1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 struct percpu_counter tcp_orphan_count; 284 EXPORT_SYMBOL_GPL(tcp_orphan_count); 285 286 long sysctl_tcp_mem[3] __read_mostly; 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 290 EXPORT_SYMBOL(tcp_memory_allocated); 291 292 #if IS_ENABLED(CONFIG_SMC) 293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 294 EXPORT_SYMBOL(tcp_have_smc); 295 #endif 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 unsigned long tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 320 321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 322 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 323 324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 unsigned long val; 329 330 if (READ_ONCE(tcp_memory_pressure)) 331 return; 332 val = jiffies; 333 334 if (!val) 335 val--; 336 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 338 } 339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 340 341 void tcp_leave_memory_pressure(struct sock *sk) 342 { 343 unsigned long val; 344 345 if (!READ_ONCE(tcp_memory_pressure)) 346 return; 347 val = xchg(&tcp_memory_pressure, 0); 348 if (val) 349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 350 jiffies_to_msecs(jiffies - val)); 351 } 352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 353 354 /* Convert seconds to retransmits based on initial and max timeout */ 355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 356 { 357 u8 res = 0; 358 359 if (seconds > 0) { 360 int period = timeout; 361 362 res = 1; 363 while (seconds > period && res < 255) { 364 res++; 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return res; 372 } 373 374 /* Convert retransmits to seconds based on initial and max timeout */ 375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 376 { 377 int period = 0; 378 379 if (retrans > 0) { 380 period = timeout; 381 while (--retrans) { 382 timeout <<= 1; 383 if (timeout > rto_max) 384 timeout = rto_max; 385 period += timeout; 386 } 387 } 388 return period; 389 } 390 391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 392 { 393 u32 rate = READ_ONCE(tp->rate_delivered); 394 u32 intv = READ_ONCE(tp->rate_interval_us); 395 u64 rate64 = 0; 396 397 if (rate && intv) { 398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 399 do_div(rate64, intv); 400 } 401 return rate64; 402 } 403 404 /* Address-family independent initialization for a tcp_sock. 405 * 406 * NOTE: A lot of things set to zero explicitly by call to 407 * sk_alloc() so need not be done here. 408 */ 409 void tcp_init_sock(struct sock *sk) 410 { 411 struct inet_connection_sock *icsk = inet_csk(sk); 412 struct tcp_sock *tp = tcp_sk(sk); 413 414 tp->out_of_order_queue = RB_ROOT; 415 sk->tcp_rtx_queue = RB_ROOT; 416 tcp_init_xmit_timers(sk); 417 INIT_LIST_HEAD(&tp->tsq_node); 418 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 419 420 icsk->icsk_rto = TCP_TIMEOUT_INIT; 421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 423 424 /* So many TCP implementations out there (incorrectly) count the 425 * initial SYN frame in their delayed-ACK and congestion control 426 * algorithms that we must have the following bandaid to talk 427 * efficiently to them. -DaveM 428 */ 429 tp->snd_cwnd = TCP_INIT_CWND; 430 431 /* There's a bubble in the pipe until at least the first ACK. */ 432 tp->app_limited = ~0U; 433 434 /* See draft-stevens-tcpca-spec-01 for discussion of the 435 * initialization of these values. 436 */ 437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 438 tp->snd_cwnd_clamp = ~0; 439 tp->mss_cache = TCP_MSS_DEFAULT; 440 441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 442 tcp_assign_congestion_control(sk); 443 444 tp->tsoffset = 0; 445 tp->rack.reo_wnd_steps = 1; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 453 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 461 { 462 struct sk_buff *skb = tcp_write_queue_tail(sk); 463 464 if (tsflags && skb) { 465 struct skb_shared_info *shinfo = skb_shinfo(skb); 466 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 467 468 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 469 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 470 tcb->txstamp_ack = 1; 471 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 472 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 473 } 474 } 475 476 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 477 int target, struct sock *sk) 478 { 479 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) || 480 (sk->sk_prot->stream_memory_read ? 481 sk->sk_prot->stream_memory_read(sk) : false); 482 } 483 484 /* 485 * Wait for a TCP event. 486 * 487 * Note that we don't need to lock the socket, as the upper poll layers 488 * take care of normal races (between the test and the event) and we don't 489 * go look at any of the socket buffers directly. 490 */ 491 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 492 { 493 __poll_t mask; 494 struct sock *sk = sock->sk; 495 const struct tcp_sock *tp = tcp_sk(sk); 496 int state; 497 498 sock_poll_wait(file, sock, wait); 499 500 state = inet_sk_state_load(sk); 501 if (state == TCP_LISTEN) 502 return inet_csk_listen_poll(sk); 503 504 /* Socket is not locked. We are protected from async events 505 * by poll logic and correct handling of state changes 506 * made by other threads is impossible in any case. 507 */ 508 509 mask = 0; 510 511 /* 512 * EPOLLHUP is certainly not done right. But poll() doesn't 513 * have a notion of HUP in just one direction, and for a 514 * socket the read side is more interesting. 515 * 516 * Some poll() documentation says that EPOLLHUP is incompatible 517 * with the EPOLLOUT/POLLWR flags, so somebody should check this 518 * all. But careful, it tends to be safer to return too many 519 * bits than too few, and you can easily break real applications 520 * if you don't tell them that something has hung up! 521 * 522 * Check-me. 523 * 524 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 525 * our fs/select.c). It means that after we received EOF, 526 * poll always returns immediately, making impossible poll() on write() 527 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 528 * if and only if shutdown has been made in both directions. 529 * Actually, it is interesting to look how Solaris and DUX 530 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 531 * then we could set it on SND_SHUTDOWN. BTW examples given 532 * in Stevens' books assume exactly this behaviour, it explains 533 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 534 * 535 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 536 * blocking on fresh not-connected or disconnected socket. --ANK 537 */ 538 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 539 mask |= EPOLLHUP; 540 if (sk->sk_shutdown & RCV_SHUTDOWN) 541 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 542 543 /* Connected or passive Fast Open socket? */ 544 if (state != TCP_SYN_SENT && 545 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 546 int target = sock_rcvlowat(sk, 0, INT_MAX); 547 548 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 549 !sock_flag(sk, SOCK_URGINLINE) && 550 tp->urg_data) 551 target++; 552 553 if (tcp_stream_is_readable(tp, target, sk)) 554 mask |= EPOLLIN | EPOLLRDNORM; 555 556 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 557 if (sk_stream_is_writeable(sk)) { 558 mask |= EPOLLOUT | EPOLLWRNORM; 559 } else { /* send SIGIO later */ 560 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 561 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 562 563 /* Race breaker. If space is freed after 564 * wspace test but before the flags are set, 565 * IO signal will be lost. Memory barrier 566 * pairs with the input side. 567 */ 568 smp_mb__after_atomic(); 569 if (sk_stream_is_writeable(sk)) 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } 572 } else 573 mask |= EPOLLOUT | EPOLLWRNORM; 574 575 if (tp->urg_data & TCP_URG_VALID) 576 mask |= EPOLLPRI; 577 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 578 /* Active TCP fastopen socket with defer_connect 579 * Return EPOLLOUT so application can call write() 580 * in order for kernel to generate SYN+data 581 */ 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 585 smp_rmb(); 586 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 587 mask |= EPOLLERR; 588 589 return mask; 590 } 591 EXPORT_SYMBOL(tcp_poll); 592 593 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 594 { 595 struct tcp_sock *tp = tcp_sk(sk); 596 int answ; 597 bool slow; 598 599 switch (cmd) { 600 case SIOCINQ: 601 if (sk->sk_state == TCP_LISTEN) 602 return -EINVAL; 603 604 slow = lock_sock_fast(sk); 605 answ = tcp_inq(sk); 606 unlock_sock_fast(sk, slow); 607 break; 608 case SIOCATMARK: 609 answ = tp->urg_data && 610 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 611 break; 612 case SIOCOUTQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 617 answ = 0; 618 else 619 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 620 break; 621 case SIOCOUTQNSD: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = READ_ONCE(tp->write_seq) - 629 READ_ONCE(tp->snd_nxt); 630 break; 631 default: 632 return -ENOIOCTLCMD; 633 } 634 635 return put_user(answ, (int __user *)arg); 636 } 637 EXPORT_SYMBOL(tcp_ioctl); 638 639 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 640 { 641 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 642 tp->pushed_seq = tp->write_seq; 643 } 644 645 static inline bool forced_push(const struct tcp_sock *tp) 646 { 647 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 648 } 649 650 static void skb_entail(struct sock *sk, struct sk_buff *skb) 651 { 652 struct tcp_sock *tp = tcp_sk(sk); 653 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 654 655 skb->csum = 0; 656 tcb->seq = tcb->end_seq = tp->write_seq; 657 tcb->tcp_flags = TCPHDR_ACK; 658 tcb->sacked = 0; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 if (likely(!size)) { 859 skb = sk->sk_tx_skb_cache; 860 if (skb) { 861 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 862 sk->sk_tx_skb_cache = NULL; 863 pskb_trim(skb, 0); 864 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 865 skb_shinfo(skb)->tx_flags = 0; 866 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 867 return skb; 868 } 869 } 870 /* The TCP header must be at least 32-bit aligned. */ 871 size = ALIGN(size, 4); 872 873 if (unlikely(tcp_under_memory_pressure(sk))) 874 sk_mem_reclaim_partial(sk); 875 876 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 877 if (likely(skb)) { 878 bool mem_scheduled; 879 880 if (force_schedule) { 881 mem_scheduled = true; 882 sk_forced_mem_schedule(sk, skb->truesize); 883 } else { 884 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 885 } 886 if (likely(mem_scheduled)) { 887 skb_reserve(skb, sk->sk_prot->max_header); 888 /* 889 * Make sure that we have exactly size bytes 890 * available to the caller, no more, no less. 891 */ 892 skb->reserved_tailroom = skb->end - skb->tail - size; 893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 894 return skb; 895 } 896 __kfree_skb(skb); 897 } else { 898 sk->sk_prot->enter_memory_pressure(sk); 899 sk_stream_moderate_sndbuf(sk); 900 } 901 return NULL; 902 } 903 904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 905 int large_allowed) 906 { 907 struct tcp_sock *tp = tcp_sk(sk); 908 u32 new_size_goal, size_goal; 909 910 if (!large_allowed) 911 return mss_now; 912 913 /* Note : tcp_tso_autosize() will eventually split this later */ 914 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 915 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 916 917 /* We try hard to avoid divides here */ 918 size_goal = tp->gso_segs * mss_now; 919 if (unlikely(new_size_goal < size_goal || 920 new_size_goal >= size_goal + mss_now)) { 921 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 922 sk->sk_gso_max_segs); 923 size_goal = tp->gso_segs * mss_now; 924 } 925 926 return max(size_goal, mss_now); 927 } 928 929 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 930 { 931 int mss_now; 932 933 mss_now = tcp_current_mss(sk); 934 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 935 936 return mss_now; 937 } 938 939 /* In some cases, both sendpage() and sendmsg() could have added 940 * an skb to the write queue, but failed adding payload on it. 941 * We need to remove it to consume less memory, but more 942 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 943 * users. 944 */ 945 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 946 { 947 if (skb && !skb->len) { 948 tcp_unlink_write_queue(skb, sk); 949 if (tcp_write_queue_empty(sk)) 950 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 951 sk_wmem_free_skb(sk, skb); 952 } 953 } 954 955 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 956 size_t size, int flags) 957 { 958 struct tcp_sock *tp = tcp_sk(sk); 959 int mss_now, size_goal; 960 int err; 961 ssize_t copied; 962 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 963 964 if (IS_ENABLED(CONFIG_DEBUG_VM) && 965 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 966 return -EINVAL; 967 968 /* Wait for a connection to finish. One exception is TCP Fast Open 969 * (passive side) where data is allowed to be sent before a connection 970 * is fully established. 971 */ 972 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 973 !tcp_passive_fastopen(sk)) { 974 err = sk_stream_wait_connect(sk, &timeo); 975 if (err != 0) 976 goto out_err; 977 } 978 979 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 980 981 mss_now = tcp_send_mss(sk, &size_goal, flags); 982 copied = 0; 983 984 err = -EPIPE; 985 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 986 goto out_err; 987 988 while (size > 0) { 989 struct sk_buff *skb = tcp_write_queue_tail(sk); 990 int copy, i; 991 bool can_coalesce; 992 993 if (!skb || (copy = size_goal - skb->len) <= 0 || 994 !tcp_skb_can_collapse_to(skb)) { 995 new_segment: 996 if (!sk_stream_memory_free(sk)) 997 goto wait_for_sndbuf; 998 999 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1000 tcp_rtx_and_write_queues_empty(sk)); 1001 if (!skb) 1002 goto wait_for_memory; 1003 1004 #ifdef CONFIG_TLS_DEVICE 1005 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1006 #endif 1007 skb_entail(sk, skb); 1008 copy = size_goal; 1009 } 1010 1011 if (copy > size) 1012 copy = size; 1013 1014 i = skb_shinfo(skb)->nr_frags; 1015 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1016 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1017 tcp_mark_push(tp, skb); 1018 goto new_segment; 1019 } 1020 if (!sk_wmem_schedule(sk, copy)) 1021 goto wait_for_memory; 1022 1023 if (can_coalesce) { 1024 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1025 } else { 1026 get_page(page); 1027 skb_fill_page_desc(skb, i, page, offset, copy); 1028 } 1029 1030 if (!(flags & MSG_NO_SHARED_FRAGS)) 1031 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1032 1033 skb->len += copy; 1034 skb->data_len += copy; 1035 skb->truesize += copy; 1036 sk_wmem_queued_add(sk, copy); 1037 sk_mem_charge(sk, copy); 1038 skb->ip_summed = CHECKSUM_PARTIAL; 1039 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1040 TCP_SKB_CB(skb)->end_seq += copy; 1041 tcp_skb_pcount_set(skb, 0); 1042 1043 if (!copied) 1044 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1045 1046 copied += copy; 1047 offset += copy; 1048 size -= copy; 1049 if (!size) 1050 goto out; 1051 1052 if (skb->len < size_goal || (flags & MSG_OOB)) 1053 continue; 1054 1055 if (forced_push(tp)) { 1056 tcp_mark_push(tp, skb); 1057 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1058 } else if (skb == tcp_send_head(sk)) 1059 tcp_push_one(sk, mss_now); 1060 continue; 1061 1062 wait_for_sndbuf: 1063 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1064 wait_for_memory: 1065 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1066 TCP_NAGLE_PUSH, size_goal); 1067 1068 err = sk_stream_wait_memory(sk, &timeo); 1069 if (err != 0) 1070 goto do_error; 1071 1072 mss_now = tcp_send_mss(sk, &size_goal, flags); 1073 } 1074 1075 out: 1076 if (copied) { 1077 tcp_tx_timestamp(sk, sk->sk_tsflags); 1078 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1079 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1080 } 1081 return copied; 1082 1083 do_error: 1084 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1085 if (copied) 1086 goto out; 1087 out_err: 1088 /* make sure we wake any epoll edge trigger waiter */ 1089 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1090 sk->sk_write_space(sk); 1091 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1092 } 1093 return sk_stream_error(sk, flags, err); 1094 } 1095 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1096 1097 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1098 size_t size, int flags) 1099 { 1100 if (!(sk->sk_route_caps & NETIF_F_SG)) 1101 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1102 1103 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1104 1105 return do_tcp_sendpages(sk, page, offset, size, flags); 1106 } 1107 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1108 1109 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1110 size_t size, int flags) 1111 { 1112 int ret; 1113 1114 lock_sock(sk); 1115 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1116 release_sock(sk); 1117 1118 return ret; 1119 } 1120 EXPORT_SYMBOL(tcp_sendpage); 1121 1122 void tcp_free_fastopen_req(struct tcp_sock *tp) 1123 { 1124 if (tp->fastopen_req) { 1125 kfree(tp->fastopen_req); 1126 tp->fastopen_req = NULL; 1127 } 1128 } 1129 1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1131 int *copied, size_t size, 1132 struct ubuf_info *uarg) 1133 { 1134 struct tcp_sock *tp = tcp_sk(sk); 1135 struct inet_sock *inet = inet_sk(sk); 1136 struct sockaddr *uaddr = msg->msg_name; 1137 int err, flags; 1138 1139 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1140 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1141 uaddr->sa_family == AF_UNSPEC)) 1142 return -EOPNOTSUPP; 1143 if (tp->fastopen_req) 1144 return -EALREADY; /* Another Fast Open is in progress */ 1145 1146 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1147 sk->sk_allocation); 1148 if (unlikely(!tp->fastopen_req)) 1149 return -ENOBUFS; 1150 tp->fastopen_req->data = msg; 1151 tp->fastopen_req->size = size; 1152 tp->fastopen_req->uarg = uarg; 1153 1154 if (inet->defer_connect) { 1155 err = tcp_connect(sk); 1156 /* Same failure procedure as in tcp_v4/6_connect */ 1157 if (err) { 1158 tcp_set_state(sk, TCP_CLOSE); 1159 inet->inet_dport = 0; 1160 sk->sk_route_caps = 0; 1161 } 1162 } 1163 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1164 err = __inet_stream_connect(sk->sk_socket, uaddr, 1165 msg->msg_namelen, flags, 1); 1166 /* fastopen_req could already be freed in __inet_stream_connect 1167 * if the connection times out or gets rst 1168 */ 1169 if (tp->fastopen_req) { 1170 *copied = tp->fastopen_req->copied; 1171 tcp_free_fastopen_req(tp); 1172 inet->defer_connect = 0; 1173 } 1174 return err; 1175 } 1176 1177 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 struct ubuf_info *uarg = NULL; 1181 struct sk_buff *skb; 1182 struct sockcm_cookie sockc; 1183 int flags, err, copied = 0; 1184 int mss_now = 0, size_goal, copied_syn = 0; 1185 int process_backlog = 0; 1186 bool zc = false; 1187 long timeo; 1188 1189 flags = msg->msg_flags; 1190 1191 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1192 skb = tcp_write_queue_tail(sk); 1193 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1194 if (!uarg) { 1195 err = -ENOBUFS; 1196 goto out_err; 1197 } 1198 1199 zc = sk->sk_route_caps & NETIF_F_SG; 1200 if (!zc) 1201 uarg->zerocopy = 0; 1202 } 1203 1204 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1205 !tp->repair) { 1206 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1207 if (err == -EINPROGRESS && copied_syn > 0) 1208 goto out; 1209 else if (err) 1210 goto out_err; 1211 } 1212 1213 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1214 1215 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1216 1217 /* Wait for a connection to finish. One exception is TCP Fast Open 1218 * (passive side) where data is allowed to be sent before a connection 1219 * is fully established. 1220 */ 1221 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1222 !tcp_passive_fastopen(sk)) { 1223 err = sk_stream_wait_connect(sk, &timeo); 1224 if (err != 0) 1225 goto do_error; 1226 } 1227 1228 if (unlikely(tp->repair)) { 1229 if (tp->repair_queue == TCP_RECV_QUEUE) { 1230 copied = tcp_send_rcvq(sk, msg, size); 1231 goto out_nopush; 1232 } 1233 1234 err = -EINVAL; 1235 if (tp->repair_queue == TCP_NO_QUEUE) 1236 goto out_err; 1237 1238 /* 'common' sending to sendq */ 1239 } 1240 1241 sockcm_init(&sockc, sk); 1242 if (msg->msg_controllen) { 1243 err = sock_cmsg_send(sk, msg, &sockc); 1244 if (unlikely(err)) { 1245 err = -EINVAL; 1246 goto out_err; 1247 } 1248 } 1249 1250 /* This should be in poll */ 1251 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1252 1253 /* Ok commence sending. */ 1254 copied = 0; 1255 1256 restart: 1257 mss_now = tcp_send_mss(sk, &size_goal, flags); 1258 1259 err = -EPIPE; 1260 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1261 goto do_error; 1262 1263 while (msg_data_left(msg)) { 1264 int copy = 0; 1265 1266 skb = tcp_write_queue_tail(sk); 1267 if (skb) 1268 copy = size_goal - skb->len; 1269 1270 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1271 bool first_skb; 1272 1273 new_segment: 1274 if (!sk_stream_memory_free(sk)) 1275 goto wait_for_sndbuf; 1276 1277 if (unlikely(process_backlog >= 16)) { 1278 process_backlog = 0; 1279 if (sk_flush_backlog(sk)) 1280 goto restart; 1281 } 1282 first_skb = tcp_rtx_and_write_queues_empty(sk); 1283 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1284 first_skb); 1285 if (!skb) 1286 goto wait_for_memory; 1287 1288 process_backlog++; 1289 skb->ip_summed = CHECKSUM_PARTIAL; 1290 1291 skb_entail(sk, skb); 1292 copy = size_goal; 1293 1294 /* All packets are restored as if they have 1295 * already been sent. skb_mstamp_ns isn't set to 1296 * avoid wrong rtt estimation. 1297 */ 1298 if (tp->repair) 1299 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1300 } 1301 1302 /* Try to append data to the end of skb. */ 1303 if (copy > msg_data_left(msg)) 1304 copy = msg_data_left(msg); 1305 1306 /* Where to copy to? */ 1307 if (skb_availroom(skb) > 0 && !zc) { 1308 /* We have some space in skb head. Superb! */ 1309 copy = min_t(int, copy, skb_availroom(skb)); 1310 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1311 if (err) 1312 goto do_fault; 1313 } else if (!zc) { 1314 bool merge = true; 1315 int i = skb_shinfo(skb)->nr_frags; 1316 struct page_frag *pfrag = sk_page_frag(sk); 1317 1318 if (!sk_page_frag_refill(sk, pfrag)) 1319 goto wait_for_memory; 1320 1321 if (!skb_can_coalesce(skb, i, pfrag->page, 1322 pfrag->offset)) { 1323 if (i >= sysctl_max_skb_frags) { 1324 tcp_mark_push(tp, skb); 1325 goto new_segment; 1326 } 1327 merge = false; 1328 } 1329 1330 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1331 1332 if (!sk_wmem_schedule(sk, copy)) 1333 goto wait_for_memory; 1334 1335 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1336 pfrag->page, 1337 pfrag->offset, 1338 copy); 1339 if (err) 1340 goto do_error; 1341 1342 /* Update the skb. */ 1343 if (merge) { 1344 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1345 } else { 1346 skb_fill_page_desc(skb, i, pfrag->page, 1347 pfrag->offset, copy); 1348 page_ref_inc(pfrag->page); 1349 } 1350 pfrag->offset += copy; 1351 } else { 1352 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1353 if (err == -EMSGSIZE || err == -EEXIST) { 1354 tcp_mark_push(tp, skb); 1355 goto new_segment; 1356 } 1357 if (err < 0) 1358 goto do_error; 1359 copy = err; 1360 } 1361 1362 if (!copied) 1363 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1364 1365 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1366 TCP_SKB_CB(skb)->end_seq += copy; 1367 tcp_skb_pcount_set(skb, 0); 1368 1369 copied += copy; 1370 if (!msg_data_left(msg)) { 1371 if (unlikely(flags & MSG_EOR)) 1372 TCP_SKB_CB(skb)->eor = 1; 1373 goto out; 1374 } 1375 1376 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1377 continue; 1378 1379 if (forced_push(tp)) { 1380 tcp_mark_push(tp, skb); 1381 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1382 } else if (skb == tcp_send_head(sk)) 1383 tcp_push_one(sk, mss_now); 1384 continue; 1385 1386 wait_for_sndbuf: 1387 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1388 wait_for_memory: 1389 if (copied) 1390 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1391 TCP_NAGLE_PUSH, size_goal); 1392 1393 err = sk_stream_wait_memory(sk, &timeo); 1394 if (err != 0) 1395 goto do_error; 1396 1397 mss_now = tcp_send_mss(sk, &size_goal, flags); 1398 } 1399 1400 out: 1401 if (copied) { 1402 tcp_tx_timestamp(sk, sockc.tsflags); 1403 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1404 } 1405 out_nopush: 1406 sock_zerocopy_put(uarg); 1407 return copied + copied_syn; 1408 1409 do_error: 1410 skb = tcp_write_queue_tail(sk); 1411 do_fault: 1412 tcp_remove_empty_skb(sk, skb); 1413 1414 if (copied + copied_syn) 1415 goto out; 1416 out_err: 1417 sock_zerocopy_put_abort(uarg, true); 1418 err = sk_stream_error(sk, flags, err); 1419 /* make sure we wake any epoll edge trigger waiter */ 1420 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1421 sk->sk_write_space(sk); 1422 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1423 } 1424 return err; 1425 } 1426 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1427 1428 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1429 { 1430 int ret; 1431 1432 lock_sock(sk); 1433 ret = tcp_sendmsg_locked(sk, msg, size); 1434 release_sock(sk); 1435 1436 return ret; 1437 } 1438 EXPORT_SYMBOL(tcp_sendmsg); 1439 1440 /* 1441 * Handle reading urgent data. BSD has very simple semantics for 1442 * this, no blocking and very strange errors 8) 1443 */ 1444 1445 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1446 { 1447 struct tcp_sock *tp = tcp_sk(sk); 1448 1449 /* No URG data to read. */ 1450 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1451 tp->urg_data == TCP_URG_READ) 1452 return -EINVAL; /* Yes this is right ! */ 1453 1454 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1455 return -ENOTCONN; 1456 1457 if (tp->urg_data & TCP_URG_VALID) { 1458 int err = 0; 1459 char c = tp->urg_data; 1460 1461 if (!(flags & MSG_PEEK)) 1462 tp->urg_data = TCP_URG_READ; 1463 1464 /* Read urgent data. */ 1465 msg->msg_flags |= MSG_OOB; 1466 1467 if (len > 0) { 1468 if (!(flags & MSG_TRUNC)) 1469 err = memcpy_to_msg(msg, &c, 1); 1470 len = 1; 1471 } else 1472 msg->msg_flags |= MSG_TRUNC; 1473 1474 return err ? -EFAULT : len; 1475 } 1476 1477 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1478 return 0; 1479 1480 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1481 * the available implementations agree in this case: 1482 * this call should never block, independent of the 1483 * blocking state of the socket. 1484 * Mike <pall@rz.uni-karlsruhe.de> 1485 */ 1486 return -EAGAIN; 1487 } 1488 1489 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1490 { 1491 struct sk_buff *skb; 1492 int copied = 0, err = 0; 1493 1494 /* XXX -- need to support SO_PEEK_OFF */ 1495 1496 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1497 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1498 if (err) 1499 return err; 1500 copied += skb->len; 1501 } 1502 1503 skb_queue_walk(&sk->sk_write_queue, skb) { 1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1505 if (err) 1506 break; 1507 1508 copied += skb->len; 1509 } 1510 1511 return err ?: copied; 1512 } 1513 1514 /* Clean up the receive buffer for full frames taken by the user, 1515 * then send an ACK if necessary. COPIED is the number of bytes 1516 * tcp_recvmsg has given to the user so far, it speeds up the 1517 * calculation of whether or not we must ACK for the sake of 1518 * a window update. 1519 */ 1520 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1521 { 1522 struct tcp_sock *tp = tcp_sk(sk); 1523 bool time_to_ack = false; 1524 1525 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1526 1527 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1528 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1529 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1530 1531 if (inet_csk_ack_scheduled(sk)) { 1532 const struct inet_connection_sock *icsk = inet_csk(sk); 1533 /* Delayed ACKs frequently hit locked sockets during bulk 1534 * receive. */ 1535 if (icsk->icsk_ack.blocked || 1536 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1537 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1538 /* 1539 * If this read emptied read buffer, we send ACK, if 1540 * connection is not bidirectional, user drained 1541 * receive buffer and there was a small segment 1542 * in queue. 1543 */ 1544 (copied > 0 && 1545 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1546 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1547 !inet_csk_in_pingpong_mode(sk))) && 1548 !atomic_read(&sk->sk_rmem_alloc))) 1549 time_to_ack = true; 1550 } 1551 1552 /* We send an ACK if we can now advertise a non-zero window 1553 * which has been raised "significantly". 1554 * 1555 * Even if window raised up to infinity, do not send window open ACK 1556 * in states, where we will not receive more. It is useless. 1557 */ 1558 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1559 __u32 rcv_window_now = tcp_receive_window(tp); 1560 1561 /* Optimize, __tcp_select_window() is not cheap. */ 1562 if (2*rcv_window_now <= tp->window_clamp) { 1563 __u32 new_window = __tcp_select_window(sk); 1564 1565 /* Send ACK now, if this read freed lots of space 1566 * in our buffer. Certainly, new_window is new window. 1567 * We can advertise it now, if it is not less than current one. 1568 * "Lots" means "at least twice" here. 1569 */ 1570 if (new_window && new_window >= 2 * rcv_window_now) 1571 time_to_ack = true; 1572 } 1573 } 1574 if (time_to_ack) 1575 tcp_send_ack(sk); 1576 } 1577 1578 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1579 { 1580 struct sk_buff *skb; 1581 u32 offset; 1582 1583 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1584 offset = seq - TCP_SKB_CB(skb)->seq; 1585 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1586 pr_err_once("%s: found a SYN, please report !\n", __func__); 1587 offset--; 1588 } 1589 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1590 *off = offset; 1591 return skb; 1592 } 1593 /* This looks weird, but this can happen if TCP collapsing 1594 * splitted a fat GRO packet, while we released socket lock 1595 * in skb_splice_bits() 1596 */ 1597 sk_eat_skb(sk, skb); 1598 } 1599 return NULL; 1600 } 1601 1602 /* 1603 * This routine provides an alternative to tcp_recvmsg() for routines 1604 * that would like to handle copying from skbuffs directly in 'sendfile' 1605 * fashion. 1606 * Note: 1607 * - It is assumed that the socket was locked by the caller. 1608 * - The routine does not block. 1609 * - At present, there is no support for reading OOB data 1610 * or for 'peeking' the socket using this routine 1611 * (although both would be easy to implement). 1612 */ 1613 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1614 sk_read_actor_t recv_actor) 1615 { 1616 struct sk_buff *skb; 1617 struct tcp_sock *tp = tcp_sk(sk); 1618 u32 seq = tp->copied_seq; 1619 u32 offset; 1620 int copied = 0; 1621 1622 if (sk->sk_state == TCP_LISTEN) 1623 return -ENOTCONN; 1624 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1625 if (offset < skb->len) { 1626 int used; 1627 size_t len; 1628 1629 len = skb->len - offset; 1630 /* Stop reading if we hit a patch of urgent data */ 1631 if (tp->urg_data) { 1632 u32 urg_offset = tp->urg_seq - seq; 1633 if (urg_offset < len) 1634 len = urg_offset; 1635 if (!len) 1636 break; 1637 } 1638 used = recv_actor(desc, skb, offset, len); 1639 if (used <= 0) { 1640 if (!copied) 1641 copied = used; 1642 break; 1643 } else if (used <= len) { 1644 seq += used; 1645 copied += used; 1646 offset += used; 1647 } 1648 /* If recv_actor drops the lock (e.g. TCP splice 1649 * receive) the skb pointer might be invalid when 1650 * getting here: tcp_collapse might have deleted it 1651 * while aggregating skbs from the socket queue. 1652 */ 1653 skb = tcp_recv_skb(sk, seq - 1, &offset); 1654 if (!skb) 1655 break; 1656 /* TCP coalescing might have appended data to the skb. 1657 * Try to splice more frags 1658 */ 1659 if (offset + 1 != skb->len) 1660 continue; 1661 } 1662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1663 sk_eat_skb(sk, skb); 1664 ++seq; 1665 break; 1666 } 1667 sk_eat_skb(sk, skb); 1668 if (!desc->count) 1669 break; 1670 WRITE_ONCE(tp->copied_seq, seq); 1671 } 1672 WRITE_ONCE(tp->copied_seq, seq); 1673 1674 tcp_rcv_space_adjust(sk); 1675 1676 /* Clean up data we have read: This will do ACK frames. */ 1677 if (copied > 0) { 1678 tcp_recv_skb(sk, seq, &offset); 1679 tcp_cleanup_rbuf(sk, copied); 1680 } 1681 return copied; 1682 } 1683 EXPORT_SYMBOL(tcp_read_sock); 1684 1685 int tcp_peek_len(struct socket *sock) 1686 { 1687 return tcp_inq(sock->sk); 1688 } 1689 EXPORT_SYMBOL(tcp_peek_len); 1690 1691 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1692 int tcp_set_rcvlowat(struct sock *sk, int val) 1693 { 1694 int cap; 1695 1696 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1697 cap = sk->sk_rcvbuf >> 1; 1698 else 1699 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1700 val = min(val, cap); 1701 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1702 1703 /* Check if we need to signal EPOLLIN right now */ 1704 tcp_data_ready(sk); 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 return 0; 1708 1709 val <<= 1; 1710 if (val > sk->sk_rcvbuf) { 1711 WRITE_ONCE(sk->sk_rcvbuf, val); 1712 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1713 } 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(tcp_set_rcvlowat); 1717 1718 #ifdef CONFIG_MMU 1719 static const struct vm_operations_struct tcp_vm_ops = { 1720 }; 1721 1722 int tcp_mmap(struct file *file, struct socket *sock, 1723 struct vm_area_struct *vma) 1724 { 1725 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1726 return -EPERM; 1727 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1728 1729 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1730 vma->vm_flags |= VM_MIXEDMAP; 1731 1732 vma->vm_ops = &tcp_vm_ops; 1733 return 0; 1734 } 1735 EXPORT_SYMBOL(tcp_mmap); 1736 1737 static int tcp_zerocopy_receive(struct sock *sk, 1738 struct tcp_zerocopy_receive *zc) 1739 { 1740 unsigned long address = (unsigned long)zc->address; 1741 u32 length = 0, seq, offset, zap_len; 1742 const skb_frag_t *frags = NULL; 1743 struct vm_area_struct *vma; 1744 struct sk_buff *skb = NULL; 1745 struct tcp_sock *tp; 1746 int inq; 1747 int ret; 1748 1749 if (address & (PAGE_SIZE - 1) || address != zc->address) 1750 return -EINVAL; 1751 1752 if (sk->sk_state == TCP_LISTEN) 1753 return -ENOTCONN; 1754 1755 sock_rps_record_flow(sk); 1756 1757 down_read(¤t->mm->mmap_sem); 1758 1759 ret = -EINVAL; 1760 vma = find_vma(current->mm, address); 1761 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1762 goto out; 1763 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1764 1765 tp = tcp_sk(sk); 1766 seq = tp->copied_seq; 1767 inq = tcp_inq(sk); 1768 zc->length = min_t(u32, zc->length, inq); 1769 zap_len = zc->length & ~(PAGE_SIZE - 1); 1770 if (zap_len) { 1771 zap_page_range(vma, address, zap_len); 1772 zc->recv_skip_hint = 0; 1773 } else { 1774 zc->recv_skip_hint = zc->length; 1775 } 1776 ret = 0; 1777 while (length + PAGE_SIZE <= zc->length) { 1778 if (zc->recv_skip_hint < PAGE_SIZE) { 1779 if (skb) { 1780 if (zc->recv_skip_hint > 0) 1781 break; 1782 skb = skb->next; 1783 offset = seq - TCP_SKB_CB(skb)->seq; 1784 } else { 1785 skb = tcp_recv_skb(sk, seq, &offset); 1786 } 1787 1788 zc->recv_skip_hint = skb->len - offset; 1789 offset -= skb_headlen(skb); 1790 if ((int)offset < 0 || skb_has_frag_list(skb)) 1791 break; 1792 frags = skb_shinfo(skb)->frags; 1793 while (offset) { 1794 if (skb_frag_size(frags) > offset) 1795 goto out; 1796 offset -= skb_frag_size(frags); 1797 frags++; 1798 } 1799 } 1800 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1801 int remaining = zc->recv_skip_hint; 1802 1803 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1804 skb_frag_off(frags))) { 1805 remaining -= skb_frag_size(frags); 1806 frags++; 1807 } 1808 zc->recv_skip_hint -= remaining; 1809 break; 1810 } 1811 ret = vm_insert_page(vma, address + length, 1812 skb_frag_page(frags)); 1813 if (ret) 1814 break; 1815 length += PAGE_SIZE; 1816 seq += PAGE_SIZE; 1817 zc->recv_skip_hint -= PAGE_SIZE; 1818 frags++; 1819 } 1820 out: 1821 up_read(¤t->mm->mmap_sem); 1822 if (length) { 1823 WRITE_ONCE(tp->copied_seq, seq); 1824 tcp_rcv_space_adjust(sk); 1825 1826 /* Clean up data we have read: This will do ACK frames. */ 1827 tcp_recv_skb(sk, seq, &offset); 1828 tcp_cleanup_rbuf(sk, length); 1829 ret = 0; 1830 if (length == zc->length) 1831 zc->recv_skip_hint = 0; 1832 } else { 1833 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1834 ret = -EIO; 1835 } 1836 zc->length = length; 1837 return ret; 1838 } 1839 #endif 1840 1841 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1842 struct scm_timestamping_internal *tss) 1843 { 1844 if (skb->tstamp) 1845 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1846 else 1847 tss->ts[0] = (struct timespec64) {0}; 1848 1849 if (skb_hwtstamps(skb)->hwtstamp) 1850 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1851 else 1852 tss->ts[2] = (struct timespec64) {0}; 1853 } 1854 1855 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1856 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1857 struct scm_timestamping_internal *tss) 1858 { 1859 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1860 bool has_timestamping = false; 1861 1862 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1863 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1864 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1865 if (new_tstamp) { 1866 struct __kernel_timespec kts = { 1867 .tv_sec = tss->ts[0].tv_sec, 1868 .tv_nsec = tss->ts[0].tv_nsec, 1869 }; 1870 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1871 sizeof(kts), &kts); 1872 } else { 1873 struct __kernel_old_timespec ts_old = { 1874 .tv_sec = tss->ts[0].tv_sec, 1875 .tv_nsec = tss->ts[0].tv_nsec, 1876 }; 1877 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1878 sizeof(ts_old), &ts_old); 1879 } 1880 } else { 1881 if (new_tstamp) { 1882 struct __kernel_sock_timeval stv = { 1883 .tv_sec = tss->ts[0].tv_sec, 1884 .tv_usec = tss->ts[0].tv_nsec / 1000, 1885 }; 1886 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1887 sizeof(stv), &stv); 1888 } else { 1889 struct __kernel_old_timeval tv = { 1890 .tv_sec = tss->ts[0].tv_sec, 1891 .tv_usec = tss->ts[0].tv_nsec / 1000, 1892 }; 1893 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1894 sizeof(tv), &tv); 1895 } 1896 } 1897 } 1898 1899 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1900 has_timestamping = true; 1901 else 1902 tss->ts[0] = (struct timespec64) {0}; 1903 } 1904 1905 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1906 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1907 has_timestamping = true; 1908 else 1909 tss->ts[2] = (struct timespec64) {0}; 1910 } 1911 1912 if (has_timestamping) { 1913 tss->ts[1] = (struct timespec64) {0}; 1914 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1915 put_cmsg_scm_timestamping64(msg, tss); 1916 else 1917 put_cmsg_scm_timestamping(msg, tss); 1918 } 1919 } 1920 1921 static int tcp_inq_hint(struct sock *sk) 1922 { 1923 const struct tcp_sock *tp = tcp_sk(sk); 1924 u32 copied_seq = READ_ONCE(tp->copied_seq); 1925 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1926 int inq; 1927 1928 inq = rcv_nxt - copied_seq; 1929 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1930 lock_sock(sk); 1931 inq = tp->rcv_nxt - tp->copied_seq; 1932 release_sock(sk); 1933 } 1934 /* After receiving a FIN, tell the user-space to continue reading 1935 * by returning a non-zero inq. 1936 */ 1937 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1938 inq = 1; 1939 return inq; 1940 } 1941 1942 /* 1943 * This routine copies from a sock struct into the user buffer. 1944 * 1945 * Technical note: in 2.3 we work on _locked_ socket, so that 1946 * tricks with *seq access order and skb->users are not required. 1947 * Probably, code can be easily improved even more. 1948 */ 1949 1950 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1951 int flags, int *addr_len) 1952 { 1953 struct tcp_sock *tp = tcp_sk(sk); 1954 int copied = 0; 1955 u32 peek_seq; 1956 u32 *seq; 1957 unsigned long used; 1958 int err, inq; 1959 int target; /* Read at least this many bytes */ 1960 long timeo; 1961 struct sk_buff *skb, *last; 1962 u32 urg_hole = 0; 1963 struct scm_timestamping_internal tss; 1964 int cmsg_flags; 1965 1966 if (unlikely(flags & MSG_ERRQUEUE)) 1967 return inet_recv_error(sk, msg, len, addr_len); 1968 1969 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 1970 (sk->sk_state == TCP_ESTABLISHED)) 1971 sk_busy_loop(sk, nonblock); 1972 1973 lock_sock(sk); 1974 1975 err = -ENOTCONN; 1976 if (sk->sk_state == TCP_LISTEN) 1977 goto out; 1978 1979 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 1980 timeo = sock_rcvtimeo(sk, nonblock); 1981 1982 /* Urgent data needs to be handled specially. */ 1983 if (flags & MSG_OOB) 1984 goto recv_urg; 1985 1986 if (unlikely(tp->repair)) { 1987 err = -EPERM; 1988 if (!(flags & MSG_PEEK)) 1989 goto out; 1990 1991 if (tp->repair_queue == TCP_SEND_QUEUE) 1992 goto recv_sndq; 1993 1994 err = -EINVAL; 1995 if (tp->repair_queue == TCP_NO_QUEUE) 1996 goto out; 1997 1998 /* 'common' recv queue MSG_PEEK-ing */ 1999 } 2000 2001 seq = &tp->copied_seq; 2002 if (flags & MSG_PEEK) { 2003 peek_seq = tp->copied_seq; 2004 seq = &peek_seq; 2005 } 2006 2007 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2008 2009 do { 2010 u32 offset; 2011 2012 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2013 if (tp->urg_data && tp->urg_seq == *seq) { 2014 if (copied) 2015 break; 2016 if (signal_pending(current)) { 2017 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2018 break; 2019 } 2020 } 2021 2022 /* Next get a buffer. */ 2023 2024 last = skb_peek_tail(&sk->sk_receive_queue); 2025 skb_queue_walk(&sk->sk_receive_queue, skb) { 2026 last = skb; 2027 /* Now that we have two receive queues this 2028 * shouldn't happen. 2029 */ 2030 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2031 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2032 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2033 flags)) 2034 break; 2035 2036 offset = *seq - TCP_SKB_CB(skb)->seq; 2037 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2038 pr_err_once("%s: found a SYN, please report !\n", __func__); 2039 offset--; 2040 } 2041 if (offset < skb->len) 2042 goto found_ok_skb; 2043 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2044 goto found_fin_ok; 2045 WARN(!(flags & MSG_PEEK), 2046 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2047 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2048 } 2049 2050 /* Well, if we have backlog, try to process it now yet. */ 2051 2052 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2053 break; 2054 2055 if (copied) { 2056 if (sk->sk_err || 2057 sk->sk_state == TCP_CLOSE || 2058 (sk->sk_shutdown & RCV_SHUTDOWN) || 2059 !timeo || 2060 signal_pending(current)) 2061 break; 2062 } else { 2063 if (sock_flag(sk, SOCK_DONE)) 2064 break; 2065 2066 if (sk->sk_err) { 2067 copied = sock_error(sk); 2068 break; 2069 } 2070 2071 if (sk->sk_shutdown & RCV_SHUTDOWN) 2072 break; 2073 2074 if (sk->sk_state == TCP_CLOSE) { 2075 /* This occurs when user tries to read 2076 * from never connected socket. 2077 */ 2078 copied = -ENOTCONN; 2079 break; 2080 } 2081 2082 if (!timeo) { 2083 copied = -EAGAIN; 2084 break; 2085 } 2086 2087 if (signal_pending(current)) { 2088 copied = sock_intr_errno(timeo); 2089 break; 2090 } 2091 } 2092 2093 tcp_cleanup_rbuf(sk, copied); 2094 2095 if (copied >= target) { 2096 /* Do not sleep, just process backlog. */ 2097 release_sock(sk); 2098 lock_sock(sk); 2099 } else { 2100 sk_wait_data(sk, &timeo, last); 2101 } 2102 2103 if ((flags & MSG_PEEK) && 2104 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2105 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2106 current->comm, 2107 task_pid_nr(current)); 2108 peek_seq = tp->copied_seq; 2109 } 2110 continue; 2111 2112 found_ok_skb: 2113 /* Ok so how much can we use? */ 2114 used = skb->len - offset; 2115 if (len < used) 2116 used = len; 2117 2118 /* Do we have urgent data here? */ 2119 if (tp->urg_data) { 2120 u32 urg_offset = tp->urg_seq - *seq; 2121 if (urg_offset < used) { 2122 if (!urg_offset) { 2123 if (!sock_flag(sk, SOCK_URGINLINE)) { 2124 WRITE_ONCE(*seq, *seq + 1); 2125 urg_hole++; 2126 offset++; 2127 used--; 2128 if (!used) 2129 goto skip_copy; 2130 } 2131 } else 2132 used = urg_offset; 2133 } 2134 } 2135 2136 if (!(flags & MSG_TRUNC)) { 2137 err = skb_copy_datagram_msg(skb, offset, msg, used); 2138 if (err) { 2139 /* Exception. Bailout! */ 2140 if (!copied) 2141 copied = -EFAULT; 2142 break; 2143 } 2144 } 2145 2146 WRITE_ONCE(*seq, *seq + used); 2147 copied += used; 2148 len -= used; 2149 2150 tcp_rcv_space_adjust(sk); 2151 2152 skip_copy: 2153 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2154 tp->urg_data = 0; 2155 tcp_fast_path_check(sk); 2156 } 2157 if (used + offset < skb->len) 2158 continue; 2159 2160 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2161 tcp_update_recv_tstamps(skb, &tss); 2162 cmsg_flags |= 2; 2163 } 2164 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2165 goto found_fin_ok; 2166 if (!(flags & MSG_PEEK)) 2167 sk_eat_skb(sk, skb); 2168 continue; 2169 2170 found_fin_ok: 2171 /* Process the FIN. */ 2172 WRITE_ONCE(*seq, *seq + 1); 2173 if (!(flags & MSG_PEEK)) 2174 sk_eat_skb(sk, skb); 2175 break; 2176 } while (len > 0); 2177 2178 /* According to UNIX98, msg_name/msg_namelen are ignored 2179 * on connected socket. I was just happy when found this 8) --ANK 2180 */ 2181 2182 /* Clean up data we have read: This will do ACK frames. */ 2183 tcp_cleanup_rbuf(sk, copied); 2184 2185 release_sock(sk); 2186 2187 if (cmsg_flags) { 2188 if (cmsg_flags & 2) 2189 tcp_recv_timestamp(msg, sk, &tss); 2190 if (cmsg_flags & 1) { 2191 inq = tcp_inq_hint(sk); 2192 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2193 } 2194 } 2195 2196 return copied; 2197 2198 out: 2199 release_sock(sk); 2200 return err; 2201 2202 recv_urg: 2203 err = tcp_recv_urg(sk, msg, len, flags); 2204 goto out; 2205 2206 recv_sndq: 2207 err = tcp_peek_sndq(sk, msg, len); 2208 goto out; 2209 } 2210 EXPORT_SYMBOL(tcp_recvmsg); 2211 2212 void tcp_set_state(struct sock *sk, int state) 2213 { 2214 int oldstate = sk->sk_state; 2215 2216 /* We defined a new enum for TCP states that are exported in BPF 2217 * so as not force the internal TCP states to be frozen. The 2218 * following checks will detect if an internal state value ever 2219 * differs from the BPF value. If this ever happens, then we will 2220 * need to remap the internal value to the BPF value before calling 2221 * tcp_call_bpf_2arg. 2222 */ 2223 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2224 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2225 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2226 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2227 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2228 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2229 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2230 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2231 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2232 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2233 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2234 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2235 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2236 2237 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2238 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2239 2240 switch (state) { 2241 case TCP_ESTABLISHED: 2242 if (oldstate != TCP_ESTABLISHED) 2243 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2244 break; 2245 2246 case TCP_CLOSE: 2247 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2248 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2249 2250 sk->sk_prot->unhash(sk); 2251 if (inet_csk(sk)->icsk_bind_hash && 2252 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2253 inet_put_port(sk); 2254 fallthrough; 2255 default: 2256 if (oldstate == TCP_ESTABLISHED) 2257 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2258 } 2259 2260 /* Change state AFTER socket is unhashed to avoid closed 2261 * socket sitting in hash tables. 2262 */ 2263 inet_sk_state_store(sk, state); 2264 } 2265 EXPORT_SYMBOL_GPL(tcp_set_state); 2266 2267 /* 2268 * State processing on a close. This implements the state shift for 2269 * sending our FIN frame. Note that we only send a FIN for some 2270 * states. A shutdown() may have already sent the FIN, or we may be 2271 * closed. 2272 */ 2273 2274 static const unsigned char new_state[16] = { 2275 /* current state: new state: action: */ 2276 [0 /* (Invalid) */] = TCP_CLOSE, 2277 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2278 [TCP_SYN_SENT] = TCP_CLOSE, 2279 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2280 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2281 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2282 [TCP_TIME_WAIT] = TCP_CLOSE, 2283 [TCP_CLOSE] = TCP_CLOSE, 2284 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2285 [TCP_LAST_ACK] = TCP_LAST_ACK, 2286 [TCP_LISTEN] = TCP_CLOSE, 2287 [TCP_CLOSING] = TCP_CLOSING, 2288 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2289 }; 2290 2291 static int tcp_close_state(struct sock *sk) 2292 { 2293 int next = (int)new_state[sk->sk_state]; 2294 int ns = next & TCP_STATE_MASK; 2295 2296 tcp_set_state(sk, ns); 2297 2298 return next & TCP_ACTION_FIN; 2299 } 2300 2301 /* 2302 * Shutdown the sending side of a connection. Much like close except 2303 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2304 */ 2305 2306 void tcp_shutdown(struct sock *sk, int how) 2307 { 2308 /* We need to grab some memory, and put together a FIN, 2309 * and then put it into the queue to be sent. 2310 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2311 */ 2312 if (!(how & SEND_SHUTDOWN)) 2313 return; 2314 2315 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2316 if ((1 << sk->sk_state) & 2317 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2318 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2319 /* Clear out any half completed packets. FIN if needed. */ 2320 if (tcp_close_state(sk)) 2321 tcp_send_fin(sk); 2322 } 2323 } 2324 EXPORT_SYMBOL(tcp_shutdown); 2325 2326 bool tcp_check_oom(struct sock *sk, int shift) 2327 { 2328 bool too_many_orphans, out_of_socket_memory; 2329 2330 too_many_orphans = tcp_too_many_orphans(sk, shift); 2331 out_of_socket_memory = tcp_out_of_memory(sk); 2332 2333 if (too_many_orphans) 2334 net_info_ratelimited("too many orphaned sockets\n"); 2335 if (out_of_socket_memory) 2336 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2337 return too_many_orphans || out_of_socket_memory; 2338 } 2339 2340 void tcp_close(struct sock *sk, long timeout) 2341 { 2342 struct sk_buff *skb; 2343 int data_was_unread = 0; 2344 int state; 2345 2346 lock_sock(sk); 2347 sk->sk_shutdown = SHUTDOWN_MASK; 2348 2349 if (sk->sk_state == TCP_LISTEN) { 2350 tcp_set_state(sk, TCP_CLOSE); 2351 2352 /* Special case. */ 2353 inet_csk_listen_stop(sk); 2354 2355 goto adjudge_to_death; 2356 } 2357 2358 /* We need to flush the recv. buffs. We do this only on the 2359 * descriptor close, not protocol-sourced closes, because the 2360 * reader process may not have drained the data yet! 2361 */ 2362 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2363 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2364 2365 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2366 len--; 2367 data_was_unread += len; 2368 __kfree_skb(skb); 2369 } 2370 2371 sk_mem_reclaim(sk); 2372 2373 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2374 if (sk->sk_state == TCP_CLOSE) 2375 goto adjudge_to_death; 2376 2377 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2378 * data was lost. To witness the awful effects of the old behavior of 2379 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2380 * GET in an FTP client, suspend the process, wait for the client to 2381 * advertise a zero window, then kill -9 the FTP client, wheee... 2382 * Note: timeout is always zero in such a case. 2383 */ 2384 if (unlikely(tcp_sk(sk)->repair)) { 2385 sk->sk_prot->disconnect(sk, 0); 2386 } else if (data_was_unread) { 2387 /* Unread data was tossed, zap the connection. */ 2388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2389 tcp_set_state(sk, TCP_CLOSE); 2390 tcp_send_active_reset(sk, sk->sk_allocation); 2391 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2392 /* Check zero linger _after_ checking for unread data. */ 2393 sk->sk_prot->disconnect(sk, 0); 2394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2395 } else if (tcp_close_state(sk)) { 2396 /* We FIN if the application ate all the data before 2397 * zapping the connection. 2398 */ 2399 2400 /* RED-PEN. Formally speaking, we have broken TCP state 2401 * machine. State transitions: 2402 * 2403 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2404 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2405 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2406 * 2407 * are legal only when FIN has been sent (i.e. in window), 2408 * rather than queued out of window. Purists blame. 2409 * 2410 * F.e. "RFC state" is ESTABLISHED, 2411 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2412 * 2413 * The visible declinations are that sometimes 2414 * we enter time-wait state, when it is not required really 2415 * (harmless), do not send active resets, when they are 2416 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2417 * they look as CLOSING or LAST_ACK for Linux) 2418 * Probably, I missed some more holelets. 2419 * --ANK 2420 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2421 * in a single packet! (May consider it later but will 2422 * probably need API support or TCP_CORK SYN-ACK until 2423 * data is written and socket is closed.) 2424 */ 2425 tcp_send_fin(sk); 2426 } 2427 2428 sk_stream_wait_close(sk, timeout); 2429 2430 adjudge_to_death: 2431 state = sk->sk_state; 2432 sock_hold(sk); 2433 sock_orphan(sk); 2434 2435 local_bh_disable(); 2436 bh_lock_sock(sk); 2437 /* remove backlog if any, without releasing ownership. */ 2438 __release_sock(sk); 2439 2440 percpu_counter_inc(sk->sk_prot->orphan_count); 2441 2442 /* Have we already been destroyed by a softirq or backlog? */ 2443 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2444 goto out; 2445 2446 /* This is a (useful) BSD violating of the RFC. There is a 2447 * problem with TCP as specified in that the other end could 2448 * keep a socket open forever with no application left this end. 2449 * We use a 1 minute timeout (about the same as BSD) then kill 2450 * our end. If they send after that then tough - BUT: long enough 2451 * that we won't make the old 4*rto = almost no time - whoops 2452 * reset mistake. 2453 * 2454 * Nope, it was not mistake. It is really desired behaviour 2455 * f.e. on http servers, when such sockets are useless, but 2456 * consume significant resources. Let's do it with special 2457 * linger2 option. --ANK 2458 */ 2459 2460 if (sk->sk_state == TCP_FIN_WAIT2) { 2461 struct tcp_sock *tp = tcp_sk(sk); 2462 if (tp->linger2 < 0) { 2463 tcp_set_state(sk, TCP_CLOSE); 2464 tcp_send_active_reset(sk, GFP_ATOMIC); 2465 __NET_INC_STATS(sock_net(sk), 2466 LINUX_MIB_TCPABORTONLINGER); 2467 } else { 2468 const int tmo = tcp_fin_time(sk); 2469 2470 if (tmo > TCP_TIMEWAIT_LEN) { 2471 inet_csk_reset_keepalive_timer(sk, 2472 tmo - TCP_TIMEWAIT_LEN); 2473 } else { 2474 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2475 goto out; 2476 } 2477 } 2478 } 2479 if (sk->sk_state != TCP_CLOSE) { 2480 sk_mem_reclaim(sk); 2481 if (tcp_check_oom(sk, 0)) { 2482 tcp_set_state(sk, TCP_CLOSE); 2483 tcp_send_active_reset(sk, GFP_ATOMIC); 2484 __NET_INC_STATS(sock_net(sk), 2485 LINUX_MIB_TCPABORTONMEMORY); 2486 } else if (!check_net(sock_net(sk))) { 2487 /* Not possible to send reset; just close */ 2488 tcp_set_state(sk, TCP_CLOSE); 2489 } 2490 } 2491 2492 if (sk->sk_state == TCP_CLOSE) { 2493 struct request_sock *req; 2494 2495 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2496 lockdep_sock_is_held(sk)); 2497 /* We could get here with a non-NULL req if the socket is 2498 * aborted (e.g., closed with unread data) before 3WHS 2499 * finishes. 2500 */ 2501 if (req) 2502 reqsk_fastopen_remove(sk, req, false); 2503 inet_csk_destroy_sock(sk); 2504 } 2505 /* Otherwise, socket is reprieved until protocol close. */ 2506 2507 out: 2508 bh_unlock_sock(sk); 2509 local_bh_enable(); 2510 release_sock(sk); 2511 sock_put(sk); 2512 } 2513 EXPORT_SYMBOL(tcp_close); 2514 2515 /* These states need RST on ABORT according to RFC793 */ 2516 2517 static inline bool tcp_need_reset(int state) 2518 { 2519 return (1 << state) & 2520 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2521 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2522 } 2523 2524 static void tcp_rtx_queue_purge(struct sock *sk) 2525 { 2526 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2527 2528 tcp_sk(sk)->highest_sack = NULL; 2529 while (p) { 2530 struct sk_buff *skb = rb_to_skb(p); 2531 2532 p = rb_next(p); 2533 /* Since we are deleting whole queue, no need to 2534 * list_del(&skb->tcp_tsorted_anchor) 2535 */ 2536 tcp_rtx_queue_unlink(skb, sk); 2537 sk_wmem_free_skb(sk, skb); 2538 } 2539 } 2540 2541 void tcp_write_queue_purge(struct sock *sk) 2542 { 2543 struct sk_buff *skb; 2544 2545 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2546 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2547 tcp_skb_tsorted_anchor_cleanup(skb); 2548 sk_wmem_free_skb(sk, skb); 2549 } 2550 tcp_rtx_queue_purge(sk); 2551 skb = sk->sk_tx_skb_cache; 2552 if (skb) { 2553 __kfree_skb(skb); 2554 sk->sk_tx_skb_cache = NULL; 2555 } 2556 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2557 sk_mem_reclaim(sk); 2558 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2559 tcp_sk(sk)->packets_out = 0; 2560 inet_csk(sk)->icsk_backoff = 0; 2561 } 2562 2563 int tcp_disconnect(struct sock *sk, int flags) 2564 { 2565 struct inet_sock *inet = inet_sk(sk); 2566 struct inet_connection_sock *icsk = inet_csk(sk); 2567 struct tcp_sock *tp = tcp_sk(sk); 2568 int old_state = sk->sk_state; 2569 u32 seq; 2570 2571 if (old_state != TCP_CLOSE) 2572 tcp_set_state(sk, TCP_CLOSE); 2573 2574 /* ABORT function of RFC793 */ 2575 if (old_state == TCP_LISTEN) { 2576 inet_csk_listen_stop(sk); 2577 } else if (unlikely(tp->repair)) { 2578 sk->sk_err = ECONNABORTED; 2579 } else if (tcp_need_reset(old_state) || 2580 (tp->snd_nxt != tp->write_seq && 2581 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2582 /* The last check adjusts for discrepancy of Linux wrt. RFC 2583 * states 2584 */ 2585 tcp_send_active_reset(sk, gfp_any()); 2586 sk->sk_err = ECONNRESET; 2587 } else if (old_state == TCP_SYN_SENT) 2588 sk->sk_err = ECONNRESET; 2589 2590 tcp_clear_xmit_timers(sk); 2591 __skb_queue_purge(&sk->sk_receive_queue); 2592 if (sk->sk_rx_skb_cache) { 2593 __kfree_skb(sk->sk_rx_skb_cache); 2594 sk->sk_rx_skb_cache = NULL; 2595 } 2596 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2597 tp->urg_data = 0; 2598 tcp_write_queue_purge(sk); 2599 tcp_fastopen_active_disable_ofo_check(sk); 2600 skb_rbtree_purge(&tp->out_of_order_queue); 2601 2602 inet->inet_dport = 0; 2603 2604 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2605 inet_reset_saddr(sk); 2606 2607 sk->sk_shutdown = 0; 2608 sock_reset_flag(sk, SOCK_DONE); 2609 tp->srtt_us = 0; 2610 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2611 tp->rcv_rtt_last_tsecr = 0; 2612 2613 seq = tp->write_seq + tp->max_window + 2; 2614 if (!seq) 2615 seq = 1; 2616 WRITE_ONCE(tp->write_seq, seq); 2617 2618 icsk->icsk_backoff = 0; 2619 icsk->icsk_probes_out = 0; 2620 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2621 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2622 tp->snd_cwnd = TCP_INIT_CWND; 2623 tp->snd_cwnd_cnt = 0; 2624 tp->window_clamp = 0; 2625 tp->delivered = 0; 2626 tp->delivered_ce = 0; 2627 tcp_set_ca_state(sk, TCP_CA_Open); 2628 tp->is_sack_reneg = 0; 2629 tcp_clear_retrans(tp); 2630 tp->total_retrans = 0; 2631 inet_csk_delack_init(sk); 2632 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2633 * issue in __tcp_select_window() 2634 */ 2635 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2636 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2637 __sk_dst_reset(sk); 2638 dst_release(sk->sk_rx_dst); 2639 sk->sk_rx_dst = NULL; 2640 tcp_saved_syn_free(tp); 2641 tp->compressed_ack = 0; 2642 tp->segs_in = 0; 2643 tp->segs_out = 0; 2644 tp->bytes_sent = 0; 2645 tp->bytes_acked = 0; 2646 tp->bytes_received = 0; 2647 tp->bytes_retrans = 0; 2648 tp->data_segs_in = 0; 2649 tp->data_segs_out = 0; 2650 tp->duplicate_sack[0].start_seq = 0; 2651 tp->duplicate_sack[0].end_seq = 0; 2652 tp->dsack_dups = 0; 2653 tp->reord_seen = 0; 2654 tp->retrans_out = 0; 2655 tp->sacked_out = 0; 2656 tp->tlp_high_seq = 0; 2657 tp->last_oow_ack_time = 0; 2658 /* There's a bubble in the pipe until at least the first ACK. */ 2659 tp->app_limited = ~0U; 2660 tp->rack.mstamp = 0; 2661 tp->rack.advanced = 0; 2662 tp->rack.reo_wnd_steps = 1; 2663 tp->rack.last_delivered = 0; 2664 tp->rack.reo_wnd_persist = 0; 2665 tp->rack.dsack_seen = 0; 2666 tp->syn_data_acked = 0; 2667 tp->rx_opt.saw_tstamp = 0; 2668 tp->rx_opt.dsack = 0; 2669 tp->rx_opt.num_sacks = 0; 2670 tp->rcv_ooopack = 0; 2671 2672 2673 /* Clean up fastopen related fields */ 2674 tcp_free_fastopen_req(tp); 2675 inet->defer_connect = 0; 2676 tp->fastopen_client_fail = 0; 2677 2678 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2679 2680 if (sk->sk_frag.page) { 2681 put_page(sk->sk_frag.page); 2682 sk->sk_frag.page = NULL; 2683 sk->sk_frag.offset = 0; 2684 } 2685 2686 sk->sk_error_report(sk); 2687 return 0; 2688 } 2689 EXPORT_SYMBOL(tcp_disconnect); 2690 2691 static inline bool tcp_can_repair_sock(const struct sock *sk) 2692 { 2693 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2694 (sk->sk_state != TCP_LISTEN); 2695 } 2696 2697 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2698 { 2699 struct tcp_repair_window opt; 2700 2701 if (!tp->repair) 2702 return -EPERM; 2703 2704 if (len != sizeof(opt)) 2705 return -EINVAL; 2706 2707 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2708 return -EFAULT; 2709 2710 if (opt.max_window < opt.snd_wnd) 2711 return -EINVAL; 2712 2713 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2714 return -EINVAL; 2715 2716 if (after(opt.rcv_wup, tp->rcv_nxt)) 2717 return -EINVAL; 2718 2719 tp->snd_wl1 = opt.snd_wl1; 2720 tp->snd_wnd = opt.snd_wnd; 2721 tp->max_window = opt.max_window; 2722 2723 tp->rcv_wnd = opt.rcv_wnd; 2724 tp->rcv_wup = opt.rcv_wup; 2725 2726 return 0; 2727 } 2728 2729 static int tcp_repair_options_est(struct sock *sk, 2730 struct tcp_repair_opt __user *optbuf, unsigned int len) 2731 { 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 struct tcp_repair_opt opt; 2734 2735 while (len >= sizeof(opt)) { 2736 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2737 return -EFAULT; 2738 2739 optbuf++; 2740 len -= sizeof(opt); 2741 2742 switch (opt.opt_code) { 2743 case TCPOPT_MSS: 2744 tp->rx_opt.mss_clamp = opt.opt_val; 2745 tcp_mtup_init(sk); 2746 break; 2747 case TCPOPT_WINDOW: 2748 { 2749 u16 snd_wscale = opt.opt_val & 0xFFFF; 2750 u16 rcv_wscale = opt.opt_val >> 16; 2751 2752 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2753 return -EFBIG; 2754 2755 tp->rx_opt.snd_wscale = snd_wscale; 2756 tp->rx_opt.rcv_wscale = rcv_wscale; 2757 tp->rx_opt.wscale_ok = 1; 2758 } 2759 break; 2760 case TCPOPT_SACK_PERM: 2761 if (opt.opt_val != 0) 2762 return -EINVAL; 2763 2764 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2765 break; 2766 case TCPOPT_TIMESTAMP: 2767 if (opt.opt_val != 0) 2768 return -EINVAL; 2769 2770 tp->rx_opt.tstamp_ok = 1; 2771 break; 2772 } 2773 } 2774 2775 return 0; 2776 } 2777 2778 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2779 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2780 2781 static void tcp_enable_tx_delay(void) 2782 { 2783 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2784 static int __tcp_tx_delay_enabled = 0; 2785 2786 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2787 static_branch_enable(&tcp_tx_delay_enabled); 2788 pr_info("TCP_TX_DELAY enabled\n"); 2789 } 2790 } 2791 } 2792 2793 /* 2794 * Socket option code for TCP. 2795 */ 2796 static int do_tcp_setsockopt(struct sock *sk, int level, 2797 int optname, char __user *optval, unsigned int optlen) 2798 { 2799 struct tcp_sock *tp = tcp_sk(sk); 2800 struct inet_connection_sock *icsk = inet_csk(sk); 2801 struct net *net = sock_net(sk); 2802 int val; 2803 int err = 0; 2804 2805 /* These are data/string values, all the others are ints */ 2806 switch (optname) { 2807 case TCP_CONGESTION: { 2808 char name[TCP_CA_NAME_MAX]; 2809 2810 if (optlen < 1) 2811 return -EINVAL; 2812 2813 val = strncpy_from_user(name, optval, 2814 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2815 if (val < 0) 2816 return -EFAULT; 2817 name[val] = 0; 2818 2819 lock_sock(sk); 2820 err = tcp_set_congestion_control(sk, name, true, true, 2821 ns_capable(sock_net(sk)->user_ns, 2822 CAP_NET_ADMIN)); 2823 release_sock(sk); 2824 return err; 2825 } 2826 case TCP_ULP: { 2827 char name[TCP_ULP_NAME_MAX]; 2828 2829 if (optlen < 1) 2830 return -EINVAL; 2831 2832 val = strncpy_from_user(name, optval, 2833 min_t(long, TCP_ULP_NAME_MAX - 1, 2834 optlen)); 2835 if (val < 0) 2836 return -EFAULT; 2837 name[val] = 0; 2838 2839 lock_sock(sk); 2840 err = tcp_set_ulp(sk, name); 2841 release_sock(sk); 2842 return err; 2843 } 2844 case TCP_FASTOPEN_KEY: { 2845 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 2846 __u8 *backup_key = NULL; 2847 2848 /* Allow a backup key as well to facilitate key rotation 2849 * First key is the active one. 2850 */ 2851 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 2852 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 2853 return -EINVAL; 2854 2855 if (copy_from_user(key, optval, optlen)) 2856 return -EFAULT; 2857 2858 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 2859 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 2860 2861 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 2862 } 2863 default: 2864 /* fallthru */ 2865 break; 2866 } 2867 2868 if (optlen < sizeof(int)) 2869 return -EINVAL; 2870 2871 if (get_user(val, (int __user *)optval)) 2872 return -EFAULT; 2873 2874 lock_sock(sk); 2875 2876 switch (optname) { 2877 case TCP_MAXSEG: 2878 /* Values greater than interface MTU won't take effect. However 2879 * at the point when this call is done we typically don't yet 2880 * know which interface is going to be used 2881 */ 2882 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2883 err = -EINVAL; 2884 break; 2885 } 2886 tp->rx_opt.user_mss = val; 2887 break; 2888 2889 case TCP_NODELAY: 2890 if (val) { 2891 /* TCP_NODELAY is weaker than TCP_CORK, so that 2892 * this option on corked socket is remembered, but 2893 * it is not activated until cork is cleared. 2894 * 2895 * However, when TCP_NODELAY is set we make 2896 * an explicit push, which overrides even TCP_CORK 2897 * for currently queued segments. 2898 */ 2899 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2900 tcp_push_pending_frames(sk); 2901 } else { 2902 tp->nonagle &= ~TCP_NAGLE_OFF; 2903 } 2904 break; 2905 2906 case TCP_THIN_LINEAR_TIMEOUTS: 2907 if (val < 0 || val > 1) 2908 err = -EINVAL; 2909 else 2910 tp->thin_lto = val; 2911 break; 2912 2913 case TCP_THIN_DUPACK: 2914 if (val < 0 || val > 1) 2915 err = -EINVAL; 2916 break; 2917 2918 case TCP_REPAIR: 2919 if (!tcp_can_repair_sock(sk)) 2920 err = -EPERM; 2921 else if (val == TCP_REPAIR_ON) { 2922 tp->repair = 1; 2923 sk->sk_reuse = SK_FORCE_REUSE; 2924 tp->repair_queue = TCP_NO_QUEUE; 2925 } else if (val == TCP_REPAIR_OFF) { 2926 tp->repair = 0; 2927 sk->sk_reuse = SK_NO_REUSE; 2928 tcp_send_window_probe(sk); 2929 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2930 tp->repair = 0; 2931 sk->sk_reuse = SK_NO_REUSE; 2932 } else 2933 err = -EINVAL; 2934 2935 break; 2936 2937 case TCP_REPAIR_QUEUE: 2938 if (!tp->repair) 2939 err = -EPERM; 2940 else if ((unsigned int)val < TCP_QUEUES_NR) 2941 tp->repair_queue = val; 2942 else 2943 err = -EINVAL; 2944 break; 2945 2946 case TCP_QUEUE_SEQ: 2947 if (sk->sk_state != TCP_CLOSE) 2948 err = -EPERM; 2949 else if (tp->repair_queue == TCP_SEND_QUEUE) 2950 WRITE_ONCE(tp->write_seq, val); 2951 else if (tp->repair_queue == TCP_RECV_QUEUE) { 2952 WRITE_ONCE(tp->rcv_nxt, val); 2953 WRITE_ONCE(tp->copied_seq, val); 2954 } 2955 else 2956 err = -EINVAL; 2957 break; 2958 2959 case TCP_REPAIR_OPTIONS: 2960 if (!tp->repair) 2961 err = -EINVAL; 2962 else if (sk->sk_state == TCP_ESTABLISHED) 2963 err = tcp_repair_options_est(sk, 2964 (struct tcp_repair_opt __user *)optval, 2965 optlen); 2966 else 2967 err = -EPERM; 2968 break; 2969 2970 case TCP_CORK: 2971 /* When set indicates to always queue non-full frames. 2972 * Later the user clears this option and we transmit 2973 * any pending partial frames in the queue. This is 2974 * meant to be used alongside sendfile() to get properly 2975 * filled frames when the user (for example) must write 2976 * out headers with a write() call first and then use 2977 * sendfile to send out the data parts. 2978 * 2979 * TCP_CORK can be set together with TCP_NODELAY and it is 2980 * stronger than TCP_NODELAY. 2981 */ 2982 if (val) { 2983 tp->nonagle |= TCP_NAGLE_CORK; 2984 } else { 2985 tp->nonagle &= ~TCP_NAGLE_CORK; 2986 if (tp->nonagle&TCP_NAGLE_OFF) 2987 tp->nonagle |= TCP_NAGLE_PUSH; 2988 tcp_push_pending_frames(sk); 2989 } 2990 break; 2991 2992 case TCP_KEEPIDLE: 2993 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2994 err = -EINVAL; 2995 else { 2996 tp->keepalive_time = val * HZ; 2997 if (sock_flag(sk, SOCK_KEEPOPEN) && 2998 !((1 << sk->sk_state) & 2999 (TCPF_CLOSE | TCPF_LISTEN))) { 3000 u32 elapsed = keepalive_time_elapsed(tp); 3001 if (tp->keepalive_time > elapsed) 3002 elapsed = tp->keepalive_time - elapsed; 3003 else 3004 elapsed = 0; 3005 inet_csk_reset_keepalive_timer(sk, elapsed); 3006 } 3007 } 3008 break; 3009 case TCP_KEEPINTVL: 3010 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3011 err = -EINVAL; 3012 else 3013 tp->keepalive_intvl = val * HZ; 3014 break; 3015 case TCP_KEEPCNT: 3016 if (val < 1 || val > MAX_TCP_KEEPCNT) 3017 err = -EINVAL; 3018 else 3019 tp->keepalive_probes = val; 3020 break; 3021 case TCP_SYNCNT: 3022 if (val < 1 || val > MAX_TCP_SYNCNT) 3023 err = -EINVAL; 3024 else 3025 icsk->icsk_syn_retries = val; 3026 break; 3027 3028 case TCP_SAVE_SYN: 3029 if (val < 0 || val > 1) 3030 err = -EINVAL; 3031 else 3032 tp->save_syn = val; 3033 break; 3034 3035 case TCP_LINGER2: 3036 if (val < 0) 3037 tp->linger2 = -1; 3038 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 3039 tp->linger2 = 0; 3040 else 3041 tp->linger2 = val * HZ; 3042 break; 3043 3044 case TCP_DEFER_ACCEPT: 3045 /* Translate value in seconds to number of retransmits */ 3046 icsk->icsk_accept_queue.rskq_defer_accept = 3047 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3048 TCP_RTO_MAX / HZ); 3049 break; 3050 3051 case TCP_WINDOW_CLAMP: 3052 if (!val) { 3053 if (sk->sk_state != TCP_CLOSE) { 3054 err = -EINVAL; 3055 break; 3056 } 3057 tp->window_clamp = 0; 3058 } else 3059 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3060 SOCK_MIN_RCVBUF / 2 : val; 3061 break; 3062 3063 case TCP_QUICKACK: 3064 if (!val) { 3065 inet_csk_enter_pingpong_mode(sk); 3066 } else { 3067 inet_csk_exit_pingpong_mode(sk); 3068 if ((1 << sk->sk_state) & 3069 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3070 inet_csk_ack_scheduled(sk)) { 3071 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3072 tcp_cleanup_rbuf(sk, 1); 3073 if (!(val & 1)) 3074 inet_csk_enter_pingpong_mode(sk); 3075 } 3076 } 3077 break; 3078 3079 #ifdef CONFIG_TCP_MD5SIG 3080 case TCP_MD5SIG: 3081 case TCP_MD5SIG_EXT: 3082 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3083 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3084 else 3085 err = -EINVAL; 3086 break; 3087 #endif 3088 case TCP_USER_TIMEOUT: 3089 /* Cap the max time in ms TCP will retry or probe the window 3090 * before giving up and aborting (ETIMEDOUT) a connection. 3091 */ 3092 if (val < 0) 3093 err = -EINVAL; 3094 else 3095 icsk->icsk_user_timeout = val; 3096 break; 3097 3098 case TCP_FASTOPEN: 3099 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3100 TCPF_LISTEN))) { 3101 tcp_fastopen_init_key_once(net); 3102 3103 fastopen_queue_tune(sk, val); 3104 } else { 3105 err = -EINVAL; 3106 } 3107 break; 3108 case TCP_FASTOPEN_CONNECT: 3109 if (val > 1 || val < 0) { 3110 err = -EINVAL; 3111 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3112 if (sk->sk_state == TCP_CLOSE) 3113 tp->fastopen_connect = val; 3114 else 3115 err = -EINVAL; 3116 } else { 3117 err = -EOPNOTSUPP; 3118 } 3119 break; 3120 case TCP_FASTOPEN_NO_COOKIE: 3121 if (val > 1 || val < 0) 3122 err = -EINVAL; 3123 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3124 err = -EINVAL; 3125 else 3126 tp->fastopen_no_cookie = val; 3127 break; 3128 case TCP_TIMESTAMP: 3129 if (!tp->repair) 3130 err = -EPERM; 3131 else 3132 tp->tsoffset = val - tcp_time_stamp_raw(); 3133 break; 3134 case TCP_REPAIR_WINDOW: 3135 err = tcp_repair_set_window(tp, optval, optlen); 3136 break; 3137 case TCP_NOTSENT_LOWAT: 3138 tp->notsent_lowat = val; 3139 sk->sk_write_space(sk); 3140 break; 3141 case TCP_INQ: 3142 if (val > 1 || val < 0) 3143 err = -EINVAL; 3144 else 3145 tp->recvmsg_inq = val; 3146 break; 3147 case TCP_TX_DELAY: 3148 if (val) 3149 tcp_enable_tx_delay(); 3150 tp->tcp_tx_delay = val; 3151 break; 3152 default: 3153 err = -ENOPROTOOPT; 3154 break; 3155 } 3156 3157 release_sock(sk); 3158 return err; 3159 } 3160 3161 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3162 unsigned int optlen) 3163 { 3164 const struct inet_connection_sock *icsk = inet_csk(sk); 3165 3166 if (level != SOL_TCP) 3167 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3168 optval, optlen); 3169 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3170 } 3171 EXPORT_SYMBOL(tcp_setsockopt); 3172 3173 #ifdef CONFIG_COMPAT 3174 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3175 char __user *optval, unsigned int optlen) 3176 { 3177 if (level != SOL_TCP) 3178 return inet_csk_compat_setsockopt(sk, level, optname, 3179 optval, optlen); 3180 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3181 } 3182 EXPORT_SYMBOL(compat_tcp_setsockopt); 3183 #endif 3184 3185 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3186 struct tcp_info *info) 3187 { 3188 u64 stats[__TCP_CHRONO_MAX], total = 0; 3189 enum tcp_chrono i; 3190 3191 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3192 stats[i] = tp->chrono_stat[i - 1]; 3193 if (i == tp->chrono_type) 3194 stats[i] += tcp_jiffies32 - tp->chrono_start; 3195 stats[i] *= USEC_PER_SEC / HZ; 3196 total += stats[i]; 3197 } 3198 3199 info->tcpi_busy_time = total; 3200 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3201 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3202 } 3203 3204 /* Return information about state of tcp endpoint in API format. */ 3205 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3206 { 3207 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3208 const struct inet_connection_sock *icsk = inet_csk(sk); 3209 unsigned long rate; 3210 u32 now; 3211 u64 rate64; 3212 bool slow; 3213 3214 memset(info, 0, sizeof(*info)); 3215 if (sk->sk_type != SOCK_STREAM) 3216 return; 3217 3218 info->tcpi_state = inet_sk_state_load(sk); 3219 3220 /* Report meaningful fields for all TCP states, including listeners */ 3221 rate = READ_ONCE(sk->sk_pacing_rate); 3222 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3223 info->tcpi_pacing_rate = rate64; 3224 3225 rate = READ_ONCE(sk->sk_max_pacing_rate); 3226 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3227 info->tcpi_max_pacing_rate = rate64; 3228 3229 info->tcpi_reordering = tp->reordering; 3230 info->tcpi_snd_cwnd = tp->snd_cwnd; 3231 3232 if (info->tcpi_state == TCP_LISTEN) { 3233 /* listeners aliased fields : 3234 * tcpi_unacked -> Number of children ready for accept() 3235 * tcpi_sacked -> max backlog 3236 */ 3237 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3238 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3239 return; 3240 } 3241 3242 slow = lock_sock_fast(sk); 3243 3244 info->tcpi_ca_state = icsk->icsk_ca_state; 3245 info->tcpi_retransmits = icsk->icsk_retransmits; 3246 info->tcpi_probes = icsk->icsk_probes_out; 3247 info->tcpi_backoff = icsk->icsk_backoff; 3248 3249 if (tp->rx_opt.tstamp_ok) 3250 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3251 if (tcp_is_sack(tp)) 3252 info->tcpi_options |= TCPI_OPT_SACK; 3253 if (tp->rx_opt.wscale_ok) { 3254 info->tcpi_options |= TCPI_OPT_WSCALE; 3255 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3256 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3257 } 3258 3259 if (tp->ecn_flags & TCP_ECN_OK) 3260 info->tcpi_options |= TCPI_OPT_ECN; 3261 if (tp->ecn_flags & TCP_ECN_SEEN) 3262 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3263 if (tp->syn_data_acked) 3264 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3265 3266 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3267 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3268 info->tcpi_snd_mss = tp->mss_cache; 3269 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3270 3271 info->tcpi_unacked = tp->packets_out; 3272 info->tcpi_sacked = tp->sacked_out; 3273 3274 info->tcpi_lost = tp->lost_out; 3275 info->tcpi_retrans = tp->retrans_out; 3276 3277 now = tcp_jiffies32; 3278 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3279 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3280 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3281 3282 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3283 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3284 info->tcpi_rtt = tp->srtt_us >> 3; 3285 info->tcpi_rttvar = tp->mdev_us >> 2; 3286 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3287 info->tcpi_advmss = tp->advmss; 3288 3289 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3290 info->tcpi_rcv_space = tp->rcvq_space.space; 3291 3292 info->tcpi_total_retrans = tp->total_retrans; 3293 3294 info->tcpi_bytes_acked = tp->bytes_acked; 3295 info->tcpi_bytes_received = tp->bytes_received; 3296 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3297 tcp_get_info_chrono_stats(tp, info); 3298 3299 info->tcpi_segs_out = tp->segs_out; 3300 info->tcpi_segs_in = tp->segs_in; 3301 3302 info->tcpi_min_rtt = tcp_min_rtt(tp); 3303 info->tcpi_data_segs_in = tp->data_segs_in; 3304 info->tcpi_data_segs_out = tp->data_segs_out; 3305 3306 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3307 rate64 = tcp_compute_delivery_rate(tp); 3308 if (rate64) 3309 info->tcpi_delivery_rate = rate64; 3310 info->tcpi_delivered = tp->delivered; 3311 info->tcpi_delivered_ce = tp->delivered_ce; 3312 info->tcpi_bytes_sent = tp->bytes_sent; 3313 info->tcpi_bytes_retrans = tp->bytes_retrans; 3314 info->tcpi_dsack_dups = tp->dsack_dups; 3315 info->tcpi_reord_seen = tp->reord_seen; 3316 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3317 info->tcpi_snd_wnd = tp->snd_wnd; 3318 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3319 unlock_sock_fast(sk, slow); 3320 } 3321 EXPORT_SYMBOL_GPL(tcp_get_info); 3322 3323 static size_t tcp_opt_stats_get_size(void) 3324 { 3325 return 3326 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3327 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3328 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3329 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3330 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3331 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3332 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3333 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3334 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3335 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3336 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3337 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3338 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3339 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3340 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3341 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3342 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3343 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3344 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3345 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3346 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3347 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3348 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3349 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3350 0; 3351 } 3352 3353 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3354 { 3355 const struct tcp_sock *tp = tcp_sk(sk); 3356 struct sk_buff *stats; 3357 struct tcp_info info; 3358 unsigned long rate; 3359 u64 rate64; 3360 3361 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3362 if (!stats) 3363 return NULL; 3364 3365 tcp_get_info_chrono_stats(tp, &info); 3366 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3367 info.tcpi_busy_time, TCP_NLA_PAD); 3368 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3369 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3370 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3371 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3372 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3373 tp->data_segs_out, TCP_NLA_PAD); 3374 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3375 tp->total_retrans, TCP_NLA_PAD); 3376 3377 rate = READ_ONCE(sk->sk_pacing_rate); 3378 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3379 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3380 3381 rate64 = tcp_compute_delivery_rate(tp); 3382 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3383 3384 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3385 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3386 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3387 3388 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3389 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3390 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3391 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3392 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3393 3394 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3395 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3396 3397 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3398 TCP_NLA_PAD); 3399 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3400 TCP_NLA_PAD); 3401 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3402 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3403 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3404 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3405 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3406 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3407 3408 return stats; 3409 } 3410 3411 static int do_tcp_getsockopt(struct sock *sk, int level, 3412 int optname, char __user *optval, int __user *optlen) 3413 { 3414 struct inet_connection_sock *icsk = inet_csk(sk); 3415 struct tcp_sock *tp = tcp_sk(sk); 3416 struct net *net = sock_net(sk); 3417 int val, len; 3418 3419 if (get_user(len, optlen)) 3420 return -EFAULT; 3421 3422 len = min_t(unsigned int, len, sizeof(int)); 3423 3424 if (len < 0) 3425 return -EINVAL; 3426 3427 switch (optname) { 3428 case TCP_MAXSEG: 3429 val = tp->mss_cache; 3430 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3431 val = tp->rx_opt.user_mss; 3432 if (tp->repair) 3433 val = tp->rx_opt.mss_clamp; 3434 break; 3435 case TCP_NODELAY: 3436 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3437 break; 3438 case TCP_CORK: 3439 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3440 break; 3441 case TCP_KEEPIDLE: 3442 val = keepalive_time_when(tp) / HZ; 3443 break; 3444 case TCP_KEEPINTVL: 3445 val = keepalive_intvl_when(tp) / HZ; 3446 break; 3447 case TCP_KEEPCNT: 3448 val = keepalive_probes(tp); 3449 break; 3450 case TCP_SYNCNT: 3451 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3452 break; 3453 case TCP_LINGER2: 3454 val = tp->linger2; 3455 if (val >= 0) 3456 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3457 break; 3458 case TCP_DEFER_ACCEPT: 3459 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3460 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3461 break; 3462 case TCP_WINDOW_CLAMP: 3463 val = tp->window_clamp; 3464 break; 3465 case TCP_INFO: { 3466 struct tcp_info info; 3467 3468 if (get_user(len, optlen)) 3469 return -EFAULT; 3470 3471 tcp_get_info(sk, &info); 3472 3473 len = min_t(unsigned int, len, sizeof(info)); 3474 if (put_user(len, optlen)) 3475 return -EFAULT; 3476 if (copy_to_user(optval, &info, len)) 3477 return -EFAULT; 3478 return 0; 3479 } 3480 case TCP_CC_INFO: { 3481 const struct tcp_congestion_ops *ca_ops; 3482 union tcp_cc_info info; 3483 size_t sz = 0; 3484 int attr; 3485 3486 if (get_user(len, optlen)) 3487 return -EFAULT; 3488 3489 ca_ops = icsk->icsk_ca_ops; 3490 if (ca_ops && ca_ops->get_info) 3491 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3492 3493 len = min_t(unsigned int, len, sz); 3494 if (put_user(len, optlen)) 3495 return -EFAULT; 3496 if (copy_to_user(optval, &info, len)) 3497 return -EFAULT; 3498 return 0; 3499 } 3500 case TCP_QUICKACK: 3501 val = !inet_csk_in_pingpong_mode(sk); 3502 break; 3503 3504 case TCP_CONGESTION: 3505 if (get_user(len, optlen)) 3506 return -EFAULT; 3507 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3508 if (put_user(len, optlen)) 3509 return -EFAULT; 3510 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3511 return -EFAULT; 3512 return 0; 3513 3514 case TCP_ULP: 3515 if (get_user(len, optlen)) 3516 return -EFAULT; 3517 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3518 if (!icsk->icsk_ulp_ops) { 3519 if (put_user(0, optlen)) 3520 return -EFAULT; 3521 return 0; 3522 } 3523 if (put_user(len, optlen)) 3524 return -EFAULT; 3525 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3526 return -EFAULT; 3527 return 0; 3528 3529 case TCP_FASTOPEN_KEY: { 3530 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3531 struct tcp_fastopen_context *ctx; 3532 unsigned int key_len = 0; 3533 3534 if (get_user(len, optlen)) 3535 return -EFAULT; 3536 3537 rcu_read_lock(); 3538 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3539 if (ctx) { 3540 key_len = tcp_fastopen_context_len(ctx) * 3541 TCP_FASTOPEN_KEY_LENGTH; 3542 memcpy(&key[0], &ctx->key[0], key_len); 3543 } 3544 rcu_read_unlock(); 3545 3546 len = min_t(unsigned int, len, key_len); 3547 if (put_user(len, optlen)) 3548 return -EFAULT; 3549 if (copy_to_user(optval, key, len)) 3550 return -EFAULT; 3551 return 0; 3552 } 3553 case TCP_THIN_LINEAR_TIMEOUTS: 3554 val = tp->thin_lto; 3555 break; 3556 3557 case TCP_THIN_DUPACK: 3558 val = 0; 3559 break; 3560 3561 case TCP_REPAIR: 3562 val = tp->repair; 3563 break; 3564 3565 case TCP_REPAIR_QUEUE: 3566 if (tp->repair) 3567 val = tp->repair_queue; 3568 else 3569 return -EINVAL; 3570 break; 3571 3572 case TCP_REPAIR_WINDOW: { 3573 struct tcp_repair_window opt; 3574 3575 if (get_user(len, optlen)) 3576 return -EFAULT; 3577 3578 if (len != sizeof(opt)) 3579 return -EINVAL; 3580 3581 if (!tp->repair) 3582 return -EPERM; 3583 3584 opt.snd_wl1 = tp->snd_wl1; 3585 opt.snd_wnd = tp->snd_wnd; 3586 opt.max_window = tp->max_window; 3587 opt.rcv_wnd = tp->rcv_wnd; 3588 opt.rcv_wup = tp->rcv_wup; 3589 3590 if (copy_to_user(optval, &opt, len)) 3591 return -EFAULT; 3592 return 0; 3593 } 3594 case TCP_QUEUE_SEQ: 3595 if (tp->repair_queue == TCP_SEND_QUEUE) 3596 val = tp->write_seq; 3597 else if (tp->repair_queue == TCP_RECV_QUEUE) 3598 val = tp->rcv_nxt; 3599 else 3600 return -EINVAL; 3601 break; 3602 3603 case TCP_USER_TIMEOUT: 3604 val = icsk->icsk_user_timeout; 3605 break; 3606 3607 case TCP_FASTOPEN: 3608 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3609 break; 3610 3611 case TCP_FASTOPEN_CONNECT: 3612 val = tp->fastopen_connect; 3613 break; 3614 3615 case TCP_FASTOPEN_NO_COOKIE: 3616 val = tp->fastopen_no_cookie; 3617 break; 3618 3619 case TCP_TX_DELAY: 3620 val = tp->tcp_tx_delay; 3621 break; 3622 3623 case TCP_TIMESTAMP: 3624 val = tcp_time_stamp_raw() + tp->tsoffset; 3625 break; 3626 case TCP_NOTSENT_LOWAT: 3627 val = tp->notsent_lowat; 3628 break; 3629 case TCP_INQ: 3630 val = tp->recvmsg_inq; 3631 break; 3632 case TCP_SAVE_SYN: 3633 val = tp->save_syn; 3634 break; 3635 case TCP_SAVED_SYN: { 3636 if (get_user(len, optlen)) 3637 return -EFAULT; 3638 3639 lock_sock(sk); 3640 if (tp->saved_syn) { 3641 if (len < tp->saved_syn[0]) { 3642 if (put_user(tp->saved_syn[0], optlen)) { 3643 release_sock(sk); 3644 return -EFAULT; 3645 } 3646 release_sock(sk); 3647 return -EINVAL; 3648 } 3649 len = tp->saved_syn[0]; 3650 if (put_user(len, optlen)) { 3651 release_sock(sk); 3652 return -EFAULT; 3653 } 3654 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3655 release_sock(sk); 3656 return -EFAULT; 3657 } 3658 tcp_saved_syn_free(tp); 3659 release_sock(sk); 3660 } else { 3661 release_sock(sk); 3662 len = 0; 3663 if (put_user(len, optlen)) 3664 return -EFAULT; 3665 } 3666 return 0; 3667 } 3668 #ifdef CONFIG_MMU 3669 case TCP_ZEROCOPY_RECEIVE: { 3670 struct tcp_zerocopy_receive zc; 3671 int err; 3672 3673 if (get_user(len, optlen)) 3674 return -EFAULT; 3675 if (len < offsetofend(struct tcp_zerocopy_receive, length)) 3676 return -EINVAL; 3677 if (len > sizeof(zc)) { 3678 len = sizeof(zc); 3679 if (put_user(len, optlen)) 3680 return -EFAULT; 3681 } 3682 if (copy_from_user(&zc, optval, len)) 3683 return -EFAULT; 3684 lock_sock(sk); 3685 err = tcp_zerocopy_receive(sk, &zc); 3686 release_sock(sk); 3687 if (len == sizeof(zc)) 3688 goto zerocopy_rcv_sk_err; 3689 switch (len) { 3690 case offsetofend(struct tcp_zerocopy_receive, err): 3691 goto zerocopy_rcv_sk_err; 3692 case offsetofend(struct tcp_zerocopy_receive, inq): 3693 goto zerocopy_rcv_inq; 3694 case offsetofend(struct tcp_zerocopy_receive, length): 3695 default: 3696 goto zerocopy_rcv_out; 3697 } 3698 zerocopy_rcv_sk_err: 3699 if (!err) 3700 zc.err = sock_error(sk); 3701 zerocopy_rcv_inq: 3702 zc.inq = tcp_inq_hint(sk); 3703 zerocopy_rcv_out: 3704 if (!err && copy_to_user(optval, &zc, len)) 3705 err = -EFAULT; 3706 return err; 3707 } 3708 #endif 3709 default: 3710 return -ENOPROTOOPT; 3711 } 3712 3713 if (put_user(len, optlen)) 3714 return -EFAULT; 3715 if (copy_to_user(optval, &val, len)) 3716 return -EFAULT; 3717 return 0; 3718 } 3719 3720 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3721 int __user *optlen) 3722 { 3723 struct inet_connection_sock *icsk = inet_csk(sk); 3724 3725 if (level != SOL_TCP) 3726 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3727 optval, optlen); 3728 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3729 } 3730 EXPORT_SYMBOL(tcp_getsockopt); 3731 3732 #ifdef CONFIG_COMPAT 3733 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3734 char __user *optval, int __user *optlen) 3735 { 3736 if (level != SOL_TCP) 3737 return inet_csk_compat_getsockopt(sk, level, optname, 3738 optval, optlen); 3739 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3740 } 3741 EXPORT_SYMBOL(compat_tcp_getsockopt); 3742 #endif 3743 3744 #ifdef CONFIG_TCP_MD5SIG 3745 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3746 static DEFINE_MUTEX(tcp_md5sig_mutex); 3747 static bool tcp_md5sig_pool_populated = false; 3748 3749 static void __tcp_alloc_md5sig_pool(void) 3750 { 3751 struct crypto_ahash *hash; 3752 int cpu; 3753 3754 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3755 if (IS_ERR(hash)) 3756 return; 3757 3758 for_each_possible_cpu(cpu) { 3759 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3760 struct ahash_request *req; 3761 3762 if (!scratch) { 3763 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3764 sizeof(struct tcphdr), 3765 GFP_KERNEL, 3766 cpu_to_node(cpu)); 3767 if (!scratch) 3768 return; 3769 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3770 } 3771 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3772 continue; 3773 3774 req = ahash_request_alloc(hash, GFP_KERNEL); 3775 if (!req) 3776 return; 3777 3778 ahash_request_set_callback(req, 0, NULL, NULL); 3779 3780 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3781 } 3782 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3783 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3784 */ 3785 smp_wmb(); 3786 tcp_md5sig_pool_populated = true; 3787 } 3788 3789 bool tcp_alloc_md5sig_pool(void) 3790 { 3791 if (unlikely(!tcp_md5sig_pool_populated)) { 3792 mutex_lock(&tcp_md5sig_mutex); 3793 3794 if (!tcp_md5sig_pool_populated) { 3795 __tcp_alloc_md5sig_pool(); 3796 if (tcp_md5sig_pool_populated) 3797 static_branch_inc(&tcp_md5_needed); 3798 } 3799 3800 mutex_unlock(&tcp_md5sig_mutex); 3801 } 3802 return tcp_md5sig_pool_populated; 3803 } 3804 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3805 3806 3807 /** 3808 * tcp_get_md5sig_pool - get md5sig_pool for this user 3809 * 3810 * We use percpu structure, so if we succeed, we exit with preemption 3811 * and BH disabled, to make sure another thread or softirq handling 3812 * wont try to get same context. 3813 */ 3814 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3815 { 3816 local_bh_disable(); 3817 3818 if (tcp_md5sig_pool_populated) { 3819 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3820 smp_rmb(); 3821 return this_cpu_ptr(&tcp_md5sig_pool); 3822 } 3823 local_bh_enable(); 3824 return NULL; 3825 } 3826 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3827 3828 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3829 const struct sk_buff *skb, unsigned int header_len) 3830 { 3831 struct scatterlist sg; 3832 const struct tcphdr *tp = tcp_hdr(skb); 3833 struct ahash_request *req = hp->md5_req; 3834 unsigned int i; 3835 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3836 skb_headlen(skb) - header_len : 0; 3837 const struct skb_shared_info *shi = skb_shinfo(skb); 3838 struct sk_buff *frag_iter; 3839 3840 sg_init_table(&sg, 1); 3841 3842 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3843 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3844 if (crypto_ahash_update(req)) 3845 return 1; 3846 3847 for (i = 0; i < shi->nr_frags; ++i) { 3848 const skb_frag_t *f = &shi->frags[i]; 3849 unsigned int offset = skb_frag_off(f); 3850 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3851 3852 sg_set_page(&sg, page, skb_frag_size(f), 3853 offset_in_page(offset)); 3854 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3855 if (crypto_ahash_update(req)) 3856 return 1; 3857 } 3858 3859 skb_walk_frags(skb, frag_iter) 3860 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3861 return 1; 3862 3863 return 0; 3864 } 3865 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3866 3867 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3868 { 3869 struct scatterlist sg; 3870 3871 sg_init_one(&sg, key->key, key->keylen); 3872 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3873 return crypto_ahash_update(hp->md5_req); 3874 } 3875 EXPORT_SYMBOL(tcp_md5_hash_key); 3876 3877 #endif 3878 3879 void tcp_done(struct sock *sk) 3880 { 3881 struct request_sock *req; 3882 3883 /* We might be called with a new socket, after 3884 * inet_csk_prepare_forced_close() has been called 3885 * so we can not use lockdep_sock_is_held(sk) 3886 */ 3887 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 3888 3889 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3890 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3891 3892 tcp_set_state(sk, TCP_CLOSE); 3893 tcp_clear_xmit_timers(sk); 3894 if (req) 3895 reqsk_fastopen_remove(sk, req, false); 3896 3897 sk->sk_shutdown = SHUTDOWN_MASK; 3898 3899 if (!sock_flag(sk, SOCK_DEAD)) 3900 sk->sk_state_change(sk); 3901 else 3902 inet_csk_destroy_sock(sk); 3903 } 3904 EXPORT_SYMBOL_GPL(tcp_done); 3905 3906 int tcp_abort(struct sock *sk, int err) 3907 { 3908 if (!sk_fullsock(sk)) { 3909 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3910 struct request_sock *req = inet_reqsk(sk); 3911 3912 local_bh_disable(); 3913 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3914 local_bh_enable(); 3915 return 0; 3916 } 3917 return -EOPNOTSUPP; 3918 } 3919 3920 /* Don't race with userspace socket closes such as tcp_close. */ 3921 lock_sock(sk); 3922 3923 if (sk->sk_state == TCP_LISTEN) { 3924 tcp_set_state(sk, TCP_CLOSE); 3925 inet_csk_listen_stop(sk); 3926 } 3927 3928 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3929 local_bh_disable(); 3930 bh_lock_sock(sk); 3931 3932 if (!sock_flag(sk, SOCK_DEAD)) { 3933 sk->sk_err = err; 3934 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3935 smp_wmb(); 3936 sk->sk_error_report(sk); 3937 if (tcp_need_reset(sk->sk_state)) 3938 tcp_send_active_reset(sk, GFP_ATOMIC); 3939 tcp_done(sk); 3940 } 3941 3942 bh_unlock_sock(sk); 3943 local_bh_enable(); 3944 tcp_write_queue_purge(sk); 3945 release_sock(sk); 3946 return 0; 3947 } 3948 EXPORT_SYMBOL_GPL(tcp_abort); 3949 3950 extern struct tcp_congestion_ops tcp_reno; 3951 3952 static __initdata unsigned long thash_entries; 3953 static int __init set_thash_entries(char *str) 3954 { 3955 ssize_t ret; 3956 3957 if (!str) 3958 return 0; 3959 3960 ret = kstrtoul(str, 0, &thash_entries); 3961 if (ret) 3962 return 0; 3963 3964 return 1; 3965 } 3966 __setup("thash_entries=", set_thash_entries); 3967 3968 static void __init tcp_init_mem(void) 3969 { 3970 unsigned long limit = nr_free_buffer_pages() / 16; 3971 3972 limit = max(limit, 128UL); 3973 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3974 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3975 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3976 } 3977 3978 void __init tcp_init(void) 3979 { 3980 int max_rshare, max_wshare, cnt; 3981 unsigned long limit; 3982 unsigned int i; 3983 3984 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3985 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3986 sizeof_field(struct sk_buff, cb)); 3987 3988 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3989 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3990 inet_hashinfo_init(&tcp_hashinfo); 3991 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3992 thash_entries, 21, /* one slot per 2 MB*/ 3993 0, 64 * 1024); 3994 tcp_hashinfo.bind_bucket_cachep = 3995 kmem_cache_create("tcp_bind_bucket", 3996 sizeof(struct inet_bind_bucket), 0, 3997 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3998 3999 /* Size and allocate the main established and bind bucket 4000 * hash tables. 4001 * 4002 * The methodology is similar to that of the buffer cache. 4003 */ 4004 tcp_hashinfo.ehash = 4005 alloc_large_system_hash("TCP established", 4006 sizeof(struct inet_ehash_bucket), 4007 thash_entries, 4008 17, /* one slot per 128 KB of memory */ 4009 0, 4010 NULL, 4011 &tcp_hashinfo.ehash_mask, 4012 0, 4013 thash_entries ? 0 : 512 * 1024); 4014 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4015 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4016 4017 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4018 panic("TCP: failed to alloc ehash_locks"); 4019 tcp_hashinfo.bhash = 4020 alloc_large_system_hash("TCP bind", 4021 sizeof(struct inet_bind_hashbucket), 4022 tcp_hashinfo.ehash_mask + 1, 4023 17, /* one slot per 128 KB of memory */ 4024 0, 4025 &tcp_hashinfo.bhash_size, 4026 NULL, 4027 0, 4028 64 * 1024); 4029 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4030 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4031 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4032 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4033 } 4034 4035 4036 cnt = tcp_hashinfo.ehash_mask + 1; 4037 sysctl_tcp_max_orphans = cnt / 2; 4038 4039 tcp_init_mem(); 4040 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4041 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4042 max_wshare = min(4UL*1024*1024, limit); 4043 max_rshare = min(6UL*1024*1024, limit); 4044 4045 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4046 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4047 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4048 4049 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4050 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4051 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4052 4053 pr_info("Hash tables configured (established %u bind %u)\n", 4054 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4055 4056 tcp_v4_init(); 4057 tcp_metrics_init(); 4058 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4059 tcp_tasklet_init(); 4060 mptcp_init(); 4061 } 4062