1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_min_tso_segs __read_mostly = 2; 285 286 int sysctl_tcp_autocorking __read_mostly = 1; 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 int sysctl_tcp_wmem[3] __read_mostly; 293 int sysctl_tcp_rmem[3] __read_mostly; 294 295 EXPORT_SYMBOL(sysctl_tcp_mem); 296 EXPORT_SYMBOL(sysctl_tcp_rmem); 297 EXPORT_SYMBOL(sysctl_tcp_wmem); 298 299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 300 EXPORT_SYMBOL(tcp_memory_allocated); 301 302 /* 303 * Current number of TCP sockets. 304 */ 305 struct percpu_counter tcp_sockets_allocated; 306 EXPORT_SYMBOL(tcp_sockets_allocated); 307 308 /* 309 * TCP splice context 310 */ 311 struct tcp_splice_state { 312 struct pipe_inode_info *pipe; 313 size_t len; 314 unsigned int flags; 315 }; 316 317 /* 318 * Pressure flag: try to collapse. 319 * Technical note: it is used by multiple contexts non atomically. 320 * All the __sk_mem_schedule() is of this nature: accounting 321 * is strict, actions are advisory and have some latency. 322 */ 323 int tcp_memory_pressure __read_mostly; 324 EXPORT_SYMBOL(tcp_memory_pressure); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 if (!tcp_memory_pressure) { 329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 330 tcp_memory_pressure = 1; 331 } 332 } 333 EXPORT_SYMBOL(tcp_enter_memory_pressure); 334 335 /* Convert seconds to retransmits based on initial and max timeout */ 336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 337 { 338 u8 res = 0; 339 340 if (seconds > 0) { 341 int period = timeout; 342 343 res = 1; 344 while (seconds > period && res < 255) { 345 res++; 346 timeout <<= 1; 347 if (timeout > rto_max) 348 timeout = rto_max; 349 period += timeout; 350 } 351 } 352 return res; 353 } 354 355 /* Convert retransmits to seconds based on initial and max timeout */ 356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 357 { 358 int period = 0; 359 360 if (retrans > 0) { 361 period = timeout; 362 while (--retrans) { 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return period; 370 } 371 372 /* Address-family independent initialization for a tcp_sock. 373 * 374 * NOTE: A lot of things set to zero explicitly by call to 375 * sk_alloc() so need not be done here. 376 */ 377 void tcp_init_sock(struct sock *sk) 378 { 379 struct inet_connection_sock *icsk = inet_csk(sk); 380 struct tcp_sock *tp = tcp_sk(sk); 381 382 tp->out_of_order_queue = RB_ROOT; 383 tcp_init_xmit_timers(sk); 384 tcp_prequeue_init(tp); 385 INIT_LIST_HEAD(&tp->tsq_node); 386 387 icsk->icsk_rto = TCP_TIMEOUT_INIT; 388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U); 390 391 /* So many TCP implementations out there (incorrectly) count the 392 * initial SYN frame in their delayed-ACK and congestion control 393 * algorithms that we must have the following bandaid to talk 394 * efficiently to them. -DaveM 395 */ 396 tp->snd_cwnd = TCP_INIT_CWND; 397 398 /* There's a bubble in the pipe until at least the first ACK. */ 399 tp->app_limited = ~0U; 400 401 /* See draft-stevens-tcpca-spec-01 for discussion of the 402 * initialization of these values. 403 */ 404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 405 tp->snd_cwnd_clamp = ~0; 406 tp->mss_cache = TCP_MSS_DEFAULT; 407 408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 409 tcp_enable_early_retrans(tp); 410 tcp_assign_congestion_control(sk); 411 412 tp->tsoffset = 0; 413 414 sk->sk_state = TCP_CLOSE; 415 416 sk->sk_write_space = sk_stream_write_space; 417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 418 419 icsk->icsk_sync_mss = tcp_sync_mss; 420 421 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 422 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 423 424 local_bh_disable(); 425 sk_sockets_allocated_inc(sk); 426 local_bh_enable(); 427 } 428 EXPORT_SYMBOL(tcp_init_sock); 429 430 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 431 { 432 if (tsflags) { 433 struct skb_shared_info *shinfo = skb_shinfo(skb); 434 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 435 436 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 437 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 438 tcb->txstamp_ack = 1; 439 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 440 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 441 } 442 } 443 444 /* 445 * Wait for a TCP event. 446 * 447 * Note that we don't need to lock the socket, as the upper poll layers 448 * take care of normal races (between the test and the event) and we don't 449 * go look at any of the socket buffers directly. 450 */ 451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 452 { 453 unsigned int mask; 454 struct sock *sk = sock->sk; 455 const struct tcp_sock *tp = tcp_sk(sk); 456 int state; 457 458 sock_rps_record_flow(sk); 459 460 sock_poll_wait(file, sk_sleep(sk), wait); 461 462 state = sk_state_load(sk); 463 if (state == TCP_LISTEN) 464 return inet_csk_listen_poll(sk); 465 466 /* Socket is not locked. We are protected from async events 467 * by poll logic and correct handling of state changes 468 * made by other threads is impossible in any case. 469 */ 470 471 mask = 0; 472 473 /* 474 * POLLHUP is certainly not done right. But poll() doesn't 475 * have a notion of HUP in just one direction, and for a 476 * socket the read side is more interesting. 477 * 478 * Some poll() documentation says that POLLHUP is incompatible 479 * with the POLLOUT/POLLWR flags, so somebody should check this 480 * all. But careful, it tends to be safer to return too many 481 * bits than too few, and you can easily break real applications 482 * if you don't tell them that something has hung up! 483 * 484 * Check-me. 485 * 486 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 487 * our fs/select.c). It means that after we received EOF, 488 * poll always returns immediately, making impossible poll() on write() 489 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 490 * if and only if shutdown has been made in both directions. 491 * Actually, it is interesting to look how Solaris and DUX 492 * solve this dilemma. I would prefer, if POLLHUP were maskable, 493 * then we could set it on SND_SHUTDOWN. BTW examples given 494 * in Stevens' books assume exactly this behaviour, it explains 495 * why POLLHUP is incompatible with POLLOUT. --ANK 496 * 497 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 498 * blocking on fresh not-connected or disconnected socket. --ANK 499 */ 500 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 501 mask |= POLLHUP; 502 if (sk->sk_shutdown & RCV_SHUTDOWN) 503 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 504 505 /* Connected or passive Fast Open socket? */ 506 if (state != TCP_SYN_SENT && 507 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 508 int target = sock_rcvlowat(sk, 0, INT_MAX); 509 510 if (tp->urg_seq == tp->copied_seq && 511 !sock_flag(sk, SOCK_URGINLINE) && 512 tp->urg_data) 513 target++; 514 515 if (tp->rcv_nxt - tp->copied_seq >= target) 516 mask |= POLLIN | POLLRDNORM; 517 518 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 519 if (sk_stream_is_writeable(sk)) { 520 mask |= POLLOUT | POLLWRNORM; 521 } else { /* send SIGIO later */ 522 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 523 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 524 525 /* Race breaker. If space is freed after 526 * wspace test but before the flags are set, 527 * IO signal will be lost. Memory barrier 528 * pairs with the input side. 529 */ 530 smp_mb__after_atomic(); 531 if (sk_stream_is_writeable(sk)) 532 mask |= POLLOUT | POLLWRNORM; 533 } 534 } else 535 mask |= POLLOUT | POLLWRNORM; 536 537 if (tp->urg_data & TCP_URG_VALID) 538 mask |= POLLPRI; 539 } 540 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 541 smp_rmb(); 542 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 543 mask |= POLLERR; 544 545 return mask; 546 } 547 EXPORT_SYMBOL(tcp_poll); 548 549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 550 { 551 struct tcp_sock *tp = tcp_sk(sk); 552 int answ; 553 bool slow; 554 555 switch (cmd) { 556 case SIOCINQ: 557 if (sk->sk_state == TCP_LISTEN) 558 return -EINVAL; 559 560 slow = lock_sock_fast(sk); 561 answ = tcp_inq(sk); 562 unlock_sock_fast(sk, slow); 563 break; 564 case SIOCATMARK: 565 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 566 break; 567 case SIOCOUTQ: 568 if (sk->sk_state == TCP_LISTEN) 569 return -EINVAL; 570 571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 572 answ = 0; 573 else 574 answ = tp->write_seq - tp->snd_una; 575 break; 576 case SIOCOUTQNSD: 577 if (sk->sk_state == TCP_LISTEN) 578 return -EINVAL; 579 580 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 581 answ = 0; 582 else 583 answ = tp->write_seq - tp->snd_nxt; 584 break; 585 default: 586 return -ENOIOCTLCMD; 587 } 588 589 return put_user(answ, (int __user *)arg); 590 } 591 EXPORT_SYMBOL(tcp_ioctl); 592 593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 594 { 595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 596 tp->pushed_seq = tp->write_seq; 597 } 598 599 static inline bool forced_push(const struct tcp_sock *tp) 600 { 601 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 602 } 603 604 static void skb_entail(struct sock *sk, struct sk_buff *skb) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 608 609 skb->csum = 0; 610 tcb->seq = tcb->end_seq = tp->write_seq; 611 tcb->tcp_flags = TCPHDR_ACK; 612 tcb->sacked = 0; 613 __skb_header_release(skb); 614 tcp_add_write_queue_tail(sk, skb); 615 sk->sk_wmem_queued += skb->truesize; 616 sk_mem_charge(sk, skb->truesize); 617 if (tp->nonagle & TCP_NAGLE_PUSH) 618 tp->nonagle &= ~TCP_NAGLE_PUSH; 619 620 tcp_slow_start_after_idle_check(sk); 621 } 622 623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 624 { 625 if (flags & MSG_OOB) 626 tp->snd_up = tp->write_seq; 627 } 628 629 /* If a not yet filled skb is pushed, do not send it if 630 * we have data packets in Qdisc or NIC queues : 631 * Because TX completion will happen shortly, it gives a chance 632 * to coalesce future sendmsg() payload into this skb, without 633 * need for a timer, and with no latency trade off. 634 * As packets containing data payload have a bigger truesize 635 * than pure acks (dataless) packets, the last checks prevent 636 * autocorking if we only have an ACK in Qdisc/NIC queues, 637 * or if TX completion was delayed after we processed ACK packet. 638 */ 639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 640 int size_goal) 641 { 642 return skb->len < size_goal && 643 sysctl_tcp_autocorking && 644 skb != tcp_write_queue_head(sk) && 645 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 646 } 647 648 static void tcp_push(struct sock *sk, int flags, int mss_now, 649 int nonagle, int size_goal) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct sk_buff *skb; 653 654 if (!tcp_send_head(sk)) 655 return; 656 657 skb = tcp_write_queue_tail(sk); 658 if (!(flags & MSG_MORE) || forced_push(tp)) 659 tcp_mark_push(tp, skb); 660 661 tcp_mark_urg(tp, flags); 662 663 if (tcp_should_autocork(sk, skb, size_goal)) { 664 665 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 666 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 668 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 669 } 670 /* It is possible TX completion already happened 671 * before we set TSQ_THROTTLED. 672 */ 673 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 674 return; 675 } 676 677 if (flags & MSG_MORE) 678 nonagle = TCP_NAGLE_CORK; 679 680 __tcp_push_pending_frames(sk, mss_now, nonagle); 681 } 682 683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 684 unsigned int offset, size_t len) 685 { 686 struct tcp_splice_state *tss = rd_desc->arg.data; 687 int ret; 688 689 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 690 min(rd_desc->count, len), tss->flags); 691 if (ret > 0) 692 rd_desc->count -= ret; 693 return ret; 694 } 695 696 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 697 { 698 /* Store TCP splice context information in read_descriptor_t. */ 699 read_descriptor_t rd_desc = { 700 .arg.data = tss, 701 .count = tss->len, 702 }; 703 704 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 705 } 706 707 /** 708 * tcp_splice_read - splice data from TCP socket to a pipe 709 * @sock: socket to splice from 710 * @ppos: position (not valid) 711 * @pipe: pipe to splice to 712 * @len: number of bytes to splice 713 * @flags: splice modifier flags 714 * 715 * Description: 716 * Will read pages from given socket and fill them into a pipe. 717 * 718 **/ 719 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 720 struct pipe_inode_info *pipe, size_t len, 721 unsigned int flags) 722 { 723 struct sock *sk = sock->sk; 724 struct tcp_splice_state tss = { 725 .pipe = pipe, 726 .len = len, 727 .flags = flags, 728 }; 729 long timeo; 730 ssize_t spliced; 731 int ret; 732 733 sock_rps_record_flow(sk); 734 /* 735 * We can't seek on a socket input 736 */ 737 if (unlikely(*ppos)) 738 return -ESPIPE; 739 740 ret = spliced = 0; 741 742 lock_sock(sk); 743 744 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 745 while (tss.len) { 746 ret = __tcp_splice_read(sk, &tss); 747 if (ret < 0) 748 break; 749 else if (!ret) { 750 if (spliced) 751 break; 752 if (sock_flag(sk, SOCK_DONE)) 753 break; 754 if (sk->sk_err) { 755 ret = sock_error(sk); 756 break; 757 } 758 if (sk->sk_shutdown & RCV_SHUTDOWN) 759 break; 760 if (sk->sk_state == TCP_CLOSE) { 761 /* 762 * This occurs when user tries to read 763 * from never connected socket. 764 */ 765 if (!sock_flag(sk, SOCK_DONE)) 766 ret = -ENOTCONN; 767 break; 768 } 769 if (!timeo) { 770 ret = -EAGAIN; 771 break; 772 } 773 /* if __tcp_splice_read() got nothing while we have 774 * an skb in receive queue, we do not want to loop. 775 * This might happen with URG data. 776 */ 777 if (!skb_queue_empty(&sk->sk_receive_queue)) 778 break; 779 sk_wait_data(sk, &timeo, NULL); 780 if (signal_pending(current)) { 781 ret = sock_intr_errno(timeo); 782 break; 783 } 784 continue; 785 } 786 tss.len -= ret; 787 spliced += ret; 788 789 if (!timeo) 790 break; 791 release_sock(sk); 792 lock_sock(sk); 793 794 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 795 (sk->sk_shutdown & RCV_SHUTDOWN) || 796 signal_pending(current)) 797 break; 798 } 799 800 release_sock(sk); 801 802 if (spliced) 803 return spliced; 804 805 return ret; 806 } 807 EXPORT_SYMBOL(tcp_splice_read); 808 809 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 810 bool force_schedule) 811 { 812 struct sk_buff *skb; 813 814 /* The TCP header must be at least 32-bit aligned. */ 815 size = ALIGN(size, 4); 816 817 if (unlikely(tcp_under_memory_pressure(sk))) 818 sk_mem_reclaim_partial(sk); 819 820 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 821 if (likely(skb)) { 822 bool mem_scheduled; 823 824 if (force_schedule) { 825 mem_scheduled = true; 826 sk_forced_mem_schedule(sk, skb->truesize); 827 } else { 828 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 829 } 830 if (likely(mem_scheduled)) { 831 skb_reserve(skb, sk->sk_prot->max_header); 832 /* 833 * Make sure that we have exactly size bytes 834 * available to the caller, no more, no less. 835 */ 836 skb->reserved_tailroom = skb->end - skb->tail - size; 837 return skb; 838 } 839 __kfree_skb(skb); 840 } else { 841 sk->sk_prot->enter_memory_pressure(sk); 842 sk_stream_moderate_sndbuf(sk); 843 } 844 return NULL; 845 } 846 847 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 848 int large_allowed) 849 { 850 struct tcp_sock *tp = tcp_sk(sk); 851 u32 new_size_goal, size_goal; 852 853 if (!large_allowed || !sk_can_gso(sk)) 854 return mss_now; 855 856 /* Note : tcp_tso_autosize() will eventually split this later */ 857 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 858 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 859 860 /* We try hard to avoid divides here */ 861 size_goal = tp->gso_segs * mss_now; 862 if (unlikely(new_size_goal < size_goal || 863 new_size_goal >= size_goal + mss_now)) { 864 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 865 sk->sk_gso_max_segs); 866 size_goal = tp->gso_segs * mss_now; 867 } 868 869 return max(size_goal, mss_now); 870 } 871 872 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 873 { 874 int mss_now; 875 876 mss_now = tcp_current_mss(sk); 877 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 878 879 return mss_now; 880 } 881 882 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 883 size_t size, int flags) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 int mss_now, size_goal; 887 int err; 888 ssize_t copied; 889 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 890 891 /* Wait for a connection to finish. One exception is TCP Fast Open 892 * (passive side) where data is allowed to be sent before a connection 893 * is fully established. 894 */ 895 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 896 !tcp_passive_fastopen(sk)) { 897 err = sk_stream_wait_connect(sk, &timeo); 898 if (err != 0) 899 goto out_err; 900 } 901 902 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 903 904 mss_now = tcp_send_mss(sk, &size_goal, flags); 905 copied = 0; 906 907 err = -EPIPE; 908 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 909 goto out_err; 910 911 while (size > 0) { 912 struct sk_buff *skb = tcp_write_queue_tail(sk); 913 int copy, i; 914 bool can_coalesce; 915 916 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 || 917 !tcp_skb_can_collapse_to(skb)) { 918 new_segment: 919 if (!sk_stream_memory_free(sk)) 920 goto wait_for_sndbuf; 921 922 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 923 skb_queue_empty(&sk->sk_write_queue)); 924 if (!skb) 925 goto wait_for_memory; 926 927 skb_entail(sk, skb); 928 copy = size_goal; 929 } 930 931 if (copy > size) 932 copy = size; 933 934 i = skb_shinfo(skb)->nr_frags; 935 can_coalesce = skb_can_coalesce(skb, i, page, offset); 936 if (!can_coalesce && i >= sysctl_max_skb_frags) { 937 tcp_mark_push(tp, skb); 938 goto new_segment; 939 } 940 if (!sk_wmem_schedule(sk, copy)) 941 goto wait_for_memory; 942 943 if (can_coalesce) { 944 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 945 } else { 946 get_page(page); 947 skb_fill_page_desc(skb, i, page, offset, copy); 948 } 949 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 950 951 skb->len += copy; 952 skb->data_len += copy; 953 skb->truesize += copy; 954 sk->sk_wmem_queued += copy; 955 sk_mem_charge(sk, copy); 956 skb->ip_summed = CHECKSUM_PARTIAL; 957 tp->write_seq += copy; 958 TCP_SKB_CB(skb)->end_seq += copy; 959 tcp_skb_pcount_set(skb, 0); 960 961 if (!copied) 962 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 963 964 copied += copy; 965 offset += copy; 966 size -= copy; 967 if (!size) { 968 tcp_tx_timestamp(sk, sk->sk_tsflags, skb); 969 goto out; 970 } 971 972 if (skb->len < size_goal || (flags & MSG_OOB)) 973 continue; 974 975 if (forced_push(tp)) { 976 tcp_mark_push(tp, skb); 977 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 978 } else if (skb == tcp_send_head(sk)) 979 tcp_push_one(sk, mss_now); 980 continue; 981 982 wait_for_sndbuf: 983 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 984 wait_for_memory: 985 tcp_push(sk, flags & ~MSG_MORE, mss_now, 986 TCP_NAGLE_PUSH, size_goal); 987 988 err = sk_stream_wait_memory(sk, &timeo); 989 if (err != 0) 990 goto do_error; 991 992 mss_now = tcp_send_mss(sk, &size_goal, flags); 993 } 994 995 out: 996 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 997 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 998 return copied; 999 1000 do_error: 1001 if (copied) 1002 goto out; 1003 out_err: 1004 /* make sure we wake any epoll edge trigger waiter */ 1005 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1006 err == -EAGAIN)) { 1007 sk->sk_write_space(sk); 1008 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1009 } 1010 return sk_stream_error(sk, flags, err); 1011 } 1012 1013 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1014 size_t size, int flags) 1015 { 1016 ssize_t res; 1017 1018 if (!(sk->sk_route_caps & NETIF_F_SG) || 1019 !sk_check_csum_caps(sk)) 1020 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1021 flags); 1022 1023 lock_sock(sk); 1024 1025 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1026 1027 res = do_tcp_sendpages(sk, page, offset, size, flags); 1028 release_sock(sk); 1029 return res; 1030 } 1031 EXPORT_SYMBOL(tcp_sendpage); 1032 1033 /* Do not bother using a page frag for very small frames. 1034 * But use this heuristic only for the first skb in write queue. 1035 * 1036 * Having no payload in skb->head allows better SACK shifting 1037 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1038 * write queue has less skbs. 1039 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1040 * This also speeds up tso_fragment(), since it wont fallback 1041 * to tcp_fragment(). 1042 */ 1043 static int linear_payload_sz(bool first_skb) 1044 { 1045 if (first_skb) 1046 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1047 return 0; 1048 } 1049 1050 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1051 { 1052 const struct tcp_sock *tp = tcp_sk(sk); 1053 int tmp = tp->mss_cache; 1054 1055 if (sg) { 1056 if (sk_can_gso(sk)) { 1057 tmp = linear_payload_sz(first_skb); 1058 } else { 1059 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1060 1061 if (tmp >= pgbreak && 1062 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1063 tmp = pgbreak; 1064 } 1065 } 1066 1067 return tmp; 1068 } 1069 1070 void tcp_free_fastopen_req(struct tcp_sock *tp) 1071 { 1072 if (tp->fastopen_req) { 1073 kfree(tp->fastopen_req); 1074 tp->fastopen_req = NULL; 1075 } 1076 } 1077 1078 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1079 int *copied, size_t size) 1080 { 1081 struct tcp_sock *tp = tcp_sk(sk); 1082 int err, flags; 1083 1084 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1085 return -EOPNOTSUPP; 1086 if (tp->fastopen_req) 1087 return -EALREADY; /* Another Fast Open is in progress */ 1088 1089 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1090 sk->sk_allocation); 1091 if (unlikely(!tp->fastopen_req)) 1092 return -ENOBUFS; 1093 tp->fastopen_req->data = msg; 1094 tp->fastopen_req->size = size; 1095 1096 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1097 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1098 msg->msg_namelen, flags); 1099 *copied = tp->fastopen_req->copied; 1100 tcp_free_fastopen_req(tp); 1101 return err; 1102 } 1103 1104 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1105 { 1106 struct tcp_sock *tp = tcp_sk(sk); 1107 struct sk_buff *skb; 1108 struct sockcm_cookie sockc; 1109 int flags, err, copied = 0; 1110 int mss_now = 0, size_goal, copied_syn = 0; 1111 bool process_backlog = false; 1112 bool sg; 1113 long timeo; 1114 1115 lock_sock(sk); 1116 1117 flags = msg->msg_flags; 1118 if (flags & MSG_FASTOPEN) { 1119 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1120 if (err == -EINPROGRESS && copied_syn > 0) 1121 goto out; 1122 else if (err) 1123 goto out_err; 1124 } 1125 1126 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1127 1128 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1129 1130 /* Wait for a connection to finish. One exception is TCP Fast Open 1131 * (passive side) where data is allowed to be sent before a connection 1132 * is fully established. 1133 */ 1134 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1135 !tcp_passive_fastopen(sk)) { 1136 err = sk_stream_wait_connect(sk, &timeo); 1137 if (err != 0) 1138 goto do_error; 1139 } 1140 1141 if (unlikely(tp->repair)) { 1142 if (tp->repair_queue == TCP_RECV_QUEUE) { 1143 copied = tcp_send_rcvq(sk, msg, size); 1144 goto out_nopush; 1145 } 1146 1147 err = -EINVAL; 1148 if (tp->repair_queue == TCP_NO_QUEUE) 1149 goto out_err; 1150 1151 /* 'common' sending to sendq */ 1152 } 1153 1154 sockc.tsflags = sk->sk_tsflags; 1155 if (msg->msg_controllen) { 1156 err = sock_cmsg_send(sk, msg, &sockc); 1157 if (unlikely(err)) { 1158 err = -EINVAL; 1159 goto out_err; 1160 } 1161 } 1162 1163 /* This should be in poll */ 1164 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1165 1166 /* Ok commence sending. */ 1167 copied = 0; 1168 1169 restart: 1170 mss_now = tcp_send_mss(sk, &size_goal, flags); 1171 1172 err = -EPIPE; 1173 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1174 goto do_error; 1175 1176 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1177 1178 while (msg_data_left(msg)) { 1179 int copy = 0; 1180 int max = size_goal; 1181 1182 skb = tcp_write_queue_tail(sk); 1183 if (tcp_send_head(sk)) { 1184 if (skb->ip_summed == CHECKSUM_NONE) 1185 max = mss_now; 1186 copy = max - skb->len; 1187 } 1188 1189 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1190 bool first_skb; 1191 1192 new_segment: 1193 /* Allocate new segment. If the interface is SG, 1194 * allocate skb fitting to single page. 1195 */ 1196 if (!sk_stream_memory_free(sk)) 1197 goto wait_for_sndbuf; 1198 1199 if (process_backlog && sk_flush_backlog(sk)) { 1200 process_backlog = false; 1201 goto restart; 1202 } 1203 first_skb = skb_queue_empty(&sk->sk_write_queue); 1204 skb = sk_stream_alloc_skb(sk, 1205 select_size(sk, sg, first_skb), 1206 sk->sk_allocation, 1207 first_skb); 1208 if (!skb) 1209 goto wait_for_memory; 1210 1211 process_backlog = true; 1212 /* 1213 * Check whether we can use HW checksum. 1214 */ 1215 if (sk_check_csum_caps(sk)) 1216 skb->ip_summed = CHECKSUM_PARTIAL; 1217 1218 skb_entail(sk, skb); 1219 copy = size_goal; 1220 max = size_goal; 1221 1222 /* All packets are restored as if they have 1223 * already been sent. skb_mstamp isn't set to 1224 * avoid wrong rtt estimation. 1225 */ 1226 if (tp->repair) 1227 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1228 } 1229 1230 /* Try to append data to the end of skb. */ 1231 if (copy > msg_data_left(msg)) 1232 copy = msg_data_left(msg); 1233 1234 /* Where to copy to? */ 1235 if (skb_availroom(skb) > 0) { 1236 /* We have some space in skb head. Superb! */ 1237 copy = min_t(int, copy, skb_availroom(skb)); 1238 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1239 if (err) 1240 goto do_fault; 1241 } else { 1242 bool merge = true; 1243 int i = skb_shinfo(skb)->nr_frags; 1244 struct page_frag *pfrag = sk_page_frag(sk); 1245 1246 if (!sk_page_frag_refill(sk, pfrag)) 1247 goto wait_for_memory; 1248 1249 if (!skb_can_coalesce(skb, i, pfrag->page, 1250 pfrag->offset)) { 1251 if (i >= sysctl_max_skb_frags || !sg) { 1252 tcp_mark_push(tp, skb); 1253 goto new_segment; 1254 } 1255 merge = false; 1256 } 1257 1258 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1259 1260 if (!sk_wmem_schedule(sk, copy)) 1261 goto wait_for_memory; 1262 1263 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1264 pfrag->page, 1265 pfrag->offset, 1266 copy); 1267 if (err) 1268 goto do_error; 1269 1270 /* Update the skb. */ 1271 if (merge) { 1272 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1273 } else { 1274 skb_fill_page_desc(skb, i, pfrag->page, 1275 pfrag->offset, copy); 1276 get_page(pfrag->page); 1277 } 1278 pfrag->offset += copy; 1279 } 1280 1281 if (!copied) 1282 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1283 1284 tp->write_seq += copy; 1285 TCP_SKB_CB(skb)->end_seq += copy; 1286 tcp_skb_pcount_set(skb, 0); 1287 1288 copied += copy; 1289 if (!msg_data_left(msg)) { 1290 tcp_tx_timestamp(sk, sockc.tsflags, skb); 1291 if (unlikely(flags & MSG_EOR)) 1292 TCP_SKB_CB(skb)->eor = 1; 1293 goto out; 1294 } 1295 1296 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1297 continue; 1298 1299 if (forced_push(tp)) { 1300 tcp_mark_push(tp, skb); 1301 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1302 } else if (skb == tcp_send_head(sk)) 1303 tcp_push_one(sk, mss_now); 1304 continue; 1305 1306 wait_for_sndbuf: 1307 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1308 wait_for_memory: 1309 if (copied) 1310 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1311 TCP_NAGLE_PUSH, size_goal); 1312 1313 err = sk_stream_wait_memory(sk, &timeo); 1314 if (err != 0) 1315 goto do_error; 1316 1317 mss_now = tcp_send_mss(sk, &size_goal, flags); 1318 } 1319 1320 out: 1321 if (copied) 1322 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1323 out_nopush: 1324 release_sock(sk); 1325 return copied + copied_syn; 1326 1327 do_fault: 1328 if (!skb->len) { 1329 tcp_unlink_write_queue(skb, sk); 1330 /* It is the one place in all of TCP, except connection 1331 * reset, where we can be unlinking the send_head. 1332 */ 1333 tcp_check_send_head(sk, skb); 1334 sk_wmem_free_skb(sk, skb); 1335 } 1336 1337 do_error: 1338 if (copied + copied_syn) 1339 goto out; 1340 out_err: 1341 err = sk_stream_error(sk, flags, err); 1342 /* make sure we wake any epoll edge trigger waiter */ 1343 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1344 err == -EAGAIN)) { 1345 sk->sk_write_space(sk); 1346 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1347 } 1348 release_sock(sk); 1349 return err; 1350 } 1351 EXPORT_SYMBOL(tcp_sendmsg); 1352 1353 /* 1354 * Handle reading urgent data. BSD has very simple semantics for 1355 * this, no blocking and very strange errors 8) 1356 */ 1357 1358 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1359 { 1360 struct tcp_sock *tp = tcp_sk(sk); 1361 1362 /* No URG data to read. */ 1363 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1364 tp->urg_data == TCP_URG_READ) 1365 return -EINVAL; /* Yes this is right ! */ 1366 1367 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1368 return -ENOTCONN; 1369 1370 if (tp->urg_data & TCP_URG_VALID) { 1371 int err = 0; 1372 char c = tp->urg_data; 1373 1374 if (!(flags & MSG_PEEK)) 1375 tp->urg_data = TCP_URG_READ; 1376 1377 /* Read urgent data. */ 1378 msg->msg_flags |= MSG_OOB; 1379 1380 if (len > 0) { 1381 if (!(flags & MSG_TRUNC)) 1382 err = memcpy_to_msg(msg, &c, 1); 1383 len = 1; 1384 } else 1385 msg->msg_flags |= MSG_TRUNC; 1386 1387 return err ? -EFAULT : len; 1388 } 1389 1390 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1391 return 0; 1392 1393 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1394 * the available implementations agree in this case: 1395 * this call should never block, independent of the 1396 * blocking state of the socket. 1397 * Mike <pall@rz.uni-karlsruhe.de> 1398 */ 1399 return -EAGAIN; 1400 } 1401 1402 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1403 { 1404 struct sk_buff *skb; 1405 int copied = 0, err = 0; 1406 1407 /* XXX -- need to support SO_PEEK_OFF */ 1408 1409 skb_queue_walk(&sk->sk_write_queue, skb) { 1410 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1411 if (err) 1412 break; 1413 1414 copied += skb->len; 1415 } 1416 1417 return err ?: copied; 1418 } 1419 1420 /* Clean up the receive buffer for full frames taken by the user, 1421 * then send an ACK if necessary. COPIED is the number of bytes 1422 * tcp_recvmsg has given to the user so far, it speeds up the 1423 * calculation of whether or not we must ACK for the sake of 1424 * a window update. 1425 */ 1426 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1427 { 1428 struct tcp_sock *tp = tcp_sk(sk); 1429 bool time_to_ack = false; 1430 1431 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1432 1433 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1434 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1435 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1436 1437 if (inet_csk_ack_scheduled(sk)) { 1438 const struct inet_connection_sock *icsk = inet_csk(sk); 1439 /* Delayed ACKs frequently hit locked sockets during bulk 1440 * receive. */ 1441 if (icsk->icsk_ack.blocked || 1442 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1443 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1444 /* 1445 * If this read emptied read buffer, we send ACK, if 1446 * connection is not bidirectional, user drained 1447 * receive buffer and there was a small segment 1448 * in queue. 1449 */ 1450 (copied > 0 && 1451 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1452 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1453 !icsk->icsk_ack.pingpong)) && 1454 !atomic_read(&sk->sk_rmem_alloc))) 1455 time_to_ack = true; 1456 } 1457 1458 /* We send an ACK if we can now advertise a non-zero window 1459 * which has been raised "significantly". 1460 * 1461 * Even if window raised up to infinity, do not send window open ACK 1462 * in states, where we will not receive more. It is useless. 1463 */ 1464 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1465 __u32 rcv_window_now = tcp_receive_window(tp); 1466 1467 /* Optimize, __tcp_select_window() is not cheap. */ 1468 if (2*rcv_window_now <= tp->window_clamp) { 1469 __u32 new_window = __tcp_select_window(sk); 1470 1471 /* Send ACK now, if this read freed lots of space 1472 * in our buffer. Certainly, new_window is new window. 1473 * We can advertise it now, if it is not less than current one. 1474 * "Lots" means "at least twice" here. 1475 */ 1476 if (new_window && new_window >= 2 * rcv_window_now) 1477 time_to_ack = true; 1478 } 1479 } 1480 if (time_to_ack) 1481 tcp_send_ack(sk); 1482 } 1483 1484 static void tcp_prequeue_process(struct sock *sk) 1485 { 1486 struct sk_buff *skb; 1487 struct tcp_sock *tp = tcp_sk(sk); 1488 1489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1490 1491 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1492 sk_backlog_rcv(sk, skb); 1493 1494 /* Clear memory counter. */ 1495 tp->ucopy.memory = 0; 1496 } 1497 1498 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1499 { 1500 struct sk_buff *skb; 1501 u32 offset; 1502 1503 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1504 offset = seq - TCP_SKB_CB(skb)->seq; 1505 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1506 pr_err_once("%s: found a SYN, please report !\n", __func__); 1507 offset--; 1508 } 1509 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1510 *off = offset; 1511 return skb; 1512 } 1513 /* This looks weird, but this can happen if TCP collapsing 1514 * splitted a fat GRO packet, while we released socket lock 1515 * in skb_splice_bits() 1516 */ 1517 sk_eat_skb(sk, skb); 1518 } 1519 return NULL; 1520 } 1521 1522 /* 1523 * This routine provides an alternative to tcp_recvmsg() for routines 1524 * that would like to handle copying from skbuffs directly in 'sendfile' 1525 * fashion. 1526 * Note: 1527 * - It is assumed that the socket was locked by the caller. 1528 * - The routine does not block. 1529 * - At present, there is no support for reading OOB data 1530 * or for 'peeking' the socket using this routine 1531 * (although both would be easy to implement). 1532 */ 1533 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1534 sk_read_actor_t recv_actor) 1535 { 1536 struct sk_buff *skb; 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 u32 seq = tp->copied_seq; 1539 u32 offset; 1540 int copied = 0; 1541 1542 if (sk->sk_state == TCP_LISTEN) 1543 return -ENOTCONN; 1544 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1545 if (offset < skb->len) { 1546 int used; 1547 size_t len; 1548 1549 len = skb->len - offset; 1550 /* Stop reading if we hit a patch of urgent data */ 1551 if (tp->urg_data) { 1552 u32 urg_offset = tp->urg_seq - seq; 1553 if (urg_offset < len) 1554 len = urg_offset; 1555 if (!len) 1556 break; 1557 } 1558 used = recv_actor(desc, skb, offset, len); 1559 if (used <= 0) { 1560 if (!copied) 1561 copied = used; 1562 break; 1563 } else if (used <= len) { 1564 seq += used; 1565 copied += used; 1566 offset += used; 1567 } 1568 /* If recv_actor drops the lock (e.g. TCP splice 1569 * receive) the skb pointer might be invalid when 1570 * getting here: tcp_collapse might have deleted it 1571 * while aggregating skbs from the socket queue. 1572 */ 1573 skb = tcp_recv_skb(sk, seq - 1, &offset); 1574 if (!skb) 1575 break; 1576 /* TCP coalescing might have appended data to the skb. 1577 * Try to splice more frags 1578 */ 1579 if (offset + 1 != skb->len) 1580 continue; 1581 } 1582 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1583 sk_eat_skb(sk, skb); 1584 ++seq; 1585 break; 1586 } 1587 sk_eat_skb(sk, skb); 1588 if (!desc->count) 1589 break; 1590 tp->copied_seq = seq; 1591 } 1592 tp->copied_seq = seq; 1593 1594 tcp_rcv_space_adjust(sk); 1595 1596 /* Clean up data we have read: This will do ACK frames. */ 1597 if (copied > 0) { 1598 tcp_recv_skb(sk, seq, &offset); 1599 tcp_cleanup_rbuf(sk, copied); 1600 } 1601 return copied; 1602 } 1603 EXPORT_SYMBOL(tcp_read_sock); 1604 1605 int tcp_peek_len(struct socket *sock) 1606 { 1607 return tcp_inq(sock->sk); 1608 } 1609 EXPORT_SYMBOL(tcp_peek_len); 1610 1611 /* 1612 * This routine copies from a sock struct into the user buffer. 1613 * 1614 * Technical note: in 2.3 we work on _locked_ socket, so that 1615 * tricks with *seq access order and skb->users are not required. 1616 * Probably, code can be easily improved even more. 1617 */ 1618 1619 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1620 int flags, int *addr_len) 1621 { 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 int copied = 0; 1624 u32 peek_seq; 1625 u32 *seq; 1626 unsigned long used; 1627 int err; 1628 int target; /* Read at least this many bytes */ 1629 long timeo; 1630 struct task_struct *user_recv = NULL; 1631 struct sk_buff *skb, *last; 1632 u32 urg_hole = 0; 1633 1634 if (unlikely(flags & MSG_ERRQUEUE)) 1635 return inet_recv_error(sk, msg, len, addr_len); 1636 1637 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1638 (sk->sk_state == TCP_ESTABLISHED)) 1639 sk_busy_loop(sk, nonblock); 1640 1641 lock_sock(sk); 1642 1643 err = -ENOTCONN; 1644 if (sk->sk_state == TCP_LISTEN) 1645 goto out; 1646 1647 timeo = sock_rcvtimeo(sk, nonblock); 1648 1649 /* Urgent data needs to be handled specially. */ 1650 if (flags & MSG_OOB) 1651 goto recv_urg; 1652 1653 if (unlikely(tp->repair)) { 1654 err = -EPERM; 1655 if (!(flags & MSG_PEEK)) 1656 goto out; 1657 1658 if (tp->repair_queue == TCP_SEND_QUEUE) 1659 goto recv_sndq; 1660 1661 err = -EINVAL; 1662 if (tp->repair_queue == TCP_NO_QUEUE) 1663 goto out; 1664 1665 /* 'common' recv queue MSG_PEEK-ing */ 1666 } 1667 1668 seq = &tp->copied_seq; 1669 if (flags & MSG_PEEK) { 1670 peek_seq = tp->copied_seq; 1671 seq = &peek_seq; 1672 } 1673 1674 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1675 1676 do { 1677 u32 offset; 1678 1679 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1680 if (tp->urg_data && tp->urg_seq == *seq) { 1681 if (copied) 1682 break; 1683 if (signal_pending(current)) { 1684 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1685 break; 1686 } 1687 } 1688 1689 /* Next get a buffer. */ 1690 1691 last = skb_peek_tail(&sk->sk_receive_queue); 1692 skb_queue_walk(&sk->sk_receive_queue, skb) { 1693 last = skb; 1694 /* Now that we have two receive queues this 1695 * shouldn't happen. 1696 */ 1697 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1698 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1699 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1700 flags)) 1701 break; 1702 1703 offset = *seq - TCP_SKB_CB(skb)->seq; 1704 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1705 pr_err_once("%s: found a SYN, please report !\n", __func__); 1706 offset--; 1707 } 1708 if (offset < skb->len) 1709 goto found_ok_skb; 1710 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1711 goto found_fin_ok; 1712 WARN(!(flags & MSG_PEEK), 1713 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1714 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1715 } 1716 1717 /* Well, if we have backlog, try to process it now yet. */ 1718 1719 if (copied >= target && !sk->sk_backlog.tail) 1720 break; 1721 1722 if (copied) { 1723 if (sk->sk_err || 1724 sk->sk_state == TCP_CLOSE || 1725 (sk->sk_shutdown & RCV_SHUTDOWN) || 1726 !timeo || 1727 signal_pending(current)) 1728 break; 1729 } else { 1730 if (sock_flag(sk, SOCK_DONE)) 1731 break; 1732 1733 if (sk->sk_err) { 1734 copied = sock_error(sk); 1735 break; 1736 } 1737 1738 if (sk->sk_shutdown & RCV_SHUTDOWN) 1739 break; 1740 1741 if (sk->sk_state == TCP_CLOSE) { 1742 if (!sock_flag(sk, SOCK_DONE)) { 1743 /* This occurs when user tries to read 1744 * from never connected socket. 1745 */ 1746 copied = -ENOTCONN; 1747 break; 1748 } 1749 break; 1750 } 1751 1752 if (!timeo) { 1753 copied = -EAGAIN; 1754 break; 1755 } 1756 1757 if (signal_pending(current)) { 1758 copied = sock_intr_errno(timeo); 1759 break; 1760 } 1761 } 1762 1763 tcp_cleanup_rbuf(sk, copied); 1764 1765 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1766 /* Install new reader */ 1767 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1768 user_recv = current; 1769 tp->ucopy.task = user_recv; 1770 tp->ucopy.msg = msg; 1771 } 1772 1773 tp->ucopy.len = len; 1774 1775 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1776 !(flags & (MSG_PEEK | MSG_TRUNC))); 1777 1778 /* Ugly... If prequeue is not empty, we have to 1779 * process it before releasing socket, otherwise 1780 * order will be broken at second iteration. 1781 * More elegant solution is required!!! 1782 * 1783 * Look: we have the following (pseudo)queues: 1784 * 1785 * 1. packets in flight 1786 * 2. backlog 1787 * 3. prequeue 1788 * 4. receive_queue 1789 * 1790 * Each queue can be processed only if the next ones 1791 * are empty. At this point we have empty receive_queue. 1792 * But prequeue _can_ be not empty after 2nd iteration, 1793 * when we jumped to start of loop because backlog 1794 * processing added something to receive_queue. 1795 * We cannot release_sock(), because backlog contains 1796 * packets arrived _after_ prequeued ones. 1797 * 1798 * Shortly, algorithm is clear --- to process all 1799 * the queues in order. We could make it more directly, 1800 * requeueing packets from backlog to prequeue, if 1801 * is not empty. It is more elegant, but eats cycles, 1802 * unfortunately. 1803 */ 1804 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1805 goto do_prequeue; 1806 1807 /* __ Set realtime policy in scheduler __ */ 1808 } 1809 1810 if (copied >= target) { 1811 /* Do not sleep, just process backlog. */ 1812 release_sock(sk); 1813 lock_sock(sk); 1814 } else { 1815 sk_wait_data(sk, &timeo, last); 1816 } 1817 1818 if (user_recv) { 1819 int chunk; 1820 1821 /* __ Restore normal policy in scheduler __ */ 1822 1823 chunk = len - tp->ucopy.len; 1824 if (chunk != 0) { 1825 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1826 len -= chunk; 1827 copied += chunk; 1828 } 1829 1830 if (tp->rcv_nxt == tp->copied_seq && 1831 !skb_queue_empty(&tp->ucopy.prequeue)) { 1832 do_prequeue: 1833 tcp_prequeue_process(sk); 1834 1835 chunk = len - tp->ucopy.len; 1836 if (chunk != 0) { 1837 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1838 len -= chunk; 1839 copied += chunk; 1840 } 1841 } 1842 } 1843 if ((flags & MSG_PEEK) && 1844 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1845 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1846 current->comm, 1847 task_pid_nr(current)); 1848 peek_seq = tp->copied_seq; 1849 } 1850 continue; 1851 1852 found_ok_skb: 1853 /* Ok so how much can we use? */ 1854 used = skb->len - offset; 1855 if (len < used) 1856 used = len; 1857 1858 /* Do we have urgent data here? */ 1859 if (tp->urg_data) { 1860 u32 urg_offset = tp->urg_seq - *seq; 1861 if (urg_offset < used) { 1862 if (!urg_offset) { 1863 if (!sock_flag(sk, SOCK_URGINLINE)) { 1864 ++*seq; 1865 urg_hole++; 1866 offset++; 1867 used--; 1868 if (!used) 1869 goto skip_copy; 1870 } 1871 } else 1872 used = urg_offset; 1873 } 1874 } 1875 1876 if (!(flags & MSG_TRUNC)) { 1877 err = skb_copy_datagram_msg(skb, offset, msg, used); 1878 if (err) { 1879 /* Exception. Bailout! */ 1880 if (!copied) 1881 copied = -EFAULT; 1882 break; 1883 } 1884 } 1885 1886 *seq += used; 1887 copied += used; 1888 len -= used; 1889 1890 tcp_rcv_space_adjust(sk); 1891 1892 skip_copy: 1893 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1894 tp->urg_data = 0; 1895 tcp_fast_path_check(sk); 1896 } 1897 if (used + offset < skb->len) 1898 continue; 1899 1900 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1901 goto found_fin_ok; 1902 if (!(flags & MSG_PEEK)) 1903 sk_eat_skb(sk, skb); 1904 continue; 1905 1906 found_fin_ok: 1907 /* Process the FIN. */ 1908 ++*seq; 1909 if (!(flags & MSG_PEEK)) 1910 sk_eat_skb(sk, skb); 1911 break; 1912 } while (len > 0); 1913 1914 if (user_recv) { 1915 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1916 int chunk; 1917 1918 tp->ucopy.len = copied > 0 ? len : 0; 1919 1920 tcp_prequeue_process(sk); 1921 1922 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1923 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1924 len -= chunk; 1925 copied += chunk; 1926 } 1927 } 1928 1929 tp->ucopy.task = NULL; 1930 tp->ucopy.len = 0; 1931 } 1932 1933 /* According to UNIX98, msg_name/msg_namelen are ignored 1934 * on connected socket. I was just happy when found this 8) --ANK 1935 */ 1936 1937 /* Clean up data we have read: This will do ACK frames. */ 1938 tcp_cleanup_rbuf(sk, copied); 1939 1940 release_sock(sk); 1941 return copied; 1942 1943 out: 1944 release_sock(sk); 1945 return err; 1946 1947 recv_urg: 1948 err = tcp_recv_urg(sk, msg, len, flags); 1949 goto out; 1950 1951 recv_sndq: 1952 err = tcp_peek_sndq(sk, msg, len); 1953 goto out; 1954 } 1955 EXPORT_SYMBOL(tcp_recvmsg); 1956 1957 void tcp_set_state(struct sock *sk, int state) 1958 { 1959 int oldstate = sk->sk_state; 1960 1961 switch (state) { 1962 case TCP_ESTABLISHED: 1963 if (oldstate != TCP_ESTABLISHED) 1964 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1965 break; 1966 1967 case TCP_CLOSE: 1968 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1969 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1970 1971 sk->sk_prot->unhash(sk); 1972 if (inet_csk(sk)->icsk_bind_hash && 1973 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1974 inet_put_port(sk); 1975 /* fall through */ 1976 default: 1977 if (oldstate == TCP_ESTABLISHED) 1978 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1979 } 1980 1981 /* Change state AFTER socket is unhashed to avoid closed 1982 * socket sitting in hash tables. 1983 */ 1984 sk_state_store(sk, state); 1985 1986 #ifdef STATE_TRACE 1987 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1988 #endif 1989 } 1990 EXPORT_SYMBOL_GPL(tcp_set_state); 1991 1992 /* 1993 * State processing on a close. This implements the state shift for 1994 * sending our FIN frame. Note that we only send a FIN for some 1995 * states. A shutdown() may have already sent the FIN, or we may be 1996 * closed. 1997 */ 1998 1999 static const unsigned char new_state[16] = { 2000 /* current state: new state: action: */ 2001 [0 /* (Invalid) */] = TCP_CLOSE, 2002 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2003 [TCP_SYN_SENT] = TCP_CLOSE, 2004 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2005 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2006 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2007 [TCP_TIME_WAIT] = TCP_CLOSE, 2008 [TCP_CLOSE] = TCP_CLOSE, 2009 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2010 [TCP_LAST_ACK] = TCP_LAST_ACK, 2011 [TCP_LISTEN] = TCP_CLOSE, 2012 [TCP_CLOSING] = TCP_CLOSING, 2013 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2014 }; 2015 2016 static int tcp_close_state(struct sock *sk) 2017 { 2018 int next = (int)new_state[sk->sk_state]; 2019 int ns = next & TCP_STATE_MASK; 2020 2021 tcp_set_state(sk, ns); 2022 2023 return next & TCP_ACTION_FIN; 2024 } 2025 2026 /* 2027 * Shutdown the sending side of a connection. Much like close except 2028 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2029 */ 2030 2031 void tcp_shutdown(struct sock *sk, int how) 2032 { 2033 /* We need to grab some memory, and put together a FIN, 2034 * and then put it into the queue to be sent. 2035 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2036 */ 2037 if (!(how & SEND_SHUTDOWN)) 2038 return; 2039 2040 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2041 if ((1 << sk->sk_state) & 2042 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2043 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2044 /* Clear out any half completed packets. FIN if needed. */ 2045 if (tcp_close_state(sk)) 2046 tcp_send_fin(sk); 2047 } 2048 } 2049 EXPORT_SYMBOL(tcp_shutdown); 2050 2051 bool tcp_check_oom(struct sock *sk, int shift) 2052 { 2053 bool too_many_orphans, out_of_socket_memory; 2054 2055 too_many_orphans = tcp_too_many_orphans(sk, shift); 2056 out_of_socket_memory = tcp_out_of_memory(sk); 2057 2058 if (too_many_orphans) 2059 net_info_ratelimited("too many orphaned sockets\n"); 2060 if (out_of_socket_memory) 2061 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2062 return too_many_orphans || out_of_socket_memory; 2063 } 2064 2065 void tcp_close(struct sock *sk, long timeout) 2066 { 2067 struct sk_buff *skb; 2068 int data_was_unread = 0; 2069 int state; 2070 2071 lock_sock(sk); 2072 sk->sk_shutdown = SHUTDOWN_MASK; 2073 2074 if (sk->sk_state == TCP_LISTEN) { 2075 tcp_set_state(sk, TCP_CLOSE); 2076 2077 /* Special case. */ 2078 inet_csk_listen_stop(sk); 2079 2080 goto adjudge_to_death; 2081 } 2082 2083 /* We need to flush the recv. buffs. We do this only on the 2084 * descriptor close, not protocol-sourced closes, because the 2085 * reader process may not have drained the data yet! 2086 */ 2087 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2088 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2089 2090 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2091 len--; 2092 data_was_unread += len; 2093 __kfree_skb(skb); 2094 } 2095 2096 sk_mem_reclaim(sk); 2097 2098 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2099 if (sk->sk_state == TCP_CLOSE) 2100 goto adjudge_to_death; 2101 2102 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2103 * data was lost. To witness the awful effects of the old behavior of 2104 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2105 * GET in an FTP client, suspend the process, wait for the client to 2106 * advertise a zero window, then kill -9 the FTP client, wheee... 2107 * Note: timeout is always zero in such a case. 2108 */ 2109 if (unlikely(tcp_sk(sk)->repair)) { 2110 sk->sk_prot->disconnect(sk, 0); 2111 } else if (data_was_unread) { 2112 /* Unread data was tossed, zap the connection. */ 2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2114 tcp_set_state(sk, TCP_CLOSE); 2115 tcp_send_active_reset(sk, sk->sk_allocation); 2116 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2117 /* Check zero linger _after_ checking for unread data. */ 2118 sk->sk_prot->disconnect(sk, 0); 2119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2120 } else if (tcp_close_state(sk)) { 2121 /* We FIN if the application ate all the data before 2122 * zapping the connection. 2123 */ 2124 2125 /* RED-PEN. Formally speaking, we have broken TCP state 2126 * machine. State transitions: 2127 * 2128 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2129 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2130 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2131 * 2132 * are legal only when FIN has been sent (i.e. in window), 2133 * rather than queued out of window. Purists blame. 2134 * 2135 * F.e. "RFC state" is ESTABLISHED, 2136 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2137 * 2138 * The visible declinations are that sometimes 2139 * we enter time-wait state, when it is not required really 2140 * (harmless), do not send active resets, when they are 2141 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2142 * they look as CLOSING or LAST_ACK for Linux) 2143 * Probably, I missed some more holelets. 2144 * --ANK 2145 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2146 * in a single packet! (May consider it later but will 2147 * probably need API support or TCP_CORK SYN-ACK until 2148 * data is written and socket is closed.) 2149 */ 2150 tcp_send_fin(sk); 2151 } 2152 2153 sk_stream_wait_close(sk, timeout); 2154 2155 adjudge_to_death: 2156 state = sk->sk_state; 2157 sock_hold(sk); 2158 sock_orphan(sk); 2159 2160 /* It is the last release_sock in its life. It will remove backlog. */ 2161 release_sock(sk); 2162 2163 2164 /* Now socket is owned by kernel and we acquire BH lock 2165 to finish close. No need to check for user refs. 2166 */ 2167 local_bh_disable(); 2168 bh_lock_sock(sk); 2169 WARN_ON(sock_owned_by_user(sk)); 2170 2171 percpu_counter_inc(sk->sk_prot->orphan_count); 2172 2173 /* Have we already been destroyed by a softirq or backlog? */ 2174 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2175 goto out; 2176 2177 /* This is a (useful) BSD violating of the RFC. There is a 2178 * problem with TCP as specified in that the other end could 2179 * keep a socket open forever with no application left this end. 2180 * We use a 1 minute timeout (about the same as BSD) then kill 2181 * our end. If they send after that then tough - BUT: long enough 2182 * that we won't make the old 4*rto = almost no time - whoops 2183 * reset mistake. 2184 * 2185 * Nope, it was not mistake. It is really desired behaviour 2186 * f.e. on http servers, when such sockets are useless, but 2187 * consume significant resources. Let's do it with special 2188 * linger2 option. --ANK 2189 */ 2190 2191 if (sk->sk_state == TCP_FIN_WAIT2) { 2192 struct tcp_sock *tp = tcp_sk(sk); 2193 if (tp->linger2 < 0) { 2194 tcp_set_state(sk, TCP_CLOSE); 2195 tcp_send_active_reset(sk, GFP_ATOMIC); 2196 __NET_INC_STATS(sock_net(sk), 2197 LINUX_MIB_TCPABORTONLINGER); 2198 } else { 2199 const int tmo = tcp_fin_time(sk); 2200 2201 if (tmo > TCP_TIMEWAIT_LEN) { 2202 inet_csk_reset_keepalive_timer(sk, 2203 tmo - TCP_TIMEWAIT_LEN); 2204 } else { 2205 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2206 goto out; 2207 } 2208 } 2209 } 2210 if (sk->sk_state != TCP_CLOSE) { 2211 sk_mem_reclaim(sk); 2212 if (tcp_check_oom(sk, 0)) { 2213 tcp_set_state(sk, TCP_CLOSE); 2214 tcp_send_active_reset(sk, GFP_ATOMIC); 2215 __NET_INC_STATS(sock_net(sk), 2216 LINUX_MIB_TCPABORTONMEMORY); 2217 } 2218 } 2219 2220 if (sk->sk_state == TCP_CLOSE) { 2221 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2222 /* We could get here with a non-NULL req if the socket is 2223 * aborted (e.g., closed with unread data) before 3WHS 2224 * finishes. 2225 */ 2226 if (req) 2227 reqsk_fastopen_remove(sk, req, false); 2228 inet_csk_destroy_sock(sk); 2229 } 2230 /* Otherwise, socket is reprieved until protocol close. */ 2231 2232 out: 2233 bh_unlock_sock(sk); 2234 local_bh_enable(); 2235 sock_put(sk); 2236 } 2237 EXPORT_SYMBOL(tcp_close); 2238 2239 /* These states need RST on ABORT according to RFC793 */ 2240 2241 static inline bool tcp_need_reset(int state) 2242 { 2243 return (1 << state) & 2244 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2245 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2246 } 2247 2248 int tcp_disconnect(struct sock *sk, int flags) 2249 { 2250 struct inet_sock *inet = inet_sk(sk); 2251 struct inet_connection_sock *icsk = inet_csk(sk); 2252 struct tcp_sock *tp = tcp_sk(sk); 2253 int err = 0; 2254 int old_state = sk->sk_state; 2255 2256 if (old_state != TCP_CLOSE) 2257 tcp_set_state(sk, TCP_CLOSE); 2258 2259 /* ABORT function of RFC793 */ 2260 if (old_state == TCP_LISTEN) { 2261 inet_csk_listen_stop(sk); 2262 } else if (unlikely(tp->repair)) { 2263 sk->sk_err = ECONNABORTED; 2264 } else if (tcp_need_reset(old_state) || 2265 (tp->snd_nxt != tp->write_seq && 2266 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2267 /* The last check adjusts for discrepancy of Linux wrt. RFC 2268 * states 2269 */ 2270 tcp_send_active_reset(sk, gfp_any()); 2271 sk->sk_err = ECONNRESET; 2272 } else if (old_state == TCP_SYN_SENT) 2273 sk->sk_err = ECONNRESET; 2274 2275 tcp_clear_xmit_timers(sk); 2276 __skb_queue_purge(&sk->sk_receive_queue); 2277 tcp_write_queue_purge(sk); 2278 skb_rbtree_purge(&tp->out_of_order_queue); 2279 2280 inet->inet_dport = 0; 2281 2282 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2283 inet_reset_saddr(sk); 2284 2285 sk->sk_shutdown = 0; 2286 sock_reset_flag(sk, SOCK_DONE); 2287 tp->srtt_us = 0; 2288 tp->write_seq += tp->max_window + 2; 2289 if (tp->write_seq == 0) 2290 tp->write_seq = 1; 2291 icsk->icsk_backoff = 0; 2292 tp->snd_cwnd = 2; 2293 icsk->icsk_probes_out = 0; 2294 tp->packets_out = 0; 2295 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2296 tp->snd_cwnd_cnt = 0; 2297 tp->window_clamp = 0; 2298 tcp_set_ca_state(sk, TCP_CA_Open); 2299 tcp_clear_retrans(tp); 2300 inet_csk_delack_init(sk); 2301 tcp_init_send_head(sk); 2302 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2303 __sk_dst_reset(sk); 2304 2305 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2306 2307 sk->sk_error_report(sk); 2308 return err; 2309 } 2310 EXPORT_SYMBOL(tcp_disconnect); 2311 2312 static inline bool tcp_can_repair_sock(const struct sock *sk) 2313 { 2314 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2315 (sk->sk_state != TCP_LISTEN); 2316 } 2317 2318 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2319 { 2320 struct tcp_repair_window opt; 2321 2322 if (!tp->repair) 2323 return -EPERM; 2324 2325 if (len != sizeof(opt)) 2326 return -EINVAL; 2327 2328 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2329 return -EFAULT; 2330 2331 if (opt.max_window < opt.snd_wnd) 2332 return -EINVAL; 2333 2334 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2335 return -EINVAL; 2336 2337 if (after(opt.rcv_wup, tp->rcv_nxt)) 2338 return -EINVAL; 2339 2340 tp->snd_wl1 = opt.snd_wl1; 2341 tp->snd_wnd = opt.snd_wnd; 2342 tp->max_window = opt.max_window; 2343 2344 tp->rcv_wnd = opt.rcv_wnd; 2345 tp->rcv_wup = opt.rcv_wup; 2346 2347 return 0; 2348 } 2349 2350 static int tcp_repair_options_est(struct tcp_sock *tp, 2351 struct tcp_repair_opt __user *optbuf, unsigned int len) 2352 { 2353 struct tcp_repair_opt opt; 2354 2355 while (len >= sizeof(opt)) { 2356 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2357 return -EFAULT; 2358 2359 optbuf++; 2360 len -= sizeof(opt); 2361 2362 switch (opt.opt_code) { 2363 case TCPOPT_MSS: 2364 tp->rx_opt.mss_clamp = opt.opt_val; 2365 break; 2366 case TCPOPT_WINDOW: 2367 { 2368 u16 snd_wscale = opt.opt_val & 0xFFFF; 2369 u16 rcv_wscale = opt.opt_val >> 16; 2370 2371 if (snd_wscale > 14 || rcv_wscale > 14) 2372 return -EFBIG; 2373 2374 tp->rx_opt.snd_wscale = snd_wscale; 2375 tp->rx_opt.rcv_wscale = rcv_wscale; 2376 tp->rx_opt.wscale_ok = 1; 2377 } 2378 break; 2379 case TCPOPT_SACK_PERM: 2380 if (opt.opt_val != 0) 2381 return -EINVAL; 2382 2383 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2384 if (sysctl_tcp_fack) 2385 tcp_enable_fack(tp); 2386 break; 2387 case TCPOPT_TIMESTAMP: 2388 if (opt.opt_val != 0) 2389 return -EINVAL; 2390 2391 tp->rx_opt.tstamp_ok = 1; 2392 break; 2393 } 2394 } 2395 2396 return 0; 2397 } 2398 2399 /* 2400 * Socket option code for TCP. 2401 */ 2402 static int do_tcp_setsockopt(struct sock *sk, int level, 2403 int optname, char __user *optval, unsigned int optlen) 2404 { 2405 struct tcp_sock *tp = tcp_sk(sk); 2406 struct inet_connection_sock *icsk = inet_csk(sk); 2407 struct net *net = sock_net(sk); 2408 int val; 2409 int err = 0; 2410 2411 /* These are data/string values, all the others are ints */ 2412 switch (optname) { 2413 case TCP_CONGESTION: { 2414 char name[TCP_CA_NAME_MAX]; 2415 2416 if (optlen < 1) 2417 return -EINVAL; 2418 2419 val = strncpy_from_user(name, optval, 2420 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2421 if (val < 0) 2422 return -EFAULT; 2423 name[val] = 0; 2424 2425 lock_sock(sk); 2426 err = tcp_set_congestion_control(sk, name); 2427 release_sock(sk); 2428 return err; 2429 } 2430 default: 2431 /* fallthru */ 2432 break; 2433 } 2434 2435 if (optlen < sizeof(int)) 2436 return -EINVAL; 2437 2438 if (get_user(val, (int __user *)optval)) 2439 return -EFAULT; 2440 2441 lock_sock(sk); 2442 2443 switch (optname) { 2444 case TCP_MAXSEG: 2445 /* Values greater than interface MTU won't take effect. However 2446 * at the point when this call is done we typically don't yet 2447 * know which interface is going to be used */ 2448 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2449 err = -EINVAL; 2450 break; 2451 } 2452 tp->rx_opt.user_mss = val; 2453 break; 2454 2455 case TCP_NODELAY: 2456 if (val) { 2457 /* TCP_NODELAY is weaker than TCP_CORK, so that 2458 * this option on corked socket is remembered, but 2459 * it is not activated until cork is cleared. 2460 * 2461 * However, when TCP_NODELAY is set we make 2462 * an explicit push, which overrides even TCP_CORK 2463 * for currently queued segments. 2464 */ 2465 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2466 tcp_push_pending_frames(sk); 2467 } else { 2468 tp->nonagle &= ~TCP_NAGLE_OFF; 2469 } 2470 break; 2471 2472 case TCP_THIN_LINEAR_TIMEOUTS: 2473 if (val < 0 || val > 1) 2474 err = -EINVAL; 2475 else 2476 tp->thin_lto = val; 2477 break; 2478 2479 case TCP_THIN_DUPACK: 2480 if (val < 0 || val > 1) 2481 err = -EINVAL; 2482 else { 2483 tp->thin_dupack = val; 2484 if (tp->thin_dupack) 2485 tcp_disable_early_retrans(tp); 2486 } 2487 break; 2488 2489 case TCP_REPAIR: 2490 if (!tcp_can_repair_sock(sk)) 2491 err = -EPERM; 2492 else if (val == 1) { 2493 tp->repair = 1; 2494 sk->sk_reuse = SK_FORCE_REUSE; 2495 tp->repair_queue = TCP_NO_QUEUE; 2496 } else if (val == 0) { 2497 tp->repair = 0; 2498 sk->sk_reuse = SK_NO_REUSE; 2499 tcp_send_window_probe(sk); 2500 } else 2501 err = -EINVAL; 2502 2503 break; 2504 2505 case TCP_REPAIR_QUEUE: 2506 if (!tp->repair) 2507 err = -EPERM; 2508 else if (val < TCP_QUEUES_NR) 2509 tp->repair_queue = val; 2510 else 2511 err = -EINVAL; 2512 break; 2513 2514 case TCP_QUEUE_SEQ: 2515 if (sk->sk_state != TCP_CLOSE) 2516 err = -EPERM; 2517 else if (tp->repair_queue == TCP_SEND_QUEUE) 2518 tp->write_seq = val; 2519 else if (tp->repair_queue == TCP_RECV_QUEUE) 2520 tp->rcv_nxt = val; 2521 else 2522 err = -EINVAL; 2523 break; 2524 2525 case TCP_REPAIR_OPTIONS: 2526 if (!tp->repair) 2527 err = -EINVAL; 2528 else if (sk->sk_state == TCP_ESTABLISHED) 2529 err = tcp_repair_options_est(tp, 2530 (struct tcp_repair_opt __user *)optval, 2531 optlen); 2532 else 2533 err = -EPERM; 2534 break; 2535 2536 case TCP_CORK: 2537 /* When set indicates to always queue non-full frames. 2538 * Later the user clears this option and we transmit 2539 * any pending partial frames in the queue. This is 2540 * meant to be used alongside sendfile() to get properly 2541 * filled frames when the user (for example) must write 2542 * out headers with a write() call first and then use 2543 * sendfile to send out the data parts. 2544 * 2545 * TCP_CORK can be set together with TCP_NODELAY and it is 2546 * stronger than TCP_NODELAY. 2547 */ 2548 if (val) { 2549 tp->nonagle |= TCP_NAGLE_CORK; 2550 } else { 2551 tp->nonagle &= ~TCP_NAGLE_CORK; 2552 if (tp->nonagle&TCP_NAGLE_OFF) 2553 tp->nonagle |= TCP_NAGLE_PUSH; 2554 tcp_push_pending_frames(sk); 2555 } 2556 break; 2557 2558 case TCP_KEEPIDLE: 2559 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2560 err = -EINVAL; 2561 else { 2562 tp->keepalive_time = val * HZ; 2563 if (sock_flag(sk, SOCK_KEEPOPEN) && 2564 !((1 << sk->sk_state) & 2565 (TCPF_CLOSE | TCPF_LISTEN))) { 2566 u32 elapsed = keepalive_time_elapsed(tp); 2567 if (tp->keepalive_time > elapsed) 2568 elapsed = tp->keepalive_time - elapsed; 2569 else 2570 elapsed = 0; 2571 inet_csk_reset_keepalive_timer(sk, elapsed); 2572 } 2573 } 2574 break; 2575 case TCP_KEEPINTVL: 2576 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2577 err = -EINVAL; 2578 else 2579 tp->keepalive_intvl = val * HZ; 2580 break; 2581 case TCP_KEEPCNT: 2582 if (val < 1 || val > MAX_TCP_KEEPCNT) 2583 err = -EINVAL; 2584 else 2585 tp->keepalive_probes = val; 2586 break; 2587 case TCP_SYNCNT: 2588 if (val < 1 || val > MAX_TCP_SYNCNT) 2589 err = -EINVAL; 2590 else 2591 icsk->icsk_syn_retries = val; 2592 break; 2593 2594 case TCP_SAVE_SYN: 2595 if (val < 0 || val > 1) 2596 err = -EINVAL; 2597 else 2598 tp->save_syn = val; 2599 break; 2600 2601 case TCP_LINGER2: 2602 if (val < 0) 2603 tp->linger2 = -1; 2604 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2605 tp->linger2 = 0; 2606 else 2607 tp->linger2 = val * HZ; 2608 break; 2609 2610 case TCP_DEFER_ACCEPT: 2611 /* Translate value in seconds to number of retransmits */ 2612 icsk->icsk_accept_queue.rskq_defer_accept = 2613 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2614 TCP_RTO_MAX / HZ); 2615 break; 2616 2617 case TCP_WINDOW_CLAMP: 2618 if (!val) { 2619 if (sk->sk_state != TCP_CLOSE) { 2620 err = -EINVAL; 2621 break; 2622 } 2623 tp->window_clamp = 0; 2624 } else 2625 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2626 SOCK_MIN_RCVBUF / 2 : val; 2627 break; 2628 2629 case TCP_QUICKACK: 2630 if (!val) { 2631 icsk->icsk_ack.pingpong = 1; 2632 } else { 2633 icsk->icsk_ack.pingpong = 0; 2634 if ((1 << sk->sk_state) & 2635 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2636 inet_csk_ack_scheduled(sk)) { 2637 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2638 tcp_cleanup_rbuf(sk, 1); 2639 if (!(val & 1)) 2640 icsk->icsk_ack.pingpong = 1; 2641 } 2642 } 2643 break; 2644 2645 #ifdef CONFIG_TCP_MD5SIG 2646 case TCP_MD5SIG: 2647 /* Read the IP->Key mappings from userspace */ 2648 err = tp->af_specific->md5_parse(sk, optval, optlen); 2649 break; 2650 #endif 2651 case TCP_USER_TIMEOUT: 2652 /* Cap the max time in ms TCP will retry or probe the window 2653 * before giving up and aborting (ETIMEDOUT) a connection. 2654 */ 2655 if (val < 0) 2656 err = -EINVAL; 2657 else 2658 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2659 break; 2660 2661 case TCP_FASTOPEN: 2662 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2663 TCPF_LISTEN))) { 2664 tcp_fastopen_init_key_once(true); 2665 2666 fastopen_queue_tune(sk, val); 2667 } else { 2668 err = -EINVAL; 2669 } 2670 break; 2671 case TCP_TIMESTAMP: 2672 if (!tp->repair) 2673 err = -EPERM; 2674 else 2675 tp->tsoffset = val - tcp_time_stamp; 2676 break; 2677 case TCP_REPAIR_WINDOW: 2678 err = tcp_repair_set_window(tp, optval, optlen); 2679 break; 2680 case TCP_NOTSENT_LOWAT: 2681 tp->notsent_lowat = val; 2682 sk->sk_write_space(sk); 2683 break; 2684 default: 2685 err = -ENOPROTOOPT; 2686 break; 2687 } 2688 2689 release_sock(sk); 2690 return err; 2691 } 2692 2693 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2694 unsigned int optlen) 2695 { 2696 const struct inet_connection_sock *icsk = inet_csk(sk); 2697 2698 if (level != SOL_TCP) 2699 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2700 optval, optlen); 2701 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2702 } 2703 EXPORT_SYMBOL(tcp_setsockopt); 2704 2705 #ifdef CONFIG_COMPAT 2706 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2707 char __user *optval, unsigned int optlen) 2708 { 2709 if (level != SOL_TCP) 2710 return inet_csk_compat_setsockopt(sk, level, optname, 2711 optval, optlen); 2712 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2713 } 2714 EXPORT_SYMBOL(compat_tcp_setsockopt); 2715 #endif 2716 2717 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2718 struct tcp_info *info) 2719 { 2720 u64 stats[__TCP_CHRONO_MAX], total = 0; 2721 enum tcp_chrono i; 2722 2723 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2724 stats[i] = tp->chrono_stat[i - 1]; 2725 if (i == tp->chrono_type) 2726 stats[i] += tcp_time_stamp - tp->chrono_start; 2727 stats[i] *= USEC_PER_SEC / HZ; 2728 total += stats[i]; 2729 } 2730 2731 info->tcpi_busy_time = total; 2732 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2733 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2734 } 2735 2736 /* Return information about state of tcp endpoint in API format. */ 2737 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2738 { 2739 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2740 const struct inet_connection_sock *icsk = inet_csk(sk); 2741 u32 now = tcp_time_stamp, intv; 2742 u64 rate64; 2743 bool slow; 2744 u32 rate; 2745 2746 memset(info, 0, sizeof(*info)); 2747 if (sk->sk_type != SOCK_STREAM) 2748 return; 2749 2750 info->tcpi_state = sk_state_load(sk); 2751 2752 /* Report meaningful fields for all TCP states, including listeners */ 2753 rate = READ_ONCE(sk->sk_pacing_rate); 2754 rate64 = rate != ~0U ? rate : ~0ULL; 2755 info->tcpi_pacing_rate = rate64; 2756 2757 rate = READ_ONCE(sk->sk_max_pacing_rate); 2758 rate64 = rate != ~0U ? rate : ~0ULL; 2759 info->tcpi_max_pacing_rate = rate64; 2760 2761 info->tcpi_reordering = tp->reordering; 2762 info->tcpi_snd_cwnd = tp->snd_cwnd; 2763 2764 if (info->tcpi_state == TCP_LISTEN) { 2765 /* listeners aliased fields : 2766 * tcpi_unacked -> Number of children ready for accept() 2767 * tcpi_sacked -> max backlog 2768 */ 2769 info->tcpi_unacked = sk->sk_ack_backlog; 2770 info->tcpi_sacked = sk->sk_max_ack_backlog; 2771 return; 2772 } 2773 info->tcpi_ca_state = icsk->icsk_ca_state; 2774 info->tcpi_retransmits = icsk->icsk_retransmits; 2775 info->tcpi_probes = icsk->icsk_probes_out; 2776 info->tcpi_backoff = icsk->icsk_backoff; 2777 2778 if (tp->rx_opt.tstamp_ok) 2779 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2780 if (tcp_is_sack(tp)) 2781 info->tcpi_options |= TCPI_OPT_SACK; 2782 if (tp->rx_opt.wscale_ok) { 2783 info->tcpi_options |= TCPI_OPT_WSCALE; 2784 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2785 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2786 } 2787 2788 if (tp->ecn_flags & TCP_ECN_OK) 2789 info->tcpi_options |= TCPI_OPT_ECN; 2790 if (tp->ecn_flags & TCP_ECN_SEEN) 2791 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2792 if (tp->syn_data_acked) 2793 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2794 2795 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2796 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2797 info->tcpi_snd_mss = tp->mss_cache; 2798 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2799 2800 info->tcpi_unacked = tp->packets_out; 2801 info->tcpi_sacked = tp->sacked_out; 2802 2803 info->tcpi_lost = tp->lost_out; 2804 info->tcpi_retrans = tp->retrans_out; 2805 info->tcpi_fackets = tp->fackets_out; 2806 2807 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2808 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2809 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2810 2811 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2812 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2813 info->tcpi_rtt = tp->srtt_us >> 3; 2814 info->tcpi_rttvar = tp->mdev_us >> 2; 2815 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2816 info->tcpi_advmss = tp->advmss; 2817 2818 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2819 info->tcpi_rcv_space = tp->rcvq_space.space; 2820 2821 info->tcpi_total_retrans = tp->total_retrans; 2822 2823 slow = lock_sock_fast(sk); 2824 2825 info->tcpi_bytes_acked = tp->bytes_acked; 2826 info->tcpi_bytes_received = tp->bytes_received; 2827 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 2828 tcp_get_info_chrono_stats(tp, info); 2829 2830 unlock_sock_fast(sk, slow); 2831 2832 info->tcpi_segs_out = tp->segs_out; 2833 info->tcpi_segs_in = tp->segs_in; 2834 2835 info->tcpi_min_rtt = tcp_min_rtt(tp); 2836 info->tcpi_data_segs_in = tp->data_segs_in; 2837 info->tcpi_data_segs_out = tp->data_segs_out; 2838 2839 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 2840 rate = READ_ONCE(tp->rate_delivered); 2841 intv = READ_ONCE(tp->rate_interval_us); 2842 if (rate && intv) { 2843 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 2844 do_div(rate64, intv); 2845 info->tcpi_delivery_rate = rate64; 2846 } 2847 } 2848 EXPORT_SYMBOL_GPL(tcp_get_info); 2849 2850 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 2851 { 2852 const struct tcp_sock *tp = tcp_sk(sk); 2853 struct sk_buff *stats; 2854 struct tcp_info info; 2855 2856 stats = alloc_skb(3 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC); 2857 if (!stats) 2858 return NULL; 2859 2860 tcp_get_info_chrono_stats(tp, &info); 2861 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 2862 info.tcpi_busy_time, TCP_NLA_PAD); 2863 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 2864 info.tcpi_rwnd_limited, TCP_NLA_PAD); 2865 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 2866 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 2867 return stats; 2868 } 2869 2870 static int do_tcp_getsockopt(struct sock *sk, int level, 2871 int optname, char __user *optval, int __user *optlen) 2872 { 2873 struct inet_connection_sock *icsk = inet_csk(sk); 2874 struct tcp_sock *tp = tcp_sk(sk); 2875 struct net *net = sock_net(sk); 2876 int val, len; 2877 2878 if (get_user(len, optlen)) 2879 return -EFAULT; 2880 2881 len = min_t(unsigned int, len, sizeof(int)); 2882 2883 if (len < 0) 2884 return -EINVAL; 2885 2886 switch (optname) { 2887 case TCP_MAXSEG: 2888 val = tp->mss_cache; 2889 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2890 val = tp->rx_opt.user_mss; 2891 if (tp->repair) 2892 val = tp->rx_opt.mss_clamp; 2893 break; 2894 case TCP_NODELAY: 2895 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2896 break; 2897 case TCP_CORK: 2898 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2899 break; 2900 case TCP_KEEPIDLE: 2901 val = keepalive_time_when(tp) / HZ; 2902 break; 2903 case TCP_KEEPINTVL: 2904 val = keepalive_intvl_when(tp) / HZ; 2905 break; 2906 case TCP_KEEPCNT: 2907 val = keepalive_probes(tp); 2908 break; 2909 case TCP_SYNCNT: 2910 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2911 break; 2912 case TCP_LINGER2: 2913 val = tp->linger2; 2914 if (val >= 0) 2915 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2916 break; 2917 case TCP_DEFER_ACCEPT: 2918 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2919 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2920 break; 2921 case TCP_WINDOW_CLAMP: 2922 val = tp->window_clamp; 2923 break; 2924 case TCP_INFO: { 2925 struct tcp_info info; 2926 2927 if (get_user(len, optlen)) 2928 return -EFAULT; 2929 2930 tcp_get_info(sk, &info); 2931 2932 len = min_t(unsigned int, len, sizeof(info)); 2933 if (put_user(len, optlen)) 2934 return -EFAULT; 2935 if (copy_to_user(optval, &info, len)) 2936 return -EFAULT; 2937 return 0; 2938 } 2939 case TCP_CC_INFO: { 2940 const struct tcp_congestion_ops *ca_ops; 2941 union tcp_cc_info info; 2942 size_t sz = 0; 2943 int attr; 2944 2945 if (get_user(len, optlen)) 2946 return -EFAULT; 2947 2948 ca_ops = icsk->icsk_ca_ops; 2949 if (ca_ops && ca_ops->get_info) 2950 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2951 2952 len = min_t(unsigned int, len, sz); 2953 if (put_user(len, optlen)) 2954 return -EFAULT; 2955 if (copy_to_user(optval, &info, len)) 2956 return -EFAULT; 2957 return 0; 2958 } 2959 case TCP_QUICKACK: 2960 val = !icsk->icsk_ack.pingpong; 2961 break; 2962 2963 case TCP_CONGESTION: 2964 if (get_user(len, optlen)) 2965 return -EFAULT; 2966 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2967 if (put_user(len, optlen)) 2968 return -EFAULT; 2969 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2970 return -EFAULT; 2971 return 0; 2972 2973 case TCP_THIN_LINEAR_TIMEOUTS: 2974 val = tp->thin_lto; 2975 break; 2976 case TCP_THIN_DUPACK: 2977 val = tp->thin_dupack; 2978 break; 2979 2980 case TCP_REPAIR: 2981 val = tp->repair; 2982 break; 2983 2984 case TCP_REPAIR_QUEUE: 2985 if (tp->repair) 2986 val = tp->repair_queue; 2987 else 2988 return -EINVAL; 2989 break; 2990 2991 case TCP_REPAIR_WINDOW: { 2992 struct tcp_repair_window opt; 2993 2994 if (get_user(len, optlen)) 2995 return -EFAULT; 2996 2997 if (len != sizeof(opt)) 2998 return -EINVAL; 2999 3000 if (!tp->repair) 3001 return -EPERM; 3002 3003 opt.snd_wl1 = tp->snd_wl1; 3004 opt.snd_wnd = tp->snd_wnd; 3005 opt.max_window = tp->max_window; 3006 opt.rcv_wnd = tp->rcv_wnd; 3007 opt.rcv_wup = tp->rcv_wup; 3008 3009 if (copy_to_user(optval, &opt, len)) 3010 return -EFAULT; 3011 return 0; 3012 } 3013 case TCP_QUEUE_SEQ: 3014 if (tp->repair_queue == TCP_SEND_QUEUE) 3015 val = tp->write_seq; 3016 else if (tp->repair_queue == TCP_RECV_QUEUE) 3017 val = tp->rcv_nxt; 3018 else 3019 return -EINVAL; 3020 break; 3021 3022 case TCP_USER_TIMEOUT: 3023 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3024 break; 3025 3026 case TCP_FASTOPEN: 3027 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3028 break; 3029 3030 case TCP_TIMESTAMP: 3031 val = tcp_time_stamp + tp->tsoffset; 3032 break; 3033 case TCP_NOTSENT_LOWAT: 3034 val = tp->notsent_lowat; 3035 break; 3036 case TCP_SAVE_SYN: 3037 val = tp->save_syn; 3038 break; 3039 case TCP_SAVED_SYN: { 3040 if (get_user(len, optlen)) 3041 return -EFAULT; 3042 3043 lock_sock(sk); 3044 if (tp->saved_syn) { 3045 if (len < tp->saved_syn[0]) { 3046 if (put_user(tp->saved_syn[0], optlen)) { 3047 release_sock(sk); 3048 return -EFAULT; 3049 } 3050 release_sock(sk); 3051 return -EINVAL; 3052 } 3053 len = tp->saved_syn[0]; 3054 if (put_user(len, optlen)) { 3055 release_sock(sk); 3056 return -EFAULT; 3057 } 3058 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3059 release_sock(sk); 3060 return -EFAULT; 3061 } 3062 tcp_saved_syn_free(tp); 3063 release_sock(sk); 3064 } else { 3065 release_sock(sk); 3066 len = 0; 3067 if (put_user(len, optlen)) 3068 return -EFAULT; 3069 } 3070 return 0; 3071 } 3072 default: 3073 return -ENOPROTOOPT; 3074 } 3075 3076 if (put_user(len, optlen)) 3077 return -EFAULT; 3078 if (copy_to_user(optval, &val, len)) 3079 return -EFAULT; 3080 return 0; 3081 } 3082 3083 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3084 int __user *optlen) 3085 { 3086 struct inet_connection_sock *icsk = inet_csk(sk); 3087 3088 if (level != SOL_TCP) 3089 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3090 optval, optlen); 3091 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3092 } 3093 EXPORT_SYMBOL(tcp_getsockopt); 3094 3095 #ifdef CONFIG_COMPAT 3096 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3097 char __user *optval, int __user *optlen) 3098 { 3099 if (level != SOL_TCP) 3100 return inet_csk_compat_getsockopt(sk, level, optname, 3101 optval, optlen); 3102 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3103 } 3104 EXPORT_SYMBOL(compat_tcp_getsockopt); 3105 #endif 3106 3107 #ifdef CONFIG_TCP_MD5SIG 3108 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3109 static DEFINE_MUTEX(tcp_md5sig_mutex); 3110 static bool tcp_md5sig_pool_populated = false; 3111 3112 static void __tcp_alloc_md5sig_pool(void) 3113 { 3114 struct crypto_ahash *hash; 3115 int cpu; 3116 3117 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3118 if (IS_ERR(hash)) 3119 return; 3120 3121 for_each_possible_cpu(cpu) { 3122 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3123 struct ahash_request *req; 3124 3125 if (!scratch) { 3126 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3127 sizeof(struct tcphdr), 3128 GFP_KERNEL, 3129 cpu_to_node(cpu)); 3130 if (!scratch) 3131 return; 3132 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3133 } 3134 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3135 continue; 3136 3137 req = ahash_request_alloc(hash, GFP_KERNEL); 3138 if (!req) 3139 return; 3140 3141 ahash_request_set_callback(req, 0, NULL, NULL); 3142 3143 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3144 } 3145 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3146 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3147 */ 3148 smp_wmb(); 3149 tcp_md5sig_pool_populated = true; 3150 } 3151 3152 bool tcp_alloc_md5sig_pool(void) 3153 { 3154 if (unlikely(!tcp_md5sig_pool_populated)) { 3155 mutex_lock(&tcp_md5sig_mutex); 3156 3157 if (!tcp_md5sig_pool_populated) 3158 __tcp_alloc_md5sig_pool(); 3159 3160 mutex_unlock(&tcp_md5sig_mutex); 3161 } 3162 return tcp_md5sig_pool_populated; 3163 } 3164 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3165 3166 3167 /** 3168 * tcp_get_md5sig_pool - get md5sig_pool for this user 3169 * 3170 * We use percpu structure, so if we succeed, we exit with preemption 3171 * and BH disabled, to make sure another thread or softirq handling 3172 * wont try to get same context. 3173 */ 3174 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3175 { 3176 local_bh_disable(); 3177 3178 if (tcp_md5sig_pool_populated) { 3179 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3180 smp_rmb(); 3181 return this_cpu_ptr(&tcp_md5sig_pool); 3182 } 3183 local_bh_enable(); 3184 return NULL; 3185 } 3186 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3187 3188 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3189 const struct sk_buff *skb, unsigned int header_len) 3190 { 3191 struct scatterlist sg; 3192 const struct tcphdr *tp = tcp_hdr(skb); 3193 struct ahash_request *req = hp->md5_req; 3194 unsigned int i; 3195 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3196 skb_headlen(skb) - header_len : 0; 3197 const struct skb_shared_info *shi = skb_shinfo(skb); 3198 struct sk_buff *frag_iter; 3199 3200 sg_init_table(&sg, 1); 3201 3202 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3203 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3204 if (crypto_ahash_update(req)) 3205 return 1; 3206 3207 for (i = 0; i < shi->nr_frags; ++i) { 3208 const struct skb_frag_struct *f = &shi->frags[i]; 3209 unsigned int offset = f->page_offset; 3210 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3211 3212 sg_set_page(&sg, page, skb_frag_size(f), 3213 offset_in_page(offset)); 3214 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3215 if (crypto_ahash_update(req)) 3216 return 1; 3217 } 3218 3219 skb_walk_frags(skb, frag_iter) 3220 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3221 return 1; 3222 3223 return 0; 3224 } 3225 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3226 3227 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3228 { 3229 struct scatterlist sg; 3230 3231 sg_init_one(&sg, key->key, key->keylen); 3232 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3233 return crypto_ahash_update(hp->md5_req); 3234 } 3235 EXPORT_SYMBOL(tcp_md5_hash_key); 3236 3237 #endif 3238 3239 void tcp_done(struct sock *sk) 3240 { 3241 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3242 3243 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3244 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3245 3246 tcp_set_state(sk, TCP_CLOSE); 3247 tcp_clear_xmit_timers(sk); 3248 if (req) 3249 reqsk_fastopen_remove(sk, req, false); 3250 3251 sk->sk_shutdown = SHUTDOWN_MASK; 3252 3253 if (!sock_flag(sk, SOCK_DEAD)) 3254 sk->sk_state_change(sk); 3255 else 3256 inet_csk_destroy_sock(sk); 3257 } 3258 EXPORT_SYMBOL_GPL(tcp_done); 3259 3260 int tcp_abort(struct sock *sk, int err) 3261 { 3262 if (!sk_fullsock(sk)) { 3263 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3264 struct request_sock *req = inet_reqsk(sk); 3265 3266 local_bh_disable(); 3267 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3268 req); 3269 local_bh_enable(); 3270 return 0; 3271 } 3272 return -EOPNOTSUPP; 3273 } 3274 3275 /* Don't race with userspace socket closes such as tcp_close. */ 3276 lock_sock(sk); 3277 3278 if (sk->sk_state == TCP_LISTEN) { 3279 tcp_set_state(sk, TCP_CLOSE); 3280 inet_csk_listen_stop(sk); 3281 } 3282 3283 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3284 local_bh_disable(); 3285 bh_lock_sock(sk); 3286 3287 if (!sock_flag(sk, SOCK_DEAD)) { 3288 sk->sk_err = err; 3289 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3290 smp_wmb(); 3291 sk->sk_error_report(sk); 3292 if (tcp_need_reset(sk->sk_state)) 3293 tcp_send_active_reset(sk, GFP_ATOMIC); 3294 tcp_done(sk); 3295 } 3296 3297 bh_unlock_sock(sk); 3298 local_bh_enable(); 3299 release_sock(sk); 3300 return 0; 3301 } 3302 EXPORT_SYMBOL_GPL(tcp_abort); 3303 3304 extern struct tcp_congestion_ops tcp_reno; 3305 3306 static __initdata unsigned long thash_entries; 3307 static int __init set_thash_entries(char *str) 3308 { 3309 ssize_t ret; 3310 3311 if (!str) 3312 return 0; 3313 3314 ret = kstrtoul(str, 0, &thash_entries); 3315 if (ret) 3316 return 0; 3317 3318 return 1; 3319 } 3320 __setup("thash_entries=", set_thash_entries); 3321 3322 static void __init tcp_init_mem(void) 3323 { 3324 unsigned long limit = nr_free_buffer_pages() / 16; 3325 3326 limit = max(limit, 128UL); 3327 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3328 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3329 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3330 } 3331 3332 void __init tcp_init(void) 3333 { 3334 int max_rshare, max_wshare, cnt; 3335 unsigned long limit; 3336 unsigned int i; 3337 3338 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3339 FIELD_SIZEOF(struct sk_buff, cb)); 3340 3341 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3342 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3343 tcp_hashinfo.bind_bucket_cachep = 3344 kmem_cache_create("tcp_bind_bucket", 3345 sizeof(struct inet_bind_bucket), 0, 3346 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3347 3348 /* Size and allocate the main established and bind bucket 3349 * hash tables. 3350 * 3351 * The methodology is similar to that of the buffer cache. 3352 */ 3353 tcp_hashinfo.ehash = 3354 alloc_large_system_hash("TCP established", 3355 sizeof(struct inet_ehash_bucket), 3356 thash_entries, 3357 17, /* one slot per 128 KB of memory */ 3358 0, 3359 NULL, 3360 &tcp_hashinfo.ehash_mask, 3361 0, 3362 thash_entries ? 0 : 512 * 1024); 3363 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3364 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3365 3366 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3367 panic("TCP: failed to alloc ehash_locks"); 3368 tcp_hashinfo.bhash = 3369 alloc_large_system_hash("TCP bind", 3370 sizeof(struct inet_bind_hashbucket), 3371 tcp_hashinfo.ehash_mask + 1, 3372 17, /* one slot per 128 KB of memory */ 3373 0, 3374 &tcp_hashinfo.bhash_size, 3375 NULL, 3376 0, 3377 64 * 1024); 3378 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3379 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3380 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3381 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3382 } 3383 3384 3385 cnt = tcp_hashinfo.ehash_mask + 1; 3386 3387 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3388 sysctl_tcp_max_orphans = cnt / 2; 3389 sysctl_max_syn_backlog = max(128, cnt / 256); 3390 3391 tcp_init_mem(); 3392 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3393 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3394 max_wshare = min(4UL*1024*1024, limit); 3395 max_rshare = min(6UL*1024*1024, limit); 3396 3397 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3398 sysctl_tcp_wmem[1] = 16*1024; 3399 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3400 3401 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3402 sysctl_tcp_rmem[1] = 87380; 3403 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3404 3405 pr_info("Hash tables configured (established %u bind %u)\n", 3406 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3407 3408 tcp_metrics_init(); 3409 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3410 tcp_tasklet_init(); 3411 } 3412