
427 	INIT_LIST_HEAD(&tp->tsq_node);
428 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
429 
430 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
431 	icsk->icsk_rto_min = TCP_RTO_MIN;
432 	icsk->icsk_delack_max = TCP_DELACK_MAX;
433 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
434 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
435 
436 	/* So many TCP implementations out there (incorrectly) count the
437 	 * initial SYN frame in their delayed-ACK and congestion control
438 	 * algorithms that we must have the following bandaid to talk
439 	 * efficiently to them.  -DaveM
440 	 */
441 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
442 
443 	/* There's a bubble in the pipe until at least the first ACK. */
444 	tp->app_limited = ~0U;
445 	tp->rate_app_limited = 1;
446 
447 	/* See draft-stevens-tcpca-spec-01 for discussion of the
448 	 * initialization of these values.
449 	 */
450 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
451 	tp->snd_cwnd_clamp = ~0;
452 	tp->mss_cache = TCP_MSS_DEFAULT;
453 
454 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
455 	tcp_assign_congestion_control(sk);
456 
457 	tp->tsoffset = 0;
458 	tp->rack.reo_wnd_steps = 1;
459 
460 	sk->sk_write_space = sk_stream_write_space;
461 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
462 
463 	icsk->icsk_sync_mss = tcp_sync_mss;
464 
465 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
466 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
467 	tcp_scaling_ratio_init(sk);
468 
469 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
470 	sk_sockets_allocated_inc(sk);
471 }
472 EXPORT_SYMBOL(tcp_init_sock);
473 
474 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
475 {
476 	struct sk_buff *skb = tcp_write_queue_tail(sk);
477 
478 	if (tsflags && skb) {
479 		struct skb_shared_info *shinfo = skb_shinfo(skb);
480 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
481 
482 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
483 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
484 			tcb->txstamp_ack = 1;
485 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
486 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
487 	}
488 }
489 
490 static bool tcp_stream_is_readable(struct sock *sk, int target)
491 {
492 	if (tcp_epollin_ready(sk, target))
493 		return true;
494 	return sk_is_readable(sk);
495 }
496 
497 /*
498  *	Wait for a TCP event.
499  *
500  *	Note that we don't need to lock the socket, as the upper poll layers
501  *	take care of normal races (between the test and the event) and we don't
502  *	go look at any of the socket buffers directly.
503  */
504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
505 {
506 	__poll_t mask;
507 	struct sock *sk = sock->sk;
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	u8 shutdown;
510 	int state;
511 
512 	sock_poll_wait(file, sock, wait);
513 
514 	state = inet_sk_state_load(sk);
515 	if (state == TCP_LISTEN)
516 		return inet_csk_listen_poll(sk);
517 
518 	/* Socket is not locked. We are protected from async events
519 	 * by poll logic and correct handling of state changes
520 	 * made by other threads is impossible in any case.
521 	 */
522 
523 	mask = 0;
524 
525 	/*
526 	 * EPOLLHUP is certainly not done right. But poll() doesn't
527 	 * have a notion of HUP in just one direction, and for a
528 	 * socket the read side is more interesting.
529 	 *
530 	 * Some poll() documentation says that EPOLLHUP is incompatible
531 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
532 	 * all. But careful, it tends to be safer to return too many
533 	 * bits than too few, and you can easily break real applications
534 	 * if you don't tell them that something has hung up!
535 	 *
536 	 * Check-me.
537 	 *
538 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
539 	 * our fs/select.c). It means that after we received EOF,
540 	 * poll always returns immediately, making impossible poll() on write()
541 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
542 	 * if and only if shutdown has been made in both directions.
543 	 * Actually, it is interesting to look how Solaris and DUX
544 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
545 	 * then we could set it on SND_SHUTDOWN. BTW examples given
546 	 * in Stevens' books assume exactly this behaviour, it explains
547 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
548 	 *
549 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
550 	 * blocking on fresh not-connected or disconnected socket. --ANK
551 	 */
552 	shutdown = READ_ONCE(sk->sk_shutdown);
553 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
554 		mask |= EPOLLHUP;
555 	if (shutdown & RCV_SHUTDOWN)
556 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
557 
558 	/* Connected or passive Fast Open socket? */
559 	if (state != TCP_SYN_SENT &&
560 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
561 		int target = sock_rcvlowat(sk, 0, INT_MAX);
562 		u16 urg_data = READ_ONCE(tp->urg_data);
563 
564 		if (unlikely(urg_data) &&
565 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
566 		    !sock_flag(sk, SOCK_URGINLINE))
567 			target++;
568 
569 		if (tcp_stream_is_readable(sk, target))
570 			mask |= EPOLLIN | EPOLLRDNORM;
571 
572 		if (!(shutdown & SEND_SHUTDOWN)) {
573 			if (__sk_stream_is_writeable(sk, 1)) {
574 				mask |= EPOLLOUT | EPOLLWRNORM;
575 			} else {  /* send SIGIO later */
576 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
577 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
578 
579 				/* Race breaker. If space is freed after
580 				 * wspace test but before the flags are set,
581 				 * IO signal will be lost. Memory barrier
582 				 * pairs with the input side.
583 				 */
584 				smp_mb__after_atomic();
585 				if (__sk_stream_is_writeable(sk, 1))
586 					mask |= EPOLLOUT | EPOLLWRNORM;
587 			}
588 		} else
589 			mask |= EPOLLOUT | EPOLLWRNORM;
590 
591 		if (urg_data & TCP_URG_VALID)
592 			mask |= EPOLLPRI;
593 	} else if (state == TCP_SYN_SENT &&
594 		   inet_test_bit(DEFER_CONNECT, sk)) {
595 		/* Active TCP fastopen socket with defer_connect
596 		 * Return EPOLLOUT so application can call write()
597 		 * in order for kernel to generate SYN+data
598 		 */
599 		mask |= EPOLLOUT | EPOLLWRNORM;
600 	}
601 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
602 	smp_rmb();
603 	if (READ_ONCE(sk->sk_err) ||
604 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
605 		mask |= EPOLLERR;
606 
607 	return mask;
608 }
609 EXPORT_SYMBOL(tcp_poll);
610 
611 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
612 {
613 	struct tcp_sock *tp = tcp_sk(sk);
614 	int answ;
615 	bool slow;
616 
617 	switch (cmd) {
618 	case SIOCINQ:
619 		if (sk->sk_state == TCP_LISTEN)
620 			return -EINVAL;
621 
622 		slow = lock_sock_fast(sk);
623 		answ = tcp_inq(sk);
624 		unlock_sock_fast(sk, slow);
625 		break;
626 	case SIOCATMARK:
627 		answ = READ_ONCE(tp->urg_data) &&
628 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
629 		break;
630 	case SIOCOUTQ:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
638 		break;
639 	case SIOCOUTQNSD:
640 		if (sk->sk_state == TCP_LISTEN)
641 			return -EINVAL;
642 
643 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
644 			answ = 0;
645 		else
646 			answ = READ_ONCE(tp->write_seq) -
647 			       READ_ONCE(tp->snd_nxt);
648 		break;
649 	default:
650 		return -ENOIOCTLCMD;
651 	}
652 
653 	*karg = answ;
654 	return 0;
655 }
656 EXPORT_SYMBOL(tcp_ioctl);
657 
658 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
659 {
660 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
661 	tp->pushed_seq = tp->write_seq;
662 }
663 
664 static inline bool forced_push(const struct tcp_sock *tp)
665 {
666 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
667 }
668 
669 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
670 {
671 	struct tcp_sock *tp = tcp_sk(sk);
672 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
673 
674 	tcb->seq     = tcb->end_seq = tp->write_seq;
675 	tcb->tcp_flags = TCPHDR_ACK;
676 	__skb_header_release(skb);
677 	tcp_add_write_queue_tail(sk, skb);
678 	sk_wmem_queued_add(sk, skb->truesize);
679 	sk_mem_charge(sk, skb->truesize);
680 	if (tp->nonagle & TCP_NAGLE_PUSH)
681 		tp->nonagle &= ~TCP_NAGLE_PUSH;
682 
683 	tcp_slow_start_after_idle_check(sk);
684 }
685 
686 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
687 {
688 	if (flags & MSG_OOB)
689 		tp->snd_up = tp->write_seq;
690 }
691 
692 /* If a not yet filled skb is pushed, do not send it if
693  * we have data packets in Qdisc or NIC queues :
694  * Because TX completion will happen shortly, it gives a chance
695  * to coalesce future sendmsg() payload into this skb, without
696  * need for a timer, and with no latency trade off.
697  * As packets containing data payload have a bigger truesize
698  * than pure acks (dataless) packets, the last checks prevent
699  * autocorking if we only have an ACK in Qdisc/NIC queues,
700  * or if TX completion was delayed after we processed ACK packet.
701  */
702 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
703 				int size_goal)
704 {
705 	return skb->len < size_goal &&
706 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
707 	       !tcp_rtx_queue_empty(sk) &&
708 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
709 	       tcp_skb_can_collapse_to(skb);
710 }
711 
712 void tcp_push(struct sock *sk, int flags, int mss_now,
713 	      int nonagle, int size_goal)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	struct sk_buff *skb;
717 
718 	skb = tcp_write_queue_tail(sk);
719 	if (!skb)
720 		return;
721 	if (!(flags & MSG_MORE) || forced_push(tp))
722 		tcp_mark_push(tp, skb);
723 
724 	tcp_mark_urg(tp, flags);
725 
726 	if (tcp_should_autocork(sk, skb, size_goal)) {
727 
728 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
729 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
730 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
731 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
732 			smp_mb__after_atomic();
733 		}
734 		/* It is possible TX completion already happened
735 		 * before we set TSQ_THROTTLED.
736 		 */
737 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
738 			return;
739 	}
740 
741 	if (flags & MSG_MORE)
742 		nonagle = TCP_NAGLE_CORK;
743 
744 	__tcp_push_pending_frames(sk, mss_now, nonagle);
745 }
746 
747 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
748 				unsigned int offset, size_t len)
749 {
750 	struct tcp_splice_state *tss = rd_desc->arg.data;
751 	int ret;
752 
753 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
754 			      min(rd_desc->count, len), tss->flags);
755 	if (ret > 0)
756 		rd_desc->count -= ret;
757 	return ret;
758 }
759 
760 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
761 {
762 	/* Store TCP splice context information in read_descriptor_t. */
763 	read_descriptor_t rd_desc = {
764 		.arg.data = tss,
765 		.count	  = tss->len,
766 	};
767 
768 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
769 }
770 
771 /**
772  *  tcp_splice_read - splice data from TCP socket to a pipe
773  * @sock:	socket to splice from
774  * @ppos:	position (not valid)
775  * @pipe:	pipe to splice to
776  * @len:	number of bytes to splice
777  * @flags:	splice modifier flags
778  *
779  * Description:
780  *    Will read pages from given socket and fill them into a pipe.
781  *
782  **/
783 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
784 			struct pipe_inode_info *pipe, size_t len,
785 			unsigned int flags)
786 {
787 	struct sock *sk = sock->sk;
788 	struct tcp_splice_state tss = {
789 		.pipe = pipe,
790 		.len = len,
791 		.flags = flags,
792 	};
793 	long timeo;
794 	ssize_t spliced;
795 	int ret;
796 
797 	sock_rps_record_flow(sk);
798 	/*
799 	 * We can't seek on a socket input
800 	 */
801 	if (unlikely(*ppos))
802 		return -ESPIPE;
803 
804 	ret = spliced = 0;
805 
806 	lock_sock(sk);
807 
808 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
809 	while (tss.len) {
810 		ret = __tcp_splice_read(sk, &tss);
811 		if (ret < 0)
812 			break;
813 		else if (!ret) {
814 			if (spliced)
815 				break;
816 			if (sock_flag(sk, SOCK_DONE))
817 				break;
818 			if (sk->sk_err) {
819 				ret = sock_error(sk);
820 				break;
821 			}
822 			if (sk->sk_shutdown & RCV_SHUTDOWN)
823 				break;
824 			if (sk->sk_state == TCP_CLOSE) {
825 				/*
826 				 * This occurs when user tries to read
827 				 * from never connected socket.
828 				 */
829 				ret = -ENOTCONN;
830 				break;
831 			}
832 			if (!timeo) {
833 				ret = -EAGAIN;
834 				break;
835 			}
836 			/* if __tcp_splice_read() got nothing while we have
837 			 * an skb in receive queue, we do not want to loop.
838 			 * This might happen with URG data.
839 			 */
840 			if (!skb_queue_empty(&sk->sk_receive_queue))
841 				break;
842 			ret = sk_wait_data(sk, &timeo, NULL);
843 			if (ret < 0)
844 				break;
845 			if (signal_pending(current)) {
846 				ret = sock_intr_errno(timeo);
847 				break;
848 			}
849 			continue;
850 		}
851 		tss.len -= ret;
852 		spliced += ret;
853 
854 		if (!tss.len || !timeo)
855 			break;
856 		release_sock(sk);
857 		lock_sock(sk);
858 
859 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
860 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
861 		    signal_pending(current))
862 			break;
863 	}
864 
865 	release_sock(sk);
866 
867 	if (spliced)
868 		return spliced;
869 
870 	return ret;
871 }
872 EXPORT_SYMBOL(tcp_splice_read);
873 
874 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
875 				     bool force_schedule)
876 {
877 	struct sk_buff *skb;
878 
879 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
880 	if (likely(skb)) {
881 		bool mem_scheduled;
882 
883 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
884 		if (force_schedule) {
885 			mem_scheduled = true;
886 			sk_forced_mem_schedule(sk, skb->truesize);
887 		} else {
888 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
889 		}
890 		if (likely(mem_scheduled)) {
891 			skb_reserve(skb, MAX_TCP_HEADER);
892 			skb->ip_summed = CHECKSUM_PARTIAL;
893 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894 			return skb;
895 		}
896 		__kfree_skb(skb);
897 	} else {
898 		sk->sk_prot->enter_memory_pressure(sk);
899 		sk_stream_moderate_sndbuf(sk);
900 	}
901 	return NULL;
902 }
903 
904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
905 				       int large_allowed)
906 {
907 	struct tcp_sock *tp = tcp_sk(sk);
908 	u32 new_size_goal, size_goal;
909 
910 	if (!large_allowed)
911 		return mss_now;
912 
913 	/* Note : tcp_tso_autosize() will eventually split this later */
914 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
915 
916 	/* We try hard to avoid divides here */
917 	size_goal = tp->gso_segs * mss_now;
918 	if (unlikely(new_size_goal < size_goal ||
919 		     new_size_goal >= size_goal + mss_now)) {
920 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 				     sk->sk_gso_max_segs);
922 		size_goal = tp->gso_segs * mss_now;
923 	}
924 
925 	return max(size_goal, mss_now);
926 }
927 
928 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
929 {
930 	int mss_now;
931 
932 	mss_now = tcp_current_mss(sk);
933 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
934 
935 	return mss_now;
936 }
937 
938 /* In some cases, sendmsg() could have added an skb to the write queue,
939  * but failed adding payload on it. We need to remove it to consume less
940  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
941  * epoll() users. Another reason is that tcp_write_xmit() does not like
942  * finding an empty skb in the write queue.
943  */
944 void tcp_remove_empty_skb(struct sock *sk)
945 {
946 	struct sk_buff *skb = tcp_write_queue_tail(sk);
947 
948 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
949 		tcp_unlink_write_queue(skb, sk);
950 		if (tcp_write_queue_empty(sk))
951 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 		tcp_wmem_free_skb(sk, skb);
953 	}
954 }
955 
956 /* skb changing from pure zc to mixed, must charge zc */
957 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
958 {
959 	if (unlikely(skb_zcopy_pure(skb))) {
960 		u32 extra = skb->truesize -
961 			    SKB_TRUESIZE(skb_end_offset(skb));
962 
963 		if (!sk_wmem_schedule(sk, extra))
964 			return -ENOMEM;
965 
966 		sk_mem_charge(sk, extra);
967 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
968 	}
969 	return 0;
970 }
971 
972 
973 int tcp_wmem_schedule(struct sock *sk, int copy)
974 {
975 	int left;
976 
977 	if (likely(sk_wmem_schedule(sk, copy)))
978 		return copy;
979 
980 	/* We could be in trouble if we have nothing queued.
981 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
982 	 * to guarantee some progress.
983 	 */
984 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
985 	if (left > 0)
986 		sk_forced_mem_schedule(sk, min(left, copy));
987 	return min(copy, sk->sk_forward_alloc);
988 }
989 
990 void tcp_free_fastopen_req(struct tcp_sock *tp)
991 {
992 	if (tp->fastopen_req) {
993 		kfree(tp->fastopen_req);
994 		tp->fastopen_req = NULL;
995 	}
996 }
997 
998 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
999 			 size_t size, struct ubuf_info *uarg)
1000 {
1001 	struct tcp_sock *tp = tcp_sk(sk);
1002 	struct inet_sock *inet = inet_sk(sk);
1003 	struct sockaddr *uaddr = msg->msg_name;
1004 	int err, flags;
1005 
1006 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1007 	      TFO_CLIENT_ENABLE) ||
1008 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1009 	     uaddr->sa_family == AF_UNSPEC))
1010 		return -EOPNOTSUPP;
1011 	if (tp->fastopen_req)
1012 		return -EALREADY; /* Another Fast Open is in progress */
1013 
1014 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1015 				   sk->sk_allocation);
1016 	if (unlikely(!tp->fastopen_req))
1017 		return -ENOBUFS;
1018 	tp->fastopen_req->data = msg;
1019 	tp->fastopen_req->size = size;
1020 	tp->fastopen_req->uarg = uarg;
1021 
1022 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1023 		err = tcp_connect(sk);
1024 		/* Same failure procedure as in tcp_v4/6_connect */
1025 		if (err) {
1026 			tcp_set_state(sk, TCP_CLOSE);
1027 			inet->inet_dport = 0;
1028 			sk->sk_route_caps = 0;
1029 		}
1030 	}
1031 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1032 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1033 				    msg->msg_namelen, flags, 1);
1034 	/* fastopen_req could already be freed in __inet_stream_connect
1035 	 * if the connection times out or gets rst
1036 	 */
1037 	if (tp->fastopen_req) {
1038 		*copied = tp->fastopen_req->copied;
1039 		tcp_free_fastopen_req(tp);
1040 		inet_clear_bit(DEFER_CONNECT, sk);
1041 	}
1042 	return err;
1043 }
1044 
1045 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 	struct ubuf_info *uarg = NULL;
1049 	struct sk_buff *skb;
1050 	struct sockcm_cookie sockc;
1051 	int flags, err, copied = 0;
1052 	int mss_now = 0, size_goal, copied_syn = 0;
1053 	int process_backlog = 0;
1054 	int zc = 0;
1055 	long timeo;
1056 
1057 	flags = msg->msg_flags;
1058 
1059 	if ((flags & MSG_ZEROCOPY) && size) {
1060 		if (msg->msg_ubuf) {
1061 			uarg = msg->msg_ubuf;
1062 			if (sk->sk_route_caps & NETIF_F_SG)
1063 				zc = MSG_ZEROCOPY;
1064 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1065 			skb = tcp_write_queue_tail(sk);
1066 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1067 			if (!uarg) {
1068 				err = -ENOBUFS;
1069 				goto out_err;
1070 			}
1071 			if (sk->sk_route_caps & NETIF_F_SG)
1072 				zc = MSG_ZEROCOPY;
1073 			else
1074 				uarg_to_msgzc(uarg)->zerocopy = 0;
1075 		}
1076 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1077 		if (sk->sk_route_caps & NETIF_F_SG)
1078 			zc = MSG_SPLICE_PAGES;
1079 	}
1080 
1081 	if (unlikely(flags & MSG_FASTOPEN ||
1082 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1083 	    !tp->repair) {
1084 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1085 		if (err == -EINPROGRESS && copied_syn > 0)
1086 			goto out;
1087 		else if (err)
1088 			goto out_err;
1089 	}
1090 
1091 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1092 
1093 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1094 
1095 	/* Wait for a connection to finish. One exception is TCP Fast Open
1096 	 * (passive side) where data is allowed to be sent before a connection
1097 	 * is fully established.
1098 	 */
1099 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1100 	    !tcp_passive_fastopen(sk)) {
1101 		err = sk_stream_wait_connect(sk, &timeo);
1102 		if (err != 0)
1103 			goto do_error;
1104 	}
1105 
1106 	if (unlikely(tp->repair)) {
1107 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1108 			copied = tcp_send_rcvq(sk, msg, size);
1109 			goto out_nopush;
1110 		}
1111 
1112 		err = -EINVAL;
1113 		if (tp->repair_queue == TCP_NO_QUEUE)
1114 			goto out_err;
1115 
1116 		/* 'common' sending to sendq */
1117 	}
1118 
1119 	sockcm_init(&sockc, sk);
1120 	if (msg->msg_controllen) {
1121 		err = sock_cmsg_send(sk, msg, &sockc);
1122 		if (unlikely(err)) {
1123 			err = -EINVAL;
1124 			goto out_err;
1125 		}
1126 	}
1127 
1128 	/* This should be in poll */
1129 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1130 
1131 	/* Ok commence sending. */
1132 	copied = 0;
1133 
1134 restart:
1135 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1136 
1137 	err = -EPIPE;
1138 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1139 		goto do_error;
1140 
1141 	while (msg_data_left(msg)) {
1142 		ssize_t copy = 0;
1143 
1144 		skb = tcp_write_queue_tail(sk);
1145 		if (skb)
1146 			copy = size_goal - skb->len;
1147 
1148 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1149 			bool first_skb;
1150 
1151 new_segment:
1152 			if (!sk_stream_memory_free(sk))
1153 				goto wait_for_space;
1154 
1155 			if (unlikely(process_backlog >= 16)) {
1156 				process_backlog = 0;
1157 				if (sk_flush_backlog(sk))
1158 					goto restart;
1159 			}
1160 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1161 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1162 						   first_skb);
1163 			if (!skb)
1164 				goto wait_for_space;
1165 
1166 			process_backlog++;
1167 
1168 #ifdef CONFIG_SKB_DECRYPTED
1169 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1170 #endif
1171 			tcp_skb_entail(sk, skb);
1172 			copy = size_goal;
1173 
1174 			/* All packets are restored as if they have
1175 			 * already been sent. skb_mstamp_ns isn't set to
1176 			 * avoid wrong rtt estimation.
1177 			 */
1178 			if (tp->repair)
1179 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1180 		}
1181 
1182 		/* Try to append data to the end of skb. */
1183 		if (copy > msg_data_left(msg))
1184 			copy = msg_data_left(msg);
1185 
1186 		if (zc == 0) {
1187 			bool merge = true;
1188 			int i = skb_shinfo(skb)->nr_frags;
1189 			struct page_frag *pfrag = sk_page_frag(sk);
1190 
1191 			if (!sk_page_frag_refill(sk, pfrag))
1192 				goto wait_for_space;
1193 
1194 			if (!skb_can_coalesce(skb, i, pfrag->page,
1195 					      pfrag->offset)) {
1196 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1197 					tcp_mark_push(tp, skb);
1198 					goto new_segment;
1199 				}
1200 				merge = false;
1201 			}
1202 
1203 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1204 
1205 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1206 				if (tcp_downgrade_zcopy_pure(sk, skb))
1207 					goto wait_for_space;
1208 				skb_zcopy_downgrade_managed(skb);
1209 			}
1210 
1211 			copy = tcp_wmem_schedule(sk, copy);
1212 			if (!copy)
1213 				goto wait_for_space;
1214 
1215 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1216 						       pfrag->page,
1217 						       pfrag->offset,
1218 						       copy);
1219 			if (err)
1220 				goto do_error;
1221 
1222 			/* Update the skb. */
1223 			if (merge) {
1224 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1225 			} else {
1226 				skb_fill_page_desc(skb, i, pfrag->page,
1227 						   pfrag->offset, copy);
1228 				page_ref_inc(pfrag->page);
1229 			}
1230 			pfrag->offset += copy;
1231 		} else if (zc == MSG_ZEROCOPY)  {
1232 			/* First append to a fragless skb builds initial
1233 			 * pure zerocopy skb
1234 			 */
1235 			if (!skb->len)
1236 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1237 
1238 			if (!skb_zcopy_pure(skb)) {
1239 				copy = tcp_wmem_schedule(sk, copy);
1240 				if (!copy)
1241 					goto wait_for_space;
1242 			}
1243 
1244 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1245 			if (err == -EMSGSIZE || err == -EEXIST) {
1246 				tcp_mark_push(tp, skb);
1247 				goto new_segment;
1248 			}
1249 			if (err < 0)
1250 				goto do_error;
1251 			copy = err;
1252 		} else if (zc == MSG_SPLICE_PAGES) {
1253 			/* Splice in data if we can; copy if we can't. */
1254 			if (tcp_downgrade_zcopy_pure(sk, skb))
1255 				goto wait_for_space;
1256 			copy = tcp_wmem_schedule(sk, copy);
1257 			if (!copy)
1258 				goto wait_for_space;
1259 
1260 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1261 						   sk->sk_allocation);
1262 			if (err < 0) {
1263 				if (err == -EMSGSIZE) {
1264 					tcp_mark_push(tp, skb);
1265 					goto new_segment;
1266 				}
1267 				goto do_error;
1268 			}
1269 			copy = err;
1270 
1271 			if (!(flags & MSG_NO_SHARED_FRAGS))
1272 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1273 
1274 			sk_wmem_queued_add(sk, copy);
1275 			sk_mem_charge(sk, copy);
1276 		}
1277 
1278 		if (!copied)
1279 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1280 
1281 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1282 		TCP_SKB_CB(skb)->end_seq += copy;
1283 		tcp_skb_pcount_set(skb, 0);
1284 
1285 		copied += copy;
1286 		if (!msg_data_left(msg)) {
1287 			if (unlikely(flags & MSG_EOR))
1288 				TCP_SKB_CB(skb)->eor = 1;
1289 			goto out;
1290 		}
1291 
1292 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1293 			continue;
1294 
1295 		if (forced_push(tp)) {
1296 			tcp_mark_push(tp, skb);
1297 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1298 		} else if (skb == tcp_send_head(sk))
1299 			tcp_push_one(sk, mss_now);
1300 		continue;
1301 
1302 wait_for_space:
1303 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1304 		tcp_remove_empty_skb(sk);
1305 		if (copied)
1306 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1307 				 TCP_NAGLE_PUSH, size_goal);
1308 
1309 		err = sk_stream_wait_memory(sk, &timeo);
1310 		if (err != 0)
1311 			goto do_error;
1312 
1313 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1314 	}
1315 
1316 out:
1317 	if (copied) {
1318 		tcp_tx_timestamp(sk, sockc.tsflags);
1319 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1320 	}
1321 out_nopush:
1322 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1323 	if (uarg && !msg->msg_ubuf)
1324 		net_zcopy_put(uarg);
1325 	return copied + copied_syn;
1326 
1327 do_error:
1328 	tcp_remove_empty_skb(sk);
1329 
1330 	if (copied + copied_syn)
1331 		goto out;
1332 out_err:
1333 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1334 	if (uarg && !msg->msg_ubuf)
1335 		net_zcopy_put_abort(uarg, true);
1336 	err = sk_stream_error(sk, flags, err);
1337 	/* make sure we wake any epoll edge trigger waiter */
1338 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1339 		sk->sk_write_space(sk);
1340 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1341 	}
1342 	return err;
1343 }
1344 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1345 
1346 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1347 {
1348 	int ret;
1349 
1350 	lock_sock(sk);
1351 	ret = tcp_sendmsg_locked(sk, msg, size);
1352 	release_sock(sk);
1353 
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL(tcp_sendmsg);
1357 
1358 void tcp_splice_eof(struct socket *sock)
1359 {
1360 	struct sock *sk = sock->sk;
1361 	struct tcp_sock *tp = tcp_sk(sk);
1362 	int mss_now, size_goal;
1363 
1364 	if (!tcp_write_queue_tail(sk))
1365 		return;
1366 
1367 	lock_sock(sk);
1368 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1369 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1370 	release_sock(sk);
1371 }
1372 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1373 
1374 /*
1375  *	Handle reading urgent data. BSD has very simple semantics for
1376  *	this, no blocking and very strange errors 8)
1377  */
1378 
1379 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 
1383 	/* No URG data to read. */
1384 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1385 	    tp->urg_data == TCP_URG_READ)
1386 		return -EINVAL;	/* Yes this is right ! */
1387 
1388 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1389 		return -ENOTCONN;
1390 
1391 	if (tp->urg_data & TCP_URG_VALID) {
1392 		int err = 0;
1393 		char c = tp->urg_data;
1394 
1395 		if (!(flags & MSG_PEEK))
1396 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1397 
1398 		/* Read urgent data. */
1399 		msg->msg_flags |= MSG_OOB;
1400 
1401 		if (len > 0) {
1402 			if (!(flags & MSG_TRUNC))
1403 				err = memcpy_to_msg(msg, &c, 1);
1404 			len = 1;
1405 		} else
1406 			msg->msg_flags |= MSG_TRUNC;
1407 
1408 		return err ? -EFAULT : len;
1409 	}
1410 
1411 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1412 		return 0;
1413 
1414 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1415 	 * the available implementations agree in this case:
1416 	 * this call should never block, independent of the
1417 	 * blocking state of the socket.
1418 	 * Mike <pall@rz.uni-karlsruhe.de>
1419 	 */
1420 	return -EAGAIN;
1421 }
1422 
1423 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1424 {
1425 	struct sk_buff *skb;
1426 	int copied = 0, err = 0;
1427 
1428 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1429 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1430 		if (err)
1431 			return err;
1432 		copied += skb->len;
1433 	}
1434 
1435 	skb_queue_walk(&sk->sk_write_queue, skb) {
1436 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1437 		if (err)
1438 			break;
1439 
1440 		copied += skb->len;
1441 	}
1442 
1443 	return err ?: copied;
1444 }
1445 
1446 /* Clean up the receive buffer for full frames taken by the user,
1447  * then send an ACK if necessary.  COPIED is the number of bytes
1448  * tcp_recvmsg has given to the user so far, it speeds up the
1449  * calculation of whether or not we must ACK for the sake of
1450  * a window update.
1451  */
1452 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1453 {
1454 	struct tcp_sock *tp = tcp_sk(sk);
1455 	bool time_to_ack = false;
1456 
1457 	if (inet_csk_ack_scheduled(sk)) {
1458 		const struct inet_connection_sock *icsk = inet_csk(sk);
1459 
1460 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1461 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1462 		    /*
1463 		     * If this read emptied read buffer, we send ACK, if
1464 		     * connection is not bidirectional, user drained
1465 		     * receive buffer and there was a small segment
1466 		     * in queue.
1467 		     */
1468 		    (copied > 0 &&
1469 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1470 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1471 		       !inet_csk_in_pingpong_mode(sk))) &&
1472 		      !atomic_read(&sk->sk_rmem_alloc)))
1473 			time_to_ack = true;
1474 	}
1475 
1476 	/* We send an ACK if we can now advertise a non-zero window
1477 	 * which has been raised "significantly".
1478 	 *
1479 	 * Even if window raised up to infinity, do not send window open ACK
1480 	 * in states, where we will not receive more. It is useless.
1481 	 */
1482 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1483 		__u32 rcv_window_now = tcp_receive_window(tp);
1484 
1485 		/* Optimize, __tcp_select_window() is not cheap. */
1486 		if (2*rcv_window_now <= tp->window_clamp) {
1487 			__u32 new_window = __tcp_select_window(sk);
1488 
1489 			/* Send ACK now, if this read freed lots of space
1490 			 * in our buffer. Certainly, new_window is new window.
1491 			 * We can advertise it now, if it is not less than current one.
1492 			 * "Lots" means "at least twice" here.
1493 			 */
1494 			if (new_window && new_window >= 2 * rcv_window_now)
1495 				time_to_ack = true;
1496 		}
1497 	}
1498 	if (time_to_ack)
1499 		tcp_send_ack(sk);
1500 }
1501 
1502 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1503 {
1504 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1505 	struct tcp_sock *tp = tcp_sk(sk);
1506 
1507 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1508 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1509 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1510 	__tcp_cleanup_rbuf(sk, copied);
1511 }
1512 
1513 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1514 {
1515 	__skb_unlink(skb, &sk->sk_receive_queue);
1516 	if (likely(skb->destructor == sock_rfree)) {
1517 		sock_rfree(skb);
1518 		skb->destructor = NULL;
1519 		skb->sk = NULL;
1520 		return skb_attempt_defer_free(skb);
1521 	}
1522 	__kfree_skb(skb);
1523 }
1524 
1525 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1526 {
1527 	struct sk_buff *skb;
1528 	u32 offset;
1529 
1530 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1531 		offset = seq - TCP_SKB_CB(skb)->seq;
1532 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1533 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1534 			offset--;
1535 		}
1536 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1537 			*off = offset;
1538 			return skb;
1539 		}
1540 		/* This looks weird, but this can happen if TCP collapsing
1541 		 * splitted a fat GRO packet, while we released socket lock
1542 		 * in skb_splice_bits()
1543 		 */
1544 		tcp_eat_recv_skb(sk, skb);
1545 	}
1546 	return NULL;
1547 }
1548 EXPORT_SYMBOL(tcp_recv_skb);
1549 
1550 /*
1551  * This routine provides an alternative to tcp_recvmsg() for routines
1552  * that would like to handle copying from skbuffs directly in 'sendfile'
1553  * fashion.
1554  * Note:
1555  *	- It is assumed that the socket was locked by the caller.
1556  *	- The routine does not block.
1557  *	- At present, there is no support for reading OOB data
1558  *	  or for 'peeking' the socket using this routine
1559  *	  (although both would be easy to implement).
1560  */
1561 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1562 		  sk_read_actor_t recv_actor)
1563 {
1564 	struct sk_buff *skb;
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 	u32 seq = tp->copied_seq;
1567 	u32 offset;
1568 	int copied = 0;
1569 
1570 	if (sk->sk_state == TCP_LISTEN)
1571 		return -ENOTCONN;
1572 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1573 		if (offset < skb->len) {
1574 			int used;
1575 			size_t len;
1576 
1577 			len = skb->len - offset;
1578 			/* Stop reading if we hit a patch of urgent data */
1579 			if (unlikely(tp->urg_data)) {
1580 				u32 urg_offset = tp->urg_seq - seq;
1581 				if (urg_offset < len)
1582 					len = urg_offset;
1583 				if (!len)
1584 					break;
1585 			}
1586 			used = recv_actor(desc, skb, offset, len);
1587 			if (used <= 0) {
1588 				if (!copied)
1589 					copied = used;
1590 				break;
1591 			}
1592 			if (WARN_ON_ONCE(used > len))
1593 				used = len;
1594 			seq += used;
1595 			copied += used;
1596 			offset += used;
1597 
1598 			/* If recv_actor drops the lock (e.g. TCP splice
1599 			 * receive) the skb pointer might be invalid when
1600 			 * getting here: tcp_collapse might have deleted it
1601 			 * while aggregating skbs from the socket queue.
1602 			 */
1603 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1604 			if (!skb)
1605 				break;
1606 			/* TCP coalescing might have appended data to the skb.
1607 			 * Try to splice more frags
1608 			 */
1609 			if (offset + 1 != skb->len)
1610 				continue;
1611 		}
1612 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1613 			tcp_eat_recv_skb(sk, skb);
1614 			++seq;
1615 			break;
1616 		}
1617 		tcp_eat_recv_skb(sk, skb);
1618 		if (!desc->count)
1619 			break;
1620 		WRITE_ONCE(tp->copied_seq, seq);
1621 	}
1622 	WRITE_ONCE(tp->copied_seq, seq);
1623 
1624 	tcp_rcv_space_adjust(sk);
1625 
1626 	/* Clean up data we have read: This will do ACK frames. */
1627 	if (copied > 0) {
1628 		tcp_recv_skb(sk, seq, &offset);
1629 		tcp_cleanup_rbuf(sk, copied);
1630 	}
1631 	return copied;
1632 }
1633 EXPORT_SYMBOL(tcp_read_sock);
1634 
1635 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1636 {
1637 	struct sk_buff *skb;
1638 	int copied = 0;
1639 
1640 	if (sk->sk_state == TCP_LISTEN)
1641 		return -ENOTCONN;
1642 
1643 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1644 		u8 tcp_flags;
1645 		int used;
1646 
1647 		__skb_unlink(skb, &sk->sk_receive_queue);
1648 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1649 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1650 		used = recv_actor(sk, skb);
1651 		if (used < 0) {
1652 			if (!copied)
1653 				copied = used;
1654 			break;
1655 		}
1656 		copied += used;
1657 
1658 		if (tcp_flags & TCPHDR_FIN)
1659 			break;
1660 	}
1661 	return copied;
1662 }
1663 EXPORT_SYMBOL(tcp_read_skb);
1664 
1665 void tcp_read_done(struct sock *sk, size_t len)
1666 {
1667 	struct tcp_sock *tp = tcp_sk(sk);
1668 	u32 seq = tp->copied_seq;
1669 	struct sk_buff *skb;
1670 	size_t left;
1671 	u32 offset;
1672 
1673 	if (sk->sk_state == TCP_LISTEN)
1674 		return;
1675 
1676 	left = len;
1677 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1678 		int used;
1679 
1680 		used = min_t(size_t, skb->len - offset, left);
1681 		seq += used;
1682 		left -= used;
1683 
1684 		if (skb->len > offset + used)
1685 			break;
1686 
1687 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1688 			tcp_eat_recv_skb(sk, skb);
1689 			++seq;
1690 			break;
1691 		}
1692 		tcp_eat_recv_skb(sk, skb);
1693 	}
1694 	WRITE_ONCE(tp->copied_seq, seq);
1695 
1696 	tcp_rcv_space_adjust(sk);
1697 
1698 	/* Clean up data we have read: This will do ACK frames. */
1699 	if (left != len)
1700 		tcp_cleanup_rbuf(sk, len - left);
1701 }
1702 EXPORT_SYMBOL(tcp_read_done);
1703 
1704 int tcp_peek_len(struct socket *sock)
1705 {
1706 	return tcp_inq(sock->sk);
1707 }
1708 EXPORT_SYMBOL(tcp_peek_len);
1709 
1710 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1711 int tcp_set_rcvlowat(struct sock *sk, int val)
1712 {
1713 	int space, cap;
1714 
1715 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 		cap = sk->sk_rcvbuf >> 1;
1717 	else
1718 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1719 	val = min(val, cap);
1720 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1721 
1722 	/* Check if we need to signal EPOLLIN right now */
1723 	tcp_data_ready(sk);
1724 
1725 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1726 		return 0;
1727 
1728 	space = tcp_space_from_win(sk, val);
1729 	if (space > sk->sk_rcvbuf) {
1730 		WRITE_ONCE(sk->sk_rcvbuf, space);
1731 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1732 	}
1733 	return 0;
1734 }
1735 EXPORT_SYMBOL(tcp_set_rcvlowat);
1736 
1737 void tcp_update_recv_tstamps(struct sk_buff *skb,
1738 			     struct scm_timestamping_internal *tss)
1739 {
1740 	if (skb->tstamp)
1741 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1742 	else
1743 		tss->ts[0] = (struct timespec64) {0};
1744 
1745 	if (skb_hwtstamps(skb)->hwtstamp)
1746 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1747 	else
1748 		tss->ts[2] = (struct timespec64) {0};
1749 }
1750 
1751 #ifdef CONFIG_MMU
1752 static const struct vm_operations_struct tcp_vm_ops = {
1753 };
1754 
1755 int tcp_mmap(struct file *file, struct socket *sock,
1756 	     struct vm_area_struct *vma)
1757 {
1758 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1759 		return -EPERM;
1760 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1761 
1762 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1763 	vm_flags_set(vma, VM_MIXEDMAP);
1764 
1765 	vma->vm_ops = &tcp_vm_ops;
1766 	return 0;
1767 }
1768 EXPORT_SYMBOL(tcp_mmap);
1769 
1770 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1771 				       u32 *offset_frag)
1772 {
1773 	skb_frag_t *frag;
1774 
1775 	if (unlikely(offset_skb >= skb->len))
1776 		return NULL;
1777 
1778 	offset_skb -= skb_headlen(skb);
1779 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1780 		return NULL;
1781 
1782 	frag = skb_shinfo(skb)->frags;
1783 	while (offset_skb) {
1784 		if (skb_frag_size(frag) > offset_skb) {
1785 			*offset_frag = offset_skb;
1786 			return frag;
1787 		}
1788 		offset_skb -= skb_frag_size(frag);
1789 		++frag;
1790 	}
1791 	*offset_frag = 0;
1792 	return frag;
1793 }
1794 
1795 static bool can_map_frag(const skb_frag_t *frag)
1796 {
1797 	struct page *page;
1798 
1799 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1800 		return false;
1801 
1802 	page = skb_frag_page(frag);
1803 
1804 	if (PageCompound(page) || page->mapping)
1805 		return false;
1806 
1807 	return true;
1808 }
1809 
1810 static int find_next_mappable_frag(const skb_frag_t *frag,
1811 				   int remaining_in_skb)
1812 {
1813 	int offset = 0;
1814 
1815 	if (likely(can_map_frag(frag)))
1816 		return 0;
1817 
1818 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1819 		offset += skb_frag_size(frag);
1820 		++frag;
1821 	}
1822 	return offset;
1823 }
1824 
1825 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1826 					  struct tcp_zerocopy_receive *zc,
1827 					  struct sk_buff *skb, u32 offset)
1828 {
1829 	u32 frag_offset, partial_frag_remainder = 0;
1830 	int mappable_offset;
1831 	skb_frag_t *frag;
1832 
1833 	/* worst case: skip to next skb. try to improve on this case below */
1834 	zc->recv_skip_hint = skb->len - offset;
1835 
1836 	/* Find the frag containing this offset (and how far into that frag) */
1837 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1838 	if (!frag)
1839 		return;
1840 
1841 	if (frag_offset) {
1842 		struct skb_shared_info *info = skb_shinfo(skb);
1843 
1844 		/* We read part of the last frag, must recvmsg() rest of skb. */
1845 		if (frag == &info->frags[info->nr_frags - 1])
1846 			return;
1847 
1848 		/* Else, we must at least read the remainder in this frag. */
1849 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1850 		zc->recv_skip_hint -= partial_frag_remainder;
1851 		++frag;
1852 	}
1853 
1854 	/* partial_frag_remainder: If part way through a frag, must read rest.
1855 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1856 	 * in partial_frag_remainder.
1857 	 */
1858 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1859 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1860 }
1861 
1862 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1863 			      int flags, struct scm_timestamping_internal *tss,
1864 			      int *cmsg_flags);
1865 static int receive_fallback_to_copy(struct sock *sk,
1866 				    struct tcp_zerocopy_receive *zc, int inq,
1867 				    struct scm_timestamping_internal *tss)
1868 {
1869 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1870 	struct msghdr msg = {};
1871 	int err;
1872 
1873 	zc->length = 0;
1874 	zc->recv_skip_hint = 0;
1875 
1876 	if (copy_address != zc->copybuf_address)
1877 		return -EINVAL;
1878 
1879 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1880 			  &msg.msg_iter);
1881 	if (err)
1882 		return err;
1883 
1884 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1885 				 tss, &zc->msg_flags);
1886 	if (err < 0)
1887 		return err;
1888 
1889 	zc->copybuf_len = err;
1890 	if (likely(zc->copybuf_len)) {
1891 		struct sk_buff *skb;
1892 		u32 offset;
1893 
1894 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1895 		if (skb)
1896 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1897 	}
1898 	return 0;
1899 }
1900 
1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1902 				   struct sk_buff *skb, u32 copylen,
1903 				   u32 *offset, u32 *seq)
1904 {
1905 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1906 	struct msghdr msg = {};
1907 	int err;
1908 
1909 	if (copy_address != zc->copybuf_address)
1910 		return -EINVAL;
1911 
1912 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1913 			  &msg.msg_iter);
1914 	if (err)
1915 		return err;
1916 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1917 	if (err)
1918 		return err;
1919 	zc->recv_skip_hint -= copylen;
1920 	*offset += copylen;
1921 	*seq += copylen;
1922 	return (__s32)copylen;
1923 }
1924 
1925 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1926 				  struct sock *sk,
1927 				  struct sk_buff *skb,
1928 				  u32 *seq,
1929 				  s32 copybuf_len,
1930 				  struct scm_timestamping_internal *tss)
1931 {
1932 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1933 
1934 	if (!copylen)
1935 		return 0;
1936 	/* skb is null if inq < PAGE_SIZE. */
1937 	if (skb) {
1938 		offset = *seq - TCP_SKB_CB(skb)->seq;
1939 	} else {
1940 		skb = tcp_recv_skb(sk, *seq, &offset);
1941 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1942 			tcp_update_recv_tstamps(skb, tss);
1943 			zc->msg_flags |= TCP_CMSG_TS;
1944 		}
1945 	}
1946 
1947 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1948 						  seq);
1949 	return zc->copybuf_len < 0 ? 0 : copylen;
1950 }
1951 
1952 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1953 					      struct page **pending_pages,
1954 					      unsigned long pages_remaining,
1955 					      unsigned long *address,
1956 					      u32 *length,
1957 					      u32 *seq,
1958 					      struct tcp_zerocopy_receive *zc,
1959 					      u32 total_bytes_to_map,
1960 					      int err)
1961 {
1962 	/* At least one page did not map. Try zapping if we skipped earlier. */
1963 	if (err == -EBUSY &&
1964 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1965 		u32 maybe_zap_len;
1966 
1967 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1968 				*length + /* Mapped or pending */
1969 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1970 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1971 		err = 0;
1972 	}
1973 
1974 	if (!err) {
1975 		unsigned long leftover_pages = pages_remaining;
1976 		int bytes_mapped;
1977 
1978 		/* We called zap_page_range_single, try to reinsert. */
1979 		err = vm_insert_pages(vma, *address,
1980 				      pending_pages,
1981 				      &pages_remaining);
1982 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1983 		*seq += bytes_mapped;
1984 		*address += bytes_mapped;
1985 	}
1986 	if (err) {
1987 		/* Either we were unable to zap, OR we zapped, retried an
1988 		 * insert, and still had an issue. Either ways, pages_remaining
1989 		 * is the number of pages we were unable to map, and we unroll
1990 		 * some state we speculatively touched before.
1991 		 */
1992 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1993 
1994 		*length -= bytes_not_mapped;
1995 		zc->recv_skip_hint += bytes_not_mapped;
1996 	}
1997 	return err;
1998 }
1999 
2000 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2001 					struct page **pages,
2002 					unsigned int pages_to_map,
2003 					unsigned long *address,
2004 					u32 *length,
2005 					u32 *seq,
2006 					struct tcp_zerocopy_receive *zc,
2007 					u32 total_bytes_to_map)
2008 {
2009 	unsigned long pages_remaining = pages_to_map;
2010 	unsigned int pages_mapped;
2011 	unsigned int bytes_mapped;
2012 	int err;
2013 
2014 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2015 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2016 	bytes_mapped = PAGE_SIZE * pages_mapped;
2017 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2018 	 * mapping (some but not all of the pages).
2019 	 */
2020 	*seq += bytes_mapped;
2021 	*address += bytes_mapped;
2022 
2023 	if (likely(!err))
2024 		return 0;
2025 
2026 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2027 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2028 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2029 		err);
2030 }
2031 
2032 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2033 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2034 				      struct tcp_zerocopy_receive *zc,
2035 				      struct scm_timestamping_internal *tss)
2036 {
2037 	unsigned long msg_control_addr;
2038 	struct msghdr cmsg_dummy;
2039 
2040 	msg_control_addr = (unsigned long)zc->msg_control;
2041 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2042 	cmsg_dummy.msg_controllen =
2043 		(__kernel_size_t)zc->msg_controllen;
2044 	cmsg_dummy.msg_flags = in_compat_syscall()
2045 		? MSG_CMSG_COMPAT : 0;
2046 	cmsg_dummy.msg_control_is_user = true;
2047 	zc->msg_flags = 0;
2048 	if (zc->msg_control == msg_control_addr &&
2049 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2050 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2051 		zc->msg_control = (__u64)
2052 			((uintptr_t)cmsg_dummy.msg_control_user);
2053 		zc->msg_controllen =
2054 			(__u64)cmsg_dummy.msg_controllen;
2055 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2056 	}
2057 }
2058 
2059 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2060 					   unsigned long address,
2061 					   bool *mmap_locked)
2062 {
2063 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2064 
2065 	if (vma) {
2066 		if (vma->vm_ops != &tcp_vm_ops) {
2067 			vma_end_read(vma);
2068 			return NULL;
2069 		}
2070 		*mmap_locked = false;
2071 		return vma;
2072 	}
2073 
2074 	mmap_read_lock(mm);
2075 	vma = vma_lookup(mm, address);
2076 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2077 		mmap_read_unlock(mm);
2078 		return NULL;
2079 	}
2080 	*mmap_locked = true;
2081 	return vma;
2082 }
2083 
2084 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2085 static int tcp_zerocopy_receive(struct sock *sk,
2086 				struct tcp_zerocopy_receive *zc,
2087 				struct scm_timestamping_internal *tss)
2088 {
2089 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2090 	unsigned long address = (unsigned long)zc->address;
2091 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2092 	s32 copybuf_len = zc->copybuf_len;
2093 	struct tcp_sock *tp = tcp_sk(sk);
2094 	const skb_frag_t *frags = NULL;
2095 	unsigned int pages_to_map = 0;
2096 	struct vm_area_struct *vma;
2097 	struct sk_buff *skb = NULL;
2098 	u32 seq = tp->copied_seq;
2099 	u32 total_bytes_to_map;
2100 	int inq = tcp_inq(sk);
2101 	bool mmap_locked;
2102 	int ret;
2103 
2104 	zc->copybuf_len = 0;
2105 	zc->msg_flags = 0;
2106 
2107 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2108 		return -EINVAL;
2109 
2110 	if (sk->sk_state == TCP_LISTEN)
2111 		return -ENOTCONN;
2112 
2113 	sock_rps_record_flow(sk);
2114 
2115 	if (inq && inq <= copybuf_len)
2116 		return receive_fallback_to_copy(sk, zc, inq, tss);
2117 
2118 	if (inq < PAGE_SIZE) {
2119 		zc->length = 0;
2120 		zc->recv_skip_hint = inq;
2121 		if (!inq && sock_flag(sk, SOCK_DONE))
2122 			return -EIO;
2123 		return 0;
2124 	}
2125 
2126 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2127 	if (!vma)
2128 		return -EINVAL;
2129 
2130 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2131 	avail_len = min_t(u32, vma_len, inq);
2132 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2133 	if (total_bytes_to_map) {
2134 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2135 			zap_page_range_single(vma, address, total_bytes_to_map,
2136 					      NULL);
2137 		zc->length = total_bytes_to_map;
2138 		zc->recv_skip_hint = 0;
2139 	} else {
2140 		zc->length = avail_len;
2141 		zc->recv_skip_hint = avail_len;
2142 	}
2143 	ret = 0;
2144 	while (length + PAGE_SIZE <= zc->length) {
2145 		int mappable_offset;
2146 		struct page *page;
2147 
2148 		if (zc->recv_skip_hint < PAGE_SIZE) {
2149 			u32 offset_frag;
2150 
2151 			if (skb) {
2152 				if (zc->recv_skip_hint > 0)
2153 					break;
2154 				skb = skb->next;
2155 				offset = seq - TCP_SKB_CB(skb)->seq;
2156 			} else {
2157 				skb = tcp_recv_skb(sk, seq, &offset);
2158 			}
2159 
2160 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2161 				tcp_update_recv_tstamps(skb, tss);
2162 				zc->msg_flags |= TCP_CMSG_TS;
2163 			}
2164 			zc->recv_skip_hint = skb->len - offset;
2165 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2166 			if (!frags || offset_frag)
2167 				break;
2168 		}
2169 
2170 		mappable_offset = find_next_mappable_frag(frags,
2171 							  zc->recv_skip_hint);
2172 		if (mappable_offset) {
2173 			zc->recv_skip_hint = mappable_offset;
2174 			break;
2175 		}
2176 		page = skb_frag_page(frags);
2177 		prefetchw(page);
2178 		pages[pages_to_map++] = page;
2179 		length += PAGE_SIZE;
2180 		zc->recv_skip_hint -= PAGE_SIZE;
2181 		frags++;
2182 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2183 		    zc->recv_skip_hint < PAGE_SIZE) {
2184 			/* Either full batch, or we're about to go to next skb
2185 			 * (and we cannot unroll failed ops across skbs).
2186 			 */
2187 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2188 							   pages_to_map,
2189 							   &address, &length,
2190 							   &seq, zc,
2191 							   total_bytes_to_map);
2192 			if (ret)
2193 				goto out;
2194 			pages_to_map = 0;
2195 		}
2196 	}
2197 	if (pages_to_map) {
2198 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2199 						   &address, &length, &seq,
2200 						   zc, total_bytes_to_map);
2201 	}
2202 out:
2203 	if (mmap_locked)
2204 		mmap_read_unlock(current->mm);
2205 	else
2206 		vma_end_read(vma);
2207 	/* Try to copy straggler data. */
2208 	if (!ret)
2209 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2210 
2211 	if (length + copylen) {
2212 		WRITE_ONCE(tp->copied_seq, seq);
2213 		tcp_rcv_space_adjust(sk);
2214 
2215 		/* Clean up data we have read: This will do ACK frames. */
2216 		tcp_recv_skb(sk, seq, &offset);
2217 		tcp_cleanup_rbuf(sk, length + copylen);
2218 		ret = 0;
2219 		if (length == zc->length)
2220 			zc->recv_skip_hint = 0;
2221 	} else {
2222 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2223 			ret = -EIO;
2224 	}
2225 	zc->length = length;
2226 	return ret;
2227 }
2228 #endif
2229 
2230 /* Similar to __sock_recv_timestamp, but does not require an skb */
2231 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2232 			struct scm_timestamping_internal *tss)
2233 {
2234 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2235 	bool has_timestamping = false;
2236 
2237 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2238 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2239 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2240 				if (new_tstamp) {
2241 					struct __kernel_timespec kts = {
2242 						.tv_sec = tss->ts[0].tv_sec,
2243 						.tv_nsec = tss->ts[0].tv_nsec,
2244 					};
2245 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2246 						 sizeof(kts), &kts);
2247 				} else {
2248 					struct __kernel_old_timespec ts_old = {
2249 						.tv_sec = tss->ts[0].tv_sec,
2250 						.tv_nsec = tss->ts[0].tv_nsec,
2251 					};
2252 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2253 						 sizeof(ts_old), &ts_old);
2254 				}
2255 			} else {
2256 				if (new_tstamp) {
2257 					struct __kernel_sock_timeval stv = {
2258 						.tv_sec = tss->ts[0].tv_sec,
2259 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2260 					};
2261 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2262 						 sizeof(stv), &stv);
2263 				} else {
2264 					struct __kernel_old_timeval tv = {
2265 						.tv_sec = tss->ts[0].tv_sec,
2266 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2267 					};
2268 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2269 						 sizeof(tv), &tv);
2270 				}
2271 			}
2272 		}
2273 
2274 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2275 			has_timestamping = true;
2276 		else
2277 			tss->ts[0] = (struct timespec64) {0};
2278 	}
2279 
2280 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2281 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2282 			has_timestamping = true;
2283 		else
2284 			tss->ts[2] = (struct timespec64) {0};
2285 	}
2286 
2287 	if (has_timestamping) {
2288 		tss->ts[1] = (struct timespec64) {0};
2289 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2290 			put_cmsg_scm_timestamping64(msg, tss);
2291 		else
2292 			put_cmsg_scm_timestamping(msg, tss);
2293 	}
2294 }
2295 
2296 static int tcp_inq_hint(struct sock *sk)
2297 {
2298 	const struct tcp_sock *tp = tcp_sk(sk);
2299 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2300 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2301 	int inq;
2302 
2303 	inq = rcv_nxt - copied_seq;
2304 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2305 		lock_sock(sk);
2306 		inq = tp->rcv_nxt - tp->copied_seq;
2307 		release_sock(sk);
2308 	}
2309 	/* After receiving a FIN, tell the user-space to continue reading
2310 	 * by returning a non-zero inq.
2311 	 */
2312 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2313 		inq = 1;
2314 	return inq;
2315 }
2316 
2317 /*
2318  *	This routine copies from a sock struct into the user buffer.
2319  *
2320  *	Technical note: in 2.3 we work on _locked_ socket, so that
2321  *	tricks with *seq access order and skb->users are not required.
2322  *	Probably, code can be easily improved even more.
2323  */
2324 
2325 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2326 			      int flags, struct scm_timestamping_internal *tss,
2327 			      int *cmsg_flags)
2328 {
2329 	struct tcp_sock *tp = tcp_sk(sk);
2330 	int copied = 0;
2331 	u32 peek_seq;
2332 	u32 *seq;
2333 	unsigned long used;
2334 	int err;
2335 	int target;		/* Read at least this many bytes */
2336 	long timeo;
2337 	struct sk_buff *skb, *last;
2338 	u32 peek_offset = 0;
2339 	u32 urg_hole = 0;
2340 
2341 	err = -ENOTCONN;
2342 	if (sk->sk_state == TCP_LISTEN)
2343 		goto out;
2344 
2345 	if (tp->recvmsg_inq) {
2346 		*cmsg_flags = TCP_CMSG_INQ;
2347 		msg->msg_get_inq = 1;
2348 	}
2349 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2350 
2351 	/* Urgent data needs to be handled specially. */
2352 	if (flags & MSG_OOB)
2353 		goto recv_urg;
2354 
2355 	if (unlikely(tp->repair)) {
2356 		err = -EPERM;
2357 		if (!(flags & MSG_PEEK))
2358 			goto out;
2359 
2360 		if (tp->repair_queue == TCP_SEND_QUEUE)
2361 			goto recv_sndq;
2362 
2363 		err = -EINVAL;
2364 		if (tp->repair_queue == TCP_NO_QUEUE)
2365 			goto out;
2366 
2367 		/* 'common' recv queue MSG_PEEK-ing */
2368 	}
2369 
2370 	seq = &tp->copied_seq;
2371 	if (flags & MSG_PEEK) {
2372 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2373 		peek_seq = tp->copied_seq + peek_offset;
2374 		seq = &peek_seq;
2375 	}
2376 
2377 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2378 
2379 	do {
2380 		u32 offset;
2381 
2382 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2383 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2384 			if (copied)
2385 				break;
2386 			if (signal_pending(current)) {
2387 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2388 				break;
2389 			}
2390 		}
2391 
2392 		/* Next get a buffer. */
2393 
2394 		last = skb_peek_tail(&sk->sk_receive_queue);
2395 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2396 			last = skb;
2397 			/* Now that we have two receive queues this
2398 			 * shouldn't happen.
2399 			 */
2400 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2401 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2402 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2403 				 flags))
2404 				break;
2405 
2406 			offset = *seq - TCP_SKB_CB(skb)->seq;
2407 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2408 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2409 				offset--;
2410 			}
2411 			if (offset < skb->len)
2412 				goto found_ok_skb;
2413 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2414 				goto found_fin_ok;
2415 			WARN(!(flags & MSG_PEEK),
2416 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2417 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2418 		}
2419 
2420 		/* Well, if we have backlog, try to process it now yet. */
2421 
2422 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2423 			break;
2424 
2425 		if (copied) {
2426 			if (!timeo ||
2427 			    sk->sk_err ||
2428 			    sk->sk_state == TCP_CLOSE ||
2429 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2430 			    signal_pending(current))
2431 				break;
2432 		} else {
2433 			if (sock_flag(sk, SOCK_DONE))
2434 				break;
2435 
2436 			if (sk->sk_err) {
2437 				copied = sock_error(sk);
2438 				break;
2439 			}
2440 
2441 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2442 				break;
2443 
2444 			if (sk->sk_state == TCP_CLOSE) {
2445 				/* This occurs when user tries to read
2446 				 * from never connected socket.
2447 				 */
2448 				copied = -ENOTCONN;
2449 				break;
2450 			}
2451 
2452 			if (!timeo) {
2453 				copied = -EAGAIN;
2454 				break;
2455 			}
2456 
2457 			if (signal_pending(current)) {
2458 				copied = sock_intr_errno(timeo);
2459 				break;
2460 			}
2461 		}
2462 
2463 		if (copied >= target) {
2464 			/* Do not sleep, just process backlog. */
2465 			__sk_flush_backlog(sk);
2466 		} else {
2467 			tcp_cleanup_rbuf(sk, copied);
2468 			err = sk_wait_data(sk, &timeo, last);
2469 			if (err < 0) {
2470 				err = copied ? : err;
2471 				goto out;
2472 			}
2473 		}
2474 
2475 		if ((flags & MSG_PEEK) &&
2476 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2477 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2478 					    current->comm,
2479 					    task_pid_nr(current));
2480 			peek_seq = tp->copied_seq + peek_offset;
2481 		}
2482 		continue;
2483 
2484 found_ok_skb:
2485 		/* Ok so how much can we use? */
2486 		used = skb->len - offset;
2487 		if (len < used)
2488 			used = len;
2489 
2490 		/* Do we have urgent data here? */
2491 		if (unlikely(tp->urg_data)) {
2492 			u32 urg_offset = tp->urg_seq - *seq;
2493 			if (urg_offset < used) {
2494 				if (!urg_offset) {
2495 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2496 						WRITE_ONCE(*seq, *seq + 1);
2497 						urg_hole++;
2498 						offset++;
2499 						used--;
2500 						if (!used)
2501 							goto skip_copy;
2502 					}
2503 				} else
2504 					used = urg_offset;
2505 			}
2506 		}
2507 
2508 		if (!(flags & MSG_TRUNC)) {
2509 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2510 			if (err) {
2511 				/* Exception. Bailout! */
2512 				if (!copied)
2513 					copied = -EFAULT;
2514 				break;
2515 			}
2516 		}
2517 
2518 		WRITE_ONCE(*seq, *seq + used);
2519 		copied += used;
2520 		len -= used;
2521 		if (flags & MSG_PEEK)
2522 			sk_peek_offset_fwd(sk, used);
2523 		else
2524 			sk_peek_offset_bwd(sk, used);
2525 		tcp_rcv_space_adjust(sk);
2526 
2527 skip_copy:
2528 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2529 			WRITE_ONCE(tp->urg_data, 0);
2530 			tcp_fast_path_check(sk);
2531 		}
2532 
2533 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2534 			tcp_update_recv_tstamps(skb, tss);
2535 			*cmsg_flags |= TCP_CMSG_TS;
2536 		}
2537 
2538 		if (used + offset < skb->len)
2539 			continue;
2540 
2541 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2542 			goto found_fin_ok;
2543 		if (!(flags & MSG_PEEK))
2544 			tcp_eat_recv_skb(sk, skb);
2545 		continue;
2546 
2547 found_fin_ok:
2548 		/* Process the FIN. */
2549 		WRITE_ONCE(*seq, *seq + 1);
2550 		if (!(flags & MSG_PEEK))
2551 			tcp_eat_recv_skb(sk, skb);
2552 		break;
2553 	} while (len > 0);
2554 
2555 	/* According to UNIX98, msg_name/msg_namelen are ignored
2556 	 * on connected socket. I was just happy when found this 8) --ANK
2557 	 */
2558 
2559 	/* Clean up data we have read: This will do ACK frames. */
2560 	tcp_cleanup_rbuf(sk, copied);
2561 	return copied;
2562 
2563 out:
2564 	return err;
2565 
2566 recv_urg:
2567 	err = tcp_recv_urg(sk, msg, len, flags);
2568 	goto out;
2569 
2570 recv_sndq:
2571 	err = tcp_peek_sndq(sk, msg, len);
2572 	goto out;
2573 }
2574 
2575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2576 		int *addr_len)
2577 {
2578 	int cmsg_flags = 0, ret;
2579 	struct scm_timestamping_internal tss;
2580 
2581 	if (unlikely(flags & MSG_ERRQUEUE))
2582 		return inet_recv_error(sk, msg, len, addr_len);
2583 
2584 	if (sk_can_busy_loop(sk) &&
2585 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2586 	    sk->sk_state == TCP_ESTABLISHED)
2587 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2588 
2589 	lock_sock(sk);
2590 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2591 	release_sock(sk);
2592 
2593 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2594 		if (cmsg_flags & TCP_CMSG_TS)
2595 			tcp_recv_timestamp(msg, sk, &tss);
2596 		if (msg->msg_get_inq) {
2597 			msg->msg_inq = tcp_inq_hint(sk);
2598 			if (cmsg_flags & TCP_CMSG_INQ)
2599 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2600 					 sizeof(msg->msg_inq), &msg->msg_inq);
2601 		}
2602 	}
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL(tcp_recvmsg);
2606 
2607 void tcp_set_state(struct sock *sk, int state)
2608 {
2609 	int oldstate = sk->sk_state;
2610 
2611 	/* We defined a new enum for TCP states that are exported in BPF
2612 	 * so as not force the internal TCP states to be frozen. The
2613 	 * following checks will detect if an internal state value ever
2614 	 * differs from the BPF value. If this ever happens, then we will
2615 	 * need to remap the internal value to the BPF value before calling
2616 	 * tcp_call_bpf_2arg.
2617 	 */
2618 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2619 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2620 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2621 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2622 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2623 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2624 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2625 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2626 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2627 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2628 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2629 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2630 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2631 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2632 
2633 	/* bpf uapi header bpf.h defines an anonymous enum with values
2634 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2635 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2636 	 * But clang built vmlinux does not have this enum in DWARF
2637 	 * since clang removes the above code before generating IR/debuginfo.
2638 	 * Let us explicitly emit the type debuginfo to ensure the
2639 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2640 	 * regardless of which compiler is used.
2641 	 */
2642 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2643 
2644 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2645 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2646 
2647 	switch (state) {
2648 	case TCP_ESTABLISHED:
2649 		if (oldstate != TCP_ESTABLISHED)
2650 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2651 		break;
2652 	case TCP_CLOSE_WAIT:
2653 		if (oldstate == TCP_SYN_RECV)
2654 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2655 		break;
2656 
2657 	case TCP_CLOSE:
2658 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2659 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2660 
2661 		sk->sk_prot->unhash(sk);
2662 		if (inet_csk(sk)->icsk_bind_hash &&
2663 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2664 			inet_put_port(sk);
2665 		fallthrough;
2666 	default:
2667 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2668 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2669 	}
2670 
2671 	/* Change state AFTER socket is unhashed to avoid closed
2672 	 * socket sitting in hash tables.
2673 	 */
2674 	inet_sk_state_store(sk, state);
2675 }
2676 EXPORT_SYMBOL_GPL(tcp_set_state);
2677 
2678 /*
2679  *	State processing on a close. This implements the state shift for
2680  *	sending our FIN frame. Note that we only send a FIN for some
2681  *	states. A shutdown() may have already sent the FIN, or we may be
2682  *	closed.
2683  */
2684 
2685 static const unsigned char new_state[16] = {
2686   /* current state:        new state:      action:	*/
2687   [0 /* (Invalid) */]	= TCP_CLOSE,
2688   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2689   [TCP_SYN_SENT]	= TCP_CLOSE,
2690   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2691   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2692   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2693   [TCP_TIME_WAIT]	= TCP_CLOSE,
2694   [TCP_CLOSE]		= TCP_CLOSE,
2695   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2696   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2697   [TCP_LISTEN]		= TCP_CLOSE,
2698   [TCP_CLOSING]		= TCP_CLOSING,
2699   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2700 };
2701 
2702 static int tcp_close_state(struct sock *sk)
2703 {
2704 	int next = (int)new_state[sk->sk_state];
2705 	int ns = next & TCP_STATE_MASK;
2706 
2707 	tcp_set_state(sk, ns);
2708 
2709 	return next & TCP_ACTION_FIN;
2710 }
2711 
2712 /*
2713  *	Shutdown the sending side of a connection. Much like close except
2714  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2715  */
2716 
2717 void tcp_shutdown(struct sock *sk, int how)
2718 {
2719 	/*	We need to grab some memory, and put together a FIN,
2720 	 *	and then put it into the queue to be sent.
2721 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2722 	 */
2723 	if (!(how & SEND_SHUTDOWN))
2724 		return;
2725 
2726 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2727 	if ((1 << sk->sk_state) &
2728 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2729 	     TCPF_CLOSE_WAIT)) {
2730 		/* Clear out any half completed packets.  FIN if needed. */
2731 		if (tcp_close_state(sk))
2732 			tcp_send_fin(sk);
2733 	}
2734 }
2735 EXPORT_SYMBOL(tcp_shutdown);
2736 
2737 int tcp_orphan_count_sum(void)
2738 {
2739 	int i, total = 0;
2740 
2741 	for_each_possible_cpu(i)
2742 		total += per_cpu(tcp_orphan_count, i);
2743 
2744 	return max(total, 0);
2745 }
2746 
2747 static int tcp_orphan_cache;
2748 static struct timer_list tcp_orphan_timer;
2749 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2750 
2751 static void tcp_orphan_update(struct timer_list *unused)
2752 {
2753 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2754 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2755 }
2756 
2757 static bool tcp_too_many_orphans(int shift)
2758 {
2759 	return READ_ONCE(tcp_orphan_cache) << shift >
2760 		READ_ONCE(sysctl_tcp_max_orphans);
2761 }
2762 
2763 static bool tcp_out_of_memory(const struct sock *sk)
2764 {
2765 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
2766 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
2767 		return true;
2768 	return false;
2769 }
2770 
2771 bool tcp_check_oom(const struct sock *sk, int shift)
2772 {
2773 	bool too_many_orphans, out_of_socket_memory;
2774 
2775 	too_many_orphans = tcp_too_many_orphans(shift);
2776 	out_of_socket_memory = tcp_out_of_memory(sk);
2777 
2778 	if (too_many_orphans)
2779 		net_info_ratelimited("too many orphaned sockets\n");
2780 	if (out_of_socket_memory)
2781 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2782 	return too_many_orphans || out_of_socket_memory;
2783 }
2784 
2785 void __tcp_close(struct sock *sk, long timeout)
2786 {
2787 	struct sk_buff *skb;
2788 	int data_was_unread = 0;
2789 	int state;
2790 
2791 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2792 
2793 	if (sk->sk_state == TCP_LISTEN) {
2794 		tcp_set_state(sk, TCP_CLOSE);
2795 
2796 		/* Special case. */
2797 		inet_csk_listen_stop(sk);
2798 
2799 		goto adjudge_to_death;
2800 	}
2801 
2802 	/*  We need to flush the recv. buffs.  We do this only on the
2803 	 *  descriptor close, not protocol-sourced closes, because the
2804 	 *  reader process may not have drained the data yet!
2805 	 */
2806 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2807 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2808 
2809 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2810 			len--;
2811 		data_was_unread += len;
2812 		__kfree_skb(skb);
2813 	}
2814 
2815 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2816 	if (sk->sk_state == TCP_CLOSE)
2817 		goto adjudge_to_death;
2818 
2819 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2820 	 * data was lost. To witness the awful effects of the old behavior of
2821 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2822 	 * GET in an FTP client, suspend the process, wait for the client to
2823 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2824 	 * Note: timeout is always zero in such a case.
2825 	 */
2826 	if (unlikely(tcp_sk(sk)->repair)) {
2827 		sk->sk_prot->disconnect(sk, 0);
2828 	} else if (data_was_unread) {
2829 		/* Unread data was tossed, zap the connection. */
2830 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2831 		tcp_set_state(sk, TCP_CLOSE);
2832 		tcp_send_active_reset(sk, sk->sk_allocation,
2833 				      SK_RST_REASON_NOT_SPECIFIED);
2834 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2835 		/* Check zero linger _after_ checking for unread data. */
2836 		sk->sk_prot->disconnect(sk, 0);
2837 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2838 	} else if (tcp_close_state(sk)) {
2839 		/* We FIN if the application ate all the data before
2840 		 * zapping the connection.
2841 		 */
2842 
2843 		/* RED-PEN. Formally speaking, we have broken TCP state
2844 		 * machine. State transitions:
2845 		 *
2846 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2847 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2848 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2849 		 *
2850 		 * are legal only when FIN has been sent (i.e. in window),
2851 		 * rather than queued out of window. Purists blame.
2852 		 *
2853 		 * F.e. "RFC state" is ESTABLISHED,
2854 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2855 		 *
2856 		 * The visible declinations are that sometimes
2857 		 * we enter time-wait state, when it is not required really
2858 		 * (harmless), do not send active resets, when they are
2859 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2860 		 * they look as CLOSING or LAST_ACK for Linux)
2861 		 * Probably, I missed some more holelets.
2862 		 * 						--ANK
2863 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2864 		 * in a single packet! (May consider it later but will
2865 		 * probably need API support or TCP_CORK SYN-ACK until
2866 		 * data is written and socket is closed.)
2867 		 */
2868 		tcp_send_fin(sk);
2869 	}
2870 
2871 	sk_stream_wait_close(sk, timeout);
2872 
2873 adjudge_to_death:
2874 	state = sk->sk_state;
2875 	sock_hold(sk);
2876 	sock_orphan(sk);
2877 
2878 	local_bh_disable();
2879 	bh_lock_sock(sk);
2880 	/* remove backlog if any, without releasing ownership. */
2881 	__release_sock(sk);
2882 
2883 	this_cpu_inc(tcp_orphan_count);
2884 
2885 	/* Have we already been destroyed by a softirq or backlog? */
2886 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2887 		goto out;
2888 
2889 	/*	This is a (useful) BSD violating of the RFC. There is a
2890 	 *	problem with TCP as specified in that the other end could
2891 	 *	keep a socket open forever with no application left this end.
2892 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2893 	 *	our end. If they send after that then tough - BUT: long enough
2894 	 *	that we won't make the old 4*rto = almost no time - whoops
2895 	 *	reset mistake.
2896 	 *
2897 	 *	Nope, it was not mistake. It is really desired behaviour
2898 	 *	f.e. on http servers, when such sockets are useless, but
2899 	 *	consume significant resources. Let's do it with special
2900 	 *	linger2	option.					--ANK
2901 	 */
2902 
2903 	if (sk->sk_state == TCP_FIN_WAIT2) {
2904 		struct tcp_sock *tp = tcp_sk(sk);
2905 		if (READ_ONCE(tp->linger2) < 0) {
2906 			tcp_set_state(sk, TCP_CLOSE);
2907 			tcp_send_active_reset(sk, GFP_ATOMIC,
2908 					      SK_RST_REASON_NOT_SPECIFIED);
2909 			__NET_INC_STATS(sock_net(sk),
2910 					LINUX_MIB_TCPABORTONLINGER);
2911 		} else {
2912 			const int tmo = tcp_fin_time(sk);
2913 
2914 			if (tmo > TCP_TIMEWAIT_LEN) {
2915 				inet_csk_reset_keepalive_timer(sk,
2916 						tmo - TCP_TIMEWAIT_LEN);
2917 			} else {
2918 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2919 				goto out;
2920 			}
2921 		}
2922 	}
2923 	if (sk->sk_state != TCP_CLOSE) {
2924 		if (tcp_check_oom(sk, 0)) {
2925 			tcp_set_state(sk, TCP_CLOSE);
2926 			tcp_send_active_reset(sk, GFP_ATOMIC,
2927 					      SK_RST_REASON_NOT_SPECIFIED);
2928 			__NET_INC_STATS(sock_net(sk),
2929 					LINUX_MIB_TCPABORTONMEMORY);
2930 		} else if (!check_net(sock_net(sk))) {
2931 			/* Not possible to send reset; just close */
2932 			tcp_set_state(sk, TCP_CLOSE);
2933 		}
2934 	}
2935 
2936 	if (sk->sk_state == TCP_CLOSE) {
2937 		struct request_sock *req;
2938 
2939 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2940 						lockdep_sock_is_held(sk));
2941 		/* We could get here with a non-NULL req if the socket is
2942 		 * aborted (e.g., closed with unread data) before 3WHS
2943 		 * finishes.
2944 		 */
2945 		if (req)
2946 			reqsk_fastopen_remove(sk, req, false);
2947 		inet_csk_destroy_sock(sk);
2948 	}
2949 	/* Otherwise, socket is reprieved until protocol close. */
2950 
2951 out:
2952 	bh_unlock_sock(sk);
2953 	local_bh_enable();
2954 }
2955 
2956 void tcp_close(struct sock *sk, long timeout)
2957 {
2958 	lock_sock(sk);
2959 	__tcp_close(sk, timeout);
2960 	release_sock(sk);
2961 	if (!sk->sk_net_refcnt)
2962 		inet_csk_clear_xmit_timers_sync(sk);
2963 	sock_put(sk);
2964 }
2965 EXPORT_SYMBOL(tcp_close);
2966 
2967 /* These states need RST on ABORT according to RFC793 */
2968 
2969 static inline bool tcp_need_reset(int state)
2970 {
2971 	return (1 << state) &
2972 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2973 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2974 }
2975 
2976 static void tcp_rtx_queue_purge(struct sock *sk)
2977 {
2978 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2979 
2980 	tcp_sk(sk)->highest_sack = NULL;
2981 	while (p) {
2982 		struct sk_buff *skb = rb_to_skb(p);
2983 
2984 		p = rb_next(p);
2985 		/* Since we are deleting whole queue, no need to
2986 		 * list_del(&skb->tcp_tsorted_anchor)
2987 		 */
2988 		tcp_rtx_queue_unlink(skb, sk);
2989 		tcp_wmem_free_skb(sk, skb);
2990 	}
2991 }
2992 
2993 void tcp_write_queue_purge(struct sock *sk)
2994 {
2995 	struct sk_buff *skb;
2996 
2997 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2998 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2999 		tcp_skb_tsorted_anchor_cleanup(skb);
3000 		tcp_wmem_free_skb(sk, skb);
3001 	}
3002 	tcp_rtx_queue_purge(sk);
3003 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3004 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3005 	tcp_sk(sk)->packets_out = 0;
3006 	inet_csk(sk)->icsk_backoff = 0;
3007 }
3008 
3009 int tcp_disconnect(struct sock *sk, int flags)
3010 {
3011 	struct inet_sock *inet = inet_sk(sk);
3012 	struct inet_connection_sock *icsk = inet_csk(sk);
3013 	struct tcp_sock *tp = tcp_sk(sk);
3014 	int old_state = sk->sk_state;
3015 	u32 seq;
3016 
3017 	if (old_state != TCP_CLOSE)
3018 		tcp_set_state(sk, TCP_CLOSE);
3019 
3020 	/* ABORT function of RFC793 */
3021 	if (old_state == TCP_LISTEN) {
3022 		inet_csk_listen_stop(sk);
3023 	} else if (unlikely(tp->repair)) {
3024 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3025 	} else if (tcp_need_reset(old_state) ||
3026 		   (tp->snd_nxt != tp->write_seq &&
3027 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3028 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3029 		 * states
3030 		 */
3031 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED);
3032 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3033 	} else if (old_state == TCP_SYN_SENT)
3034 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3035 
3036 	tcp_clear_xmit_timers(sk);
3037 	__skb_queue_purge(&sk->sk_receive_queue);
3038 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3039 	WRITE_ONCE(tp->urg_data, 0);
3040 	sk_set_peek_off(sk, -1);
3041 	tcp_write_queue_purge(sk);
3042 	tcp_fastopen_active_disable_ofo_check(sk);
3043 	skb_rbtree_purge(&tp->out_of_order_queue);
3044 
3045 	inet->inet_dport = 0;
3046 
3047 	inet_bhash2_reset_saddr(sk);
3048 
3049 	WRITE_ONCE(sk->sk_shutdown, 0);
3050 	sock_reset_flag(sk, SOCK_DONE);
3051 	tp->srtt_us = 0;
3052 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3053 	tp->rcv_rtt_last_tsecr = 0;
3054 
3055 	seq = tp->write_seq + tp->max_window + 2;
3056 	if (!seq)
3057 		seq = 1;
3058 	WRITE_ONCE(tp->write_seq, seq);
3059 
3060 	icsk->icsk_backoff = 0;
3061 	icsk->icsk_probes_out = 0;
3062 	icsk->icsk_probes_tstamp = 0;
3063 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3064 	icsk->icsk_rto_min = TCP_RTO_MIN;
3065 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3066 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3067 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3068 	tp->snd_cwnd_cnt = 0;
3069 	tp->is_cwnd_limited = 0;
3070 	tp->max_packets_out = 0;
3071 	tp->window_clamp = 0;
3072 	tp->delivered = 0;
3073 	tp->delivered_ce = 0;
3074 	if (icsk->icsk_ca_ops->release)
3075 		icsk->icsk_ca_ops->release(sk);
3076 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3077 	icsk->icsk_ca_initialized = 0;
3078 	tcp_set_ca_state(sk, TCP_CA_Open);
3079 	tp->is_sack_reneg = 0;
3080 	tcp_clear_retrans(tp);
3081 	tp->total_retrans = 0;
3082 	inet_csk_delack_init(sk);
3083 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3084 	 * issue in __tcp_select_window()
3085 	 */
3086 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3087 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3088 	__sk_dst_reset(sk);
3089 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3090 	tcp_saved_syn_free(tp);
3091 	tp->compressed_ack = 0;
3092 	tp->segs_in = 0;
3093 	tp->segs_out = 0;
3094 	tp->bytes_sent = 0;
3095 	tp->bytes_acked = 0;
3096 	tp->bytes_received = 0;
3097 	tp->bytes_retrans = 0;
3098 	tp->data_segs_in = 0;
3099 	tp->data_segs_out = 0;
3100 	tp->duplicate_sack[0].start_seq = 0;
3101 	tp->duplicate_sack[0].end_seq = 0;
3102 	tp->dsack_dups = 0;
3103 	tp->reord_seen = 0;
3104 	tp->retrans_out = 0;
3105 	tp->sacked_out = 0;
3106 	tp->tlp_high_seq = 0;
3107 	tp->last_oow_ack_time = 0;
3108 	tp->plb_rehash = 0;
3109 	/* There's a bubble in the pipe until at least the first ACK. */
3110 	tp->app_limited = ~0U;
3111 	tp->rate_app_limited = 1;
3112 	tp->rack.mstamp = 0;
3113 	tp->rack.advanced = 0;
3114 	tp->rack.reo_wnd_steps = 1;
3115 	tp->rack.last_delivered = 0;
3116 	tp->rack.reo_wnd_persist = 0;
3117 	tp->rack.dsack_seen = 0;
3118 	tp->syn_data_acked = 0;
3119 	tp->rx_opt.saw_tstamp = 0;
3120 	tp->rx_opt.dsack = 0;
3121 	tp->rx_opt.num_sacks = 0;
3122 	tp->rcv_ooopack = 0;
3123 
3124 
3125 	/* Clean up fastopen related fields */
3126 	tcp_free_fastopen_req(tp);
3127 	inet_clear_bit(DEFER_CONNECT, sk);
3128 	tp->fastopen_client_fail = 0;
3129 
3130 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3131 
3132 	if (sk->sk_frag.page) {
3133 		put_page(sk->sk_frag.page);
3134 		sk->sk_frag.page = NULL;
3135 		sk->sk_frag.offset = 0;
3136 	}
3137 	sk_error_report(sk);
3138 	return 0;
3139 }
3140 EXPORT_SYMBOL(tcp_disconnect);
3141 
3142 static inline bool tcp_can_repair_sock(const struct sock *sk)
3143 {
3144 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3145 		(sk->sk_state != TCP_LISTEN);
3146 }
3147 
3148 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3149 {
3150 	struct tcp_repair_window opt;
3151 
3152 	if (!tp->repair)
3153 		return -EPERM;
3154 
3155 	if (len != sizeof(opt))
3156 		return -EINVAL;
3157 
3158 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3159 		return -EFAULT;
3160 
3161 	if (opt.max_window < opt.snd_wnd)
3162 		return -EINVAL;
3163 
3164 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3165 		return -EINVAL;
3166 
3167 	if (after(opt.rcv_wup, tp->rcv_nxt))
3168 		return -EINVAL;
3169 
3170 	tp->snd_wl1	= opt.snd_wl1;
3171 	tp->snd_wnd	= opt.snd_wnd;
3172 	tp->max_window	= opt.max_window;
3173 
3174 	tp->rcv_wnd	= opt.rcv_wnd;
3175 	tp->rcv_wup	= opt.rcv_wup;
3176 
3177 	return 0;
3178 }
3179 
3180 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3181 		unsigned int len)
3182 {
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 	struct tcp_repair_opt opt;
3185 	size_t offset = 0;
3186 
3187 	while (len >= sizeof(opt)) {
3188 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3189 			return -EFAULT;
3190 
3191 		offset += sizeof(opt);
3192 		len -= sizeof(opt);
3193 
3194 		switch (opt.opt_code) {
3195 		case TCPOPT_MSS:
3196 			tp->rx_opt.mss_clamp = opt.opt_val;
3197 			tcp_mtup_init(sk);
3198 			break;
3199 		case TCPOPT_WINDOW:
3200 			{
3201 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3202 				u16 rcv_wscale = opt.opt_val >> 16;
3203 
3204 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3205 					return -EFBIG;
3206 
3207 				tp->rx_opt.snd_wscale = snd_wscale;
3208 				tp->rx_opt.rcv_wscale = rcv_wscale;
3209 				tp->rx_opt.wscale_ok = 1;
3210 			}
3211 			break;
3212 		case TCPOPT_SACK_PERM:
3213 			if (opt.opt_val != 0)
3214 				return -EINVAL;
3215 
3216 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3217 			break;
3218 		case TCPOPT_TIMESTAMP:
3219 			if (opt.opt_val != 0)
3220 				return -EINVAL;
3221 
3222 			tp->rx_opt.tstamp_ok = 1;
3223 			break;
3224 		}
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3231 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3232 
3233 static void tcp_enable_tx_delay(void)
3234 {
3235 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3236 		static int __tcp_tx_delay_enabled = 0;
3237 
3238 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3239 			static_branch_enable(&tcp_tx_delay_enabled);
3240 			pr_info("TCP_TX_DELAY enabled\n");
3241 		}
3242 	}
3243 }
3244 
3245 /* When set indicates to always queue non-full frames.  Later the user clears
3246  * this option and we transmit any pending partial frames in the queue.  This is
3247  * meant to be used alongside sendfile() to get properly filled frames when the
3248  * user (for example) must write out headers with a write() call first and then
3249  * use sendfile to send out the data parts.
3250  *
3251  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3252  * TCP_NODELAY.
3253  */
3254 void __tcp_sock_set_cork(struct sock *sk, bool on)
3255 {
3256 	struct tcp_sock *tp = tcp_sk(sk);
3257 
3258 	if (on) {
3259 		tp->nonagle |= TCP_NAGLE_CORK;
3260 	} else {
3261 		tp->nonagle &= ~TCP_NAGLE_CORK;
3262 		if (tp->nonagle & TCP_NAGLE_OFF)
3263 			tp->nonagle |= TCP_NAGLE_PUSH;
3264 		tcp_push_pending_frames(sk);
3265 	}
3266 }
3267 
3268 void tcp_sock_set_cork(struct sock *sk, bool on)
3269 {
3270 	lock_sock(sk);
3271 	__tcp_sock_set_cork(sk, on);
3272 	release_sock(sk);
3273 }
3274 EXPORT_SYMBOL(tcp_sock_set_cork);
3275 
3276 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3277  * remembered, but it is not activated until cork is cleared.
3278  *
3279  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3280  * even TCP_CORK for currently queued segments.
3281  */
3282 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3283 {
3284 	if (on) {
3285 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3286 		tcp_push_pending_frames(sk);
3287 	} else {
3288 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3289 	}
3290 }
3291 
3292 void tcp_sock_set_nodelay(struct sock *sk)
3293 {
3294 	lock_sock(sk);
3295 	__tcp_sock_set_nodelay(sk, true);
3296 	release_sock(sk);
3297 }
3298 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3299 
3300 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3301 {
3302 	if (!val) {
3303 		inet_csk_enter_pingpong_mode(sk);
3304 		return;
3305 	}
3306 
3307 	inet_csk_exit_pingpong_mode(sk);
3308 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3309 	    inet_csk_ack_scheduled(sk)) {
3310 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3311 		tcp_cleanup_rbuf(sk, 1);
3312 		if (!(val & 1))
3313 			inet_csk_enter_pingpong_mode(sk);
3314 	}
3315 }
3316 
3317 void tcp_sock_set_quickack(struct sock *sk, int val)
3318 {
3319 	lock_sock(sk);
3320 	__tcp_sock_set_quickack(sk, val);
3321 	release_sock(sk);
3322 }
3323 EXPORT_SYMBOL(tcp_sock_set_quickack);
3324 
3325 int tcp_sock_set_syncnt(struct sock *sk, int val)
3326 {
3327 	if (val < 1 || val > MAX_TCP_SYNCNT)
3328 		return -EINVAL;
3329 
3330 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3331 	return 0;
3332 }
3333 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3334 
3335 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3336 {
3337 	/* Cap the max time in ms TCP will retry or probe the window
3338 	 * before giving up and aborting (ETIMEDOUT) a connection.
3339 	 */
3340 	if (val < 0)
3341 		return -EINVAL;
3342 
3343 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3344 	return 0;
3345 }
3346 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3347 
3348 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3349 {
3350 	struct tcp_sock *tp = tcp_sk(sk);
3351 
3352 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3353 		return -EINVAL;
3354 
3355 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3356 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3357 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3358 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3359 		u32 elapsed = keepalive_time_elapsed(tp);
3360 
3361 		if (tp->keepalive_time > elapsed)
3362 			elapsed = tp->keepalive_time - elapsed;
3363 		else
3364 			elapsed = 0;
3365 		inet_csk_reset_keepalive_timer(sk, elapsed);
3366 	}
3367 
3368 	return 0;
3369 }
3370 
3371 int tcp_sock_set_keepidle(struct sock *sk, int val)
3372 {
3373 	int err;
3374 
3375 	lock_sock(sk);
3376 	err = tcp_sock_set_keepidle_locked(sk, val);
3377 	release_sock(sk);
3378 	return err;
3379 }
3380 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3381 
3382 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3383 {
3384 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3385 		return -EINVAL;
3386 
3387 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3388 	return 0;
3389 }
3390 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3391 
3392 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3393 {
3394 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3395 		return -EINVAL;
3396 
3397 	/* Paired with READ_ONCE() in keepalive_probes() */
3398 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3399 	return 0;
3400 }
3401 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3402 
3403 int tcp_set_window_clamp(struct sock *sk, int val)
3404 {
3405 	struct tcp_sock *tp = tcp_sk(sk);
3406 
3407 	if (!val) {
3408 		if (sk->sk_state != TCP_CLOSE)
3409 			return -EINVAL;
3410 		WRITE_ONCE(tp->window_clamp, 0);
3411 	} else {
3412 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3413 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3414 						SOCK_MIN_RCVBUF / 2 : val;
3415 
3416 		if (new_window_clamp == old_window_clamp)
3417 			return 0;
3418 
3419 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3420 		if (new_window_clamp < old_window_clamp) {
3421 			/* need to apply the reserved mem provisioning only
3422 			 * when shrinking the window clamp
3423 			 */
3424 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3425 
3426 		} else {
3427 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3428 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3429 					       tp->rcv_ssthresh);
3430 		}
3431 	}
3432 	return 0;
3433 }
3434 
3435 /*
3436  *	Socket option code for TCP.
3437  */
3438 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3439 		      sockptr_t optval, unsigned int optlen)
3440 {
3441 	struct tcp_sock *tp = tcp_sk(sk);
3442 	struct inet_connection_sock *icsk = inet_csk(sk);
3443 	struct net *net = sock_net(sk);
3444 	int val;
3445 	int err = 0;
3446 
3447 	/* These are data/string values, all the others are ints */
3448 	switch (optname) {
3449 	case TCP_CONGESTION: {
3450 		char name[TCP_CA_NAME_MAX];
3451 
3452 		if (optlen < 1)
3453 			return -EINVAL;
3454 
3455 		val = strncpy_from_sockptr(name, optval,
3456 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3457 		if (val < 0)
3458 			return -EFAULT;
3459 		name[val] = 0;
3460 
3461 		sockopt_lock_sock(sk);
3462 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3463 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3464 								    CAP_NET_ADMIN));
3465 		sockopt_release_sock(sk);
3466 		return err;
3467 	}
3468 	case TCP_ULP: {
3469 		char name[TCP_ULP_NAME_MAX];
3470 
3471 		if (optlen < 1)
3472 			return -EINVAL;
3473 
3474 		val = strncpy_from_sockptr(name, optval,
3475 					min_t(long, TCP_ULP_NAME_MAX - 1,
3476 					      optlen));
3477 		if (val < 0)
3478 			return -EFAULT;
3479 		name[val] = 0;
3480 
3481 		sockopt_lock_sock(sk);
3482 		err = tcp_set_ulp(sk, name);
3483 		sockopt_release_sock(sk);
3484 		return err;
3485 	}
3486 	case TCP_FASTOPEN_KEY: {
3487 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3488 		__u8 *backup_key = NULL;
3489 
3490 		/* Allow a backup key as well to facilitate key rotation
3491 		 * First key is the active one.
3492 		 */
3493 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3494 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3495 			return -EINVAL;
3496 
3497 		if (copy_from_sockptr(key, optval, optlen))
3498 			return -EFAULT;
3499 
3500 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3501 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3502 
3503 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3504 	}
3505 	default:
3506 		/* fallthru */
3507 		break;
3508 	}
3509 
3510 	if (optlen < sizeof(int))
3511 		return -EINVAL;
3512 
3513 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3514 		return -EFAULT;
3515 
3516 	/* Handle options that can be set without locking the socket. */
3517 	switch (optname) {
3518 	case TCP_SYNCNT:
3519 		return tcp_sock_set_syncnt(sk, val);
3520 	case TCP_USER_TIMEOUT:
3521 		return tcp_sock_set_user_timeout(sk, val);
3522 	case TCP_KEEPINTVL:
3523 		return tcp_sock_set_keepintvl(sk, val);
3524 	case TCP_KEEPCNT:
3525 		return tcp_sock_set_keepcnt(sk, val);
3526 	case TCP_LINGER2:
3527 		if (val < 0)
3528 			WRITE_ONCE(tp->linger2, -1);
3529 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3530 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3531 		else
3532 			WRITE_ONCE(tp->linger2, val * HZ);
3533 		return 0;
3534 	case TCP_DEFER_ACCEPT:
3535 		/* Translate value in seconds to number of retransmits */
3536 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3537 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3538 					   TCP_RTO_MAX / HZ));
3539 		return 0;
3540 	}
3541 
3542 	sockopt_lock_sock(sk);
3543 
3544 	switch (optname) {
3545 	case TCP_MAXSEG:
3546 		/* Values greater than interface MTU won't take effect. However
3547 		 * at the point when this call is done we typically don't yet
3548 		 * know which interface is going to be used
3549 		 */
3550 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3551 			err = -EINVAL;
3552 			break;
3553 		}
3554 		tp->rx_opt.user_mss = val;
3555 		break;
3556 
3557 	case TCP_NODELAY:
3558 		__tcp_sock_set_nodelay(sk, val);
3559 		break;
3560 
3561 	case TCP_THIN_LINEAR_TIMEOUTS:
3562 		if (val < 0 || val > 1)
3563 			err = -EINVAL;
3564 		else
3565 			tp->thin_lto = val;
3566 		break;
3567 
3568 	case TCP_THIN_DUPACK:
3569 		if (val < 0 || val > 1)
3570 			err = -EINVAL;
3571 		break;
3572 
3573 	case TCP_REPAIR:
3574 		if (!tcp_can_repair_sock(sk))
3575 			err = -EPERM;
3576 		else if (val == TCP_REPAIR_ON) {
3577 			tp->repair = 1;
3578 			sk->sk_reuse = SK_FORCE_REUSE;
3579 			tp->repair_queue = TCP_NO_QUEUE;
3580 		} else if (val == TCP_REPAIR_OFF) {
3581 			tp->repair = 0;
3582 			sk->sk_reuse = SK_NO_REUSE;
3583 			tcp_send_window_probe(sk);
3584 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3585 			tp->repair = 0;
3586 			sk->sk_reuse = SK_NO_REUSE;
3587 		} else
3588 			err = -EINVAL;
3589 
3590 		break;
3591 
3592 	case TCP_REPAIR_QUEUE:
3593 		if (!tp->repair)
3594 			err = -EPERM;
3595 		else if ((unsigned int)val < TCP_QUEUES_NR)
3596 			tp->repair_queue = val;
3597 		else
3598 			err = -EINVAL;
3599 		break;
3600 
3601 	case TCP_QUEUE_SEQ:
3602 		if (sk->sk_state != TCP_CLOSE) {
3603 			err = -EPERM;
3604 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3605 			if (!tcp_rtx_queue_empty(sk))
3606 				err = -EPERM;
3607 			else
3608 				WRITE_ONCE(tp->write_seq, val);
3609 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3610 			if (tp->rcv_nxt != tp->copied_seq) {
3611 				err = -EPERM;
3612 			} else {
3613 				WRITE_ONCE(tp->rcv_nxt, val);
3614 				WRITE_ONCE(tp->copied_seq, val);
3615 			}
3616 		} else {
3617 			err = -EINVAL;
3618 		}
3619 		break;
3620 
3621 	case TCP_REPAIR_OPTIONS:
3622 		if (!tp->repair)
3623 			err = -EINVAL;
3624 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3625 			err = tcp_repair_options_est(sk, optval, optlen);
3626 		else
3627 			err = -EPERM;
3628 		break;
3629 
3630 	case TCP_CORK:
3631 		__tcp_sock_set_cork(sk, val);
3632 		break;
3633 
3634 	case TCP_KEEPIDLE:
3635 		err = tcp_sock_set_keepidle_locked(sk, val);
3636 		break;
3637 	case TCP_SAVE_SYN:
3638 		/* 0: disable, 1: enable, 2: start from ether_header */
3639 		if (val < 0 || val > 2)
3640 			err = -EINVAL;
3641 		else
3642 			tp->save_syn = val;
3643 		break;
3644 
3645 	case TCP_WINDOW_CLAMP:
3646 		err = tcp_set_window_clamp(sk, val);
3647 		break;
3648 
3649 	case TCP_QUICKACK:
3650 		__tcp_sock_set_quickack(sk, val);
3651 		break;
3652 
3653 	case TCP_AO_REPAIR:
3654 		if (!tcp_can_repair_sock(sk)) {
3655 			err = -EPERM;
3656 			break;
3657 		}
3658 		err = tcp_ao_set_repair(sk, optval, optlen);
3659 		break;
3660 #ifdef CONFIG_TCP_AO
3661 	case TCP_AO_ADD_KEY:
3662 	case TCP_AO_DEL_KEY:
3663 	case TCP_AO_INFO: {
3664 		/* If this is the first TCP-AO setsockopt() on the socket,
3665 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3666 		 * in any state.
3667 		 */
3668 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3669 			goto ao_parse;
3670 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3671 					      lockdep_sock_is_held(sk)))
3672 			goto ao_parse;
3673 		if (tp->repair)
3674 			goto ao_parse;
3675 		err = -EISCONN;
3676 		break;
3677 ao_parse:
3678 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3679 		break;
3680 	}
3681 #endif
3682 #ifdef CONFIG_TCP_MD5SIG
3683 	case TCP_MD5SIG:
3684 	case TCP_MD5SIG_EXT:
3685 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3686 		break;
3687 #endif
3688 	case TCP_FASTOPEN:
3689 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3690 		    TCPF_LISTEN))) {
3691 			tcp_fastopen_init_key_once(net);
3692 
3693 			fastopen_queue_tune(sk, val);
3694 		} else {
3695 			err = -EINVAL;
3696 		}
3697 		break;
3698 	case TCP_FASTOPEN_CONNECT:
3699 		if (val > 1 || val < 0) {
3700 			err = -EINVAL;
3701 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3702 			   TFO_CLIENT_ENABLE) {
3703 			if (sk->sk_state == TCP_CLOSE)
3704 				tp->fastopen_connect = val;
3705 			else
3706 				err = -EINVAL;
3707 		} else {
3708 			err = -EOPNOTSUPP;
3709 		}
3710 		break;
3711 	case TCP_FASTOPEN_NO_COOKIE:
3712 		if (val > 1 || val < 0)
3713 			err = -EINVAL;
3714 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3715 			err = -EINVAL;
3716 		else
3717 			tp->fastopen_no_cookie = val;
3718 		break;
3719 	case TCP_TIMESTAMP:
3720 		if (!tp->repair) {
3721 			err = -EPERM;
3722 			break;
3723 		}
3724 		/* val is an opaque field,
3725 		 * and low order bit contains usec_ts enable bit.
3726 		 * Its a best effort, and we do not care if user makes an error.
3727 		 */
3728 		tp->tcp_usec_ts = val & 1;
3729 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3730 		break;
3731 	case TCP_REPAIR_WINDOW:
3732 		err = tcp_repair_set_window(tp, optval, optlen);
3733 		break;
3734 	case TCP_NOTSENT_LOWAT:
3735 		WRITE_ONCE(tp->notsent_lowat, val);
3736 		sk->sk_write_space(sk);
3737 		break;
3738 	case TCP_INQ:
3739 		if (val > 1 || val < 0)
3740 			err = -EINVAL;
3741 		else
3742 			tp->recvmsg_inq = val;
3743 		break;
3744 	case TCP_TX_DELAY:
3745 		if (val)
3746 			tcp_enable_tx_delay();
3747 		WRITE_ONCE(tp->tcp_tx_delay, val);
3748 		break;
3749 	default:
3750 		err = -ENOPROTOOPT;
3751 		break;
3752 	}
3753 
3754 	sockopt_release_sock(sk);
3755 	return err;
3756 }
3757 
3758 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3759 		   unsigned int optlen)
3760 {
3761 	const struct inet_connection_sock *icsk = inet_csk(sk);
3762 
3763 	if (level != SOL_TCP)
3764 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3765 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3766 								optval, optlen);
3767 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3768 }
3769 EXPORT_SYMBOL(tcp_setsockopt);
3770 
3771 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3772 				      struct tcp_info *info)
3773 {
3774 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3775 	enum tcp_chrono i;
3776 
3777 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3778 		stats[i] = tp->chrono_stat[i - 1];
3779 		if (i == tp->chrono_type)
3780 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3781 		stats[i] *= USEC_PER_SEC / HZ;
3782 		total += stats[i];
3783 	}
3784 
3785 	info->tcpi_busy_time = total;
3786 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3787 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3788 }
3789 
3790 /* Return information about state of tcp endpoint in API format. */
3791 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3792 {
3793 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3794 	const struct inet_connection_sock *icsk = inet_csk(sk);
3795 	unsigned long rate;
3796 	u32 now;
3797 	u64 rate64;
3798 	bool slow;
3799 
3800 	memset(info, 0, sizeof(*info));
3801 	if (sk->sk_type != SOCK_STREAM)
3802 		return;
3803 
3804 	info->tcpi_state = inet_sk_state_load(sk);
3805 
3806 	/* Report meaningful fields for all TCP states, including listeners */
3807 	rate = READ_ONCE(sk->sk_pacing_rate);
3808 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3809 	info->tcpi_pacing_rate = rate64;
3810 
3811 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3812 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3813 	info->tcpi_max_pacing_rate = rate64;
3814 
3815 	info->tcpi_reordering = tp->reordering;
3816 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3817 
3818 	if (info->tcpi_state == TCP_LISTEN) {
3819 		/* listeners aliased fields :
3820 		 * tcpi_unacked -> Number of children ready for accept()
3821 		 * tcpi_sacked  -> max backlog
3822 		 */
3823 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3824 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3825 		return;
3826 	}
3827 
3828 	slow = lock_sock_fast(sk);
3829 
3830 	info->tcpi_ca_state = icsk->icsk_ca_state;
3831 	info->tcpi_retransmits = icsk->icsk_retransmits;
3832 	info->tcpi_probes = icsk->icsk_probes_out;
3833 	info->tcpi_backoff = icsk->icsk_backoff;
3834 
3835 	if (tp->rx_opt.tstamp_ok)
3836 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3837 	if (tcp_is_sack(tp))
3838 		info->tcpi_options |= TCPI_OPT_SACK;
3839 	if (tp->rx_opt.wscale_ok) {
3840 		info->tcpi_options |= TCPI_OPT_WSCALE;
3841 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3842 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3843 	}
3844 
3845 	if (tp->ecn_flags & TCP_ECN_OK)
3846 		info->tcpi_options |= TCPI_OPT_ECN;
3847 	if (tp->ecn_flags & TCP_ECN_SEEN)
3848 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3849 	if (tp->syn_data_acked)
3850 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3851 	if (tp->tcp_usec_ts)
3852 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3853 
3854 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3855 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3856 						tcp_delack_max(sk)));
3857 	info->tcpi_snd_mss = tp->mss_cache;
3858 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3859 
3860 	info->tcpi_unacked = tp->packets_out;
3861 	info->tcpi_sacked = tp->sacked_out;
3862 
3863 	info->tcpi_lost = tp->lost_out;
3864 	info->tcpi_retrans = tp->retrans_out;
3865 
3866 	now = tcp_jiffies32;
3867 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3868 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3869 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3870 
3871 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3872 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3873 	info->tcpi_rtt = tp->srtt_us >> 3;
3874 	info->tcpi_rttvar = tp->mdev_us >> 2;
3875 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3876 	info->tcpi_advmss = tp->advmss;
3877 
3878 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3879 	info->tcpi_rcv_space = tp->rcvq_space.space;
3880 
3881 	info->tcpi_total_retrans = tp->total_retrans;
3882 
3883 	info->tcpi_bytes_acked = tp->bytes_acked;
3884 	info->tcpi_bytes_received = tp->bytes_received;
3885 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3886 	tcp_get_info_chrono_stats(tp, info);
3887 
3888 	info->tcpi_segs_out = tp->segs_out;
3889 
3890 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3891 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3892 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3893 
3894 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3895 	info->tcpi_data_segs_out = tp->data_segs_out;
3896 
3897 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3898 	rate64 = tcp_compute_delivery_rate(tp);
3899 	if (rate64)
3900 		info->tcpi_delivery_rate = rate64;
3901 	info->tcpi_delivered = tp->delivered;
3902 	info->tcpi_delivered_ce = tp->delivered_ce;
3903 	info->tcpi_bytes_sent = tp->bytes_sent;
3904 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3905 	info->tcpi_dsack_dups = tp->dsack_dups;
3906 	info->tcpi_reord_seen = tp->reord_seen;
3907 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3908 	info->tcpi_snd_wnd = tp->snd_wnd;
3909 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3910 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3911 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3912 
3913 	info->tcpi_total_rto = tp->total_rto;
3914 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3915 	info->tcpi_total_rto_time = tp->total_rto_time;
3916 	if (tp->rto_stamp)
3917 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3918 
3919 	unlock_sock_fast(sk, slow);
3920 }
3921 EXPORT_SYMBOL_GPL(tcp_get_info);
3922 
3923 static size_t tcp_opt_stats_get_size(void)
3924 {
3925 	return
3926 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3927 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3928 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3929 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3930 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3931 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3932 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3933 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3934 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3935 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3936 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3937 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3938 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3939 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3940 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3941 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3942 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3943 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3944 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3945 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3946 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3947 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3948 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3949 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3950 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3951 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3952 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3953 		0;
3954 }
3955 
3956 /* Returns TTL or hop limit of an incoming packet from skb. */
3957 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3958 {
3959 	if (skb->protocol == htons(ETH_P_IP))
3960 		return ip_hdr(skb)->ttl;
3961 	else if (skb->protocol == htons(ETH_P_IPV6))
3962 		return ipv6_hdr(skb)->hop_limit;
3963 	else
3964 		return 0;
3965 }
3966 
3967 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3968 					       const struct sk_buff *orig_skb,
3969 					       const struct sk_buff *ack_skb)
3970 {
3971 	const struct tcp_sock *tp = tcp_sk(sk);
3972 	struct sk_buff *stats;
3973 	struct tcp_info info;
3974 	unsigned long rate;
3975 	u64 rate64;
3976 
3977 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3978 	if (!stats)
3979 		return NULL;
3980 
3981 	tcp_get_info_chrono_stats(tp, &info);
3982 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3983 			  info.tcpi_busy_time, TCP_NLA_PAD);
3984 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3985 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3986 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3987 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3988 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3989 			  tp->data_segs_out, TCP_NLA_PAD);
3990 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3991 			  tp->total_retrans, TCP_NLA_PAD);
3992 
3993 	rate = READ_ONCE(sk->sk_pacing_rate);
3994 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3995 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3996 
3997 	rate64 = tcp_compute_delivery_rate(tp);
3998 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3999 
4000 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4001 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4002 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4003 
4004 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4005 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4006 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4007 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4008 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4009 
4010 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4011 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4012 
4013 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4014 			  TCP_NLA_PAD);
4015 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4016 			  TCP_NLA_PAD);
4017 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4018 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4019 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4020 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4021 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4022 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4023 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4024 			  TCP_NLA_PAD);
4025 	if (ack_skb)
4026 		nla_put_u8(stats, TCP_NLA_TTL,
4027 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4028 
4029 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4030 	return stats;
4031 }
4032 
4033 int do_tcp_getsockopt(struct sock *sk, int level,
4034 		      int optname, sockptr_t optval, sockptr_t optlen)
4035 {
4036 	struct inet_connection_sock *icsk = inet_csk(sk);
4037 	struct tcp_sock *tp = tcp_sk(sk);
4038 	struct net *net = sock_net(sk);
4039 	int val, len;
4040 
4041 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4042 		return -EFAULT;
4043 
4044 	if (len < 0)
4045 		return -EINVAL;
4046 
4047 	len = min_t(unsigned int, len, sizeof(int));
4048 
4049 	switch (optname) {
4050 	case TCP_MAXSEG:
4051 		val = tp->mss_cache;
4052 		if (tp->rx_opt.user_mss &&
4053 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4054 			val = tp->rx_opt.user_mss;
4055 		if (tp->repair)
4056 			val = tp->rx_opt.mss_clamp;
4057 		break;
4058 	case TCP_NODELAY:
4059 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4060 		break;
4061 	case TCP_CORK:
4062 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4063 		break;
4064 	case TCP_KEEPIDLE:
4065 		val = keepalive_time_when(tp) / HZ;
4066 		break;
4067 	case TCP_KEEPINTVL:
4068 		val = keepalive_intvl_when(tp) / HZ;
4069 		break;
4070 	case TCP_KEEPCNT:
4071 		val = keepalive_probes(tp);
4072 		break;
4073 	case TCP_SYNCNT:
4074 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4075 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4076 		break;
4077 	case TCP_LINGER2:
4078 		val = READ_ONCE(tp->linger2);
4079 		if (val >= 0)
4080 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4081 		break;
4082 	case TCP_DEFER_ACCEPT:
4083 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4084 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4085 				      TCP_RTO_MAX / HZ);
4086 		break;
4087 	case TCP_WINDOW_CLAMP:
4088 		val = READ_ONCE(tp->window_clamp);
4089 		break;
4090 	case TCP_INFO: {
4091 		struct tcp_info info;
4092 
4093 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4094 			return -EFAULT;
4095 
4096 		tcp_get_info(sk, &info);
4097 
4098 		len = min_t(unsigned int, len, sizeof(info));
4099 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4100 			return -EFAULT;
4101 		if (copy_to_sockptr(optval, &info, len))
4102 			return -EFAULT;
4103 		return 0;
4104 	}
4105 	case TCP_CC_INFO: {
4106 		const struct tcp_congestion_ops *ca_ops;
4107 		union tcp_cc_info info;
4108 		size_t sz = 0;
4109 		int attr;
4110 
4111 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4112 			return -EFAULT;
4113 
4114 		ca_ops = icsk->icsk_ca_ops;
4115 		if (ca_ops && ca_ops->get_info)
4116 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4117 
4118 		len = min_t(unsigned int, len, sz);
4119 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4120 			return -EFAULT;
4121 		if (copy_to_sockptr(optval, &info, len))
4122 			return -EFAULT;
4123 		return 0;
4124 	}
4125 	case TCP_QUICKACK:
4126 		val = !inet_csk_in_pingpong_mode(sk);
4127 		break;
4128 
4129 	case TCP_CONGESTION:
4130 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4131 			return -EFAULT;
4132 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4133 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4134 			return -EFAULT;
4135 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4136 			return -EFAULT;
4137 		return 0;
4138 
4139 	case TCP_ULP:
4140 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4141 			return -EFAULT;
4142 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4143 		if (!icsk->icsk_ulp_ops) {
4144 			len = 0;
4145 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4146 				return -EFAULT;
4147 			return 0;
4148 		}
4149 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4150 			return -EFAULT;
4151 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4152 			return -EFAULT;
4153 		return 0;
4154 
4155 	case TCP_FASTOPEN_KEY: {
4156 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4157 		unsigned int key_len;
4158 
4159 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4160 			return -EFAULT;
4161 
4162 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4163 				TCP_FASTOPEN_KEY_LENGTH;
4164 		len = min_t(unsigned int, len, key_len);
4165 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4166 			return -EFAULT;
4167 		if (copy_to_sockptr(optval, key, len))
4168 			return -EFAULT;
4169 		return 0;
4170 	}
4171 	case TCP_THIN_LINEAR_TIMEOUTS:
4172 		val = tp->thin_lto;
4173 		break;
4174 
4175 	case TCP_THIN_DUPACK:
4176 		val = 0;
4177 		break;
4178 
4179 	case TCP_REPAIR:
4180 		val = tp->repair;
4181 		break;
4182 
4183 	case TCP_REPAIR_QUEUE:
4184 		if (tp->repair)
4185 			val = tp->repair_queue;
4186 		else
4187 			return -EINVAL;
4188 		break;
4189 
4190 	case TCP_REPAIR_WINDOW: {
4191 		struct tcp_repair_window opt;
4192 
4193 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4194 			return -EFAULT;
4195 
4196 		if (len != sizeof(opt))
4197 			return -EINVAL;
4198 
4199 		if (!tp->repair)
4200 			return -EPERM;
4201 
4202 		opt.snd_wl1	= tp->snd_wl1;
4203 		opt.snd_wnd	= tp->snd_wnd;
4204 		opt.max_window	= tp->max_window;
4205 		opt.rcv_wnd	= tp->rcv_wnd;
4206 		opt.rcv_wup	= tp->rcv_wup;
4207 
4208 		if (copy_to_sockptr(optval, &opt, len))
4209 			return -EFAULT;
4210 		return 0;
4211 	}
4212 	case TCP_QUEUE_SEQ:
4213 		if (tp->repair_queue == TCP_SEND_QUEUE)
4214 			val = tp->write_seq;
4215 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4216 			val = tp->rcv_nxt;
4217 		else
4218 			return -EINVAL;
4219 		break;
4220 
4221 	case TCP_USER_TIMEOUT:
4222 		val = READ_ONCE(icsk->icsk_user_timeout);
4223 		break;
4224 
4225 	case TCP_FASTOPEN:
4226 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4227 		break;
4228 
4229 	case TCP_FASTOPEN_CONNECT:
4230 		val = tp->fastopen_connect;
4231 		break;
4232 
4233 	case TCP_FASTOPEN_NO_COOKIE:
4234 		val = tp->fastopen_no_cookie;
4235 		break;
4236 
4237 	case TCP_TX_DELAY:
4238 		val = READ_ONCE(tp->tcp_tx_delay);
4239 		break;
4240 
4241 	case TCP_TIMESTAMP:
4242 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4243 		if (tp->tcp_usec_ts)
4244 			val |= 1;
4245 		else
4246 			val &= ~1;
4247 		break;
4248 	case TCP_NOTSENT_LOWAT:
4249 		val = READ_ONCE(tp->notsent_lowat);
4250 		break;
4251 	case TCP_INQ:
4252 		val = tp->recvmsg_inq;
4253 		break;
4254 	case TCP_SAVE_SYN:
4255 		val = tp->save_syn;
4256 		break;
4257 	case TCP_SAVED_SYN: {
4258 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4259 			return -EFAULT;
4260 
4261 		sockopt_lock_sock(sk);
4262 		if (tp->saved_syn) {
4263 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4264 				len = tcp_saved_syn_len(tp->saved_syn);
4265 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4266 					sockopt_release_sock(sk);
4267 					return -EFAULT;
4268 				}
4269 				sockopt_release_sock(sk);
4270 				return -EINVAL;
4271 			}
4272 			len = tcp_saved_syn_len(tp->saved_syn);
4273 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4274 				sockopt_release_sock(sk);
4275 				return -EFAULT;
4276 			}
4277 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4278 				sockopt_release_sock(sk);
4279 				return -EFAULT;
4280 			}
4281 			tcp_saved_syn_free(tp);
4282 			sockopt_release_sock(sk);
4283 		} else {
4284 			sockopt_release_sock(sk);
4285 			len = 0;
4286 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4287 				return -EFAULT;
4288 		}
4289 		return 0;
4290 	}
4291 #ifdef CONFIG_MMU
4292 	case TCP_ZEROCOPY_RECEIVE: {
4293 		struct scm_timestamping_internal tss;
4294 		struct tcp_zerocopy_receive zc = {};
4295 		int err;
4296 
4297 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4298 			return -EFAULT;
4299 		if (len < 0 ||
4300 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4301 			return -EINVAL;
4302 		if (unlikely(len > sizeof(zc))) {
4303 			err = check_zeroed_sockptr(optval, sizeof(zc),
4304 						   len - sizeof(zc));
4305 			if (err < 1)
4306 				return err == 0 ? -EINVAL : err;
4307 			len = sizeof(zc);
4308 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4309 				return -EFAULT;
4310 		}
4311 		if (copy_from_sockptr(&zc, optval, len))
4312 			return -EFAULT;
4313 		if (zc.reserved)
4314 			return -EINVAL;
4315 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4316 			return -EINVAL;
4317 		sockopt_lock_sock(sk);
4318 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4319 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4320 							  &zc, &len, err);
4321 		sockopt_release_sock(sk);
4322 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4323 			goto zerocopy_rcv_cmsg;
4324 		switch (len) {
4325 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4326 			goto zerocopy_rcv_cmsg;
4327 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4328 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4329 		case offsetofend(struct tcp_zerocopy_receive, flags):
4330 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4331 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4332 		case offsetofend(struct tcp_zerocopy_receive, err):
4333 			goto zerocopy_rcv_sk_err;
4334 		case offsetofend(struct tcp_zerocopy_receive, inq):
4335 			goto zerocopy_rcv_inq;
4336 		case offsetofend(struct tcp_zerocopy_receive, length):
4337 		default:
4338 			goto zerocopy_rcv_out;
4339 		}
4340 zerocopy_rcv_cmsg:
4341 		if (zc.msg_flags & TCP_CMSG_TS)
4342 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4343 		else
4344 			zc.msg_flags = 0;
4345 zerocopy_rcv_sk_err:
4346 		if (!err)
4347 			zc.err = sock_error(sk);
4348 zerocopy_rcv_inq:
4349 		zc.inq = tcp_inq_hint(sk);
4350 zerocopy_rcv_out:
4351 		if (!err && copy_to_sockptr(optval, &zc, len))
4352 			err = -EFAULT;
4353 		return err;
4354 	}
4355 #endif
4356 	case TCP_AO_REPAIR:
4357 		if (!tcp_can_repair_sock(sk))
4358 			return -EPERM;
4359 		return tcp_ao_get_repair(sk, optval, optlen);
4360 	case TCP_AO_GET_KEYS:
4361 	case TCP_AO_INFO: {
4362 		int err;
4363 
4364 		sockopt_lock_sock(sk);
4365 		if (optname == TCP_AO_GET_KEYS)
4366 			err = tcp_ao_get_mkts(sk, optval, optlen);
4367 		else
4368 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4369 		sockopt_release_sock(sk);
4370 
4371 		return err;
4372 	}
4373 	case TCP_IS_MPTCP:
4374 		val = 0;
4375 		break;
4376 	default:
4377 		return -ENOPROTOOPT;
4378 	}
4379 
4380 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4381 		return -EFAULT;
4382 	if (copy_to_sockptr(optval, &val, len))
4383 		return -EFAULT;
4384 	return 0;
4385 }
4386 
4387 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4388 {
4389 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4390 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4391 	 */
4392 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4393 		return true;
4394 
4395 	return false;
4396 }
4397 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4398 
4399 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4400 		   int __user *optlen)
4401 {
4402 	struct inet_connection_sock *icsk = inet_csk(sk);
4403 
4404 	if (level != SOL_TCP)
4405 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4406 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4407 								optval, optlen);
4408 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4409 				 USER_SOCKPTR(optlen));
4410 }
4411 EXPORT_SYMBOL(tcp_getsockopt);
4412 
4413 #ifdef CONFIG_TCP_MD5SIG
4414 int tcp_md5_sigpool_id = -1;
4415 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4416 
4417 int tcp_md5_alloc_sigpool(void)
4418 {
4419 	size_t scratch_size;
4420 	int ret;
4421 
4422 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4423 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4424 	if (ret >= 0) {
4425 		/* As long as any md5 sigpool was allocated, the return
4426 		 * id would stay the same. Re-write the id only for the case
4427 		 * when previously all MD5 keys were deleted and this call
4428 		 * allocates the first MD5 key, which may return a different
4429 		 * sigpool id than was used previously.
4430 		 */
4431 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4432 		return 0;
4433 	}
4434 	return ret;
4435 }
4436 
4437 void tcp_md5_release_sigpool(void)
4438 {
4439 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4440 }
4441 
4442 void tcp_md5_add_sigpool(void)
4443 {
4444 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4445 }
4446 
4447 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4448 		     const struct tcp_md5sig_key *key)
4449 {
4450 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4451 	struct scatterlist sg;
4452 
4453 	sg_init_one(&sg, key->key, keylen);
4454 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4455 
4456 	/* We use data_race() because tcp_md5_do_add() might change
4457 	 * key->key under us
4458 	 */
4459 	return data_race(crypto_ahash_update(hp->req));
4460 }
4461 EXPORT_SYMBOL(tcp_md5_hash_key);
4462 
4463 /* Called with rcu_read_lock() */
4464 enum skb_drop_reason
4465 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4466 		     const void *saddr, const void *daddr,
4467 		     int family, int l3index, const __u8 *hash_location)
4468 {
4469 	/* This gets called for each TCP segment that has TCP-MD5 option.
4470 	 * We have 3 drop cases:
4471 	 * o No MD5 hash and one expected.
4472 	 * o MD5 hash and we're not expecting one.
4473 	 * o MD5 hash and its wrong.
4474 	 */
4475 	const struct tcp_sock *tp = tcp_sk(sk);
4476 	struct tcp_md5sig_key *key;
4477 	u8 newhash[16];
4478 	int genhash;
4479 
4480 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4481 
4482 	if (!key && hash_location) {
4483 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4484 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4485 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4486 	}
4487 
4488 	/* Check the signature.
4489 	 * To support dual stack listeners, we need to handle
4490 	 * IPv4-mapped case.
4491 	 */
4492 	if (family == AF_INET)
4493 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4494 	else
4495 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4496 							 NULL, skb);
4497 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4498 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4499 		if (family == AF_INET) {
4500 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4501 				      genhash ? "tcp_v4_calc_md5_hash failed"
4502 				      : "", l3index);
4503 		} else {
4504 			if (genhash) {
4505 				tcp_hash_fail("MD5 Hash failed",
4506 					      AF_INET6, skb, "L3 index %d",
4507 					      l3index);
4508 			} else {
4509 				tcp_hash_fail("MD5 Hash mismatch",
4510 					      AF_INET6, skb, "L3 index %d",
4511 					      l3index);
4512 			}
4513 		}
4514 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4515 	}
4516 	return SKB_NOT_DROPPED_YET;
4517 }
4518 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4519 
4520 #endif
4521 
4522 void tcp_done(struct sock *sk)
4523 {
4524 	struct request_sock *req;
4525 
4526 	/* We might be called with a new socket, after
4527 	 * inet_csk_prepare_forced_close() has been called
4528 	 * so we can not use lockdep_sock_is_held(sk)
4529 	 */
4530 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4531 
4532 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4533 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4534 
4535 	tcp_set_state(sk, TCP_CLOSE);
4536 	tcp_clear_xmit_timers(sk);
4537 	if (req)
4538 		reqsk_fastopen_remove(sk, req, false);
4539 
4540 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4541 
4542 	if (!sock_flag(sk, SOCK_DEAD))
4543 		sk->sk_state_change(sk);
4544 	else
4545 		inet_csk_destroy_sock(sk);
4546 }
4547 EXPORT_SYMBOL_GPL(tcp_done);
4548 
4549 int tcp_abort(struct sock *sk, int err)
4550 {
4551 	int state = inet_sk_state_load(sk);
4552 
4553 	if (state == TCP_NEW_SYN_RECV) {
4554 		struct request_sock *req = inet_reqsk(sk);
4555 
4556 		local_bh_disable();
4557 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4558 		local_bh_enable();
4559 		return 0;
4560 	}
4561 	if (state == TCP_TIME_WAIT) {
4562 		struct inet_timewait_sock *tw = inet_twsk(sk);
4563 
4564 		refcount_inc(&tw->tw_refcnt);
4565 		local_bh_disable();
4566 		inet_twsk_deschedule_put(tw);
4567 		local_bh_enable();
4568 		return 0;
4569 	}
4570 
4571 	/* BPF context ensures sock locking. */
4572 	if (!has_current_bpf_ctx())
4573 		/* Don't race with userspace socket closes such as tcp_close. */
4574 		lock_sock(sk);
4575 
4576 	if (sk->sk_state == TCP_LISTEN) {
4577 		tcp_set_state(sk, TCP_CLOSE);
4578 		inet_csk_listen_stop(sk);
4579 	}
4580 
4581 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4582 	local_bh_disable();
4583 	bh_lock_sock(sk);
4584 
4585 	if (!sock_flag(sk, SOCK_DEAD)) {
4586 		WRITE_ONCE(sk->sk_err, err);
4587 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4588 		smp_wmb();
4589 		sk_error_report(sk);
4590 		if (tcp_need_reset(sk->sk_state))
4591 			tcp_send_active_reset(sk, GFP_ATOMIC,
4592 					      SK_RST_REASON_NOT_SPECIFIED);
4593 		tcp_done(sk);
4594 	}
4595 
4596 	bh_unlock_sock(sk);
4597 	local_bh_enable();
4598 	tcp_write_queue_purge(sk);
4599 	if (!has_current_bpf_ctx())
4600 		release_sock(sk);
4601 	return 0;
4602 }
4603 EXPORT_SYMBOL_GPL(tcp_abort);
4604 
4605 extern struct tcp_congestion_ops tcp_reno;
4606 
4607 static __initdata unsigned long thash_entries;
4608 static int __init set_thash_entries(char *str)
4609 {
4610 	ssize_t ret;
4611 
4612 	if (!str)
4613 		return 0;
4614 
4615 	ret = kstrtoul(str, 0, &thash_entries);
4616 	if (ret)
4617 		return 0;
4618 
4619 	return 1;
4620 }
4621 __setup("thash_entries=", set_thash_entries);
4622 
4623 static void __init tcp_init_mem(void)
4624 {
4625 	unsigned long limit = nr_free_buffer_pages() / 16;
4626 
4627 	limit = max(limit, 128UL);
4628 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4629 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4630 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4631 }
4632 
4633 static void __init tcp_struct_check(void)
4634 {
4635 	/* TX read-mostly hotpath cache lines */
4636 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4637 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4638 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4639 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4640 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4641 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4642 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4643 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4644 
4645 	/* TXRX read-mostly hotpath cache lines */
4646 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4647 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4648 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4649 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4650 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4651 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4652 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4653 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4654 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4655 
4656 	/* RX read-mostly hotpath cache lines */
4657 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4658 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4659 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4660 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4661 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4662 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4663 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4664 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4665 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4666 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4667 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4668 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4669 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4670 
4671 	/* TX read-write hotpath cache lines */
4672 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4673 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4674 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4675 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4676 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4677 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4678 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4679 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4680 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4681 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4682 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4683 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4684 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4685 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4686 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4687 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4688 
4689 	/* TXRX read-write hotpath cache lines */
4690 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4691 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4692 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4693 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4694 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4695 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4696 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4697 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4698 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4699 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4700 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4701 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4702 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4703 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4704 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4705 
4706 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4707 	 * before tcp_clock_cache.
4708 	 */
4709 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4710 
4711 	/* RX read-write hotpath cache lines */
4712 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4713 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4714 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4715 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4716 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4717 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4718 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4719 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4720 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4721 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4722 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4723 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4724 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4725 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4726 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4727 }
4728 
4729 void __init tcp_init(void)
4730 {
4731 	int max_rshare, max_wshare, cnt;
4732 	unsigned long limit;
4733 	unsigned int i;
4734 
4735 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4736 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4737 		     sizeof_field(struct sk_buff, cb));
4738 
4739 	tcp_struct_check();
4740 
4741 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4742 
4743 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4744 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4745 
4746 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4747 			    thash_entries, 21,  /* one slot per 2 MB*/
4748 			    0, 64 * 1024);
4749 	tcp_hashinfo.bind_bucket_cachep =
4750 		kmem_cache_create("tcp_bind_bucket",
4751 				  sizeof(struct inet_bind_bucket), 0,
4752 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4753 				  SLAB_ACCOUNT,
4754 				  NULL);
4755 	tcp_hashinfo.bind2_bucket_cachep =
4756 		kmem_cache_create("tcp_bind2_bucket",
4757 				  sizeof(struct inet_bind2_bucket), 0,
4758 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4759 				  SLAB_ACCOUNT,
4760 				  NULL);
4761 
4762 	/* Size and allocate the main established and bind bucket
4763 	 * hash tables.
4764 	 *
4765 	 * The methodology is similar to that of the buffer cache.
4766 	 */
4767 	tcp_hashinfo.ehash =
4768 		alloc_large_system_hash("TCP established",
4769 					sizeof(struct inet_ehash_bucket),
4770 					thash_entries,
4771 					17, /* one slot per 128 KB of memory */
4772 					0,
4773 					NULL,
4774 					&tcp_hashinfo.ehash_mask,
4775 					0,
4776 					thash_entries ? 0 : 512 * 1024);
4777 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4778 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4779 
4780 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4781 		panic("TCP: failed to alloc ehash_locks");
4782 	tcp_hashinfo.bhash =
4783 		alloc_large_system_hash("TCP bind",
4784 					2 * sizeof(struct inet_bind_hashbucket),
4785 					tcp_hashinfo.ehash_mask + 1,
4786 					17, /* one slot per 128 KB of memory */
4787 					0,
4788 					&tcp_hashinfo.bhash_size,
4789 					NULL,
4790 					0,
4791 					64 * 1024);
4792 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4793 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4794 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4795 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4796 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4797 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4798 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4799 	}
4800 
4801 	tcp_hashinfo.pernet = false;
4802 
4803 	cnt = tcp_hashinfo.ehash_mask + 1;
4804 	sysctl_tcp_max_orphans = cnt / 2;
4805 
4806 	tcp_init_mem();
4807 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4808 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4809 	max_wshare = min(4UL*1024*1024, limit);
4810 	max_rshare = min(6UL*1024*1024, limit);
4811 
4812 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4813 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4814 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4815 
4816 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4817 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4818 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4819 
4820 	pr_info("Hash tables configured (established %u bind %u)\n",
4821 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4822 
4823 	tcp_v4_init();
4824 	tcp_metrics_init();
4825 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4826 	tcp_tasklet_init();
4827 	mptcp_init();
4828 }
4829