1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 467 { 468 struct sk_buff *skb = tcp_write_queue_tail(sk); 469 470 if (tsflags && skb) { 471 struct skb_shared_info *shinfo = skb_shinfo(skb); 472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 473 474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 475 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 476 tcb->txstamp_ack = 1; 477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 479 } 480 } 481 482 static bool tcp_stream_is_readable(struct sock *sk, int target) 483 { 484 if (tcp_epollin_ready(sk, target)) 485 return true; 486 return sk_is_readable(sk); 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 __poll_t mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 int state; 502 503 sock_poll_wait(file, sock, wait); 504 505 state = inet_sk_state_load(sk); 506 if (state == TCP_LISTEN) 507 return inet_csk_listen_poll(sk); 508 509 /* Socket is not locked. We are protected from async events 510 * by poll logic and correct handling of state changes 511 * made by other threads is impossible in any case. 512 */ 513 514 mask = 0; 515 516 /* 517 * EPOLLHUP is certainly not done right. But poll() doesn't 518 * have a notion of HUP in just one direction, and for a 519 * socket the read side is more interesting. 520 * 521 * Some poll() documentation says that EPOLLHUP is incompatible 522 * with the EPOLLOUT/POLLWR flags, so somebody should check this 523 * all. But careful, it tends to be safer to return too many 524 * bits than too few, and you can easily break real applications 525 * if you don't tell them that something has hung up! 526 * 527 * Check-me. 528 * 529 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 530 * our fs/select.c). It means that after we received EOF, 531 * poll always returns immediately, making impossible poll() on write() 532 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 533 * if and only if shutdown has been made in both directions. 534 * Actually, it is interesting to look how Solaris and DUX 535 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 536 * then we could set it on SND_SHUTDOWN. BTW examples given 537 * in Stevens' books assume exactly this behaviour, it explains 538 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 539 * 540 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 541 * blocking on fresh not-connected or disconnected socket. --ANK 542 */ 543 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 544 mask |= EPOLLHUP; 545 if (sk->sk_shutdown & RCV_SHUTDOWN) 546 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 547 548 /* Connected or passive Fast Open socket? */ 549 if (state != TCP_SYN_SENT && 550 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 551 int target = sock_rcvlowat(sk, 0, INT_MAX); 552 u16 urg_data = READ_ONCE(tp->urg_data); 553 554 if (unlikely(urg_data) && 555 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 556 !sock_flag(sk, SOCK_URGINLINE)) 557 target++; 558 559 if (tcp_stream_is_readable(sk, target)) 560 mask |= EPOLLIN | EPOLLRDNORM; 561 562 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 563 if (__sk_stream_is_writeable(sk, 1)) { 564 mask |= EPOLLOUT | EPOLLWRNORM; 565 } else { /* send SIGIO later */ 566 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 567 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 568 569 /* Race breaker. If space is freed after 570 * wspace test but before the flags are set, 571 * IO signal will be lost. Memory barrier 572 * pairs with the input side. 573 */ 574 smp_mb__after_atomic(); 575 if (__sk_stream_is_writeable(sk, 1)) 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 } 578 } else 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 581 if (urg_data & TCP_URG_VALID) 582 mask |= EPOLLPRI; 583 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 584 /* Active TCP fastopen socket with defer_connect 585 * Return EPOLLOUT so application can call write() 586 * in order for kernel to generate SYN+data 587 */ 588 mask |= EPOLLOUT | EPOLLWRNORM; 589 } 590 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 591 smp_rmb(); 592 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 593 mask |= EPOLLERR; 594 595 return mask; 596 } 597 EXPORT_SYMBOL(tcp_poll); 598 599 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 600 { 601 struct tcp_sock *tp = tcp_sk(sk); 602 int answ; 603 bool slow; 604 605 switch (cmd) { 606 case SIOCINQ: 607 if (sk->sk_state == TCP_LISTEN) 608 return -EINVAL; 609 610 slow = lock_sock_fast(sk); 611 answ = tcp_inq(sk); 612 unlock_sock_fast(sk, slow); 613 break; 614 case SIOCATMARK: 615 answ = READ_ONCE(tp->urg_data) && 616 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 617 break; 618 case SIOCOUTQ: 619 if (sk->sk_state == TCP_LISTEN) 620 return -EINVAL; 621 622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 623 answ = 0; 624 else 625 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 626 break; 627 case SIOCOUTQNSD: 628 if (sk->sk_state == TCP_LISTEN) 629 return -EINVAL; 630 631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 632 answ = 0; 633 else 634 answ = READ_ONCE(tp->write_seq) - 635 READ_ONCE(tp->snd_nxt); 636 break; 637 default: 638 return -ENOIOCTLCMD; 639 } 640 641 return put_user(answ, (int __user *)arg); 642 } 643 EXPORT_SYMBOL(tcp_ioctl); 644 645 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 646 { 647 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 648 tp->pushed_seq = tp->write_seq; 649 } 650 651 static inline bool forced_push(const struct tcp_sock *tp) 652 { 653 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 654 } 655 656 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 657 { 658 struct tcp_sock *tp = tcp_sk(sk); 659 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 660 661 tcb->seq = tcb->end_seq = tp->write_seq; 662 tcb->tcp_flags = TCPHDR_ACK; 663 __skb_header_release(skb); 664 tcp_add_write_queue_tail(sk, skb); 665 sk_wmem_queued_add(sk, skb->truesize); 666 sk_mem_charge(sk, skb->truesize); 667 if (tp->nonagle & TCP_NAGLE_PUSH) 668 tp->nonagle &= ~TCP_NAGLE_PUSH; 669 670 tcp_slow_start_after_idle_check(sk); 671 } 672 673 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 674 { 675 if (flags & MSG_OOB) 676 tp->snd_up = tp->write_seq; 677 } 678 679 /* If a not yet filled skb is pushed, do not send it if 680 * we have data packets in Qdisc or NIC queues : 681 * Because TX completion will happen shortly, it gives a chance 682 * to coalesce future sendmsg() payload into this skb, without 683 * need for a timer, and with no latency trade off. 684 * As packets containing data payload have a bigger truesize 685 * than pure acks (dataless) packets, the last checks prevent 686 * autocorking if we only have an ACK in Qdisc/NIC queues, 687 * or if TX completion was delayed after we processed ACK packet. 688 */ 689 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 690 int size_goal) 691 { 692 return skb->len < size_goal && 693 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 694 !tcp_rtx_queue_empty(sk) && 695 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 696 tcp_skb_can_collapse_to(skb); 697 } 698 699 void tcp_push(struct sock *sk, int flags, int mss_now, 700 int nonagle, int size_goal) 701 { 702 struct tcp_sock *tp = tcp_sk(sk); 703 struct sk_buff *skb; 704 705 skb = tcp_write_queue_tail(sk); 706 if (!skb) 707 return; 708 if (!(flags & MSG_MORE) || forced_push(tp)) 709 tcp_mark_push(tp, skb); 710 711 tcp_mark_urg(tp, flags); 712 713 if (tcp_should_autocork(sk, skb, size_goal)) { 714 715 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 719 } 720 /* It is possible TX completion already happened 721 * before we set TSQ_THROTTLED. 722 */ 723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 724 return; 725 } 726 727 if (flags & MSG_MORE) 728 nonagle = TCP_NAGLE_CORK; 729 730 __tcp_push_pending_frames(sk, mss_now, nonagle); 731 } 732 733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 734 unsigned int offset, size_t len) 735 { 736 struct tcp_splice_state *tss = rd_desc->arg.data; 737 int ret; 738 739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 740 min(rd_desc->count, len), tss->flags); 741 if (ret > 0) 742 rd_desc->count -= ret; 743 return ret; 744 } 745 746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 747 { 748 /* Store TCP splice context information in read_descriptor_t. */ 749 read_descriptor_t rd_desc = { 750 .arg.data = tss, 751 .count = tss->len, 752 }; 753 754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 755 } 756 757 /** 758 * tcp_splice_read - splice data from TCP socket to a pipe 759 * @sock: socket to splice from 760 * @ppos: position (not valid) 761 * @pipe: pipe to splice to 762 * @len: number of bytes to splice 763 * @flags: splice modifier flags 764 * 765 * Description: 766 * Will read pages from given socket and fill them into a pipe. 767 * 768 **/ 769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 770 struct pipe_inode_info *pipe, size_t len, 771 unsigned int flags) 772 { 773 struct sock *sk = sock->sk; 774 struct tcp_splice_state tss = { 775 .pipe = pipe, 776 .len = len, 777 .flags = flags, 778 }; 779 long timeo; 780 ssize_t spliced; 781 int ret; 782 783 sock_rps_record_flow(sk); 784 /* 785 * We can't seek on a socket input 786 */ 787 if (unlikely(*ppos)) 788 return -ESPIPE; 789 790 ret = spliced = 0; 791 792 lock_sock(sk); 793 794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 795 while (tss.len) { 796 ret = __tcp_splice_read(sk, &tss); 797 if (ret < 0) 798 break; 799 else if (!ret) { 800 if (spliced) 801 break; 802 if (sock_flag(sk, SOCK_DONE)) 803 break; 804 if (sk->sk_err) { 805 ret = sock_error(sk); 806 break; 807 } 808 if (sk->sk_shutdown & RCV_SHUTDOWN) 809 break; 810 if (sk->sk_state == TCP_CLOSE) { 811 /* 812 * This occurs when user tries to read 813 * from never connected socket. 814 */ 815 ret = -ENOTCONN; 816 break; 817 } 818 if (!timeo) { 819 ret = -EAGAIN; 820 break; 821 } 822 /* if __tcp_splice_read() got nothing while we have 823 * an skb in receive queue, we do not want to loop. 824 * This might happen with URG data. 825 */ 826 if (!skb_queue_empty(&sk->sk_receive_queue)) 827 break; 828 sk_wait_data(sk, &timeo, NULL); 829 if (signal_pending(current)) { 830 ret = sock_intr_errno(timeo); 831 break; 832 } 833 continue; 834 } 835 tss.len -= ret; 836 spliced += ret; 837 838 if (!timeo) 839 break; 840 release_sock(sk); 841 lock_sock(sk); 842 843 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 844 (sk->sk_shutdown & RCV_SHUTDOWN) || 845 signal_pending(current)) 846 break; 847 } 848 849 release_sock(sk); 850 851 if (spliced) 852 return spliced; 853 854 return ret; 855 } 856 EXPORT_SYMBOL(tcp_splice_read); 857 858 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 859 bool force_schedule) 860 { 861 struct sk_buff *skb; 862 863 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 864 if (likely(skb)) { 865 bool mem_scheduled; 866 867 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 868 if (force_schedule) { 869 mem_scheduled = true; 870 sk_forced_mem_schedule(sk, skb->truesize); 871 } else { 872 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 873 } 874 if (likely(mem_scheduled)) { 875 skb_reserve(skb, MAX_TCP_HEADER); 876 skb->ip_summed = CHECKSUM_PARTIAL; 877 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 878 return skb; 879 } 880 __kfree_skb(skb); 881 } else { 882 sk->sk_prot->enter_memory_pressure(sk); 883 sk_stream_moderate_sndbuf(sk); 884 } 885 return NULL; 886 } 887 888 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 889 int large_allowed) 890 { 891 struct tcp_sock *tp = tcp_sk(sk); 892 u32 new_size_goal, size_goal; 893 894 if (!large_allowed) 895 return mss_now; 896 897 /* Note : tcp_tso_autosize() will eventually split this later */ 898 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 899 900 /* We try hard to avoid divides here */ 901 size_goal = tp->gso_segs * mss_now; 902 if (unlikely(new_size_goal < size_goal || 903 new_size_goal >= size_goal + mss_now)) { 904 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 905 sk->sk_gso_max_segs); 906 size_goal = tp->gso_segs * mss_now; 907 } 908 909 return max(size_goal, mss_now); 910 } 911 912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 913 { 914 int mss_now; 915 916 mss_now = tcp_current_mss(sk); 917 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 918 919 return mss_now; 920 } 921 922 /* In some cases, both sendpage() and sendmsg() could have added 923 * an skb to the write queue, but failed adding payload on it. 924 * We need to remove it to consume less memory, but more 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 926 * users. 927 */ 928 void tcp_remove_empty_skb(struct sock *sk) 929 { 930 struct sk_buff *skb = tcp_write_queue_tail(sk); 931 932 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 933 tcp_unlink_write_queue(skb, sk); 934 if (tcp_write_queue_empty(sk)) 935 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 936 tcp_wmem_free_skb(sk, skb); 937 } 938 } 939 940 /* skb changing from pure zc to mixed, must charge zc */ 941 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 942 { 943 if (unlikely(skb_zcopy_pure(skb))) { 944 u32 extra = skb->truesize - 945 SKB_TRUESIZE(skb_end_offset(skb)); 946 947 if (!sk_wmem_schedule(sk, extra)) 948 return -ENOMEM; 949 950 sk_mem_charge(sk, extra); 951 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 952 } 953 return 0; 954 } 955 956 957 static int tcp_wmem_schedule(struct sock *sk, int copy) 958 { 959 int left; 960 961 if (likely(sk_wmem_schedule(sk, copy))) 962 return copy; 963 964 /* We could be in trouble if we have nothing queued. 965 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 966 * to guarantee some progress. 967 */ 968 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 969 if (left > 0) 970 sk_forced_mem_schedule(sk, min(left, copy)); 971 return min(copy, sk->sk_forward_alloc); 972 } 973 974 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 975 struct page *page, int offset, size_t *size) 976 { 977 struct sk_buff *skb = tcp_write_queue_tail(sk); 978 struct tcp_sock *tp = tcp_sk(sk); 979 bool can_coalesce; 980 int copy, i; 981 982 if (!skb || (copy = size_goal - skb->len) <= 0 || 983 !tcp_skb_can_collapse_to(skb)) { 984 new_segment: 985 if (!sk_stream_memory_free(sk)) 986 return NULL; 987 988 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 989 tcp_rtx_and_write_queues_empty(sk)); 990 if (!skb) 991 return NULL; 992 993 #ifdef CONFIG_TLS_DEVICE 994 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 995 #endif 996 tcp_skb_entail(sk, skb); 997 copy = size_goal; 998 } 999 1000 if (copy > *size) 1001 copy = *size; 1002 1003 i = skb_shinfo(skb)->nr_frags; 1004 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1005 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1006 tcp_mark_push(tp, skb); 1007 goto new_segment; 1008 } 1009 if (tcp_downgrade_zcopy_pure(sk, skb)) 1010 return NULL; 1011 1012 copy = tcp_wmem_schedule(sk, copy); 1013 if (!copy) 1014 return NULL; 1015 1016 if (can_coalesce) { 1017 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1018 } else { 1019 get_page(page); 1020 skb_fill_page_desc_noacc(skb, i, page, offset, copy); 1021 } 1022 1023 if (!(flags & MSG_NO_SHARED_FRAGS)) 1024 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1025 1026 skb->len += copy; 1027 skb->data_len += copy; 1028 skb->truesize += copy; 1029 sk_wmem_queued_add(sk, copy); 1030 sk_mem_charge(sk, copy); 1031 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1032 TCP_SKB_CB(skb)->end_seq += copy; 1033 tcp_skb_pcount_set(skb, 0); 1034 1035 *size = copy; 1036 return skb; 1037 } 1038 1039 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1040 size_t size, int flags) 1041 { 1042 struct tcp_sock *tp = tcp_sk(sk); 1043 int mss_now, size_goal; 1044 int err; 1045 ssize_t copied; 1046 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1047 1048 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1049 WARN_ONCE(!sendpage_ok(page), 1050 "page must not be a Slab one and have page_count > 0")) 1051 return -EINVAL; 1052 1053 /* Wait for a connection to finish. One exception is TCP Fast Open 1054 * (passive side) where data is allowed to be sent before a connection 1055 * is fully established. 1056 */ 1057 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1058 !tcp_passive_fastopen(sk)) { 1059 err = sk_stream_wait_connect(sk, &timeo); 1060 if (err != 0) 1061 goto out_err; 1062 } 1063 1064 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1065 1066 mss_now = tcp_send_mss(sk, &size_goal, flags); 1067 copied = 0; 1068 1069 err = -EPIPE; 1070 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1071 goto out_err; 1072 1073 while (size > 0) { 1074 struct sk_buff *skb; 1075 size_t copy = size; 1076 1077 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1078 if (!skb) 1079 goto wait_for_space; 1080 1081 if (!copied) 1082 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1083 1084 copied += copy; 1085 offset += copy; 1086 size -= copy; 1087 if (!size) 1088 goto out; 1089 1090 if (skb->len < size_goal || (flags & MSG_OOB)) 1091 continue; 1092 1093 if (forced_push(tp)) { 1094 tcp_mark_push(tp, skb); 1095 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1096 } else if (skb == tcp_send_head(sk)) 1097 tcp_push_one(sk, mss_now); 1098 continue; 1099 1100 wait_for_space: 1101 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1102 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1103 TCP_NAGLE_PUSH, size_goal); 1104 1105 err = sk_stream_wait_memory(sk, &timeo); 1106 if (err != 0) 1107 goto do_error; 1108 1109 mss_now = tcp_send_mss(sk, &size_goal, flags); 1110 } 1111 1112 out: 1113 if (copied) { 1114 tcp_tx_timestamp(sk, sk->sk_tsflags); 1115 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1116 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1117 } 1118 return copied; 1119 1120 do_error: 1121 tcp_remove_empty_skb(sk); 1122 if (copied) 1123 goto out; 1124 out_err: 1125 /* make sure we wake any epoll edge trigger waiter */ 1126 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1127 sk->sk_write_space(sk); 1128 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1129 } 1130 return sk_stream_error(sk, flags, err); 1131 } 1132 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1133 1134 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1135 size_t size, int flags) 1136 { 1137 if (!(sk->sk_route_caps & NETIF_F_SG)) 1138 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1139 1140 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1141 1142 return do_tcp_sendpages(sk, page, offset, size, flags); 1143 } 1144 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1145 1146 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1147 size_t size, int flags) 1148 { 1149 int ret; 1150 1151 lock_sock(sk); 1152 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1153 release_sock(sk); 1154 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(tcp_sendpage); 1158 1159 void tcp_free_fastopen_req(struct tcp_sock *tp) 1160 { 1161 if (tp->fastopen_req) { 1162 kfree(tp->fastopen_req); 1163 tp->fastopen_req = NULL; 1164 } 1165 } 1166 1167 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1168 size_t size, struct ubuf_info *uarg) 1169 { 1170 struct tcp_sock *tp = tcp_sk(sk); 1171 struct inet_sock *inet = inet_sk(sk); 1172 struct sockaddr *uaddr = msg->msg_name; 1173 int err, flags; 1174 1175 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1176 TFO_CLIENT_ENABLE) || 1177 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1178 uaddr->sa_family == AF_UNSPEC)) 1179 return -EOPNOTSUPP; 1180 if (tp->fastopen_req) 1181 return -EALREADY; /* Another Fast Open is in progress */ 1182 1183 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1184 sk->sk_allocation); 1185 if (unlikely(!tp->fastopen_req)) 1186 return -ENOBUFS; 1187 tp->fastopen_req->data = msg; 1188 tp->fastopen_req->size = size; 1189 tp->fastopen_req->uarg = uarg; 1190 1191 if (inet->defer_connect) { 1192 err = tcp_connect(sk); 1193 /* Same failure procedure as in tcp_v4/6_connect */ 1194 if (err) { 1195 tcp_set_state(sk, TCP_CLOSE); 1196 inet->inet_dport = 0; 1197 sk->sk_route_caps = 0; 1198 } 1199 } 1200 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1201 err = __inet_stream_connect(sk->sk_socket, uaddr, 1202 msg->msg_namelen, flags, 1); 1203 /* fastopen_req could already be freed in __inet_stream_connect 1204 * if the connection times out or gets rst 1205 */ 1206 if (tp->fastopen_req) { 1207 *copied = tp->fastopen_req->copied; 1208 tcp_free_fastopen_req(tp); 1209 inet->defer_connect = 0; 1210 } 1211 return err; 1212 } 1213 1214 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1215 { 1216 struct tcp_sock *tp = tcp_sk(sk); 1217 struct ubuf_info *uarg = NULL; 1218 struct sk_buff *skb; 1219 struct sockcm_cookie sockc; 1220 int flags, err, copied = 0; 1221 int mss_now = 0, size_goal, copied_syn = 0; 1222 int process_backlog = 0; 1223 bool zc = false; 1224 long timeo; 1225 1226 flags = msg->msg_flags; 1227 1228 if ((flags & MSG_ZEROCOPY) && size) { 1229 skb = tcp_write_queue_tail(sk); 1230 1231 if (msg->msg_ubuf) { 1232 uarg = msg->msg_ubuf; 1233 net_zcopy_get(uarg); 1234 zc = sk->sk_route_caps & NETIF_F_SG; 1235 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1236 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1237 if (!uarg) { 1238 err = -ENOBUFS; 1239 goto out_err; 1240 } 1241 zc = sk->sk_route_caps & NETIF_F_SG; 1242 if (!zc) 1243 uarg_to_msgzc(uarg)->zerocopy = 0; 1244 } 1245 } 1246 1247 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1248 !tp->repair) { 1249 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1250 if (err == -EINPROGRESS && copied_syn > 0) 1251 goto out; 1252 else if (err) 1253 goto out_err; 1254 } 1255 1256 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1257 1258 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1259 1260 /* Wait for a connection to finish. One exception is TCP Fast Open 1261 * (passive side) where data is allowed to be sent before a connection 1262 * is fully established. 1263 */ 1264 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1265 !tcp_passive_fastopen(sk)) { 1266 err = sk_stream_wait_connect(sk, &timeo); 1267 if (err != 0) 1268 goto do_error; 1269 } 1270 1271 if (unlikely(tp->repair)) { 1272 if (tp->repair_queue == TCP_RECV_QUEUE) { 1273 copied = tcp_send_rcvq(sk, msg, size); 1274 goto out_nopush; 1275 } 1276 1277 err = -EINVAL; 1278 if (tp->repair_queue == TCP_NO_QUEUE) 1279 goto out_err; 1280 1281 /* 'common' sending to sendq */ 1282 } 1283 1284 sockcm_init(&sockc, sk); 1285 if (msg->msg_controllen) { 1286 err = sock_cmsg_send(sk, msg, &sockc); 1287 if (unlikely(err)) { 1288 err = -EINVAL; 1289 goto out_err; 1290 } 1291 } 1292 1293 /* This should be in poll */ 1294 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1295 1296 /* Ok commence sending. */ 1297 copied = 0; 1298 1299 restart: 1300 mss_now = tcp_send_mss(sk, &size_goal, flags); 1301 1302 err = -EPIPE; 1303 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1304 goto do_error; 1305 1306 while (msg_data_left(msg)) { 1307 int copy = 0; 1308 1309 skb = tcp_write_queue_tail(sk); 1310 if (skb) 1311 copy = size_goal - skb->len; 1312 1313 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1314 bool first_skb; 1315 1316 new_segment: 1317 if (!sk_stream_memory_free(sk)) 1318 goto wait_for_space; 1319 1320 if (unlikely(process_backlog >= 16)) { 1321 process_backlog = 0; 1322 if (sk_flush_backlog(sk)) 1323 goto restart; 1324 } 1325 first_skb = tcp_rtx_and_write_queues_empty(sk); 1326 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1327 first_skb); 1328 if (!skb) 1329 goto wait_for_space; 1330 1331 process_backlog++; 1332 1333 tcp_skb_entail(sk, skb); 1334 copy = size_goal; 1335 1336 /* All packets are restored as if they have 1337 * already been sent. skb_mstamp_ns isn't set to 1338 * avoid wrong rtt estimation. 1339 */ 1340 if (tp->repair) 1341 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1342 } 1343 1344 /* Try to append data to the end of skb. */ 1345 if (copy > msg_data_left(msg)) 1346 copy = msg_data_left(msg); 1347 1348 if (!zc) { 1349 bool merge = true; 1350 int i = skb_shinfo(skb)->nr_frags; 1351 struct page_frag *pfrag = sk_page_frag(sk); 1352 1353 if (!sk_page_frag_refill(sk, pfrag)) 1354 goto wait_for_space; 1355 1356 if (!skb_can_coalesce(skb, i, pfrag->page, 1357 pfrag->offset)) { 1358 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1359 tcp_mark_push(tp, skb); 1360 goto new_segment; 1361 } 1362 merge = false; 1363 } 1364 1365 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1366 1367 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1368 if (tcp_downgrade_zcopy_pure(sk, skb)) 1369 goto wait_for_space; 1370 skb_zcopy_downgrade_managed(skb); 1371 } 1372 1373 copy = tcp_wmem_schedule(sk, copy); 1374 if (!copy) 1375 goto wait_for_space; 1376 1377 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1378 pfrag->page, 1379 pfrag->offset, 1380 copy); 1381 if (err) 1382 goto do_error; 1383 1384 /* Update the skb. */ 1385 if (merge) { 1386 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1387 } else { 1388 skb_fill_page_desc(skb, i, pfrag->page, 1389 pfrag->offset, copy); 1390 page_ref_inc(pfrag->page); 1391 } 1392 pfrag->offset += copy; 1393 } else { 1394 /* First append to a fragless skb builds initial 1395 * pure zerocopy skb 1396 */ 1397 if (!skb->len) 1398 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1399 1400 if (!skb_zcopy_pure(skb)) { 1401 copy = tcp_wmem_schedule(sk, copy); 1402 if (!copy) 1403 goto wait_for_space; 1404 } 1405 1406 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1407 if (err == -EMSGSIZE || err == -EEXIST) { 1408 tcp_mark_push(tp, skb); 1409 goto new_segment; 1410 } 1411 if (err < 0) 1412 goto do_error; 1413 copy = err; 1414 } 1415 1416 if (!copied) 1417 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1418 1419 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1420 TCP_SKB_CB(skb)->end_seq += copy; 1421 tcp_skb_pcount_set(skb, 0); 1422 1423 copied += copy; 1424 if (!msg_data_left(msg)) { 1425 if (unlikely(flags & MSG_EOR)) 1426 TCP_SKB_CB(skb)->eor = 1; 1427 goto out; 1428 } 1429 1430 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1431 continue; 1432 1433 if (forced_push(tp)) { 1434 tcp_mark_push(tp, skb); 1435 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1436 } else if (skb == tcp_send_head(sk)) 1437 tcp_push_one(sk, mss_now); 1438 continue; 1439 1440 wait_for_space: 1441 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1442 if (copied) 1443 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1444 TCP_NAGLE_PUSH, size_goal); 1445 1446 err = sk_stream_wait_memory(sk, &timeo); 1447 if (err != 0) 1448 goto do_error; 1449 1450 mss_now = tcp_send_mss(sk, &size_goal, flags); 1451 } 1452 1453 out: 1454 if (copied) { 1455 tcp_tx_timestamp(sk, sockc.tsflags); 1456 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1457 } 1458 out_nopush: 1459 net_zcopy_put(uarg); 1460 return copied + copied_syn; 1461 1462 do_error: 1463 tcp_remove_empty_skb(sk); 1464 1465 if (copied + copied_syn) 1466 goto out; 1467 out_err: 1468 net_zcopy_put_abort(uarg, true); 1469 err = sk_stream_error(sk, flags, err); 1470 /* make sure we wake any epoll edge trigger waiter */ 1471 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1472 sk->sk_write_space(sk); 1473 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1474 } 1475 return err; 1476 } 1477 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1478 1479 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1480 { 1481 int ret; 1482 1483 lock_sock(sk); 1484 ret = tcp_sendmsg_locked(sk, msg, size); 1485 release_sock(sk); 1486 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(tcp_sendmsg); 1490 1491 /* 1492 * Handle reading urgent data. BSD has very simple semantics for 1493 * this, no blocking and very strange errors 8) 1494 */ 1495 1496 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1497 { 1498 struct tcp_sock *tp = tcp_sk(sk); 1499 1500 /* No URG data to read. */ 1501 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1502 tp->urg_data == TCP_URG_READ) 1503 return -EINVAL; /* Yes this is right ! */ 1504 1505 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1506 return -ENOTCONN; 1507 1508 if (tp->urg_data & TCP_URG_VALID) { 1509 int err = 0; 1510 char c = tp->urg_data; 1511 1512 if (!(flags & MSG_PEEK)) 1513 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1514 1515 /* Read urgent data. */ 1516 msg->msg_flags |= MSG_OOB; 1517 1518 if (len > 0) { 1519 if (!(flags & MSG_TRUNC)) 1520 err = memcpy_to_msg(msg, &c, 1); 1521 len = 1; 1522 } else 1523 msg->msg_flags |= MSG_TRUNC; 1524 1525 return err ? -EFAULT : len; 1526 } 1527 1528 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1529 return 0; 1530 1531 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1532 * the available implementations agree in this case: 1533 * this call should never block, independent of the 1534 * blocking state of the socket. 1535 * Mike <pall@rz.uni-karlsruhe.de> 1536 */ 1537 return -EAGAIN; 1538 } 1539 1540 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1541 { 1542 struct sk_buff *skb; 1543 int copied = 0, err = 0; 1544 1545 /* XXX -- need to support SO_PEEK_OFF */ 1546 1547 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1548 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1549 if (err) 1550 return err; 1551 copied += skb->len; 1552 } 1553 1554 skb_queue_walk(&sk->sk_write_queue, skb) { 1555 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1556 if (err) 1557 break; 1558 1559 copied += skb->len; 1560 } 1561 1562 return err ?: copied; 1563 } 1564 1565 /* Clean up the receive buffer for full frames taken by the user, 1566 * then send an ACK if necessary. COPIED is the number of bytes 1567 * tcp_recvmsg has given to the user so far, it speeds up the 1568 * calculation of whether or not we must ACK for the sake of 1569 * a window update. 1570 */ 1571 static void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1572 { 1573 struct tcp_sock *tp = tcp_sk(sk); 1574 bool time_to_ack = false; 1575 1576 if (inet_csk_ack_scheduled(sk)) { 1577 const struct inet_connection_sock *icsk = inet_csk(sk); 1578 1579 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1580 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1581 /* 1582 * If this read emptied read buffer, we send ACK, if 1583 * connection is not bidirectional, user drained 1584 * receive buffer and there was a small segment 1585 * in queue. 1586 */ 1587 (copied > 0 && 1588 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1589 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1590 !inet_csk_in_pingpong_mode(sk))) && 1591 !atomic_read(&sk->sk_rmem_alloc))) 1592 time_to_ack = true; 1593 } 1594 1595 /* We send an ACK if we can now advertise a non-zero window 1596 * which has been raised "significantly". 1597 * 1598 * Even if window raised up to infinity, do not send window open ACK 1599 * in states, where we will not receive more. It is useless. 1600 */ 1601 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1602 __u32 rcv_window_now = tcp_receive_window(tp); 1603 1604 /* Optimize, __tcp_select_window() is not cheap. */ 1605 if (2*rcv_window_now <= tp->window_clamp) { 1606 __u32 new_window = __tcp_select_window(sk); 1607 1608 /* Send ACK now, if this read freed lots of space 1609 * in our buffer. Certainly, new_window is new window. 1610 * We can advertise it now, if it is not less than current one. 1611 * "Lots" means "at least twice" here. 1612 */ 1613 if (new_window && new_window >= 2 * rcv_window_now) 1614 time_to_ack = true; 1615 } 1616 } 1617 if (time_to_ack) 1618 tcp_send_ack(sk); 1619 } 1620 1621 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1622 { 1623 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1624 struct tcp_sock *tp = tcp_sk(sk); 1625 1626 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1627 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1628 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1629 __tcp_cleanup_rbuf(sk, copied); 1630 } 1631 1632 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1633 { 1634 __skb_unlink(skb, &sk->sk_receive_queue); 1635 if (likely(skb->destructor == sock_rfree)) { 1636 sock_rfree(skb); 1637 skb->destructor = NULL; 1638 skb->sk = NULL; 1639 return skb_attempt_defer_free(skb); 1640 } 1641 __kfree_skb(skb); 1642 } 1643 1644 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1645 { 1646 struct sk_buff *skb; 1647 u32 offset; 1648 1649 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1650 offset = seq - TCP_SKB_CB(skb)->seq; 1651 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1652 pr_err_once("%s: found a SYN, please report !\n", __func__); 1653 offset--; 1654 } 1655 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1656 *off = offset; 1657 return skb; 1658 } 1659 /* This looks weird, but this can happen if TCP collapsing 1660 * splitted a fat GRO packet, while we released socket lock 1661 * in skb_splice_bits() 1662 */ 1663 tcp_eat_recv_skb(sk, skb); 1664 } 1665 return NULL; 1666 } 1667 EXPORT_SYMBOL(tcp_recv_skb); 1668 1669 /* 1670 * This routine provides an alternative to tcp_recvmsg() for routines 1671 * that would like to handle copying from skbuffs directly in 'sendfile' 1672 * fashion. 1673 * Note: 1674 * - It is assumed that the socket was locked by the caller. 1675 * - The routine does not block. 1676 * - At present, there is no support for reading OOB data 1677 * or for 'peeking' the socket using this routine 1678 * (although both would be easy to implement). 1679 */ 1680 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1681 sk_read_actor_t recv_actor) 1682 { 1683 struct sk_buff *skb; 1684 struct tcp_sock *tp = tcp_sk(sk); 1685 u32 seq = tp->copied_seq; 1686 u32 offset; 1687 int copied = 0; 1688 1689 if (sk->sk_state == TCP_LISTEN) 1690 return -ENOTCONN; 1691 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1692 if (offset < skb->len) { 1693 int used; 1694 size_t len; 1695 1696 len = skb->len - offset; 1697 /* Stop reading if we hit a patch of urgent data */ 1698 if (unlikely(tp->urg_data)) { 1699 u32 urg_offset = tp->urg_seq - seq; 1700 if (urg_offset < len) 1701 len = urg_offset; 1702 if (!len) 1703 break; 1704 } 1705 used = recv_actor(desc, skb, offset, len); 1706 if (used <= 0) { 1707 if (!copied) 1708 copied = used; 1709 break; 1710 } 1711 if (WARN_ON_ONCE(used > len)) 1712 used = len; 1713 seq += used; 1714 copied += used; 1715 offset += used; 1716 1717 /* If recv_actor drops the lock (e.g. TCP splice 1718 * receive) the skb pointer might be invalid when 1719 * getting here: tcp_collapse might have deleted it 1720 * while aggregating skbs from the socket queue. 1721 */ 1722 skb = tcp_recv_skb(sk, seq - 1, &offset); 1723 if (!skb) 1724 break; 1725 /* TCP coalescing might have appended data to the skb. 1726 * Try to splice more frags 1727 */ 1728 if (offset + 1 != skb->len) 1729 continue; 1730 } 1731 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1732 tcp_eat_recv_skb(sk, skb); 1733 ++seq; 1734 break; 1735 } 1736 tcp_eat_recv_skb(sk, skb); 1737 if (!desc->count) 1738 break; 1739 WRITE_ONCE(tp->copied_seq, seq); 1740 } 1741 WRITE_ONCE(tp->copied_seq, seq); 1742 1743 tcp_rcv_space_adjust(sk); 1744 1745 /* Clean up data we have read: This will do ACK frames. */ 1746 if (copied > 0) { 1747 tcp_recv_skb(sk, seq, &offset); 1748 tcp_cleanup_rbuf(sk, copied); 1749 } 1750 return copied; 1751 } 1752 EXPORT_SYMBOL(tcp_read_sock); 1753 1754 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1755 { 1756 struct tcp_sock *tp = tcp_sk(sk); 1757 u32 seq = tp->copied_seq; 1758 struct sk_buff *skb; 1759 int copied = 0; 1760 u32 offset; 1761 1762 if (sk->sk_state == TCP_LISTEN) 1763 return -ENOTCONN; 1764 1765 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1766 u8 tcp_flags; 1767 int used; 1768 1769 __skb_unlink(skb, &sk->sk_receive_queue); 1770 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1771 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1772 used = recv_actor(sk, skb); 1773 consume_skb(skb); 1774 if (used < 0) { 1775 if (!copied) 1776 copied = used; 1777 break; 1778 } 1779 seq += used; 1780 copied += used; 1781 1782 if (tcp_flags & TCPHDR_FIN) { 1783 ++seq; 1784 break; 1785 } 1786 } 1787 WRITE_ONCE(tp->copied_seq, seq); 1788 1789 tcp_rcv_space_adjust(sk); 1790 1791 /* Clean up data we have read: This will do ACK frames. */ 1792 if (copied > 0) 1793 __tcp_cleanup_rbuf(sk, copied); 1794 1795 return copied; 1796 } 1797 EXPORT_SYMBOL(tcp_read_skb); 1798 1799 void tcp_read_done(struct sock *sk, size_t len) 1800 { 1801 struct tcp_sock *tp = tcp_sk(sk); 1802 u32 seq = tp->copied_seq; 1803 struct sk_buff *skb; 1804 size_t left; 1805 u32 offset; 1806 1807 if (sk->sk_state == TCP_LISTEN) 1808 return; 1809 1810 left = len; 1811 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1812 int used; 1813 1814 used = min_t(size_t, skb->len - offset, left); 1815 seq += used; 1816 left -= used; 1817 1818 if (skb->len > offset + used) 1819 break; 1820 1821 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1822 tcp_eat_recv_skb(sk, skb); 1823 ++seq; 1824 break; 1825 } 1826 tcp_eat_recv_skb(sk, skb); 1827 } 1828 WRITE_ONCE(tp->copied_seq, seq); 1829 1830 tcp_rcv_space_adjust(sk); 1831 1832 /* Clean up data we have read: This will do ACK frames. */ 1833 if (left != len) 1834 tcp_cleanup_rbuf(sk, len - left); 1835 } 1836 EXPORT_SYMBOL(tcp_read_done); 1837 1838 int tcp_peek_len(struct socket *sock) 1839 { 1840 return tcp_inq(sock->sk); 1841 } 1842 EXPORT_SYMBOL(tcp_peek_len); 1843 1844 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1845 int tcp_set_rcvlowat(struct sock *sk, int val) 1846 { 1847 int cap; 1848 1849 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1850 cap = sk->sk_rcvbuf >> 1; 1851 else 1852 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1853 val = min(val, cap); 1854 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1855 1856 /* Check if we need to signal EPOLLIN right now */ 1857 tcp_data_ready(sk); 1858 1859 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1860 return 0; 1861 1862 val <<= 1; 1863 if (val > sk->sk_rcvbuf) { 1864 WRITE_ONCE(sk->sk_rcvbuf, val); 1865 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1866 } 1867 return 0; 1868 } 1869 EXPORT_SYMBOL(tcp_set_rcvlowat); 1870 1871 void tcp_update_recv_tstamps(struct sk_buff *skb, 1872 struct scm_timestamping_internal *tss) 1873 { 1874 if (skb->tstamp) 1875 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1876 else 1877 tss->ts[0] = (struct timespec64) {0}; 1878 1879 if (skb_hwtstamps(skb)->hwtstamp) 1880 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1881 else 1882 tss->ts[2] = (struct timespec64) {0}; 1883 } 1884 1885 #ifdef CONFIG_MMU 1886 static const struct vm_operations_struct tcp_vm_ops = { 1887 }; 1888 1889 int tcp_mmap(struct file *file, struct socket *sock, 1890 struct vm_area_struct *vma) 1891 { 1892 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1893 return -EPERM; 1894 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1895 1896 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1897 vma->vm_flags |= VM_MIXEDMAP; 1898 1899 vma->vm_ops = &tcp_vm_ops; 1900 return 0; 1901 } 1902 EXPORT_SYMBOL(tcp_mmap); 1903 1904 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1905 u32 *offset_frag) 1906 { 1907 skb_frag_t *frag; 1908 1909 if (unlikely(offset_skb >= skb->len)) 1910 return NULL; 1911 1912 offset_skb -= skb_headlen(skb); 1913 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1914 return NULL; 1915 1916 frag = skb_shinfo(skb)->frags; 1917 while (offset_skb) { 1918 if (skb_frag_size(frag) > offset_skb) { 1919 *offset_frag = offset_skb; 1920 return frag; 1921 } 1922 offset_skb -= skb_frag_size(frag); 1923 ++frag; 1924 } 1925 *offset_frag = 0; 1926 return frag; 1927 } 1928 1929 static bool can_map_frag(const skb_frag_t *frag) 1930 { 1931 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1932 } 1933 1934 static int find_next_mappable_frag(const skb_frag_t *frag, 1935 int remaining_in_skb) 1936 { 1937 int offset = 0; 1938 1939 if (likely(can_map_frag(frag))) 1940 return 0; 1941 1942 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1943 offset += skb_frag_size(frag); 1944 ++frag; 1945 } 1946 return offset; 1947 } 1948 1949 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1950 struct tcp_zerocopy_receive *zc, 1951 struct sk_buff *skb, u32 offset) 1952 { 1953 u32 frag_offset, partial_frag_remainder = 0; 1954 int mappable_offset; 1955 skb_frag_t *frag; 1956 1957 /* worst case: skip to next skb. try to improve on this case below */ 1958 zc->recv_skip_hint = skb->len - offset; 1959 1960 /* Find the frag containing this offset (and how far into that frag) */ 1961 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1962 if (!frag) 1963 return; 1964 1965 if (frag_offset) { 1966 struct skb_shared_info *info = skb_shinfo(skb); 1967 1968 /* We read part of the last frag, must recvmsg() rest of skb. */ 1969 if (frag == &info->frags[info->nr_frags - 1]) 1970 return; 1971 1972 /* Else, we must at least read the remainder in this frag. */ 1973 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1974 zc->recv_skip_hint -= partial_frag_remainder; 1975 ++frag; 1976 } 1977 1978 /* partial_frag_remainder: If part way through a frag, must read rest. 1979 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1980 * in partial_frag_remainder. 1981 */ 1982 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1983 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1984 } 1985 1986 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1987 int flags, struct scm_timestamping_internal *tss, 1988 int *cmsg_flags); 1989 static int receive_fallback_to_copy(struct sock *sk, 1990 struct tcp_zerocopy_receive *zc, int inq, 1991 struct scm_timestamping_internal *tss) 1992 { 1993 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1994 struct msghdr msg = {}; 1995 struct iovec iov; 1996 int err; 1997 1998 zc->length = 0; 1999 zc->recv_skip_hint = 0; 2000 2001 if (copy_address != zc->copybuf_address) 2002 return -EINVAL; 2003 2004 err = import_single_range(ITER_DEST, (void __user *)copy_address, 2005 inq, &iov, &msg.msg_iter); 2006 if (err) 2007 return err; 2008 2009 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2010 tss, &zc->msg_flags); 2011 if (err < 0) 2012 return err; 2013 2014 zc->copybuf_len = err; 2015 if (likely(zc->copybuf_len)) { 2016 struct sk_buff *skb; 2017 u32 offset; 2018 2019 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2020 if (skb) 2021 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2022 } 2023 return 0; 2024 } 2025 2026 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2027 struct sk_buff *skb, u32 copylen, 2028 u32 *offset, u32 *seq) 2029 { 2030 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2031 struct msghdr msg = {}; 2032 struct iovec iov; 2033 int err; 2034 2035 if (copy_address != zc->copybuf_address) 2036 return -EINVAL; 2037 2038 err = import_single_range(ITER_DEST, (void __user *)copy_address, 2039 copylen, &iov, &msg.msg_iter); 2040 if (err) 2041 return err; 2042 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2043 if (err) 2044 return err; 2045 zc->recv_skip_hint -= copylen; 2046 *offset += copylen; 2047 *seq += copylen; 2048 return (__s32)copylen; 2049 } 2050 2051 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2052 struct sock *sk, 2053 struct sk_buff *skb, 2054 u32 *seq, 2055 s32 copybuf_len, 2056 struct scm_timestamping_internal *tss) 2057 { 2058 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2059 2060 if (!copylen) 2061 return 0; 2062 /* skb is null if inq < PAGE_SIZE. */ 2063 if (skb) { 2064 offset = *seq - TCP_SKB_CB(skb)->seq; 2065 } else { 2066 skb = tcp_recv_skb(sk, *seq, &offset); 2067 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2068 tcp_update_recv_tstamps(skb, tss); 2069 zc->msg_flags |= TCP_CMSG_TS; 2070 } 2071 } 2072 2073 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2074 seq); 2075 return zc->copybuf_len < 0 ? 0 : copylen; 2076 } 2077 2078 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2079 struct page **pending_pages, 2080 unsigned long pages_remaining, 2081 unsigned long *address, 2082 u32 *length, 2083 u32 *seq, 2084 struct tcp_zerocopy_receive *zc, 2085 u32 total_bytes_to_map, 2086 int err) 2087 { 2088 /* At least one page did not map. Try zapping if we skipped earlier. */ 2089 if (err == -EBUSY && 2090 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2091 u32 maybe_zap_len; 2092 2093 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2094 *length + /* Mapped or pending */ 2095 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2096 zap_page_range(vma, *address, maybe_zap_len); 2097 err = 0; 2098 } 2099 2100 if (!err) { 2101 unsigned long leftover_pages = pages_remaining; 2102 int bytes_mapped; 2103 2104 /* We called zap_page_range, try to reinsert. */ 2105 err = vm_insert_pages(vma, *address, 2106 pending_pages, 2107 &pages_remaining); 2108 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2109 *seq += bytes_mapped; 2110 *address += bytes_mapped; 2111 } 2112 if (err) { 2113 /* Either we were unable to zap, OR we zapped, retried an 2114 * insert, and still had an issue. Either ways, pages_remaining 2115 * is the number of pages we were unable to map, and we unroll 2116 * some state we speculatively touched before. 2117 */ 2118 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2119 2120 *length -= bytes_not_mapped; 2121 zc->recv_skip_hint += bytes_not_mapped; 2122 } 2123 return err; 2124 } 2125 2126 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2127 struct page **pages, 2128 unsigned int pages_to_map, 2129 unsigned long *address, 2130 u32 *length, 2131 u32 *seq, 2132 struct tcp_zerocopy_receive *zc, 2133 u32 total_bytes_to_map) 2134 { 2135 unsigned long pages_remaining = pages_to_map; 2136 unsigned int pages_mapped; 2137 unsigned int bytes_mapped; 2138 int err; 2139 2140 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2141 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2142 bytes_mapped = PAGE_SIZE * pages_mapped; 2143 /* Even if vm_insert_pages fails, it may have partially succeeded in 2144 * mapping (some but not all of the pages). 2145 */ 2146 *seq += bytes_mapped; 2147 *address += bytes_mapped; 2148 2149 if (likely(!err)) 2150 return 0; 2151 2152 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2153 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2154 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2155 err); 2156 } 2157 2158 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2159 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2160 struct tcp_zerocopy_receive *zc, 2161 struct scm_timestamping_internal *tss) 2162 { 2163 unsigned long msg_control_addr; 2164 struct msghdr cmsg_dummy; 2165 2166 msg_control_addr = (unsigned long)zc->msg_control; 2167 cmsg_dummy.msg_control = (void *)msg_control_addr; 2168 cmsg_dummy.msg_controllen = 2169 (__kernel_size_t)zc->msg_controllen; 2170 cmsg_dummy.msg_flags = in_compat_syscall() 2171 ? MSG_CMSG_COMPAT : 0; 2172 cmsg_dummy.msg_control_is_user = true; 2173 zc->msg_flags = 0; 2174 if (zc->msg_control == msg_control_addr && 2175 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2176 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2177 zc->msg_control = (__u64) 2178 ((uintptr_t)cmsg_dummy.msg_control); 2179 zc->msg_controllen = 2180 (__u64)cmsg_dummy.msg_controllen; 2181 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2182 } 2183 } 2184 2185 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2186 static int tcp_zerocopy_receive(struct sock *sk, 2187 struct tcp_zerocopy_receive *zc, 2188 struct scm_timestamping_internal *tss) 2189 { 2190 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2191 unsigned long address = (unsigned long)zc->address; 2192 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2193 s32 copybuf_len = zc->copybuf_len; 2194 struct tcp_sock *tp = tcp_sk(sk); 2195 const skb_frag_t *frags = NULL; 2196 unsigned int pages_to_map = 0; 2197 struct vm_area_struct *vma; 2198 struct sk_buff *skb = NULL; 2199 u32 seq = tp->copied_seq; 2200 u32 total_bytes_to_map; 2201 int inq = tcp_inq(sk); 2202 int ret; 2203 2204 zc->copybuf_len = 0; 2205 zc->msg_flags = 0; 2206 2207 if (address & (PAGE_SIZE - 1) || address != zc->address) 2208 return -EINVAL; 2209 2210 if (sk->sk_state == TCP_LISTEN) 2211 return -ENOTCONN; 2212 2213 sock_rps_record_flow(sk); 2214 2215 if (inq && inq <= copybuf_len) 2216 return receive_fallback_to_copy(sk, zc, inq, tss); 2217 2218 if (inq < PAGE_SIZE) { 2219 zc->length = 0; 2220 zc->recv_skip_hint = inq; 2221 if (!inq && sock_flag(sk, SOCK_DONE)) 2222 return -EIO; 2223 return 0; 2224 } 2225 2226 mmap_read_lock(current->mm); 2227 2228 vma = vma_lookup(current->mm, address); 2229 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2230 mmap_read_unlock(current->mm); 2231 return -EINVAL; 2232 } 2233 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2234 avail_len = min_t(u32, vma_len, inq); 2235 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2236 if (total_bytes_to_map) { 2237 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2238 zap_page_range(vma, address, total_bytes_to_map); 2239 zc->length = total_bytes_to_map; 2240 zc->recv_skip_hint = 0; 2241 } else { 2242 zc->length = avail_len; 2243 zc->recv_skip_hint = avail_len; 2244 } 2245 ret = 0; 2246 while (length + PAGE_SIZE <= zc->length) { 2247 int mappable_offset; 2248 struct page *page; 2249 2250 if (zc->recv_skip_hint < PAGE_SIZE) { 2251 u32 offset_frag; 2252 2253 if (skb) { 2254 if (zc->recv_skip_hint > 0) 2255 break; 2256 skb = skb->next; 2257 offset = seq - TCP_SKB_CB(skb)->seq; 2258 } else { 2259 skb = tcp_recv_skb(sk, seq, &offset); 2260 } 2261 2262 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2263 tcp_update_recv_tstamps(skb, tss); 2264 zc->msg_flags |= TCP_CMSG_TS; 2265 } 2266 zc->recv_skip_hint = skb->len - offset; 2267 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2268 if (!frags || offset_frag) 2269 break; 2270 } 2271 2272 mappable_offset = find_next_mappable_frag(frags, 2273 zc->recv_skip_hint); 2274 if (mappable_offset) { 2275 zc->recv_skip_hint = mappable_offset; 2276 break; 2277 } 2278 page = skb_frag_page(frags); 2279 prefetchw(page); 2280 pages[pages_to_map++] = page; 2281 length += PAGE_SIZE; 2282 zc->recv_skip_hint -= PAGE_SIZE; 2283 frags++; 2284 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2285 zc->recv_skip_hint < PAGE_SIZE) { 2286 /* Either full batch, or we're about to go to next skb 2287 * (and we cannot unroll failed ops across skbs). 2288 */ 2289 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2290 pages_to_map, 2291 &address, &length, 2292 &seq, zc, 2293 total_bytes_to_map); 2294 if (ret) 2295 goto out; 2296 pages_to_map = 0; 2297 } 2298 } 2299 if (pages_to_map) { 2300 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2301 &address, &length, &seq, 2302 zc, total_bytes_to_map); 2303 } 2304 out: 2305 mmap_read_unlock(current->mm); 2306 /* Try to copy straggler data. */ 2307 if (!ret) 2308 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2309 2310 if (length + copylen) { 2311 WRITE_ONCE(tp->copied_seq, seq); 2312 tcp_rcv_space_adjust(sk); 2313 2314 /* Clean up data we have read: This will do ACK frames. */ 2315 tcp_recv_skb(sk, seq, &offset); 2316 tcp_cleanup_rbuf(sk, length + copylen); 2317 ret = 0; 2318 if (length == zc->length) 2319 zc->recv_skip_hint = 0; 2320 } else { 2321 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2322 ret = -EIO; 2323 } 2324 zc->length = length; 2325 return ret; 2326 } 2327 #endif 2328 2329 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2330 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2331 struct scm_timestamping_internal *tss) 2332 { 2333 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2334 bool has_timestamping = false; 2335 2336 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2337 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2338 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2339 if (new_tstamp) { 2340 struct __kernel_timespec kts = { 2341 .tv_sec = tss->ts[0].tv_sec, 2342 .tv_nsec = tss->ts[0].tv_nsec, 2343 }; 2344 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2345 sizeof(kts), &kts); 2346 } else { 2347 struct __kernel_old_timespec ts_old = { 2348 .tv_sec = tss->ts[0].tv_sec, 2349 .tv_nsec = tss->ts[0].tv_nsec, 2350 }; 2351 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2352 sizeof(ts_old), &ts_old); 2353 } 2354 } else { 2355 if (new_tstamp) { 2356 struct __kernel_sock_timeval stv = { 2357 .tv_sec = tss->ts[0].tv_sec, 2358 .tv_usec = tss->ts[0].tv_nsec / 1000, 2359 }; 2360 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2361 sizeof(stv), &stv); 2362 } else { 2363 struct __kernel_old_timeval tv = { 2364 .tv_sec = tss->ts[0].tv_sec, 2365 .tv_usec = tss->ts[0].tv_nsec / 1000, 2366 }; 2367 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2368 sizeof(tv), &tv); 2369 } 2370 } 2371 } 2372 2373 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2374 has_timestamping = true; 2375 else 2376 tss->ts[0] = (struct timespec64) {0}; 2377 } 2378 2379 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2380 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2381 has_timestamping = true; 2382 else 2383 tss->ts[2] = (struct timespec64) {0}; 2384 } 2385 2386 if (has_timestamping) { 2387 tss->ts[1] = (struct timespec64) {0}; 2388 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2389 put_cmsg_scm_timestamping64(msg, tss); 2390 else 2391 put_cmsg_scm_timestamping(msg, tss); 2392 } 2393 } 2394 2395 static int tcp_inq_hint(struct sock *sk) 2396 { 2397 const struct tcp_sock *tp = tcp_sk(sk); 2398 u32 copied_seq = READ_ONCE(tp->copied_seq); 2399 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2400 int inq; 2401 2402 inq = rcv_nxt - copied_seq; 2403 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2404 lock_sock(sk); 2405 inq = tp->rcv_nxt - tp->copied_seq; 2406 release_sock(sk); 2407 } 2408 /* After receiving a FIN, tell the user-space to continue reading 2409 * by returning a non-zero inq. 2410 */ 2411 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2412 inq = 1; 2413 return inq; 2414 } 2415 2416 /* 2417 * This routine copies from a sock struct into the user buffer. 2418 * 2419 * Technical note: in 2.3 we work on _locked_ socket, so that 2420 * tricks with *seq access order and skb->users are not required. 2421 * Probably, code can be easily improved even more. 2422 */ 2423 2424 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2425 int flags, struct scm_timestamping_internal *tss, 2426 int *cmsg_flags) 2427 { 2428 struct tcp_sock *tp = tcp_sk(sk); 2429 int copied = 0; 2430 u32 peek_seq; 2431 u32 *seq; 2432 unsigned long used; 2433 int err; 2434 int target; /* Read at least this many bytes */ 2435 long timeo; 2436 struct sk_buff *skb, *last; 2437 u32 urg_hole = 0; 2438 2439 err = -ENOTCONN; 2440 if (sk->sk_state == TCP_LISTEN) 2441 goto out; 2442 2443 if (tp->recvmsg_inq) { 2444 *cmsg_flags = TCP_CMSG_INQ; 2445 msg->msg_get_inq = 1; 2446 } 2447 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2448 2449 /* Urgent data needs to be handled specially. */ 2450 if (flags & MSG_OOB) 2451 goto recv_urg; 2452 2453 if (unlikely(tp->repair)) { 2454 err = -EPERM; 2455 if (!(flags & MSG_PEEK)) 2456 goto out; 2457 2458 if (tp->repair_queue == TCP_SEND_QUEUE) 2459 goto recv_sndq; 2460 2461 err = -EINVAL; 2462 if (tp->repair_queue == TCP_NO_QUEUE) 2463 goto out; 2464 2465 /* 'common' recv queue MSG_PEEK-ing */ 2466 } 2467 2468 seq = &tp->copied_seq; 2469 if (flags & MSG_PEEK) { 2470 peek_seq = tp->copied_seq; 2471 seq = &peek_seq; 2472 } 2473 2474 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2475 2476 do { 2477 u32 offset; 2478 2479 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2480 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2481 if (copied) 2482 break; 2483 if (signal_pending(current)) { 2484 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2485 break; 2486 } 2487 } 2488 2489 /* Next get a buffer. */ 2490 2491 last = skb_peek_tail(&sk->sk_receive_queue); 2492 skb_queue_walk(&sk->sk_receive_queue, skb) { 2493 last = skb; 2494 /* Now that we have two receive queues this 2495 * shouldn't happen. 2496 */ 2497 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2498 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2499 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2500 flags)) 2501 break; 2502 2503 offset = *seq - TCP_SKB_CB(skb)->seq; 2504 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2505 pr_err_once("%s: found a SYN, please report !\n", __func__); 2506 offset--; 2507 } 2508 if (offset < skb->len) 2509 goto found_ok_skb; 2510 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2511 goto found_fin_ok; 2512 WARN(!(flags & MSG_PEEK), 2513 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2514 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2515 } 2516 2517 /* Well, if we have backlog, try to process it now yet. */ 2518 2519 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2520 break; 2521 2522 if (copied) { 2523 if (!timeo || 2524 sk->sk_err || 2525 sk->sk_state == TCP_CLOSE || 2526 (sk->sk_shutdown & RCV_SHUTDOWN) || 2527 signal_pending(current)) 2528 break; 2529 } else { 2530 if (sock_flag(sk, SOCK_DONE)) 2531 break; 2532 2533 if (sk->sk_err) { 2534 copied = sock_error(sk); 2535 break; 2536 } 2537 2538 if (sk->sk_shutdown & RCV_SHUTDOWN) 2539 break; 2540 2541 if (sk->sk_state == TCP_CLOSE) { 2542 /* This occurs when user tries to read 2543 * from never connected socket. 2544 */ 2545 copied = -ENOTCONN; 2546 break; 2547 } 2548 2549 if (!timeo) { 2550 copied = -EAGAIN; 2551 break; 2552 } 2553 2554 if (signal_pending(current)) { 2555 copied = sock_intr_errno(timeo); 2556 break; 2557 } 2558 } 2559 2560 if (copied >= target) { 2561 /* Do not sleep, just process backlog. */ 2562 __sk_flush_backlog(sk); 2563 } else { 2564 tcp_cleanup_rbuf(sk, copied); 2565 sk_wait_data(sk, &timeo, last); 2566 } 2567 2568 if ((flags & MSG_PEEK) && 2569 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2570 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2571 current->comm, 2572 task_pid_nr(current)); 2573 peek_seq = tp->copied_seq; 2574 } 2575 continue; 2576 2577 found_ok_skb: 2578 /* Ok so how much can we use? */ 2579 used = skb->len - offset; 2580 if (len < used) 2581 used = len; 2582 2583 /* Do we have urgent data here? */ 2584 if (unlikely(tp->urg_data)) { 2585 u32 urg_offset = tp->urg_seq - *seq; 2586 if (urg_offset < used) { 2587 if (!urg_offset) { 2588 if (!sock_flag(sk, SOCK_URGINLINE)) { 2589 WRITE_ONCE(*seq, *seq + 1); 2590 urg_hole++; 2591 offset++; 2592 used--; 2593 if (!used) 2594 goto skip_copy; 2595 } 2596 } else 2597 used = urg_offset; 2598 } 2599 } 2600 2601 if (!(flags & MSG_TRUNC)) { 2602 err = skb_copy_datagram_msg(skb, offset, msg, used); 2603 if (err) { 2604 /* Exception. Bailout! */ 2605 if (!copied) 2606 copied = -EFAULT; 2607 break; 2608 } 2609 } 2610 2611 WRITE_ONCE(*seq, *seq + used); 2612 copied += used; 2613 len -= used; 2614 2615 tcp_rcv_space_adjust(sk); 2616 2617 skip_copy: 2618 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2619 WRITE_ONCE(tp->urg_data, 0); 2620 tcp_fast_path_check(sk); 2621 } 2622 2623 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2624 tcp_update_recv_tstamps(skb, tss); 2625 *cmsg_flags |= TCP_CMSG_TS; 2626 } 2627 2628 if (used + offset < skb->len) 2629 continue; 2630 2631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2632 goto found_fin_ok; 2633 if (!(flags & MSG_PEEK)) 2634 tcp_eat_recv_skb(sk, skb); 2635 continue; 2636 2637 found_fin_ok: 2638 /* Process the FIN. */ 2639 WRITE_ONCE(*seq, *seq + 1); 2640 if (!(flags & MSG_PEEK)) 2641 tcp_eat_recv_skb(sk, skb); 2642 break; 2643 } while (len > 0); 2644 2645 /* According to UNIX98, msg_name/msg_namelen are ignored 2646 * on connected socket. I was just happy when found this 8) --ANK 2647 */ 2648 2649 /* Clean up data we have read: This will do ACK frames. */ 2650 tcp_cleanup_rbuf(sk, copied); 2651 return copied; 2652 2653 out: 2654 return err; 2655 2656 recv_urg: 2657 err = tcp_recv_urg(sk, msg, len, flags); 2658 goto out; 2659 2660 recv_sndq: 2661 err = tcp_peek_sndq(sk, msg, len); 2662 goto out; 2663 } 2664 2665 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2666 int *addr_len) 2667 { 2668 int cmsg_flags = 0, ret; 2669 struct scm_timestamping_internal tss; 2670 2671 if (unlikely(flags & MSG_ERRQUEUE)) 2672 return inet_recv_error(sk, msg, len, addr_len); 2673 2674 if (sk_can_busy_loop(sk) && 2675 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2676 sk->sk_state == TCP_ESTABLISHED) 2677 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2678 2679 lock_sock(sk); 2680 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2681 release_sock(sk); 2682 2683 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2684 if (cmsg_flags & TCP_CMSG_TS) 2685 tcp_recv_timestamp(msg, sk, &tss); 2686 if (msg->msg_get_inq) { 2687 msg->msg_inq = tcp_inq_hint(sk); 2688 if (cmsg_flags & TCP_CMSG_INQ) 2689 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2690 sizeof(msg->msg_inq), &msg->msg_inq); 2691 } 2692 } 2693 return ret; 2694 } 2695 EXPORT_SYMBOL(tcp_recvmsg); 2696 2697 void tcp_set_state(struct sock *sk, int state) 2698 { 2699 int oldstate = sk->sk_state; 2700 2701 /* We defined a new enum for TCP states that are exported in BPF 2702 * so as not force the internal TCP states to be frozen. The 2703 * following checks will detect if an internal state value ever 2704 * differs from the BPF value. If this ever happens, then we will 2705 * need to remap the internal value to the BPF value before calling 2706 * tcp_call_bpf_2arg. 2707 */ 2708 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2709 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2710 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2711 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2712 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2713 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2714 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2715 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2716 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2717 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2718 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2719 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2720 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2721 2722 /* bpf uapi header bpf.h defines an anonymous enum with values 2723 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2724 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2725 * But clang built vmlinux does not have this enum in DWARF 2726 * since clang removes the above code before generating IR/debuginfo. 2727 * Let us explicitly emit the type debuginfo to ensure the 2728 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2729 * regardless of which compiler is used. 2730 */ 2731 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2732 2733 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2734 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2735 2736 switch (state) { 2737 case TCP_ESTABLISHED: 2738 if (oldstate != TCP_ESTABLISHED) 2739 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2740 break; 2741 2742 case TCP_CLOSE: 2743 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2744 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2745 2746 sk->sk_prot->unhash(sk); 2747 if (inet_csk(sk)->icsk_bind_hash && 2748 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2749 inet_put_port(sk); 2750 fallthrough; 2751 default: 2752 if (oldstate == TCP_ESTABLISHED) 2753 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2754 } 2755 2756 /* Change state AFTER socket is unhashed to avoid closed 2757 * socket sitting in hash tables. 2758 */ 2759 inet_sk_state_store(sk, state); 2760 } 2761 EXPORT_SYMBOL_GPL(tcp_set_state); 2762 2763 /* 2764 * State processing on a close. This implements the state shift for 2765 * sending our FIN frame. Note that we only send a FIN for some 2766 * states. A shutdown() may have already sent the FIN, or we may be 2767 * closed. 2768 */ 2769 2770 static const unsigned char new_state[16] = { 2771 /* current state: new state: action: */ 2772 [0 /* (Invalid) */] = TCP_CLOSE, 2773 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2774 [TCP_SYN_SENT] = TCP_CLOSE, 2775 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2776 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2777 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2778 [TCP_TIME_WAIT] = TCP_CLOSE, 2779 [TCP_CLOSE] = TCP_CLOSE, 2780 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2781 [TCP_LAST_ACK] = TCP_LAST_ACK, 2782 [TCP_LISTEN] = TCP_CLOSE, 2783 [TCP_CLOSING] = TCP_CLOSING, 2784 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2785 }; 2786 2787 static int tcp_close_state(struct sock *sk) 2788 { 2789 int next = (int)new_state[sk->sk_state]; 2790 int ns = next & TCP_STATE_MASK; 2791 2792 tcp_set_state(sk, ns); 2793 2794 return next & TCP_ACTION_FIN; 2795 } 2796 2797 /* 2798 * Shutdown the sending side of a connection. Much like close except 2799 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2800 */ 2801 2802 void tcp_shutdown(struct sock *sk, int how) 2803 { 2804 /* We need to grab some memory, and put together a FIN, 2805 * and then put it into the queue to be sent. 2806 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2807 */ 2808 if (!(how & SEND_SHUTDOWN)) 2809 return; 2810 2811 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2812 if ((1 << sk->sk_state) & 2813 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2814 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2815 /* Clear out any half completed packets. FIN if needed. */ 2816 if (tcp_close_state(sk)) 2817 tcp_send_fin(sk); 2818 } 2819 } 2820 EXPORT_SYMBOL(tcp_shutdown); 2821 2822 int tcp_orphan_count_sum(void) 2823 { 2824 int i, total = 0; 2825 2826 for_each_possible_cpu(i) 2827 total += per_cpu(tcp_orphan_count, i); 2828 2829 return max(total, 0); 2830 } 2831 2832 static int tcp_orphan_cache; 2833 static struct timer_list tcp_orphan_timer; 2834 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2835 2836 static void tcp_orphan_update(struct timer_list *unused) 2837 { 2838 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2839 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2840 } 2841 2842 static bool tcp_too_many_orphans(int shift) 2843 { 2844 return READ_ONCE(tcp_orphan_cache) << shift > 2845 READ_ONCE(sysctl_tcp_max_orphans); 2846 } 2847 2848 bool tcp_check_oom(struct sock *sk, int shift) 2849 { 2850 bool too_many_orphans, out_of_socket_memory; 2851 2852 too_many_orphans = tcp_too_many_orphans(shift); 2853 out_of_socket_memory = tcp_out_of_memory(sk); 2854 2855 if (too_many_orphans) 2856 net_info_ratelimited("too many orphaned sockets\n"); 2857 if (out_of_socket_memory) 2858 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2859 return too_many_orphans || out_of_socket_memory; 2860 } 2861 2862 void __tcp_close(struct sock *sk, long timeout) 2863 { 2864 struct sk_buff *skb; 2865 int data_was_unread = 0; 2866 int state; 2867 2868 sk->sk_shutdown = SHUTDOWN_MASK; 2869 2870 if (sk->sk_state == TCP_LISTEN) { 2871 tcp_set_state(sk, TCP_CLOSE); 2872 2873 /* Special case. */ 2874 inet_csk_listen_stop(sk); 2875 2876 goto adjudge_to_death; 2877 } 2878 2879 /* We need to flush the recv. buffs. We do this only on the 2880 * descriptor close, not protocol-sourced closes, because the 2881 * reader process may not have drained the data yet! 2882 */ 2883 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2884 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2885 2886 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2887 len--; 2888 data_was_unread += len; 2889 __kfree_skb(skb); 2890 } 2891 2892 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2893 if (sk->sk_state == TCP_CLOSE) 2894 goto adjudge_to_death; 2895 2896 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2897 * data was lost. To witness the awful effects of the old behavior of 2898 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2899 * GET in an FTP client, suspend the process, wait for the client to 2900 * advertise a zero window, then kill -9 the FTP client, wheee... 2901 * Note: timeout is always zero in such a case. 2902 */ 2903 if (unlikely(tcp_sk(sk)->repair)) { 2904 sk->sk_prot->disconnect(sk, 0); 2905 } else if (data_was_unread) { 2906 /* Unread data was tossed, zap the connection. */ 2907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2908 tcp_set_state(sk, TCP_CLOSE); 2909 tcp_send_active_reset(sk, sk->sk_allocation); 2910 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2911 /* Check zero linger _after_ checking for unread data. */ 2912 sk->sk_prot->disconnect(sk, 0); 2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2914 } else if (tcp_close_state(sk)) { 2915 /* We FIN if the application ate all the data before 2916 * zapping the connection. 2917 */ 2918 2919 /* RED-PEN. Formally speaking, we have broken TCP state 2920 * machine. State transitions: 2921 * 2922 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2923 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2924 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2925 * 2926 * are legal only when FIN has been sent (i.e. in window), 2927 * rather than queued out of window. Purists blame. 2928 * 2929 * F.e. "RFC state" is ESTABLISHED, 2930 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2931 * 2932 * The visible declinations are that sometimes 2933 * we enter time-wait state, when it is not required really 2934 * (harmless), do not send active resets, when they are 2935 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2936 * they look as CLOSING or LAST_ACK for Linux) 2937 * Probably, I missed some more holelets. 2938 * --ANK 2939 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2940 * in a single packet! (May consider it later but will 2941 * probably need API support or TCP_CORK SYN-ACK until 2942 * data is written and socket is closed.) 2943 */ 2944 tcp_send_fin(sk); 2945 } 2946 2947 sk_stream_wait_close(sk, timeout); 2948 2949 adjudge_to_death: 2950 state = sk->sk_state; 2951 sock_hold(sk); 2952 sock_orphan(sk); 2953 2954 local_bh_disable(); 2955 bh_lock_sock(sk); 2956 /* remove backlog if any, without releasing ownership. */ 2957 __release_sock(sk); 2958 2959 this_cpu_inc(tcp_orphan_count); 2960 2961 /* Have we already been destroyed by a softirq or backlog? */ 2962 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2963 goto out; 2964 2965 /* This is a (useful) BSD violating of the RFC. There is a 2966 * problem with TCP as specified in that the other end could 2967 * keep a socket open forever with no application left this end. 2968 * We use a 1 minute timeout (about the same as BSD) then kill 2969 * our end. If they send after that then tough - BUT: long enough 2970 * that we won't make the old 4*rto = almost no time - whoops 2971 * reset mistake. 2972 * 2973 * Nope, it was not mistake. It is really desired behaviour 2974 * f.e. on http servers, when such sockets are useless, but 2975 * consume significant resources. Let's do it with special 2976 * linger2 option. --ANK 2977 */ 2978 2979 if (sk->sk_state == TCP_FIN_WAIT2) { 2980 struct tcp_sock *tp = tcp_sk(sk); 2981 if (tp->linger2 < 0) { 2982 tcp_set_state(sk, TCP_CLOSE); 2983 tcp_send_active_reset(sk, GFP_ATOMIC); 2984 __NET_INC_STATS(sock_net(sk), 2985 LINUX_MIB_TCPABORTONLINGER); 2986 } else { 2987 const int tmo = tcp_fin_time(sk); 2988 2989 if (tmo > TCP_TIMEWAIT_LEN) { 2990 inet_csk_reset_keepalive_timer(sk, 2991 tmo - TCP_TIMEWAIT_LEN); 2992 } else { 2993 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2994 goto out; 2995 } 2996 } 2997 } 2998 if (sk->sk_state != TCP_CLOSE) { 2999 if (tcp_check_oom(sk, 0)) { 3000 tcp_set_state(sk, TCP_CLOSE); 3001 tcp_send_active_reset(sk, GFP_ATOMIC); 3002 __NET_INC_STATS(sock_net(sk), 3003 LINUX_MIB_TCPABORTONMEMORY); 3004 } else if (!check_net(sock_net(sk))) { 3005 /* Not possible to send reset; just close */ 3006 tcp_set_state(sk, TCP_CLOSE); 3007 } 3008 } 3009 3010 if (sk->sk_state == TCP_CLOSE) { 3011 struct request_sock *req; 3012 3013 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3014 lockdep_sock_is_held(sk)); 3015 /* We could get here with a non-NULL req if the socket is 3016 * aborted (e.g., closed with unread data) before 3WHS 3017 * finishes. 3018 */ 3019 if (req) 3020 reqsk_fastopen_remove(sk, req, false); 3021 inet_csk_destroy_sock(sk); 3022 } 3023 /* Otherwise, socket is reprieved until protocol close. */ 3024 3025 out: 3026 bh_unlock_sock(sk); 3027 local_bh_enable(); 3028 } 3029 3030 void tcp_close(struct sock *sk, long timeout) 3031 { 3032 lock_sock(sk); 3033 __tcp_close(sk, timeout); 3034 release_sock(sk); 3035 sock_put(sk); 3036 } 3037 EXPORT_SYMBOL(tcp_close); 3038 3039 /* These states need RST on ABORT according to RFC793 */ 3040 3041 static inline bool tcp_need_reset(int state) 3042 { 3043 return (1 << state) & 3044 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3045 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3046 } 3047 3048 static void tcp_rtx_queue_purge(struct sock *sk) 3049 { 3050 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3051 3052 tcp_sk(sk)->highest_sack = NULL; 3053 while (p) { 3054 struct sk_buff *skb = rb_to_skb(p); 3055 3056 p = rb_next(p); 3057 /* Since we are deleting whole queue, no need to 3058 * list_del(&skb->tcp_tsorted_anchor) 3059 */ 3060 tcp_rtx_queue_unlink(skb, sk); 3061 tcp_wmem_free_skb(sk, skb); 3062 } 3063 } 3064 3065 void tcp_write_queue_purge(struct sock *sk) 3066 { 3067 struct sk_buff *skb; 3068 3069 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3070 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3071 tcp_skb_tsorted_anchor_cleanup(skb); 3072 tcp_wmem_free_skb(sk, skb); 3073 } 3074 tcp_rtx_queue_purge(sk); 3075 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3076 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3077 tcp_sk(sk)->packets_out = 0; 3078 inet_csk(sk)->icsk_backoff = 0; 3079 } 3080 3081 int tcp_disconnect(struct sock *sk, int flags) 3082 { 3083 struct inet_sock *inet = inet_sk(sk); 3084 struct inet_connection_sock *icsk = inet_csk(sk); 3085 struct tcp_sock *tp = tcp_sk(sk); 3086 int old_state = sk->sk_state; 3087 u32 seq; 3088 3089 if (old_state != TCP_CLOSE) 3090 tcp_set_state(sk, TCP_CLOSE); 3091 3092 /* ABORT function of RFC793 */ 3093 if (old_state == TCP_LISTEN) { 3094 inet_csk_listen_stop(sk); 3095 } else if (unlikely(tp->repair)) { 3096 sk->sk_err = ECONNABORTED; 3097 } else if (tcp_need_reset(old_state) || 3098 (tp->snd_nxt != tp->write_seq && 3099 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3100 /* The last check adjusts for discrepancy of Linux wrt. RFC 3101 * states 3102 */ 3103 tcp_send_active_reset(sk, gfp_any()); 3104 sk->sk_err = ECONNRESET; 3105 } else if (old_state == TCP_SYN_SENT) 3106 sk->sk_err = ECONNRESET; 3107 3108 tcp_clear_xmit_timers(sk); 3109 __skb_queue_purge(&sk->sk_receive_queue); 3110 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3111 WRITE_ONCE(tp->urg_data, 0); 3112 tcp_write_queue_purge(sk); 3113 tcp_fastopen_active_disable_ofo_check(sk); 3114 skb_rbtree_purge(&tp->out_of_order_queue); 3115 3116 inet->inet_dport = 0; 3117 3118 inet_bhash2_reset_saddr(sk); 3119 3120 sk->sk_shutdown = 0; 3121 sock_reset_flag(sk, SOCK_DONE); 3122 tp->srtt_us = 0; 3123 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3124 tp->rcv_rtt_last_tsecr = 0; 3125 3126 seq = tp->write_seq + tp->max_window + 2; 3127 if (!seq) 3128 seq = 1; 3129 WRITE_ONCE(tp->write_seq, seq); 3130 3131 icsk->icsk_backoff = 0; 3132 icsk->icsk_probes_out = 0; 3133 icsk->icsk_probes_tstamp = 0; 3134 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3135 icsk->icsk_rto_min = TCP_RTO_MIN; 3136 icsk->icsk_delack_max = TCP_DELACK_MAX; 3137 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3138 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3139 tp->snd_cwnd_cnt = 0; 3140 tp->is_cwnd_limited = 0; 3141 tp->max_packets_out = 0; 3142 tp->window_clamp = 0; 3143 tp->delivered = 0; 3144 tp->delivered_ce = 0; 3145 if (icsk->icsk_ca_ops->release) 3146 icsk->icsk_ca_ops->release(sk); 3147 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3148 icsk->icsk_ca_initialized = 0; 3149 tcp_set_ca_state(sk, TCP_CA_Open); 3150 tp->is_sack_reneg = 0; 3151 tcp_clear_retrans(tp); 3152 tp->total_retrans = 0; 3153 inet_csk_delack_init(sk); 3154 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3155 * issue in __tcp_select_window() 3156 */ 3157 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3158 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3159 __sk_dst_reset(sk); 3160 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3161 tcp_saved_syn_free(tp); 3162 tp->compressed_ack = 0; 3163 tp->segs_in = 0; 3164 tp->segs_out = 0; 3165 tp->bytes_sent = 0; 3166 tp->bytes_acked = 0; 3167 tp->bytes_received = 0; 3168 tp->bytes_retrans = 0; 3169 tp->data_segs_in = 0; 3170 tp->data_segs_out = 0; 3171 tp->duplicate_sack[0].start_seq = 0; 3172 tp->duplicate_sack[0].end_seq = 0; 3173 tp->dsack_dups = 0; 3174 tp->reord_seen = 0; 3175 tp->retrans_out = 0; 3176 tp->sacked_out = 0; 3177 tp->tlp_high_seq = 0; 3178 tp->last_oow_ack_time = 0; 3179 tp->plb_rehash = 0; 3180 /* There's a bubble in the pipe until at least the first ACK. */ 3181 tp->app_limited = ~0U; 3182 tp->rate_app_limited = 1; 3183 tp->rack.mstamp = 0; 3184 tp->rack.advanced = 0; 3185 tp->rack.reo_wnd_steps = 1; 3186 tp->rack.last_delivered = 0; 3187 tp->rack.reo_wnd_persist = 0; 3188 tp->rack.dsack_seen = 0; 3189 tp->syn_data_acked = 0; 3190 tp->rx_opt.saw_tstamp = 0; 3191 tp->rx_opt.dsack = 0; 3192 tp->rx_opt.num_sacks = 0; 3193 tp->rcv_ooopack = 0; 3194 3195 3196 /* Clean up fastopen related fields */ 3197 tcp_free_fastopen_req(tp); 3198 inet->defer_connect = 0; 3199 tp->fastopen_client_fail = 0; 3200 3201 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3202 3203 if (sk->sk_frag.page) { 3204 put_page(sk->sk_frag.page); 3205 sk->sk_frag.page = NULL; 3206 sk->sk_frag.offset = 0; 3207 } 3208 sk_error_report(sk); 3209 return 0; 3210 } 3211 EXPORT_SYMBOL(tcp_disconnect); 3212 3213 static inline bool tcp_can_repair_sock(const struct sock *sk) 3214 { 3215 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3216 (sk->sk_state != TCP_LISTEN); 3217 } 3218 3219 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3220 { 3221 struct tcp_repair_window opt; 3222 3223 if (!tp->repair) 3224 return -EPERM; 3225 3226 if (len != sizeof(opt)) 3227 return -EINVAL; 3228 3229 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3230 return -EFAULT; 3231 3232 if (opt.max_window < opt.snd_wnd) 3233 return -EINVAL; 3234 3235 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3236 return -EINVAL; 3237 3238 if (after(opt.rcv_wup, tp->rcv_nxt)) 3239 return -EINVAL; 3240 3241 tp->snd_wl1 = opt.snd_wl1; 3242 tp->snd_wnd = opt.snd_wnd; 3243 tp->max_window = opt.max_window; 3244 3245 tp->rcv_wnd = opt.rcv_wnd; 3246 tp->rcv_wup = opt.rcv_wup; 3247 3248 return 0; 3249 } 3250 3251 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3252 unsigned int len) 3253 { 3254 struct tcp_sock *tp = tcp_sk(sk); 3255 struct tcp_repair_opt opt; 3256 size_t offset = 0; 3257 3258 while (len >= sizeof(opt)) { 3259 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3260 return -EFAULT; 3261 3262 offset += sizeof(opt); 3263 len -= sizeof(opt); 3264 3265 switch (opt.opt_code) { 3266 case TCPOPT_MSS: 3267 tp->rx_opt.mss_clamp = opt.opt_val; 3268 tcp_mtup_init(sk); 3269 break; 3270 case TCPOPT_WINDOW: 3271 { 3272 u16 snd_wscale = opt.opt_val & 0xFFFF; 3273 u16 rcv_wscale = opt.opt_val >> 16; 3274 3275 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3276 return -EFBIG; 3277 3278 tp->rx_opt.snd_wscale = snd_wscale; 3279 tp->rx_opt.rcv_wscale = rcv_wscale; 3280 tp->rx_opt.wscale_ok = 1; 3281 } 3282 break; 3283 case TCPOPT_SACK_PERM: 3284 if (opt.opt_val != 0) 3285 return -EINVAL; 3286 3287 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3288 break; 3289 case TCPOPT_TIMESTAMP: 3290 if (opt.opt_val != 0) 3291 return -EINVAL; 3292 3293 tp->rx_opt.tstamp_ok = 1; 3294 break; 3295 } 3296 } 3297 3298 return 0; 3299 } 3300 3301 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3302 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3303 3304 static void tcp_enable_tx_delay(void) 3305 { 3306 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3307 static int __tcp_tx_delay_enabled = 0; 3308 3309 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3310 static_branch_enable(&tcp_tx_delay_enabled); 3311 pr_info("TCP_TX_DELAY enabled\n"); 3312 } 3313 } 3314 } 3315 3316 /* When set indicates to always queue non-full frames. Later the user clears 3317 * this option and we transmit any pending partial frames in the queue. This is 3318 * meant to be used alongside sendfile() to get properly filled frames when the 3319 * user (for example) must write out headers with a write() call first and then 3320 * use sendfile to send out the data parts. 3321 * 3322 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3323 * TCP_NODELAY. 3324 */ 3325 void __tcp_sock_set_cork(struct sock *sk, bool on) 3326 { 3327 struct tcp_sock *tp = tcp_sk(sk); 3328 3329 if (on) { 3330 tp->nonagle |= TCP_NAGLE_CORK; 3331 } else { 3332 tp->nonagle &= ~TCP_NAGLE_CORK; 3333 if (tp->nonagle & TCP_NAGLE_OFF) 3334 tp->nonagle |= TCP_NAGLE_PUSH; 3335 tcp_push_pending_frames(sk); 3336 } 3337 } 3338 3339 void tcp_sock_set_cork(struct sock *sk, bool on) 3340 { 3341 lock_sock(sk); 3342 __tcp_sock_set_cork(sk, on); 3343 release_sock(sk); 3344 } 3345 EXPORT_SYMBOL(tcp_sock_set_cork); 3346 3347 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3348 * remembered, but it is not activated until cork is cleared. 3349 * 3350 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3351 * even TCP_CORK for currently queued segments. 3352 */ 3353 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3354 { 3355 if (on) { 3356 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3357 tcp_push_pending_frames(sk); 3358 } else { 3359 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3360 } 3361 } 3362 3363 void tcp_sock_set_nodelay(struct sock *sk) 3364 { 3365 lock_sock(sk); 3366 __tcp_sock_set_nodelay(sk, true); 3367 release_sock(sk); 3368 } 3369 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3370 3371 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3372 { 3373 if (!val) { 3374 inet_csk_enter_pingpong_mode(sk); 3375 return; 3376 } 3377 3378 inet_csk_exit_pingpong_mode(sk); 3379 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3380 inet_csk_ack_scheduled(sk)) { 3381 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3382 tcp_cleanup_rbuf(sk, 1); 3383 if (!(val & 1)) 3384 inet_csk_enter_pingpong_mode(sk); 3385 } 3386 } 3387 3388 void tcp_sock_set_quickack(struct sock *sk, int val) 3389 { 3390 lock_sock(sk); 3391 __tcp_sock_set_quickack(sk, val); 3392 release_sock(sk); 3393 } 3394 EXPORT_SYMBOL(tcp_sock_set_quickack); 3395 3396 int tcp_sock_set_syncnt(struct sock *sk, int val) 3397 { 3398 if (val < 1 || val > MAX_TCP_SYNCNT) 3399 return -EINVAL; 3400 3401 lock_sock(sk); 3402 inet_csk(sk)->icsk_syn_retries = val; 3403 release_sock(sk); 3404 return 0; 3405 } 3406 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3407 3408 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3409 { 3410 lock_sock(sk); 3411 inet_csk(sk)->icsk_user_timeout = val; 3412 release_sock(sk); 3413 } 3414 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3415 3416 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3417 { 3418 struct tcp_sock *tp = tcp_sk(sk); 3419 3420 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3421 return -EINVAL; 3422 3423 tp->keepalive_time = val * HZ; 3424 if (sock_flag(sk, SOCK_KEEPOPEN) && 3425 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3426 u32 elapsed = keepalive_time_elapsed(tp); 3427 3428 if (tp->keepalive_time > elapsed) 3429 elapsed = tp->keepalive_time - elapsed; 3430 else 3431 elapsed = 0; 3432 inet_csk_reset_keepalive_timer(sk, elapsed); 3433 } 3434 3435 return 0; 3436 } 3437 3438 int tcp_sock_set_keepidle(struct sock *sk, int val) 3439 { 3440 int err; 3441 3442 lock_sock(sk); 3443 err = tcp_sock_set_keepidle_locked(sk, val); 3444 release_sock(sk); 3445 return err; 3446 } 3447 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3448 3449 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3450 { 3451 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3452 return -EINVAL; 3453 3454 lock_sock(sk); 3455 tcp_sk(sk)->keepalive_intvl = val * HZ; 3456 release_sock(sk); 3457 return 0; 3458 } 3459 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3460 3461 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3462 { 3463 if (val < 1 || val > MAX_TCP_KEEPCNT) 3464 return -EINVAL; 3465 3466 lock_sock(sk); 3467 tcp_sk(sk)->keepalive_probes = val; 3468 release_sock(sk); 3469 return 0; 3470 } 3471 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3472 3473 int tcp_set_window_clamp(struct sock *sk, int val) 3474 { 3475 struct tcp_sock *tp = tcp_sk(sk); 3476 3477 if (!val) { 3478 if (sk->sk_state != TCP_CLOSE) 3479 return -EINVAL; 3480 tp->window_clamp = 0; 3481 } else { 3482 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3483 SOCK_MIN_RCVBUF / 2 : val; 3484 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3485 } 3486 return 0; 3487 } 3488 3489 /* 3490 * Socket option code for TCP. 3491 */ 3492 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3493 sockptr_t optval, unsigned int optlen) 3494 { 3495 struct tcp_sock *tp = tcp_sk(sk); 3496 struct inet_connection_sock *icsk = inet_csk(sk); 3497 struct net *net = sock_net(sk); 3498 int val; 3499 int err = 0; 3500 3501 /* These are data/string values, all the others are ints */ 3502 switch (optname) { 3503 case TCP_CONGESTION: { 3504 char name[TCP_CA_NAME_MAX]; 3505 3506 if (optlen < 1) 3507 return -EINVAL; 3508 3509 val = strncpy_from_sockptr(name, optval, 3510 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3511 if (val < 0) 3512 return -EFAULT; 3513 name[val] = 0; 3514 3515 sockopt_lock_sock(sk); 3516 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3517 sockopt_ns_capable(sock_net(sk)->user_ns, 3518 CAP_NET_ADMIN)); 3519 sockopt_release_sock(sk); 3520 return err; 3521 } 3522 case TCP_ULP: { 3523 char name[TCP_ULP_NAME_MAX]; 3524 3525 if (optlen < 1) 3526 return -EINVAL; 3527 3528 val = strncpy_from_sockptr(name, optval, 3529 min_t(long, TCP_ULP_NAME_MAX - 1, 3530 optlen)); 3531 if (val < 0) 3532 return -EFAULT; 3533 name[val] = 0; 3534 3535 sockopt_lock_sock(sk); 3536 err = tcp_set_ulp(sk, name); 3537 sockopt_release_sock(sk); 3538 return err; 3539 } 3540 case TCP_FASTOPEN_KEY: { 3541 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3542 __u8 *backup_key = NULL; 3543 3544 /* Allow a backup key as well to facilitate key rotation 3545 * First key is the active one. 3546 */ 3547 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3548 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3549 return -EINVAL; 3550 3551 if (copy_from_sockptr(key, optval, optlen)) 3552 return -EFAULT; 3553 3554 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3555 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3556 3557 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3558 } 3559 default: 3560 /* fallthru */ 3561 break; 3562 } 3563 3564 if (optlen < sizeof(int)) 3565 return -EINVAL; 3566 3567 if (copy_from_sockptr(&val, optval, sizeof(val))) 3568 return -EFAULT; 3569 3570 sockopt_lock_sock(sk); 3571 3572 switch (optname) { 3573 case TCP_MAXSEG: 3574 /* Values greater than interface MTU won't take effect. However 3575 * at the point when this call is done we typically don't yet 3576 * know which interface is going to be used 3577 */ 3578 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3579 err = -EINVAL; 3580 break; 3581 } 3582 tp->rx_opt.user_mss = val; 3583 break; 3584 3585 case TCP_NODELAY: 3586 __tcp_sock_set_nodelay(sk, val); 3587 break; 3588 3589 case TCP_THIN_LINEAR_TIMEOUTS: 3590 if (val < 0 || val > 1) 3591 err = -EINVAL; 3592 else 3593 tp->thin_lto = val; 3594 break; 3595 3596 case TCP_THIN_DUPACK: 3597 if (val < 0 || val > 1) 3598 err = -EINVAL; 3599 break; 3600 3601 case TCP_REPAIR: 3602 if (!tcp_can_repair_sock(sk)) 3603 err = -EPERM; 3604 else if (val == TCP_REPAIR_ON) { 3605 tp->repair = 1; 3606 sk->sk_reuse = SK_FORCE_REUSE; 3607 tp->repair_queue = TCP_NO_QUEUE; 3608 } else if (val == TCP_REPAIR_OFF) { 3609 tp->repair = 0; 3610 sk->sk_reuse = SK_NO_REUSE; 3611 tcp_send_window_probe(sk); 3612 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3613 tp->repair = 0; 3614 sk->sk_reuse = SK_NO_REUSE; 3615 } else 3616 err = -EINVAL; 3617 3618 break; 3619 3620 case TCP_REPAIR_QUEUE: 3621 if (!tp->repair) 3622 err = -EPERM; 3623 else if ((unsigned int)val < TCP_QUEUES_NR) 3624 tp->repair_queue = val; 3625 else 3626 err = -EINVAL; 3627 break; 3628 3629 case TCP_QUEUE_SEQ: 3630 if (sk->sk_state != TCP_CLOSE) { 3631 err = -EPERM; 3632 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3633 if (!tcp_rtx_queue_empty(sk)) 3634 err = -EPERM; 3635 else 3636 WRITE_ONCE(tp->write_seq, val); 3637 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3638 if (tp->rcv_nxt != tp->copied_seq) { 3639 err = -EPERM; 3640 } else { 3641 WRITE_ONCE(tp->rcv_nxt, val); 3642 WRITE_ONCE(tp->copied_seq, val); 3643 } 3644 } else { 3645 err = -EINVAL; 3646 } 3647 break; 3648 3649 case TCP_REPAIR_OPTIONS: 3650 if (!tp->repair) 3651 err = -EINVAL; 3652 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3653 err = tcp_repair_options_est(sk, optval, optlen); 3654 else 3655 err = -EPERM; 3656 break; 3657 3658 case TCP_CORK: 3659 __tcp_sock_set_cork(sk, val); 3660 break; 3661 3662 case TCP_KEEPIDLE: 3663 err = tcp_sock_set_keepidle_locked(sk, val); 3664 break; 3665 case TCP_KEEPINTVL: 3666 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3667 err = -EINVAL; 3668 else 3669 tp->keepalive_intvl = val * HZ; 3670 break; 3671 case TCP_KEEPCNT: 3672 if (val < 1 || val > MAX_TCP_KEEPCNT) 3673 err = -EINVAL; 3674 else 3675 tp->keepalive_probes = val; 3676 break; 3677 case TCP_SYNCNT: 3678 if (val < 1 || val > MAX_TCP_SYNCNT) 3679 err = -EINVAL; 3680 else 3681 icsk->icsk_syn_retries = val; 3682 break; 3683 3684 case TCP_SAVE_SYN: 3685 /* 0: disable, 1: enable, 2: start from ether_header */ 3686 if (val < 0 || val > 2) 3687 err = -EINVAL; 3688 else 3689 tp->save_syn = val; 3690 break; 3691 3692 case TCP_LINGER2: 3693 if (val < 0) 3694 tp->linger2 = -1; 3695 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3696 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3697 else 3698 tp->linger2 = val * HZ; 3699 break; 3700 3701 case TCP_DEFER_ACCEPT: 3702 /* Translate value in seconds to number of retransmits */ 3703 icsk->icsk_accept_queue.rskq_defer_accept = 3704 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3705 TCP_RTO_MAX / HZ); 3706 break; 3707 3708 case TCP_WINDOW_CLAMP: 3709 err = tcp_set_window_clamp(sk, val); 3710 break; 3711 3712 case TCP_QUICKACK: 3713 __tcp_sock_set_quickack(sk, val); 3714 break; 3715 3716 #ifdef CONFIG_TCP_MD5SIG 3717 case TCP_MD5SIG: 3718 case TCP_MD5SIG_EXT: 3719 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3720 break; 3721 #endif 3722 case TCP_USER_TIMEOUT: 3723 /* Cap the max time in ms TCP will retry or probe the window 3724 * before giving up and aborting (ETIMEDOUT) a connection. 3725 */ 3726 if (val < 0) 3727 err = -EINVAL; 3728 else 3729 icsk->icsk_user_timeout = val; 3730 break; 3731 3732 case TCP_FASTOPEN: 3733 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3734 TCPF_LISTEN))) { 3735 tcp_fastopen_init_key_once(net); 3736 3737 fastopen_queue_tune(sk, val); 3738 } else { 3739 err = -EINVAL; 3740 } 3741 break; 3742 case TCP_FASTOPEN_CONNECT: 3743 if (val > 1 || val < 0) { 3744 err = -EINVAL; 3745 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3746 TFO_CLIENT_ENABLE) { 3747 if (sk->sk_state == TCP_CLOSE) 3748 tp->fastopen_connect = val; 3749 else 3750 err = -EINVAL; 3751 } else { 3752 err = -EOPNOTSUPP; 3753 } 3754 break; 3755 case TCP_FASTOPEN_NO_COOKIE: 3756 if (val > 1 || val < 0) 3757 err = -EINVAL; 3758 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3759 err = -EINVAL; 3760 else 3761 tp->fastopen_no_cookie = val; 3762 break; 3763 case TCP_TIMESTAMP: 3764 if (!tp->repair) 3765 err = -EPERM; 3766 else 3767 tp->tsoffset = val - tcp_time_stamp_raw(); 3768 break; 3769 case TCP_REPAIR_WINDOW: 3770 err = tcp_repair_set_window(tp, optval, optlen); 3771 break; 3772 case TCP_NOTSENT_LOWAT: 3773 tp->notsent_lowat = val; 3774 sk->sk_write_space(sk); 3775 break; 3776 case TCP_INQ: 3777 if (val > 1 || val < 0) 3778 err = -EINVAL; 3779 else 3780 tp->recvmsg_inq = val; 3781 break; 3782 case TCP_TX_DELAY: 3783 if (val) 3784 tcp_enable_tx_delay(); 3785 tp->tcp_tx_delay = val; 3786 break; 3787 default: 3788 err = -ENOPROTOOPT; 3789 break; 3790 } 3791 3792 sockopt_release_sock(sk); 3793 return err; 3794 } 3795 3796 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3797 unsigned int optlen) 3798 { 3799 const struct inet_connection_sock *icsk = inet_csk(sk); 3800 3801 if (level != SOL_TCP) 3802 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3803 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3804 optval, optlen); 3805 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3806 } 3807 EXPORT_SYMBOL(tcp_setsockopt); 3808 3809 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3810 struct tcp_info *info) 3811 { 3812 u64 stats[__TCP_CHRONO_MAX], total = 0; 3813 enum tcp_chrono i; 3814 3815 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3816 stats[i] = tp->chrono_stat[i - 1]; 3817 if (i == tp->chrono_type) 3818 stats[i] += tcp_jiffies32 - tp->chrono_start; 3819 stats[i] *= USEC_PER_SEC / HZ; 3820 total += stats[i]; 3821 } 3822 3823 info->tcpi_busy_time = total; 3824 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3825 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3826 } 3827 3828 /* Return information about state of tcp endpoint in API format. */ 3829 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3830 { 3831 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3832 const struct inet_connection_sock *icsk = inet_csk(sk); 3833 unsigned long rate; 3834 u32 now; 3835 u64 rate64; 3836 bool slow; 3837 3838 memset(info, 0, sizeof(*info)); 3839 if (sk->sk_type != SOCK_STREAM) 3840 return; 3841 3842 info->tcpi_state = inet_sk_state_load(sk); 3843 3844 /* Report meaningful fields for all TCP states, including listeners */ 3845 rate = READ_ONCE(sk->sk_pacing_rate); 3846 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3847 info->tcpi_pacing_rate = rate64; 3848 3849 rate = READ_ONCE(sk->sk_max_pacing_rate); 3850 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3851 info->tcpi_max_pacing_rate = rate64; 3852 3853 info->tcpi_reordering = tp->reordering; 3854 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3855 3856 if (info->tcpi_state == TCP_LISTEN) { 3857 /* listeners aliased fields : 3858 * tcpi_unacked -> Number of children ready for accept() 3859 * tcpi_sacked -> max backlog 3860 */ 3861 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3862 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3863 return; 3864 } 3865 3866 slow = lock_sock_fast(sk); 3867 3868 info->tcpi_ca_state = icsk->icsk_ca_state; 3869 info->tcpi_retransmits = icsk->icsk_retransmits; 3870 info->tcpi_probes = icsk->icsk_probes_out; 3871 info->tcpi_backoff = icsk->icsk_backoff; 3872 3873 if (tp->rx_opt.tstamp_ok) 3874 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3875 if (tcp_is_sack(tp)) 3876 info->tcpi_options |= TCPI_OPT_SACK; 3877 if (tp->rx_opt.wscale_ok) { 3878 info->tcpi_options |= TCPI_OPT_WSCALE; 3879 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3880 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3881 } 3882 3883 if (tp->ecn_flags & TCP_ECN_OK) 3884 info->tcpi_options |= TCPI_OPT_ECN; 3885 if (tp->ecn_flags & TCP_ECN_SEEN) 3886 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3887 if (tp->syn_data_acked) 3888 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3889 3890 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3891 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3892 info->tcpi_snd_mss = tp->mss_cache; 3893 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3894 3895 info->tcpi_unacked = tp->packets_out; 3896 info->tcpi_sacked = tp->sacked_out; 3897 3898 info->tcpi_lost = tp->lost_out; 3899 info->tcpi_retrans = tp->retrans_out; 3900 3901 now = tcp_jiffies32; 3902 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3903 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3904 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3905 3906 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3907 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3908 info->tcpi_rtt = tp->srtt_us >> 3; 3909 info->tcpi_rttvar = tp->mdev_us >> 2; 3910 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3911 info->tcpi_advmss = tp->advmss; 3912 3913 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3914 info->tcpi_rcv_space = tp->rcvq_space.space; 3915 3916 info->tcpi_total_retrans = tp->total_retrans; 3917 3918 info->tcpi_bytes_acked = tp->bytes_acked; 3919 info->tcpi_bytes_received = tp->bytes_received; 3920 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3921 tcp_get_info_chrono_stats(tp, info); 3922 3923 info->tcpi_segs_out = tp->segs_out; 3924 3925 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3926 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3927 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3928 3929 info->tcpi_min_rtt = tcp_min_rtt(tp); 3930 info->tcpi_data_segs_out = tp->data_segs_out; 3931 3932 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3933 rate64 = tcp_compute_delivery_rate(tp); 3934 if (rate64) 3935 info->tcpi_delivery_rate = rate64; 3936 info->tcpi_delivered = tp->delivered; 3937 info->tcpi_delivered_ce = tp->delivered_ce; 3938 info->tcpi_bytes_sent = tp->bytes_sent; 3939 info->tcpi_bytes_retrans = tp->bytes_retrans; 3940 info->tcpi_dsack_dups = tp->dsack_dups; 3941 info->tcpi_reord_seen = tp->reord_seen; 3942 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3943 info->tcpi_snd_wnd = tp->snd_wnd; 3944 info->tcpi_rcv_wnd = tp->rcv_wnd; 3945 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3946 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3947 unlock_sock_fast(sk, slow); 3948 } 3949 EXPORT_SYMBOL_GPL(tcp_get_info); 3950 3951 static size_t tcp_opt_stats_get_size(void) 3952 { 3953 return 3954 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3955 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3956 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3957 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3958 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3959 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3960 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3961 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3962 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3963 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3964 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3965 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3966 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3967 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3968 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3969 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3970 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3971 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3972 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3973 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3974 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3975 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3976 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3977 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3978 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3979 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3980 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3981 0; 3982 } 3983 3984 /* Returns TTL or hop limit of an incoming packet from skb. */ 3985 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3986 { 3987 if (skb->protocol == htons(ETH_P_IP)) 3988 return ip_hdr(skb)->ttl; 3989 else if (skb->protocol == htons(ETH_P_IPV6)) 3990 return ipv6_hdr(skb)->hop_limit; 3991 else 3992 return 0; 3993 } 3994 3995 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3996 const struct sk_buff *orig_skb, 3997 const struct sk_buff *ack_skb) 3998 { 3999 const struct tcp_sock *tp = tcp_sk(sk); 4000 struct sk_buff *stats; 4001 struct tcp_info info; 4002 unsigned long rate; 4003 u64 rate64; 4004 4005 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4006 if (!stats) 4007 return NULL; 4008 4009 tcp_get_info_chrono_stats(tp, &info); 4010 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4011 info.tcpi_busy_time, TCP_NLA_PAD); 4012 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4013 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4014 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4015 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4016 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4017 tp->data_segs_out, TCP_NLA_PAD); 4018 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4019 tp->total_retrans, TCP_NLA_PAD); 4020 4021 rate = READ_ONCE(sk->sk_pacing_rate); 4022 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4023 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4024 4025 rate64 = tcp_compute_delivery_rate(tp); 4026 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4027 4028 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4029 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4030 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4031 4032 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4033 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4034 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4035 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4036 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4037 4038 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4039 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4040 4041 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4042 TCP_NLA_PAD); 4043 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4044 TCP_NLA_PAD); 4045 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4046 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4047 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4048 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4049 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4050 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4051 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4052 TCP_NLA_PAD); 4053 if (ack_skb) 4054 nla_put_u8(stats, TCP_NLA_TTL, 4055 tcp_skb_ttl_or_hop_limit(ack_skb)); 4056 4057 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4058 return stats; 4059 } 4060 4061 int do_tcp_getsockopt(struct sock *sk, int level, 4062 int optname, sockptr_t optval, sockptr_t optlen) 4063 { 4064 struct inet_connection_sock *icsk = inet_csk(sk); 4065 struct tcp_sock *tp = tcp_sk(sk); 4066 struct net *net = sock_net(sk); 4067 int val, len; 4068 4069 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4070 return -EFAULT; 4071 4072 len = min_t(unsigned int, len, sizeof(int)); 4073 4074 if (len < 0) 4075 return -EINVAL; 4076 4077 switch (optname) { 4078 case TCP_MAXSEG: 4079 val = tp->mss_cache; 4080 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4081 val = tp->rx_opt.user_mss; 4082 if (tp->repair) 4083 val = tp->rx_opt.mss_clamp; 4084 break; 4085 case TCP_NODELAY: 4086 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4087 break; 4088 case TCP_CORK: 4089 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4090 break; 4091 case TCP_KEEPIDLE: 4092 val = keepalive_time_when(tp) / HZ; 4093 break; 4094 case TCP_KEEPINTVL: 4095 val = keepalive_intvl_when(tp) / HZ; 4096 break; 4097 case TCP_KEEPCNT: 4098 val = keepalive_probes(tp); 4099 break; 4100 case TCP_SYNCNT: 4101 val = icsk->icsk_syn_retries ? : 4102 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4103 break; 4104 case TCP_LINGER2: 4105 val = tp->linger2; 4106 if (val >= 0) 4107 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4108 break; 4109 case TCP_DEFER_ACCEPT: 4110 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4111 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4112 break; 4113 case TCP_WINDOW_CLAMP: 4114 val = tp->window_clamp; 4115 break; 4116 case TCP_INFO: { 4117 struct tcp_info info; 4118 4119 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4120 return -EFAULT; 4121 4122 tcp_get_info(sk, &info); 4123 4124 len = min_t(unsigned int, len, sizeof(info)); 4125 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4126 return -EFAULT; 4127 if (copy_to_sockptr(optval, &info, len)) 4128 return -EFAULT; 4129 return 0; 4130 } 4131 case TCP_CC_INFO: { 4132 const struct tcp_congestion_ops *ca_ops; 4133 union tcp_cc_info info; 4134 size_t sz = 0; 4135 int attr; 4136 4137 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4138 return -EFAULT; 4139 4140 ca_ops = icsk->icsk_ca_ops; 4141 if (ca_ops && ca_ops->get_info) 4142 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4143 4144 len = min_t(unsigned int, len, sz); 4145 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4146 return -EFAULT; 4147 if (copy_to_sockptr(optval, &info, len)) 4148 return -EFAULT; 4149 return 0; 4150 } 4151 case TCP_QUICKACK: 4152 val = !inet_csk_in_pingpong_mode(sk); 4153 break; 4154 4155 case TCP_CONGESTION: 4156 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4157 return -EFAULT; 4158 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4159 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4160 return -EFAULT; 4161 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4162 return -EFAULT; 4163 return 0; 4164 4165 case TCP_ULP: 4166 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4167 return -EFAULT; 4168 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4169 if (!icsk->icsk_ulp_ops) { 4170 len = 0; 4171 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4172 return -EFAULT; 4173 return 0; 4174 } 4175 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4176 return -EFAULT; 4177 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4178 return -EFAULT; 4179 return 0; 4180 4181 case TCP_FASTOPEN_KEY: { 4182 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4183 unsigned int key_len; 4184 4185 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4186 return -EFAULT; 4187 4188 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4189 TCP_FASTOPEN_KEY_LENGTH; 4190 len = min_t(unsigned int, len, key_len); 4191 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4192 return -EFAULT; 4193 if (copy_to_sockptr(optval, key, len)) 4194 return -EFAULT; 4195 return 0; 4196 } 4197 case TCP_THIN_LINEAR_TIMEOUTS: 4198 val = tp->thin_lto; 4199 break; 4200 4201 case TCP_THIN_DUPACK: 4202 val = 0; 4203 break; 4204 4205 case TCP_REPAIR: 4206 val = tp->repair; 4207 break; 4208 4209 case TCP_REPAIR_QUEUE: 4210 if (tp->repair) 4211 val = tp->repair_queue; 4212 else 4213 return -EINVAL; 4214 break; 4215 4216 case TCP_REPAIR_WINDOW: { 4217 struct tcp_repair_window opt; 4218 4219 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4220 return -EFAULT; 4221 4222 if (len != sizeof(opt)) 4223 return -EINVAL; 4224 4225 if (!tp->repair) 4226 return -EPERM; 4227 4228 opt.snd_wl1 = tp->snd_wl1; 4229 opt.snd_wnd = tp->snd_wnd; 4230 opt.max_window = tp->max_window; 4231 opt.rcv_wnd = tp->rcv_wnd; 4232 opt.rcv_wup = tp->rcv_wup; 4233 4234 if (copy_to_sockptr(optval, &opt, len)) 4235 return -EFAULT; 4236 return 0; 4237 } 4238 case TCP_QUEUE_SEQ: 4239 if (tp->repair_queue == TCP_SEND_QUEUE) 4240 val = tp->write_seq; 4241 else if (tp->repair_queue == TCP_RECV_QUEUE) 4242 val = tp->rcv_nxt; 4243 else 4244 return -EINVAL; 4245 break; 4246 4247 case TCP_USER_TIMEOUT: 4248 val = icsk->icsk_user_timeout; 4249 break; 4250 4251 case TCP_FASTOPEN: 4252 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4253 break; 4254 4255 case TCP_FASTOPEN_CONNECT: 4256 val = tp->fastopen_connect; 4257 break; 4258 4259 case TCP_FASTOPEN_NO_COOKIE: 4260 val = tp->fastopen_no_cookie; 4261 break; 4262 4263 case TCP_TX_DELAY: 4264 val = tp->tcp_tx_delay; 4265 break; 4266 4267 case TCP_TIMESTAMP: 4268 val = tcp_time_stamp_raw() + tp->tsoffset; 4269 break; 4270 case TCP_NOTSENT_LOWAT: 4271 val = tp->notsent_lowat; 4272 break; 4273 case TCP_INQ: 4274 val = tp->recvmsg_inq; 4275 break; 4276 case TCP_SAVE_SYN: 4277 val = tp->save_syn; 4278 break; 4279 case TCP_SAVED_SYN: { 4280 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4281 return -EFAULT; 4282 4283 sockopt_lock_sock(sk); 4284 if (tp->saved_syn) { 4285 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4286 len = tcp_saved_syn_len(tp->saved_syn); 4287 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4288 sockopt_release_sock(sk); 4289 return -EFAULT; 4290 } 4291 sockopt_release_sock(sk); 4292 return -EINVAL; 4293 } 4294 len = tcp_saved_syn_len(tp->saved_syn); 4295 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4296 sockopt_release_sock(sk); 4297 return -EFAULT; 4298 } 4299 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4300 sockopt_release_sock(sk); 4301 return -EFAULT; 4302 } 4303 tcp_saved_syn_free(tp); 4304 sockopt_release_sock(sk); 4305 } else { 4306 sockopt_release_sock(sk); 4307 len = 0; 4308 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4309 return -EFAULT; 4310 } 4311 return 0; 4312 } 4313 #ifdef CONFIG_MMU 4314 case TCP_ZEROCOPY_RECEIVE: { 4315 struct scm_timestamping_internal tss; 4316 struct tcp_zerocopy_receive zc = {}; 4317 int err; 4318 4319 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4320 return -EFAULT; 4321 if (len < 0 || 4322 len < offsetofend(struct tcp_zerocopy_receive, length)) 4323 return -EINVAL; 4324 if (unlikely(len > sizeof(zc))) { 4325 err = check_zeroed_sockptr(optval, sizeof(zc), 4326 len - sizeof(zc)); 4327 if (err < 1) 4328 return err == 0 ? -EINVAL : err; 4329 len = sizeof(zc); 4330 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4331 return -EFAULT; 4332 } 4333 if (copy_from_sockptr(&zc, optval, len)) 4334 return -EFAULT; 4335 if (zc.reserved) 4336 return -EINVAL; 4337 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4338 return -EINVAL; 4339 sockopt_lock_sock(sk); 4340 err = tcp_zerocopy_receive(sk, &zc, &tss); 4341 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4342 &zc, &len, err); 4343 sockopt_release_sock(sk); 4344 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4345 goto zerocopy_rcv_cmsg; 4346 switch (len) { 4347 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4348 goto zerocopy_rcv_cmsg; 4349 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4350 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4351 case offsetofend(struct tcp_zerocopy_receive, flags): 4352 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4353 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4354 case offsetofend(struct tcp_zerocopy_receive, err): 4355 goto zerocopy_rcv_sk_err; 4356 case offsetofend(struct tcp_zerocopy_receive, inq): 4357 goto zerocopy_rcv_inq; 4358 case offsetofend(struct tcp_zerocopy_receive, length): 4359 default: 4360 goto zerocopy_rcv_out; 4361 } 4362 zerocopy_rcv_cmsg: 4363 if (zc.msg_flags & TCP_CMSG_TS) 4364 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4365 else 4366 zc.msg_flags = 0; 4367 zerocopy_rcv_sk_err: 4368 if (!err) 4369 zc.err = sock_error(sk); 4370 zerocopy_rcv_inq: 4371 zc.inq = tcp_inq_hint(sk); 4372 zerocopy_rcv_out: 4373 if (!err && copy_to_sockptr(optval, &zc, len)) 4374 err = -EFAULT; 4375 return err; 4376 } 4377 #endif 4378 default: 4379 return -ENOPROTOOPT; 4380 } 4381 4382 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4383 return -EFAULT; 4384 if (copy_to_sockptr(optval, &val, len)) 4385 return -EFAULT; 4386 return 0; 4387 } 4388 4389 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4390 { 4391 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4392 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4393 */ 4394 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4395 return true; 4396 4397 return false; 4398 } 4399 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4400 4401 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4402 int __user *optlen) 4403 { 4404 struct inet_connection_sock *icsk = inet_csk(sk); 4405 4406 if (level != SOL_TCP) 4407 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4408 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4409 optval, optlen); 4410 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4411 USER_SOCKPTR(optlen)); 4412 } 4413 EXPORT_SYMBOL(tcp_getsockopt); 4414 4415 #ifdef CONFIG_TCP_MD5SIG 4416 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4417 static DEFINE_MUTEX(tcp_md5sig_mutex); 4418 static bool tcp_md5sig_pool_populated = false; 4419 4420 static void __tcp_alloc_md5sig_pool(void) 4421 { 4422 struct crypto_ahash *hash; 4423 int cpu; 4424 4425 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4426 if (IS_ERR(hash)) 4427 return; 4428 4429 for_each_possible_cpu(cpu) { 4430 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4431 struct ahash_request *req; 4432 4433 if (!scratch) { 4434 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4435 sizeof(struct tcphdr), 4436 GFP_KERNEL, 4437 cpu_to_node(cpu)); 4438 if (!scratch) 4439 return; 4440 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4441 } 4442 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4443 continue; 4444 4445 req = ahash_request_alloc(hash, GFP_KERNEL); 4446 if (!req) 4447 return; 4448 4449 ahash_request_set_callback(req, 0, NULL, NULL); 4450 4451 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4452 } 4453 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4454 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4455 */ 4456 smp_wmb(); 4457 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4458 * and tcp_get_md5sig_pool(). 4459 */ 4460 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4461 } 4462 4463 bool tcp_alloc_md5sig_pool(void) 4464 { 4465 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4466 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4467 mutex_lock(&tcp_md5sig_mutex); 4468 4469 if (!tcp_md5sig_pool_populated) 4470 __tcp_alloc_md5sig_pool(); 4471 4472 mutex_unlock(&tcp_md5sig_mutex); 4473 } 4474 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4475 return READ_ONCE(tcp_md5sig_pool_populated); 4476 } 4477 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4478 4479 4480 /** 4481 * tcp_get_md5sig_pool - get md5sig_pool for this user 4482 * 4483 * We use percpu structure, so if we succeed, we exit with preemption 4484 * and BH disabled, to make sure another thread or softirq handling 4485 * wont try to get same context. 4486 */ 4487 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4488 { 4489 local_bh_disable(); 4490 4491 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4492 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4493 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4494 smp_rmb(); 4495 return this_cpu_ptr(&tcp_md5sig_pool); 4496 } 4497 local_bh_enable(); 4498 return NULL; 4499 } 4500 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4501 4502 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4503 const struct sk_buff *skb, unsigned int header_len) 4504 { 4505 struct scatterlist sg; 4506 const struct tcphdr *tp = tcp_hdr(skb); 4507 struct ahash_request *req = hp->md5_req; 4508 unsigned int i; 4509 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4510 skb_headlen(skb) - header_len : 0; 4511 const struct skb_shared_info *shi = skb_shinfo(skb); 4512 struct sk_buff *frag_iter; 4513 4514 sg_init_table(&sg, 1); 4515 4516 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4517 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4518 if (crypto_ahash_update(req)) 4519 return 1; 4520 4521 for (i = 0; i < shi->nr_frags; ++i) { 4522 const skb_frag_t *f = &shi->frags[i]; 4523 unsigned int offset = skb_frag_off(f); 4524 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4525 4526 sg_set_page(&sg, page, skb_frag_size(f), 4527 offset_in_page(offset)); 4528 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4529 if (crypto_ahash_update(req)) 4530 return 1; 4531 } 4532 4533 skb_walk_frags(skb, frag_iter) 4534 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4535 return 1; 4536 4537 return 0; 4538 } 4539 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4540 4541 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4542 { 4543 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4544 struct scatterlist sg; 4545 4546 sg_init_one(&sg, key->key, keylen); 4547 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4548 4549 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4550 return data_race(crypto_ahash_update(hp->md5_req)); 4551 } 4552 EXPORT_SYMBOL(tcp_md5_hash_key); 4553 4554 /* Called with rcu_read_lock() */ 4555 enum skb_drop_reason 4556 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4557 const void *saddr, const void *daddr, 4558 int family, int dif, int sdif) 4559 { 4560 /* 4561 * This gets called for each TCP segment that arrives 4562 * so we want to be efficient. 4563 * We have 3 drop cases: 4564 * o No MD5 hash and one expected. 4565 * o MD5 hash and we're not expecting one. 4566 * o MD5 hash and its wrong. 4567 */ 4568 const __u8 *hash_location = NULL; 4569 struct tcp_md5sig_key *hash_expected; 4570 const struct tcphdr *th = tcp_hdr(skb); 4571 struct tcp_sock *tp = tcp_sk(sk); 4572 int genhash, l3index; 4573 u8 newhash[16]; 4574 4575 /* sdif set, means packet ingressed via a device 4576 * in an L3 domain and dif is set to the l3mdev 4577 */ 4578 l3index = sdif ? dif : 0; 4579 4580 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4581 hash_location = tcp_parse_md5sig_option(th); 4582 4583 /* We've parsed the options - do we have a hash? */ 4584 if (!hash_expected && !hash_location) 4585 return SKB_NOT_DROPPED_YET; 4586 4587 if (hash_expected && !hash_location) { 4588 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4589 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4590 } 4591 4592 if (!hash_expected && hash_location) { 4593 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4594 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4595 } 4596 4597 /* Check the signature. 4598 * To support dual stack listeners, we need to handle 4599 * IPv4-mapped case. 4600 */ 4601 if (family == AF_INET) 4602 genhash = tcp_v4_md5_hash_skb(newhash, 4603 hash_expected, 4604 NULL, skb); 4605 else 4606 genhash = tp->af_specific->calc_md5_hash(newhash, 4607 hash_expected, 4608 NULL, skb); 4609 4610 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4612 if (family == AF_INET) { 4613 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4614 saddr, ntohs(th->source), 4615 daddr, ntohs(th->dest), 4616 genhash ? " tcp_v4_calc_md5_hash failed" 4617 : "", l3index); 4618 } else { 4619 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4620 genhash ? "failed" : "mismatch", 4621 saddr, ntohs(th->source), 4622 daddr, ntohs(th->dest), l3index); 4623 } 4624 return SKB_DROP_REASON_TCP_MD5FAILURE; 4625 } 4626 return SKB_NOT_DROPPED_YET; 4627 } 4628 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4629 4630 #endif 4631 4632 void tcp_done(struct sock *sk) 4633 { 4634 struct request_sock *req; 4635 4636 /* We might be called with a new socket, after 4637 * inet_csk_prepare_forced_close() has been called 4638 * so we can not use lockdep_sock_is_held(sk) 4639 */ 4640 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4641 4642 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4643 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4644 4645 tcp_set_state(sk, TCP_CLOSE); 4646 tcp_clear_xmit_timers(sk); 4647 if (req) 4648 reqsk_fastopen_remove(sk, req, false); 4649 4650 sk->sk_shutdown = SHUTDOWN_MASK; 4651 4652 if (!sock_flag(sk, SOCK_DEAD)) 4653 sk->sk_state_change(sk); 4654 else 4655 inet_csk_destroy_sock(sk); 4656 } 4657 EXPORT_SYMBOL_GPL(tcp_done); 4658 4659 int tcp_abort(struct sock *sk, int err) 4660 { 4661 int state = inet_sk_state_load(sk); 4662 4663 if (state == TCP_NEW_SYN_RECV) { 4664 struct request_sock *req = inet_reqsk(sk); 4665 4666 local_bh_disable(); 4667 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4668 local_bh_enable(); 4669 return 0; 4670 } 4671 if (state == TCP_TIME_WAIT) { 4672 struct inet_timewait_sock *tw = inet_twsk(sk); 4673 4674 refcount_inc(&tw->tw_refcnt); 4675 local_bh_disable(); 4676 inet_twsk_deschedule_put(tw); 4677 local_bh_enable(); 4678 return 0; 4679 } 4680 4681 /* Don't race with userspace socket closes such as tcp_close. */ 4682 lock_sock(sk); 4683 4684 if (sk->sk_state == TCP_LISTEN) { 4685 tcp_set_state(sk, TCP_CLOSE); 4686 inet_csk_listen_stop(sk); 4687 } 4688 4689 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4690 local_bh_disable(); 4691 bh_lock_sock(sk); 4692 4693 if (!sock_flag(sk, SOCK_DEAD)) { 4694 sk->sk_err = err; 4695 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4696 smp_wmb(); 4697 sk_error_report(sk); 4698 if (tcp_need_reset(sk->sk_state)) 4699 tcp_send_active_reset(sk, GFP_ATOMIC); 4700 tcp_done(sk); 4701 } 4702 4703 bh_unlock_sock(sk); 4704 local_bh_enable(); 4705 tcp_write_queue_purge(sk); 4706 release_sock(sk); 4707 return 0; 4708 } 4709 EXPORT_SYMBOL_GPL(tcp_abort); 4710 4711 extern struct tcp_congestion_ops tcp_reno; 4712 4713 static __initdata unsigned long thash_entries; 4714 static int __init set_thash_entries(char *str) 4715 { 4716 ssize_t ret; 4717 4718 if (!str) 4719 return 0; 4720 4721 ret = kstrtoul(str, 0, &thash_entries); 4722 if (ret) 4723 return 0; 4724 4725 return 1; 4726 } 4727 __setup("thash_entries=", set_thash_entries); 4728 4729 static void __init tcp_init_mem(void) 4730 { 4731 unsigned long limit = nr_free_buffer_pages() / 16; 4732 4733 limit = max(limit, 128UL); 4734 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4735 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4736 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4737 } 4738 4739 void __init tcp_init(void) 4740 { 4741 int max_rshare, max_wshare, cnt; 4742 unsigned long limit; 4743 unsigned int i; 4744 4745 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4746 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4747 sizeof_field(struct sk_buff, cb)); 4748 4749 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4750 4751 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4752 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4753 4754 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4755 thash_entries, 21, /* one slot per 2 MB*/ 4756 0, 64 * 1024); 4757 tcp_hashinfo.bind_bucket_cachep = 4758 kmem_cache_create("tcp_bind_bucket", 4759 sizeof(struct inet_bind_bucket), 0, 4760 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4761 SLAB_ACCOUNT, 4762 NULL); 4763 tcp_hashinfo.bind2_bucket_cachep = 4764 kmem_cache_create("tcp_bind2_bucket", 4765 sizeof(struct inet_bind2_bucket), 0, 4766 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4767 SLAB_ACCOUNT, 4768 NULL); 4769 4770 /* Size and allocate the main established and bind bucket 4771 * hash tables. 4772 * 4773 * The methodology is similar to that of the buffer cache. 4774 */ 4775 tcp_hashinfo.ehash = 4776 alloc_large_system_hash("TCP established", 4777 sizeof(struct inet_ehash_bucket), 4778 thash_entries, 4779 17, /* one slot per 128 KB of memory */ 4780 0, 4781 NULL, 4782 &tcp_hashinfo.ehash_mask, 4783 0, 4784 thash_entries ? 0 : 512 * 1024); 4785 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4786 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4787 4788 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4789 panic("TCP: failed to alloc ehash_locks"); 4790 tcp_hashinfo.bhash = 4791 alloc_large_system_hash("TCP bind", 4792 2 * sizeof(struct inet_bind_hashbucket), 4793 tcp_hashinfo.ehash_mask + 1, 4794 17, /* one slot per 128 KB of memory */ 4795 0, 4796 &tcp_hashinfo.bhash_size, 4797 NULL, 4798 0, 4799 64 * 1024); 4800 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4801 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4802 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4803 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4804 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4805 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4806 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4807 } 4808 4809 tcp_hashinfo.pernet = false; 4810 4811 cnt = tcp_hashinfo.ehash_mask + 1; 4812 sysctl_tcp_max_orphans = cnt / 2; 4813 4814 tcp_init_mem(); 4815 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4816 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4817 max_wshare = min(4UL*1024*1024, limit); 4818 max_rshare = min(6UL*1024*1024, limit); 4819 4820 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4821 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4822 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4823 4824 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4825 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4826 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4827 4828 pr_info("Hash tables configured (established %u bind %u)\n", 4829 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4830 4831 tcp_v4_init(); 4832 tcp_metrics_init(); 4833 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4834 tcp_tasklet_init(); 4835 mptcp_init(); 4836 } 4837