xref: /linux/net/ipv4/tcp.c (revision 66a0e2d579dbec5c676cfe446234ffebb267c564)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285 
286 int sysctl_tcp_autocorking __read_mostly = 1;
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294 
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298 
299 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301 
302 /*
303  * Current number of TCP sockets.
304  */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307 
308 /*
309  * TCP splice context
310  */
311 struct tcp_splice_state {
312 	struct pipe_inode_info *pipe;
313 	size_t len;
314 	unsigned int flags;
315 };
316 
317 /*
318  * Pressure flag: try to collapse.
319  * Technical note: it is used by multiple contexts non atomically.
320  * All the __sk_mem_schedule() is of this nature: accounting
321  * is strict, actions are advisory and have some latency.
322  */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	if (!tcp_memory_pressure) {
329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 		tcp_memory_pressure = 1;
331 	}
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334 
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 	u8 res = 0;
339 
340 	if (seconds > 0) {
341 		int period = timeout;
342 
343 		res = 1;
344 		while (seconds > period && res < 255) {
345 			res++;
346 			timeout <<= 1;
347 			if (timeout > rto_max)
348 				timeout = rto_max;
349 			period += timeout;
350 		}
351 	}
352 	return res;
353 }
354 
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 	int period = 0;
359 
360 	if (retrans > 0) {
361 		period = timeout;
362 		while (--retrans) {
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return period;
370 }
371 
372 /* Address-family independent initialization for a tcp_sock.
373  *
374  * NOTE: A lot of things set to zero explicitly by call to
375  *       sk_alloc() so need not be done here.
376  */
377 void tcp_init_sock(struct sock *sk)
378 {
379 	struct inet_connection_sock *icsk = inet_csk(sk);
380 	struct tcp_sock *tp = tcp_sk(sk);
381 
382 	tp->out_of_order_queue = RB_ROOT;
383 	tcp_init_xmit_timers(sk);
384 	tcp_prequeue_init(tp);
385 	INIT_LIST_HEAD(&tp->tsq_node);
386 
387 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 	minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390 
391 	/* So many TCP implementations out there (incorrectly) count the
392 	 * initial SYN frame in their delayed-ACK and congestion control
393 	 * algorithms that we must have the following bandaid to talk
394 	 * efficiently to them.  -DaveM
395 	 */
396 	tp->snd_cwnd = TCP_INIT_CWND;
397 
398 	/* There's a bubble in the pipe until at least the first ACK. */
399 	tp->app_limited = ~0U;
400 
401 	/* See draft-stevens-tcpca-spec-01 for discussion of the
402 	 * initialization of these values.
403 	 */
404 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 	tp->snd_cwnd_clamp = ~0;
406 	tp->mss_cache = TCP_MSS_DEFAULT;
407 
408 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 	tcp_enable_early_retrans(tp);
410 	tcp_assign_congestion_control(sk);
411 
412 	tp->tsoffset = 0;
413 
414 	sk->sk_state = TCP_CLOSE;
415 
416 	sk->sk_write_space = sk_stream_write_space;
417 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 
419 	icsk->icsk_sync_mss = tcp_sync_mss;
420 
421 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 
424 	local_bh_disable();
425 	sk_sockets_allocated_inc(sk);
426 	local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429 
430 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
431 {
432 	if (tsflags) {
433 		struct skb_shared_info *shinfo = skb_shinfo(skb);
434 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
435 
436 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
437 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
438 			tcb->txstamp_ack = 1;
439 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
440 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
441 	}
442 }
443 
444 /*
445  *	Wait for a TCP event.
446  *
447  *	Note that we don't need to lock the socket, as the upper poll layers
448  *	take care of normal races (between the test and the event) and we don't
449  *	go look at any of the socket buffers directly.
450  */
451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
452 {
453 	unsigned int mask;
454 	struct sock *sk = sock->sk;
455 	const struct tcp_sock *tp = tcp_sk(sk);
456 	int state;
457 
458 	sock_rps_record_flow(sk);
459 
460 	sock_poll_wait(file, sk_sleep(sk), wait);
461 
462 	state = sk_state_load(sk);
463 	if (state == TCP_LISTEN)
464 		return inet_csk_listen_poll(sk);
465 
466 	/* Socket is not locked. We are protected from async events
467 	 * by poll logic and correct handling of state changes
468 	 * made by other threads is impossible in any case.
469 	 */
470 
471 	mask = 0;
472 
473 	/*
474 	 * POLLHUP is certainly not done right. But poll() doesn't
475 	 * have a notion of HUP in just one direction, and for a
476 	 * socket the read side is more interesting.
477 	 *
478 	 * Some poll() documentation says that POLLHUP is incompatible
479 	 * with the POLLOUT/POLLWR flags, so somebody should check this
480 	 * all. But careful, it tends to be safer to return too many
481 	 * bits than too few, and you can easily break real applications
482 	 * if you don't tell them that something has hung up!
483 	 *
484 	 * Check-me.
485 	 *
486 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
487 	 * our fs/select.c). It means that after we received EOF,
488 	 * poll always returns immediately, making impossible poll() on write()
489 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
490 	 * if and only if shutdown has been made in both directions.
491 	 * Actually, it is interesting to look how Solaris and DUX
492 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
493 	 * then we could set it on SND_SHUTDOWN. BTW examples given
494 	 * in Stevens' books assume exactly this behaviour, it explains
495 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
496 	 *
497 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
498 	 * blocking on fresh not-connected or disconnected socket. --ANK
499 	 */
500 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
501 		mask |= POLLHUP;
502 	if (sk->sk_shutdown & RCV_SHUTDOWN)
503 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
504 
505 	/* Connected or passive Fast Open socket? */
506 	if (state != TCP_SYN_SENT &&
507 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
508 		int target = sock_rcvlowat(sk, 0, INT_MAX);
509 
510 		if (tp->urg_seq == tp->copied_seq &&
511 		    !sock_flag(sk, SOCK_URGINLINE) &&
512 		    tp->urg_data)
513 			target++;
514 
515 		if (tp->rcv_nxt - tp->copied_seq >= target)
516 			mask |= POLLIN | POLLRDNORM;
517 
518 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
519 			if (sk_stream_is_writeable(sk)) {
520 				mask |= POLLOUT | POLLWRNORM;
521 			} else {  /* send SIGIO later */
522 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
523 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524 
525 				/* Race breaker. If space is freed after
526 				 * wspace test but before the flags are set,
527 				 * IO signal will be lost. Memory barrier
528 				 * pairs with the input side.
529 				 */
530 				smp_mb__after_atomic();
531 				if (sk_stream_is_writeable(sk))
532 					mask |= POLLOUT | POLLWRNORM;
533 			}
534 		} else
535 			mask |= POLLOUT | POLLWRNORM;
536 
537 		if (tp->urg_data & TCP_URG_VALID)
538 			mask |= POLLPRI;
539 	}
540 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
541 	smp_rmb();
542 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
543 		mask |= POLLERR;
544 
545 	return mask;
546 }
547 EXPORT_SYMBOL(tcp_poll);
548 
549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 {
551 	struct tcp_sock *tp = tcp_sk(sk);
552 	int answ;
553 	bool slow;
554 
555 	switch (cmd) {
556 	case SIOCINQ:
557 		if (sk->sk_state == TCP_LISTEN)
558 			return -EINVAL;
559 
560 		slow = lock_sock_fast(sk);
561 		answ = tcp_inq(sk);
562 		unlock_sock_fast(sk, slow);
563 		break;
564 	case SIOCATMARK:
565 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
566 		break;
567 	case SIOCOUTQ:
568 		if (sk->sk_state == TCP_LISTEN)
569 			return -EINVAL;
570 
571 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
572 			answ = 0;
573 		else
574 			answ = tp->write_seq - tp->snd_una;
575 		break;
576 	case SIOCOUTQNSD:
577 		if (sk->sk_state == TCP_LISTEN)
578 			return -EINVAL;
579 
580 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 			answ = 0;
582 		else
583 			answ = tp->write_seq - tp->snd_nxt;
584 		break;
585 	default:
586 		return -ENOIOCTLCMD;
587 	}
588 
589 	return put_user(answ, (int __user *)arg);
590 }
591 EXPORT_SYMBOL(tcp_ioctl);
592 
593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 {
595 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
596 	tp->pushed_seq = tp->write_seq;
597 }
598 
599 static inline bool forced_push(const struct tcp_sock *tp)
600 {
601 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
602 }
603 
604 static void skb_entail(struct sock *sk, struct sk_buff *skb)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608 
609 	skb->csum    = 0;
610 	tcb->seq     = tcb->end_seq = tp->write_seq;
611 	tcb->tcp_flags = TCPHDR_ACK;
612 	tcb->sacked  = 0;
613 	__skb_header_release(skb);
614 	tcp_add_write_queue_tail(sk, skb);
615 	sk->sk_wmem_queued += skb->truesize;
616 	sk_mem_charge(sk, skb->truesize);
617 	if (tp->nonagle & TCP_NAGLE_PUSH)
618 		tp->nonagle &= ~TCP_NAGLE_PUSH;
619 
620 	tcp_slow_start_after_idle_check(sk);
621 }
622 
623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
624 {
625 	if (flags & MSG_OOB)
626 		tp->snd_up = tp->write_seq;
627 }
628 
629 /* If a not yet filled skb is pushed, do not send it if
630  * we have data packets in Qdisc or NIC queues :
631  * Because TX completion will happen shortly, it gives a chance
632  * to coalesce future sendmsg() payload into this skb, without
633  * need for a timer, and with no latency trade off.
634  * As packets containing data payload have a bigger truesize
635  * than pure acks (dataless) packets, the last checks prevent
636  * autocorking if we only have an ACK in Qdisc/NIC queues,
637  * or if TX completion was delayed after we processed ACK packet.
638  */
639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
640 				int size_goal)
641 {
642 	return skb->len < size_goal &&
643 	       sysctl_tcp_autocorking &&
644 	       skb != tcp_write_queue_head(sk) &&
645 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
646 }
647 
648 static void tcp_push(struct sock *sk, int flags, int mss_now,
649 		     int nonagle, int size_goal)
650 {
651 	struct tcp_sock *tp = tcp_sk(sk);
652 	struct sk_buff *skb;
653 
654 	if (!tcp_send_head(sk))
655 		return;
656 
657 	skb = tcp_write_queue_tail(sk);
658 	if (!(flags & MSG_MORE) || forced_push(tp))
659 		tcp_mark_push(tp, skb);
660 
661 	tcp_mark_urg(tp, flags);
662 
663 	if (tcp_should_autocork(sk, skb, size_goal)) {
664 
665 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
666 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
667 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
668 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
669 		}
670 		/* It is possible TX completion already happened
671 		 * before we set TSQ_THROTTLED.
672 		 */
673 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
674 			return;
675 	}
676 
677 	if (flags & MSG_MORE)
678 		nonagle = TCP_NAGLE_CORK;
679 
680 	__tcp_push_pending_frames(sk, mss_now, nonagle);
681 }
682 
683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
684 				unsigned int offset, size_t len)
685 {
686 	struct tcp_splice_state *tss = rd_desc->arg.data;
687 	int ret;
688 
689 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
690 			      min(rd_desc->count, len), tss->flags);
691 	if (ret > 0)
692 		rd_desc->count -= ret;
693 	return ret;
694 }
695 
696 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
697 {
698 	/* Store TCP splice context information in read_descriptor_t. */
699 	read_descriptor_t rd_desc = {
700 		.arg.data = tss,
701 		.count	  = tss->len,
702 	};
703 
704 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
705 }
706 
707 /**
708  *  tcp_splice_read - splice data from TCP socket to a pipe
709  * @sock:	socket to splice from
710  * @ppos:	position (not valid)
711  * @pipe:	pipe to splice to
712  * @len:	number of bytes to splice
713  * @flags:	splice modifier flags
714  *
715  * Description:
716  *    Will read pages from given socket and fill them into a pipe.
717  *
718  **/
719 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
720 			struct pipe_inode_info *pipe, size_t len,
721 			unsigned int flags)
722 {
723 	struct sock *sk = sock->sk;
724 	struct tcp_splice_state tss = {
725 		.pipe = pipe,
726 		.len = len,
727 		.flags = flags,
728 	};
729 	long timeo;
730 	ssize_t spliced;
731 	int ret;
732 
733 	sock_rps_record_flow(sk);
734 	/*
735 	 * We can't seek on a socket input
736 	 */
737 	if (unlikely(*ppos))
738 		return -ESPIPE;
739 
740 	ret = spliced = 0;
741 
742 	lock_sock(sk);
743 
744 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
745 	while (tss.len) {
746 		ret = __tcp_splice_read(sk, &tss);
747 		if (ret < 0)
748 			break;
749 		else if (!ret) {
750 			if (spliced)
751 				break;
752 			if (sock_flag(sk, SOCK_DONE))
753 				break;
754 			if (sk->sk_err) {
755 				ret = sock_error(sk);
756 				break;
757 			}
758 			if (sk->sk_shutdown & RCV_SHUTDOWN)
759 				break;
760 			if (sk->sk_state == TCP_CLOSE) {
761 				/*
762 				 * This occurs when user tries to read
763 				 * from never connected socket.
764 				 */
765 				if (!sock_flag(sk, SOCK_DONE))
766 					ret = -ENOTCONN;
767 				break;
768 			}
769 			if (!timeo) {
770 				ret = -EAGAIN;
771 				break;
772 			}
773 			/* if __tcp_splice_read() got nothing while we have
774 			 * an skb in receive queue, we do not want to loop.
775 			 * This might happen with URG data.
776 			 */
777 			if (!skb_queue_empty(&sk->sk_receive_queue))
778 				break;
779 			sk_wait_data(sk, &timeo, NULL);
780 			if (signal_pending(current)) {
781 				ret = sock_intr_errno(timeo);
782 				break;
783 			}
784 			continue;
785 		}
786 		tss.len -= ret;
787 		spliced += ret;
788 
789 		if (!timeo)
790 			break;
791 		release_sock(sk);
792 		lock_sock(sk);
793 
794 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
795 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
796 		    signal_pending(current))
797 			break;
798 	}
799 
800 	release_sock(sk);
801 
802 	if (spliced)
803 		return spliced;
804 
805 	return ret;
806 }
807 EXPORT_SYMBOL(tcp_splice_read);
808 
809 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
810 				    bool force_schedule)
811 {
812 	struct sk_buff *skb;
813 
814 	/* The TCP header must be at least 32-bit aligned.  */
815 	size = ALIGN(size, 4);
816 
817 	if (unlikely(tcp_under_memory_pressure(sk)))
818 		sk_mem_reclaim_partial(sk);
819 
820 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
821 	if (likely(skb)) {
822 		bool mem_scheduled;
823 
824 		if (force_schedule) {
825 			mem_scheduled = true;
826 			sk_forced_mem_schedule(sk, skb->truesize);
827 		} else {
828 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
829 		}
830 		if (likely(mem_scheduled)) {
831 			skb_reserve(skb, sk->sk_prot->max_header);
832 			/*
833 			 * Make sure that we have exactly size bytes
834 			 * available to the caller, no more, no less.
835 			 */
836 			skb->reserved_tailroom = skb->end - skb->tail - size;
837 			return skb;
838 		}
839 		__kfree_skb(skb);
840 	} else {
841 		sk->sk_prot->enter_memory_pressure(sk);
842 		sk_stream_moderate_sndbuf(sk);
843 	}
844 	return NULL;
845 }
846 
847 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
848 				       int large_allowed)
849 {
850 	struct tcp_sock *tp = tcp_sk(sk);
851 	u32 new_size_goal, size_goal;
852 
853 	if (!large_allowed || !sk_can_gso(sk))
854 		return mss_now;
855 
856 	/* Note : tcp_tso_autosize() will eventually split this later */
857 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
858 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
859 
860 	/* We try hard to avoid divides here */
861 	size_goal = tp->gso_segs * mss_now;
862 	if (unlikely(new_size_goal < size_goal ||
863 		     new_size_goal >= size_goal + mss_now)) {
864 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
865 				     sk->sk_gso_max_segs);
866 		size_goal = tp->gso_segs * mss_now;
867 	}
868 
869 	return max(size_goal, mss_now);
870 }
871 
872 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
873 {
874 	int mss_now;
875 
876 	mss_now = tcp_current_mss(sk);
877 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
878 
879 	return mss_now;
880 }
881 
882 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
883 				size_t size, int flags)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	int mss_now, size_goal;
887 	int err;
888 	ssize_t copied;
889 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
890 
891 	/* Wait for a connection to finish. One exception is TCP Fast Open
892 	 * (passive side) where data is allowed to be sent before a connection
893 	 * is fully established.
894 	 */
895 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
896 	    !tcp_passive_fastopen(sk)) {
897 		err = sk_stream_wait_connect(sk, &timeo);
898 		if (err != 0)
899 			goto out_err;
900 	}
901 
902 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
903 
904 	mss_now = tcp_send_mss(sk, &size_goal, flags);
905 	copied = 0;
906 
907 	err = -EPIPE;
908 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
909 		goto out_err;
910 
911 	while (size > 0) {
912 		struct sk_buff *skb = tcp_write_queue_tail(sk);
913 		int copy, i;
914 		bool can_coalesce;
915 
916 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
917 		    !tcp_skb_can_collapse_to(skb)) {
918 new_segment:
919 			if (!sk_stream_memory_free(sk))
920 				goto wait_for_sndbuf;
921 
922 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
923 						  skb_queue_empty(&sk->sk_write_queue));
924 			if (!skb)
925 				goto wait_for_memory;
926 
927 			skb_entail(sk, skb);
928 			copy = size_goal;
929 		}
930 
931 		if (copy > size)
932 			copy = size;
933 
934 		i = skb_shinfo(skb)->nr_frags;
935 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
936 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
937 			tcp_mark_push(tp, skb);
938 			goto new_segment;
939 		}
940 		if (!sk_wmem_schedule(sk, copy))
941 			goto wait_for_memory;
942 
943 		if (can_coalesce) {
944 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
945 		} else {
946 			get_page(page);
947 			skb_fill_page_desc(skb, i, page, offset, copy);
948 		}
949 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
950 
951 		skb->len += copy;
952 		skb->data_len += copy;
953 		skb->truesize += copy;
954 		sk->sk_wmem_queued += copy;
955 		sk_mem_charge(sk, copy);
956 		skb->ip_summed = CHECKSUM_PARTIAL;
957 		tp->write_seq += copy;
958 		TCP_SKB_CB(skb)->end_seq += copy;
959 		tcp_skb_pcount_set(skb, 0);
960 
961 		if (!copied)
962 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
963 
964 		copied += copy;
965 		offset += copy;
966 		size -= copy;
967 		if (!size) {
968 			tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
969 			goto out;
970 		}
971 
972 		if (skb->len < size_goal || (flags & MSG_OOB))
973 			continue;
974 
975 		if (forced_push(tp)) {
976 			tcp_mark_push(tp, skb);
977 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
978 		} else if (skb == tcp_send_head(sk))
979 			tcp_push_one(sk, mss_now);
980 		continue;
981 
982 wait_for_sndbuf:
983 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
984 wait_for_memory:
985 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
986 			 TCP_NAGLE_PUSH, size_goal);
987 
988 		err = sk_stream_wait_memory(sk, &timeo);
989 		if (err != 0)
990 			goto do_error;
991 
992 		mss_now = tcp_send_mss(sk, &size_goal, flags);
993 	}
994 
995 out:
996 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
997 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
998 	return copied;
999 
1000 do_error:
1001 	if (copied)
1002 		goto out;
1003 out_err:
1004 	/* make sure we wake any epoll edge trigger waiter */
1005 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1006 		     err == -EAGAIN)) {
1007 		sk->sk_write_space(sk);
1008 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1009 	}
1010 	return sk_stream_error(sk, flags, err);
1011 }
1012 
1013 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1014 		 size_t size, int flags)
1015 {
1016 	ssize_t res;
1017 
1018 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1019 	    !sk_check_csum_caps(sk))
1020 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1021 					flags);
1022 
1023 	lock_sock(sk);
1024 
1025 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1026 
1027 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1028 	release_sock(sk);
1029 	return res;
1030 }
1031 EXPORT_SYMBOL(tcp_sendpage);
1032 
1033 /* Do not bother using a page frag for very small frames.
1034  * But use this heuristic only for the first skb in write queue.
1035  *
1036  * Having no payload in skb->head allows better SACK shifting
1037  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1038  * write queue has less skbs.
1039  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1040  * This also speeds up tso_fragment(), since it wont fallback
1041  * to tcp_fragment().
1042  */
1043 static int linear_payload_sz(bool first_skb)
1044 {
1045 	if (first_skb)
1046 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1047 	return 0;
1048 }
1049 
1050 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1051 {
1052 	const struct tcp_sock *tp = tcp_sk(sk);
1053 	int tmp = tp->mss_cache;
1054 
1055 	if (sg) {
1056 		if (sk_can_gso(sk)) {
1057 			tmp = linear_payload_sz(first_skb);
1058 		} else {
1059 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1060 
1061 			if (tmp >= pgbreak &&
1062 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1063 				tmp = pgbreak;
1064 		}
1065 	}
1066 
1067 	return tmp;
1068 }
1069 
1070 void tcp_free_fastopen_req(struct tcp_sock *tp)
1071 {
1072 	if (tp->fastopen_req) {
1073 		kfree(tp->fastopen_req);
1074 		tp->fastopen_req = NULL;
1075 	}
1076 }
1077 
1078 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1079 				int *copied, size_t size)
1080 {
1081 	struct tcp_sock *tp = tcp_sk(sk);
1082 	int err, flags;
1083 
1084 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1085 		return -EOPNOTSUPP;
1086 	if (tp->fastopen_req)
1087 		return -EALREADY; /* Another Fast Open is in progress */
1088 
1089 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1090 				   sk->sk_allocation);
1091 	if (unlikely(!tp->fastopen_req))
1092 		return -ENOBUFS;
1093 	tp->fastopen_req->data = msg;
1094 	tp->fastopen_req->size = size;
1095 
1096 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1097 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1098 				    msg->msg_namelen, flags);
1099 	*copied = tp->fastopen_req->copied;
1100 	tcp_free_fastopen_req(tp);
1101 	return err;
1102 }
1103 
1104 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1105 {
1106 	struct tcp_sock *tp = tcp_sk(sk);
1107 	struct sk_buff *skb;
1108 	struct sockcm_cookie sockc;
1109 	int flags, err, copied = 0;
1110 	int mss_now = 0, size_goal, copied_syn = 0;
1111 	bool process_backlog = false;
1112 	bool sg;
1113 	long timeo;
1114 
1115 	lock_sock(sk);
1116 
1117 	flags = msg->msg_flags;
1118 	if (flags & MSG_FASTOPEN) {
1119 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1120 		if (err == -EINPROGRESS && copied_syn > 0)
1121 			goto out;
1122 		else if (err)
1123 			goto out_err;
1124 	}
1125 
1126 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1127 
1128 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1129 
1130 	/* Wait for a connection to finish. One exception is TCP Fast Open
1131 	 * (passive side) where data is allowed to be sent before a connection
1132 	 * is fully established.
1133 	 */
1134 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1135 	    !tcp_passive_fastopen(sk)) {
1136 		err = sk_stream_wait_connect(sk, &timeo);
1137 		if (err != 0)
1138 			goto do_error;
1139 	}
1140 
1141 	if (unlikely(tp->repair)) {
1142 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1143 			copied = tcp_send_rcvq(sk, msg, size);
1144 			goto out_nopush;
1145 		}
1146 
1147 		err = -EINVAL;
1148 		if (tp->repair_queue == TCP_NO_QUEUE)
1149 			goto out_err;
1150 
1151 		/* 'common' sending to sendq */
1152 	}
1153 
1154 	sockc.tsflags = sk->sk_tsflags;
1155 	if (msg->msg_controllen) {
1156 		err = sock_cmsg_send(sk, msg, &sockc);
1157 		if (unlikely(err)) {
1158 			err = -EINVAL;
1159 			goto out_err;
1160 		}
1161 	}
1162 
1163 	/* This should be in poll */
1164 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1165 
1166 	/* Ok commence sending. */
1167 	copied = 0;
1168 
1169 restart:
1170 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1171 
1172 	err = -EPIPE;
1173 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1174 		goto do_error;
1175 
1176 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1177 
1178 	while (msg_data_left(msg)) {
1179 		int copy = 0;
1180 		int max = size_goal;
1181 
1182 		skb = tcp_write_queue_tail(sk);
1183 		if (tcp_send_head(sk)) {
1184 			if (skb->ip_summed == CHECKSUM_NONE)
1185 				max = mss_now;
1186 			copy = max - skb->len;
1187 		}
1188 
1189 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1190 			bool first_skb;
1191 
1192 new_segment:
1193 			/* Allocate new segment. If the interface is SG,
1194 			 * allocate skb fitting to single page.
1195 			 */
1196 			if (!sk_stream_memory_free(sk))
1197 				goto wait_for_sndbuf;
1198 
1199 			if (process_backlog && sk_flush_backlog(sk)) {
1200 				process_backlog = false;
1201 				goto restart;
1202 			}
1203 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1204 			skb = sk_stream_alloc_skb(sk,
1205 						  select_size(sk, sg, first_skb),
1206 						  sk->sk_allocation,
1207 						  first_skb);
1208 			if (!skb)
1209 				goto wait_for_memory;
1210 
1211 			process_backlog = true;
1212 			/*
1213 			 * Check whether we can use HW checksum.
1214 			 */
1215 			if (sk_check_csum_caps(sk))
1216 				skb->ip_summed = CHECKSUM_PARTIAL;
1217 
1218 			skb_entail(sk, skb);
1219 			copy = size_goal;
1220 			max = size_goal;
1221 
1222 			/* All packets are restored as if they have
1223 			 * already been sent. skb_mstamp isn't set to
1224 			 * avoid wrong rtt estimation.
1225 			 */
1226 			if (tp->repair)
1227 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1228 		}
1229 
1230 		/* Try to append data to the end of skb. */
1231 		if (copy > msg_data_left(msg))
1232 			copy = msg_data_left(msg);
1233 
1234 		/* Where to copy to? */
1235 		if (skb_availroom(skb) > 0) {
1236 			/* We have some space in skb head. Superb! */
1237 			copy = min_t(int, copy, skb_availroom(skb));
1238 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1239 			if (err)
1240 				goto do_fault;
1241 		} else {
1242 			bool merge = true;
1243 			int i = skb_shinfo(skb)->nr_frags;
1244 			struct page_frag *pfrag = sk_page_frag(sk);
1245 
1246 			if (!sk_page_frag_refill(sk, pfrag))
1247 				goto wait_for_memory;
1248 
1249 			if (!skb_can_coalesce(skb, i, pfrag->page,
1250 					      pfrag->offset)) {
1251 				if (i >= sysctl_max_skb_frags || !sg) {
1252 					tcp_mark_push(tp, skb);
1253 					goto new_segment;
1254 				}
1255 				merge = false;
1256 			}
1257 
1258 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1259 
1260 			if (!sk_wmem_schedule(sk, copy))
1261 				goto wait_for_memory;
1262 
1263 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1264 						       pfrag->page,
1265 						       pfrag->offset,
1266 						       copy);
1267 			if (err)
1268 				goto do_error;
1269 
1270 			/* Update the skb. */
1271 			if (merge) {
1272 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1273 			} else {
1274 				skb_fill_page_desc(skb, i, pfrag->page,
1275 						   pfrag->offset, copy);
1276 				get_page(pfrag->page);
1277 			}
1278 			pfrag->offset += copy;
1279 		}
1280 
1281 		if (!copied)
1282 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1283 
1284 		tp->write_seq += copy;
1285 		TCP_SKB_CB(skb)->end_seq += copy;
1286 		tcp_skb_pcount_set(skb, 0);
1287 
1288 		copied += copy;
1289 		if (!msg_data_left(msg)) {
1290 			tcp_tx_timestamp(sk, sockc.tsflags, skb);
1291 			if (unlikely(flags & MSG_EOR))
1292 				TCP_SKB_CB(skb)->eor = 1;
1293 			goto out;
1294 		}
1295 
1296 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1297 			continue;
1298 
1299 		if (forced_push(tp)) {
1300 			tcp_mark_push(tp, skb);
1301 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1302 		} else if (skb == tcp_send_head(sk))
1303 			tcp_push_one(sk, mss_now);
1304 		continue;
1305 
1306 wait_for_sndbuf:
1307 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1308 wait_for_memory:
1309 		if (copied)
1310 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1311 				 TCP_NAGLE_PUSH, size_goal);
1312 
1313 		err = sk_stream_wait_memory(sk, &timeo);
1314 		if (err != 0)
1315 			goto do_error;
1316 
1317 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1318 	}
1319 
1320 out:
1321 	if (copied)
1322 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1323 out_nopush:
1324 	release_sock(sk);
1325 	return copied + copied_syn;
1326 
1327 do_fault:
1328 	if (!skb->len) {
1329 		tcp_unlink_write_queue(skb, sk);
1330 		/* It is the one place in all of TCP, except connection
1331 		 * reset, where we can be unlinking the send_head.
1332 		 */
1333 		tcp_check_send_head(sk, skb);
1334 		sk_wmem_free_skb(sk, skb);
1335 	}
1336 
1337 do_error:
1338 	if (copied + copied_syn)
1339 		goto out;
1340 out_err:
1341 	err = sk_stream_error(sk, flags, err);
1342 	/* make sure we wake any epoll edge trigger waiter */
1343 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1344 		     err == -EAGAIN)) {
1345 		sk->sk_write_space(sk);
1346 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1347 	}
1348 	release_sock(sk);
1349 	return err;
1350 }
1351 EXPORT_SYMBOL(tcp_sendmsg);
1352 
1353 /*
1354  *	Handle reading urgent data. BSD has very simple semantics for
1355  *	this, no blocking and very strange errors 8)
1356  */
1357 
1358 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1359 {
1360 	struct tcp_sock *tp = tcp_sk(sk);
1361 
1362 	/* No URG data to read. */
1363 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1364 	    tp->urg_data == TCP_URG_READ)
1365 		return -EINVAL;	/* Yes this is right ! */
1366 
1367 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1368 		return -ENOTCONN;
1369 
1370 	if (tp->urg_data & TCP_URG_VALID) {
1371 		int err = 0;
1372 		char c = tp->urg_data;
1373 
1374 		if (!(flags & MSG_PEEK))
1375 			tp->urg_data = TCP_URG_READ;
1376 
1377 		/* Read urgent data. */
1378 		msg->msg_flags |= MSG_OOB;
1379 
1380 		if (len > 0) {
1381 			if (!(flags & MSG_TRUNC))
1382 				err = memcpy_to_msg(msg, &c, 1);
1383 			len = 1;
1384 		} else
1385 			msg->msg_flags |= MSG_TRUNC;
1386 
1387 		return err ? -EFAULT : len;
1388 	}
1389 
1390 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1391 		return 0;
1392 
1393 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1394 	 * the available implementations agree in this case:
1395 	 * this call should never block, independent of the
1396 	 * blocking state of the socket.
1397 	 * Mike <pall@rz.uni-karlsruhe.de>
1398 	 */
1399 	return -EAGAIN;
1400 }
1401 
1402 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1403 {
1404 	struct sk_buff *skb;
1405 	int copied = 0, err = 0;
1406 
1407 	/* XXX -- need to support SO_PEEK_OFF */
1408 
1409 	skb_queue_walk(&sk->sk_write_queue, skb) {
1410 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1411 		if (err)
1412 			break;
1413 
1414 		copied += skb->len;
1415 	}
1416 
1417 	return err ?: copied;
1418 }
1419 
1420 /* Clean up the receive buffer for full frames taken by the user,
1421  * then send an ACK if necessary.  COPIED is the number of bytes
1422  * tcp_recvmsg has given to the user so far, it speeds up the
1423  * calculation of whether or not we must ACK for the sake of
1424  * a window update.
1425  */
1426 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1427 {
1428 	struct tcp_sock *tp = tcp_sk(sk);
1429 	bool time_to_ack = false;
1430 
1431 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1432 
1433 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1434 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1435 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1436 
1437 	if (inet_csk_ack_scheduled(sk)) {
1438 		const struct inet_connection_sock *icsk = inet_csk(sk);
1439 		   /* Delayed ACKs frequently hit locked sockets during bulk
1440 		    * receive. */
1441 		if (icsk->icsk_ack.blocked ||
1442 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1443 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1444 		    /*
1445 		     * If this read emptied read buffer, we send ACK, if
1446 		     * connection is not bidirectional, user drained
1447 		     * receive buffer and there was a small segment
1448 		     * in queue.
1449 		     */
1450 		    (copied > 0 &&
1451 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1452 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1453 		       !icsk->icsk_ack.pingpong)) &&
1454 		      !atomic_read(&sk->sk_rmem_alloc)))
1455 			time_to_ack = true;
1456 	}
1457 
1458 	/* We send an ACK if we can now advertise a non-zero window
1459 	 * which has been raised "significantly".
1460 	 *
1461 	 * Even if window raised up to infinity, do not send window open ACK
1462 	 * in states, where we will not receive more. It is useless.
1463 	 */
1464 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1465 		__u32 rcv_window_now = tcp_receive_window(tp);
1466 
1467 		/* Optimize, __tcp_select_window() is not cheap. */
1468 		if (2*rcv_window_now <= tp->window_clamp) {
1469 			__u32 new_window = __tcp_select_window(sk);
1470 
1471 			/* Send ACK now, if this read freed lots of space
1472 			 * in our buffer. Certainly, new_window is new window.
1473 			 * We can advertise it now, if it is not less than current one.
1474 			 * "Lots" means "at least twice" here.
1475 			 */
1476 			if (new_window && new_window >= 2 * rcv_window_now)
1477 				time_to_ack = true;
1478 		}
1479 	}
1480 	if (time_to_ack)
1481 		tcp_send_ack(sk);
1482 }
1483 
1484 static void tcp_prequeue_process(struct sock *sk)
1485 {
1486 	struct sk_buff *skb;
1487 	struct tcp_sock *tp = tcp_sk(sk);
1488 
1489 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1490 
1491 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1492 		sk_backlog_rcv(sk, skb);
1493 
1494 	/* Clear memory counter. */
1495 	tp->ucopy.memory = 0;
1496 }
1497 
1498 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1499 {
1500 	struct sk_buff *skb;
1501 	u32 offset;
1502 
1503 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1504 		offset = seq - TCP_SKB_CB(skb)->seq;
1505 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1506 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1507 			offset--;
1508 		}
1509 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1510 			*off = offset;
1511 			return skb;
1512 		}
1513 		/* This looks weird, but this can happen if TCP collapsing
1514 		 * splitted a fat GRO packet, while we released socket lock
1515 		 * in skb_splice_bits()
1516 		 */
1517 		sk_eat_skb(sk, skb);
1518 	}
1519 	return NULL;
1520 }
1521 
1522 /*
1523  * This routine provides an alternative to tcp_recvmsg() for routines
1524  * that would like to handle copying from skbuffs directly in 'sendfile'
1525  * fashion.
1526  * Note:
1527  *	- It is assumed that the socket was locked by the caller.
1528  *	- The routine does not block.
1529  *	- At present, there is no support for reading OOB data
1530  *	  or for 'peeking' the socket using this routine
1531  *	  (although both would be easy to implement).
1532  */
1533 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1534 		  sk_read_actor_t recv_actor)
1535 {
1536 	struct sk_buff *skb;
1537 	struct tcp_sock *tp = tcp_sk(sk);
1538 	u32 seq = tp->copied_seq;
1539 	u32 offset;
1540 	int copied = 0;
1541 
1542 	if (sk->sk_state == TCP_LISTEN)
1543 		return -ENOTCONN;
1544 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1545 		if (offset < skb->len) {
1546 			int used;
1547 			size_t len;
1548 
1549 			len = skb->len - offset;
1550 			/* Stop reading if we hit a patch of urgent data */
1551 			if (tp->urg_data) {
1552 				u32 urg_offset = tp->urg_seq - seq;
1553 				if (urg_offset < len)
1554 					len = urg_offset;
1555 				if (!len)
1556 					break;
1557 			}
1558 			used = recv_actor(desc, skb, offset, len);
1559 			if (used <= 0) {
1560 				if (!copied)
1561 					copied = used;
1562 				break;
1563 			} else if (used <= len) {
1564 				seq += used;
1565 				copied += used;
1566 				offset += used;
1567 			}
1568 			/* If recv_actor drops the lock (e.g. TCP splice
1569 			 * receive) the skb pointer might be invalid when
1570 			 * getting here: tcp_collapse might have deleted it
1571 			 * while aggregating skbs from the socket queue.
1572 			 */
1573 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1574 			if (!skb)
1575 				break;
1576 			/* TCP coalescing might have appended data to the skb.
1577 			 * Try to splice more frags
1578 			 */
1579 			if (offset + 1 != skb->len)
1580 				continue;
1581 		}
1582 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1583 			sk_eat_skb(sk, skb);
1584 			++seq;
1585 			break;
1586 		}
1587 		sk_eat_skb(sk, skb);
1588 		if (!desc->count)
1589 			break;
1590 		tp->copied_seq = seq;
1591 	}
1592 	tp->copied_seq = seq;
1593 
1594 	tcp_rcv_space_adjust(sk);
1595 
1596 	/* Clean up data we have read: This will do ACK frames. */
1597 	if (copied > 0) {
1598 		tcp_recv_skb(sk, seq, &offset);
1599 		tcp_cleanup_rbuf(sk, copied);
1600 	}
1601 	return copied;
1602 }
1603 EXPORT_SYMBOL(tcp_read_sock);
1604 
1605 int tcp_peek_len(struct socket *sock)
1606 {
1607 	return tcp_inq(sock->sk);
1608 }
1609 EXPORT_SYMBOL(tcp_peek_len);
1610 
1611 /*
1612  *	This routine copies from a sock struct into the user buffer.
1613  *
1614  *	Technical note: in 2.3 we work on _locked_ socket, so that
1615  *	tricks with *seq access order and skb->users are not required.
1616  *	Probably, code can be easily improved even more.
1617  */
1618 
1619 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1620 		int flags, int *addr_len)
1621 {
1622 	struct tcp_sock *tp = tcp_sk(sk);
1623 	int copied = 0;
1624 	u32 peek_seq;
1625 	u32 *seq;
1626 	unsigned long used;
1627 	int err;
1628 	int target;		/* Read at least this many bytes */
1629 	long timeo;
1630 	struct task_struct *user_recv = NULL;
1631 	struct sk_buff *skb, *last;
1632 	u32 urg_hole = 0;
1633 
1634 	if (unlikely(flags & MSG_ERRQUEUE))
1635 		return inet_recv_error(sk, msg, len, addr_len);
1636 
1637 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1638 	    (sk->sk_state == TCP_ESTABLISHED))
1639 		sk_busy_loop(sk, nonblock);
1640 
1641 	lock_sock(sk);
1642 
1643 	err = -ENOTCONN;
1644 	if (sk->sk_state == TCP_LISTEN)
1645 		goto out;
1646 
1647 	timeo = sock_rcvtimeo(sk, nonblock);
1648 
1649 	/* Urgent data needs to be handled specially. */
1650 	if (flags & MSG_OOB)
1651 		goto recv_urg;
1652 
1653 	if (unlikely(tp->repair)) {
1654 		err = -EPERM;
1655 		if (!(flags & MSG_PEEK))
1656 			goto out;
1657 
1658 		if (tp->repair_queue == TCP_SEND_QUEUE)
1659 			goto recv_sndq;
1660 
1661 		err = -EINVAL;
1662 		if (tp->repair_queue == TCP_NO_QUEUE)
1663 			goto out;
1664 
1665 		/* 'common' recv queue MSG_PEEK-ing */
1666 	}
1667 
1668 	seq = &tp->copied_seq;
1669 	if (flags & MSG_PEEK) {
1670 		peek_seq = tp->copied_seq;
1671 		seq = &peek_seq;
1672 	}
1673 
1674 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1675 
1676 	do {
1677 		u32 offset;
1678 
1679 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1680 		if (tp->urg_data && tp->urg_seq == *seq) {
1681 			if (copied)
1682 				break;
1683 			if (signal_pending(current)) {
1684 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1685 				break;
1686 			}
1687 		}
1688 
1689 		/* Next get a buffer. */
1690 
1691 		last = skb_peek_tail(&sk->sk_receive_queue);
1692 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1693 			last = skb;
1694 			/* Now that we have two receive queues this
1695 			 * shouldn't happen.
1696 			 */
1697 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1698 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1699 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1700 				 flags))
1701 				break;
1702 
1703 			offset = *seq - TCP_SKB_CB(skb)->seq;
1704 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1705 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1706 				offset--;
1707 			}
1708 			if (offset < skb->len)
1709 				goto found_ok_skb;
1710 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1711 				goto found_fin_ok;
1712 			WARN(!(flags & MSG_PEEK),
1713 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1714 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1715 		}
1716 
1717 		/* Well, if we have backlog, try to process it now yet. */
1718 
1719 		if (copied >= target && !sk->sk_backlog.tail)
1720 			break;
1721 
1722 		if (copied) {
1723 			if (sk->sk_err ||
1724 			    sk->sk_state == TCP_CLOSE ||
1725 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1726 			    !timeo ||
1727 			    signal_pending(current))
1728 				break;
1729 		} else {
1730 			if (sock_flag(sk, SOCK_DONE))
1731 				break;
1732 
1733 			if (sk->sk_err) {
1734 				copied = sock_error(sk);
1735 				break;
1736 			}
1737 
1738 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1739 				break;
1740 
1741 			if (sk->sk_state == TCP_CLOSE) {
1742 				if (!sock_flag(sk, SOCK_DONE)) {
1743 					/* This occurs when user tries to read
1744 					 * from never connected socket.
1745 					 */
1746 					copied = -ENOTCONN;
1747 					break;
1748 				}
1749 				break;
1750 			}
1751 
1752 			if (!timeo) {
1753 				copied = -EAGAIN;
1754 				break;
1755 			}
1756 
1757 			if (signal_pending(current)) {
1758 				copied = sock_intr_errno(timeo);
1759 				break;
1760 			}
1761 		}
1762 
1763 		tcp_cleanup_rbuf(sk, copied);
1764 
1765 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1766 			/* Install new reader */
1767 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1768 				user_recv = current;
1769 				tp->ucopy.task = user_recv;
1770 				tp->ucopy.msg = msg;
1771 			}
1772 
1773 			tp->ucopy.len = len;
1774 
1775 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1776 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1777 
1778 			/* Ugly... If prequeue is not empty, we have to
1779 			 * process it before releasing socket, otherwise
1780 			 * order will be broken at second iteration.
1781 			 * More elegant solution is required!!!
1782 			 *
1783 			 * Look: we have the following (pseudo)queues:
1784 			 *
1785 			 * 1. packets in flight
1786 			 * 2. backlog
1787 			 * 3. prequeue
1788 			 * 4. receive_queue
1789 			 *
1790 			 * Each queue can be processed only if the next ones
1791 			 * are empty. At this point we have empty receive_queue.
1792 			 * But prequeue _can_ be not empty after 2nd iteration,
1793 			 * when we jumped to start of loop because backlog
1794 			 * processing added something to receive_queue.
1795 			 * We cannot release_sock(), because backlog contains
1796 			 * packets arrived _after_ prequeued ones.
1797 			 *
1798 			 * Shortly, algorithm is clear --- to process all
1799 			 * the queues in order. We could make it more directly,
1800 			 * requeueing packets from backlog to prequeue, if
1801 			 * is not empty. It is more elegant, but eats cycles,
1802 			 * unfortunately.
1803 			 */
1804 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1805 				goto do_prequeue;
1806 
1807 			/* __ Set realtime policy in scheduler __ */
1808 		}
1809 
1810 		if (copied >= target) {
1811 			/* Do not sleep, just process backlog. */
1812 			release_sock(sk);
1813 			lock_sock(sk);
1814 		} else {
1815 			sk_wait_data(sk, &timeo, last);
1816 		}
1817 
1818 		if (user_recv) {
1819 			int chunk;
1820 
1821 			/* __ Restore normal policy in scheduler __ */
1822 
1823 			chunk = len - tp->ucopy.len;
1824 			if (chunk != 0) {
1825 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1826 				len -= chunk;
1827 				copied += chunk;
1828 			}
1829 
1830 			if (tp->rcv_nxt == tp->copied_seq &&
1831 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1832 do_prequeue:
1833 				tcp_prequeue_process(sk);
1834 
1835 				chunk = len - tp->ucopy.len;
1836 				if (chunk != 0) {
1837 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1838 					len -= chunk;
1839 					copied += chunk;
1840 				}
1841 			}
1842 		}
1843 		if ((flags & MSG_PEEK) &&
1844 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1845 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1846 					    current->comm,
1847 					    task_pid_nr(current));
1848 			peek_seq = tp->copied_seq;
1849 		}
1850 		continue;
1851 
1852 	found_ok_skb:
1853 		/* Ok so how much can we use? */
1854 		used = skb->len - offset;
1855 		if (len < used)
1856 			used = len;
1857 
1858 		/* Do we have urgent data here? */
1859 		if (tp->urg_data) {
1860 			u32 urg_offset = tp->urg_seq - *seq;
1861 			if (urg_offset < used) {
1862 				if (!urg_offset) {
1863 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1864 						++*seq;
1865 						urg_hole++;
1866 						offset++;
1867 						used--;
1868 						if (!used)
1869 							goto skip_copy;
1870 					}
1871 				} else
1872 					used = urg_offset;
1873 			}
1874 		}
1875 
1876 		if (!(flags & MSG_TRUNC)) {
1877 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1878 			if (err) {
1879 				/* Exception. Bailout! */
1880 				if (!copied)
1881 					copied = -EFAULT;
1882 				break;
1883 			}
1884 		}
1885 
1886 		*seq += used;
1887 		copied += used;
1888 		len -= used;
1889 
1890 		tcp_rcv_space_adjust(sk);
1891 
1892 skip_copy:
1893 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1894 			tp->urg_data = 0;
1895 			tcp_fast_path_check(sk);
1896 		}
1897 		if (used + offset < skb->len)
1898 			continue;
1899 
1900 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1901 			goto found_fin_ok;
1902 		if (!(flags & MSG_PEEK))
1903 			sk_eat_skb(sk, skb);
1904 		continue;
1905 
1906 	found_fin_ok:
1907 		/* Process the FIN. */
1908 		++*seq;
1909 		if (!(flags & MSG_PEEK))
1910 			sk_eat_skb(sk, skb);
1911 		break;
1912 	} while (len > 0);
1913 
1914 	if (user_recv) {
1915 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1916 			int chunk;
1917 
1918 			tp->ucopy.len = copied > 0 ? len : 0;
1919 
1920 			tcp_prequeue_process(sk);
1921 
1922 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1923 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1924 				len -= chunk;
1925 				copied += chunk;
1926 			}
1927 		}
1928 
1929 		tp->ucopy.task = NULL;
1930 		tp->ucopy.len = 0;
1931 	}
1932 
1933 	/* According to UNIX98, msg_name/msg_namelen are ignored
1934 	 * on connected socket. I was just happy when found this 8) --ANK
1935 	 */
1936 
1937 	/* Clean up data we have read: This will do ACK frames. */
1938 	tcp_cleanup_rbuf(sk, copied);
1939 
1940 	release_sock(sk);
1941 	return copied;
1942 
1943 out:
1944 	release_sock(sk);
1945 	return err;
1946 
1947 recv_urg:
1948 	err = tcp_recv_urg(sk, msg, len, flags);
1949 	goto out;
1950 
1951 recv_sndq:
1952 	err = tcp_peek_sndq(sk, msg, len);
1953 	goto out;
1954 }
1955 EXPORT_SYMBOL(tcp_recvmsg);
1956 
1957 void tcp_set_state(struct sock *sk, int state)
1958 {
1959 	int oldstate = sk->sk_state;
1960 
1961 	switch (state) {
1962 	case TCP_ESTABLISHED:
1963 		if (oldstate != TCP_ESTABLISHED)
1964 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1965 		break;
1966 
1967 	case TCP_CLOSE:
1968 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1969 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1970 
1971 		sk->sk_prot->unhash(sk);
1972 		if (inet_csk(sk)->icsk_bind_hash &&
1973 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1974 			inet_put_port(sk);
1975 		/* fall through */
1976 	default:
1977 		if (oldstate == TCP_ESTABLISHED)
1978 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1979 	}
1980 
1981 	/* Change state AFTER socket is unhashed to avoid closed
1982 	 * socket sitting in hash tables.
1983 	 */
1984 	sk_state_store(sk, state);
1985 
1986 #ifdef STATE_TRACE
1987 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1988 #endif
1989 }
1990 EXPORT_SYMBOL_GPL(tcp_set_state);
1991 
1992 /*
1993  *	State processing on a close. This implements the state shift for
1994  *	sending our FIN frame. Note that we only send a FIN for some
1995  *	states. A shutdown() may have already sent the FIN, or we may be
1996  *	closed.
1997  */
1998 
1999 static const unsigned char new_state[16] = {
2000   /* current state:        new state:      action:	*/
2001   [0 /* (Invalid) */]	= TCP_CLOSE,
2002   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2003   [TCP_SYN_SENT]	= TCP_CLOSE,
2004   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2005   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2006   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2007   [TCP_TIME_WAIT]	= TCP_CLOSE,
2008   [TCP_CLOSE]		= TCP_CLOSE,
2009   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2010   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2011   [TCP_LISTEN]		= TCP_CLOSE,
2012   [TCP_CLOSING]		= TCP_CLOSING,
2013   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2014 };
2015 
2016 static int tcp_close_state(struct sock *sk)
2017 {
2018 	int next = (int)new_state[sk->sk_state];
2019 	int ns = next & TCP_STATE_MASK;
2020 
2021 	tcp_set_state(sk, ns);
2022 
2023 	return next & TCP_ACTION_FIN;
2024 }
2025 
2026 /*
2027  *	Shutdown the sending side of a connection. Much like close except
2028  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2029  */
2030 
2031 void tcp_shutdown(struct sock *sk, int how)
2032 {
2033 	/*	We need to grab some memory, and put together a FIN,
2034 	 *	and then put it into the queue to be sent.
2035 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2036 	 */
2037 	if (!(how & SEND_SHUTDOWN))
2038 		return;
2039 
2040 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2041 	if ((1 << sk->sk_state) &
2042 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2043 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2044 		/* Clear out any half completed packets.  FIN if needed. */
2045 		if (tcp_close_state(sk))
2046 			tcp_send_fin(sk);
2047 	}
2048 }
2049 EXPORT_SYMBOL(tcp_shutdown);
2050 
2051 bool tcp_check_oom(struct sock *sk, int shift)
2052 {
2053 	bool too_many_orphans, out_of_socket_memory;
2054 
2055 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2056 	out_of_socket_memory = tcp_out_of_memory(sk);
2057 
2058 	if (too_many_orphans)
2059 		net_info_ratelimited("too many orphaned sockets\n");
2060 	if (out_of_socket_memory)
2061 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2062 	return too_many_orphans || out_of_socket_memory;
2063 }
2064 
2065 void tcp_close(struct sock *sk, long timeout)
2066 {
2067 	struct sk_buff *skb;
2068 	int data_was_unread = 0;
2069 	int state;
2070 
2071 	lock_sock(sk);
2072 	sk->sk_shutdown = SHUTDOWN_MASK;
2073 
2074 	if (sk->sk_state == TCP_LISTEN) {
2075 		tcp_set_state(sk, TCP_CLOSE);
2076 
2077 		/* Special case. */
2078 		inet_csk_listen_stop(sk);
2079 
2080 		goto adjudge_to_death;
2081 	}
2082 
2083 	/*  We need to flush the recv. buffs.  We do this only on the
2084 	 *  descriptor close, not protocol-sourced closes, because the
2085 	 *  reader process may not have drained the data yet!
2086 	 */
2087 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2088 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2089 
2090 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2091 			len--;
2092 		data_was_unread += len;
2093 		__kfree_skb(skb);
2094 	}
2095 
2096 	sk_mem_reclaim(sk);
2097 
2098 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2099 	if (sk->sk_state == TCP_CLOSE)
2100 		goto adjudge_to_death;
2101 
2102 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2103 	 * data was lost. To witness the awful effects of the old behavior of
2104 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2105 	 * GET in an FTP client, suspend the process, wait for the client to
2106 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2107 	 * Note: timeout is always zero in such a case.
2108 	 */
2109 	if (unlikely(tcp_sk(sk)->repair)) {
2110 		sk->sk_prot->disconnect(sk, 0);
2111 	} else if (data_was_unread) {
2112 		/* Unread data was tossed, zap the connection. */
2113 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2114 		tcp_set_state(sk, TCP_CLOSE);
2115 		tcp_send_active_reset(sk, sk->sk_allocation);
2116 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2117 		/* Check zero linger _after_ checking for unread data. */
2118 		sk->sk_prot->disconnect(sk, 0);
2119 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2120 	} else if (tcp_close_state(sk)) {
2121 		/* We FIN if the application ate all the data before
2122 		 * zapping the connection.
2123 		 */
2124 
2125 		/* RED-PEN. Formally speaking, we have broken TCP state
2126 		 * machine. State transitions:
2127 		 *
2128 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2129 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2130 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2131 		 *
2132 		 * are legal only when FIN has been sent (i.e. in window),
2133 		 * rather than queued out of window. Purists blame.
2134 		 *
2135 		 * F.e. "RFC state" is ESTABLISHED,
2136 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2137 		 *
2138 		 * The visible declinations are that sometimes
2139 		 * we enter time-wait state, when it is not required really
2140 		 * (harmless), do not send active resets, when they are
2141 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2142 		 * they look as CLOSING or LAST_ACK for Linux)
2143 		 * Probably, I missed some more holelets.
2144 		 * 						--ANK
2145 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2146 		 * in a single packet! (May consider it later but will
2147 		 * probably need API support or TCP_CORK SYN-ACK until
2148 		 * data is written and socket is closed.)
2149 		 */
2150 		tcp_send_fin(sk);
2151 	}
2152 
2153 	sk_stream_wait_close(sk, timeout);
2154 
2155 adjudge_to_death:
2156 	state = sk->sk_state;
2157 	sock_hold(sk);
2158 	sock_orphan(sk);
2159 
2160 	/* It is the last release_sock in its life. It will remove backlog. */
2161 	release_sock(sk);
2162 
2163 
2164 	/* Now socket is owned by kernel and we acquire BH lock
2165 	   to finish close. No need to check for user refs.
2166 	 */
2167 	local_bh_disable();
2168 	bh_lock_sock(sk);
2169 	WARN_ON(sock_owned_by_user(sk));
2170 
2171 	percpu_counter_inc(sk->sk_prot->orphan_count);
2172 
2173 	/* Have we already been destroyed by a softirq or backlog? */
2174 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2175 		goto out;
2176 
2177 	/*	This is a (useful) BSD violating of the RFC. There is a
2178 	 *	problem with TCP as specified in that the other end could
2179 	 *	keep a socket open forever with no application left this end.
2180 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2181 	 *	our end. If they send after that then tough - BUT: long enough
2182 	 *	that we won't make the old 4*rto = almost no time - whoops
2183 	 *	reset mistake.
2184 	 *
2185 	 *	Nope, it was not mistake. It is really desired behaviour
2186 	 *	f.e. on http servers, when such sockets are useless, but
2187 	 *	consume significant resources. Let's do it with special
2188 	 *	linger2	option.					--ANK
2189 	 */
2190 
2191 	if (sk->sk_state == TCP_FIN_WAIT2) {
2192 		struct tcp_sock *tp = tcp_sk(sk);
2193 		if (tp->linger2 < 0) {
2194 			tcp_set_state(sk, TCP_CLOSE);
2195 			tcp_send_active_reset(sk, GFP_ATOMIC);
2196 			__NET_INC_STATS(sock_net(sk),
2197 					LINUX_MIB_TCPABORTONLINGER);
2198 		} else {
2199 			const int tmo = tcp_fin_time(sk);
2200 
2201 			if (tmo > TCP_TIMEWAIT_LEN) {
2202 				inet_csk_reset_keepalive_timer(sk,
2203 						tmo - TCP_TIMEWAIT_LEN);
2204 			} else {
2205 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2206 				goto out;
2207 			}
2208 		}
2209 	}
2210 	if (sk->sk_state != TCP_CLOSE) {
2211 		sk_mem_reclaim(sk);
2212 		if (tcp_check_oom(sk, 0)) {
2213 			tcp_set_state(sk, TCP_CLOSE);
2214 			tcp_send_active_reset(sk, GFP_ATOMIC);
2215 			__NET_INC_STATS(sock_net(sk),
2216 					LINUX_MIB_TCPABORTONMEMORY);
2217 		}
2218 	}
2219 
2220 	if (sk->sk_state == TCP_CLOSE) {
2221 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2222 		/* We could get here with a non-NULL req if the socket is
2223 		 * aborted (e.g., closed with unread data) before 3WHS
2224 		 * finishes.
2225 		 */
2226 		if (req)
2227 			reqsk_fastopen_remove(sk, req, false);
2228 		inet_csk_destroy_sock(sk);
2229 	}
2230 	/* Otherwise, socket is reprieved until protocol close. */
2231 
2232 out:
2233 	bh_unlock_sock(sk);
2234 	local_bh_enable();
2235 	sock_put(sk);
2236 }
2237 EXPORT_SYMBOL(tcp_close);
2238 
2239 /* These states need RST on ABORT according to RFC793 */
2240 
2241 static inline bool tcp_need_reset(int state)
2242 {
2243 	return (1 << state) &
2244 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2245 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2246 }
2247 
2248 int tcp_disconnect(struct sock *sk, int flags)
2249 {
2250 	struct inet_sock *inet = inet_sk(sk);
2251 	struct inet_connection_sock *icsk = inet_csk(sk);
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 	int err = 0;
2254 	int old_state = sk->sk_state;
2255 
2256 	if (old_state != TCP_CLOSE)
2257 		tcp_set_state(sk, TCP_CLOSE);
2258 
2259 	/* ABORT function of RFC793 */
2260 	if (old_state == TCP_LISTEN) {
2261 		inet_csk_listen_stop(sk);
2262 	} else if (unlikely(tp->repair)) {
2263 		sk->sk_err = ECONNABORTED;
2264 	} else if (tcp_need_reset(old_state) ||
2265 		   (tp->snd_nxt != tp->write_seq &&
2266 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2267 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2268 		 * states
2269 		 */
2270 		tcp_send_active_reset(sk, gfp_any());
2271 		sk->sk_err = ECONNRESET;
2272 	} else if (old_state == TCP_SYN_SENT)
2273 		sk->sk_err = ECONNRESET;
2274 
2275 	tcp_clear_xmit_timers(sk);
2276 	__skb_queue_purge(&sk->sk_receive_queue);
2277 	tcp_write_queue_purge(sk);
2278 	skb_rbtree_purge(&tp->out_of_order_queue);
2279 
2280 	inet->inet_dport = 0;
2281 
2282 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2283 		inet_reset_saddr(sk);
2284 
2285 	sk->sk_shutdown = 0;
2286 	sock_reset_flag(sk, SOCK_DONE);
2287 	tp->srtt_us = 0;
2288 	tp->write_seq += tp->max_window + 2;
2289 	if (tp->write_seq == 0)
2290 		tp->write_seq = 1;
2291 	icsk->icsk_backoff = 0;
2292 	tp->snd_cwnd = 2;
2293 	icsk->icsk_probes_out = 0;
2294 	tp->packets_out = 0;
2295 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2296 	tp->snd_cwnd_cnt = 0;
2297 	tp->window_clamp = 0;
2298 	tcp_set_ca_state(sk, TCP_CA_Open);
2299 	tcp_clear_retrans(tp);
2300 	inet_csk_delack_init(sk);
2301 	tcp_init_send_head(sk);
2302 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2303 	__sk_dst_reset(sk);
2304 
2305 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2306 
2307 	sk->sk_error_report(sk);
2308 	return err;
2309 }
2310 EXPORT_SYMBOL(tcp_disconnect);
2311 
2312 static inline bool tcp_can_repair_sock(const struct sock *sk)
2313 {
2314 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2315 		(sk->sk_state != TCP_LISTEN);
2316 }
2317 
2318 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2319 {
2320 	struct tcp_repair_window opt;
2321 
2322 	if (!tp->repair)
2323 		return -EPERM;
2324 
2325 	if (len != sizeof(opt))
2326 		return -EINVAL;
2327 
2328 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2329 		return -EFAULT;
2330 
2331 	if (opt.max_window < opt.snd_wnd)
2332 		return -EINVAL;
2333 
2334 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2335 		return -EINVAL;
2336 
2337 	if (after(opt.rcv_wup, tp->rcv_nxt))
2338 		return -EINVAL;
2339 
2340 	tp->snd_wl1	= opt.snd_wl1;
2341 	tp->snd_wnd	= opt.snd_wnd;
2342 	tp->max_window	= opt.max_window;
2343 
2344 	tp->rcv_wnd	= opt.rcv_wnd;
2345 	tp->rcv_wup	= opt.rcv_wup;
2346 
2347 	return 0;
2348 }
2349 
2350 static int tcp_repair_options_est(struct tcp_sock *tp,
2351 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2352 {
2353 	struct tcp_repair_opt opt;
2354 
2355 	while (len >= sizeof(opt)) {
2356 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2357 			return -EFAULT;
2358 
2359 		optbuf++;
2360 		len -= sizeof(opt);
2361 
2362 		switch (opt.opt_code) {
2363 		case TCPOPT_MSS:
2364 			tp->rx_opt.mss_clamp = opt.opt_val;
2365 			break;
2366 		case TCPOPT_WINDOW:
2367 			{
2368 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2369 				u16 rcv_wscale = opt.opt_val >> 16;
2370 
2371 				if (snd_wscale > 14 || rcv_wscale > 14)
2372 					return -EFBIG;
2373 
2374 				tp->rx_opt.snd_wscale = snd_wscale;
2375 				tp->rx_opt.rcv_wscale = rcv_wscale;
2376 				tp->rx_opt.wscale_ok = 1;
2377 			}
2378 			break;
2379 		case TCPOPT_SACK_PERM:
2380 			if (opt.opt_val != 0)
2381 				return -EINVAL;
2382 
2383 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2384 			if (sysctl_tcp_fack)
2385 				tcp_enable_fack(tp);
2386 			break;
2387 		case TCPOPT_TIMESTAMP:
2388 			if (opt.opt_val != 0)
2389 				return -EINVAL;
2390 
2391 			tp->rx_opt.tstamp_ok = 1;
2392 			break;
2393 		}
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /*
2400  *	Socket option code for TCP.
2401  */
2402 static int do_tcp_setsockopt(struct sock *sk, int level,
2403 		int optname, char __user *optval, unsigned int optlen)
2404 {
2405 	struct tcp_sock *tp = tcp_sk(sk);
2406 	struct inet_connection_sock *icsk = inet_csk(sk);
2407 	struct net *net = sock_net(sk);
2408 	int val;
2409 	int err = 0;
2410 
2411 	/* These are data/string values, all the others are ints */
2412 	switch (optname) {
2413 	case TCP_CONGESTION: {
2414 		char name[TCP_CA_NAME_MAX];
2415 
2416 		if (optlen < 1)
2417 			return -EINVAL;
2418 
2419 		val = strncpy_from_user(name, optval,
2420 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2421 		if (val < 0)
2422 			return -EFAULT;
2423 		name[val] = 0;
2424 
2425 		lock_sock(sk);
2426 		err = tcp_set_congestion_control(sk, name);
2427 		release_sock(sk);
2428 		return err;
2429 	}
2430 	default:
2431 		/* fallthru */
2432 		break;
2433 	}
2434 
2435 	if (optlen < sizeof(int))
2436 		return -EINVAL;
2437 
2438 	if (get_user(val, (int __user *)optval))
2439 		return -EFAULT;
2440 
2441 	lock_sock(sk);
2442 
2443 	switch (optname) {
2444 	case TCP_MAXSEG:
2445 		/* Values greater than interface MTU won't take effect. However
2446 		 * at the point when this call is done we typically don't yet
2447 		 * know which interface is going to be used */
2448 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2449 			err = -EINVAL;
2450 			break;
2451 		}
2452 		tp->rx_opt.user_mss = val;
2453 		break;
2454 
2455 	case TCP_NODELAY:
2456 		if (val) {
2457 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2458 			 * this option on corked socket is remembered, but
2459 			 * it is not activated until cork is cleared.
2460 			 *
2461 			 * However, when TCP_NODELAY is set we make
2462 			 * an explicit push, which overrides even TCP_CORK
2463 			 * for currently queued segments.
2464 			 */
2465 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2466 			tcp_push_pending_frames(sk);
2467 		} else {
2468 			tp->nonagle &= ~TCP_NAGLE_OFF;
2469 		}
2470 		break;
2471 
2472 	case TCP_THIN_LINEAR_TIMEOUTS:
2473 		if (val < 0 || val > 1)
2474 			err = -EINVAL;
2475 		else
2476 			tp->thin_lto = val;
2477 		break;
2478 
2479 	case TCP_THIN_DUPACK:
2480 		if (val < 0 || val > 1)
2481 			err = -EINVAL;
2482 		else {
2483 			tp->thin_dupack = val;
2484 			if (tp->thin_dupack)
2485 				tcp_disable_early_retrans(tp);
2486 		}
2487 		break;
2488 
2489 	case TCP_REPAIR:
2490 		if (!tcp_can_repair_sock(sk))
2491 			err = -EPERM;
2492 		else if (val == 1) {
2493 			tp->repair = 1;
2494 			sk->sk_reuse = SK_FORCE_REUSE;
2495 			tp->repair_queue = TCP_NO_QUEUE;
2496 		} else if (val == 0) {
2497 			tp->repair = 0;
2498 			sk->sk_reuse = SK_NO_REUSE;
2499 			tcp_send_window_probe(sk);
2500 		} else
2501 			err = -EINVAL;
2502 
2503 		break;
2504 
2505 	case TCP_REPAIR_QUEUE:
2506 		if (!tp->repair)
2507 			err = -EPERM;
2508 		else if (val < TCP_QUEUES_NR)
2509 			tp->repair_queue = val;
2510 		else
2511 			err = -EINVAL;
2512 		break;
2513 
2514 	case TCP_QUEUE_SEQ:
2515 		if (sk->sk_state != TCP_CLOSE)
2516 			err = -EPERM;
2517 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2518 			tp->write_seq = val;
2519 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2520 			tp->rcv_nxt = val;
2521 		else
2522 			err = -EINVAL;
2523 		break;
2524 
2525 	case TCP_REPAIR_OPTIONS:
2526 		if (!tp->repair)
2527 			err = -EINVAL;
2528 		else if (sk->sk_state == TCP_ESTABLISHED)
2529 			err = tcp_repair_options_est(tp,
2530 					(struct tcp_repair_opt __user *)optval,
2531 					optlen);
2532 		else
2533 			err = -EPERM;
2534 		break;
2535 
2536 	case TCP_CORK:
2537 		/* When set indicates to always queue non-full frames.
2538 		 * Later the user clears this option and we transmit
2539 		 * any pending partial frames in the queue.  This is
2540 		 * meant to be used alongside sendfile() to get properly
2541 		 * filled frames when the user (for example) must write
2542 		 * out headers with a write() call first and then use
2543 		 * sendfile to send out the data parts.
2544 		 *
2545 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2546 		 * stronger than TCP_NODELAY.
2547 		 */
2548 		if (val) {
2549 			tp->nonagle |= TCP_NAGLE_CORK;
2550 		} else {
2551 			tp->nonagle &= ~TCP_NAGLE_CORK;
2552 			if (tp->nonagle&TCP_NAGLE_OFF)
2553 				tp->nonagle |= TCP_NAGLE_PUSH;
2554 			tcp_push_pending_frames(sk);
2555 		}
2556 		break;
2557 
2558 	case TCP_KEEPIDLE:
2559 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2560 			err = -EINVAL;
2561 		else {
2562 			tp->keepalive_time = val * HZ;
2563 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2564 			    !((1 << sk->sk_state) &
2565 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2566 				u32 elapsed = keepalive_time_elapsed(tp);
2567 				if (tp->keepalive_time > elapsed)
2568 					elapsed = tp->keepalive_time - elapsed;
2569 				else
2570 					elapsed = 0;
2571 				inet_csk_reset_keepalive_timer(sk, elapsed);
2572 			}
2573 		}
2574 		break;
2575 	case TCP_KEEPINTVL:
2576 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2577 			err = -EINVAL;
2578 		else
2579 			tp->keepalive_intvl = val * HZ;
2580 		break;
2581 	case TCP_KEEPCNT:
2582 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2583 			err = -EINVAL;
2584 		else
2585 			tp->keepalive_probes = val;
2586 		break;
2587 	case TCP_SYNCNT:
2588 		if (val < 1 || val > MAX_TCP_SYNCNT)
2589 			err = -EINVAL;
2590 		else
2591 			icsk->icsk_syn_retries = val;
2592 		break;
2593 
2594 	case TCP_SAVE_SYN:
2595 		if (val < 0 || val > 1)
2596 			err = -EINVAL;
2597 		else
2598 			tp->save_syn = val;
2599 		break;
2600 
2601 	case TCP_LINGER2:
2602 		if (val < 0)
2603 			tp->linger2 = -1;
2604 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2605 			tp->linger2 = 0;
2606 		else
2607 			tp->linger2 = val * HZ;
2608 		break;
2609 
2610 	case TCP_DEFER_ACCEPT:
2611 		/* Translate value in seconds to number of retransmits */
2612 		icsk->icsk_accept_queue.rskq_defer_accept =
2613 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2614 					TCP_RTO_MAX / HZ);
2615 		break;
2616 
2617 	case TCP_WINDOW_CLAMP:
2618 		if (!val) {
2619 			if (sk->sk_state != TCP_CLOSE) {
2620 				err = -EINVAL;
2621 				break;
2622 			}
2623 			tp->window_clamp = 0;
2624 		} else
2625 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2626 						SOCK_MIN_RCVBUF / 2 : val;
2627 		break;
2628 
2629 	case TCP_QUICKACK:
2630 		if (!val) {
2631 			icsk->icsk_ack.pingpong = 1;
2632 		} else {
2633 			icsk->icsk_ack.pingpong = 0;
2634 			if ((1 << sk->sk_state) &
2635 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2636 			    inet_csk_ack_scheduled(sk)) {
2637 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2638 				tcp_cleanup_rbuf(sk, 1);
2639 				if (!(val & 1))
2640 					icsk->icsk_ack.pingpong = 1;
2641 			}
2642 		}
2643 		break;
2644 
2645 #ifdef CONFIG_TCP_MD5SIG
2646 	case TCP_MD5SIG:
2647 		/* Read the IP->Key mappings from userspace */
2648 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2649 		break;
2650 #endif
2651 	case TCP_USER_TIMEOUT:
2652 		/* Cap the max time in ms TCP will retry or probe the window
2653 		 * before giving up and aborting (ETIMEDOUT) a connection.
2654 		 */
2655 		if (val < 0)
2656 			err = -EINVAL;
2657 		else
2658 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2659 		break;
2660 
2661 	case TCP_FASTOPEN:
2662 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2663 		    TCPF_LISTEN))) {
2664 			tcp_fastopen_init_key_once(true);
2665 
2666 			fastopen_queue_tune(sk, val);
2667 		} else {
2668 			err = -EINVAL;
2669 		}
2670 		break;
2671 	case TCP_TIMESTAMP:
2672 		if (!tp->repair)
2673 			err = -EPERM;
2674 		else
2675 			tp->tsoffset = val - tcp_time_stamp;
2676 		break;
2677 	case TCP_REPAIR_WINDOW:
2678 		err = tcp_repair_set_window(tp, optval, optlen);
2679 		break;
2680 	case TCP_NOTSENT_LOWAT:
2681 		tp->notsent_lowat = val;
2682 		sk->sk_write_space(sk);
2683 		break;
2684 	default:
2685 		err = -ENOPROTOOPT;
2686 		break;
2687 	}
2688 
2689 	release_sock(sk);
2690 	return err;
2691 }
2692 
2693 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2694 		   unsigned int optlen)
2695 {
2696 	const struct inet_connection_sock *icsk = inet_csk(sk);
2697 
2698 	if (level != SOL_TCP)
2699 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2700 						     optval, optlen);
2701 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2702 }
2703 EXPORT_SYMBOL(tcp_setsockopt);
2704 
2705 #ifdef CONFIG_COMPAT
2706 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2707 			  char __user *optval, unsigned int optlen)
2708 {
2709 	if (level != SOL_TCP)
2710 		return inet_csk_compat_setsockopt(sk, level, optname,
2711 						  optval, optlen);
2712 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2713 }
2714 EXPORT_SYMBOL(compat_tcp_setsockopt);
2715 #endif
2716 
2717 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2718 				      struct tcp_info *info)
2719 {
2720 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2721 	enum tcp_chrono i;
2722 
2723 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2724 		stats[i] = tp->chrono_stat[i - 1];
2725 		if (i == tp->chrono_type)
2726 			stats[i] += tcp_time_stamp - tp->chrono_start;
2727 		stats[i] *= USEC_PER_SEC / HZ;
2728 		total += stats[i];
2729 	}
2730 
2731 	info->tcpi_busy_time = total;
2732 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2733 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2734 }
2735 
2736 /* Return information about state of tcp endpoint in API format. */
2737 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2738 {
2739 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2740 	const struct inet_connection_sock *icsk = inet_csk(sk);
2741 	u32 now = tcp_time_stamp, intv;
2742 	u64 rate64;
2743 	bool slow;
2744 	u32 rate;
2745 
2746 	memset(info, 0, sizeof(*info));
2747 	if (sk->sk_type != SOCK_STREAM)
2748 		return;
2749 
2750 	info->tcpi_state = sk_state_load(sk);
2751 
2752 	/* Report meaningful fields for all TCP states, including listeners */
2753 	rate = READ_ONCE(sk->sk_pacing_rate);
2754 	rate64 = rate != ~0U ? rate : ~0ULL;
2755 	info->tcpi_pacing_rate = rate64;
2756 
2757 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2758 	rate64 = rate != ~0U ? rate : ~0ULL;
2759 	info->tcpi_max_pacing_rate = rate64;
2760 
2761 	info->tcpi_reordering = tp->reordering;
2762 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2763 
2764 	if (info->tcpi_state == TCP_LISTEN) {
2765 		/* listeners aliased fields :
2766 		 * tcpi_unacked -> Number of children ready for accept()
2767 		 * tcpi_sacked  -> max backlog
2768 		 */
2769 		info->tcpi_unacked = sk->sk_ack_backlog;
2770 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2771 		return;
2772 	}
2773 	info->tcpi_ca_state = icsk->icsk_ca_state;
2774 	info->tcpi_retransmits = icsk->icsk_retransmits;
2775 	info->tcpi_probes = icsk->icsk_probes_out;
2776 	info->tcpi_backoff = icsk->icsk_backoff;
2777 
2778 	if (tp->rx_opt.tstamp_ok)
2779 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2780 	if (tcp_is_sack(tp))
2781 		info->tcpi_options |= TCPI_OPT_SACK;
2782 	if (tp->rx_opt.wscale_ok) {
2783 		info->tcpi_options |= TCPI_OPT_WSCALE;
2784 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2785 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2786 	}
2787 
2788 	if (tp->ecn_flags & TCP_ECN_OK)
2789 		info->tcpi_options |= TCPI_OPT_ECN;
2790 	if (tp->ecn_flags & TCP_ECN_SEEN)
2791 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2792 	if (tp->syn_data_acked)
2793 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2794 
2795 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2796 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2797 	info->tcpi_snd_mss = tp->mss_cache;
2798 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2799 
2800 	info->tcpi_unacked = tp->packets_out;
2801 	info->tcpi_sacked = tp->sacked_out;
2802 
2803 	info->tcpi_lost = tp->lost_out;
2804 	info->tcpi_retrans = tp->retrans_out;
2805 	info->tcpi_fackets = tp->fackets_out;
2806 
2807 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2808 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2809 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2810 
2811 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2812 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2813 	info->tcpi_rtt = tp->srtt_us >> 3;
2814 	info->tcpi_rttvar = tp->mdev_us >> 2;
2815 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2816 	info->tcpi_advmss = tp->advmss;
2817 
2818 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2819 	info->tcpi_rcv_space = tp->rcvq_space.space;
2820 
2821 	info->tcpi_total_retrans = tp->total_retrans;
2822 
2823 	slow = lock_sock_fast(sk);
2824 
2825 	info->tcpi_bytes_acked = tp->bytes_acked;
2826 	info->tcpi_bytes_received = tp->bytes_received;
2827 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2828 	tcp_get_info_chrono_stats(tp, info);
2829 
2830 	unlock_sock_fast(sk, slow);
2831 
2832 	info->tcpi_segs_out = tp->segs_out;
2833 	info->tcpi_segs_in = tp->segs_in;
2834 
2835 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2836 	info->tcpi_data_segs_in = tp->data_segs_in;
2837 	info->tcpi_data_segs_out = tp->data_segs_out;
2838 
2839 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2840 	rate = READ_ONCE(tp->rate_delivered);
2841 	intv = READ_ONCE(tp->rate_interval_us);
2842 	if (rate && intv) {
2843 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2844 		do_div(rate64, intv);
2845 		info->tcpi_delivery_rate = rate64;
2846 	}
2847 }
2848 EXPORT_SYMBOL_GPL(tcp_get_info);
2849 
2850 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2851 {
2852 	const struct tcp_sock *tp = tcp_sk(sk);
2853 	struct sk_buff *stats;
2854 	struct tcp_info info;
2855 
2856 	stats = alloc_skb(3 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2857 	if (!stats)
2858 		return NULL;
2859 
2860 	tcp_get_info_chrono_stats(tp, &info);
2861 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2862 			  info.tcpi_busy_time, TCP_NLA_PAD);
2863 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2864 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
2865 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2866 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2867 	return stats;
2868 }
2869 
2870 static int do_tcp_getsockopt(struct sock *sk, int level,
2871 		int optname, char __user *optval, int __user *optlen)
2872 {
2873 	struct inet_connection_sock *icsk = inet_csk(sk);
2874 	struct tcp_sock *tp = tcp_sk(sk);
2875 	struct net *net = sock_net(sk);
2876 	int val, len;
2877 
2878 	if (get_user(len, optlen))
2879 		return -EFAULT;
2880 
2881 	len = min_t(unsigned int, len, sizeof(int));
2882 
2883 	if (len < 0)
2884 		return -EINVAL;
2885 
2886 	switch (optname) {
2887 	case TCP_MAXSEG:
2888 		val = tp->mss_cache;
2889 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2890 			val = tp->rx_opt.user_mss;
2891 		if (tp->repair)
2892 			val = tp->rx_opt.mss_clamp;
2893 		break;
2894 	case TCP_NODELAY:
2895 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2896 		break;
2897 	case TCP_CORK:
2898 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2899 		break;
2900 	case TCP_KEEPIDLE:
2901 		val = keepalive_time_when(tp) / HZ;
2902 		break;
2903 	case TCP_KEEPINTVL:
2904 		val = keepalive_intvl_when(tp) / HZ;
2905 		break;
2906 	case TCP_KEEPCNT:
2907 		val = keepalive_probes(tp);
2908 		break;
2909 	case TCP_SYNCNT:
2910 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2911 		break;
2912 	case TCP_LINGER2:
2913 		val = tp->linger2;
2914 		if (val >= 0)
2915 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2916 		break;
2917 	case TCP_DEFER_ACCEPT:
2918 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2919 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2920 		break;
2921 	case TCP_WINDOW_CLAMP:
2922 		val = tp->window_clamp;
2923 		break;
2924 	case TCP_INFO: {
2925 		struct tcp_info info;
2926 
2927 		if (get_user(len, optlen))
2928 			return -EFAULT;
2929 
2930 		tcp_get_info(sk, &info);
2931 
2932 		len = min_t(unsigned int, len, sizeof(info));
2933 		if (put_user(len, optlen))
2934 			return -EFAULT;
2935 		if (copy_to_user(optval, &info, len))
2936 			return -EFAULT;
2937 		return 0;
2938 	}
2939 	case TCP_CC_INFO: {
2940 		const struct tcp_congestion_ops *ca_ops;
2941 		union tcp_cc_info info;
2942 		size_t sz = 0;
2943 		int attr;
2944 
2945 		if (get_user(len, optlen))
2946 			return -EFAULT;
2947 
2948 		ca_ops = icsk->icsk_ca_ops;
2949 		if (ca_ops && ca_ops->get_info)
2950 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2951 
2952 		len = min_t(unsigned int, len, sz);
2953 		if (put_user(len, optlen))
2954 			return -EFAULT;
2955 		if (copy_to_user(optval, &info, len))
2956 			return -EFAULT;
2957 		return 0;
2958 	}
2959 	case TCP_QUICKACK:
2960 		val = !icsk->icsk_ack.pingpong;
2961 		break;
2962 
2963 	case TCP_CONGESTION:
2964 		if (get_user(len, optlen))
2965 			return -EFAULT;
2966 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2967 		if (put_user(len, optlen))
2968 			return -EFAULT;
2969 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2970 			return -EFAULT;
2971 		return 0;
2972 
2973 	case TCP_THIN_LINEAR_TIMEOUTS:
2974 		val = tp->thin_lto;
2975 		break;
2976 	case TCP_THIN_DUPACK:
2977 		val = tp->thin_dupack;
2978 		break;
2979 
2980 	case TCP_REPAIR:
2981 		val = tp->repair;
2982 		break;
2983 
2984 	case TCP_REPAIR_QUEUE:
2985 		if (tp->repair)
2986 			val = tp->repair_queue;
2987 		else
2988 			return -EINVAL;
2989 		break;
2990 
2991 	case TCP_REPAIR_WINDOW: {
2992 		struct tcp_repair_window opt;
2993 
2994 		if (get_user(len, optlen))
2995 			return -EFAULT;
2996 
2997 		if (len != sizeof(opt))
2998 			return -EINVAL;
2999 
3000 		if (!tp->repair)
3001 			return -EPERM;
3002 
3003 		opt.snd_wl1	= tp->snd_wl1;
3004 		opt.snd_wnd	= tp->snd_wnd;
3005 		opt.max_window	= tp->max_window;
3006 		opt.rcv_wnd	= tp->rcv_wnd;
3007 		opt.rcv_wup	= tp->rcv_wup;
3008 
3009 		if (copy_to_user(optval, &opt, len))
3010 			return -EFAULT;
3011 		return 0;
3012 	}
3013 	case TCP_QUEUE_SEQ:
3014 		if (tp->repair_queue == TCP_SEND_QUEUE)
3015 			val = tp->write_seq;
3016 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3017 			val = tp->rcv_nxt;
3018 		else
3019 			return -EINVAL;
3020 		break;
3021 
3022 	case TCP_USER_TIMEOUT:
3023 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3024 		break;
3025 
3026 	case TCP_FASTOPEN:
3027 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3028 		break;
3029 
3030 	case TCP_TIMESTAMP:
3031 		val = tcp_time_stamp + tp->tsoffset;
3032 		break;
3033 	case TCP_NOTSENT_LOWAT:
3034 		val = tp->notsent_lowat;
3035 		break;
3036 	case TCP_SAVE_SYN:
3037 		val = tp->save_syn;
3038 		break;
3039 	case TCP_SAVED_SYN: {
3040 		if (get_user(len, optlen))
3041 			return -EFAULT;
3042 
3043 		lock_sock(sk);
3044 		if (tp->saved_syn) {
3045 			if (len < tp->saved_syn[0]) {
3046 				if (put_user(tp->saved_syn[0], optlen)) {
3047 					release_sock(sk);
3048 					return -EFAULT;
3049 				}
3050 				release_sock(sk);
3051 				return -EINVAL;
3052 			}
3053 			len = tp->saved_syn[0];
3054 			if (put_user(len, optlen)) {
3055 				release_sock(sk);
3056 				return -EFAULT;
3057 			}
3058 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3059 				release_sock(sk);
3060 				return -EFAULT;
3061 			}
3062 			tcp_saved_syn_free(tp);
3063 			release_sock(sk);
3064 		} else {
3065 			release_sock(sk);
3066 			len = 0;
3067 			if (put_user(len, optlen))
3068 				return -EFAULT;
3069 		}
3070 		return 0;
3071 	}
3072 	default:
3073 		return -ENOPROTOOPT;
3074 	}
3075 
3076 	if (put_user(len, optlen))
3077 		return -EFAULT;
3078 	if (copy_to_user(optval, &val, len))
3079 		return -EFAULT;
3080 	return 0;
3081 }
3082 
3083 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3084 		   int __user *optlen)
3085 {
3086 	struct inet_connection_sock *icsk = inet_csk(sk);
3087 
3088 	if (level != SOL_TCP)
3089 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3090 						     optval, optlen);
3091 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3092 }
3093 EXPORT_SYMBOL(tcp_getsockopt);
3094 
3095 #ifdef CONFIG_COMPAT
3096 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3097 			  char __user *optval, int __user *optlen)
3098 {
3099 	if (level != SOL_TCP)
3100 		return inet_csk_compat_getsockopt(sk, level, optname,
3101 						  optval, optlen);
3102 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3103 }
3104 EXPORT_SYMBOL(compat_tcp_getsockopt);
3105 #endif
3106 
3107 #ifdef CONFIG_TCP_MD5SIG
3108 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3109 static DEFINE_MUTEX(tcp_md5sig_mutex);
3110 static bool tcp_md5sig_pool_populated = false;
3111 
3112 static void __tcp_alloc_md5sig_pool(void)
3113 {
3114 	struct crypto_ahash *hash;
3115 	int cpu;
3116 
3117 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3118 	if (IS_ERR(hash))
3119 		return;
3120 
3121 	for_each_possible_cpu(cpu) {
3122 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3123 		struct ahash_request *req;
3124 
3125 		if (!scratch) {
3126 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3127 					       sizeof(struct tcphdr),
3128 					       GFP_KERNEL,
3129 					       cpu_to_node(cpu));
3130 			if (!scratch)
3131 				return;
3132 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3133 		}
3134 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3135 			continue;
3136 
3137 		req = ahash_request_alloc(hash, GFP_KERNEL);
3138 		if (!req)
3139 			return;
3140 
3141 		ahash_request_set_callback(req, 0, NULL, NULL);
3142 
3143 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3144 	}
3145 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3146 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3147 	 */
3148 	smp_wmb();
3149 	tcp_md5sig_pool_populated = true;
3150 }
3151 
3152 bool tcp_alloc_md5sig_pool(void)
3153 {
3154 	if (unlikely(!tcp_md5sig_pool_populated)) {
3155 		mutex_lock(&tcp_md5sig_mutex);
3156 
3157 		if (!tcp_md5sig_pool_populated)
3158 			__tcp_alloc_md5sig_pool();
3159 
3160 		mutex_unlock(&tcp_md5sig_mutex);
3161 	}
3162 	return tcp_md5sig_pool_populated;
3163 }
3164 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3165 
3166 
3167 /**
3168  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3169  *
3170  *	We use percpu structure, so if we succeed, we exit with preemption
3171  *	and BH disabled, to make sure another thread or softirq handling
3172  *	wont try to get same context.
3173  */
3174 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3175 {
3176 	local_bh_disable();
3177 
3178 	if (tcp_md5sig_pool_populated) {
3179 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3180 		smp_rmb();
3181 		return this_cpu_ptr(&tcp_md5sig_pool);
3182 	}
3183 	local_bh_enable();
3184 	return NULL;
3185 }
3186 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3187 
3188 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3189 			  const struct sk_buff *skb, unsigned int header_len)
3190 {
3191 	struct scatterlist sg;
3192 	const struct tcphdr *tp = tcp_hdr(skb);
3193 	struct ahash_request *req = hp->md5_req;
3194 	unsigned int i;
3195 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3196 					   skb_headlen(skb) - header_len : 0;
3197 	const struct skb_shared_info *shi = skb_shinfo(skb);
3198 	struct sk_buff *frag_iter;
3199 
3200 	sg_init_table(&sg, 1);
3201 
3202 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3203 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3204 	if (crypto_ahash_update(req))
3205 		return 1;
3206 
3207 	for (i = 0; i < shi->nr_frags; ++i) {
3208 		const struct skb_frag_struct *f = &shi->frags[i];
3209 		unsigned int offset = f->page_offset;
3210 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3211 
3212 		sg_set_page(&sg, page, skb_frag_size(f),
3213 			    offset_in_page(offset));
3214 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3215 		if (crypto_ahash_update(req))
3216 			return 1;
3217 	}
3218 
3219 	skb_walk_frags(skb, frag_iter)
3220 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3221 			return 1;
3222 
3223 	return 0;
3224 }
3225 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3226 
3227 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3228 {
3229 	struct scatterlist sg;
3230 
3231 	sg_init_one(&sg, key->key, key->keylen);
3232 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3233 	return crypto_ahash_update(hp->md5_req);
3234 }
3235 EXPORT_SYMBOL(tcp_md5_hash_key);
3236 
3237 #endif
3238 
3239 void tcp_done(struct sock *sk)
3240 {
3241 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3242 
3243 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3244 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3245 
3246 	tcp_set_state(sk, TCP_CLOSE);
3247 	tcp_clear_xmit_timers(sk);
3248 	if (req)
3249 		reqsk_fastopen_remove(sk, req, false);
3250 
3251 	sk->sk_shutdown = SHUTDOWN_MASK;
3252 
3253 	if (!sock_flag(sk, SOCK_DEAD))
3254 		sk->sk_state_change(sk);
3255 	else
3256 		inet_csk_destroy_sock(sk);
3257 }
3258 EXPORT_SYMBOL_GPL(tcp_done);
3259 
3260 int tcp_abort(struct sock *sk, int err)
3261 {
3262 	if (!sk_fullsock(sk)) {
3263 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3264 			struct request_sock *req = inet_reqsk(sk);
3265 
3266 			local_bh_disable();
3267 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3268 							  req);
3269 			local_bh_enable();
3270 			return 0;
3271 		}
3272 		return -EOPNOTSUPP;
3273 	}
3274 
3275 	/* Don't race with userspace socket closes such as tcp_close. */
3276 	lock_sock(sk);
3277 
3278 	if (sk->sk_state == TCP_LISTEN) {
3279 		tcp_set_state(sk, TCP_CLOSE);
3280 		inet_csk_listen_stop(sk);
3281 	}
3282 
3283 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3284 	local_bh_disable();
3285 	bh_lock_sock(sk);
3286 
3287 	if (!sock_flag(sk, SOCK_DEAD)) {
3288 		sk->sk_err = err;
3289 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3290 		smp_wmb();
3291 		sk->sk_error_report(sk);
3292 		if (tcp_need_reset(sk->sk_state))
3293 			tcp_send_active_reset(sk, GFP_ATOMIC);
3294 		tcp_done(sk);
3295 	}
3296 
3297 	bh_unlock_sock(sk);
3298 	local_bh_enable();
3299 	release_sock(sk);
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(tcp_abort);
3303 
3304 extern struct tcp_congestion_ops tcp_reno;
3305 
3306 static __initdata unsigned long thash_entries;
3307 static int __init set_thash_entries(char *str)
3308 {
3309 	ssize_t ret;
3310 
3311 	if (!str)
3312 		return 0;
3313 
3314 	ret = kstrtoul(str, 0, &thash_entries);
3315 	if (ret)
3316 		return 0;
3317 
3318 	return 1;
3319 }
3320 __setup("thash_entries=", set_thash_entries);
3321 
3322 static void __init tcp_init_mem(void)
3323 {
3324 	unsigned long limit = nr_free_buffer_pages() / 16;
3325 
3326 	limit = max(limit, 128UL);
3327 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3328 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3329 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3330 }
3331 
3332 void __init tcp_init(void)
3333 {
3334 	int max_rshare, max_wshare, cnt;
3335 	unsigned long limit;
3336 	unsigned int i;
3337 
3338 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3339 		     FIELD_SIZEOF(struct sk_buff, cb));
3340 
3341 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3342 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3343 	tcp_hashinfo.bind_bucket_cachep =
3344 		kmem_cache_create("tcp_bind_bucket",
3345 				  sizeof(struct inet_bind_bucket), 0,
3346 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3347 
3348 	/* Size and allocate the main established and bind bucket
3349 	 * hash tables.
3350 	 *
3351 	 * The methodology is similar to that of the buffer cache.
3352 	 */
3353 	tcp_hashinfo.ehash =
3354 		alloc_large_system_hash("TCP established",
3355 					sizeof(struct inet_ehash_bucket),
3356 					thash_entries,
3357 					17, /* one slot per 128 KB of memory */
3358 					0,
3359 					NULL,
3360 					&tcp_hashinfo.ehash_mask,
3361 					0,
3362 					thash_entries ? 0 : 512 * 1024);
3363 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3364 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3365 
3366 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3367 		panic("TCP: failed to alloc ehash_locks");
3368 	tcp_hashinfo.bhash =
3369 		alloc_large_system_hash("TCP bind",
3370 					sizeof(struct inet_bind_hashbucket),
3371 					tcp_hashinfo.ehash_mask + 1,
3372 					17, /* one slot per 128 KB of memory */
3373 					0,
3374 					&tcp_hashinfo.bhash_size,
3375 					NULL,
3376 					0,
3377 					64 * 1024);
3378 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3379 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3380 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3381 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3382 	}
3383 
3384 
3385 	cnt = tcp_hashinfo.ehash_mask + 1;
3386 
3387 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3388 	sysctl_tcp_max_orphans = cnt / 2;
3389 	sysctl_max_syn_backlog = max(128, cnt / 256);
3390 
3391 	tcp_init_mem();
3392 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3393 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3394 	max_wshare = min(4UL*1024*1024, limit);
3395 	max_rshare = min(6UL*1024*1024, limit);
3396 
3397 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3398 	sysctl_tcp_wmem[1] = 16*1024;
3399 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3400 
3401 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3402 	sysctl_tcp_rmem[1] = 87380;
3403 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3404 
3405 	pr_info("Hash tables configured (established %u bind %u)\n",
3406 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3407 
3408 	tcp_metrics_init();
3409 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3410 	tcp_tasklet_init();
3411 }
3412