1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static bool tcp_stream_is_readable(struct sock *sk, int target) 479 { 480 if (tcp_epollin_ready(sk, target)) 481 return true; 482 return sk_is_readable(sk); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 u16 urg_data = READ_ONCE(tp->urg_data); 549 550 if (unlikely(urg_data) && 551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE)) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = READ_ONCE(tp->urg_data) && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 sk_defer_free_flush(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 tcp_wmem_free_skb(sk, skb); 936 } 937 } 938 939 /* skb changing from pure zc to mixed, must charge zc */ 940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 941 { 942 if (unlikely(skb_zcopy_pure(skb))) { 943 u32 extra = skb->truesize - 944 SKB_TRUESIZE(skb_end_offset(skb)); 945 946 if (!sk_wmem_schedule(sk, extra)) 947 return -ENOMEM; 948 949 sk_mem_charge(sk, extra); 950 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 951 } 952 return 0; 953 } 954 955 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 956 struct page *page, int offset, size_t *size) 957 { 958 struct sk_buff *skb = tcp_write_queue_tail(sk); 959 struct tcp_sock *tp = tcp_sk(sk); 960 bool can_coalesce; 961 int copy, i; 962 963 if (!skb || (copy = size_goal - skb->len) <= 0 || 964 !tcp_skb_can_collapse_to(skb)) { 965 new_segment: 966 if (!sk_stream_memory_free(sk)) 967 return NULL; 968 969 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 970 tcp_rtx_and_write_queues_empty(sk)); 971 if (!skb) 972 return NULL; 973 974 #ifdef CONFIG_TLS_DEVICE 975 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 976 #endif 977 tcp_skb_entail(sk, skb); 978 copy = size_goal; 979 } 980 981 if (copy > *size) 982 copy = *size; 983 984 i = skb_shinfo(skb)->nr_frags; 985 can_coalesce = skb_can_coalesce(skb, i, page, offset); 986 if (!can_coalesce && i >= sysctl_max_skb_frags) { 987 tcp_mark_push(tp, skb); 988 goto new_segment; 989 } 990 if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy)) 991 return NULL; 992 993 if (can_coalesce) { 994 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 995 } else { 996 get_page(page); 997 skb_fill_page_desc(skb, i, page, offset, copy); 998 } 999 1000 if (!(flags & MSG_NO_SHARED_FRAGS)) 1001 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1002 1003 skb->len += copy; 1004 skb->data_len += copy; 1005 skb->truesize += copy; 1006 sk_wmem_queued_add(sk, copy); 1007 sk_mem_charge(sk, copy); 1008 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1009 TCP_SKB_CB(skb)->end_seq += copy; 1010 tcp_skb_pcount_set(skb, 0); 1011 1012 *size = copy; 1013 return skb; 1014 } 1015 1016 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1017 size_t size, int flags) 1018 { 1019 struct tcp_sock *tp = tcp_sk(sk); 1020 int mss_now, size_goal; 1021 int err; 1022 ssize_t copied; 1023 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1024 1025 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1026 WARN_ONCE(!sendpage_ok(page), 1027 "page must not be a Slab one and have page_count > 0")) 1028 return -EINVAL; 1029 1030 /* Wait for a connection to finish. One exception is TCP Fast Open 1031 * (passive side) where data is allowed to be sent before a connection 1032 * is fully established. 1033 */ 1034 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1035 !tcp_passive_fastopen(sk)) { 1036 err = sk_stream_wait_connect(sk, &timeo); 1037 if (err != 0) 1038 goto out_err; 1039 } 1040 1041 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1042 1043 mss_now = tcp_send_mss(sk, &size_goal, flags); 1044 copied = 0; 1045 1046 err = -EPIPE; 1047 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1048 goto out_err; 1049 1050 while (size > 0) { 1051 struct sk_buff *skb; 1052 size_t copy = size; 1053 1054 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1055 if (!skb) 1056 goto wait_for_space; 1057 1058 if (!copied) 1059 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1060 1061 copied += copy; 1062 offset += copy; 1063 size -= copy; 1064 if (!size) 1065 goto out; 1066 1067 if (skb->len < size_goal || (flags & MSG_OOB)) 1068 continue; 1069 1070 if (forced_push(tp)) { 1071 tcp_mark_push(tp, skb); 1072 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1073 } else if (skb == tcp_send_head(sk)) 1074 tcp_push_one(sk, mss_now); 1075 continue; 1076 1077 wait_for_space: 1078 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1079 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1080 TCP_NAGLE_PUSH, size_goal); 1081 1082 err = sk_stream_wait_memory(sk, &timeo); 1083 if (err != 0) 1084 goto do_error; 1085 1086 mss_now = tcp_send_mss(sk, &size_goal, flags); 1087 } 1088 1089 out: 1090 if (copied) { 1091 tcp_tx_timestamp(sk, sk->sk_tsflags); 1092 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1093 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1094 } 1095 return copied; 1096 1097 do_error: 1098 tcp_remove_empty_skb(sk); 1099 if (copied) 1100 goto out; 1101 out_err: 1102 /* make sure we wake any epoll edge trigger waiter */ 1103 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1104 sk->sk_write_space(sk); 1105 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1106 } 1107 return sk_stream_error(sk, flags, err); 1108 } 1109 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1110 1111 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1112 size_t size, int flags) 1113 { 1114 if (!(sk->sk_route_caps & NETIF_F_SG)) 1115 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1116 1117 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1118 1119 return do_tcp_sendpages(sk, page, offset, size, flags); 1120 } 1121 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1122 1123 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1124 size_t size, int flags) 1125 { 1126 int ret; 1127 1128 lock_sock(sk); 1129 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1130 release_sock(sk); 1131 1132 return ret; 1133 } 1134 EXPORT_SYMBOL(tcp_sendpage); 1135 1136 void tcp_free_fastopen_req(struct tcp_sock *tp) 1137 { 1138 if (tp->fastopen_req) { 1139 kfree(tp->fastopen_req); 1140 tp->fastopen_req = NULL; 1141 } 1142 } 1143 1144 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1145 int *copied, size_t size, 1146 struct ubuf_info *uarg) 1147 { 1148 struct tcp_sock *tp = tcp_sk(sk); 1149 struct inet_sock *inet = inet_sk(sk); 1150 struct sockaddr *uaddr = msg->msg_name; 1151 int err, flags; 1152 1153 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1154 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1155 uaddr->sa_family == AF_UNSPEC)) 1156 return -EOPNOTSUPP; 1157 if (tp->fastopen_req) 1158 return -EALREADY; /* Another Fast Open is in progress */ 1159 1160 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1161 sk->sk_allocation); 1162 if (unlikely(!tp->fastopen_req)) 1163 return -ENOBUFS; 1164 tp->fastopen_req->data = msg; 1165 tp->fastopen_req->size = size; 1166 tp->fastopen_req->uarg = uarg; 1167 1168 if (inet->defer_connect) { 1169 err = tcp_connect(sk); 1170 /* Same failure procedure as in tcp_v4/6_connect */ 1171 if (err) { 1172 tcp_set_state(sk, TCP_CLOSE); 1173 inet->inet_dport = 0; 1174 sk->sk_route_caps = 0; 1175 } 1176 } 1177 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1178 err = __inet_stream_connect(sk->sk_socket, uaddr, 1179 msg->msg_namelen, flags, 1); 1180 /* fastopen_req could already be freed in __inet_stream_connect 1181 * if the connection times out or gets rst 1182 */ 1183 if (tp->fastopen_req) { 1184 *copied = tp->fastopen_req->copied; 1185 tcp_free_fastopen_req(tp); 1186 inet->defer_connect = 0; 1187 } 1188 return err; 1189 } 1190 1191 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1192 { 1193 struct tcp_sock *tp = tcp_sk(sk); 1194 struct ubuf_info *uarg = NULL; 1195 struct sk_buff *skb; 1196 struct sockcm_cookie sockc; 1197 int flags, err, copied = 0; 1198 int mss_now = 0, size_goal, copied_syn = 0; 1199 int process_backlog = 0; 1200 bool zc = false; 1201 long timeo; 1202 1203 flags = msg->msg_flags; 1204 1205 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1206 skb = tcp_write_queue_tail(sk); 1207 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1208 if (!uarg) { 1209 err = -ENOBUFS; 1210 goto out_err; 1211 } 1212 1213 zc = sk->sk_route_caps & NETIF_F_SG; 1214 if (!zc) 1215 uarg->zerocopy = 0; 1216 } 1217 1218 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1219 !tp->repair) { 1220 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1221 if (err == -EINPROGRESS && copied_syn > 0) 1222 goto out; 1223 else if (err) 1224 goto out_err; 1225 } 1226 1227 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1228 1229 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1230 1231 /* Wait for a connection to finish. One exception is TCP Fast Open 1232 * (passive side) where data is allowed to be sent before a connection 1233 * is fully established. 1234 */ 1235 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1236 !tcp_passive_fastopen(sk)) { 1237 err = sk_stream_wait_connect(sk, &timeo); 1238 if (err != 0) 1239 goto do_error; 1240 } 1241 1242 if (unlikely(tp->repair)) { 1243 if (tp->repair_queue == TCP_RECV_QUEUE) { 1244 copied = tcp_send_rcvq(sk, msg, size); 1245 goto out_nopush; 1246 } 1247 1248 err = -EINVAL; 1249 if (tp->repair_queue == TCP_NO_QUEUE) 1250 goto out_err; 1251 1252 /* 'common' sending to sendq */ 1253 } 1254 1255 sockcm_init(&sockc, sk); 1256 if (msg->msg_controllen) { 1257 err = sock_cmsg_send(sk, msg, &sockc); 1258 if (unlikely(err)) { 1259 err = -EINVAL; 1260 goto out_err; 1261 } 1262 } 1263 1264 /* This should be in poll */ 1265 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1266 1267 /* Ok commence sending. */ 1268 copied = 0; 1269 1270 restart: 1271 mss_now = tcp_send_mss(sk, &size_goal, flags); 1272 1273 err = -EPIPE; 1274 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1275 goto do_error; 1276 1277 while (msg_data_left(msg)) { 1278 int copy = 0; 1279 1280 skb = tcp_write_queue_tail(sk); 1281 if (skb) 1282 copy = size_goal - skb->len; 1283 1284 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1285 bool first_skb; 1286 1287 new_segment: 1288 if (!sk_stream_memory_free(sk)) 1289 goto wait_for_space; 1290 1291 if (unlikely(process_backlog >= 16)) { 1292 process_backlog = 0; 1293 if (sk_flush_backlog(sk)) 1294 goto restart; 1295 } 1296 first_skb = tcp_rtx_and_write_queues_empty(sk); 1297 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1298 first_skb); 1299 if (!skb) 1300 goto wait_for_space; 1301 1302 process_backlog++; 1303 1304 tcp_skb_entail(sk, skb); 1305 copy = size_goal; 1306 1307 /* All packets are restored as if they have 1308 * already been sent. skb_mstamp_ns isn't set to 1309 * avoid wrong rtt estimation. 1310 */ 1311 if (tp->repair) 1312 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1313 } 1314 1315 /* Try to append data to the end of skb. */ 1316 if (copy > msg_data_left(msg)) 1317 copy = msg_data_left(msg); 1318 1319 if (!zc) { 1320 bool merge = true; 1321 int i = skb_shinfo(skb)->nr_frags; 1322 struct page_frag *pfrag = sk_page_frag(sk); 1323 1324 if (!sk_page_frag_refill(sk, pfrag)) 1325 goto wait_for_space; 1326 1327 if (!skb_can_coalesce(skb, i, pfrag->page, 1328 pfrag->offset)) { 1329 if (i >= sysctl_max_skb_frags) { 1330 tcp_mark_push(tp, skb); 1331 goto new_segment; 1332 } 1333 merge = false; 1334 } 1335 1336 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1337 1338 if (tcp_downgrade_zcopy_pure(sk, skb) || 1339 !sk_wmem_schedule(sk, copy)) 1340 goto wait_for_space; 1341 1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1343 pfrag->page, 1344 pfrag->offset, 1345 copy); 1346 if (err) 1347 goto do_error; 1348 1349 /* Update the skb. */ 1350 if (merge) { 1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1352 } else { 1353 skb_fill_page_desc(skb, i, pfrag->page, 1354 pfrag->offset, copy); 1355 page_ref_inc(pfrag->page); 1356 } 1357 pfrag->offset += copy; 1358 } else { 1359 /* First append to a fragless skb builds initial 1360 * pure zerocopy skb 1361 */ 1362 if (!skb->len) 1363 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1364 1365 if (!skb_zcopy_pure(skb)) { 1366 if (!sk_wmem_schedule(sk, copy)) 1367 goto wait_for_space; 1368 } 1369 1370 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1371 if (err == -EMSGSIZE || err == -EEXIST) { 1372 tcp_mark_push(tp, skb); 1373 goto new_segment; 1374 } 1375 if (err < 0) 1376 goto do_error; 1377 copy = err; 1378 } 1379 1380 if (!copied) 1381 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1382 1383 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1384 TCP_SKB_CB(skb)->end_seq += copy; 1385 tcp_skb_pcount_set(skb, 0); 1386 1387 copied += copy; 1388 if (!msg_data_left(msg)) { 1389 if (unlikely(flags & MSG_EOR)) 1390 TCP_SKB_CB(skb)->eor = 1; 1391 goto out; 1392 } 1393 1394 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1395 continue; 1396 1397 if (forced_push(tp)) { 1398 tcp_mark_push(tp, skb); 1399 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1400 } else if (skb == tcp_send_head(sk)) 1401 tcp_push_one(sk, mss_now); 1402 continue; 1403 1404 wait_for_space: 1405 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1406 if (copied) 1407 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1408 TCP_NAGLE_PUSH, size_goal); 1409 1410 err = sk_stream_wait_memory(sk, &timeo); 1411 if (err != 0) 1412 goto do_error; 1413 1414 mss_now = tcp_send_mss(sk, &size_goal, flags); 1415 } 1416 1417 out: 1418 if (copied) { 1419 tcp_tx_timestamp(sk, sockc.tsflags); 1420 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1421 } 1422 out_nopush: 1423 net_zcopy_put(uarg); 1424 return copied + copied_syn; 1425 1426 do_error: 1427 tcp_remove_empty_skb(sk); 1428 1429 if (copied + copied_syn) 1430 goto out; 1431 out_err: 1432 net_zcopy_put_abort(uarg, true); 1433 err = sk_stream_error(sk, flags, err); 1434 /* make sure we wake any epoll edge trigger waiter */ 1435 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1436 sk->sk_write_space(sk); 1437 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1438 } 1439 return err; 1440 } 1441 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1442 1443 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1444 { 1445 int ret; 1446 1447 lock_sock(sk); 1448 ret = tcp_sendmsg_locked(sk, msg, size); 1449 release_sock(sk); 1450 1451 return ret; 1452 } 1453 EXPORT_SYMBOL(tcp_sendmsg); 1454 1455 /* 1456 * Handle reading urgent data. BSD has very simple semantics for 1457 * this, no blocking and very strange errors 8) 1458 */ 1459 1460 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1461 { 1462 struct tcp_sock *tp = tcp_sk(sk); 1463 1464 /* No URG data to read. */ 1465 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1466 tp->urg_data == TCP_URG_READ) 1467 return -EINVAL; /* Yes this is right ! */ 1468 1469 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1470 return -ENOTCONN; 1471 1472 if (tp->urg_data & TCP_URG_VALID) { 1473 int err = 0; 1474 char c = tp->urg_data; 1475 1476 if (!(flags & MSG_PEEK)) 1477 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1478 1479 /* Read urgent data. */ 1480 msg->msg_flags |= MSG_OOB; 1481 1482 if (len > 0) { 1483 if (!(flags & MSG_TRUNC)) 1484 err = memcpy_to_msg(msg, &c, 1); 1485 len = 1; 1486 } else 1487 msg->msg_flags |= MSG_TRUNC; 1488 1489 return err ? -EFAULT : len; 1490 } 1491 1492 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1493 return 0; 1494 1495 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1496 * the available implementations agree in this case: 1497 * this call should never block, independent of the 1498 * blocking state of the socket. 1499 * Mike <pall@rz.uni-karlsruhe.de> 1500 */ 1501 return -EAGAIN; 1502 } 1503 1504 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1505 { 1506 struct sk_buff *skb; 1507 int copied = 0, err = 0; 1508 1509 /* XXX -- need to support SO_PEEK_OFF */ 1510 1511 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1512 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1513 if (err) 1514 return err; 1515 copied += skb->len; 1516 } 1517 1518 skb_queue_walk(&sk->sk_write_queue, skb) { 1519 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1520 if (err) 1521 break; 1522 1523 copied += skb->len; 1524 } 1525 1526 return err ?: copied; 1527 } 1528 1529 /* Clean up the receive buffer for full frames taken by the user, 1530 * then send an ACK if necessary. COPIED is the number of bytes 1531 * tcp_recvmsg has given to the user so far, it speeds up the 1532 * calculation of whether or not we must ACK for the sake of 1533 * a window update. 1534 */ 1535 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 bool time_to_ack = false; 1539 1540 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1541 1542 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1543 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1544 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1545 1546 if (inet_csk_ack_scheduled(sk)) { 1547 const struct inet_connection_sock *icsk = inet_csk(sk); 1548 1549 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1550 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1551 /* 1552 * If this read emptied read buffer, we send ACK, if 1553 * connection is not bidirectional, user drained 1554 * receive buffer and there was a small segment 1555 * in queue. 1556 */ 1557 (copied > 0 && 1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1560 !inet_csk_in_pingpong_mode(sk))) && 1561 !atomic_read(&sk->sk_rmem_alloc))) 1562 time_to_ack = true; 1563 } 1564 1565 /* We send an ACK if we can now advertise a non-zero window 1566 * which has been raised "significantly". 1567 * 1568 * Even if window raised up to infinity, do not send window open ACK 1569 * in states, where we will not receive more. It is useless. 1570 */ 1571 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1572 __u32 rcv_window_now = tcp_receive_window(tp); 1573 1574 /* Optimize, __tcp_select_window() is not cheap. */ 1575 if (2*rcv_window_now <= tp->window_clamp) { 1576 __u32 new_window = __tcp_select_window(sk); 1577 1578 /* Send ACK now, if this read freed lots of space 1579 * in our buffer. Certainly, new_window is new window. 1580 * We can advertise it now, if it is not less than current one. 1581 * "Lots" means "at least twice" here. 1582 */ 1583 if (new_window && new_window >= 2 * rcv_window_now) 1584 time_to_ack = true; 1585 } 1586 } 1587 if (time_to_ack) 1588 tcp_send_ack(sk); 1589 } 1590 1591 void __sk_defer_free_flush(struct sock *sk) 1592 { 1593 struct llist_node *head; 1594 struct sk_buff *skb, *n; 1595 1596 head = llist_del_all(&sk->defer_list); 1597 llist_for_each_entry_safe(skb, n, head, ll_node) { 1598 prefetch(n); 1599 skb_mark_not_on_list(skb); 1600 __kfree_skb(skb); 1601 } 1602 } 1603 EXPORT_SYMBOL(__sk_defer_free_flush); 1604 1605 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1606 { 1607 __skb_unlink(skb, &sk->sk_receive_queue); 1608 if (likely(skb->destructor == sock_rfree)) { 1609 sock_rfree(skb); 1610 skb->destructor = NULL; 1611 skb->sk = NULL; 1612 if (!skb_queue_empty(&sk->sk_receive_queue) || 1613 !llist_empty(&sk->defer_list)) { 1614 llist_add(&skb->ll_node, &sk->defer_list); 1615 return; 1616 } 1617 } 1618 __kfree_skb(skb); 1619 } 1620 1621 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1622 { 1623 struct sk_buff *skb; 1624 u32 offset; 1625 1626 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1627 offset = seq - TCP_SKB_CB(skb)->seq; 1628 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1629 pr_err_once("%s: found a SYN, please report !\n", __func__); 1630 offset--; 1631 } 1632 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1633 *off = offset; 1634 return skb; 1635 } 1636 /* This looks weird, but this can happen if TCP collapsing 1637 * splitted a fat GRO packet, while we released socket lock 1638 * in skb_splice_bits() 1639 */ 1640 tcp_eat_recv_skb(sk, skb); 1641 } 1642 return NULL; 1643 } 1644 1645 /* 1646 * This routine provides an alternative to tcp_recvmsg() for routines 1647 * that would like to handle copying from skbuffs directly in 'sendfile' 1648 * fashion. 1649 * Note: 1650 * - It is assumed that the socket was locked by the caller. 1651 * - The routine does not block. 1652 * - At present, there is no support for reading OOB data 1653 * or for 'peeking' the socket using this routine 1654 * (although both would be easy to implement). 1655 */ 1656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1657 sk_read_actor_t recv_actor) 1658 { 1659 struct sk_buff *skb; 1660 struct tcp_sock *tp = tcp_sk(sk); 1661 u32 seq = tp->copied_seq; 1662 u32 offset; 1663 int copied = 0; 1664 1665 if (sk->sk_state == TCP_LISTEN) 1666 return -ENOTCONN; 1667 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1668 if (offset < skb->len) { 1669 int used; 1670 size_t len; 1671 1672 len = skb->len - offset; 1673 /* Stop reading if we hit a patch of urgent data */ 1674 if (unlikely(tp->urg_data)) { 1675 u32 urg_offset = tp->urg_seq - seq; 1676 if (urg_offset < len) 1677 len = urg_offset; 1678 if (!len) 1679 break; 1680 } 1681 used = recv_actor(desc, skb, offset, len); 1682 if (used <= 0) { 1683 if (!copied) 1684 copied = used; 1685 break; 1686 } 1687 if (WARN_ON_ONCE(used > len)) 1688 used = len; 1689 seq += used; 1690 copied += used; 1691 offset += used; 1692 1693 /* If recv_actor drops the lock (e.g. TCP splice 1694 * receive) the skb pointer might be invalid when 1695 * getting here: tcp_collapse might have deleted it 1696 * while aggregating skbs from the socket queue. 1697 */ 1698 skb = tcp_recv_skb(sk, seq - 1, &offset); 1699 if (!skb) 1700 break; 1701 /* TCP coalescing might have appended data to the skb. 1702 * Try to splice more frags 1703 */ 1704 if (offset + 1 != skb->len) 1705 continue; 1706 } 1707 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1708 tcp_eat_recv_skb(sk, skb); 1709 ++seq; 1710 break; 1711 } 1712 tcp_eat_recv_skb(sk, skb); 1713 if (!desc->count) 1714 break; 1715 WRITE_ONCE(tp->copied_seq, seq); 1716 } 1717 WRITE_ONCE(tp->copied_seq, seq); 1718 1719 tcp_rcv_space_adjust(sk); 1720 1721 /* Clean up data we have read: This will do ACK frames. */ 1722 if (copied > 0) { 1723 tcp_recv_skb(sk, seq, &offset); 1724 tcp_cleanup_rbuf(sk, copied); 1725 } 1726 return copied; 1727 } 1728 EXPORT_SYMBOL(tcp_read_sock); 1729 1730 int tcp_peek_len(struct socket *sock) 1731 { 1732 return tcp_inq(sock->sk); 1733 } 1734 EXPORT_SYMBOL(tcp_peek_len); 1735 1736 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1737 int tcp_set_rcvlowat(struct sock *sk, int val) 1738 { 1739 int cap; 1740 1741 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1742 cap = sk->sk_rcvbuf >> 1; 1743 else 1744 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1745 val = min(val, cap); 1746 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1747 1748 /* Check if we need to signal EPOLLIN right now */ 1749 tcp_data_ready(sk); 1750 1751 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1752 return 0; 1753 1754 val <<= 1; 1755 if (val > sk->sk_rcvbuf) { 1756 WRITE_ONCE(sk->sk_rcvbuf, val); 1757 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1758 } 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(tcp_set_rcvlowat); 1762 1763 void tcp_update_recv_tstamps(struct sk_buff *skb, 1764 struct scm_timestamping_internal *tss) 1765 { 1766 if (skb->tstamp) 1767 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1768 else 1769 tss->ts[0] = (struct timespec64) {0}; 1770 1771 if (skb_hwtstamps(skb)->hwtstamp) 1772 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1773 else 1774 tss->ts[2] = (struct timespec64) {0}; 1775 } 1776 1777 #ifdef CONFIG_MMU 1778 static const struct vm_operations_struct tcp_vm_ops = { 1779 }; 1780 1781 int tcp_mmap(struct file *file, struct socket *sock, 1782 struct vm_area_struct *vma) 1783 { 1784 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1785 return -EPERM; 1786 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1787 1788 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1789 vma->vm_flags |= VM_MIXEDMAP; 1790 1791 vma->vm_ops = &tcp_vm_ops; 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(tcp_mmap); 1795 1796 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1797 u32 *offset_frag) 1798 { 1799 skb_frag_t *frag; 1800 1801 if (unlikely(offset_skb >= skb->len)) 1802 return NULL; 1803 1804 offset_skb -= skb_headlen(skb); 1805 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1806 return NULL; 1807 1808 frag = skb_shinfo(skb)->frags; 1809 while (offset_skb) { 1810 if (skb_frag_size(frag) > offset_skb) { 1811 *offset_frag = offset_skb; 1812 return frag; 1813 } 1814 offset_skb -= skb_frag_size(frag); 1815 ++frag; 1816 } 1817 *offset_frag = 0; 1818 return frag; 1819 } 1820 1821 static bool can_map_frag(const skb_frag_t *frag) 1822 { 1823 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1824 } 1825 1826 static int find_next_mappable_frag(const skb_frag_t *frag, 1827 int remaining_in_skb) 1828 { 1829 int offset = 0; 1830 1831 if (likely(can_map_frag(frag))) 1832 return 0; 1833 1834 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1835 offset += skb_frag_size(frag); 1836 ++frag; 1837 } 1838 return offset; 1839 } 1840 1841 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1842 struct tcp_zerocopy_receive *zc, 1843 struct sk_buff *skb, u32 offset) 1844 { 1845 u32 frag_offset, partial_frag_remainder = 0; 1846 int mappable_offset; 1847 skb_frag_t *frag; 1848 1849 /* worst case: skip to next skb. try to improve on this case below */ 1850 zc->recv_skip_hint = skb->len - offset; 1851 1852 /* Find the frag containing this offset (and how far into that frag) */ 1853 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1854 if (!frag) 1855 return; 1856 1857 if (frag_offset) { 1858 struct skb_shared_info *info = skb_shinfo(skb); 1859 1860 /* We read part of the last frag, must recvmsg() rest of skb. */ 1861 if (frag == &info->frags[info->nr_frags - 1]) 1862 return; 1863 1864 /* Else, we must at least read the remainder in this frag. */ 1865 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1866 zc->recv_skip_hint -= partial_frag_remainder; 1867 ++frag; 1868 } 1869 1870 /* partial_frag_remainder: If part way through a frag, must read rest. 1871 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1872 * in partial_frag_remainder. 1873 */ 1874 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1875 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1876 } 1877 1878 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1879 int nonblock, int flags, 1880 struct scm_timestamping_internal *tss, 1881 int *cmsg_flags); 1882 static int receive_fallback_to_copy(struct sock *sk, 1883 struct tcp_zerocopy_receive *zc, int inq, 1884 struct scm_timestamping_internal *tss) 1885 { 1886 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1887 struct msghdr msg = {}; 1888 struct iovec iov; 1889 int err; 1890 1891 zc->length = 0; 1892 zc->recv_skip_hint = 0; 1893 1894 if (copy_address != zc->copybuf_address) 1895 return -EINVAL; 1896 1897 err = import_single_range(READ, (void __user *)copy_address, 1898 inq, &iov, &msg.msg_iter); 1899 if (err) 1900 return err; 1901 1902 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1903 tss, &zc->msg_flags); 1904 if (err < 0) 1905 return err; 1906 1907 zc->copybuf_len = err; 1908 if (likely(zc->copybuf_len)) { 1909 struct sk_buff *skb; 1910 u32 offset; 1911 1912 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1913 if (skb) 1914 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1915 } 1916 return 0; 1917 } 1918 1919 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1920 struct sk_buff *skb, u32 copylen, 1921 u32 *offset, u32 *seq) 1922 { 1923 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1924 struct msghdr msg = {}; 1925 struct iovec iov; 1926 int err; 1927 1928 if (copy_address != zc->copybuf_address) 1929 return -EINVAL; 1930 1931 err = import_single_range(READ, (void __user *)copy_address, 1932 copylen, &iov, &msg.msg_iter); 1933 if (err) 1934 return err; 1935 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1936 if (err) 1937 return err; 1938 zc->recv_skip_hint -= copylen; 1939 *offset += copylen; 1940 *seq += copylen; 1941 return (__s32)copylen; 1942 } 1943 1944 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1945 struct sock *sk, 1946 struct sk_buff *skb, 1947 u32 *seq, 1948 s32 copybuf_len, 1949 struct scm_timestamping_internal *tss) 1950 { 1951 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1952 1953 if (!copylen) 1954 return 0; 1955 /* skb is null if inq < PAGE_SIZE. */ 1956 if (skb) { 1957 offset = *seq - TCP_SKB_CB(skb)->seq; 1958 } else { 1959 skb = tcp_recv_skb(sk, *seq, &offset); 1960 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1961 tcp_update_recv_tstamps(skb, tss); 1962 zc->msg_flags |= TCP_CMSG_TS; 1963 } 1964 } 1965 1966 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1967 seq); 1968 return zc->copybuf_len < 0 ? 0 : copylen; 1969 } 1970 1971 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1972 struct page **pending_pages, 1973 unsigned long pages_remaining, 1974 unsigned long *address, 1975 u32 *length, 1976 u32 *seq, 1977 struct tcp_zerocopy_receive *zc, 1978 u32 total_bytes_to_map, 1979 int err) 1980 { 1981 /* At least one page did not map. Try zapping if we skipped earlier. */ 1982 if (err == -EBUSY && 1983 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1984 u32 maybe_zap_len; 1985 1986 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1987 *length + /* Mapped or pending */ 1988 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1989 zap_page_range(vma, *address, maybe_zap_len); 1990 err = 0; 1991 } 1992 1993 if (!err) { 1994 unsigned long leftover_pages = pages_remaining; 1995 int bytes_mapped; 1996 1997 /* We called zap_page_range, try to reinsert. */ 1998 err = vm_insert_pages(vma, *address, 1999 pending_pages, 2000 &pages_remaining); 2001 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2002 *seq += bytes_mapped; 2003 *address += bytes_mapped; 2004 } 2005 if (err) { 2006 /* Either we were unable to zap, OR we zapped, retried an 2007 * insert, and still had an issue. Either ways, pages_remaining 2008 * is the number of pages we were unable to map, and we unroll 2009 * some state we speculatively touched before. 2010 */ 2011 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2012 2013 *length -= bytes_not_mapped; 2014 zc->recv_skip_hint += bytes_not_mapped; 2015 } 2016 return err; 2017 } 2018 2019 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2020 struct page **pages, 2021 unsigned int pages_to_map, 2022 unsigned long *address, 2023 u32 *length, 2024 u32 *seq, 2025 struct tcp_zerocopy_receive *zc, 2026 u32 total_bytes_to_map) 2027 { 2028 unsigned long pages_remaining = pages_to_map; 2029 unsigned int pages_mapped; 2030 unsigned int bytes_mapped; 2031 int err; 2032 2033 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2034 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2035 bytes_mapped = PAGE_SIZE * pages_mapped; 2036 /* Even if vm_insert_pages fails, it may have partially succeeded in 2037 * mapping (some but not all of the pages). 2038 */ 2039 *seq += bytes_mapped; 2040 *address += bytes_mapped; 2041 2042 if (likely(!err)) 2043 return 0; 2044 2045 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2046 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2047 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2048 err); 2049 } 2050 2051 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2052 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2053 struct tcp_zerocopy_receive *zc, 2054 struct scm_timestamping_internal *tss) 2055 { 2056 unsigned long msg_control_addr; 2057 struct msghdr cmsg_dummy; 2058 2059 msg_control_addr = (unsigned long)zc->msg_control; 2060 cmsg_dummy.msg_control = (void *)msg_control_addr; 2061 cmsg_dummy.msg_controllen = 2062 (__kernel_size_t)zc->msg_controllen; 2063 cmsg_dummy.msg_flags = in_compat_syscall() 2064 ? MSG_CMSG_COMPAT : 0; 2065 cmsg_dummy.msg_control_is_user = true; 2066 zc->msg_flags = 0; 2067 if (zc->msg_control == msg_control_addr && 2068 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2069 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2070 zc->msg_control = (__u64) 2071 ((uintptr_t)cmsg_dummy.msg_control); 2072 zc->msg_controllen = 2073 (__u64)cmsg_dummy.msg_controllen; 2074 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2075 } 2076 } 2077 2078 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2079 static int tcp_zerocopy_receive(struct sock *sk, 2080 struct tcp_zerocopy_receive *zc, 2081 struct scm_timestamping_internal *tss) 2082 { 2083 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2084 unsigned long address = (unsigned long)zc->address; 2085 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2086 s32 copybuf_len = zc->copybuf_len; 2087 struct tcp_sock *tp = tcp_sk(sk); 2088 const skb_frag_t *frags = NULL; 2089 unsigned int pages_to_map = 0; 2090 struct vm_area_struct *vma; 2091 struct sk_buff *skb = NULL; 2092 u32 seq = tp->copied_seq; 2093 u32 total_bytes_to_map; 2094 int inq = tcp_inq(sk); 2095 int ret; 2096 2097 zc->copybuf_len = 0; 2098 zc->msg_flags = 0; 2099 2100 if (address & (PAGE_SIZE - 1) || address != zc->address) 2101 return -EINVAL; 2102 2103 if (sk->sk_state == TCP_LISTEN) 2104 return -ENOTCONN; 2105 2106 sock_rps_record_flow(sk); 2107 2108 if (inq && inq <= copybuf_len) 2109 return receive_fallback_to_copy(sk, zc, inq, tss); 2110 2111 if (inq < PAGE_SIZE) { 2112 zc->length = 0; 2113 zc->recv_skip_hint = inq; 2114 if (!inq && sock_flag(sk, SOCK_DONE)) 2115 return -EIO; 2116 return 0; 2117 } 2118 2119 mmap_read_lock(current->mm); 2120 2121 vma = vma_lookup(current->mm, address); 2122 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2123 mmap_read_unlock(current->mm); 2124 return -EINVAL; 2125 } 2126 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2127 avail_len = min_t(u32, vma_len, inq); 2128 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2129 if (total_bytes_to_map) { 2130 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2131 zap_page_range(vma, address, total_bytes_to_map); 2132 zc->length = total_bytes_to_map; 2133 zc->recv_skip_hint = 0; 2134 } else { 2135 zc->length = avail_len; 2136 zc->recv_skip_hint = avail_len; 2137 } 2138 ret = 0; 2139 while (length + PAGE_SIZE <= zc->length) { 2140 int mappable_offset; 2141 struct page *page; 2142 2143 if (zc->recv_skip_hint < PAGE_SIZE) { 2144 u32 offset_frag; 2145 2146 if (skb) { 2147 if (zc->recv_skip_hint > 0) 2148 break; 2149 skb = skb->next; 2150 offset = seq - TCP_SKB_CB(skb)->seq; 2151 } else { 2152 skb = tcp_recv_skb(sk, seq, &offset); 2153 } 2154 2155 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2156 tcp_update_recv_tstamps(skb, tss); 2157 zc->msg_flags |= TCP_CMSG_TS; 2158 } 2159 zc->recv_skip_hint = skb->len - offset; 2160 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2161 if (!frags || offset_frag) 2162 break; 2163 } 2164 2165 mappable_offset = find_next_mappable_frag(frags, 2166 zc->recv_skip_hint); 2167 if (mappable_offset) { 2168 zc->recv_skip_hint = mappable_offset; 2169 break; 2170 } 2171 page = skb_frag_page(frags); 2172 prefetchw(page); 2173 pages[pages_to_map++] = page; 2174 length += PAGE_SIZE; 2175 zc->recv_skip_hint -= PAGE_SIZE; 2176 frags++; 2177 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2178 zc->recv_skip_hint < PAGE_SIZE) { 2179 /* Either full batch, or we're about to go to next skb 2180 * (and we cannot unroll failed ops across skbs). 2181 */ 2182 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2183 pages_to_map, 2184 &address, &length, 2185 &seq, zc, 2186 total_bytes_to_map); 2187 if (ret) 2188 goto out; 2189 pages_to_map = 0; 2190 } 2191 } 2192 if (pages_to_map) { 2193 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2194 &address, &length, &seq, 2195 zc, total_bytes_to_map); 2196 } 2197 out: 2198 mmap_read_unlock(current->mm); 2199 /* Try to copy straggler data. */ 2200 if (!ret) 2201 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2202 2203 if (length + copylen) { 2204 WRITE_ONCE(tp->copied_seq, seq); 2205 tcp_rcv_space_adjust(sk); 2206 2207 /* Clean up data we have read: This will do ACK frames. */ 2208 tcp_recv_skb(sk, seq, &offset); 2209 tcp_cleanup_rbuf(sk, length + copylen); 2210 ret = 0; 2211 if (length == zc->length) 2212 zc->recv_skip_hint = 0; 2213 } else { 2214 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2215 ret = -EIO; 2216 } 2217 zc->length = length; 2218 return ret; 2219 } 2220 #endif 2221 2222 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2223 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2224 struct scm_timestamping_internal *tss) 2225 { 2226 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2227 bool has_timestamping = false; 2228 2229 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2230 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2231 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2232 if (new_tstamp) { 2233 struct __kernel_timespec kts = { 2234 .tv_sec = tss->ts[0].tv_sec, 2235 .tv_nsec = tss->ts[0].tv_nsec, 2236 }; 2237 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2238 sizeof(kts), &kts); 2239 } else { 2240 struct __kernel_old_timespec ts_old = { 2241 .tv_sec = tss->ts[0].tv_sec, 2242 .tv_nsec = tss->ts[0].tv_nsec, 2243 }; 2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2245 sizeof(ts_old), &ts_old); 2246 } 2247 } else { 2248 if (new_tstamp) { 2249 struct __kernel_sock_timeval stv = { 2250 .tv_sec = tss->ts[0].tv_sec, 2251 .tv_usec = tss->ts[0].tv_nsec / 1000, 2252 }; 2253 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2254 sizeof(stv), &stv); 2255 } else { 2256 struct __kernel_old_timeval tv = { 2257 .tv_sec = tss->ts[0].tv_sec, 2258 .tv_usec = tss->ts[0].tv_nsec / 1000, 2259 }; 2260 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2261 sizeof(tv), &tv); 2262 } 2263 } 2264 } 2265 2266 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2267 has_timestamping = true; 2268 else 2269 tss->ts[0] = (struct timespec64) {0}; 2270 } 2271 2272 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2273 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2274 has_timestamping = true; 2275 else 2276 tss->ts[2] = (struct timespec64) {0}; 2277 } 2278 2279 if (has_timestamping) { 2280 tss->ts[1] = (struct timespec64) {0}; 2281 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2282 put_cmsg_scm_timestamping64(msg, tss); 2283 else 2284 put_cmsg_scm_timestamping(msg, tss); 2285 } 2286 } 2287 2288 static int tcp_inq_hint(struct sock *sk) 2289 { 2290 const struct tcp_sock *tp = tcp_sk(sk); 2291 u32 copied_seq = READ_ONCE(tp->copied_seq); 2292 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2293 int inq; 2294 2295 inq = rcv_nxt - copied_seq; 2296 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2297 lock_sock(sk); 2298 inq = tp->rcv_nxt - tp->copied_seq; 2299 release_sock(sk); 2300 } 2301 /* After receiving a FIN, tell the user-space to continue reading 2302 * by returning a non-zero inq. 2303 */ 2304 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2305 inq = 1; 2306 return inq; 2307 } 2308 2309 /* 2310 * This routine copies from a sock struct into the user buffer. 2311 * 2312 * Technical note: in 2.3 we work on _locked_ socket, so that 2313 * tricks with *seq access order and skb->users are not required. 2314 * Probably, code can be easily improved even more. 2315 */ 2316 2317 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2318 int nonblock, int flags, 2319 struct scm_timestamping_internal *tss, 2320 int *cmsg_flags) 2321 { 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 int copied = 0; 2324 u32 peek_seq; 2325 u32 *seq; 2326 unsigned long used; 2327 int err; 2328 int target; /* Read at least this many bytes */ 2329 long timeo; 2330 struct sk_buff *skb, *last; 2331 u32 urg_hole = 0; 2332 2333 err = -ENOTCONN; 2334 if (sk->sk_state == TCP_LISTEN) 2335 goto out; 2336 2337 if (tp->recvmsg_inq) 2338 *cmsg_flags = TCP_CMSG_INQ; 2339 timeo = sock_rcvtimeo(sk, nonblock); 2340 2341 /* Urgent data needs to be handled specially. */ 2342 if (flags & MSG_OOB) 2343 goto recv_urg; 2344 2345 if (unlikely(tp->repair)) { 2346 err = -EPERM; 2347 if (!(flags & MSG_PEEK)) 2348 goto out; 2349 2350 if (tp->repair_queue == TCP_SEND_QUEUE) 2351 goto recv_sndq; 2352 2353 err = -EINVAL; 2354 if (tp->repair_queue == TCP_NO_QUEUE) 2355 goto out; 2356 2357 /* 'common' recv queue MSG_PEEK-ing */ 2358 } 2359 2360 seq = &tp->copied_seq; 2361 if (flags & MSG_PEEK) { 2362 peek_seq = tp->copied_seq; 2363 seq = &peek_seq; 2364 } 2365 2366 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2367 2368 do { 2369 u32 offset; 2370 2371 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2372 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2373 if (copied) 2374 break; 2375 if (signal_pending(current)) { 2376 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2377 break; 2378 } 2379 } 2380 2381 /* Next get a buffer. */ 2382 2383 last = skb_peek_tail(&sk->sk_receive_queue); 2384 skb_queue_walk(&sk->sk_receive_queue, skb) { 2385 last = skb; 2386 /* Now that we have two receive queues this 2387 * shouldn't happen. 2388 */ 2389 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2390 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2391 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2392 flags)) 2393 break; 2394 2395 offset = *seq - TCP_SKB_CB(skb)->seq; 2396 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2397 pr_err_once("%s: found a SYN, please report !\n", __func__); 2398 offset--; 2399 } 2400 if (offset < skb->len) 2401 goto found_ok_skb; 2402 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2403 goto found_fin_ok; 2404 WARN(!(flags & MSG_PEEK), 2405 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2406 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2407 } 2408 2409 /* Well, if we have backlog, try to process it now yet. */ 2410 2411 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2412 break; 2413 2414 if (copied) { 2415 if (!timeo || 2416 sk->sk_err || 2417 sk->sk_state == TCP_CLOSE || 2418 (sk->sk_shutdown & RCV_SHUTDOWN) || 2419 signal_pending(current)) 2420 break; 2421 } else { 2422 if (sock_flag(sk, SOCK_DONE)) 2423 break; 2424 2425 if (sk->sk_err) { 2426 copied = sock_error(sk); 2427 break; 2428 } 2429 2430 if (sk->sk_shutdown & RCV_SHUTDOWN) 2431 break; 2432 2433 if (sk->sk_state == TCP_CLOSE) { 2434 /* This occurs when user tries to read 2435 * from never connected socket. 2436 */ 2437 copied = -ENOTCONN; 2438 break; 2439 } 2440 2441 if (!timeo) { 2442 copied = -EAGAIN; 2443 break; 2444 } 2445 2446 if (signal_pending(current)) { 2447 copied = sock_intr_errno(timeo); 2448 break; 2449 } 2450 } 2451 2452 if (copied >= target) { 2453 /* Do not sleep, just process backlog. */ 2454 __sk_flush_backlog(sk); 2455 } else { 2456 tcp_cleanup_rbuf(sk, copied); 2457 sk_defer_free_flush(sk); 2458 sk_wait_data(sk, &timeo, last); 2459 } 2460 2461 if ((flags & MSG_PEEK) && 2462 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2463 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2464 current->comm, 2465 task_pid_nr(current)); 2466 peek_seq = tp->copied_seq; 2467 } 2468 continue; 2469 2470 found_ok_skb: 2471 /* Ok so how much can we use? */ 2472 used = skb->len - offset; 2473 if (len < used) 2474 used = len; 2475 2476 /* Do we have urgent data here? */ 2477 if (unlikely(tp->urg_data)) { 2478 u32 urg_offset = tp->urg_seq - *seq; 2479 if (urg_offset < used) { 2480 if (!urg_offset) { 2481 if (!sock_flag(sk, SOCK_URGINLINE)) { 2482 WRITE_ONCE(*seq, *seq + 1); 2483 urg_hole++; 2484 offset++; 2485 used--; 2486 if (!used) 2487 goto skip_copy; 2488 } 2489 } else 2490 used = urg_offset; 2491 } 2492 } 2493 2494 if (!(flags & MSG_TRUNC)) { 2495 err = skb_copy_datagram_msg(skb, offset, msg, used); 2496 if (err) { 2497 /* Exception. Bailout! */ 2498 if (!copied) 2499 copied = -EFAULT; 2500 break; 2501 } 2502 } 2503 2504 WRITE_ONCE(*seq, *seq + used); 2505 copied += used; 2506 len -= used; 2507 2508 tcp_rcv_space_adjust(sk); 2509 2510 skip_copy: 2511 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2512 WRITE_ONCE(tp->urg_data, 0); 2513 tcp_fast_path_check(sk); 2514 } 2515 2516 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2517 tcp_update_recv_tstamps(skb, tss); 2518 *cmsg_flags |= TCP_CMSG_TS; 2519 } 2520 2521 if (used + offset < skb->len) 2522 continue; 2523 2524 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2525 goto found_fin_ok; 2526 if (!(flags & MSG_PEEK)) 2527 tcp_eat_recv_skb(sk, skb); 2528 continue; 2529 2530 found_fin_ok: 2531 /* Process the FIN. */ 2532 WRITE_ONCE(*seq, *seq + 1); 2533 if (!(flags & MSG_PEEK)) 2534 tcp_eat_recv_skb(sk, skb); 2535 break; 2536 } while (len > 0); 2537 2538 /* According to UNIX98, msg_name/msg_namelen are ignored 2539 * on connected socket. I was just happy when found this 8) --ANK 2540 */ 2541 2542 /* Clean up data we have read: This will do ACK frames. */ 2543 tcp_cleanup_rbuf(sk, copied); 2544 return copied; 2545 2546 out: 2547 return err; 2548 2549 recv_urg: 2550 err = tcp_recv_urg(sk, msg, len, flags); 2551 goto out; 2552 2553 recv_sndq: 2554 err = tcp_peek_sndq(sk, msg, len); 2555 goto out; 2556 } 2557 2558 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2559 int flags, int *addr_len) 2560 { 2561 int cmsg_flags = 0, ret, inq; 2562 struct scm_timestamping_internal tss; 2563 2564 if (unlikely(flags & MSG_ERRQUEUE)) 2565 return inet_recv_error(sk, msg, len, addr_len); 2566 2567 if (sk_can_busy_loop(sk) && 2568 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2569 sk->sk_state == TCP_ESTABLISHED) 2570 sk_busy_loop(sk, nonblock); 2571 2572 lock_sock(sk); 2573 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2574 &cmsg_flags); 2575 release_sock(sk); 2576 sk_defer_free_flush(sk); 2577 2578 if (cmsg_flags && ret >= 0) { 2579 if (cmsg_flags & TCP_CMSG_TS) 2580 tcp_recv_timestamp(msg, sk, &tss); 2581 if (cmsg_flags & TCP_CMSG_INQ) { 2582 inq = tcp_inq_hint(sk); 2583 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2584 } 2585 } 2586 return ret; 2587 } 2588 EXPORT_SYMBOL(tcp_recvmsg); 2589 2590 void tcp_set_state(struct sock *sk, int state) 2591 { 2592 int oldstate = sk->sk_state; 2593 2594 /* We defined a new enum for TCP states that are exported in BPF 2595 * so as not force the internal TCP states to be frozen. The 2596 * following checks will detect if an internal state value ever 2597 * differs from the BPF value. If this ever happens, then we will 2598 * need to remap the internal value to the BPF value before calling 2599 * tcp_call_bpf_2arg. 2600 */ 2601 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2602 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2603 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2604 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2605 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2606 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2607 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2608 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2609 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2610 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2611 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2612 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2613 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2614 2615 /* bpf uapi header bpf.h defines an anonymous enum with values 2616 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2617 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2618 * But clang built vmlinux does not have this enum in DWARF 2619 * since clang removes the above code before generating IR/debuginfo. 2620 * Let us explicitly emit the type debuginfo to ensure the 2621 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2622 * regardless of which compiler is used. 2623 */ 2624 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2625 2626 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2627 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2628 2629 switch (state) { 2630 case TCP_ESTABLISHED: 2631 if (oldstate != TCP_ESTABLISHED) 2632 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2633 break; 2634 2635 case TCP_CLOSE: 2636 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2637 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2638 2639 sk->sk_prot->unhash(sk); 2640 if (inet_csk(sk)->icsk_bind_hash && 2641 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2642 inet_put_port(sk); 2643 fallthrough; 2644 default: 2645 if (oldstate == TCP_ESTABLISHED) 2646 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2647 } 2648 2649 /* Change state AFTER socket is unhashed to avoid closed 2650 * socket sitting in hash tables. 2651 */ 2652 inet_sk_state_store(sk, state); 2653 } 2654 EXPORT_SYMBOL_GPL(tcp_set_state); 2655 2656 /* 2657 * State processing on a close. This implements the state shift for 2658 * sending our FIN frame. Note that we only send a FIN for some 2659 * states. A shutdown() may have already sent the FIN, or we may be 2660 * closed. 2661 */ 2662 2663 static const unsigned char new_state[16] = { 2664 /* current state: new state: action: */ 2665 [0 /* (Invalid) */] = TCP_CLOSE, 2666 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2667 [TCP_SYN_SENT] = TCP_CLOSE, 2668 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2669 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2670 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2671 [TCP_TIME_WAIT] = TCP_CLOSE, 2672 [TCP_CLOSE] = TCP_CLOSE, 2673 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2674 [TCP_LAST_ACK] = TCP_LAST_ACK, 2675 [TCP_LISTEN] = TCP_CLOSE, 2676 [TCP_CLOSING] = TCP_CLOSING, 2677 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2678 }; 2679 2680 static int tcp_close_state(struct sock *sk) 2681 { 2682 int next = (int)new_state[sk->sk_state]; 2683 int ns = next & TCP_STATE_MASK; 2684 2685 tcp_set_state(sk, ns); 2686 2687 return next & TCP_ACTION_FIN; 2688 } 2689 2690 /* 2691 * Shutdown the sending side of a connection. Much like close except 2692 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2693 */ 2694 2695 void tcp_shutdown(struct sock *sk, int how) 2696 { 2697 /* We need to grab some memory, and put together a FIN, 2698 * and then put it into the queue to be sent. 2699 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2700 */ 2701 if (!(how & SEND_SHUTDOWN)) 2702 return; 2703 2704 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2705 if ((1 << sk->sk_state) & 2706 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2707 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2708 /* Clear out any half completed packets. FIN if needed. */ 2709 if (tcp_close_state(sk)) 2710 tcp_send_fin(sk); 2711 } 2712 } 2713 EXPORT_SYMBOL(tcp_shutdown); 2714 2715 int tcp_orphan_count_sum(void) 2716 { 2717 int i, total = 0; 2718 2719 for_each_possible_cpu(i) 2720 total += per_cpu(tcp_orphan_count, i); 2721 2722 return max(total, 0); 2723 } 2724 2725 static int tcp_orphan_cache; 2726 static struct timer_list tcp_orphan_timer; 2727 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2728 2729 static void tcp_orphan_update(struct timer_list *unused) 2730 { 2731 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2732 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2733 } 2734 2735 static bool tcp_too_many_orphans(int shift) 2736 { 2737 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2738 } 2739 2740 bool tcp_check_oom(struct sock *sk, int shift) 2741 { 2742 bool too_many_orphans, out_of_socket_memory; 2743 2744 too_many_orphans = tcp_too_many_orphans(shift); 2745 out_of_socket_memory = tcp_out_of_memory(sk); 2746 2747 if (too_many_orphans) 2748 net_info_ratelimited("too many orphaned sockets\n"); 2749 if (out_of_socket_memory) 2750 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2751 return too_many_orphans || out_of_socket_memory; 2752 } 2753 2754 void __tcp_close(struct sock *sk, long timeout) 2755 { 2756 struct sk_buff *skb; 2757 int data_was_unread = 0; 2758 int state; 2759 2760 sk->sk_shutdown = SHUTDOWN_MASK; 2761 2762 if (sk->sk_state == TCP_LISTEN) { 2763 tcp_set_state(sk, TCP_CLOSE); 2764 2765 /* Special case. */ 2766 inet_csk_listen_stop(sk); 2767 2768 goto adjudge_to_death; 2769 } 2770 2771 /* We need to flush the recv. buffs. We do this only on the 2772 * descriptor close, not protocol-sourced closes, because the 2773 * reader process may not have drained the data yet! 2774 */ 2775 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2776 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2777 2778 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2779 len--; 2780 data_was_unread += len; 2781 __kfree_skb(skb); 2782 } 2783 2784 sk_mem_reclaim(sk); 2785 2786 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2787 if (sk->sk_state == TCP_CLOSE) 2788 goto adjudge_to_death; 2789 2790 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2791 * data was lost. To witness the awful effects of the old behavior of 2792 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2793 * GET in an FTP client, suspend the process, wait for the client to 2794 * advertise a zero window, then kill -9 the FTP client, wheee... 2795 * Note: timeout is always zero in such a case. 2796 */ 2797 if (unlikely(tcp_sk(sk)->repair)) { 2798 sk->sk_prot->disconnect(sk, 0); 2799 } else if (data_was_unread) { 2800 /* Unread data was tossed, zap the connection. */ 2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2802 tcp_set_state(sk, TCP_CLOSE); 2803 tcp_send_active_reset(sk, sk->sk_allocation); 2804 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2805 /* Check zero linger _after_ checking for unread data. */ 2806 sk->sk_prot->disconnect(sk, 0); 2807 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2808 } else if (tcp_close_state(sk)) { 2809 /* We FIN if the application ate all the data before 2810 * zapping the connection. 2811 */ 2812 2813 /* RED-PEN. Formally speaking, we have broken TCP state 2814 * machine. State transitions: 2815 * 2816 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2817 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2818 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2819 * 2820 * are legal only when FIN has been sent (i.e. in window), 2821 * rather than queued out of window. Purists blame. 2822 * 2823 * F.e. "RFC state" is ESTABLISHED, 2824 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2825 * 2826 * The visible declinations are that sometimes 2827 * we enter time-wait state, when it is not required really 2828 * (harmless), do not send active resets, when they are 2829 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2830 * they look as CLOSING or LAST_ACK for Linux) 2831 * Probably, I missed some more holelets. 2832 * --ANK 2833 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2834 * in a single packet! (May consider it later but will 2835 * probably need API support or TCP_CORK SYN-ACK until 2836 * data is written and socket is closed.) 2837 */ 2838 tcp_send_fin(sk); 2839 } 2840 2841 sk_stream_wait_close(sk, timeout); 2842 2843 adjudge_to_death: 2844 state = sk->sk_state; 2845 sock_hold(sk); 2846 sock_orphan(sk); 2847 2848 local_bh_disable(); 2849 bh_lock_sock(sk); 2850 /* remove backlog if any, without releasing ownership. */ 2851 __release_sock(sk); 2852 2853 this_cpu_inc(tcp_orphan_count); 2854 2855 /* Have we already been destroyed by a softirq or backlog? */ 2856 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2857 goto out; 2858 2859 /* This is a (useful) BSD violating of the RFC. There is a 2860 * problem with TCP as specified in that the other end could 2861 * keep a socket open forever with no application left this end. 2862 * We use a 1 minute timeout (about the same as BSD) then kill 2863 * our end. If they send after that then tough - BUT: long enough 2864 * that we won't make the old 4*rto = almost no time - whoops 2865 * reset mistake. 2866 * 2867 * Nope, it was not mistake. It is really desired behaviour 2868 * f.e. on http servers, when such sockets are useless, but 2869 * consume significant resources. Let's do it with special 2870 * linger2 option. --ANK 2871 */ 2872 2873 if (sk->sk_state == TCP_FIN_WAIT2) { 2874 struct tcp_sock *tp = tcp_sk(sk); 2875 if (tp->linger2 < 0) { 2876 tcp_set_state(sk, TCP_CLOSE); 2877 tcp_send_active_reset(sk, GFP_ATOMIC); 2878 __NET_INC_STATS(sock_net(sk), 2879 LINUX_MIB_TCPABORTONLINGER); 2880 } else { 2881 const int tmo = tcp_fin_time(sk); 2882 2883 if (tmo > TCP_TIMEWAIT_LEN) { 2884 inet_csk_reset_keepalive_timer(sk, 2885 tmo - TCP_TIMEWAIT_LEN); 2886 } else { 2887 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2888 goto out; 2889 } 2890 } 2891 } 2892 if (sk->sk_state != TCP_CLOSE) { 2893 sk_mem_reclaim(sk); 2894 if (tcp_check_oom(sk, 0)) { 2895 tcp_set_state(sk, TCP_CLOSE); 2896 tcp_send_active_reset(sk, GFP_ATOMIC); 2897 __NET_INC_STATS(sock_net(sk), 2898 LINUX_MIB_TCPABORTONMEMORY); 2899 } else if (!check_net(sock_net(sk))) { 2900 /* Not possible to send reset; just close */ 2901 tcp_set_state(sk, TCP_CLOSE); 2902 } 2903 } 2904 2905 if (sk->sk_state == TCP_CLOSE) { 2906 struct request_sock *req; 2907 2908 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2909 lockdep_sock_is_held(sk)); 2910 /* We could get here with a non-NULL req if the socket is 2911 * aborted (e.g., closed with unread data) before 3WHS 2912 * finishes. 2913 */ 2914 if (req) 2915 reqsk_fastopen_remove(sk, req, false); 2916 inet_csk_destroy_sock(sk); 2917 } 2918 /* Otherwise, socket is reprieved until protocol close. */ 2919 2920 out: 2921 bh_unlock_sock(sk); 2922 local_bh_enable(); 2923 } 2924 2925 void tcp_close(struct sock *sk, long timeout) 2926 { 2927 lock_sock(sk); 2928 __tcp_close(sk, timeout); 2929 release_sock(sk); 2930 sock_put(sk); 2931 } 2932 EXPORT_SYMBOL(tcp_close); 2933 2934 /* These states need RST on ABORT according to RFC793 */ 2935 2936 static inline bool tcp_need_reset(int state) 2937 { 2938 return (1 << state) & 2939 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2940 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2941 } 2942 2943 static void tcp_rtx_queue_purge(struct sock *sk) 2944 { 2945 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2946 2947 tcp_sk(sk)->highest_sack = NULL; 2948 while (p) { 2949 struct sk_buff *skb = rb_to_skb(p); 2950 2951 p = rb_next(p); 2952 /* Since we are deleting whole queue, no need to 2953 * list_del(&skb->tcp_tsorted_anchor) 2954 */ 2955 tcp_rtx_queue_unlink(skb, sk); 2956 tcp_wmem_free_skb(sk, skb); 2957 } 2958 } 2959 2960 void tcp_write_queue_purge(struct sock *sk) 2961 { 2962 struct sk_buff *skb; 2963 2964 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2965 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2966 tcp_skb_tsorted_anchor_cleanup(skb); 2967 tcp_wmem_free_skb(sk, skb); 2968 } 2969 tcp_rtx_queue_purge(sk); 2970 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2971 sk_mem_reclaim(sk); 2972 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2973 tcp_sk(sk)->packets_out = 0; 2974 inet_csk(sk)->icsk_backoff = 0; 2975 } 2976 2977 int tcp_disconnect(struct sock *sk, int flags) 2978 { 2979 struct inet_sock *inet = inet_sk(sk); 2980 struct inet_connection_sock *icsk = inet_csk(sk); 2981 struct tcp_sock *tp = tcp_sk(sk); 2982 int old_state = sk->sk_state; 2983 u32 seq; 2984 2985 if (old_state != TCP_CLOSE) 2986 tcp_set_state(sk, TCP_CLOSE); 2987 2988 /* ABORT function of RFC793 */ 2989 if (old_state == TCP_LISTEN) { 2990 inet_csk_listen_stop(sk); 2991 } else if (unlikely(tp->repair)) { 2992 sk->sk_err = ECONNABORTED; 2993 } else if (tcp_need_reset(old_state) || 2994 (tp->snd_nxt != tp->write_seq && 2995 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2996 /* The last check adjusts for discrepancy of Linux wrt. RFC 2997 * states 2998 */ 2999 tcp_send_active_reset(sk, gfp_any()); 3000 sk->sk_err = ECONNRESET; 3001 } else if (old_state == TCP_SYN_SENT) 3002 sk->sk_err = ECONNRESET; 3003 3004 tcp_clear_xmit_timers(sk); 3005 __skb_queue_purge(&sk->sk_receive_queue); 3006 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3007 WRITE_ONCE(tp->urg_data, 0); 3008 tcp_write_queue_purge(sk); 3009 tcp_fastopen_active_disable_ofo_check(sk); 3010 skb_rbtree_purge(&tp->out_of_order_queue); 3011 3012 inet->inet_dport = 0; 3013 3014 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3015 inet_reset_saddr(sk); 3016 3017 sk->sk_shutdown = 0; 3018 sock_reset_flag(sk, SOCK_DONE); 3019 tp->srtt_us = 0; 3020 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3021 tp->rcv_rtt_last_tsecr = 0; 3022 3023 seq = tp->write_seq + tp->max_window + 2; 3024 if (!seq) 3025 seq = 1; 3026 WRITE_ONCE(tp->write_seq, seq); 3027 3028 icsk->icsk_backoff = 0; 3029 icsk->icsk_probes_out = 0; 3030 icsk->icsk_probes_tstamp = 0; 3031 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3032 icsk->icsk_rto_min = TCP_RTO_MIN; 3033 icsk->icsk_delack_max = TCP_DELACK_MAX; 3034 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3035 tp->snd_cwnd = TCP_INIT_CWND; 3036 tp->snd_cwnd_cnt = 0; 3037 tp->window_clamp = 0; 3038 tp->delivered = 0; 3039 tp->delivered_ce = 0; 3040 if (icsk->icsk_ca_ops->release) 3041 icsk->icsk_ca_ops->release(sk); 3042 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3043 icsk->icsk_ca_initialized = 0; 3044 tcp_set_ca_state(sk, TCP_CA_Open); 3045 tp->is_sack_reneg = 0; 3046 tcp_clear_retrans(tp); 3047 tp->total_retrans = 0; 3048 inet_csk_delack_init(sk); 3049 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3050 * issue in __tcp_select_window() 3051 */ 3052 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3053 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3054 __sk_dst_reset(sk); 3055 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3056 tcp_saved_syn_free(tp); 3057 tp->compressed_ack = 0; 3058 tp->segs_in = 0; 3059 tp->segs_out = 0; 3060 tp->bytes_sent = 0; 3061 tp->bytes_acked = 0; 3062 tp->bytes_received = 0; 3063 tp->bytes_retrans = 0; 3064 tp->data_segs_in = 0; 3065 tp->data_segs_out = 0; 3066 tp->duplicate_sack[0].start_seq = 0; 3067 tp->duplicate_sack[0].end_seq = 0; 3068 tp->dsack_dups = 0; 3069 tp->reord_seen = 0; 3070 tp->retrans_out = 0; 3071 tp->sacked_out = 0; 3072 tp->tlp_high_seq = 0; 3073 tp->last_oow_ack_time = 0; 3074 /* There's a bubble in the pipe until at least the first ACK. */ 3075 tp->app_limited = ~0U; 3076 tp->rack.mstamp = 0; 3077 tp->rack.advanced = 0; 3078 tp->rack.reo_wnd_steps = 1; 3079 tp->rack.last_delivered = 0; 3080 tp->rack.reo_wnd_persist = 0; 3081 tp->rack.dsack_seen = 0; 3082 tp->syn_data_acked = 0; 3083 tp->rx_opt.saw_tstamp = 0; 3084 tp->rx_opt.dsack = 0; 3085 tp->rx_opt.num_sacks = 0; 3086 tp->rcv_ooopack = 0; 3087 3088 3089 /* Clean up fastopen related fields */ 3090 tcp_free_fastopen_req(tp); 3091 inet->defer_connect = 0; 3092 tp->fastopen_client_fail = 0; 3093 3094 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3095 3096 if (sk->sk_frag.page) { 3097 put_page(sk->sk_frag.page); 3098 sk->sk_frag.page = NULL; 3099 sk->sk_frag.offset = 0; 3100 } 3101 sk_defer_free_flush(sk); 3102 sk_error_report(sk); 3103 return 0; 3104 } 3105 EXPORT_SYMBOL(tcp_disconnect); 3106 3107 static inline bool tcp_can_repair_sock(const struct sock *sk) 3108 { 3109 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3110 (sk->sk_state != TCP_LISTEN); 3111 } 3112 3113 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3114 { 3115 struct tcp_repair_window opt; 3116 3117 if (!tp->repair) 3118 return -EPERM; 3119 3120 if (len != sizeof(opt)) 3121 return -EINVAL; 3122 3123 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3124 return -EFAULT; 3125 3126 if (opt.max_window < opt.snd_wnd) 3127 return -EINVAL; 3128 3129 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3130 return -EINVAL; 3131 3132 if (after(opt.rcv_wup, tp->rcv_nxt)) 3133 return -EINVAL; 3134 3135 tp->snd_wl1 = opt.snd_wl1; 3136 tp->snd_wnd = opt.snd_wnd; 3137 tp->max_window = opt.max_window; 3138 3139 tp->rcv_wnd = opt.rcv_wnd; 3140 tp->rcv_wup = opt.rcv_wup; 3141 3142 return 0; 3143 } 3144 3145 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3146 unsigned int len) 3147 { 3148 struct tcp_sock *tp = tcp_sk(sk); 3149 struct tcp_repair_opt opt; 3150 size_t offset = 0; 3151 3152 while (len >= sizeof(opt)) { 3153 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3154 return -EFAULT; 3155 3156 offset += sizeof(opt); 3157 len -= sizeof(opt); 3158 3159 switch (opt.opt_code) { 3160 case TCPOPT_MSS: 3161 tp->rx_opt.mss_clamp = opt.opt_val; 3162 tcp_mtup_init(sk); 3163 break; 3164 case TCPOPT_WINDOW: 3165 { 3166 u16 snd_wscale = opt.opt_val & 0xFFFF; 3167 u16 rcv_wscale = opt.opt_val >> 16; 3168 3169 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3170 return -EFBIG; 3171 3172 tp->rx_opt.snd_wscale = snd_wscale; 3173 tp->rx_opt.rcv_wscale = rcv_wscale; 3174 tp->rx_opt.wscale_ok = 1; 3175 } 3176 break; 3177 case TCPOPT_SACK_PERM: 3178 if (opt.opt_val != 0) 3179 return -EINVAL; 3180 3181 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3182 break; 3183 case TCPOPT_TIMESTAMP: 3184 if (opt.opt_val != 0) 3185 return -EINVAL; 3186 3187 tp->rx_opt.tstamp_ok = 1; 3188 break; 3189 } 3190 } 3191 3192 return 0; 3193 } 3194 3195 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3196 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3197 3198 static void tcp_enable_tx_delay(void) 3199 { 3200 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3201 static int __tcp_tx_delay_enabled = 0; 3202 3203 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3204 static_branch_enable(&tcp_tx_delay_enabled); 3205 pr_info("TCP_TX_DELAY enabled\n"); 3206 } 3207 } 3208 } 3209 3210 /* When set indicates to always queue non-full frames. Later the user clears 3211 * this option and we transmit any pending partial frames in the queue. This is 3212 * meant to be used alongside sendfile() to get properly filled frames when the 3213 * user (for example) must write out headers with a write() call first and then 3214 * use sendfile to send out the data parts. 3215 * 3216 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3217 * TCP_NODELAY. 3218 */ 3219 void __tcp_sock_set_cork(struct sock *sk, bool on) 3220 { 3221 struct tcp_sock *tp = tcp_sk(sk); 3222 3223 if (on) { 3224 tp->nonagle |= TCP_NAGLE_CORK; 3225 } else { 3226 tp->nonagle &= ~TCP_NAGLE_CORK; 3227 if (tp->nonagle & TCP_NAGLE_OFF) 3228 tp->nonagle |= TCP_NAGLE_PUSH; 3229 tcp_push_pending_frames(sk); 3230 } 3231 } 3232 3233 void tcp_sock_set_cork(struct sock *sk, bool on) 3234 { 3235 lock_sock(sk); 3236 __tcp_sock_set_cork(sk, on); 3237 release_sock(sk); 3238 } 3239 EXPORT_SYMBOL(tcp_sock_set_cork); 3240 3241 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3242 * remembered, but it is not activated until cork is cleared. 3243 * 3244 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3245 * even TCP_CORK for currently queued segments. 3246 */ 3247 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3248 { 3249 if (on) { 3250 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3251 tcp_push_pending_frames(sk); 3252 } else { 3253 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3254 } 3255 } 3256 3257 void tcp_sock_set_nodelay(struct sock *sk) 3258 { 3259 lock_sock(sk); 3260 __tcp_sock_set_nodelay(sk, true); 3261 release_sock(sk); 3262 } 3263 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3264 3265 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3266 { 3267 if (!val) { 3268 inet_csk_enter_pingpong_mode(sk); 3269 return; 3270 } 3271 3272 inet_csk_exit_pingpong_mode(sk); 3273 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3274 inet_csk_ack_scheduled(sk)) { 3275 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3276 tcp_cleanup_rbuf(sk, 1); 3277 if (!(val & 1)) 3278 inet_csk_enter_pingpong_mode(sk); 3279 } 3280 } 3281 3282 void tcp_sock_set_quickack(struct sock *sk, int val) 3283 { 3284 lock_sock(sk); 3285 __tcp_sock_set_quickack(sk, val); 3286 release_sock(sk); 3287 } 3288 EXPORT_SYMBOL(tcp_sock_set_quickack); 3289 3290 int tcp_sock_set_syncnt(struct sock *sk, int val) 3291 { 3292 if (val < 1 || val > MAX_TCP_SYNCNT) 3293 return -EINVAL; 3294 3295 lock_sock(sk); 3296 inet_csk(sk)->icsk_syn_retries = val; 3297 release_sock(sk); 3298 return 0; 3299 } 3300 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3301 3302 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3303 { 3304 lock_sock(sk); 3305 inet_csk(sk)->icsk_user_timeout = val; 3306 release_sock(sk); 3307 } 3308 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3309 3310 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3311 { 3312 struct tcp_sock *tp = tcp_sk(sk); 3313 3314 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3315 return -EINVAL; 3316 3317 tp->keepalive_time = val * HZ; 3318 if (sock_flag(sk, SOCK_KEEPOPEN) && 3319 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3320 u32 elapsed = keepalive_time_elapsed(tp); 3321 3322 if (tp->keepalive_time > elapsed) 3323 elapsed = tp->keepalive_time - elapsed; 3324 else 3325 elapsed = 0; 3326 inet_csk_reset_keepalive_timer(sk, elapsed); 3327 } 3328 3329 return 0; 3330 } 3331 3332 int tcp_sock_set_keepidle(struct sock *sk, int val) 3333 { 3334 int err; 3335 3336 lock_sock(sk); 3337 err = tcp_sock_set_keepidle_locked(sk, val); 3338 release_sock(sk); 3339 return err; 3340 } 3341 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3342 3343 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3344 { 3345 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3346 return -EINVAL; 3347 3348 lock_sock(sk); 3349 tcp_sk(sk)->keepalive_intvl = val * HZ; 3350 release_sock(sk); 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3354 3355 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3356 { 3357 if (val < 1 || val > MAX_TCP_KEEPCNT) 3358 return -EINVAL; 3359 3360 lock_sock(sk); 3361 tcp_sk(sk)->keepalive_probes = val; 3362 release_sock(sk); 3363 return 0; 3364 } 3365 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3366 3367 int tcp_set_window_clamp(struct sock *sk, int val) 3368 { 3369 struct tcp_sock *tp = tcp_sk(sk); 3370 3371 if (!val) { 3372 if (sk->sk_state != TCP_CLOSE) 3373 return -EINVAL; 3374 tp->window_clamp = 0; 3375 } else { 3376 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3377 SOCK_MIN_RCVBUF / 2 : val; 3378 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3379 } 3380 return 0; 3381 } 3382 3383 /* 3384 * Socket option code for TCP. 3385 */ 3386 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3387 sockptr_t optval, unsigned int optlen) 3388 { 3389 struct tcp_sock *tp = tcp_sk(sk); 3390 struct inet_connection_sock *icsk = inet_csk(sk); 3391 struct net *net = sock_net(sk); 3392 int val; 3393 int err = 0; 3394 3395 /* These are data/string values, all the others are ints */ 3396 switch (optname) { 3397 case TCP_CONGESTION: { 3398 char name[TCP_CA_NAME_MAX]; 3399 3400 if (optlen < 1) 3401 return -EINVAL; 3402 3403 val = strncpy_from_sockptr(name, optval, 3404 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3405 if (val < 0) 3406 return -EFAULT; 3407 name[val] = 0; 3408 3409 lock_sock(sk); 3410 err = tcp_set_congestion_control(sk, name, true, 3411 ns_capable(sock_net(sk)->user_ns, 3412 CAP_NET_ADMIN)); 3413 release_sock(sk); 3414 return err; 3415 } 3416 case TCP_ULP: { 3417 char name[TCP_ULP_NAME_MAX]; 3418 3419 if (optlen < 1) 3420 return -EINVAL; 3421 3422 val = strncpy_from_sockptr(name, optval, 3423 min_t(long, TCP_ULP_NAME_MAX - 1, 3424 optlen)); 3425 if (val < 0) 3426 return -EFAULT; 3427 name[val] = 0; 3428 3429 lock_sock(sk); 3430 err = tcp_set_ulp(sk, name); 3431 release_sock(sk); 3432 return err; 3433 } 3434 case TCP_FASTOPEN_KEY: { 3435 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3436 __u8 *backup_key = NULL; 3437 3438 /* Allow a backup key as well to facilitate key rotation 3439 * First key is the active one. 3440 */ 3441 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3442 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3443 return -EINVAL; 3444 3445 if (copy_from_sockptr(key, optval, optlen)) 3446 return -EFAULT; 3447 3448 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3449 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3450 3451 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3452 } 3453 default: 3454 /* fallthru */ 3455 break; 3456 } 3457 3458 if (optlen < sizeof(int)) 3459 return -EINVAL; 3460 3461 if (copy_from_sockptr(&val, optval, sizeof(val))) 3462 return -EFAULT; 3463 3464 lock_sock(sk); 3465 3466 switch (optname) { 3467 case TCP_MAXSEG: 3468 /* Values greater than interface MTU won't take effect. However 3469 * at the point when this call is done we typically don't yet 3470 * know which interface is going to be used 3471 */ 3472 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3473 err = -EINVAL; 3474 break; 3475 } 3476 tp->rx_opt.user_mss = val; 3477 break; 3478 3479 case TCP_NODELAY: 3480 __tcp_sock_set_nodelay(sk, val); 3481 break; 3482 3483 case TCP_THIN_LINEAR_TIMEOUTS: 3484 if (val < 0 || val > 1) 3485 err = -EINVAL; 3486 else 3487 tp->thin_lto = val; 3488 break; 3489 3490 case TCP_THIN_DUPACK: 3491 if (val < 0 || val > 1) 3492 err = -EINVAL; 3493 break; 3494 3495 case TCP_REPAIR: 3496 if (!tcp_can_repair_sock(sk)) 3497 err = -EPERM; 3498 else if (val == TCP_REPAIR_ON) { 3499 tp->repair = 1; 3500 sk->sk_reuse = SK_FORCE_REUSE; 3501 tp->repair_queue = TCP_NO_QUEUE; 3502 } else if (val == TCP_REPAIR_OFF) { 3503 tp->repair = 0; 3504 sk->sk_reuse = SK_NO_REUSE; 3505 tcp_send_window_probe(sk); 3506 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3507 tp->repair = 0; 3508 sk->sk_reuse = SK_NO_REUSE; 3509 } else 3510 err = -EINVAL; 3511 3512 break; 3513 3514 case TCP_REPAIR_QUEUE: 3515 if (!tp->repair) 3516 err = -EPERM; 3517 else if ((unsigned int)val < TCP_QUEUES_NR) 3518 tp->repair_queue = val; 3519 else 3520 err = -EINVAL; 3521 break; 3522 3523 case TCP_QUEUE_SEQ: 3524 if (sk->sk_state != TCP_CLOSE) { 3525 err = -EPERM; 3526 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3527 if (!tcp_rtx_queue_empty(sk)) 3528 err = -EPERM; 3529 else 3530 WRITE_ONCE(tp->write_seq, val); 3531 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3532 if (tp->rcv_nxt != tp->copied_seq) { 3533 err = -EPERM; 3534 } else { 3535 WRITE_ONCE(tp->rcv_nxt, val); 3536 WRITE_ONCE(tp->copied_seq, val); 3537 } 3538 } else { 3539 err = -EINVAL; 3540 } 3541 break; 3542 3543 case TCP_REPAIR_OPTIONS: 3544 if (!tp->repair) 3545 err = -EINVAL; 3546 else if (sk->sk_state == TCP_ESTABLISHED) 3547 err = tcp_repair_options_est(sk, optval, optlen); 3548 else 3549 err = -EPERM; 3550 break; 3551 3552 case TCP_CORK: 3553 __tcp_sock_set_cork(sk, val); 3554 break; 3555 3556 case TCP_KEEPIDLE: 3557 err = tcp_sock_set_keepidle_locked(sk, val); 3558 break; 3559 case TCP_KEEPINTVL: 3560 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3561 err = -EINVAL; 3562 else 3563 tp->keepalive_intvl = val * HZ; 3564 break; 3565 case TCP_KEEPCNT: 3566 if (val < 1 || val > MAX_TCP_KEEPCNT) 3567 err = -EINVAL; 3568 else 3569 tp->keepalive_probes = val; 3570 break; 3571 case TCP_SYNCNT: 3572 if (val < 1 || val > MAX_TCP_SYNCNT) 3573 err = -EINVAL; 3574 else 3575 icsk->icsk_syn_retries = val; 3576 break; 3577 3578 case TCP_SAVE_SYN: 3579 /* 0: disable, 1: enable, 2: start from ether_header */ 3580 if (val < 0 || val > 2) 3581 err = -EINVAL; 3582 else 3583 tp->save_syn = val; 3584 break; 3585 3586 case TCP_LINGER2: 3587 if (val < 0) 3588 tp->linger2 = -1; 3589 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3590 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3591 else 3592 tp->linger2 = val * HZ; 3593 break; 3594 3595 case TCP_DEFER_ACCEPT: 3596 /* Translate value in seconds to number of retransmits */ 3597 icsk->icsk_accept_queue.rskq_defer_accept = 3598 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3599 TCP_RTO_MAX / HZ); 3600 break; 3601 3602 case TCP_WINDOW_CLAMP: 3603 err = tcp_set_window_clamp(sk, val); 3604 break; 3605 3606 case TCP_QUICKACK: 3607 __tcp_sock_set_quickack(sk, val); 3608 break; 3609 3610 #ifdef CONFIG_TCP_MD5SIG 3611 case TCP_MD5SIG: 3612 case TCP_MD5SIG_EXT: 3613 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3614 break; 3615 #endif 3616 case TCP_USER_TIMEOUT: 3617 /* Cap the max time in ms TCP will retry or probe the window 3618 * before giving up and aborting (ETIMEDOUT) a connection. 3619 */ 3620 if (val < 0) 3621 err = -EINVAL; 3622 else 3623 icsk->icsk_user_timeout = val; 3624 break; 3625 3626 case TCP_FASTOPEN: 3627 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3628 TCPF_LISTEN))) { 3629 tcp_fastopen_init_key_once(net); 3630 3631 fastopen_queue_tune(sk, val); 3632 } else { 3633 err = -EINVAL; 3634 } 3635 break; 3636 case TCP_FASTOPEN_CONNECT: 3637 if (val > 1 || val < 0) { 3638 err = -EINVAL; 3639 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3640 if (sk->sk_state == TCP_CLOSE) 3641 tp->fastopen_connect = val; 3642 else 3643 err = -EINVAL; 3644 } else { 3645 err = -EOPNOTSUPP; 3646 } 3647 break; 3648 case TCP_FASTOPEN_NO_COOKIE: 3649 if (val > 1 || val < 0) 3650 err = -EINVAL; 3651 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3652 err = -EINVAL; 3653 else 3654 tp->fastopen_no_cookie = val; 3655 break; 3656 case TCP_TIMESTAMP: 3657 if (!tp->repair) 3658 err = -EPERM; 3659 else 3660 tp->tsoffset = val - tcp_time_stamp_raw(); 3661 break; 3662 case TCP_REPAIR_WINDOW: 3663 err = tcp_repair_set_window(tp, optval, optlen); 3664 break; 3665 case TCP_NOTSENT_LOWAT: 3666 tp->notsent_lowat = val; 3667 sk->sk_write_space(sk); 3668 break; 3669 case TCP_INQ: 3670 if (val > 1 || val < 0) 3671 err = -EINVAL; 3672 else 3673 tp->recvmsg_inq = val; 3674 break; 3675 case TCP_TX_DELAY: 3676 if (val) 3677 tcp_enable_tx_delay(); 3678 tp->tcp_tx_delay = val; 3679 break; 3680 default: 3681 err = -ENOPROTOOPT; 3682 break; 3683 } 3684 3685 release_sock(sk); 3686 return err; 3687 } 3688 3689 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3690 unsigned int optlen) 3691 { 3692 const struct inet_connection_sock *icsk = inet_csk(sk); 3693 3694 if (level != SOL_TCP) 3695 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3696 optval, optlen); 3697 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3698 } 3699 EXPORT_SYMBOL(tcp_setsockopt); 3700 3701 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3702 struct tcp_info *info) 3703 { 3704 u64 stats[__TCP_CHRONO_MAX], total = 0; 3705 enum tcp_chrono i; 3706 3707 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3708 stats[i] = tp->chrono_stat[i - 1]; 3709 if (i == tp->chrono_type) 3710 stats[i] += tcp_jiffies32 - tp->chrono_start; 3711 stats[i] *= USEC_PER_SEC / HZ; 3712 total += stats[i]; 3713 } 3714 3715 info->tcpi_busy_time = total; 3716 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3717 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3718 } 3719 3720 /* Return information about state of tcp endpoint in API format. */ 3721 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3722 { 3723 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3724 const struct inet_connection_sock *icsk = inet_csk(sk); 3725 unsigned long rate; 3726 u32 now; 3727 u64 rate64; 3728 bool slow; 3729 3730 memset(info, 0, sizeof(*info)); 3731 if (sk->sk_type != SOCK_STREAM) 3732 return; 3733 3734 info->tcpi_state = inet_sk_state_load(sk); 3735 3736 /* Report meaningful fields for all TCP states, including listeners */ 3737 rate = READ_ONCE(sk->sk_pacing_rate); 3738 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3739 info->tcpi_pacing_rate = rate64; 3740 3741 rate = READ_ONCE(sk->sk_max_pacing_rate); 3742 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3743 info->tcpi_max_pacing_rate = rate64; 3744 3745 info->tcpi_reordering = tp->reordering; 3746 info->tcpi_snd_cwnd = tp->snd_cwnd; 3747 3748 if (info->tcpi_state == TCP_LISTEN) { 3749 /* listeners aliased fields : 3750 * tcpi_unacked -> Number of children ready for accept() 3751 * tcpi_sacked -> max backlog 3752 */ 3753 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3754 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3755 return; 3756 } 3757 3758 slow = lock_sock_fast(sk); 3759 3760 info->tcpi_ca_state = icsk->icsk_ca_state; 3761 info->tcpi_retransmits = icsk->icsk_retransmits; 3762 info->tcpi_probes = icsk->icsk_probes_out; 3763 info->tcpi_backoff = icsk->icsk_backoff; 3764 3765 if (tp->rx_opt.tstamp_ok) 3766 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3767 if (tcp_is_sack(tp)) 3768 info->tcpi_options |= TCPI_OPT_SACK; 3769 if (tp->rx_opt.wscale_ok) { 3770 info->tcpi_options |= TCPI_OPT_WSCALE; 3771 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3772 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3773 } 3774 3775 if (tp->ecn_flags & TCP_ECN_OK) 3776 info->tcpi_options |= TCPI_OPT_ECN; 3777 if (tp->ecn_flags & TCP_ECN_SEEN) 3778 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3779 if (tp->syn_data_acked) 3780 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3781 3782 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3783 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3784 info->tcpi_snd_mss = tp->mss_cache; 3785 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3786 3787 info->tcpi_unacked = tp->packets_out; 3788 info->tcpi_sacked = tp->sacked_out; 3789 3790 info->tcpi_lost = tp->lost_out; 3791 info->tcpi_retrans = tp->retrans_out; 3792 3793 now = tcp_jiffies32; 3794 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3795 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3796 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3797 3798 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3799 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3800 info->tcpi_rtt = tp->srtt_us >> 3; 3801 info->tcpi_rttvar = tp->mdev_us >> 2; 3802 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3803 info->tcpi_advmss = tp->advmss; 3804 3805 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3806 info->tcpi_rcv_space = tp->rcvq_space.space; 3807 3808 info->tcpi_total_retrans = tp->total_retrans; 3809 3810 info->tcpi_bytes_acked = tp->bytes_acked; 3811 info->tcpi_bytes_received = tp->bytes_received; 3812 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3813 tcp_get_info_chrono_stats(tp, info); 3814 3815 info->tcpi_segs_out = tp->segs_out; 3816 3817 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3818 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3819 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3820 3821 info->tcpi_min_rtt = tcp_min_rtt(tp); 3822 info->tcpi_data_segs_out = tp->data_segs_out; 3823 3824 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3825 rate64 = tcp_compute_delivery_rate(tp); 3826 if (rate64) 3827 info->tcpi_delivery_rate = rate64; 3828 info->tcpi_delivered = tp->delivered; 3829 info->tcpi_delivered_ce = tp->delivered_ce; 3830 info->tcpi_bytes_sent = tp->bytes_sent; 3831 info->tcpi_bytes_retrans = tp->bytes_retrans; 3832 info->tcpi_dsack_dups = tp->dsack_dups; 3833 info->tcpi_reord_seen = tp->reord_seen; 3834 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3835 info->tcpi_snd_wnd = tp->snd_wnd; 3836 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3837 unlock_sock_fast(sk, slow); 3838 } 3839 EXPORT_SYMBOL_GPL(tcp_get_info); 3840 3841 static size_t tcp_opt_stats_get_size(void) 3842 { 3843 return 3844 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3850 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3851 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3852 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3853 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3854 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3855 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3856 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3857 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3861 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3862 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3866 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3868 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3869 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3870 0; 3871 } 3872 3873 /* Returns TTL or hop limit of an incoming packet from skb. */ 3874 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3875 { 3876 if (skb->protocol == htons(ETH_P_IP)) 3877 return ip_hdr(skb)->ttl; 3878 else if (skb->protocol == htons(ETH_P_IPV6)) 3879 return ipv6_hdr(skb)->hop_limit; 3880 else 3881 return 0; 3882 } 3883 3884 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3885 const struct sk_buff *orig_skb, 3886 const struct sk_buff *ack_skb) 3887 { 3888 const struct tcp_sock *tp = tcp_sk(sk); 3889 struct sk_buff *stats; 3890 struct tcp_info info; 3891 unsigned long rate; 3892 u64 rate64; 3893 3894 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3895 if (!stats) 3896 return NULL; 3897 3898 tcp_get_info_chrono_stats(tp, &info); 3899 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3900 info.tcpi_busy_time, TCP_NLA_PAD); 3901 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3902 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3903 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3904 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3905 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3906 tp->data_segs_out, TCP_NLA_PAD); 3907 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3908 tp->total_retrans, TCP_NLA_PAD); 3909 3910 rate = READ_ONCE(sk->sk_pacing_rate); 3911 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3912 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3913 3914 rate64 = tcp_compute_delivery_rate(tp); 3915 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3916 3917 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3918 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3919 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3920 3921 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3922 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3923 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3924 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3925 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3926 3927 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3928 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3929 3930 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3931 TCP_NLA_PAD); 3932 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3933 TCP_NLA_PAD); 3934 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3935 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3936 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3937 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3938 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3939 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3940 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3941 TCP_NLA_PAD); 3942 if (ack_skb) 3943 nla_put_u8(stats, TCP_NLA_TTL, 3944 tcp_skb_ttl_or_hop_limit(ack_skb)); 3945 3946 return stats; 3947 } 3948 3949 static int do_tcp_getsockopt(struct sock *sk, int level, 3950 int optname, char __user *optval, int __user *optlen) 3951 { 3952 struct inet_connection_sock *icsk = inet_csk(sk); 3953 struct tcp_sock *tp = tcp_sk(sk); 3954 struct net *net = sock_net(sk); 3955 int val, len; 3956 3957 if (get_user(len, optlen)) 3958 return -EFAULT; 3959 3960 len = min_t(unsigned int, len, sizeof(int)); 3961 3962 if (len < 0) 3963 return -EINVAL; 3964 3965 switch (optname) { 3966 case TCP_MAXSEG: 3967 val = tp->mss_cache; 3968 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3969 val = tp->rx_opt.user_mss; 3970 if (tp->repair) 3971 val = tp->rx_opt.mss_clamp; 3972 break; 3973 case TCP_NODELAY: 3974 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3975 break; 3976 case TCP_CORK: 3977 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3978 break; 3979 case TCP_KEEPIDLE: 3980 val = keepalive_time_when(tp) / HZ; 3981 break; 3982 case TCP_KEEPINTVL: 3983 val = keepalive_intvl_when(tp) / HZ; 3984 break; 3985 case TCP_KEEPCNT: 3986 val = keepalive_probes(tp); 3987 break; 3988 case TCP_SYNCNT: 3989 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3990 break; 3991 case TCP_LINGER2: 3992 val = tp->linger2; 3993 if (val >= 0) 3994 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3995 break; 3996 case TCP_DEFER_ACCEPT: 3997 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3998 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3999 break; 4000 case TCP_WINDOW_CLAMP: 4001 val = tp->window_clamp; 4002 break; 4003 case TCP_INFO: { 4004 struct tcp_info info; 4005 4006 if (get_user(len, optlen)) 4007 return -EFAULT; 4008 4009 tcp_get_info(sk, &info); 4010 4011 len = min_t(unsigned int, len, sizeof(info)); 4012 if (put_user(len, optlen)) 4013 return -EFAULT; 4014 if (copy_to_user(optval, &info, len)) 4015 return -EFAULT; 4016 return 0; 4017 } 4018 case TCP_CC_INFO: { 4019 const struct tcp_congestion_ops *ca_ops; 4020 union tcp_cc_info info; 4021 size_t sz = 0; 4022 int attr; 4023 4024 if (get_user(len, optlen)) 4025 return -EFAULT; 4026 4027 ca_ops = icsk->icsk_ca_ops; 4028 if (ca_ops && ca_ops->get_info) 4029 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4030 4031 len = min_t(unsigned int, len, sz); 4032 if (put_user(len, optlen)) 4033 return -EFAULT; 4034 if (copy_to_user(optval, &info, len)) 4035 return -EFAULT; 4036 return 0; 4037 } 4038 case TCP_QUICKACK: 4039 val = !inet_csk_in_pingpong_mode(sk); 4040 break; 4041 4042 case TCP_CONGESTION: 4043 if (get_user(len, optlen)) 4044 return -EFAULT; 4045 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4046 if (put_user(len, optlen)) 4047 return -EFAULT; 4048 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4049 return -EFAULT; 4050 return 0; 4051 4052 case TCP_ULP: 4053 if (get_user(len, optlen)) 4054 return -EFAULT; 4055 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4056 if (!icsk->icsk_ulp_ops) { 4057 if (put_user(0, optlen)) 4058 return -EFAULT; 4059 return 0; 4060 } 4061 if (put_user(len, optlen)) 4062 return -EFAULT; 4063 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4064 return -EFAULT; 4065 return 0; 4066 4067 case TCP_FASTOPEN_KEY: { 4068 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4069 unsigned int key_len; 4070 4071 if (get_user(len, optlen)) 4072 return -EFAULT; 4073 4074 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4075 TCP_FASTOPEN_KEY_LENGTH; 4076 len = min_t(unsigned int, len, key_len); 4077 if (put_user(len, optlen)) 4078 return -EFAULT; 4079 if (copy_to_user(optval, key, len)) 4080 return -EFAULT; 4081 return 0; 4082 } 4083 case TCP_THIN_LINEAR_TIMEOUTS: 4084 val = tp->thin_lto; 4085 break; 4086 4087 case TCP_THIN_DUPACK: 4088 val = 0; 4089 break; 4090 4091 case TCP_REPAIR: 4092 val = tp->repair; 4093 break; 4094 4095 case TCP_REPAIR_QUEUE: 4096 if (tp->repair) 4097 val = tp->repair_queue; 4098 else 4099 return -EINVAL; 4100 break; 4101 4102 case TCP_REPAIR_WINDOW: { 4103 struct tcp_repair_window opt; 4104 4105 if (get_user(len, optlen)) 4106 return -EFAULT; 4107 4108 if (len != sizeof(opt)) 4109 return -EINVAL; 4110 4111 if (!tp->repair) 4112 return -EPERM; 4113 4114 opt.snd_wl1 = tp->snd_wl1; 4115 opt.snd_wnd = tp->snd_wnd; 4116 opt.max_window = tp->max_window; 4117 opt.rcv_wnd = tp->rcv_wnd; 4118 opt.rcv_wup = tp->rcv_wup; 4119 4120 if (copy_to_user(optval, &opt, len)) 4121 return -EFAULT; 4122 return 0; 4123 } 4124 case TCP_QUEUE_SEQ: 4125 if (tp->repair_queue == TCP_SEND_QUEUE) 4126 val = tp->write_seq; 4127 else if (tp->repair_queue == TCP_RECV_QUEUE) 4128 val = tp->rcv_nxt; 4129 else 4130 return -EINVAL; 4131 break; 4132 4133 case TCP_USER_TIMEOUT: 4134 val = icsk->icsk_user_timeout; 4135 break; 4136 4137 case TCP_FASTOPEN: 4138 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4139 break; 4140 4141 case TCP_FASTOPEN_CONNECT: 4142 val = tp->fastopen_connect; 4143 break; 4144 4145 case TCP_FASTOPEN_NO_COOKIE: 4146 val = tp->fastopen_no_cookie; 4147 break; 4148 4149 case TCP_TX_DELAY: 4150 val = tp->tcp_tx_delay; 4151 break; 4152 4153 case TCP_TIMESTAMP: 4154 val = tcp_time_stamp_raw() + tp->tsoffset; 4155 break; 4156 case TCP_NOTSENT_LOWAT: 4157 val = tp->notsent_lowat; 4158 break; 4159 case TCP_INQ: 4160 val = tp->recvmsg_inq; 4161 break; 4162 case TCP_SAVE_SYN: 4163 val = tp->save_syn; 4164 break; 4165 case TCP_SAVED_SYN: { 4166 if (get_user(len, optlen)) 4167 return -EFAULT; 4168 4169 lock_sock(sk); 4170 if (tp->saved_syn) { 4171 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4172 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4173 optlen)) { 4174 release_sock(sk); 4175 return -EFAULT; 4176 } 4177 release_sock(sk); 4178 return -EINVAL; 4179 } 4180 len = tcp_saved_syn_len(tp->saved_syn); 4181 if (put_user(len, optlen)) { 4182 release_sock(sk); 4183 return -EFAULT; 4184 } 4185 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4186 release_sock(sk); 4187 return -EFAULT; 4188 } 4189 tcp_saved_syn_free(tp); 4190 release_sock(sk); 4191 } else { 4192 release_sock(sk); 4193 len = 0; 4194 if (put_user(len, optlen)) 4195 return -EFAULT; 4196 } 4197 return 0; 4198 } 4199 #ifdef CONFIG_MMU 4200 case TCP_ZEROCOPY_RECEIVE: { 4201 struct scm_timestamping_internal tss; 4202 struct tcp_zerocopy_receive zc = {}; 4203 int err; 4204 4205 if (get_user(len, optlen)) 4206 return -EFAULT; 4207 if (len < 0 || 4208 len < offsetofend(struct tcp_zerocopy_receive, length)) 4209 return -EINVAL; 4210 if (unlikely(len > sizeof(zc))) { 4211 err = check_zeroed_user(optval + sizeof(zc), 4212 len - sizeof(zc)); 4213 if (err < 1) 4214 return err == 0 ? -EINVAL : err; 4215 len = sizeof(zc); 4216 if (put_user(len, optlen)) 4217 return -EFAULT; 4218 } 4219 if (copy_from_user(&zc, optval, len)) 4220 return -EFAULT; 4221 if (zc.reserved) 4222 return -EINVAL; 4223 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4224 return -EINVAL; 4225 lock_sock(sk); 4226 err = tcp_zerocopy_receive(sk, &zc, &tss); 4227 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4228 &zc, &len, err); 4229 release_sock(sk); 4230 sk_defer_free_flush(sk); 4231 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4232 goto zerocopy_rcv_cmsg; 4233 switch (len) { 4234 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4235 goto zerocopy_rcv_cmsg; 4236 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4237 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4238 case offsetofend(struct tcp_zerocopy_receive, flags): 4239 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4240 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4241 case offsetofend(struct tcp_zerocopy_receive, err): 4242 goto zerocopy_rcv_sk_err; 4243 case offsetofend(struct tcp_zerocopy_receive, inq): 4244 goto zerocopy_rcv_inq; 4245 case offsetofend(struct tcp_zerocopy_receive, length): 4246 default: 4247 goto zerocopy_rcv_out; 4248 } 4249 zerocopy_rcv_cmsg: 4250 if (zc.msg_flags & TCP_CMSG_TS) 4251 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4252 else 4253 zc.msg_flags = 0; 4254 zerocopy_rcv_sk_err: 4255 if (!err) 4256 zc.err = sock_error(sk); 4257 zerocopy_rcv_inq: 4258 zc.inq = tcp_inq_hint(sk); 4259 zerocopy_rcv_out: 4260 if (!err && copy_to_user(optval, &zc, len)) 4261 err = -EFAULT; 4262 return err; 4263 } 4264 #endif 4265 default: 4266 return -ENOPROTOOPT; 4267 } 4268 4269 if (put_user(len, optlen)) 4270 return -EFAULT; 4271 if (copy_to_user(optval, &val, len)) 4272 return -EFAULT; 4273 return 0; 4274 } 4275 4276 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4277 { 4278 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4279 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4280 */ 4281 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4282 return true; 4283 4284 return false; 4285 } 4286 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4287 4288 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4289 int __user *optlen) 4290 { 4291 struct inet_connection_sock *icsk = inet_csk(sk); 4292 4293 if (level != SOL_TCP) 4294 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4295 optval, optlen); 4296 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4297 } 4298 EXPORT_SYMBOL(tcp_getsockopt); 4299 4300 #ifdef CONFIG_TCP_MD5SIG 4301 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4302 static DEFINE_MUTEX(tcp_md5sig_mutex); 4303 static bool tcp_md5sig_pool_populated = false; 4304 4305 static void __tcp_alloc_md5sig_pool(void) 4306 { 4307 struct crypto_ahash *hash; 4308 int cpu; 4309 4310 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4311 if (IS_ERR(hash)) 4312 return; 4313 4314 for_each_possible_cpu(cpu) { 4315 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4316 struct ahash_request *req; 4317 4318 if (!scratch) { 4319 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4320 sizeof(struct tcphdr), 4321 GFP_KERNEL, 4322 cpu_to_node(cpu)); 4323 if (!scratch) 4324 return; 4325 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4326 } 4327 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4328 continue; 4329 4330 req = ahash_request_alloc(hash, GFP_KERNEL); 4331 if (!req) 4332 return; 4333 4334 ahash_request_set_callback(req, 0, NULL, NULL); 4335 4336 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4337 } 4338 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4339 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4340 */ 4341 smp_wmb(); 4342 tcp_md5sig_pool_populated = true; 4343 } 4344 4345 bool tcp_alloc_md5sig_pool(void) 4346 { 4347 if (unlikely(!tcp_md5sig_pool_populated)) { 4348 mutex_lock(&tcp_md5sig_mutex); 4349 4350 if (!tcp_md5sig_pool_populated) { 4351 __tcp_alloc_md5sig_pool(); 4352 if (tcp_md5sig_pool_populated) 4353 static_branch_inc(&tcp_md5_needed); 4354 } 4355 4356 mutex_unlock(&tcp_md5sig_mutex); 4357 } 4358 return tcp_md5sig_pool_populated; 4359 } 4360 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4361 4362 4363 /** 4364 * tcp_get_md5sig_pool - get md5sig_pool for this user 4365 * 4366 * We use percpu structure, so if we succeed, we exit with preemption 4367 * and BH disabled, to make sure another thread or softirq handling 4368 * wont try to get same context. 4369 */ 4370 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4371 { 4372 local_bh_disable(); 4373 4374 if (tcp_md5sig_pool_populated) { 4375 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4376 smp_rmb(); 4377 return this_cpu_ptr(&tcp_md5sig_pool); 4378 } 4379 local_bh_enable(); 4380 return NULL; 4381 } 4382 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4383 4384 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4385 const struct sk_buff *skb, unsigned int header_len) 4386 { 4387 struct scatterlist sg; 4388 const struct tcphdr *tp = tcp_hdr(skb); 4389 struct ahash_request *req = hp->md5_req; 4390 unsigned int i; 4391 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4392 skb_headlen(skb) - header_len : 0; 4393 const struct skb_shared_info *shi = skb_shinfo(skb); 4394 struct sk_buff *frag_iter; 4395 4396 sg_init_table(&sg, 1); 4397 4398 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4399 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4400 if (crypto_ahash_update(req)) 4401 return 1; 4402 4403 for (i = 0; i < shi->nr_frags; ++i) { 4404 const skb_frag_t *f = &shi->frags[i]; 4405 unsigned int offset = skb_frag_off(f); 4406 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4407 4408 sg_set_page(&sg, page, skb_frag_size(f), 4409 offset_in_page(offset)); 4410 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4411 if (crypto_ahash_update(req)) 4412 return 1; 4413 } 4414 4415 skb_walk_frags(skb, frag_iter) 4416 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4417 return 1; 4418 4419 return 0; 4420 } 4421 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4422 4423 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4424 { 4425 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4426 struct scatterlist sg; 4427 4428 sg_init_one(&sg, key->key, keylen); 4429 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4430 4431 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4432 return data_race(crypto_ahash_update(hp->md5_req)); 4433 } 4434 EXPORT_SYMBOL(tcp_md5_hash_key); 4435 4436 /* Called with rcu_read_lock() */ 4437 bool tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4438 enum skb_drop_reason *reason, 4439 const void *saddr, const void *daddr, 4440 int family, int dif, int sdif) 4441 { 4442 /* 4443 * This gets called for each TCP segment that arrives 4444 * so we want to be efficient. 4445 * We have 3 drop cases: 4446 * o No MD5 hash and one expected. 4447 * o MD5 hash and we're not expecting one. 4448 * o MD5 hash and its wrong. 4449 */ 4450 const __u8 *hash_location = NULL; 4451 struct tcp_md5sig_key *hash_expected; 4452 const struct tcphdr *th = tcp_hdr(skb); 4453 struct tcp_sock *tp = tcp_sk(sk); 4454 int genhash, l3index; 4455 u8 newhash[16]; 4456 4457 /* sdif set, means packet ingressed via a device 4458 * in an L3 domain and dif is set to the l3mdev 4459 */ 4460 l3index = sdif ? dif : 0; 4461 4462 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4463 hash_location = tcp_parse_md5sig_option(th); 4464 4465 /* We've parsed the options - do we have a hash? */ 4466 if (!hash_expected && !hash_location) 4467 return false; 4468 4469 if (hash_expected && !hash_location) { 4470 *reason = SKB_DROP_REASON_TCP_MD5NOTFOUND; 4471 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4472 return true; 4473 } 4474 4475 if (!hash_expected && hash_location) { 4476 *reason = SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4478 return true; 4479 } 4480 4481 /* check the signature */ 4482 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4483 NULL, skb); 4484 4485 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4486 *reason = SKB_DROP_REASON_TCP_MD5FAILURE; 4487 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4488 if (family == AF_INET) { 4489 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4490 saddr, ntohs(th->source), 4491 daddr, ntohs(th->dest), 4492 genhash ? " tcp_v4_calc_md5_hash failed" 4493 : "", l3index); 4494 } else { 4495 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4496 genhash ? "failed" : "mismatch", 4497 saddr, ntohs(th->source), 4498 daddr, ntohs(th->dest), l3index); 4499 } 4500 return true; 4501 } 4502 return false; 4503 } 4504 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4505 4506 #endif 4507 4508 void tcp_done(struct sock *sk) 4509 { 4510 struct request_sock *req; 4511 4512 /* We might be called with a new socket, after 4513 * inet_csk_prepare_forced_close() has been called 4514 * so we can not use lockdep_sock_is_held(sk) 4515 */ 4516 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4517 4518 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4519 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4520 4521 tcp_set_state(sk, TCP_CLOSE); 4522 tcp_clear_xmit_timers(sk); 4523 if (req) 4524 reqsk_fastopen_remove(sk, req, false); 4525 4526 sk->sk_shutdown = SHUTDOWN_MASK; 4527 4528 if (!sock_flag(sk, SOCK_DEAD)) 4529 sk->sk_state_change(sk); 4530 else 4531 inet_csk_destroy_sock(sk); 4532 } 4533 EXPORT_SYMBOL_GPL(tcp_done); 4534 4535 int tcp_abort(struct sock *sk, int err) 4536 { 4537 if (!sk_fullsock(sk)) { 4538 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4539 struct request_sock *req = inet_reqsk(sk); 4540 4541 local_bh_disable(); 4542 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4543 local_bh_enable(); 4544 return 0; 4545 } 4546 return -EOPNOTSUPP; 4547 } 4548 4549 /* Don't race with userspace socket closes such as tcp_close. */ 4550 lock_sock(sk); 4551 4552 if (sk->sk_state == TCP_LISTEN) { 4553 tcp_set_state(sk, TCP_CLOSE); 4554 inet_csk_listen_stop(sk); 4555 } 4556 4557 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4558 local_bh_disable(); 4559 bh_lock_sock(sk); 4560 4561 if (!sock_flag(sk, SOCK_DEAD)) { 4562 sk->sk_err = err; 4563 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4564 smp_wmb(); 4565 sk_error_report(sk); 4566 if (tcp_need_reset(sk->sk_state)) 4567 tcp_send_active_reset(sk, GFP_ATOMIC); 4568 tcp_done(sk); 4569 } 4570 4571 bh_unlock_sock(sk); 4572 local_bh_enable(); 4573 tcp_write_queue_purge(sk); 4574 release_sock(sk); 4575 return 0; 4576 } 4577 EXPORT_SYMBOL_GPL(tcp_abort); 4578 4579 extern struct tcp_congestion_ops tcp_reno; 4580 4581 static __initdata unsigned long thash_entries; 4582 static int __init set_thash_entries(char *str) 4583 { 4584 ssize_t ret; 4585 4586 if (!str) 4587 return 0; 4588 4589 ret = kstrtoul(str, 0, &thash_entries); 4590 if (ret) 4591 return 0; 4592 4593 return 1; 4594 } 4595 __setup("thash_entries=", set_thash_entries); 4596 4597 static void __init tcp_init_mem(void) 4598 { 4599 unsigned long limit = nr_free_buffer_pages() / 16; 4600 4601 limit = max(limit, 128UL); 4602 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4603 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4604 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4605 } 4606 4607 void __init tcp_init(void) 4608 { 4609 int max_rshare, max_wshare, cnt; 4610 unsigned long limit; 4611 unsigned int i; 4612 4613 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4614 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4615 sizeof_field(struct sk_buff, cb)); 4616 4617 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4618 4619 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4620 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4621 4622 inet_hashinfo_init(&tcp_hashinfo); 4623 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4624 thash_entries, 21, /* one slot per 2 MB*/ 4625 0, 64 * 1024); 4626 tcp_hashinfo.bind_bucket_cachep = 4627 kmem_cache_create("tcp_bind_bucket", 4628 sizeof(struct inet_bind_bucket), 0, 4629 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4630 SLAB_ACCOUNT, 4631 NULL); 4632 4633 /* Size and allocate the main established and bind bucket 4634 * hash tables. 4635 * 4636 * The methodology is similar to that of the buffer cache. 4637 */ 4638 tcp_hashinfo.ehash = 4639 alloc_large_system_hash("TCP established", 4640 sizeof(struct inet_ehash_bucket), 4641 thash_entries, 4642 17, /* one slot per 128 KB of memory */ 4643 0, 4644 NULL, 4645 &tcp_hashinfo.ehash_mask, 4646 0, 4647 thash_entries ? 0 : 512 * 1024); 4648 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4649 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4650 4651 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4652 panic("TCP: failed to alloc ehash_locks"); 4653 tcp_hashinfo.bhash = 4654 alloc_large_system_hash("TCP bind", 4655 sizeof(struct inet_bind_hashbucket), 4656 tcp_hashinfo.ehash_mask + 1, 4657 17, /* one slot per 128 KB of memory */ 4658 0, 4659 &tcp_hashinfo.bhash_size, 4660 NULL, 4661 0, 4662 64 * 1024); 4663 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4664 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4665 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4666 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4667 } 4668 4669 4670 cnt = tcp_hashinfo.ehash_mask + 1; 4671 sysctl_tcp_max_orphans = cnt / 2; 4672 4673 tcp_init_mem(); 4674 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4675 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4676 max_wshare = min(4UL*1024*1024, limit); 4677 max_rshare = min(6UL*1024*1024, limit); 4678 4679 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4680 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4681 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4682 4683 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4684 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4685 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4686 4687 pr_info("Hash tables configured (established %u bind %u)\n", 4688 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4689 4690 tcp_v4_init(); 4691 tcp_metrics_init(); 4692 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4693 tcp_tasklet_init(); 4694 mptcp_init(); 4695 } 4696