xref: /linux/net/ipv4/tcp.c (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
269 
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276 
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279 
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 int sysctl_tcp_mem[3] __read_mostly;
286 int sysctl_tcp_wmem[3] __read_mostly;
287 int sysctl_tcp_rmem[3] __read_mostly;
288 
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /*
367  *	Wait for a TCP event.
368  *
369  *	Note that we don't need to lock the socket, as the upper poll layers
370  *	take care of normal races (between the test and the event) and we don't
371  *	go look at any of the socket buffers directly.
372  */
373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 	unsigned int mask;
376 	struct sock *sk = sock->sk;
377 	struct tcp_sock *tp = tcp_sk(sk);
378 
379 	sock_poll_wait(file, sk_sleep(sk), wait);
380 	if (sk->sk_state == TCP_LISTEN)
381 		return inet_csk_listen_poll(sk);
382 
383 	/* Socket is not locked. We are protected from async events
384 	 * by poll logic and correct handling of state changes
385 	 * made by other threads is impossible in any case.
386 	 */
387 
388 	mask = 0;
389 	if (sk->sk_err)
390 		mask = POLLERR;
391 
392 	/*
393 	 * POLLHUP is certainly not done right. But poll() doesn't
394 	 * have a notion of HUP in just one direction, and for a
395 	 * socket the read side is more interesting.
396 	 *
397 	 * Some poll() documentation says that POLLHUP is incompatible
398 	 * with the POLLOUT/POLLWR flags, so somebody should check this
399 	 * all. But careful, it tends to be safer to return too many
400 	 * bits than too few, and you can easily break real applications
401 	 * if you don't tell them that something has hung up!
402 	 *
403 	 * Check-me.
404 	 *
405 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
406 	 * our fs/select.c). It means that after we received EOF,
407 	 * poll always returns immediately, making impossible poll() on write()
408 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
409 	 * if and only if shutdown has been made in both directions.
410 	 * Actually, it is interesting to look how Solaris and DUX
411 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
412 	 * then we could set it on SND_SHUTDOWN. BTW examples given
413 	 * in Stevens' books assume exactly this behaviour, it explains
414 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
415 	 *
416 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
417 	 * blocking on fresh not-connected or disconnected socket. --ANK
418 	 */
419 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
420 		mask |= POLLHUP;
421 	if (sk->sk_shutdown & RCV_SHUTDOWN)
422 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
423 
424 	/* Connected? */
425 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
426 		int target = sock_rcvlowat(sk, 0, INT_MAX);
427 
428 		if (tp->urg_seq == tp->copied_seq &&
429 		    !sock_flag(sk, SOCK_URGINLINE) &&
430 		    tp->urg_data)
431 			target++;
432 
433 		/* Potential race condition. If read of tp below will
434 		 * escape above sk->sk_state, we can be illegally awaken
435 		 * in SYN_* states. */
436 		if (tp->rcv_nxt - tp->copied_seq >= target)
437 			mask |= POLLIN | POLLRDNORM;
438 
439 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
440 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
441 				mask |= POLLOUT | POLLWRNORM;
442 			} else {  /* send SIGIO later */
443 				set_bit(SOCK_ASYNC_NOSPACE,
444 					&sk->sk_socket->flags);
445 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
446 
447 				/* Race breaker. If space is freed after
448 				 * wspace test but before the flags are set,
449 				 * IO signal will be lost.
450 				 */
451 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
452 					mask |= POLLOUT | POLLWRNORM;
453 			}
454 		} else
455 			mask |= POLLOUT | POLLWRNORM;
456 
457 		if (tp->urg_data & TCP_URG_VALID)
458 			mask |= POLLPRI;
459 	}
460 	return mask;
461 }
462 EXPORT_SYMBOL(tcp_poll);
463 
464 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
465 {
466 	struct tcp_sock *tp = tcp_sk(sk);
467 	int answ;
468 
469 	switch (cmd) {
470 	case SIOCINQ:
471 		if (sk->sk_state == TCP_LISTEN)
472 			return -EINVAL;
473 
474 		lock_sock(sk);
475 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
476 			answ = 0;
477 		else if (sock_flag(sk, SOCK_URGINLINE) ||
478 			 !tp->urg_data ||
479 			 before(tp->urg_seq, tp->copied_seq) ||
480 			 !before(tp->urg_seq, tp->rcv_nxt)) {
481 			struct sk_buff *skb;
482 
483 			answ = tp->rcv_nxt - tp->copied_seq;
484 
485 			/* Subtract 1, if FIN is in queue. */
486 			skb = skb_peek_tail(&sk->sk_receive_queue);
487 			if (answ && skb)
488 				answ -= tcp_hdr(skb)->fin;
489 		} else
490 			answ = tp->urg_seq - tp->copied_seq;
491 		release_sock(sk);
492 		break;
493 	case SIOCATMARK:
494 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
495 		break;
496 	case SIOCOUTQ:
497 		if (sk->sk_state == TCP_LISTEN)
498 			return -EINVAL;
499 
500 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
501 			answ = 0;
502 		else
503 			answ = tp->write_seq - tp->snd_una;
504 		break;
505 	default:
506 		return -ENOIOCTLCMD;
507 	}
508 
509 	return put_user(answ, (int __user *)arg);
510 }
511 EXPORT_SYMBOL(tcp_ioctl);
512 
513 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
514 {
515 	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
516 	tp->pushed_seq = tp->write_seq;
517 }
518 
519 static inline int forced_push(struct tcp_sock *tp)
520 {
521 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
522 }
523 
524 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
525 {
526 	struct tcp_sock *tp = tcp_sk(sk);
527 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
528 
529 	skb->csum    = 0;
530 	tcb->seq     = tcb->end_seq = tp->write_seq;
531 	tcb->flags   = TCPHDR_ACK;
532 	tcb->sacked  = 0;
533 	skb_header_release(skb);
534 	tcp_add_write_queue_tail(sk, skb);
535 	sk->sk_wmem_queued += skb->truesize;
536 	sk_mem_charge(sk, skb->truesize);
537 	if (tp->nonagle & TCP_NAGLE_PUSH)
538 		tp->nonagle &= ~TCP_NAGLE_PUSH;
539 }
540 
541 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
542 {
543 	if (flags & MSG_OOB)
544 		tp->snd_up = tp->write_seq;
545 }
546 
547 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
548 			    int nonagle)
549 {
550 	if (tcp_send_head(sk)) {
551 		struct tcp_sock *tp = tcp_sk(sk);
552 
553 		if (!(flags & MSG_MORE) || forced_push(tp))
554 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
555 
556 		tcp_mark_urg(tp, flags);
557 		__tcp_push_pending_frames(sk, mss_now,
558 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
559 	}
560 }
561 
562 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
563 				unsigned int offset, size_t len)
564 {
565 	struct tcp_splice_state *tss = rd_desc->arg.data;
566 	int ret;
567 
568 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
569 			      tss->flags);
570 	if (ret > 0)
571 		rd_desc->count -= ret;
572 	return ret;
573 }
574 
575 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
576 {
577 	/* Store TCP splice context information in read_descriptor_t. */
578 	read_descriptor_t rd_desc = {
579 		.arg.data = tss,
580 		.count	  = tss->len,
581 	};
582 
583 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
584 }
585 
586 /**
587  *  tcp_splice_read - splice data from TCP socket to a pipe
588  * @sock:	socket to splice from
589  * @ppos:	position (not valid)
590  * @pipe:	pipe to splice to
591  * @len:	number of bytes to splice
592  * @flags:	splice modifier flags
593  *
594  * Description:
595  *    Will read pages from given socket and fill them into a pipe.
596  *
597  **/
598 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
599 			struct pipe_inode_info *pipe, size_t len,
600 			unsigned int flags)
601 {
602 	struct sock *sk = sock->sk;
603 	struct tcp_splice_state tss = {
604 		.pipe = pipe,
605 		.len = len,
606 		.flags = flags,
607 	};
608 	long timeo;
609 	ssize_t spliced;
610 	int ret;
611 
612 	sock_rps_record_flow(sk);
613 	/*
614 	 * We can't seek on a socket input
615 	 */
616 	if (unlikely(*ppos))
617 		return -ESPIPE;
618 
619 	ret = spliced = 0;
620 
621 	lock_sock(sk);
622 
623 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
624 	while (tss.len) {
625 		ret = __tcp_splice_read(sk, &tss);
626 		if (ret < 0)
627 			break;
628 		else if (!ret) {
629 			if (spliced)
630 				break;
631 			if (sock_flag(sk, SOCK_DONE))
632 				break;
633 			if (sk->sk_err) {
634 				ret = sock_error(sk);
635 				break;
636 			}
637 			if (sk->sk_shutdown & RCV_SHUTDOWN)
638 				break;
639 			if (sk->sk_state == TCP_CLOSE) {
640 				/*
641 				 * This occurs when user tries to read
642 				 * from never connected socket.
643 				 */
644 				if (!sock_flag(sk, SOCK_DONE))
645 					ret = -ENOTCONN;
646 				break;
647 			}
648 			if (!timeo) {
649 				ret = -EAGAIN;
650 				break;
651 			}
652 			sk_wait_data(sk, &timeo);
653 			if (signal_pending(current)) {
654 				ret = sock_intr_errno(timeo);
655 				break;
656 			}
657 			continue;
658 		}
659 		tss.len -= ret;
660 		spliced += ret;
661 
662 		if (!timeo)
663 			break;
664 		release_sock(sk);
665 		lock_sock(sk);
666 
667 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
668 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
669 		    signal_pending(current))
670 			break;
671 	}
672 
673 	release_sock(sk);
674 
675 	if (spliced)
676 		return spliced;
677 
678 	return ret;
679 }
680 EXPORT_SYMBOL(tcp_splice_read);
681 
682 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
683 {
684 	struct sk_buff *skb;
685 
686 	/* The TCP header must be at least 32-bit aligned.  */
687 	size = ALIGN(size, 4);
688 
689 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
690 	if (skb) {
691 		if (sk_wmem_schedule(sk, skb->truesize)) {
692 			/*
693 			 * Make sure that we have exactly size bytes
694 			 * available to the caller, no more, no less.
695 			 */
696 			skb_reserve(skb, skb_tailroom(skb) - size);
697 			return skb;
698 		}
699 		__kfree_skb(skb);
700 	} else {
701 		sk->sk_prot->enter_memory_pressure(sk);
702 		sk_stream_moderate_sndbuf(sk);
703 	}
704 	return NULL;
705 }
706 
707 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
708 				       int large_allowed)
709 {
710 	struct tcp_sock *tp = tcp_sk(sk);
711 	u32 xmit_size_goal, old_size_goal;
712 
713 	xmit_size_goal = mss_now;
714 
715 	if (large_allowed && sk_can_gso(sk)) {
716 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
717 				  inet_csk(sk)->icsk_af_ops->net_header_len -
718 				  inet_csk(sk)->icsk_ext_hdr_len -
719 				  tp->tcp_header_len);
720 
721 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
722 
723 		/* We try hard to avoid divides here */
724 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
725 
726 		if (likely(old_size_goal <= xmit_size_goal &&
727 			   old_size_goal + mss_now > xmit_size_goal)) {
728 			xmit_size_goal = old_size_goal;
729 		} else {
730 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
731 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
732 		}
733 	}
734 
735 	return max(xmit_size_goal, mss_now);
736 }
737 
738 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
739 {
740 	int mss_now;
741 
742 	mss_now = tcp_current_mss(sk);
743 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
744 
745 	return mss_now;
746 }
747 
748 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
749 			 size_t psize, int flags)
750 {
751 	struct tcp_sock *tp = tcp_sk(sk);
752 	int mss_now, size_goal;
753 	int err;
754 	ssize_t copied;
755 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
756 
757 	/* Wait for a connection to finish. */
758 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
759 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
760 			goto out_err;
761 
762 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
763 
764 	mss_now = tcp_send_mss(sk, &size_goal, flags);
765 	copied = 0;
766 
767 	err = -EPIPE;
768 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
769 		goto out_err;
770 
771 	while (psize > 0) {
772 		struct sk_buff *skb = tcp_write_queue_tail(sk);
773 		struct page *page = pages[poffset / PAGE_SIZE];
774 		int copy, i, can_coalesce;
775 		int offset = poffset % PAGE_SIZE;
776 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
777 
778 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
779 new_segment:
780 			if (!sk_stream_memory_free(sk))
781 				goto wait_for_sndbuf;
782 
783 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
784 			if (!skb)
785 				goto wait_for_memory;
786 
787 			skb_entail(sk, skb);
788 			copy = size_goal;
789 		}
790 
791 		if (copy > size)
792 			copy = size;
793 
794 		i = skb_shinfo(skb)->nr_frags;
795 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
796 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
797 			tcp_mark_push(tp, skb);
798 			goto new_segment;
799 		}
800 		if (!sk_wmem_schedule(sk, copy))
801 			goto wait_for_memory;
802 
803 		if (can_coalesce) {
804 			skb_shinfo(skb)->frags[i - 1].size += copy;
805 		} else {
806 			get_page(page);
807 			skb_fill_page_desc(skb, i, page, offset, copy);
808 		}
809 
810 		skb->len += copy;
811 		skb->data_len += copy;
812 		skb->truesize += copy;
813 		sk->sk_wmem_queued += copy;
814 		sk_mem_charge(sk, copy);
815 		skb->ip_summed = CHECKSUM_PARTIAL;
816 		tp->write_seq += copy;
817 		TCP_SKB_CB(skb)->end_seq += copy;
818 		skb_shinfo(skb)->gso_segs = 0;
819 
820 		if (!copied)
821 			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
822 
823 		copied += copy;
824 		poffset += copy;
825 		if (!(psize -= copy))
826 			goto out;
827 
828 		if (skb->len < size_goal || (flags & MSG_OOB))
829 			continue;
830 
831 		if (forced_push(tp)) {
832 			tcp_mark_push(tp, skb);
833 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
834 		} else if (skb == tcp_send_head(sk))
835 			tcp_push_one(sk, mss_now);
836 		continue;
837 
838 wait_for_sndbuf:
839 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
840 wait_for_memory:
841 		if (copied)
842 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
843 
844 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
845 			goto do_error;
846 
847 		mss_now = tcp_send_mss(sk, &size_goal, flags);
848 	}
849 
850 out:
851 	if (copied)
852 		tcp_push(sk, flags, mss_now, tp->nonagle);
853 	return copied;
854 
855 do_error:
856 	if (copied)
857 		goto out;
858 out_err:
859 	return sk_stream_error(sk, flags, err);
860 }
861 
862 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
863 		 size_t size, int flags)
864 {
865 	ssize_t res;
866 
867 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
868 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
869 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
870 					flags);
871 
872 	lock_sock(sk);
873 	TCP_CHECK_TIMER(sk);
874 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
875 	TCP_CHECK_TIMER(sk);
876 	release_sock(sk);
877 	return res;
878 }
879 EXPORT_SYMBOL(tcp_sendpage);
880 
881 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
882 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
883 
884 static inline int select_size(struct sock *sk, int sg)
885 {
886 	struct tcp_sock *tp = tcp_sk(sk);
887 	int tmp = tp->mss_cache;
888 
889 	if (sg) {
890 		if (sk_can_gso(sk))
891 			tmp = 0;
892 		else {
893 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
894 
895 			if (tmp >= pgbreak &&
896 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
897 				tmp = pgbreak;
898 		}
899 	}
900 
901 	return tmp;
902 }
903 
904 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
905 		size_t size)
906 {
907 	struct iovec *iov;
908 	struct tcp_sock *tp = tcp_sk(sk);
909 	struct sk_buff *skb;
910 	int iovlen, flags;
911 	int mss_now, size_goal;
912 	int sg, err, copied;
913 	long timeo;
914 
915 	lock_sock(sk);
916 	TCP_CHECK_TIMER(sk);
917 
918 	flags = msg->msg_flags;
919 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
920 
921 	/* Wait for a connection to finish. */
922 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
923 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
924 			goto out_err;
925 
926 	/* This should be in poll */
927 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
928 
929 	mss_now = tcp_send_mss(sk, &size_goal, flags);
930 
931 	/* Ok commence sending. */
932 	iovlen = msg->msg_iovlen;
933 	iov = msg->msg_iov;
934 	copied = 0;
935 
936 	err = -EPIPE;
937 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
938 		goto out_err;
939 
940 	sg = sk->sk_route_caps & NETIF_F_SG;
941 
942 	while (--iovlen >= 0) {
943 		int seglen = iov->iov_len;
944 		unsigned char __user *from = iov->iov_base;
945 
946 		iov++;
947 
948 		while (seglen > 0) {
949 			int copy = 0;
950 			int max = size_goal;
951 
952 			skb = tcp_write_queue_tail(sk);
953 			if (tcp_send_head(sk)) {
954 				if (skb->ip_summed == CHECKSUM_NONE)
955 					max = mss_now;
956 				copy = max - skb->len;
957 			}
958 
959 			if (copy <= 0) {
960 new_segment:
961 				/* Allocate new segment. If the interface is SG,
962 				 * allocate skb fitting to single page.
963 				 */
964 				if (!sk_stream_memory_free(sk))
965 					goto wait_for_sndbuf;
966 
967 				skb = sk_stream_alloc_skb(sk,
968 							  select_size(sk, sg),
969 							  sk->sk_allocation);
970 				if (!skb)
971 					goto wait_for_memory;
972 
973 				/*
974 				 * Check whether we can use HW checksum.
975 				 */
976 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
977 					skb->ip_summed = CHECKSUM_PARTIAL;
978 
979 				skb_entail(sk, skb);
980 				copy = size_goal;
981 				max = size_goal;
982 			}
983 
984 			/* Try to append data to the end of skb. */
985 			if (copy > seglen)
986 				copy = seglen;
987 
988 			/* Where to copy to? */
989 			if (skb_tailroom(skb) > 0) {
990 				/* We have some space in skb head. Superb! */
991 				if (copy > skb_tailroom(skb))
992 					copy = skb_tailroom(skb);
993 				if ((err = skb_add_data(skb, from, copy)) != 0)
994 					goto do_fault;
995 			} else {
996 				int merge = 0;
997 				int i = skb_shinfo(skb)->nr_frags;
998 				struct page *page = TCP_PAGE(sk);
999 				int off = TCP_OFF(sk);
1000 
1001 				if (skb_can_coalesce(skb, i, page, off) &&
1002 				    off != PAGE_SIZE) {
1003 					/* We can extend the last page
1004 					 * fragment. */
1005 					merge = 1;
1006 				} else if (i == MAX_SKB_FRAGS || !sg) {
1007 					/* Need to add new fragment and cannot
1008 					 * do this because interface is non-SG,
1009 					 * or because all the page slots are
1010 					 * busy. */
1011 					tcp_mark_push(tp, skb);
1012 					goto new_segment;
1013 				} else if (page) {
1014 					if (off == PAGE_SIZE) {
1015 						put_page(page);
1016 						TCP_PAGE(sk) = page = NULL;
1017 						off = 0;
1018 					}
1019 				} else
1020 					off = 0;
1021 
1022 				if (copy > PAGE_SIZE - off)
1023 					copy = PAGE_SIZE - off;
1024 
1025 				if (!sk_wmem_schedule(sk, copy))
1026 					goto wait_for_memory;
1027 
1028 				if (!page) {
1029 					/* Allocate new cache page. */
1030 					if (!(page = sk_stream_alloc_page(sk)))
1031 						goto wait_for_memory;
1032 				}
1033 
1034 				/* Time to copy data. We are close to
1035 				 * the end! */
1036 				err = skb_copy_to_page(sk, from, skb, page,
1037 						       off, copy);
1038 				if (err) {
1039 					/* If this page was new, give it to the
1040 					 * socket so it does not get leaked.
1041 					 */
1042 					if (!TCP_PAGE(sk)) {
1043 						TCP_PAGE(sk) = page;
1044 						TCP_OFF(sk) = 0;
1045 					}
1046 					goto do_error;
1047 				}
1048 
1049 				/* Update the skb. */
1050 				if (merge) {
1051 					skb_shinfo(skb)->frags[i - 1].size +=
1052 									copy;
1053 				} else {
1054 					skb_fill_page_desc(skb, i, page, off, copy);
1055 					if (TCP_PAGE(sk)) {
1056 						get_page(page);
1057 					} else if (off + copy < PAGE_SIZE) {
1058 						get_page(page);
1059 						TCP_PAGE(sk) = page;
1060 					}
1061 				}
1062 
1063 				TCP_OFF(sk) = off + copy;
1064 			}
1065 
1066 			if (!copied)
1067 				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1068 
1069 			tp->write_seq += copy;
1070 			TCP_SKB_CB(skb)->end_seq += copy;
1071 			skb_shinfo(skb)->gso_segs = 0;
1072 
1073 			from += copy;
1074 			copied += copy;
1075 			if ((seglen -= copy) == 0 && iovlen == 0)
1076 				goto out;
1077 
1078 			if (skb->len < max || (flags & MSG_OOB))
1079 				continue;
1080 
1081 			if (forced_push(tp)) {
1082 				tcp_mark_push(tp, skb);
1083 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1084 			} else if (skb == tcp_send_head(sk))
1085 				tcp_push_one(sk, mss_now);
1086 			continue;
1087 
1088 wait_for_sndbuf:
1089 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1090 wait_for_memory:
1091 			if (copied)
1092 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1093 
1094 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1095 				goto do_error;
1096 
1097 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1098 		}
1099 	}
1100 
1101 out:
1102 	if (copied)
1103 		tcp_push(sk, flags, mss_now, tp->nonagle);
1104 	TCP_CHECK_TIMER(sk);
1105 	release_sock(sk);
1106 	return copied;
1107 
1108 do_fault:
1109 	if (!skb->len) {
1110 		tcp_unlink_write_queue(skb, sk);
1111 		/* It is the one place in all of TCP, except connection
1112 		 * reset, where we can be unlinking the send_head.
1113 		 */
1114 		tcp_check_send_head(sk, skb);
1115 		sk_wmem_free_skb(sk, skb);
1116 	}
1117 
1118 do_error:
1119 	if (copied)
1120 		goto out;
1121 out_err:
1122 	err = sk_stream_error(sk, flags, err);
1123 	TCP_CHECK_TIMER(sk);
1124 	release_sock(sk);
1125 	return err;
1126 }
1127 EXPORT_SYMBOL(tcp_sendmsg);
1128 
1129 /*
1130  *	Handle reading urgent data. BSD has very simple semantics for
1131  *	this, no blocking and very strange errors 8)
1132  */
1133 
1134 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1135 {
1136 	struct tcp_sock *tp = tcp_sk(sk);
1137 
1138 	/* No URG data to read. */
1139 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1140 	    tp->urg_data == TCP_URG_READ)
1141 		return -EINVAL;	/* Yes this is right ! */
1142 
1143 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1144 		return -ENOTCONN;
1145 
1146 	if (tp->urg_data & TCP_URG_VALID) {
1147 		int err = 0;
1148 		char c = tp->urg_data;
1149 
1150 		if (!(flags & MSG_PEEK))
1151 			tp->urg_data = TCP_URG_READ;
1152 
1153 		/* Read urgent data. */
1154 		msg->msg_flags |= MSG_OOB;
1155 
1156 		if (len > 0) {
1157 			if (!(flags & MSG_TRUNC))
1158 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1159 			len = 1;
1160 		} else
1161 			msg->msg_flags |= MSG_TRUNC;
1162 
1163 		return err ? -EFAULT : len;
1164 	}
1165 
1166 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1167 		return 0;
1168 
1169 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1170 	 * the available implementations agree in this case:
1171 	 * this call should never block, independent of the
1172 	 * blocking state of the socket.
1173 	 * Mike <pall@rz.uni-karlsruhe.de>
1174 	 */
1175 	return -EAGAIN;
1176 }
1177 
1178 /* Clean up the receive buffer for full frames taken by the user,
1179  * then send an ACK if necessary.  COPIED is the number of bytes
1180  * tcp_recvmsg has given to the user so far, it speeds up the
1181  * calculation of whether or not we must ACK for the sake of
1182  * a window update.
1183  */
1184 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1185 {
1186 	struct tcp_sock *tp = tcp_sk(sk);
1187 	int time_to_ack = 0;
1188 
1189 #if TCP_DEBUG
1190 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1191 
1192 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1193 	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1194 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1195 #endif
1196 
1197 	if (inet_csk_ack_scheduled(sk)) {
1198 		const struct inet_connection_sock *icsk = inet_csk(sk);
1199 		   /* Delayed ACKs frequently hit locked sockets during bulk
1200 		    * receive. */
1201 		if (icsk->icsk_ack.blocked ||
1202 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1203 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1204 		    /*
1205 		     * If this read emptied read buffer, we send ACK, if
1206 		     * connection is not bidirectional, user drained
1207 		     * receive buffer and there was a small segment
1208 		     * in queue.
1209 		     */
1210 		    (copied > 0 &&
1211 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1212 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1213 		       !icsk->icsk_ack.pingpong)) &&
1214 		      !atomic_read(&sk->sk_rmem_alloc)))
1215 			time_to_ack = 1;
1216 	}
1217 
1218 	/* We send an ACK if we can now advertise a non-zero window
1219 	 * which has been raised "significantly".
1220 	 *
1221 	 * Even if window raised up to infinity, do not send window open ACK
1222 	 * in states, where we will not receive more. It is useless.
1223 	 */
1224 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1225 		__u32 rcv_window_now = tcp_receive_window(tp);
1226 
1227 		/* Optimize, __tcp_select_window() is not cheap. */
1228 		if (2*rcv_window_now <= tp->window_clamp) {
1229 			__u32 new_window = __tcp_select_window(sk);
1230 
1231 			/* Send ACK now, if this read freed lots of space
1232 			 * in our buffer. Certainly, new_window is new window.
1233 			 * We can advertise it now, if it is not less than current one.
1234 			 * "Lots" means "at least twice" here.
1235 			 */
1236 			if (new_window && new_window >= 2 * rcv_window_now)
1237 				time_to_ack = 1;
1238 		}
1239 	}
1240 	if (time_to_ack)
1241 		tcp_send_ack(sk);
1242 }
1243 
1244 static void tcp_prequeue_process(struct sock *sk)
1245 {
1246 	struct sk_buff *skb;
1247 	struct tcp_sock *tp = tcp_sk(sk);
1248 
1249 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1250 
1251 	/* RX process wants to run with disabled BHs, though it is not
1252 	 * necessary */
1253 	local_bh_disable();
1254 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1255 		sk_backlog_rcv(sk, skb);
1256 	local_bh_enable();
1257 
1258 	/* Clear memory counter. */
1259 	tp->ucopy.memory = 0;
1260 }
1261 
1262 #ifdef CONFIG_NET_DMA
1263 static void tcp_service_net_dma(struct sock *sk, bool wait)
1264 {
1265 	dma_cookie_t done, used;
1266 	dma_cookie_t last_issued;
1267 	struct tcp_sock *tp = tcp_sk(sk);
1268 
1269 	if (!tp->ucopy.dma_chan)
1270 		return;
1271 
1272 	last_issued = tp->ucopy.dma_cookie;
1273 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1274 
1275 	do {
1276 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1277 					      last_issued, &done,
1278 					      &used) == DMA_SUCCESS) {
1279 			/* Safe to free early-copied skbs now */
1280 			__skb_queue_purge(&sk->sk_async_wait_queue);
1281 			break;
1282 		} else {
1283 			struct sk_buff *skb;
1284 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1285 			       (dma_async_is_complete(skb->dma_cookie, done,
1286 						      used) == DMA_SUCCESS)) {
1287 				__skb_dequeue(&sk->sk_async_wait_queue);
1288 				kfree_skb(skb);
1289 			}
1290 		}
1291 	} while (wait);
1292 }
1293 #endif
1294 
1295 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1296 {
1297 	struct sk_buff *skb;
1298 	u32 offset;
1299 
1300 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1301 		offset = seq - TCP_SKB_CB(skb)->seq;
1302 		if (tcp_hdr(skb)->syn)
1303 			offset--;
1304 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1305 			*off = offset;
1306 			return skb;
1307 		}
1308 	}
1309 	return NULL;
1310 }
1311 
1312 /*
1313  * This routine provides an alternative to tcp_recvmsg() for routines
1314  * that would like to handle copying from skbuffs directly in 'sendfile'
1315  * fashion.
1316  * Note:
1317  *	- It is assumed that the socket was locked by the caller.
1318  *	- The routine does not block.
1319  *	- At present, there is no support for reading OOB data
1320  *	  or for 'peeking' the socket using this routine
1321  *	  (although both would be easy to implement).
1322  */
1323 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1324 		  sk_read_actor_t recv_actor)
1325 {
1326 	struct sk_buff *skb;
1327 	struct tcp_sock *tp = tcp_sk(sk);
1328 	u32 seq = tp->copied_seq;
1329 	u32 offset;
1330 	int copied = 0;
1331 
1332 	if (sk->sk_state == TCP_LISTEN)
1333 		return -ENOTCONN;
1334 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1335 		if (offset < skb->len) {
1336 			int used;
1337 			size_t len;
1338 
1339 			len = skb->len - offset;
1340 			/* Stop reading if we hit a patch of urgent data */
1341 			if (tp->urg_data) {
1342 				u32 urg_offset = tp->urg_seq - seq;
1343 				if (urg_offset < len)
1344 					len = urg_offset;
1345 				if (!len)
1346 					break;
1347 			}
1348 			used = recv_actor(desc, skb, offset, len);
1349 			if (used < 0) {
1350 				if (!copied)
1351 					copied = used;
1352 				break;
1353 			} else if (used <= len) {
1354 				seq += used;
1355 				copied += used;
1356 				offset += used;
1357 			}
1358 			/*
1359 			 * If recv_actor drops the lock (e.g. TCP splice
1360 			 * receive) the skb pointer might be invalid when
1361 			 * getting here: tcp_collapse might have deleted it
1362 			 * while aggregating skbs from the socket queue.
1363 			 */
1364 			skb = tcp_recv_skb(sk, seq-1, &offset);
1365 			if (!skb || (offset+1 != skb->len))
1366 				break;
1367 		}
1368 		if (tcp_hdr(skb)->fin) {
1369 			sk_eat_skb(sk, skb, 0);
1370 			++seq;
1371 			break;
1372 		}
1373 		sk_eat_skb(sk, skb, 0);
1374 		if (!desc->count)
1375 			break;
1376 		tp->copied_seq = seq;
1377 	}
1378 	tp->copied_seq = seq;
1379 
1380 	tcp_rcv_space_adjust(sk);
1381 
1382 	/* Clean up data we have read: This will do ACK frames. */
1383 	if (copied > 0)
1384 		tcp_cleanup_rbuf(sk, copied);
1385 	return copied;
1386 }
1387 EXPORT_SYMBOL(tcp_read_sock);
1388 
1389 /*
1390  *	This routine copies from a sock struct into the user buffer.
1391  *
1392  *	Technical note: in 2.3 we work on _locked_ socket, so that
1393  *	tricks with *seq access order and skb->users are not required.
1394  *	Probably, code can be easily improved even more.
1395  */
1396 
1397 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1398 		size_t len, int nonblock, int flags, int *addr_len)
1399 {
1400 	struct tcp_sock *tp = tcp_sk(sk);
1401 	int copied = 0;
1402 	u32 peek_seq;
1403 	u32 *seq;
1404 	unsigned long used;
1405 	int err;
1406 	int target;		/* Read at least this many bytes */
1407 	long timeo;
1408 	struct task_struct *user_recv = NULL;
1409 	int copied_early = 0;
1410 	struct sk_buff *skb;
1411 	u32 urg_hole = 0;
1412 
1413 	lock_sock(sk);
1414 
1415 	TCP_CHECK_TIMER(sk);
1416 
1417 	err = -ENOTCONN;
1418 	if (sk->sk_state == TCP_LISTEN)
1419 		goto out;
1420 
1421 	timeo = sock_rcvtimeo(sk, nonblock);
1422 
1423 	/* Urgent data needs to be handled specially. */
1424 	if (flags & MSG_OOB)
1425 		goto recv_urg;
1426 
1427 	seq = &tp->copied_seq;
1428 	if (flags & MSG_PEEK) {
1429 		peek_seq = tp->copied_seq;
1430 		seq = &peek_seq;
1431 	}
1432 
1433 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1434 
1435 #ifdef CONFIG_NET_DMA
1436 	tp->ucopy.dma_chan = NULL;
1437 	preempt_disable();
1438 	skb = skb_peek_tail(&sk->sk_receive_queue);
1439 	{
1440 		int available = 0;
1441 
1442 		if (skb)
1443 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1444 		if ((available < target) &&
1445 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1446 		    !sysctl_tcp_low_latency &&
1447 		    dma_find_channel(DMA_MEMCPY)) {
1448 			preempt_enable_no_resched();
1449 			tp->ucopy.pinned_list =
1450 					dma_pin_iovec_pages(msg->msg_iov, len);
1451 		} else {
1452 			preempt_enable_no_resched();
1453 		}
1454 	}
1455 #endif
1456 
1457 	do {
1458 		u32 offset;
1459 
1460 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1461 		if (tp->urg_data && tp->urg_seq == *seq) {
1462 			if (copied)
1463 				break;
1464 			if (signal_pending(current)) {
1465 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1466 				break;
1467 			}
1468 		}
1469 
1470 		/* Next get a buffer. */
1471 
1472 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1473 			/* Now that we have two receive queues this
1474 			 * shouldn't happen.
1475 			 */
1476 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1477 			     KERN_INFO "recvmsg bug: copied %X "
1478 				       "seq %X rcvnxt %X fl %X\n", *seq,
1479 				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1480 				       flags))
1481 				break;
1482 
1483 			offset = *seq - TCP_SKB_CB(skb)->seq;
1484 			if (tcp_hdr(skb)->syn)
1485 				offset--;
1486 			if (offset < skb->len)
1487 				goto found_ok_skb;
1488 			if (tcp_hdr(skb)->fin)
1489 				goto found_fin_ok;
1490 			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1491 					"copied %X seq %X rcvnxt %X fl %X\n",
1492 					*seq, TCP_SKB_CB(skb)->seq,
1493 					tp->rcv_nxt, flags);
1494 		}
1495 
1496 		/* Well, if we have backlog, try to process it now yet. */
1497 
1498 		if (copied >= target && !sk->sk_backlog.tail)
1499 			break;
1500 
1501 		if (copied) {
1502 			if (sk->sk_err ||
1503 			    sk->sk_state == TCP_CLOSE ||
1504 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1505 			    !timeo ||
1506 			    signal_pending(current))
1507 				break;
1508 		} else {
1509 			if (sock_flag(sk, SOCK_DONE))
1510 				break;
1511 
1512 			if (sk->sk_err) {
1513 				copied = sock_error(sk);
1514 				break;
1515 			}
1516 
1517 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1518 				break;
1519 
1520 			if (sk->sk_state == TCP_CLOSE) {
1521 				if (!sock_flag(sk, SOCK_DONE)) {
1522 					/* This occurs when user tries to read
1523 					 * from never connected socket.
1524 					 */
1525 					copied = -ENOTCONN;
1526 					break;
1527 				}
1528 				break;
1529 			}
1530 
1531 			if (!timeo) {
1532 				copied = -EAGAIN;
1533 				break;
1534 			}
1535 
1536 			if (signal_pending(current)) {
1537 				copied = sock_intr_errno(timeo);
1538 				break;
1539 			}
1540 		}
1541 
1542 		tcp_cleanup_rbuf(sk, copied);
1543 
1544 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1545 			/* Install new reader */
1546 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1547 				user_recv = current;
1548 				tp->ucopy.task = user_recv;
1549 				tp->ucopy.iov = msg->msg_iov;
1550 			}
1551 
1552 			tp->ucopy.len = len;
1553 
1554 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1555 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1556 
1557 			/* Ugly... If prequeue is not empty, we have to
1558 			 * process it before releasing socket, otherwise
1559 			 * order will be broken at second iteration.
1560 			 * More elegant solution is required!!!
1561 			 *
1562 			 * Look: we have the following (pseudo)queues:
1563 			 *
1564 			 * 1. packets in flight
1565 			 * 2. backlog
1566 			 * 3. prequeue
1567 			 * 4. receive_queue
1568 			 *
1569 			 * Each queue can be processed only if the next ones
1570 			 * are empty. At this point we have empty receive_queue.
1571 			 * But prequeue _can_ be not empty after 2nd iteration,
1572 			 * when we jumped to start of loop because backlog
1573 			 * processing added something to receive_queue.
1574 			 * We cannot release_sock(), because backlog contains
1575 			 * packets arrived _after_ prequeued ones.
1576 			 *
1577 			 * Shortly, algorithm is clear --- to process all
1578 			 * the queues in order. We could make it more directly,
1579 			 * requeueing packets from backlog to prequeue, if
1580 			 * is not empty. It is more elegant, but eats cycles,
1581 			 * unfortunately.
1582 			 */
1583 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1584 				goto do_prequeue;
1585 
1586 			/* __ Set realtime policy in scheduler __ */
1587 		}
1588 
1589 #ifdef CONFIG_NET_DMA
1590 		if (tp->ucopy.dma_chan)
1591 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1592 #endif
1593 		if (copied >= target) {
1594 			/* Do not sleep, just process backlog. */
1595 			release_sock(sk);
1596 			lock_sock(sk);
1597 		} else
1598 			sk_wait_data(sk, &timeo);
1599 
1600 #ifdef CONFIG_NET_DMA
1601 		tcp_service_net_dma(sk, false);  /* Don't block */
1602 		tp->ucopy.wakeup = 0;
1603 #endif
1604 
1605 		if (user_recv) {
1606 			int chunk;
1607 
1608 			/* __ Restore normal policy in scheduler __ */
1609 
1610 			if ((chunk = len - tp->ucopy.len) != 0) {
1611 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1612 				len -= chunk;
1613 				copied += chunk;
1614 			}
1615 
1616 			if (tp->rcv_nxt == tp->copied_seq &&
1617 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1618 do_prequeue:
1619 				tcp_prequeue_process(sk);
1620 
1621 				if ((chunk = len - tp->ucopy.len) != 0) {
1622 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1623 					len -= chunk;
1624 					copied += chunk;
1625 				}
1626 			}
1627 		}
1628 		if ((flags & MSG_PEEK) &&
1629 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1630 			if (net_ratelimit())
1631 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1632 				       current->comm, task_pid_nr(current));
1633 			peek_seq = tp->copied_seq;
1634 		}
1635 		continue;
1636 
1637 	found_ok_skb:
1638 		/* Ok so how much can we use? */
1639 		used = skb->len - offset;
1640 		if (len < used)
1641 			used = len;
1642 
1643 		/* Do we have urgent data here? */
1644 		if (tp->urg_data) {
1645 			u32 urg_offset = tp->urg_seq - *seq;
1646 			if (urg_offset < used) {
1647 				if (!urg_offset) {
1648 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1649 						++*seq;
1650 						urg_hole++;
1651 						offset++;
1652 						used--;
1653 						if (!used)
1654 							goto skip_copy;
1655 					}
1656 				} else
1657 					used = urg_offset;
1658 			}
1659 		}
1660 
1661 		if (!(flags & MSG_TRUNC)) {
1662 #ifdef CONFIG_NET_DMA
1663 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1664 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1665 
1666 			if (tp->ucopy.dma_chan) {
1667 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1668 					tp->ucopy.dma_chan, skb, offset,
1669 					msg->msg_iov, used,
1670 					tp->ucopy.pinned_list);
1671 
1672 				if (tp->ucopy.dma_cookie < 0) {
1673 
1674 					printk(KERN_ALERT "dma_cookie < 0\n");
1675 
1676 					/* Exception. Bailout! */
1677 					if (!copied)
1678 						copied = -EFAULT;
1679 					break;
1680 				}
1681 
1682 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1683 
1684 				if ((offset + used) == skb->len)
1685 					copied_early = 1;
1686 
1687 			} else
1688 #endif
1689 			{
1690 				err = skb_copy_datagram_iovec(skb, offset,
1691 						msg->msg_iov, used);
1692 				if (err) {
1693 					/* Exception. Bailout! */
1694 					if (!copied)
1695 						copied = -EFAULT;
1696 					break;
1697 				}
1698 			}
1699 		}
1700 
1701 		*seq += used;
1702 		copied += used;
1703 		len -= used;
1704 
1705 		tcp_rcv_space_adjust(sk);
1706 
1707 skip_copy:
1708 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1709 			tp->urg_data = 0;
1710 			tcp_fast_path_check(sk);
1711 		}
1712 		if (used + offset < skb->len)
1713 			continue;
1714 
1715 		if (tcp_hdr(skb)->fin)
1716 			goto found_fin_ok;
1717 		if (!(flags & MSG_PEEK)) {
1718 			sk_eat_skb(sk, skb, copied_early);
1719 			copied_early = 0;
1720 		}
1721 		continue;
1722 
1723 	found_fin_ok:
1724 		/* Process the FIN. */
1725 		++*seq;
1726 		if (!(flags & MSG_PEEK)) {
1727 			sk_eat_skb(sk, skb, copied_early);
1728 			copied_early = 0;
1729 		}
1730 		break;
1731 	} while (len > 0);
1732 
1733 	if (user_recv) {
1734 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1735 			int chunk;
1736 
1737 			tp->ucopy.len = copied > 0 ? len : 0;
1738 
1739 			tcp_prequeue_process(sk);
1740 
1741 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1742 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1743 				len -= chunk;
1744 				copied += chunk;
1745 			}
1746 		}
1747 
1748 		tp->ucopy.task = NULL;
1749 		tp->ucopy.len = 0;
1750 	}
1751 
1752 #ifdef CONFIG_NET_DMA
1753 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1754 	tp->ucopy.dma_chan = NULL;
1755 
1756 	if (tp->ucopy.pinned_list) {
1757 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1758 		tp->ucopy.pinned_list = NULL;
1759 	}
1760 #endif
1761 
1762 	/* According to UNIX98, msg_name/msg_namelen are ignored
1763 	 * on connected socket. I was just happy when found this 8) --ANK
1764 	 */
1765 
1766 	/* Clean up data we have read: This will do ACK frames. */
1767 	tcp_cleanup_rbuf(sk, copied);
1768 
1769 	TCP_CHECK_TIMER(sk);
1770 	release_sock(sk);
1771 	return copied;
1772 
1773 out:
1774 	TCP_CHECK_TIMER(sk);
1775 	release_sock(sk);
1776 	return err;
1777 
1778 recv_urg:
1779 	err = tcp_recv_urg(sk, msg, len, flags);
1780 	goto out;
1781 }
1782 EXPORT_SYMBOL(tcp_recvmsg);
1783 
1784 void tcp_set_state(struct sock *sk, int state)
1785 {
1786 	int oldstate = sk->sk_state;
1787 
1788 	switch (state) {
1789 	case TCP_ESTABLISHED:
1790 		if (oldstate != TCP_ESTABLISHED)
1791 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1792 		break;
1793 
1794 	case TCP_CLOSE:
1795 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1796 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1797 
1798 		sk->sk_prot->unhash(sk);
1799 		if (inet_csk(sk)->icsk_bind_hash &&
1800 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1801 			inet_put_port(sk);
1802 		/* fall through */
1803 	default:
1804 		if (oldstate == TCP_ESTABLISHED)
1805 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1806 	}
1807 
1808 	/* Change state AFTER socket is unhashed to avoid closed
1809 	 * socket sitting in hash tables.
1810 	 */
1811 	sk->sk_state = state;
1812 
1813 #ifdef STATE_TRACE
1814 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1815 #endif
1816 }
1817 EXPORT_SYMBOL_GPL(tcp_set_state);
1818 
1819 /*
1820  *	State processing on a close. This implements the state shift for
1821  *	sending our FIN frame. Note that we only send a FIN for some
1822  *	states. A shutdown() may have already sent the FIN, or we may be
1823  *	closed.
1824  */
1825 
1826 static const unsigned char new_state[16] = {
1827   /* current state:        new state:      action:	*/
1828   /* (Invalid)		*/ TCP_CLOSE,
1829   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1830   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1831   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1833   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1834   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1835   /* TCP_CLOSE		*/ TCP_CLOSE,
1836   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1837   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1838   /* TCP_LISTEN		*/ TCP_CLOSE,
1839   /* TCP_CLOSING	*/ TCP_CLOSING,
1840 };
1841 
1842 static int tcp_close_state(struct sock *sk)
1843 {
1844 	int next = (int)new_state[sk->sk_state];
1845 	int ns = next & TCP_STATE_MASK;
1846 
1847 	tcp_set_state(sk, ns);
1848 
1849 	return next & TCP_ACTION_FIN;
1850 }
1851 
1852 /*
1853  *	Shutdown the sending side of a connection. Much like close except
1854  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1855  */
1856 
1857 void tcp_shutdown(struct sock *sk, int how)
1858 {
1859 	/*	We need to grab some memory, and put together a FIN,
1860 	 *	and then put it into the queue to be sent.
1861 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1862 	 */
1863 	if (!(how & SEND_SHUTDOWN))
1864 		return;
1865 
1866 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1867 	if ((1 << sk->sk_state) &
1868 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1869 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1870 		/* Clear out any half completed packets.  FIN if needed. */
1871 		if (tcp_close_state(sk))
1872 			tcp_send_fin(sk);
1873 	}
1874 }
1875 EXPORT_SYMBOL(tcp_shutdown);
1876 
1877 void tcp_close(struct sock *sk, long timeout)
1878 {
1879 	struct sk_buff *skb;
1880 	int data_was_unread = 0;
1881 	int state;
1882 
1883 	lock_sock(sk);
1884 	sk->sk_shutdown = SHUTDOWN_MASK;
1885 
1886 	if (sk->sk_state == TCP_LISTEN) {
1887 		tcp_set_state(sk, TCP_CLOSE);
1888 
1889 		/* Special case. */
1890 		inet_csk_listen_stop(sk);
1891 
1892 		goto adjudge_to_death;
1893 	}
1894 
1895 	/*  We need to flush the recv. buffs.  We do this only on the
1896 	 *  descriptor close, not protocol-sourced closes, because the
1897 	 *  reader process may not have drained the data yet!
1898 	 */
1899 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1900 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1901 			  tcp_hdr(skb)->fin;
1902 		data_was_unread += len;
1903 		__kfree_skb(skb);
1904 	}
1905 
1906 	sk_mem_reclaim(sk);
1907 
1908 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1909 	if (sk->sk_state == TCP_CLOSE)
1910 		goto adjudge_to_death;
1911 
1912 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1913 	 * data was lost. To witness the awful effects of the old behavior of
1914 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1915 	 * GET in an FTP client, suspend the process, wait for the client to
1916 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1917 	 * Note: timeout is always zero in such a case.
1918 	 */
1919 	if (data_was_unread) {
1920 		/* Unread data was tossed, zap the connection. */
1921 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1922 		tcp_set_state(sk, TCP_CLOSE);
1923 		tcp_send_active_reset(sk, sk->sk_allocation);
1924 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1925 		/* Check zero linger _after_ checking for unread data. */
1926 		sk->sk_prot->disconnect(sk, 0);
1927 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1928 	} else if (tcp_close_state(sk)) {
1929 		/* We FIN if the application ate all the data before
1930 		 * zapping the connection.
1931 		 */
1932 
1933 		/* RED-PEN. Formally speaking, we have broken TCP state
1934 		 * machine. State transitions:
1935 		 *
1936 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1937 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1938 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1939 		 *
1940 		 * are legal only when FIN has been sent (i.e. in window),
1941 		 * rather than queued out of window. Purists blame.
1942 		 *
1943 		 * F.e. "RFC state" is ESTABLISHED,
1944 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1945 		 *
1946 		 * The visible declinations are that sometimes
1947 		 * we enter time-wait state, when it is not required really
1948 		 * (harmless), do not send active resets, when they are
1949 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1950 		 * they look as CLOSING or LAST_ACK for Linux)
1951 		 * Probably, I missed some more holelets.
1952 		 * 						--ANK
1953 		 */
1954 		tcp_send_fin(sk);
1955 	}
1956 
1957 	sk_stream_wait_close(sk, timeout);
1958 
1959 adjudge_to_death:
1960 	state = sk->sk_state;
1961 	sock_hold(sk);
1962 	sock_orphan(sk);
1963 
1964 	/* It is the last release_sock in its life. It will remove backlog. */
1965 	release_sock(sk);
1966 
1967 
1968 	/* Now socket is owned by kernel and we acquire BH lock
1969 	   to finish close. No need to check for user refs.
1970 	 */
1971 	local_bh_disable();
1972 	bh_lock_sock(sk);
1973 	WARN_ON(sock_owned_by_user(sk));
1974 
1975 	percpu_counter_inc(sk->sk_prot->orphan_count);
1976 
1977 	/* Have we already been destroyed by a softirq or backlog? */
1978 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1979 		goto out;
1980 
1981 	/*	This is a (useful) BSD violating of the RFC. There is a
1982 	 *	problem with TCP as specified in that the other end could
1983 	 *	keep a socket open forever with no application left this end.
1984 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1985 	 *	our end. If they send after that then tough - BUT: long enough
1986 	 *	that we won't make the old 4*rto = almost no time - whoops
1987 	 *	reset mistake.
1988 	 *
1989 	 *	Nope, it was not mistake. It is really desired behaviour
1990 	 *	f.e. on http servers, when such sockets are useless, but
1991 	 *	consume significant resources. Let's do it with special
1992 	 *	linger2	option.					--ANK
1993 	 */
1994 
1995 	if (sk->sk_state == TCP_FIN_WAIT2) {
1996 		struct tcp_sock *tp = tcp_sk(sk);
1997 		if (tp->linger2 < 0) {
1998 			tcp_set_state(sk, TCP_CLOSE);
1999 			tcp_send_active_reset(sk, GFP_ATOMIC);
2000 			NET_INC_STATS_BH(sock_net(sk),
2001 					LINUX_MIB_TCPABORTONLINGER);
2002 		} else {
2003 			const int tmo = tcp_fin_time(sk);
2004 
2005 			if (tmo > TCP_TIMEWAIT_LEN) {
2006 				inet_csk_reset_keepalive_timer(sk,
2007 						tmo - TCP_TIMEWAIT_LEN);
2008 			} else {
2009 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2010 				goto out;
2011 			}
2012 		}
2013 	}
2014 	if (sk->sk_state != TCP_CLOSE) {
2015 		sk_mem_reclaim(sk);
2016 		if (tcp_too_many_orphans(sk, 0)) {
2017 			if (net_ratelimit())
2018 				printk(KERN_INFO "TCP: too many of orphaned "
2019 				       "sockets\n");
2020 			tcp_set_state(sk, TCP_CLOSE);
2021 			tcp_send_active_reset(sk, GFP_ATOMIC);
2022 			NET_INC_STATS_BH(sock_net(sk),
2023 					LINUX_MIB_TCPABORTONMEMORY);
2024 		}
2025 	}
2026 
2027 	if (sk->sk_state == TCP_CLOSE)
2028 		inet_csk_destroy_sock(sk);
2029 	/* Otherwise, socket is reprieved until protocol close. */
2030 
2031 out:
2032 	bh_unlock_sock(sk);
2033 	local_bh_enable();
2034 	sock_put(sk);
2035 }
2036 EXPORT_SYMBOL(tcp_close);
2037 
2038 /* These states need RST on ABORT according to RFC793 */
2039 
2040 static inline int tcp_need_reset(int state)
2041 {
2042 	return (1 << state) &
2043 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2044 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2045 }
2046 
2047 int tcp_disconnect(struct sock *sk, int flags)
2048 {
2049 	struct inet_sock *inet = inet_sk(sk);
2050 	struct inet_connection_sock *icsk = inet_csk(sk);
2051 	struct tcp_sock *tp = tcp_sk(sk);
2052 	int err = 0;
2053 	int old_state = sk->sk_state;
2054 
2055 	if (old_state != TCP_CLOSE)
2056 		tcp_set_state(sk, TCP_CLOSE);
2057 
2058 	/* ABORT function of RFC793 */
2059 	if (old_state == TCP_LISTEN) {
2060 		inet_csk_listen_stop(sk);
2061 	} else if (tcp_need_reset(old_state) ||
2062 		   (tp->snd_nxt != tp->write_seq &&
2063 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2064 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2065 		 * states
2066 		 */
2067 		tcp_send_active_reset(sk, gfp_any());
2068 		sk->sk_err = ECONNRESET;
2069 	} else if (old_state == TCP_SYN_SENT)
2070 		sk->sk_err = ECONNRESET;
2071 
2072 	tcp_clear_xmit_timers(sk);
2073 	__skb_queue_purge(&sk->sk_receive_queue);
2074 	tcp_write_queue_purge(sk);
2075 	__skb_queue_purge(&tp->out_of_order_queue);
2076 #ifdef CONFIG_NET_DMA
2077 	__skb_queue_purge(&sk->sk_async_wait_queue);
2078 #endif
2079 
2080 	inet->inet_dport = 0;
2081 
2082 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2083 		inet_reset_saddr(sk);
2084 
2085 	sk->sk_shutdown = 0;
2086 	sock_reset_flag(sk, SOCK_DONE);
2087 	tp->srtt = 0;
2088 	if ((tp->write_seq += tp->max_window + 2) == 0)
2089 		tp->write_seq = 1;
2090 	icsk->icsk_backoff = 0;
2091 	tp->snd_cwnd = 2;
2092 	icsk->icsk_probes_out = 0;
2093 	tp->packets_out = 0;
2094 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2095 	tp->snd_cwnd_cnt = 0;
2096 	tp->bytes_acked = 0;
2097 	tp->window_clamp = 0;
2098 	tcp_set_ca_state(sk, TCP_CA_Open);
2099 	tcp_clear_retrans(tp);
2100 	inet_csk_delack_init(sk);
2101 	tcp_init_send_head(sk);
2102 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2103 	__sk_dst_reset(sk);
2104 
2105 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2106 
2107 	sk->sk_error_report(sk);
2108 	return err;
2109 }
2110 EXPORT_SYMBOL(tcp_disconnect);
2111 
2112 /*
2113  *	Socket option code for TCP.
2114  */
2115 static int do_tcp_setsockopt(struct sock *sk, int level,
2116 		int optname, char __user *optval, unsigned int optlen)
2117 {
2118 	struct tcp_sock *tp = tcp_sk(sk);
2119 	struct inet_connection_sock *icsk = inet_csk(sk);
2120 	int val;
2121 	int err = 0;
2122 
2123 	/* These are data/string values, all the others are ints */
2124 	switch (optname) {
2125 	case TCP_CONGESTION: {
2126 		char name[TCP_CA_NAME_MAX];
2127 
2128 		if (optlen < 1)
2129 			return -EINVAL;
2130 
2131 		val = strncpy_from_user(name, optval,
2132 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2133 		if (val < 0)
2134 			return -EFAULT;
2135 		name[val] = 0;
2136 
2137 		lock_sock(sk);
2138 		err = tcp_set_congestion_control(sk, name);
2139 		release_sock(sk);
2140 		return err;
2141 	}
2142 	case TCP_COOKIE_TRANSACTIONS: {
2143 		struct tcp_cookie_transactions ctd;
2144 		struct tcp_cookie_values *cvp = NULL;
2145 
2146 		if (sizeof(ctd) > optlen)
2147 			return -EINVAL;
2148 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2149 			return -EFAULT;
2150 
2151 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2152 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2153 			return -EINVAL;
2154 
2155 		if (ctd.tcpct_cookie_desired == 0) {
2156 			/* default to global value */
2157 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2158 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2159 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2160 			return -EINVAL;
2161 		}
2162 
2163 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2164 			/* Supercedes all other values */
2165 			lock_sock(sk);
2166 			if (tp->cookie_values != NULL) {
2167 				kref_put(&tp->cookie_values->kref,
2168 					 tcp_cookie_values_release);
2169 				tp->cookie_values = NULL;
2170 			}
2171 			tp->rx_opt.cookie_in_always = 0; /* false */
2172 			tp->rx_opt.cookie_out_never = 1; /* true */
2173 			release_sock(sk);
2174 			return err;
2175 		}
2176 
2177 		/* Allocate ancillary memory before locking.
2178 		 */
2179 		if (ctd.tcpct_used > 0 ||
2180 		    (tp->cookie_values == NULL &&
2181 		     (sysctl_tcp_cookie_size > 0 ||
2182 		      ctd.tcpct_cookie_desired > 0 ||
2183 		      ctd.tcpct_s_data_desired > 0))) {
2184 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2185 				      GFP_KERNEL);
2186 			if (cvp == NULL)
2187 				return -ENOMEM;
2188 
2189 			kref_init(&cvp->kref);
2190 		}
2191 		lock_sock(sk);
2192 		tp->rx_opt.cookie_in_always =
2193 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2194 		tp->rx_opt.cookie_out_never = 0; /* false */
2195 
2196 		if (tp->cookie_values != NULL) {
2197 			if (cvp != NULL) {
2198 				/* Changed values are recorded by a changed
2199 				 * pointer, ensuring the cookie will differ,
2200 				 * without separately hashing each value later.
2201 				 */
2202 				kref_put(&tp->cookie_values->kref,
2203 					 tcp_cookie_values_release);
2204 			} else {
2205 				cvp = tp->cookie_values;
2206 			}
2207 		}
2208 
2209 		if (cvp != NULL) {
2210 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2211 
2212 			if (ctd.tcpct_used > 0) {
2213 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2214 				       ctd.tcpct_used);
2215 				cvp->s_data_desired = ctd.tcpct_used;
2216 				cvp->s_data_constant = 1; /* true */
2217 			} else {
2218 				/* No constant payload data. */
2219 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2220 				cvp->s_data_constant = 0; /* false */
2221 			}
2222 
2223 			tp->cookie_values = cvp;
2224 		}
2225 		release_sock(sk);
2226 		return err;
2227 	}
2228 	default:
2229 		/* fallthru */
2230 		break;
2231 	}
2232 
2233 	if (optlen < sizeof(int))
2234 		return -EINVAL;
2235 
2236 	if (get_user(val, (int __user *)optval))
2237 		return -EFAULT;
2238 
2239 	lock_sock(sk);
2240 
2241 	switch (optname) {
2242 	case TCP_MAXSEG:
2243 		/* Values greater than interface MTU won't take effect. However
2244 		 * at the point when this call is done we typically don't yet
2245 		 * know which interface is going to be used */
2246 		if (val < 8 || val > MAX_TCP_WINDOW) {
2247 			err = -EINVAL;
2248 			break;
2249 		}
2250 		tp->rx_opt.user_mss = val;
2251 		break;
2252 
2253 	case TCP_NODELAY:
2254 		if (val) {
2255 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2256 			 * this option on corked socket is remembered, but
2257 			 * it is not activated until cork is cleared.
2258 			 *
2259 			 * However, when TCP_NODELAY is set we make
2260 			 * an explicit push, which overrides even TCP_CORK
2261 			 * for currently queued segments.
2262 			 */
2263 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2264 			tcp_push_pending_frames(sk);
2265 		} else {
2266 			tp->nonagle &= ~TCP_NAGLE_OFF;
2267 		}
2268 		break;
2269 
2270 	case TCP_THIN_LINEAR_TIMEOUTS:
2271 		if (val < 0 || val > 1)
2272 			err = -EINVAL;
2273 		else
2274 			tp->thin_lto = val;
2275 		break;
2276 
2277 	case TCP_THIN_DUPACK:
2278 		if (val < 0 || val > 1)
2279 			err = -EINVAL;
2280 		else
2281 			tp->thin_dupack = val;
2282 		break;
2283 
2284 	case TCP_CORK:
2285 		/* When set indicates to always queue non-full frames.
2286 		 * Later the user clears this option and we transmit
2287 		 * any pending partial frames in the queue.  This is
2288 		 * meant to be used alongside sendfile() to get properly
2289 		 * filled frames when the user (for example) must write
2290 		 * out headers with a write() call first and then use
2291 		 * sendfile to send out the data parts.
2292 		 *
2293 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2294 		 * stronger than TCP_NODELAY.
2295 		 */
2296 		if (val) {
2297 			tp->nonagle |= TCP_NAGLE_CORK;
2298 		} else {
2299 			tp->nonagle &= ~TCP_NAGLE_CORK;
2300 			if (tp->nonagle&TCP_NAGLE_OFF)
2301 				tp->nonagle |= TCP_NAGLE_PUSH;
2302 			tcp_push_pending_frames(sk);
2303 		}
2304 		break;
2305 
2306 	case TCP_KEEPIDLE:
2307 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2308 			err = -EINVAL;
2309 		else {
2310 			tp->keepalive_time = val * HZ;
2311 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2312 			    !((1 << sk->sk_state) &
2313 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2314 				u32 elapsed = keepalive_time_elapsed(tp);
2315 				if (tp->keepalive_time > elapsed)
2316 					elapsed = tp->keepalive_time - elapsed;
2317 				else
2318 					elapsed = 0;
2319 				inet_csk_reset_keepalive_timer(sk, elapsed);
2320 			}
2321 		}
2322 		break;
2323 	case TCP_KEEPINTVL:
2324 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2325 			err = -EINVAL;
2326 		else
2327 			tp->keepalive_intvl = val * HZ;
2328 		break;
2329 	case TCP_KEEPCNT:
2330 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2331 			err = -EINVAL;
2332 		else
2333 			tp->keepalive_probes = val;
2334 		break;
2335 	case TCP_SYNCNT:
2336 		if (val < 1 || val > MAX_TCP_SYNCNT)
2337 			err = -EINVAL;
2338 		else
2339 			icsk->icsk_syn_retries = val;
2340 		break;
2341 
2342 	case TCP_LINGER2:
2343 		if (val < 0)
2344 			tp->linger2 = -1;
2345 		else if (val > sysctl_tcp_fin_timeout / HZ)
2346 			tp->linger2 = 0;
2347 		else
2348 			tp->linger2 = val * HZ;
2349 		break;
2350 
2351 	case TCP_DEFER_ACCEPT:
2352 		/* Translate value in seconds to number of retransmits */
2353 		icsk->icsk_accept_queue.rskq_defer_accept =
2354 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2355 					TCP_RTO_MAX / HZ);
2356 		break;
2357 
2358 	case TCP_WINDOW_CLAMP:
2359 		if (!val) {
2360 			if (sk->sk_state != TCP_CLOSE) {
2361 				err = -EINVAL;
2362 				break;
2363 			}
2364 			tp->window_clamp = 0;
2365 		} else
2366 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2367 						SOCK_MIN_RCVBUF / 2 : val;
2368 		break;
2369 
2370 	case TCP_QUICKACK:
2371 		if (!val) {
2372 			icsk->icsk_ack.pingpong = 1;
2373 		} else {
2374 			icsk->icsk_ack.pingpong = 0;
2375 			if ((1 << sk->sk_state) &
2376 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2377 			    inet_csk_ack_scheduled(sk)) {
2378 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2379 				tcp_cleanup_rbuf(sk, 1);
2380 				if (!(val & 1))
2381 					icsk->icsk_ack.pingpong = 1;
2382 			}
2383 		}
2384 		break;
2385 
2386 #ifdef CONFIG_TCP_MD5SIG
2387 	case TCP_MD5SIG:
2388 		/* Read the IP->Key mappings from userspace */
2389 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2390 		break;
2391 #endif
2392 
2393 	default:
2394 		err = -ENOPROTOOPT;
2395 		break;
2396 	}
2397 
2398 	release_sock(sk);
2399 	return err;
2400 }
2401 
2402 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2403 		   unsigned int optlen)
2404 {
2405 	struct inet_connection_sock *icsk = inet_csk(sk);
2406 
2407 	if (level != SOL_TCP)
2408 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2409 						     optval, optlen);
2410 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2411 }
2412 EXPORT_SYMBOL(tcp_setsockopt);
2413 
2414 #ifdef CONFIG_COMPAT
2415 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2416 			  char __user *optval, unsigned int optlen)
2417 {
2418 	if (level != SOL_TCP)
2419 		return inet_csk_compat_setsockopt(sk, level, optname,
2420 						  optval, optlen);
2421 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2422 }
2423 EXPORT_SYMBOL(compat_tcp_setsockopt);
2424 #endif
2425 
2426 /* Return information about state of tcp endpoint in API format. */
2427 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2428 {
2429 	struct tcp_sock *tp = tcp_sk(sk);
2430 	const struct inet_connection_sock *icsk = inet_csk(sk);
2431 	u32 now = tcp_time_stamp;
2432 
2433 	memset(info, 0, sizeof(*info));
2434 
2435 	info->tcpi_state = sk->sk_state;
2436 	info->tcpi_ca_state = icsk->icsk_ca_state;
2437 	info->tcpi_retransmits = icsk->icsk_retransmits;
2438 	info->tcpi_probes = icsk->icsk_probes_out;
2439 	info->tcpi_backoff = icsk->icsk_backoff;
2440 
2441 	if (tp->rx_opt.tstamp_ok)
2442 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2443 	if (tcp_is_sack(tp))
2444 		info->tcpi_options |= TCPI_OPT_SACK;
2445 	if (tp->rx_opt.wscale_ok) {
2446 		info->tcpi_options |= TCPI_OPT_WSCALE;
2447 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2448 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2449 	}
2450 
2451 	if (tp->ecn_flags&TCP_ECN_OK)
2452 		info->tcpi_options |= TCPI_OPT_ECN;
2453 
2454 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2455 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2456 	info->tcpi_snd_mss = tp->mss_cache;
2457 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2458 
2459 	if (sk->sk_state == TCP_LISTEN) {
2460 		info->tcpi_unacked = sk->sk_ack_backlog;
2461 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2462 	} else {
2463 		info->tcpi_unacked = tp->packets_out;
2464 		info->tcpi_sacked = tp->sacked_out;
2465 	}
2466 	info->tcpi_lost = tp->lost_out;
2467 	info->tcpi_retrans = tp->retrans_out;
2468 	info->tcpi_fackets = tp->fackets_out;
2469 
2470 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2471 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2472 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2473 
2474 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2475 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2476 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2477 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2478 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2479 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2480 	info->tcpi_advmss = tp->advmss;
2481 	info->tcpi_reordering = tp->reordering;
2482 
2483 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2484 	info->tcpi_rcv_space = tp->rcvq_space.space;
2485 
2486 	info->tcpi_total_retrans = tp->total_retrans;
2487 }
2488 EXPORT_SYMBOL_GPL(tcp_get_info);
2489 
2490 static int do_tcp_getsockopt(struct sock *sk, int level,
2491 		int optname, char __user *optval, int __user *optlen)
2492 {
2493 	struct inet_connection_sock *icsk = inet_csk(sk);
2494 	struct tcp_sock *tp = tcp_sk(sk);
2495 	int val, len;
2496 
2497 	if (get_user(len, optlen))
2498 		return -EFAULT;
2499 
2500 	len = min_t(unsigned int, len, sizeof(int));
2501 
2502 	if (len < 0)
2503 		return -EINVAL;
2504 
2505 	switch (optname) {
2506 	case TCP_MAXSEG:
2507 		val = tp->mss_cache;
2508 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2509 			val = tp->rx_opt.user_mss;
2510 		break;
2511 	case TCP_NODELAY:
2512 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2513 		break;
2514 	case TCP_CORK:
2515 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2516 		break;
2517 	case TCP_KEEPIDLE:
2518 		val = keepalive_time_when(tp) / HZ;
2519 		break;
2520 	case TCP_KEEPINTVL:
2521 		val = keepalive_intvl_when(tp) / HZ;
2522 		break;
2523 	case TCP_KEEPCNT:
2524 		val = keepalive_probes(tp);
2525 		break;
2526 	case TCP_SYNCNT:
2527 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2528 		break;
2529 	case TCP_LINGER2:
2530 		val = tp->linger2;
2531 		if (val >= 0)
2532 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2533 		break;
2534 	case TCP_DEFER_ACCEPT:
2535 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2536 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2537 		break;
2538 	case TCP_WINDOW_CLAMP:
2539 		val = tp->window_clamp;
2540 		break;
2541 	case TCP_INFO: {
2542 		struct tcp_info info;
2543 
2544 		if (get_user(len, optlen))
2545 			return -EFAULT;
2546 
2547 		tcp_get_info(sk, &info);
2548 
2549 		len = min_t(unsigned int, len, sizeof(info));
2550 		if (put_user(len, optlen))
2551 			return -EFAULT;
2552 		if (copy_to_user(optval, &info, len))
2553 			return -EFAULT;
2554 		return 0;
2555 	}
2556 	case TCP_QUICKACK:
2557 		val = !icsk->icsk_ack.pingpong;
2558 		break;
2559 
2560 	case TCP_CONGESTION:
2561 		if (get_user(len, optlen))
2562 			return -EFAULT;
2563 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2564 		if (put_user(len, optlen))
2565 			return -EFAULT;
2566 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2567 			return -EFAULT;
2568 		return 0;
2569 
2570 	case TCP_COOKIE_TRANSACTIONS: {
2571 		struct tcp_cookie_transactions ctd;
2572 		struct tcp_cookie_values *cvp = tp->cookie_values;
2573 
2574 		if (get_user(len, optlen))
2575 			return -EFAULT;
2576 		if (len < sizeof(ctd))
2577 			return -EINVAL;
2578 
2579 		memset(&ctd, 0, sizeof(ctd));
2580 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2581 				   TCP_COOKIE_IN_ALWAYS : 0)
2582 				| (tp->rx_opt.cookie_out_never ?
2583 				   TCP_COOKIE_OUT_NEVER : 0);
2584 
2585 		if (cvp != NULL) {
2586 			ctd.tcpct_flags |= (cvp->s_data_in ?
2587 					    TCP_S_DATA_IN : 0)
2588 					 | (cvp->s_data_out ?
2589 					    TCP_S_DATA_OUT : 0);
2590 
2591 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2592 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2593 
2594 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2595 			       cvp->cookie_pair_size);
2596 			ctd.tcpct_used = cvp->cookie_pair_size;
2597 		}
2598 
2599 		if (put_user(sizeof(ctd), optlen))
2600 			return -EFAULT;
2601 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2602 			return -EFAULT;
2603 		return 0;
2604 	}
2605 	case TCP_THIN_LINEAR_TIMEOUTS:
2606 		val = tp->thin_lto;
2607 		break;
2608 	case TCP_THIN_DUPACK:
2609 		val = tp->thin_dupack;
2610 		break;
2611 	default:
2612 		return -ENOPROTOOPT;
2613 	}
2614 
2615 	if (put_user(len, optlen))
2616 		return -EFAULT;
2617 	if (copy_to_user(optval, &val, len))
2618 		return -EFAULT;
2619 	return 0;
2620 }
2621 
2622 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2623 		   int __user *optlen)
2624 {
2625 	struct inet_connection_sock *icsk = inet_csk(sk);
2626 
2627 	if (level != SOL_TCP)
2628 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2629 						     optval, optlen);
2630 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2631 }
2632 EXPORT_SYMBOL(tcp_getsockopt);
2633 
2634 #ifdef CONFIG_COMPAT
2635 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2636 			  char __user *optval, int __user *optlen)
2637 {
2638 	if (level != SOL_TCP)
2639 		return inet_csk_compat_getsockopt(sk, level, optname,
2640 						  optval, optlen);
2641 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2642 }
2643 EXPORT_SYMBOL(compat_tcp_getsockopt);
2644 #endif
2645 
2646 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2647 {
2648 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2649 	struct tcphdr *th;
2650 	unsigned thlen;
2651 	unsigned int seq;
2652 	__be32 delta;
2653 	unsigned int oldlen;
2654 	unsigned int mss;
2655 
2656 	if (!pskb_may_pull(skb, sizeof(*th)))
2657 		goto out;
2658 
2659 	th = tcp_hdr(skb);
2660 	thlen = th->doff * 4;
2661 	if (thlen < sizeof(*th))
2662 		goto out;
2663 
2664 	if (!pskb_may_pull(skb, thlen))
2665 		goto out;
2666 
2667 	oldlen = (u16)~skb->len;
2668 	__skb_pull(skb, thlen);
2669 
2670 	mss = skb_shinfo(skb)->gso_size;
2671 	if (unlikely(skb->len <= mss))
2672 		goto out;
2673 
2674 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2675 		/* Packet is from an untrusted source, reset gso_segs. */
2676 		int type = skb_shinfo(skb)->gso_type;
2677 
2678 		if (unlikely(type &
2679 			     ~(SKB_GSO_TCPV4 |
2680 			       SKB_GSO_DODGY |
2681 			       SKB_GSO_TCP_ECN |
2682 			       SKB_GSO_TCPV6 |
2683 			       0) ||
2684 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2685 			goto out;
2686 
2687 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2688 
2689 		segs = NULL;
2690 		goto out;
2691 	}
2692 
2693 	segs = skb_segment(skb, features);
2694 	if (IS_ERR(segs))
2695 		goto out;
2696 
2697 	delta = htonl(oldlen + (thlen + mss));
2698 
2699 	skb = segs;
2700 	th = tcp_hdr(skb);
2701 	seq = ntohl(th->seq);
2702 
2703 	do {
2704 		th->fin = th->psh = 0;
2705 
2706 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2707 				       (__force u32)delta));
2708 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2709 			th->check =
2710 			     csum_fold(csum_partial(skb_transport_header(skb),
2711 						    thlen, skb->csum));
2712 
2713 		seq += mss;
2714 		skb = skb->next;
2715 		th = tcp_hdr(skb);
2716 
2717 		th->seq = htonl(seq);
2718 		th->cwr = 0;
2719 	} while (skb->next);
2720 
2721 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2722 		      skb->data_len);
2723 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2724 				(__force u32)delta));
2725 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2726 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2727 						   thlen, skb->csum));
2728 
2729 out:
2730 	return segs;
2731 }
2732 EXPORT_SYMBOL(tcp_tso_segment);
2733 
2734 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2735 {
2736 	struct sk_buff **pp = NULL;
2737 	struct sk_buff *p;
2738 	struct tcphdr *th;
2739 	struct tcphdr *th2;
2740 	unsigned int len;
2741 	unsigned int thlen;
2742 	__be32 flags;
2743 	unsigned int mss = 1;
2744 	unsigned int hlen;
2745 	unsigned int off;
2746 	int flush = 1;
2747 	int i;
2748 
2749 	off = skb_gro_offset(skb);
2750 	hlen = off + sizeof(*th);
2751 	th = skb_gro_header_fast(skb, off);
2752 	if (skb_gro_header_hard(skb, hlen)) {
2753 		th = skb_gro_header_slow(skb, hlen, off);
2754 		if (unlikely(!th))
2755 			goto out;
2756 	}
2757 
2758 	thlen = th->doff * 4;
2759 	if (thlen < sizeof(*th))
2760 		goto out;
2761 
2762 	hlen = off + thlen;
2763 	if (skb_gro_header_hard(skb, hlen)) {
2764 		th = skb_gro_header_slow(skb, hlen, off);
2765 		if (unlikely(!th))
2766 			goto out;
2767 	}
2768 
2769 	skb_gro_pull(skb, thlen);
2770 
2771 	len = skb_gro_len(skb);
2772 	flags = tcp_flag_word(th);
2773 
2774 	for (; (p = *head); head = &p->next) {
2775 		if (!NAPI_GRO_CB(p)->same_flow)
2776 			continue;
2777 
2778 		th2 = tcp_hdr(p);
2779 
2780 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2781 			NAPI_GRO_CB(p)->same_flow = 0;
2782 			continue;
2783 		}
2784 
2785 		goto found;
2786 	}
2787 
2788 	goto out_check_final;
2789 
2790 found:
2791 	flush = NAPI_GRO_CB(p)->flush;
2792 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2793 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2794 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2795 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2796 	for (i = sizeof(*th); i < thlen; i += 4)
2797 		flush |= *(u32 *)((u8 *)th + i) ^
2798 			 *(u32 *)((u8 *)th2 + i);
2799 
2800 	mss = skb_shinfo(p)->gso_size;
2801 
2802 	flush |= (len - 1) >= mss;
2803 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2804 
2805 	if (flush || skb_gro_receive(head, skb)) {
2806 		mss = 1;
2807 		goto out_check_final;
2808 	}
2809 
2810 	p = *head;
2811 	th2 = tcp_hdr(p);
2812 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2813 
2814 out_check_final:
2815 	flush = len < mss;
2816 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2817 					TCP_FLAG_RST | TCP_FLAG_SYN |
2818 					TCP_FLAG_FIN));
2819 
2820 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2821 		pp = head;
2822 
2823 out:
2824 	NAPI_GRO_CB(skb)->flush |= flush;
2825 
2826 	return pp;
2827 }
2828 EXPORT_SYMBOL(tcp_gro_receive);
2829 
2830 int tcp_gro_complete(struct sk_buff *skb)
2831 {
2832 	struct tcphdr *th = tcp_hdr(skb);
2833 
2834 	skb->csum_start = skb_transport_header(skb) - skb->head;
2835 	skb->csum_offset = offsetof(struct tcphdr, check);
2836 	skb->ip_summed = CHECKSUM_PARTIAL;
2837 
2838 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2839 
2840 	if (th->cwr)
2841 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2842 
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(tcp_gro_complete);
2846 
2847 #ifdef CONFIG_TCP_MD5SIG
2848 static unsigned long tcp_md5sig_users;
2849 static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2850 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2851 
2852 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2853 {
2854 	int cpu;
2855 	for_each_possible_cpu(cpu) {
2856 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2857 		if (p) {
2858 			if (p->md5_desc.tfm)
2859 				crypto_free_hash(p->md5_desc.tfm);
2860 			kfree(p);
2861 		}
2862 	}
2863 	free_percpu(pool);
2864 }
2865 
2866 void tcp_free_md5sig_pool(void)
2867 {
2868 	struct tcp_md5sig_pool * __percpu *pool = NULL;
2869 
2870 	spin_lock_bh(&tcp_md5sig_pool_lock);
2871 	if (--tcp_md5sig_users == 0) {
2872 		pool = tcp_md5sig_pool;
2873 		tcp_md5sig_pool = NULL;
2874 	}
2875 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2876 	if (pool)
2877 		__tcp_free_md5sig_pool(pool);
2878 }
2879 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2880 
2881 static struct tcp_md5sig_pool * __percpu *
2882 __tcp_alloc_md5sig_pool(struct sock *sk)
2883 {
2884 	int cpu;
2885 	struct tcp_md5sig_pool * __percpu *pool;
2886 
2887 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2888 	if (!pool)
2889 		return NULL;
2890 
2891 	for_each_possible_cpu(cpu) {
2892 		struct tcp_md5sig_pool *p;
2893 		struct crypto_hash *hash;
2894 
2895 		p = kzalloc(sizeof(*p), sk->sk_allocation);
2896 		if (!p)
2897 			goto out_free;
2898 		*per_cpu_ptr(pool, cpu) = p;
2899 
2900 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2901 		if (!hash || IS_ERR(hash))
2902 			goto out_free;
2903 
2904 		p->md5_desc.tfm = hash;
2905 	}
2906 	return pool;
2907 out_free:
2908 	__tcp_free_md5sig_pool(pool);
2909 	return NULL;
2910 }
2911 
2912 struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2913 {
2914 	struct tcp_md5sig_pool * __percpu *pool;
2915 	int alloc = 0;
2916 
2917 retry:
2918 	spin_lock_bh(&tcp_md5sig_pool_lock);
2919 	pool = tcp_md5sig_pool;
2920 	if (tcp_md5sig_users++ == 0) {
2921 		alloc = 1;
2922 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2923 	} else if (!pool) {
2924 		tcp_md5sig_users--;
2925 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2926 		cpu_relax();
2927 		goto retry;
2928 	} else
2929 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2930 
2931 	if (alloc) {
2932 		/* we cannot hold spinlock here because this may sleep. */
2933 		struct tcp_md5sig_pool * __percpu *p;
2934 
2935 		p = __tcp_alloc_md5sig_pool(sk);
2936 		spin_lock_bh(&tcp_md5sig_pool_lock);
2937 		if (!p) {
2938 			tcp_md5sig_users--;
2939 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2940 			return NULL;
2941 		}
2942 		pool = tcp_md5sig_pool;
2943 		if (pool) {
2944 			/* oops, it has already been assigned. */
2945 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2946 			__tcp_free_md5sig_pool(p);
2947 		} else {
2948 			tcp_md5sig_pool = pool = p;
2949 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2950 		}
2951 	}
2952 	return pool;
2953 }
2954 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2955 
2956 
2957 /**
2958  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2959  *
2960  *	We use percpu structure, so if we succeed, we exit with preemption
2961  *	and BH disabled, to make sure another thread or softirq handling
2962  *	wont try to get same context.
2963  */
2964 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2965 {
2966 	struct tcp_md5sig_pool * __percpu *p;
2967 
2968 	local_bh_disable();
2969 
2970 	spin_lock(&tcp_md5sig_pool_lock);
2971 	p = tcp_md5sig_pool;
2972 	if (p)
2973 		tcp_md5sig_users++;
2974 	spin_unlock(&tcp_md5sig_pool_lock);
2975 
2976 	if (p)
2977 		return *this_cpu_ptr(p);
2978 
2979 	local_bh_enable();
2980 	return NULL;
2981 }
2982 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2983 
2984 void tcp_put_md5sig_pool(void)
2985 {
2986 	local_bh_enable();
2987 	tcp_free_md5sig_pool();
2988 }
2989 EXPORT_SYMBOL(tcp_put_md5sig_pool);
2990 
2991 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2992 			struct tcphdr *th)
2993 {
2994 	struct scatterlist sg;
2995 	int err;
2996 
2997 	__sum16 old_checksum = th->check;
2998 	th->check = 0;
2999 	/* options aren't included in the hash */
3000 	sg_init_one(&sg, th, sizeof(struct tcphdr));
3001 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3002 	th->check = old_checksum;
3003 	return err;
3004 }
3005 EXPORT_SYMBOL(tcp_md5_hash_header);
3006 
3007 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3008 			  struct sk_buff *skb, unsigned header_len)
3009 {
3010 	struct scatterlist sg;
3011 	const struct tcphdr *tp = tcp_hdr(skb);
3012 	struct hash_desc *desc = &hp->md5_desc;
3013 	unsigned i;
3014 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3015 				       skb_headlen(skb) - header_len : 0;
3016 	const struct skb_shared_info *shi = skb_shinfo(skb);
3017 	struct sk_buff *frag_iter;
3018 
3019 	sg_init_table(&sg, 1);
3020 
3021 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3022 	if (crypto_hash_update(desc, &sg, head_data_len))
3023 		return 1;
3024 
3025 	for (i = 0; i < shi->nr_frags; ++i) {
3026 		const struct skb_frag_struct *f = &shi->frags[i];
3027 		sg_set_page(&sg, f->page, f->size, f->page_offset);
3028 		if (crypto_hash_update(desc, &sg, f->size))
3029 			return 1;
3030 	}
3031 
3032 	skb_walk_frags(skb, frag_iter)
3033 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3034 			return 1;
3035 
3036 	return 0;
3037 }
3038 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3039 
3040 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3041 {
3042 	struct scatterlist sg;
3043 
3044 	sg_init_one(&sg, key->key, key->keylen);
3045 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3046 }
3047 EXPORT_SYMBOL(tcp_md5_hash_key);
3048 
3049 #endif
3050 
3051 /**
3052  * Each Responder maintains up to two secret values concurrently for
3053  * efficient secret rollover.  Each secret value has 4 states:
3054  *
3055  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3056  *    Generates new Responder-Cookies, but not yet used for primary
3057  *    verification.  This is a short-term state, typically lasting only
3058  *    one round trip time (RTT).
3059  *
3060  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3061  *    Used both for generation and primary verification.
3062  *
3063  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3064  *    Used for verification, until the first failure that can be
3065  *    verified by the newer Generating secret.  At that time, this
3066  *    cookie's state is changed to Secondary, and the Generating
3067  *    cookie's state is changed to Primary.  This is a short-term state,
3068  *    typically lasting only one round trip time (RTT).
3069  *
3070  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3071  *    Used for secondary verification, after primary verification
3072  *    failures.  This state lasts no more than twice the Maximum Segment
3073  *    Lifetime (2MSL).  Then, the secret is discarded.
3074  */
3075 struct tcp_cookie_secret {
3076 	/* The secret is divided into two parts.  The digest part is the
3077 	 * equivalent of previously hashing a secret and saving the state,
3078 	 * and serves as an initialization vector (IV).  The message part
3079 	 * serves as the trailing secret.
3080 	 */
3081 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3082 	unsigned long			expires;
3083 };
3084 
3085 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3086 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3087 #define TCP_SECRET_LIFE (HZ * 600)
3088 
3089 static struct tcp_cookie_secret tcp_secret_one;
3090 static struct tcp_cookie_secret tcp_secret_two;
3091 
3092 /* Essentially a circular list, without dynamic allocation. */
3093 static struct tcp_cookie_secret *tcp_secret_generating;
3094 static struct tcp_cookie_secret *tcp_secret_primary;
3095 static struct tcp_cookie_secret *tcp_secret_retiring;
3096 static struct tcp_cookie_secret *tcp_secret_secondary;
3097 
3098 static DEFINE_SPINLOCK(tcp_secret_locker);
3099 
3100 /* Select a pseudo-random word in the cookie workspace.
3101  */
3102 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3103 {
3104 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3105 }
3106 
3107 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3108  * Called in softirq context.
3109  * Returns: 0 for success.
3110  */
3111 int tcp_cookie_generator(u32 *bakery)
3112 {
3113 	unsigned long jiffy = jiffies;
3114 
3115 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3116 		spin_lock_bh(&tcp_secret_locker);
3117 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3118 			/* refreshed by another */
3119 			memcpy(bakery,
3120 			       &tcp_secret_generating->secrets[0],
3121 			       COOKIE_WORKSPACE_WORDS);
3122 		} else {
3123 			/* still needs refreshing */
3124 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3125 
3126 			/* The first time, paranoia assumes that the
3127 			 * randomization function isn't as strong.  But,
3128 			 * this secret initialization is delayed until
3129 			 * the last possible moment (packet arrival).
3130 			 * Although that time is observable, it is
3131 			 * unpredictably variable.  Mash in the most
3132 			 * volatile clock bits available, and expire the
3133 			 * secret extra quickly.
3134 			 */
3135 			if (unlikely(tcp_secret_primary->expires ==
3136 				     tcp_secret_secondary->expires)) {
3137 				struct timespec tv;
3138 
3139 				getnstimeofday(&tv);
3140 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3141 					(u32)tv.tv_nsec;
3142 
3143 				tcp_secret_secondary->expires = jiffy
3144 					+ TCP_SECRET_1MSL
3145 					+ (0x0f & tcp_cookie_work(bakery, 0));
3146 			} else {
3147 				tcp_secret_secondary->expires = jiffy
3148 					+ TCP_SECRET_LIFE
3149 					+ (0xff & tcp_cookie_work(bakery, 1));
3150 				tcp_secret_primary->expires = jiffy
3151 					+ TCP_SECRET_2MSL
3152 					+ (0x1f & tcp_cookie_work(bakery, 2));
3153 			}
3154 			memcpy(&tcp_secret_secondary->secrets[0],
3155 			       bakery, COOKIE_WORKSPACE_WORDS);
3156 
3157 			rcu_assign_pointer(tcp_secret_generating,
3158 					   tcp_secret_secondary);
3159 			rcu_assign_pointer(tcp_secret_retiring,
3160 					   tcp_secret_primary);
3161 			/*
3162 			 * Neither call_rcu() nor synchronize_rcu() needed.
3163 			 * Retiring data is not freed.  It is replaced after
3164 			 * further (locked) pointer updates, and a quiet time
3165 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3166 			 */
3167 		}
3168 		spin_unlock_bh(&tcp_secret_locker);
3169 	} else {
3170 		rcu_read_lock_bh();
3171 		memcpy(bakery,
3172 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3173 		       COOKIE_WORKSPACE_WORDS);
3174 		rcu_read_unlock_bh();
3175 	}
3176 	return 0;
3177 }
3178 EXPORT_SYMBOL(tcp_cookie_generator);
3179 
3180 void tcp_done(struct sock *sk)
3181 {
3182 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3183 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3184 
3185 	tcp_set_state(sk, TCP_CLOSE);
3186 	tcp_clear_xmit_timers(sk);
3187 
3188 	sk->sk_shutdown = SHUTDOWN_MASK;
3189 
3190 	if (!sock_flag(sk, SOCK_DEAD))
3191 		sk->sk_state_change(sk);
3192 	else
3193 		inet_csk_destroy_sock(sk);
3194 }
3195 EXPORT_SYMBOL_GPL(tcp_done);
3196 
3197 extern struct tcp_congestion_ops tcp_reno;
3198 
3199 static __initdata unsigned long thash_entries;
3200 static int __init set_thash_entries(char *str)
3201 {
3202 	if (!str)
3203 		return 0;
3204 	thash_entries = simple_strtoul(str, &str, 0);
3205 	return 1;
3206 }
3207 __setup("thash_entries=", set_thash_entries);
3208 
3209 void __init tcp_init(void)
3210 {
3211 	struct sk_buff *skb = NULL;
3212 	unsigned long nr_pages, limit;
3213 	int i, max_share, cnt;
3214 	unsigned long jiffy = jiffies;
3215 
3216 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3217 
3218 	percpu_counter_init(&tcp_sockets_allocated, 0);
3219 	percpu_counter_init(&tcp_orphan_count, 0);
3220 	tcp_hashinfo.bind_bucket_cachep =
3221 		kmem_cache_create("tcp_bind_bucket",
3222 				  sizeof(struct inet_bind_bucket), 0,
3223 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3224 
3225 	/* Size and allocate the main established and bind bucket
3226 	 * hash tables.
3227 	 *
3228 	 * The methodology is similar to that of the buffer cache.
3229 	 */
3230 	tcp_hashinfo.ehash =
3231 		alloc_large_system_hash("TCP established",
3232 					sizeof(struct inet_ehash_bucket),
3233 					thash_entries,
3234 					(totalram_pages >= 128 * 1024) ?
3235 					13 : 15,
3236 					0,
3237 					NULL,
3238 					&tcp_hashinfo.ehash_mask,
3239 					thash_entries ? 0 : 512 * 1024);
3240 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3241 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3242 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3243 	}
3244 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3245 		panic("TCP: failed to alloc ehash_locks");
3246 	tcp_hashinfo.bhash =
3247 		alloc_large_system_hash("TCP bind",
3248 					sizeof(struct inet_bind_hashbucket),
3249 					tcp_hashinfo.ehash_mask + 1,
3250 					(totalram_pages >= 128 * 1024) ?
3251 					13 : 15,
3252 					0,
3253 					&tcp_hashinfo.bhash_size,
3254 					NULL,
3255 					64 * 1024);
3256 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3257 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3258 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3259 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3260 	}
3261 
3262 
3263 	cnt = tcp_hashinfo.ehash_mask + 1;
3264 
3265 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3266 	sysctl_tcp_max_orphans = cnt / 2;
3267 	sysctl_max_syn_backlog = max(128, cnt / 256);
3268 
3269 	/* Set the pressure threshold to be a fraction of global memory that
3270 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3271 	 * memory, with a floor of 128 pages.
3272 	 */
3273 	nr_pages = totalram_pages - totalhigh_pages;
3274 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3275 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3276 	limit = max(limit, 128UL);
3277 	sysctl_tcp_mem[0] = limit / 4 * 3;
3278 	sysctl_tcp_mem[1] = limit;
3279 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3280 
3281 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3282 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3283 	max_share = min(4UL*1024*1024, limit);
3284 
3285 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3286 	sysctl_tcp_wmem[1] = 16*1024;
3287 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3288 
3289 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3290 	sysctl_tcp_rmem[1] = 87380;
3291 	sysctl_tcp_rmem[2] = max(87380, max_share);
3292 
3293 	printk(KERN_INFO "TCP: Hash tables configured "
3294 	       "(established %u bind %u)\n",
3295 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3296 
3297 	tcp_register_congestion_control(&tcp_reno);
3298 
3299 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3300 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3301 	tcp_secret_one.expires = jiffy; /* past due */
3302 	tcp_secret_two.expires = jiffy; /* past due */
3303 	tcp_secret_generating = &tcp_secret_one;
3304 	tcp_secret_primary = &tcp_secret_one;
3305 	tcp_secret_retiring = &tcp_secret_two;
3306 	tcp_secret_secondary = &tcp_secret_two;
3307 }
3308