1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_IPV6_MOD(sysctl_tcp_mem); 304 305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 307 308 #if IS_ENABLED(CONFIG_SMC) 309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 310 EXPORT_SYMBOL(tcp_have_smc); 311 #endif 312 313 /* 314 * Current number of TCP sockets. 315 */ 316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 317 EXPORT_IPV6_MOD(tcp_sockets_allocated); 318 319 /* 320 * TCP splice context 321 */ 322 struct tcp_splice_state { 323 struct pipe_inode_info *pipe; 324 size_t len; 325 unsigned int flags; 326 }; 327 328 /* 329 * Pressure flag: try to collapse. 330 * Technical note: it is used by multiple contexts non atomically. 331 * All the __sk_mem_schedule() is of this nature: accounting 332 * is strict, actions are advisory and have some latency. 333 */ 334 unsigned long tcp_memory_pressure __read_mostly; 335 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 336 337 void tcp_enter_memory_pressure(struct sock *sk) 338 { 339 unsigned long val; 340 341 if (READ_ONCE(tcp_memory_pressure)) 342 return; 343 val = jiffies; 344 345 if (!val) 346 val--; 347 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 349 } 350 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 351 352 void tcp_leave_memory_pressure(struct sock *sk) 353 { 354 unsigned long val; 355 356 if (!READ_ONCE(tcp_memory_pressure)) 357 return; 358 val = xchg(&tcp_memory_pressure, 0); 359 if (val) 360 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 361 jiffies_to_msecs(jiffies - val)); 362 } 363 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 364 365 /* Convert seconds to retransmits based on initial and max timeout */ 366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 367 { 368 u8 res = 0; 369 370 if (seconds > 0) { 371 int period = timeout; 372 373 res = 1; 374 while (seconds > period && res < 255) { 375 res++; 376 timeout <<= 1; 377 if (timeout > rto_max) 378 timeout = rto_max; 379 period += timeout; 380 } 381 } 382 return res; 383 } 384 385 /* Convert retransmits to seconds based on initial and max timeout */ 386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 387 { 388 int period = 0; 389 390 if (retrans > 0) { 391 period = timeout; 392 while (--retrans) { 393 timeout <<= 1; 394 if (timeout > rto_max) 395 timeout = rto_max; 396 period += timeout; 397 } 398 } 399 return period; 400 } 401 402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 403 { 404 u32 rate = READ_ONCE(tp->rate_delivered); 405 u32 intv = READ_ONCE(tp->rate_interval_us); 406 u64 rate64 = 0; 407 408 if (rate && intv) { 409 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 410 do_div(rate64, intv); 411 } 412 return rate64; 413 } 414 415 #ifdef CONFIG_TCP_MD5SIG 416 void tcp_md5_destruct_sock(struct sock *sk) 417 { 418 struct tcp_sock *tp = tcp_sk(sk); 419 420 if (tp->md5sig_info) { 421 422 tcp_clear_md5_list(sk); 423 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 1)); 424 static_branch_slow_dec_deferred(&tcp_md5_needed); 425 tcp_md5_release_sigpool(); 426 } 427 } 428 EXPORT_IPV6_MOD_GPL(tcp_md5_destruct_sock); 429 #endif 430 431 /* Address-family independent initialization for a tcp_sock. 432 * 433 * NOTE: A lot of things set to zero explicitly by call to 434 * sk_alloc() so need not be done here. 435 */ 436 void tcp_init_sock(struct sock *sk) 437 { 438 struct inet_connection_sock *icsk = inet_csk(sk); 439 struct tcp_sock *tp = tcp_sk(sk); 440 int rto_min_us, rto_max_ms; 441 442 tp->out_of_order_queue = RB_ROOT; 443 sk->tcp_rtx_queue = RB_ROOT; 444 tcp_init_xmit_timers(sk); 445 INIT_LIST_HEAD(&tp->tsq_node); 446 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 447 448 icsk->icsk_rto = TCP_TIMEOUT_INIT; 449 450 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 451 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 452 453 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 454 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 455 icsk->icsk_delack_max = TCP_DELACK_MAX; 456 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 457 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 458 459 /* So many TCP implementations out there (incorrectly) count the 460 * initial SYN frame in their delayed-ACK and congestion control 461 * algorithms that we must have the following bandaid to talk 462 * efficiently to them. -DaveM 463 */ 464 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 465 466 /* There's a bubble in the pipe until at least the first ACK. */ 467 tp->app_limited = ~0U; 468 tp->rate_app_limited = 1; 469 470 /* See draft-stevens-tcpca-spec-01 for discussion of the 471 * initialization of these values. 472 */ 473 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 474 tp->snd_cwnd_clamp = ~0; 475 tp->mss_cache = TCP_MSS_DEFAULT; 476 477 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 478 tcp_assign_congestion_control(sk); 479 480 tp->tsoffset = 0; 481 tp->rack.reo_wnd_steps = 1; 482 483 sk->sk_write_space = sk_stream_write_space; 484 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 485 486 icsk->icsk_sync_mss = tcp_sync_mss; 487 488 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 489 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 490 tcp_scaling_ratio_init(sk); 491 492 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 493 sk_sockets_allocated_inc(sk); 494 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 495 } 496 EXPORT_IPV6_MOD(tcp_init_sock); 497 498 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 499 { 500 struct sk_buff *skb = tcp_write_queue_tail(sk); 501 u32 tsflags = sockc->tsflags; 502 503 if (tsflags && skb) { 504 struct skb_shared_info *shinfo = skb_shinfo(skb); 505 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 506 507 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 508 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 509 tcb->txstamp_ack |= TSTAMP_ACK_SK; 510 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 511 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 512 } 513 514 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 515 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 516 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 517 } 518 519 static bool tcp_stream_is_readable(struct sock *sk, int target) 520 { 521 if (tcp_epollin_ready(sk, target)) 522 return true; 523 return sk_is_readable(sk); 524 } 525 526 /* 527 * Wait for a TCP event. 528 * 529 * Note that we don't need to lock the socket, as the upper poll layers 530 * take care of normal races (between the test and the event) and we don't 531 * go look at any of the socket buffers directly. 532 */ 533 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 534 { 535 __poll_t mask; 536 struct sock *sk = sock->sk; 537 const struct tcp_sock *tp = tcp_sk(sk); 538 u8 shutdown; 539 int state; 540 541 sock_poll_wait(file, sock, wait); 542 543 state = inet_sk_state_load(sk); 544 if (state == TCP_LISTEN) 545 return inet_csk_listen_poll(sk); 546 547 /* Socket is not locked. We are protected from async events 548 * by poll logic and correct handling of state changes 549 * made by other threads is impossible in any case. 550 */ 551 552 mask = 0; 553 554 /* 555 * EPOLLHUP is certainly not done right. But poll() doesn't 556 * have a notion of HUP in just one direction, and for a 557 * socket the read side is more interesting. 558 * 559 * Some poll() documentation says that EPOLLHUP is incompatible 560 * with the EPOLLOUT/POLLWR flags, so somebody should check this 561 * all. But careful, it tends to be safer to return too many 562 * bits than too few, and you can easily break real applications 563 * if you don't tell them that something has hung up! 564 * 565 * Check-me. 566 * 567 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 568 * our fs/select.c). It means that after we received EOF, 569 * poll always returns immediately, making impossible poll() on write() 570 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 571 * if and only if shutdown has been made in both directions. 572 * Actually, it is interesting to look how Solaris and DUX 573 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 574 * then we could set it on SND_SHUTDOWN. BTW examples given 575 * in Stevens' books assume exactly this behaviour, it explains 576 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 577 * 578 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 579 * blocking on fresh not-connected or disconnected socket. --ANK 580 */ 581 shutdown = READ_ONCE(sk->sk_shutdown); 582 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 583 mask |= EPOLLHUP; 584 if (shutdown & RCV_SHUTDOWN) 585 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 586 587 /* Connected or passive Fast Open socket? */ 588 if (state != TCP_SYN_SENT && 589 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 590 int target = sock_rcvlowat(sk, 0, INT_MAX); 591 u16 urg_data = READ_ONCE(tp->urg_data); 592 593 if (unlikely(urg_data) && 594 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 595 !sock_flag(sk, SOCK_URGINLINE)) 596 target++; 597 598 if (tcp_stream_is_readable(sk, target)) 599 mask |= EPOLLIN | EPOLLRDNORM; 600 601 if (!(shutdown & SEND_SHUTDOWN)) { 602 if (__sk_stream_is_writeable(sk, 1)) { 603 mask |= EPOLLOUT | EPOLLWRNORM; 604 } else { /* send SIGIO later */ 605 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 606 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 607 608 /* Race breaker. If space is freed after 609 * wspace test but before the flags are set, 610 * IO signal will be lost. Memory barrier 611 * pairs with the input side. 612 */ 613 smp_mb__after_atomic(); 614 if (__sk_stream_is_writeable(sk, 1)) 615 mask |= EPOLLOUT | EPOLLWRNORM; 616 } 617 } else 618 mask |= EPOLLOUT | EPOLLWRNORM; 619 620 if (urg_data & TCP_URG_VALID) 621 mask |= EPOLLPRI; 622 } else if (state == TCP_SYN_SENT && 623 inet_test_bit(DEFER_CONNECT, sk)) { 624 /* Active TCP fastopen socket with defer_connect 625 * Return EPOLLOUT so application can call write() 626 * in order for kernel to generate SYN+data 627 */ 628 mask |= EPOLLOUT | EPOLLWRNORM; 629 } 630 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 631 smp_rmb(); 632 if (READ_ONCE(sk->sk_err) || 633 !skb_queue_empty_lockless(&sk->sk_error_queue)) 634 mask |= EPOLLERR; 635 636 return mask; 637 } 638 EXPORT_SYMBOL(tcp_poll); 639 640 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 641 { 642 struct tcp_sock *tp = tcp_sk(sk); 643 int answ; 644 bool slow; 645 646 switch (cmd) { 647 case SIOCINQ: 648 if (sk->sk_state == TCP_LISTEN) 649 return -EINVAL; 650 651 slow = lock_sock_fast(sk); 652 answ = tcp_inq(sk); 653 unlock_sock_fast(sk, slow); 654 break; 655 case SIOCATMARK: 656 answ = READ_ONCE(tp->urg_data) && 657 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 658 break; 659 case SIOCOUTQ: 660 if (sk->sk_state == TCP_LISTEN) 661 return -EINVAL; 662 663 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 664 answ = 0; 665 else 666 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 667 break; 668 case SIOCOUTQNSD: 669 if (sk->sk_state == TCP_LISTEN) 670 return -EINVAL; 671 672 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 673 answ = 0; 674 else 675 answ = READ_ONCE(tp->write_seq) - 676 READ_ONCE(tp->snd_nxt); 677 break; 678 default: 679 return -ENOIOCTLCMD; 680 } 681 682 *karg = answ; 683 return 0; 684 } 685 EXPORT_IPV6_MOD(tcp_ioctl); 686 687 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 688 { 689 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 690 tp->pushed_seq = tp->write_seq; 691 } 692 693 static inline bool forced_push(const struct tcp_sock *tp) 694 { 695 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 696 } 697 698 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 702 703 tcb->seq = tcb->end_seq = tp->write_seq; 704 tcb->tcp_flags = TCPHDR_ACK; 705 __skb_header_release(skb); 706 tcp_add_write_queue_tail(sk, skb); 707 sk_wmem_queued_add(sk, skb->truesize); 708 sk_mem_charge(sk, skb->truesize); 709 if (tp->nonagle & TCP_NAGLE_PUSH) 710 tp->nonagle &= ~TCP_NAGLE_PUSH; 711 712 tcp_slow_start_after_idle_check(sk); 713 } 714 715 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 716 { 717 if (flags & MSG_OOB) 718 tp->snd_up = tp->write_seq; 719 } 720 721 /* If a not yet filled skb is pushed, do not send it if 722 * we have data packets in Qdisc or NIC queues : 723 * Because TX completion will happen shortly, it gives a chance 724 * to coalesce future sendmsg() payload into this skb, without 725 * need for a timer, and with no latency trade off. 726 * As packets containing data payload have a bigger truesize 727 * than pure acks (dataless) packets, the last checks prevent 728 * autocorking if we only have an ACK in Qdisc/NIC queues, 729 * or if TX completion was delayed after we processed ACK packet. 730 */ 731 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 732 int size_goal) 733 { 734 return skb->len < size_goal && 735 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 736 !tcp_rtx_queue_empty(sk) && 737 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 738 tcp_skb_can_collapse_to(skb); 739 } 740 741 void tcp_push(struct sock *sk, int flags, int mss_now, 742 int nonagle, int size_goal) 743 { 744 struct tcp_sock *tp = tcp_sk(sk); 745 struct sk_buff *skb; 746 747 skb = tcp_write_queue_tail(sk); 748 if (!skb) 749 return; 750 if (!(flags & MSG_MORE) || forced_push(tp)) 751 tcp_mark_push(tp, skb); 752 753 tcp_mark_urg(tp, flags); 754 755 if (tcp_should_autocork(sk, skb, size_goal)) { 756 757 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 758 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 760 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 761 smp_mb__after_atomic(); 762 } 763 /* It is possible TX completion already happened 764 * before we set TSQ_THROTTLED. 765 */ 766 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 767 return; 768 } 769 770 if (flags & MSG_MORE) 771 nonagle = TCP_NAGLE_CORK; 772 773 __tcp_push_pending_frames(sk, mss_now, nonagle); 774 } 775 776 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 777 unsigned int offset, size_t len) 778 { 779 struct tcp_splice_state *tss = rd_desc->arg.data; 780 int ret; 781 782 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 783 min(rd_desc->count, len), tss->flags); 784 if (ret > 0) 785 rd_desc->count -= ret; 786 return ret; 787 } 788 789 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 790 { 791 /* Store TCP splice context information in read_descriptor_t. */ 792 read_descriptor_t rd_desc = { 793 .arg.data = tss, 794 .count = tss->len, 795 }; 796 797 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 798 } 799 800 /** 801 * tcp_splice_read - splice data from TCP socket to a pipe 802 * @sock: socket to splice from 803 * @ppos: position (not valid) 804 * @pipe: pipe to splice to 805 * @len: number of bytes to splice 806 * @flags: splice modifier flags 807 * 808 * Description: 809 * Will read pages from given socket and fill them into a pipe. 810 * 811 **/ 812 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 813 struct pipe_inode_info *pipe, size_t len, 814 unsigned int flags) 815 { 816 struct sock *sk = sock->sk; 817 struct tcp_splice_state tss = { 818 .pipe = pipe, 819 .len = len, 820 .flags = flags, 821 }; 822 long timeo; 823 ssize_t spliced; 824 int ret; 825 826 sock_rps_record_flow(sk); 827 /* 828 * We can't seek on a socket input 829 */ 830 if (unlikely(*ppos)) 831 return -ESPIPE; 832 833 ret = spliced = 0; 834 835 lock_sock(sk); 836 837 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 838 while (tss.len) { 839 ret = __tcp_splice_read(sk, &tss); 840 if (ret < 0) 841 break; 842 else if (!ret) { 843 if (spliced) 844 break; 845 if (sock_flag(sk, SOCK_DONE)) 846 break; 847 if (sk->sk_err) { 848 ret = sock_error(sk); 849 break; 850 } 851 if (sk->sk_shutdown & RCV_SHUTDOWN) 852 break; 853 if (sk->sk_state == TCP_CLOSE) { 854 /* 855 * This occurs when user tries to read 856 * from never connected socket. 857 */ 858 ret = -ENOTCONN; 859 break; 860 } 861 if (!timeo) { 862 ret = -EAGAIN; 863 break; 864 } 865 /* if __tcp_splice_read() got nothing while we have 866 * an skb in receive queue, we do not want to loop. 867 * This might happen with URG data. 868 */ 869 if (!skb_queue_empty(&sk->sk_receive_queue)) 870 break; 871 ret = sk_wait_data(sk, &timeo, NULL); 872 if (ret < 0) 873 break; 874 if (signal_pending(current)) { 875 ret = sock_intr_errno(timeo); 876 break; 877 } 878 continue; 879 } 880 tss.len -= ret; 881 spliced += ret; 882 883 if (!tss.len || !timeo) 884 break; 885 release_sock(sk); 886 lock_sock(sk); 887 888 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 889 (sk->sk_shutdown & RCV_SHUTDOWN) || 890 signal_pending(current)) 891 break; 892 } 893 894 release_sock(sk); 895 896 if (spliced) 897 return spliced; 898 899 return ret; 900 } 901 EXPORT_IPV6_MOD(tcp_splice_read); 902 903 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 904 bool force_schedule) 905 { 906 struct sk_buff *skb; 907 908 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 909 if (likely(skb)) { 910 bool mem_scheduled; 911 912 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 913 if (force_schedule) { 914 mem_scheduled = true; 915 sk_forced_mem_schedule(sk, skb->truesize); 916 } else { 917 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 918 } 919 if (likely(mem_scheduled)) { 920 skb_reserve(skb, MAX_TCP_HEADER); 921 skb->ip_summed = CHECKSUM_PARTIAL; 922 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 923 return skb; 924 } 925 __kfree_skb(skb); 926 } else { 927 sk->sk_prot->enter_memory_pressure(sk); 928 sk_stream_moderate_sndbuf(sk); 929 } 930 return NULL; 931 } 932 933 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 934 int large_allowed) 935 { 936 struct tcp_sock *tp = tcp_sk(sk); 937 u32 new_size_goal, size_goal; 938 939 if (!large_allowed) 940 return mss_now; 941 942 /* Note : tcp_tso_autosize() will eventually split this later */ 943 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 944 945 /* We try hard to avoid divides here */ 946 size_goal = tp->gso_segs * mss_now; 947 if (unlikely(new_size_goal < size_goal || 948 new_size_goal >= size_goal + mss_now)) { 949 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 950 sk->sk_gso_max_segs); 951 size_goal = tp->gso_segs * mss_now; 952 } 953 954 return max(size_goal, mss_now); 955 } 956 957 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 958 { 959 int mss_now; 960 961 mss_now = tcp_current_mss(sk); 962 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 963 964 return mss_now; 965 } 966 967 /* In some cases, sendmsg() could have added an skb to the write queue, 968 * but failed adding payload on it. We need to remove it to consume less 969 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 970 * epoll() users. Another reason is that tcp_write_xmit() does not like 971 * finding an empty skb in the write queue. 972 */ 973 void tcp_remove_empty_skb(struct sock *sk) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 977 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 978 tcp_unlink_write_queue(skb, sk); 979 if (tcp_write_queue_empty(sk)) 980 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 981 tcp_wmem_free_skb(sk, skb); 982 } 983 } 984 985 /* skb changing from pure zc to mixed, must charge zc */ 986 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 987 { 988 if (unlikely(skb_zcopy_pure(skb))) { 989 u32 extra = skb->truesize - 990 SKB_TRUESIZE(skb_end_offset(skb)); 991 992 if (!sk_wmem_schedule(sk, extra)) 993 return -ENOMEM; 994 995 sk_mem_charge(sk, extra); 996 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 997 } 998 return 0; 999 } 1000 1001 1002 int tcp_wmem_schedule(struct sock *sk, int copy) 1003 { 1004 int left; 1005 1006 if (likely(sk_wmem_schedule(sk, copy))) 1007 return copy; 1008 1009 /* We could be in trouble if we have nothing queued. 1010 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 1011 * to guarantee some progress. 1012 */ 1013 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 1014 if (left > 0) 1015 sk_forced_mem_schedule(sk, min(left, copy)); 1016 return min(copy, sk->sk_forward_alloc); 1017 } 1018 1019 void tcp_free_fastopen_req(struct tcp_sock *tp) 1020 { 1021 if (tp->fastopen_req) { 1022 kfree(tp->fastopen_req); 1023 tp->fastopen_req = NULL; 1024 } 1025 } 1026 1027 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1028 size_t size, struct ubuf_info *uarg) 1029 { 1030 struct tcp_sock *tp = tcp_sk(sk); 1031 struct inet_sock *inet = inet_sk(sk); 1032 struct sockaddr *uaddr = msg->msg_name; 1033 int err, flags; 1034 1035 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1036 TFO_CLIENT_ENABLE) || 1037 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1038 uaddr->sa_family == AF_UNSPEC)) 1039 return -EOPNOTSUPP; 1040 if (tp->fastopen_req) 1041 return -EALREADY; /* Another Fast Open is in progress */ 1042 1043 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1044 sk->sk_allocation); 1045 if (unlikely(!tp->fastopen_req)) 1046 return -ENOBUFS; 1047 tp->fastopen_req->data = msg; 1048 tp->fastopen_req->size = size; 1049 tp->fastopen_req->uarg = uarg; 1050 1051 if (inet_test_bit(DEFER_CONNECT, sk)) { 1052 err = tcp_connect(sk); 1053 /* Same failure procedure as in tcp_v4/6_connect */ 1054 if (err) { 1055 tcp_set_state(sk, TCP_CLOSE); 1056 inet->inet_dport = 0; 1057 sk->sk_route_caps = 0; 1058 } 1059 } 1060 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1061 err = __inet_stream_connect(sk->sk_socket, uaddr, 1062 msg->msg_namelen, flags, 1); 1063 /* fastopen_req could already be freed in __inet_stream_connect 1064 * if the connection times out or gets rst 1065 */ 1066 if (tp->fastopen_req) { 1067 *copied = tp->fastopen_req->copied; 1068 tcp_free_fastopen_req(tp); 1069 inet_clear_bit(DEFER_CONNECT, sk); 1070 } 1071 return err; 1072 } 1073 1074 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1075 { 1076 struct net_devmem_dmabuf_binding *binding = NULL; 1077 struct tcp_sock *tp = tcp_sk(sk); 1078 struct ubuf_info *uarg = NULL; 1079 struct sk_buff *skb; 1080 struct sockcm_cookie sockc; 1081 int flags, err, copied = 0; 1082 int mss_now = 0, size_goal, copied_syn = 0; 1083 int process_backlog = 0; 1084 int sockc_err = 0; 1085 int zc = 0; 1086 long timeo; 1087 1088 flags = msg->msg_flags; 1089 1090 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; 1091 if (msg->msg_controllen) { 1092 sockc_err = sock_cmsg_send(sk, msg, &sockc); 1093 /* Don't return error until MSG_FASTOPEN has been processed; 1094 * that may succeed even if the cmsg is invalid. 1095 */ 1096 } 1097 1098 if ((flags & MSG_ZEROCOPY) && size) { 1099 if (msg->msg_ubuf) { 1100 uarg = msg->msg_ubuf; 1101 if (sk->sk_route_caps & NETIF_F_SG) 1102 zc = MSG_ZEROCOPY; 1103 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1104 skb = tcp_write_queue_tail(sk); 1105 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb), 1106 !sockc_err && sockc.dmabuf_id); 1107 if (!uarg) { 1108 err = -ENOBUFS; 1109 goto out_err; 1110 } 1111 if (sk->sk_route_caps & NETIF_F_SG) 1112 zc = MSG_ZEROCOPY; 1113 else 1114 uarg_to_msgzc(uarg)->zerocopy = 0; 1115 1116 if (!sockc_err && sockc.dmabuf_id) { 1117 binding = net_devmem_get_binding(sk, sockc.dmabuf_id); 1118 if (IS_ERR(binding)) { 1119 err = PTR_ERR(binding); 1120 binding = NULL; 1121 goto out_err; 1122 } 1123 } 1124 } 1125 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1126 if (sk->sk_route_caps & NETIF_F_SG) 1127 zc = MSG_SPLICE_PAGES; 1128 } 1129 1130 if (!sockc_err && sockc.dmabuf_id && 1131 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) { 1132 err = -EINVAL; 1133 goto out_err; 1134 } 1135 1136 if (unlikely(flags & MSG_FASTOPEN || 1137 inet_test_bit(DEFER_CONNECT, sk)) && 1138 !tp->repair) { 1139 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1140 if (err == -EINPROGRESS && copied_syn > 0) 1141 goto out; 1142 else if (err) 1143 goto out_err; 1144 } 1145 1146 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1147 1148 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1149 1150 /* Wait for a connection to finish. One exception is TCP Fast Open 1151 * (passive side) where data is allowed to be sent before a connection 1152 * is fully established. 1153 */ 1154 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1155 !tcp_passive_fastopen(sk)) { 1156 err = sk_stream_wait_connect(sk, &timeo); 1157 if (err != 0) 1158 goto do_error; 1159 } 1160 1161 if (unlikely(tp->repair)) { 1162 if (tp->repair_queue == TCP_RECV_QUEUE) { 1163 copied = tcp_send_rcvq(sk, msg, size); 1164 goto out_nopush; 1165 } 1166 1167 err = -EINVAL; 1168 if (tp->repair_queue == TCP_NO_QUEUE) 1169 goto out_err; 1170 1171 /* 'common' sending to sendq */ 1172 } 1173 1174 if (sockc_err) { 1175 err = sockc_err; 1176 goto out_err; 1177 } 1178 1179 /* This should be in poll */ 1180 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1181 1182 /* Ok commence sending. */ 1183 copied = 0; 1184 1185 restart: 1186 mss_now = tcp_send_mss(sk, &size_goal, flags); 1187 1188 err = -EPIPE; 1189 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1190 goto do_error; 1191 1192 while (msg_data_left(msg)) { 1193 int copy = 0; 1194 1195 skb = tcp_write_queue_tail(sk); 1196 if (skb) 1197 copy = size_goal - skb->len; 1198 1199 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); 1200 1201 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1202 bool first_skb; 1203 1204 new_segment: 1205 if (!sk_stream_memory_free(sk)) 1206 goto wait_for_space; 1207 1208 if (unlikely(process_backlog >= 16)) { 1209 process_backlog = 0; 1210 if (sk_flush_backlog(sk)) 1211 goto restart; 1212 } 1213 first_skb = tcp_rtx_and_write_queues_empty(sk); 1214 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1215 first_skb); 1216 if (!skb) 1217 goto wait_for_space; 1218 1219 process_backlog++; 1220 1221 #ifdef CONFIG_SKB_DECRYPTED 1222 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1223 #endif 1224 tcp_skb_entail(sk, skb); 1225 copy = size_goal; 1226 1227 /* All packets are restored as if they have 1228 * already been sent. skb_mstamp_ns isn't set to 1229 * avoid wrong rtt estimation. 1230 */ 1231 if (tp->repair) 1232 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1233 } 1234 1235 /* Try to append data to the end of skb. */ 1236 if (copy > msg_data_left(msg)) 1237 copy = msg_data_left(msg); 1238 1239 if (zc == 0) { 1240 bool merge = true; 1241 int i = skb_shinfo(skb)->nr_frags; 1242 struct page_frag *pfrag = sk_page_frag(sk); 1243 1244 if (!sk_page_frag_refill(sk, pfrag)) 1245 goto wait_for_space; 1246 1247 if (!skb_can_coalesce(skb, i, pfrag->page, 1248 pfrag->offset)) { 1249 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1250 tcp_mark_push(tp, skb); 1251 goto new_segment; 1252 } 1253 merge = false; 1254 } 1255 1256 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1257 1258 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1259 if (tcp_downgrade_zcopy_pure(sk, skb)) 1260 goto wait_for_space; 1261 skb_zcopy_downgrade_managed(skb); 1262 } 1263 1264 copy = tcp_wmem_schedule(sk, copy); 1265 if (!copy) 1266 goto wait_for_space; 1267 1268 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1269 pfrag->page, 1270 pfrag->offset, 1271 copy); 1272 if (err) 1273 goto do_error; 1274 1275 /* Update the skb. */ 1276 if (merge) { 1277 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1278 } else { 1279 skb_fill_page_desc(skb, i, pfrag->page, 1280 pfrag->offset, copy); 1281 page_ref_inc(pfrag->page); 1282 } 1283 pfrag->offset += copy; 1284 } else if (zc == MSG_ZEROCOPY) { 1285 /* First append to a fragless skb builds initial 1286 * pure zerocopy skb 1287 */ 1288 if (!skb->len) 1289 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1290 1291 if (!skb_zcopy_pure(skb)) { 1292 copy = tcp_wmem_schedule(sk, copy); 1293 if (!copy) 1294 goto wait_for_space; 1295 } 1296 1297 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg, 1298 binding); 1299 if (err == -EMSGSIZE || err == -EEXIST) { 1300 tcp_mark_push(tp, skb); 1301 goto new_segment; 1302 } 1303 if (err < 0) 1304 goto do_error; 1305 copy = err; 1306 } else if (zc == MSG_SPLICE_PAGES) { 1307 /* Splice in data if we can; copy if we can't. */ 1308 if (tcp_downgrade_zcopy_pure(sk, skb)) 1309 goto wait_for_space; 1310 copy = tcp_wmem_schedule(sk, copy); 1311 if (!copy) 1312 goto wait_for_space; 1313 1314 err = skb_splice_from_iter(skb, &msg->msg_iter, copy); 1315 if (err < 0) { 1316 if (err == -EMSGSIZE) { 1317 tcp_mark_push(tp, skb); 1318 goto new_segment; 1319 } 1320 goto do_error; 1321 } 1322 copy = err; 1323 1324 if (!(flags & MSG_NO_SHARED_FRAGS)) 1325 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1326 1327 sk_wmem_queued_add(sk, copy); 1328 sk_mem_charge(sk, copy); 1329 } 1330 1331 if (!copied) 1332 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1333 1334 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1335 TCP_SKB_CB(skb)->end_seq += copy; 1336 tcp_skb_pcount_set(skb, 0); 1337 1338 copied += copy; 1339 if (!msg_data_left(msg)) { 1340 if (unlikely(flags & MSG_EOR)) 1341 TCP_SKB_CB(skb)->eor = 1; 1342 goto out; 1343 } 1344 1345 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1346 continue; 1347 1348 if (forced_push(tp)) { 1349 tcp_mark_push(tp, skb); 1350 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1351 } else if (skb == tcp_send_head(sk)) 1352 tcp_push_one(sk, mss_now); 1353 continue; 1354 1355 wait_for_space: 1356 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1357 tcp_remove_empty_skb(sk); 1358 if (copied) 1359 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1360 TCP_NAGLE_PUSH, size_goal); 1361 1362 err = sk_stream_wait_memory(sk, &timeo); 1363 if (err != 0) 1364 goto do_error; 1365 1366 mss_now = tcp_send_mss(sk, &size_goal, flags); 1367 } 1368 1369 out: 1370 if (copied) { 1371 tcp_tx_timestamp(sk, &sockc); 1372 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1373 } 1374 out_nopush: 1375 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1376 if (uarg && !msg->msg_ubuf) 1377 net_zcopy_put(uarg); 1378 if (binding) 1379 net_devmem_dmabuf_binding_put(binding); 1380 return copied + copied_syn; 1381 1382 do_error: 1383 tcp_remove_empty_skb(sk); 1384 1385 if (copied + copied_syn) 1386 goto out; 1387 out_err: 1388 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1389 if (uarg && !msg->msg_ubuf) 1390 net_zcopy_put_abort(uarg, true); 1391 err = sk_stream_error(sk, flags, err); 1392 /* make sure we wake any epoll edge trigger waiter */ 1393 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1394 sk->sk_write_space(sk); 1395 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1396 } 1397 if (binding) 1398 net_devmem_dmabuf_binding_put(binding); 1399 1400 return err; 1401 } 1402 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1403 1404 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1405 { 1406 int ret; 1407 1408 lock_sock(sk); 1409 ret = tcp_sendmsg_locked(sk, msg, size); 1410 release_sock(sk); 1411 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(tcp_sendmsg); 1415 1416 void tcp_splice_eof(struct socket *sock) 1417 { 1418 struct sock *sk = sock->sk; 1419 struct tcp_sock *tp = tcp_sk(sk); 1420 int mss_now, size_goal; 1421 1422 if (!tcp_write_queue_tail(sk)) 1423 return; 1424 1425 lock_sock(sk); 1426 mss_now = tcp_send_mss(sk, &size_goal, 0); 1427 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1428 release_sock(sk); 1429 } 1430 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1431 1432 /* 1433 * Handle reading urgent data. BSD has very simple semantics for 1434 * this, no blocking and very strange errors 8) 1435 */ 1436 1437 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1438 { 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 1441 /* No URG data to read. */ 1442 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1443 tp->urg_data == TCP_URG_READ) 1444 return -EINVAL; /* Yes this is right ! */ 1445 1446 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1447 return -ENOTCONN; 1448 1449 if (tp->urg_data & TCP_URG_VALID) { 1450 int err = 0; 1451 char c = tp->urg_data; 1452 1453 if (!(flags & MSG_PEEK)) 1454 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1455 1456 /* Read urgent data. */ 1457 msg->msg_flags |= MSG_OOB; 1458 1459 if (len > 0) { 1460 if (!(flags & MSG_TRUNC)) 1461 err = memcpy_to_msg(msg, &c, 1); 1462 len = 1; 1463 } else 1464 msg->msg_flags |= MSG_TRUNC; 1465 1466 return err ? -EFAULT : len; 1467 } 1468 1469 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1470 return 0; 1471 1472 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1473 * the available implementations agree in this case: 1474 * this call should never block, independent of the 1475 * blocking state of the socket. 1476 * Mike <pall@rz.uni-karlsruhe.de> 1477 */ 1478 return -EAGAIN; 1479 } 1480 1481 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1482 { 1483 struct sk_buff *skb; 1484 int copied = 0, err = 0; 1485 1486 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1487 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1488 if (err) 1489 return err; 1490 copied += skb->len; 1491 } 1492 1493 skb_queue_walk(&sk->sk_write_queue, skb) { 1494 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1495 if (err) 1496 break; 1497 1498 copied += skb->len; 1499 } 1500 1501 return err ?: copied; 1502 } 1503 1504 /* Clean up the receive buffer for full frames taken by the user, 1505 * then send an ACK if necessary. COPIED is the number of bytes 1506 * tcp_recvmsg has given to the user so far, it speeds up the 1507 * calculation of whether or not we must ACK for the sake of 1508 * a window update. 1509 */ 1510 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 bool time_to_ack = false; 1514 1515 if (inet_csk_ack_scheduled(sk)) { 1516 const struct inet_connection_sock *icsk = inet_csk(sk); 1517 1518 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1519 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1520 /* 1521 * If this read emptied read buffer, we send ACK, if 1522 * connection is not bidirectional, user drained 1523 * receive buffer and there was a small segment 1524 * in queue. 1525 */ 1526 (copied > 0 && 1527 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1528 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1529 !inet_csk_in_pingpong_mode(sk))) && 1530 !atomic_read(&sk->sk_rmem_alloc))) 1531 time_to_ack = true; 1532 } 1533 1534 /* We send an ACK if we can now advertise a non-zero window 1535 * which has been raised "significantly". 1536 * 1537 * Even if window raised up to infinity, do not send window open ACK 1538 * in states, where we will not receive more. It is useless. 1539 */ 1540 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1541 __u32 rcv_window_now = tcp_receive_window(tp); 1542 1543 /* Optimize, __tcp_select_window() is not cheap. */ 1544 if (2*rcv_window_now <= tp->window_clamp) { 1545 __u32 new_window = __tcp_select_window(sk); 1546 1547 /* Send ACK now, if this read freed lots of space 1548 * in our buffer. Certainly, new_window is new window. 1549 * We can advertise it now, if it is not less than current one. 1550 * "Lots" means "at least twice" here. 1551 */ 1552 if (new_window && new_window >= 2 * rcv_window_now) 1553 time_to_ack = true; 1554 } 1555 } 1556 if (time_to_ack) 1557 tcp_send_ack(sk); 1558 } 1559 1560 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1561 { 1562 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1563 struct tcp_sock *tp = tcp_sk(sk); 1564 1565 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1566 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1567 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1568 __tcp_cleanup_rbuf(sk, copied); 1569 } 1570 1571 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1572 { 1573 __skb_unlink(skb, &sk->sk_receive_queue); 1574 if (likely(skb->destructor == sock_rfree)) { 1575 sock_rfree(skb); 1576 skb->destructor = NULL; 1577 skb->sk = NULL; 1578 return skb_attempt_defer_free(skb); 1579 } 1580 __kfree_skb(skb); 1581 } 1582 1583 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1584 { 1585 struct sk_buff *skb; 1586 u32 offset; 1587 1588 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1589 offset = seq - TCP_SKB_CB(skb)->seq; 1590 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1591 pr_err_once("%s: found a SYN, please report !\n", __func__); 1592 offset--; 1593 } 1594 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1595 *off = offset; 1596 return skb; 1597 } 1598 /* This looks weird, but this can happen if TCP collapsing 1599 * splitted a fat GRO packet, while we released socket lock 1600 * in skb_splice_bits() 1601 */ 1602 tcp_eat_recv_skb(sk, skb); 1603 } 1604 return NULL; 1605 } 1606 EXPORT_SYMBOL(tcp_recv_skb); 1607 1608 /* 1609 * This routine provides an alternative to tcp_recvmsg() for routines 1610 * that would like to handle copying from skbuffs directly in 'sendfile' 1611 * fashion. 1612 * Note: 1613 * - It is assumed that the socket was locked by the caller. 1614 * - The routine does not block. 1615 * - At present, there is no support for reading OOB data 1616 * or for 'peeking' the socket using this routine 1617 * (although both would be easy to implement). 1618 */ 1619 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1620 sk_read_actor_t recv_actor, bool noack, 1621 u32 *copied_seq) 1622 { 1623 struct sk_buff *skb; 1624 struct tcp_sock *tp = tcp_sk(sk); 1625 u32 seq = *copied_seq; 1626 u32 offset; 1627 int copied = 0; 1628 1629 if (sk->sk_state == TCP_LISTEN) 1630 return -ENOTCONN; 1631 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1632 if (offset < skb->len) { 1633 int used; 1634 size_t len; 1635 1636 len = skb->len - offset; 1637 /* Stop reading if we hit a patch of urgent data */ 1638 if (unlikely(tp->urg_data)) { 1639 u32 urg_offset = tp->urg_seq - seq; 1640 if (urg_offset < len) 1641 len = urg_offset; 1642 if (!len) 1643 break; 1644 } 1645 used = recv_actor(desc, skb, offset, len); 1646 if (used <= 0) { 1647 if (!copied) 1648 copied = used; 1649 break; 1650 } 1651 if (WARN_ON_ONCE(used > len)) 1652 used = len; 1653 seq += used; 1654 copied += used; 1655 offset += used; 1656 1657 /* If recv_actor drops the lock (e.g. TCP splice 1658 * receive) the skb pointer might be invalid when 1659 * getting here: tcp_collapse might have deleted it 1660 * while aggregating skbs from the socket queue. 1661 */ 1662 skb = tcp_recv_skb(sk, seq - 1, &offset); 1663 if (!skb) 1664 break; 1665 /* TCP coalescing might have appended data to the skb. 1666 * Try to splice more frags 1667 */ 1668 if (offset + 1 != skb->len) 1669 continue; 1670 } 1671 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1672 tcp_eat_recv_skb(sk, skb); 1673 ++seq; 1674 break; 1675 } 1676 tcp_eat_recv_skb(sk, skb); 1677 if (!desc->count) 1678 break; 1679 WRITE_ONCE(*copied_seq, seq); 1680 } 1681 WRITE_ONCE(*copied_seq, seq); 1682 1683 if (noack) 1684 goto out; 1685 1686 tcp_rcv_space_adjust(sk); 1687 1688 /* Clean up data we have read: This will do ACK frames. */ 1689 if (copied > 0) { 1690 tcp_recv_skb(sk, seq, &offset); 1691 tcp_cleanup_rbuf(sk, copied); 1692 } 1693 out: 1694 return copied; 1695 } 1696 1697 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1698 sk_read_actor_t recv_actor) 1699 { 1700 return __tcp_read_sock(sk, desc, recv_actor, false, 1701 &tcp_sk(sk)->copied_seq); 1702 } 1703 EXPORT_SYMBOL(tcp_read_sock); 1704 1705 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1706 sk_read_actor_t recv_actor, bool noack, 1707 u32 *copied_seq) 1708 { 1709 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1710 } 1711 1712 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1713 { 1714 struct sk_buff *skb; 1715 int copied = 0; 1716 1717 if (sk->sk_state == TCP_LISTEN) 1718 return -ENOTCONN; 1719 1720 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1721 u8 tcp_flags; 1722 int used; 1723 1724 __skb_unlink(skb, &sk->sk_receive_queue); 1725 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1726 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1727 used = recv_actor(sk, skb); 1728 if (used < 0) { 1729 if (!copied) 1730 copied = used; 1731 break; 1732 } 1733 copied += used; 1734 1735 if (tcp_flags & TCPHDR_FIN) 1736 break; 1737 } 1738 return copied; 1739 } 1740 EXPORT_IPV6_MOD(tcp_read_skb); 1741 1742 void tcp_read_done(struct sock *sk, size_t len) 1743 { 1744 struct tcp_sock *tp = tcp_sk(sk); 1745 u32 seq = tp->copied_seq; 1746 struct sk_buff *skb; 1747 size_t left; 1748 u32 offset; 1749 1750 if (sk->sk_state == TCP_LISTEN) 1751 return; 1752 1753 left = len; 1754 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1755 int used; 1756 1757 used = min_t(size_t, skb->len - offset, left); 1758 seq += used; 1759 left -= used; 1760 1761 if (skb->len > offset + used) 1762 break; 1763 1764 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1765 tcp_eat_recv_skb(sk, skb); 1766 ++seq; 1767 break; 1768 } 1769 tcp_eat_recv_skb(sk, skb); 1770 } 1771 WRITE_ONCE(tp->copied_seq, seq); 1772 1773 tcp_rcv_space_adjust(sk); 1774 1775 /* Clean up data we have read: This will do ACK frames. */ 1776 if (left != len) 1777 tcp_cleanup_rbuf(sk, len - left); 1778 } 1779 EXPORT_SYMBOL(tcp_read_done); 1780 1781 int tcp_peek_len(struct socket *sock) 1782 { 1783 return tcp_inq(sock->sk); 1784 } 1785 EXPORT_IPV6_MOD(tcp_peek_len); 1786 1787 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1788 int tcp_set_rcvlowat(struct sock *sk, int val) 1789 { 1790 int space, cap; 1791 1792 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1793 cap = sk->sk_rcvbuf >> 1; 1794 else 1795 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1796 val = min(val, cap); 1797 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1798 1799 /* Check if we need to signal EPOLLIN right now */ 1800 tcp_data_ready(sk); 1801 1802 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1803 return 0; 1804 1805 space = tcp_space_from_win(sk, val); 1806 if (space > sk->sk_rcvbuf) { 1807 WRITE_ONCE(sk->sk_rcvbuf, space); 1808 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1809 } 1810 return 0; 1811 } 1812 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1813 1814 void tcp_update_recv_tstamps(struct sk_buff *skb, 1815 struct scm_timestamping_internal *tss) 1816 { 1817 if (skb->tstamp) 1818 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1819 else 1820 tss->ts[0] = (struct timespec64) {0}; 1821 1822 if (skb_hwtstamps(skb)->hwtstamp) 1823 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1824 else 1825 tss->ts[2] = (struct timespec64) {0}; 1826 } 1827 1828 #ifdef CONFIG_MMU 1829 static const struct vm_operations_struct tcp_vm_ops = { 1830 }; 1831 1832 int tcp_mmap(struct file *file, struct socket *sock, 1833 struct vm_area_struct *vma) 1834 { 1835 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1836 return -EPERM; 1837 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1838 1839 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1840 vm_flags_set(vma, VM_MIXEDMAP); 1841 1842 vma->vm_ops = &tcp_vm_ops; 1843 return 0; 1844 } 1845 EXPORT_IPV6_MOD(tcp_mmap); 1846 1847 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1848 u32 *offset_frag) 1849 { 1850 skb_frag_t *frag; 1851 1852 if (unlikely(offset_skb >= skb->len)) 1853 return NULL; 1854 1855 offset_skb -= skb_headlen(skb); 1856 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1857 return NULL; 1858 1859 frag = skb_shinfo(skb)->frags; 1860 while (offset_skb) { 1861 if (skb_frag_size(frag) > offset_skb) { 1862 *offset_frag = offset_skb; 1863 return frag; 1864 } 1865 offset_skb -= skb_frag_size(frag); 1866 ++frag; 1867 } 1868 *offset_frag = 0; 1869 return frag; 1870 } 1871 1872 static bool can_map_frag(const skb_frag_t *frag) 1873 { 1874 struct page *page; 1875 1876 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1877 return false; 1878 1879 page = skb_frag_page(frag); 1880 1881 if (PageCompound(page) || page->mapping) 1882 return false; 1883 1884 return true; 1885 } 1886 1887 static int find_next_mappable_frag(const skb_frag_t *frag, 1888 int remaining_in_skb) 1889 { 1890 int offset = 0; 1891 1892 if (likely(can_map_frag(frag))) 1893 return 0; 1894 1895 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1896 offset += skb_frag_size(frag); 1897 ++frag; 1898 } 1899 return offset; 1900 } 1901 1902 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1903 struct tcp_zerocopy_receive *zc, 1904 struct sk_buff *skb, u32 offset) 1905 { 1906 u32 frag_offset, partial_frag_remainder = 0; 1907 int mappable_offset; 1908 skb_frag_t *frag; 1909 1910 /* worst case: skip to next skb. try to improve on this case below */ 1911 zc->recv_skip_hint = skb->len - offset; 1912 1913 /* Find the frag containing this offset (and how far into that frag) */ 1914 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1915 if (!frag) 1916 return; 1917 1918 if (frag_offset) { 1919 struct skb_shared_info *info = skb_shinfo(skb); 1920 1921 /* We read part of the last frag, must recvmsg() rest of skb. */ 1922 if (frag == &info->frags[info->nr_frags - 1]) 1923 return; 1924 1925 /* Else, we must at least read the remainder in this frag. */ 1926 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1927 zc->recv_skip_hint -= partial_frag_remainder; 1928 ++frag; 1929 } 1930 1931 /* partial_frag_remainder: If part way through a frag, must read rest. 1932 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1933 * in partial_frag_remainder. 1934 */ 1935 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1936 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1937 } 1938 1939 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1940 int flags, struct scm_timestamping_internal *tss, 1941 int *cmsg_flags); 1942 static int receive_fallback_to_copy(struct sock *sk, 1943 struct tcp_zerocopy_receive *zc, int inq, 1944 struct scm_timestamping_internal *tss) 1945 { 1946 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1947 struct msghdr msg = {}; 1948 int err; 1949 1950 zc->length = 0; 1951 zc->recv_skip_hint = 0; 1952 1953 if (copy_address != zc->copybuf_address) 1954 return -EINVAL; 1955 1956 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1957 &msg.msg_iter); 1958 if (err) 1959 return err; 1960 1961 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1962 tss, &zc->msg_flags); 1963 if (err < 0) 1964 return err; 1965 1966 zc->copybuf_len = err; 1967 if (likely(zc->copybuf_len)) { 1968 struct sk_buff *skb; 1969 u32 offset; 1970 1971 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1972 if (skb) 1973 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1974 } 1975 return 0; 1976 } 1977 1978 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1979 struct sk_buff *skb, u32 copylen, 1980 u32 *offset, u32 *seq) 1981 { 1982 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1983 struct msghdr msg = {}; 1984 int err; 1985 1986 if (copy_address != zc->copybuf_address) 1987 return -EINVAL; 1988 1989 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1990 &msg.msg_iter); 1991 if (err) 1992 return err; 1993 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1994 if (err) 1995 return err; 1996 zc->recv_skip_hint -= copylen; 1997 *offset += copylen; 1998 *seq += copylen; 1999 return (__s32)copylen; 2000 } 2001 2002 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2003 struct sock *sk, 2004 struct sk_buff *skb, 2005 u32 *seq, 2006 s32 copybuf_len, 2007 struct scm_timestamping_internal *tss) 2008 { 2009 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2010 2011 if (!copylen) 2012 return 0; 2013 /* skb is null if inq < PAGE_SIZE. */ 2014 if (skb) { 2015 offset = *seq - TCP_SKB_CB(skb)->seq; 2016 } else { 2017 skb = tcp_recv_skb(sk, *seq, &offset); 2018 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2019 tcp_update_recv_tstamps(skb, tss); 2020 zc->msg_flags |= TCP_CMSG_TS; 2021 } 2022 } 2023 2024 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2025 seq); 2026 return zc->copybuf_len < 0 ? 0 : copylen; 2027 } 2028 2029 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2030 struct page **pending_pages, 2031 unsigned long pages_remaining, 2032 unsigned long *address, 2033 u32 *length, 2034 u32 *seq, 2035 struct tcp_zerocopy_receive *zc, 2036 u32 total_bytes_to_map, 2037 int err) 2038 { 2039 /* At least one page did not map. Try zapping if we skipped earlier. */ 2040 if (err == -EBUSY && 2041 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2042 u32 maybe_zap_len; 2043 2044 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2045 *length + /* Mapped or pending */ 2046 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2047 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2048 err = 0; 2049 } 2050 2051 if (!err) { 2052 unsigned long leftover_pages = pages_remaining; 2053 int bytes_mapped; 2054 2055 /* We called zap_page_range_single, try to reinsert. */ 2056 err = vm_insert_pages(vma, *address, 2057 pending_pages, 2058 &pages_remaining); 2059 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2060 *seq += bytes_mapped; 2061 *address += bytes_mapped; 2062 } 2063 if (err) { 2064 /* Either we were unable to zap, OR we zapped, retried an 2065 * insert, and still had an issue. Either ways, pages_remaining 2066 * is the number of pages we were unable to map, and we unroll 2067 * some state we speculatively touched before. 2068 */ 2069 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2070 2071 *length -= bytes_not_mapped; 2072 zc->recv_skip_hint += bytes_not_mapped; 2073 } 2074 return err; 2075 } 2076 2077 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2078 struct page **pages, 2079 unsigned int pages_to_map, 2080 unsigned long *address, 2081 u32 *length, 2082 u32 *seq, 2083 struct tcp_zerocopy_receive *zc, 2084 u32 total_bytes_to_map) 2085 { 2086 unsigned long pages_remaining = pages_to_map; 2087 unsigned int pages_mapped; 2088 unsigned int bytes_mapped; 2089 int err; 2090 2091 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2092 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2093 bytes_mapped = PAGE_SIZE * pages_mapped; 2094 /* Even if vm_insert_pages fails, it may have partially succeeded in 2095 * mapping (some but not all of the pages). 2096 */ 2097 *seq += bytes_mapped; 2098 *address += bytes_mapped; 2099 2100 if (likely(!err)) 2101 return 0; 2102 2103 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2104 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2105 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2106 err); 2107 } 2108 2109 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2110 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2111 struct tcp_zerocopy_receive *zc, 2112 struct scm_timestamping_internal *tss) 2113 { 2114 unsigned long msg_control_addr; 2115 struct msghdr cmsg_dummy; 2116 2117 msg_control_addr = (unsigned long)zc->msg_control; 2118 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2119 cmsg_dummy.msg_controllen = 2120 (__kernel_size_t)zc->msg_controllen; 2121 cmsg_dummy.msg_flags = in_compat_syscall() 2122 ? MSG_CMSG_COMPAT : 0; 2123 cmsg_dummy.msg_control_is_user = true; 2124 zc->msg_flags = 0; 2125 if (zc->msg_control == msg_control_addr && 2126 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2127 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2128 zc->msg_control = (__u64) 2129 ((uintptr_t)cmsg_dummy.msg_control_user); 2130 zc->msg_controllen = 2131 (__u64)cmsg_dummy.msg_controllen; 2132 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2133 } 2134 } 2135 2136 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2137 unsigned long address, 2138 bool *mmap_locked) 2139 { 2140 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2141 2142 if (vma) { 2143 if (vma->vm_ops != &tcp_vm_ops) { 2144 vma_end_read(vma); 2145 return NULL; 2146 } 2147 *mmap_locked = false; 2148 return vma; 2149 } 2150 2151 mmap_read_lock(mm); 2152 vma = vma_lookup(mm, address); 2153 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2154 mmap_read_unlock(mm); 2155 return NULL; 2156 } 2157 *mmap_locked = true; 2158 return vma; 2159 } 2160 2161 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2162 static int tcp_zerocopy_receive(struct sock *sk, 2163 struct tcp_zerocopy_receive *zc, 2164 struct scm_timestamping_internal *tss) 2165 { 2166 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2167 unsigned long address = (unsigned long)zc->address; 2168 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2169 s32 copybuf_len = zc->copybuf_len; 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 const skb_frag_t *frags = NULL; 2172 unsigned int pages_to_map = 0; 2173 struct vm_area_struct *vma; 2174 struct sk_buff *skb = NULL; 2175 u32 seq = tp->copied_seq; 2176 u32 total_bytes_to_map; 2177 int inq = tcp_inq(sk); 2178 bool mmap_locked; 2179 int ret; 2180 2181 zc->copybuf_len = 0; 2182 zc->msg_flags = 0; 2183 2184 if (address & (PAGE_SIZE - 1) || address != zc->address) 2185 return -EINVAL; 2186 2187 if (sk->sk_state == TCP_LISTEN) 2188 return -ENOTCONN; 2189 2190 sock_rps_record_flow(sk); 2191 2192 if (inq && inq <= copybuf_len) 2193 return receive_fallback_to_copy(sk, zc, inq, tss); 2194 2195 if (inq < PAGE_SIZE) { 2196 zc->length = 0; 2197 zc->recv_skip_hint = inq; 2198 if (!inq && sock_flag(sk, SOCK_DONE)) 2199 return -EIO; 2200 return 0; 2201 } 2202 2203 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2204 if (!vma) 2205 return -EINVAL; 2206 2207 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2208 avail_len = min_t(u32, vma_len, inq); 2209 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2210 if (total_bytes_to_map) { 2211 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2212 zap_page_range_single(vma, address, total_bytes_to_map, 2213 NULL); 2214 zc->length = total_bytes_to_map; 2215 zc->recv_skip_hint = 0; 2216 } else { 2217 zc->length = avail_len; 2218 zc->recv_skip_hint = avail_len; 2219 } 2220 ret = 0; 2221 while (length + PAGE_SIZE <= zc->length) { 2222 int mappable_offset; 2223 struct page *page; 2224 2225 if (zc->recv_skip_hint < PAGE_SIZE) { 2226 u32 offset_frag; 2227 2228 if (skb) { 2229 if (zc->recv_skip_hint > 0) 2230 break; 2231 skb = skb->next; 2232 offset = seq - TCP_SKB_CB(skb)->seq; 2233 } else { 2234 skb = tcp_recv_skb(sk, seq, &offset); 2235 } 2236 2237 if (!skb_frags_readable(skb)) 2238 break; 2239 2240 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2241 tcp_update_recv_tstamps(skb, tss); 2242 zc->msg_flags |= TCP_CMSG_TS; 2243 } 2244 zc->recv_skip_hint = skb->len - offset; 2245 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2246 if (!frags || offset_frag) 2247 break; 2248 } 2249 2250 mappable_offset = find_next_mappable_frag(frags, 2251 zc->recv_skip_hint); 2252 if (mappable_offset) { 2253 zc->recv_skip_hint = mappable_offset; 2254 break; 2255 } 2256 page = skb_frag_page(frags); 2257 if (WARN_ON_ONCE(!page)) 2258 break; 2259 2260 prefetchw(page); 2261 pages[pages_to_map++] = page; 2262 length += PAGE_SIZE; 2263 zc->recv_skip_hint -= PAGE_SIZE; 2264 frags++; 2265 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2266 zc->recv_skip_hint < PAGE_SIZE) { 2267 /* Either full batch, or we're about to go to next skb 2268 * (and we cannot unroll failed ops across skbs). 2269 */ 2270 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2271 pages_to_map, 2272 &address, &length, 2273 &seq, zc, 2274 total_bytes_to_map); 2275 if (ret) 2276 goto out; 2277 pages_to_map = 0; 2278 } 2279 } 2280 if (pages_to_map) { 2281 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2282 &address, &length, &seq, 2283 zc, total_bytes_to_map); 2284 } 2285 out: 2286 if (mmap_locked) 2287 mmap_read_unlock(current->mm); 2288 else 2289 vma_end_read(vma); 2290 /* Try to copy straggler data. */ 2291 if (!ret) 2292 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2293 2294 if (length + copylen) { 2295 WRITE_ONCE(tp->copied_seq, seq); 2296 tcp_rcv_space_adjust(sk); 2297 2298 /* Clean up data we have read: This will do ACK frames. */ 2299 tcp_recv_skb(sk, seq, &offset); 2300 tcp_cleanup_rbuf(sk, length + copylen); 2301 ret = 0; 2302 if (length == zc->length) 2303 zc->recv_skip_hint = 0; 2304 } else { 2305 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2306 ret = -EIO; 2307 } 2308 zc->length = length; 2309 return ret; 2310 } 2311 #endif 2312 2313 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2314 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2315 struct scm_timestamping_internal *tss) 2316 { 2317 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2318 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2319 bool has_timestamping = false; 2320 2321 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2322 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2323 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2324 if (new_tstamp) { 2325 struct __kernel_timespec kts = { 2326 .tv_sec = tss->ts[0].tv_sec, 2327 .tv_nsec = tss->ts[0].tv_nsec, 2328 }; 2329 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2330 sizeof(kts), &kts); 2331 } else { 2332 struct __kernel_old_timespec ts_old = { 2333 .tv_sec = tss->ts[0].tv_sec, 2334 .tv_nsec = tss->ts[0].tv_nsec, 2335 }; 2336 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2337 sizeof(ts_old), &ts_old); 2338 } 2339 } else { 2340 if (new_tstamp) { 2341 struct __kernel_sock_timeval stv = { 2342 .tv_sec = tss->ts[0].tv_sec, 2343 .tv_usec = tss->ts[0].tv_nsec / 1000, 2344 }; 2345 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2346 sizeof(stv), &stv); 2347 } else { 2348 struct __kernel_old_timeval tv = { 2349 .tv_sec = tss->ts[0].tv_sec, 2350 .tv_usec = tss->ts[0].tv_nsec / 1000, 2351 }; 2352 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2353 sizeof(tv), &tv); 2354 } 2355 } 2356 } 2357 2358 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2359 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2360 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2361 has_timestamping = true; 2362 else 2363 tss->ts[0] = (struct timespec64) {0}; 2364 } 2365 2366 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2367 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2368 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2369 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2370 has_timestamping = true; 2371 else 2372 tss->ts[2] = (struct timespec64) {0}; 2373 } 2374 2375 if (has_timestamping) { 2376 tss->ts[1] = (struct timespec64) {0}; 2377 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2378 put_cmsg_scm_timestamping64(msg, tss); 2379 else 2380 put_cmsg_scm_timestamping(msg, tss); 2381 } 2382 } 2383 2384 static int tcp_inq_hint(struct sock *sk) 2385 { 2386 const struct tcp_sock *tp = tcp_sk(sk); 2387 u32 copied_seq = READ_ONCE(tp->copied_seq); 2388 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2389 int inq; 2390 2391 inq = rcv_nxt - copied_seq; 2392 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2393 lock_sock(sk); 2394 inq = tp->rcv_nxt - tp->copied_seq; 2395 release_sock(sk); 2396 } 2397 /* After receiving a FIN, tell the user-space to continue reading 2398 * by returning a non-zero inq. 2399 */ 2400 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2401 inq = 1; 2402 return inq; 2403 } 2404 2405 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2406 struct tcp_xa_pool { 2407 u8 max; /* max <= MAX_SKB_FRAGS */ 2408 u8 idx; /* idx <= max */ 2409 __u32 tokens[MAX_SKB_FRAGS]; 2410 netmem_ref netmems[MAX_SKB_FRAGS]; 2411 }; 2412 2413 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2414 { 2415 int i; 2416 2417 /* Commit part that has been copied to user space. */ 2418 for (i = 0; i < p->idx; i++) 2419 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2420 (__force void *)p->netmems[i], GFP_KERNEL); 2421 /* Rollback what has been pre-allocated and is no longer needed. */ 2422 for (; i < p->max; i++) 2423 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2424 2425 p->max = 0; 2426 p->idx = 0; 2427 } 2428 2429 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2430 { 2431 if (!p->max) 2432 return; 2433 2434 xa_lock_bh(&sk->sk_user_frags); 2435 2436 tcp_xa_pool_commit_locked(sk, p); 2437 2438 xa_unlock_bh(&sk->sk_user_frags); 2439 } 2440 2441 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2442 unsigned int max_frags) 2443 { 2444 int err, k; 2445 2446 if (p->idx < p->max) 2447 return 0; 2448 2449 xa_lock_bh(&sk->sk_user_frags); 2450 2451 tcp_xa_pool_commit_locked(sk, p); 2452 2453 for (k = 0; k < max_frags; k++) { 2454 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2455 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2456 if (err) 2457 break; 2458 } 2459 2460 xa_unlock_bh(&sk->sk_user_frags); 2461 2462 p->max = k; 2463 p->idx = 0; 2464 return k ? 0 : err; 2465 } 2466 2467 /* On error, returns the -errno. On success, returns number of bytes sent to the 2468 * user. May not consume all of @remaining_len. 2469 */ 2470 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2471 unsigned int offset, struct msghdr *msg, 2472 int remaining_len) 2473 { 2474 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2475 struct tcp_xa_pool tcp_xa_pool; 2476 unsigned int start; 2477 int i, copy, n; 2478 int sent = 0; 2479 int err = 0; 2480 2481 tcp_xa_pool.max = 0; 2482 tcp_xa_pool.idx = 0; 2483 do { 2484 start = skb_headlen(skb); 2485 2486 if (skb_frags_readable(skb)) { 2487 err = -ENODEV; 2488 goto out; 2489 } 2490 2491 /* Copy header. */ 2492 copy = start - offset; 2493 if (copy > 0) { 2494 copy = min(copy, remaining_len); 2495 2496 n = copy_to_iter(skb->data + offset, copy, 2497 &msg->msg_iter); 2498 if (n != copy) { 2499 err = -EFAULT; 2500 goto out; 2501 } 2502 2503 offset += copy; 2504 remaining_len -= copy; 2505 2506 /* First a dmabuf_cmsg for # bytes copied to user 2507 * buffer. 2508 */ 2509 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2510 dmabuf_cmsg.frag_size = copy; 2511 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2512 SO_DEVMEM_LINEAR, 2513 sizeof(dmabuf_cmsg), 2514 &dmabuf_cmsg); 2515 if (err) 2516 goto out; 2517 2518 sent += copy; 2519 2520 if (remaining_len == 0) 2521 goto out; 2522 } 2523 2524 /* after that, send information of dmabuf pages through a 2525 * sequence of cmsg 2526 */ 2527 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2528 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2529 struct net_iov *niov; 2530 u64 frag_offset; 2531 int end; 2532 2533 /* !skb_frags_readable() should indicate that ALL the 2534 * frags in this skb are dmabuf net_iovs. We're checking 2535 * for that flag above, but also check individual frags 2536 * here. If the tcp stack is not setting 2537 * skb_frags_readable() correctly, we still don't want 2538 * to crash here. 2539 */ 2540 if (!skb_frag_net_iov(frag)) { 2541 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2542 err = -ENODEV; 2543 goto out; 2544 } 2545 2546 niov = skb_frag_net_iov(frag); 2547 if (!net_is_devmem_iov(niov)) { 2548 err = -ENODEV; 2549 goto out; 2550 } 2551 2552 end = start + skb_frag_size(frag); 2553 copy = end - offset; 2554 2555 if (copy > 0) { 2556 copy = min(copy, remaining_len); 2557 2558 frag_offset = net_iov_virtual_addr(niov) + 2559 skb_frag_off(frag) + offset - 2560 start; 2561 dmabuf_cmsg.frag_offset = frag_offset; 2562 dmabuf_cmsg.frag_size = copy; 2563 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2564 skb_shinfo(skb)->nr_frags - i); 2565 if (err) 2566 goto out; 2567 2568 /* Will perform the exchange later */ 2569 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2570 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2571 2572 offset += copy; 2573 remaining_len -= copy; 2574 2575 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2576 SO_DEVMEM_DMABUF, 2577 sizeof(dmabuf_cmsg), 2578 &dmabuf_cmsg); 2579 if (err) 2580 goto out; 2581 2582 atomic_long_inc(&niov->pp_ref_count); 2583 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2584 2585 sent += copy; 2586 2587 if (remaining_len == 0) 2588 goto out; 2589 } 2590 start = end; 2591 } 2592 2593 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2594 if (!remaining_len) 2595 goto out; 2596 2597 /* if remaining_len is not satisfied yet, we need to go to the 2598 * next frag in the frag_list to satisfy remaining_len. 2599 */ 2600 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2601 2602 offset = offset - start; 2603 } while (skb); 2604 2605 if (remaining_len) { 2606 err = -EFAULT; 2607 goto out; 2608 } 2609 2610 out: 2611 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2612 if (!sent) 2613 sent = err; 2614 2615 return sent; 2616 } 2617 2618 /* 2619 * This routine copies from a sock struct into the user buffer. 2620 * 2621 * Technical note: in 2.3 we work on _locked_ socket, so that 2622 * tricks with *seq access order and skb->users are not required. 2623 * Probably, code can be easily improved even more. 2624 */ 2625 2626 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2627 int flags, struct scm_timestamping_internal *tss, 2628 int *cmsg_flags) 2629 { 2630 struct tcp_sock *tp = tcp_sk(sk); 2631 int last_copied_dmabuf = -1; /* uninitialized */ 2632 int copied = 0; 2633 u32 peek_seq; 2634 u32 *seq; 2635 unsigned long used; 2636 int err; 2637 int target; /* Read at least this many bytes */ 2638 long timeo; 2639 struct sk_buff *skb, *last; 2640 u32 peek_offset = 0; 2641 u32 urg_hole = 0; 2642 2643 err = -ENOTCONN; 2644 if (sk->sk_state == TCP_LISTEN) 2645 goto out; 2646 2647 if (tp->recvmsg_inq) { 2648 *cmsg_flags = TCP_CMSG_INQ; 2649 msg->msg_get_inq = 1; 2650 } 2651 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2652 2653 /* Urgent data needs to be handled specially. */ 2654 if (flags & MSG_OOB) 2655 goto recv_urg; 2656 2657 if (unlikely(tp->repair)) { 2658 err = -EPERM; 2659 if (!(flags & MSG_PEEK)) 2660 goto out; 2661 2662 if (tp->repair_queue == TCP_SEND_QUEUE) 2663 goto recv_sndq; 2664 2665 err = -EINVAL; 2666 if (tp->repair_queue == TCP_NO_QUEUE) 2667 goto out; 2668 2669 /* 'common' recv queue MSG_PEEK-ing */ 2670 } 2671 2672 seq = &tp->copied_seq; 2673 if (flags & MSG_PEEK) { 2674 peek_offset = max(sk_peek_offset(sk, flags), 0); 2675 peek_seq = tp->copied_seq + peek_offset; 2676 seq = &peek_seq; 2677 } 2678 2679 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2680 2681 do { 2682 u32 offset; 2683 2684 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2685 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2686 if (copied) 2687 break; 2688 if (signal_pending(current)) { 2689 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2690 break; 2691 } 2692 } 2693 2694 /* Next get a buffer. */ 2695 2696 last = skb_peek_tail(&sk->sk_receive_queue); 2697 skb_queue_walk(&sk->sk_receive_queue, skb) { 2698 last = skb; 2699 /* Now that we have two receive queues this 2700 * shouldn't happen. 2701 */ 2702 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2703 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2704 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2705 flags)) 2706 break; 2707 2708 offset = *seq - TCP_SKB_CB(skb)->seq; 2709 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2710 pr_err_once("%s: found a SYN, please report !\n", __func__); 2711 offset--; 2712 } 2713 if (offset < skb->len) 2714 goto found_ok_skb; 2715 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2716 goto found_fin_ok; 2717 WARN(!(flags & MSG_PEEK), 2718 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2719 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2720 } 2721 2722 /* Well, if we have backlog, try to process it now yet. */ 2723 2724 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2725 break; 2726 2727 if (copied) { 2728 if (!timeo || 2729 sk->sk_err || 2730 sk->sk_state == TCP_CLOSE || 2731 (sk->sk_shutdown & RCV_SHUTDOWN) || 2732 signal_pending(current)) 2733 break; 2734 } else { 2735 if (sock_flag(sk, SOCK_DONE)) 2736 break; 2737 2738 if (sk->sk_err) { 2739 copied = sock_error(sk); 2740 break; 2741 } 2742 2743 if (sk->sk_shutdown & RCV_SHUTDOWN) 2744 break; 2745 2746 if (sk->sk_state == TCP_CLOSE) { 2747 /* This occurs when user tries to read 2748 * from never connected socket. 2749 */ 2750 copied = -ENOTCONN; 2751 break; 2752 } 2753 2754 if (!timeo) { 2755 copied = -EAGAIN; 2756 break; 2757 } 2758 2759 if (signal_pending(current)) { 2760 copied = sock_intr_errno(timeo); 2761 break; 2762 } 2763 } 2764 2765 if (copied >= target) { 2766 /* Do not sleep, just process backlog. */ 2767 __sk_flush_backlog(sk); 2768 } else { 2769 tcp_cleanup_rbuf(sk, copied); 2770 err = sk_wait_data(sk, &timeo, last); 2771 if (err < 0) { 2772 err = copied ? : err; 2773 goto out; 2774 } 2775 } 2776 2777 if ((flags & MSG_PEEK) && 2778 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2779 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2780 current->comm, 2781 task_pid_nr(current)); 2782 peek_seq = tp->copied_seq + peek_offset; 2783 } 2784 continue; 2785 2786 found_ok_skb: 2787 /* Ok so how much can we use? */ 2788 used = skb->len - offset; 2789 if (len < used) 2790 used = len; 2791 2792 /* Do we have urgent data here? */ 2793 if (unlikely(tp->urg_data)) { 2794 u32 urg_offset = tp->urg_seq - *seq; 2795 if (urg_offset < used) { 2796 if (!urg_offset) { 2797 if (!sock_flag(sk, SOCK_URGINLINE)) { 2798 WRITE_ONCE(*seq, *seq + 1); 2799 urg_hole++; 2800 offset++; 2801 used--; 2802 if (!used) 2803 goto skip_copy; 2804 } 2805 } else 2806 used = urg_offset; 2807 } 2808 } 2809 2810 if (!(flags & MSG_TRUNC)) { 2811 if (last_copied_dmabuf != -1 && 2812 last_copied_dmabuf != !skb_frags_readable(skb)) 2813 break; 2814 2815 if (skb_frags_readable(skb)) { 2816 err = skb_copy_datagram_msg(skb, offset, msg, 2817 used); 2818 if (err) { 2819 /* Exception. Bailout! */ 2820 if (!copied) 2821 copied = -EFAULT; 2822 break; 2823 } 2824 } else { 2825 if (!(flags & MSG_SOCK_DEVMEM)) { 2826 /* dmabuf skbs can only be received 2827 * with the MSG_SOCK_DEVMEM flag. 2828 */ 2829 if (!copied) 2830 copied = -EFAULT; 2831 2832 break; 2833 } 2834 2835 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2836 used); 2837 if (err < 0) { 2838 if (!copied) 2839 copied = err; 2840 2841 break; 2842 } 2843 used = err; 2844 } 2845 } 2846 2847 last_copied_dmabuf = !skb_frags_readable(skb); 2848 2849 WRITE_ONCE(*seq, *seq + used); 2850 copied += used; 2851 len -= used; 2852 if (flags & MSG_PEEK) 2853 sk_peek_offset_fwd(sk, used); 2854 else 2855 sk_peek_offset_bwd(sk, used); 2856 tcp_rcv_space_adjust(sk); 2857 2858 skip_copy: 2859 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2860 WRITE_ONCE(tp->urg_data, 0); 2861 tcp_fast_path_check(sk); 2862 } 2863 2864 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2865 tcp_update_recv_tstamps(skb, tss); 2866 *cmsg_flags |= TCP_CMSG_TS; 2867 } 2868 2869 if (used + offset < skb->len) 2870 continue; 2871 2872 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2873 goto found_fin_ok; 2874 if (!(flags & MSG_PEEK)) 2875 tcp_eat_recv_skb(sk, skb); 2876 continue; 2877 2878 found_fin_ok: 2879 /* Process the FIN. */ 2880 WRITE_ONCE(*seq, *seq + 1); 2881 if (!(flags & MSG_PEEK)) 2882 tcp_eat_recv_skb(sk, skb); 2883 break; 2884 } while (len > 0); 2885 2886 /* According to UNIX98, msg_name/msg_namelen are ignored 2887 * on connected socket. I was just happy when found this 8) --ANK 2888 */ 2889 2890 /* Clean up data we have read: This will do ACK frames. */ 2891 tcp_cleanup_rbuf(sk, copied); 2892 return copied; 2893 2894 out: 2895 return err; 2896 2897 recv_urg: 2898 err = tcp_recv_urg(sk, msg, len, flags); 2899 goto out; 2900 2901 recv_sndq: 2902 err = tcp_peek_sndq(sk, msg, len); 2903 goto out; 2904 } 2905 2906 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2907 int *addr_len) 2908 { 2909 int cmsg_flags = 0, ret; 2910 struct scm_timestamping_internal tss; 2911 2912 if (unlikely(flags & MSG_ERRQUEUE)) 2913 return inet_recv_error(sk, msg, len, addr_len); 2914 2915 if (sk_can_busy_loop(sk) && 2916 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2917 sk->sk_state == TCP_ESTABLISHED) 2918 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2919 2920 lock_sock(sk); 2921 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2922 release_sock(sk); 2923 2924 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2925 if (cmsg_flags & TCP_CMSG_TS) 2926 tcp_recv_timestamp(msg, sk, &tss); 2927 if (msg->msg_get_inq) { 2928 msg->msg_inq = tcp_inq_hint(sk); 2929 if (cmsg_flags & TCP_CMSG_INQ) 2930 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2931 sizeof(msg->msg_inq), &msg->msg_inq); 2932 } 2933 } 2934 return ret; 2935 } 2936 EXPORT_IPV6_MOD(tcp_recvmsg); 2937 2938 void tcp_set_state(struct sock *sk, int state) 2939 { 2940 int oldstate = sk->sk_state; 2941 2942 /* We defined a new enum for TCP states that are exported in BPF 2943 * so as not force the internal TCP states to be frozen. The 2944 * following checks will detect if an internal state value ever 2945 * differs from the BPF value. If this ever happens, then we will 2946 * need to remap the internal value to the BPF value before calling 2947 * tcp_call_bpf_2arg. 2948 */ 2949 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2950 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2951 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2952 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2953 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2954 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2955 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2956 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2957 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2958 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2959 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2960 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2961 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2962 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2963 2964 /* bpf uapi header bpf.h defines an anonymous enum with values 2965 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2966 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2967 * But clang built vmlinux does not have this enum in DWARF 2968 * since clang removes the above code before generating IR/debuginfo. 2969 * Let us explicitly emit the type debuginfo to ensure the 2970 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2971 * regardless of which compiler is used. 2972 */ 2973 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2974 2975 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2976 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2977 2978 switch (state) { 2979 case TCP_ESTABLISHED: 2980 if (oldstate != TCP_ESTABLISHED) 2981 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2982 break; 2983 case TCP_CLOSE_WAIT: 2984 if (oldstate == TCP_SYN_RECV) 2985 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2986 break; 2987 2988 case TCP_CLOSE: 2989 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2990 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2991 2992 sk->sk_prot->unhash(sk); 2993 if (inet_csk(sk)->icsk_bind_hash && 2994 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2995 inet_put_port(sk); 2996 fallthrough; 2997 default: 2998 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2999 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 3000 } 3001 3002 /* Change state AFTER socket is unhashed to avoid closed 3003 * socket sitting in hash tables. 3004 */ 3005 inet_sk_state_store(sk, state); 3006 } 3007 EXPORT_SYMBOL_GPL(tcp_set_state); 3008 3009 /* 3010 * State processing on a close. This implements the state shift for 3011 * sending our FIN frame. Note that we only send a FIN for some 3012 * states. A shutdown() may have already sent the FIN, or we may be 3013 * closed. 3014 */ 3015 3016 static const unsigned char new_state[16] = { 3017 /* current state: new state: action: */ 3018 [0 /* (Invalid) */] = TCP_CLOSE, 3019 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3020 [TCP_SYN_SENT] = TCP_CLOSE, 3021 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3022 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3023 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3024 [TCP_TIME_WAIT] = TCP_CLOSE, 3025 [TCP_CLOSE] = TCP_CLOSE, 3026 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3027 [TCP_LAST_ACK] = TCP_LAST_ACK, 3028 [TCP_LISTEN] = TCP_CLOSE, 3029 [TCP_CLOSING] = TCP_CLOSING, 3030 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3031 }; 3032 3033 static int tcp_close_state(struct sock *sk) 3034 { 3035 int next = (int)new_state[sk->sk_state]; 3036 int ns = next & TCP_STATE_MASK; 3037 3038 tcp_set_state(sk, ns); 3039 3040 return next & TCP_ACTION_FIN; 3041 } 3042 3043 /* 3044 * Shutdown the sending side of a connection. Much like close except 3045 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3046 */ 3047 3048 void tcp_shutdown(struct sock *sk, int how) 3049 { 3050 /* We need to grab some memory, and put together a FIN, 3051 * and then put it into the queue to be sent. 3052 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3053 */ 3054 if (!(how & SEND_SHUTDOWN)) 3055 return; 3056 3057 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3058 if ((1 << sk->sk_state) & 3059 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3060 TCPF_CLOSE_WAIT)) { 3061 /* Clear out any half completed packets. FIN if needed. */ 3062 if (tcp_close_state(sk)) 3063 tcp_send_fin(sk); 3064 } 3065 } 3066 EXPORT_IPV6_MOD(tcp_shutdown); 3067 3068 int tcp_orphan_count_sum(void) 3069 { 3070 int i, total = 0; 3071 3072 for_each_possible_cpu(i) 3073 total += per_cpu(tcp_orphan_count, i); 3074 3075 return max(total, 0); 3076 } 3077 3078 static int tcp_orphan_cache; 3079 static struct timer_list tcp_orphan_timer; 3080 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3081 3082 static void tcp_orphan_update(struct timer_list *unused) 3083 { 3084 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3085 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3086 } 3087 3088 static bool tcp_too_many_orphans(int shift) 3089 { 3090 return READ_ONCE(tcp_orphan_cache) << shift > 3091 READ_ONCE(sysctl_tcp_max_orphans); 3092 } 3093 3094 static bool tcp_out_of_memory(const struct sock *sk) 3095 { 3096 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3097 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3098 return true; 3099 return false; 3100 } 3101 3102 bool tcp_check_oom(const struct sock *sk, int shift) 3103 { 3104 bool too_many_orphans, out_of_socket_memory; 3105 3106 too_many_orphans = tcp_too_many_orphans(shift); 3107 out_of_socket_memory = tcp_out_of_memory(sk); 3108 3109 if (too_many_orphans) 3110 net_info_ratelimited("too many orphaned sockets\n"); 3111 if (out_of_socket_memory) 3112 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3113 return too_many_orphans || out_of_socket_memory; 3114 } 3115 3116 void __tcp_close(struct sock *sk, long timeout) 3117 { 3118 bool data_was_unread = false; 3119 struct sk_buff *skb; 3120 int state; 3121 3122 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3123 3124 if (sk->sk_state == TCP_LISTEN) { 3125 tcp_set_state(sk, TCP_CLOSE); 3126 3127 /* Special case. */ 3128 inet_csk_listen_stop(sk); 3129 3130 goto adjudge_to_death; 3131 } 3132 3133 /* We need to flush the recv. buffs. We do this only on the 3134 * descriptor close, not protocol-sourced closes, because the 3135 * reader process may not have drained the data yet! 3136 */ 3137 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 3138 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3139 3140 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3141 end_seq--; 3142 if (after(end_seq, tcp_sk(sk)->copied_seq)) 3143 data_was_unread = true; 3144 tcp_eat_recv_skb(sk, skb); 3145 } 3146 3147 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3148 if (sk->sk_state == TCP_CLOSE) 3149 goto adjudge_to_death; 3150 3151 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3152 * data was lost. To witness the awful effects of the old behavior of 3153 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3154 * GET in an FTP client, suspend the process, wait for the client to 3155 * advertise a zero window, then kill -9 the FTP client, wheee... 3156 * Note: timeout is always zero in such a case. 3157 */ 3158 if (unlikely(tcp_sk(sk)->repair)) { 3159 sk->sk_prot->disconnect(sk, 0); 3160 } else if (data_was_unread) { 3161 /* Unread data was tossed, zap the connection. */ 3162 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3163 tcp_set_state(sk, TCP_CLOSE); 3164 tcp_send_active_reset(sk, sk->sk_allocation, 3165 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3166 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3167 /* Check zero linger _after_ checking for unread data. */ 3168 sk->sk_prot->disconnect(sk, 0); 3169 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3170 } else if (tcp_close_state(sk)) { 3171 /* We FIN if the application ate all the data before 3172 * zapping the connection. 3173 */ 3174 3175 /* RED-PEN. Formally speaking, we have broken TCP state 3176 * machine. State transitions: 3177 * 3178 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3179 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3180 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3181 * 3182 * are legal only when FIN has been sent (i.e. in window), 3183 * rather than queued out of window. Purists blame. 3184 * 3185 * F.e. "RFC state" is ESTABLISHED, 3186 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3187 * 3188 * The visible declinations are that sometimes 3189 * we enter time-wait state, when it is not required really 3190 * (harmless), do not send active resets, when they are 3191 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3192 * they look as CLOSING or LAST_ACK for Linux) 3193 * Probably, I missed some more holelets. 3194 * --ANK 3195 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3196 * in a single packet! (May consider it later but will 3197 * probably need API support or TCP_CORK SYN-ACK until 3198 * data is written and socket is closed.) 3199 */ 3200 tcp_send_fin(sk); 3201 } 3202 3203 sk_stream_wait_close(sk, timeout); 3204 3205 adjudge_to_death: 3206 state = sk->sk_state; 3207 sock_hold(sk); 3208 sock_orphan(sk); 3209 3210 local_bh_disable(); 3211 bh_lock_sock(sk); 3212 /* remove backlog if any, without releasing ownership. */ 3213 __release_sock(sk); 3214 3215 tcp_orphan_count_inc(); 3216 3217 /* Have we already been destroyed by a softirq or backlog? */ 3218 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3219 goto out; 3220 3221 /* This is a (useful) BSD violating of the RFC. There is a 3222 * problem with TCP as specified in that the other end could 3223 * keep a socket open forever with no application left this end. 3224 * We use a 1 minute timeout (about the same as BSD) then kill 3225 * our end. If they send after that then tough - BUT: long enough 3226 * that we won't make the old 4*rto = almost no time - whoops 3227 * reset mistake. 3228 * 3229 * Nope, it was not mistake. It is really desired behaviour 3230 * f.e. on http servers, when such sockets are useless, but 3231 * consume significant resources. Let's do it with special 3232 * linger2 option. --ANK 3233 */ 3234 3235 if (sk->sk_state == TCP_FIN_WAIT2) { 3236 struct tcp_sock *tp = tcp_sk(sk); 3237 if (READ_ONCE(tp->linger2) < 0) { 3238 tcp_set_state(sk, TCP_CLOSE); 3239 tcp_send_active_reset(sk, GFP_ATOMIC, 3240 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3241 __NET_INC_STATS(sock_net(sk), 3242 LINUX_MIB_TCPABORTONLINGER); 3243 } else { 3244 const int tmo = tcp_fin_time(sk); 3245 3246 if (tmo > TCP_TIMEWAIT_LEN) { 3247 tcp_reset_keepalive_timer(sk, 3248 tmo - TCP_TIMEWAIT_LEN); 3249 } else { 3250 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3251 goto out; 3252 } 3253 } 3254 } 3255 if (sk->sk_state != TCP_CLOSE) { 3256 if (tcp_check_oom(sk, 0)) { 3257 tcp_set_state(sk, TCP_CLOSE); 3258 tcp_send_active_reset(sk, GFP_ATOMIC, 3259 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3260 __NET_INC_STATS(sock_net(sk), 3261 LINUX_MIB_TCPABORTONMEMORY); 3262 } else if (!check_net(sock_net(sk))) { 3263 /* Not possible to send reset; just close */ 3264 tcp_set_state(sk, TCP_CLOSE); 3265 } 3266 } 3267 3268 if (sk->sk_state == TCP_CLOSE) { 3269 struct request_sock *req; 3270 3271 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3272 lockdep_sock_is_held(sk)); 3273 /* We could get here with a non-NULL req if the socket is 3274 * aborted (e.g., closed with unread data) before 3WHS 3275 * finishes. 3276 */ 3277 if (req) 3278 reqsk_fastopen_remove(sk, req, false); 3279 inet_csk_destroy_sock(sk); 3280 } 3281 /* Otherwise, socket is reprieved until protocol close. */ 3282 3283 out: 3284 bh_unlock_sock(sk); 3285 local_bh_enable(); 3286 } 3287 3288 void tcp_close(struct sock *sk, long timeout) 3289 { 3290 lock_sock(sk); 3291 __tcp_close(sk, timeout); 3292 release_sock(sk); 3293 if (!sk->sk_net_refcnt) 3294 inet_csk_clear_xmit_timers_sync(sk); 3295 sock_put(sk); 3296 } 3297 EXPORT_SYMBOL(tcp_close); 3298 3299 /* These states need RST on ABORT according to RFC793 */ 3300 3301 static inline bool tcp_need_reset(int state) 3302 { 3303 return (1 << state) & 3304 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3305 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3306 } 3307 3308 static void tcp_rtx_queue_purge(struct sock *sk) 3309 { 3310 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3311 3312 tcp_sk(sk)->highest_sack = NULL; 3313 while (p) { 3314 struct sk_buff *skb = rb_to_skb(p); 3315 3316 p = rb_next(p); 3317 /* Since we are deleting whole queue, no need to 3318 * list_del(&skb->tcp_tsorted_anchor) 3319 */ 3320 tcp_rtx_queue_unlink(skb, sk); 3321 tcp_wmem_free_skb(sk, skb); 3322 } 3323 } 3324 3325 void tcp_write_queue_purge(struct sock *sk) 3326 { 3327 struct sk_buff *skb; 3328 3329 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3330 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3331 tcp_skb_tsorted_anchor_cleanup(skb); 3332 tcp_wmem_free_skb(sk, skb); 3333 } 3334 tcp_rtx_queue_purge(sk); 3335 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3336 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3337 tcp_sk(sk)->packets_out = 0; 3338 inet_csk(sk)->icsk_backoff = 0; 3339 } 3340 3341 int tcp_disconnect(struct sock *sk, int flags) 3342 { 3343 struct inet_sock *inet = inet_sk(sk); 3344 struct inet_connection_sock *icsk = inet_csk(sk); 3345 struct tcp_sock *tp = tcp_sk(sk); 3346 int old_state = sk->sk_state; 3347 u32 seq; 3348 3349 if (old_state != TCP_CLOSE) 3350 tcp_set_state(sk, TCP_CLOSE); 3351 3352 /* ABORT function of RFC793 */ 3353 if (old_state == TCP_LISTEN) { 3354 inet_csk_listen_stop(sk); 3355 } else if (unlikely(tp->repair)) { 3356 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3357 } else if (tcp_need_reset(old_state)) { 3358 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3359 WRITE_ONCE(sk->sk_err, ECONNRESET); 3360 } else if (tp->snd_nxt != tp->write_seq && 3361 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3362 /* The last check adjusts for discrepancy of Linux wrt. RFC 3363 * states 3364 */ 3365 tcp_send_active_reset(sk, gfp_any(), 3366 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3367 WRITE_ONCE(sk->sk_err, ECONNRESET); 3368 } else if (old_state == TCP_SYN_SENT) 3369 WRITE_ONCE(sk->sk_err, ECONNRESET); 3370 3371 tcp_clear_xmit_timers(sk); 3372 __skb_queue_purge(&sk->sk_receive_queue); 3373 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3374 WRITE_ONCE(tp->urg_data, 0); 3375 sk_set_peek_off(sk, -1); 3376 tcp_write_queue_purge(sk); 3377 tcp_fastopen_active_disable_ofo_check(sk); 3378 skb_rbtree_purge(&tp->out_of_order_queue); 3379 3380 inet->inet_dport = 0; 3381 3382 inet_bhash2_reset_saddr(sk); 3383 3384 WRITE_ONCE(sk->sk_shutdown, 0); 3385 sock_reset_flag(sk, SOCK_DONE); 3386 tp->srtt_us = 0; 3387 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3388 tp->rcv_rtt_last_tsecr = 0; 3389 3390 seq = tp->write_seq + tp->max_window + 2; 3391 if (!seq) 3392 seq = 1; 3393 WRITE_ONCE(tp->write_seq, seq); 3394 3395 icsk->icsk_backoff = 0; 3396 WRITE_ONCE(icsk->icsk_probes_out, 0); 3397 icsk->icsk_probes_tstamp = 0; 3398 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3399 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3400 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3401 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3402 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3403 tp->snd_cwnd_cnt = 0; 3404 tp->is_cwnd_limited = 0; 3405 tp->max_packets_out = 0; 3406 tp->window_clamp = 0; 3407 tp->delivered = 0; 3408 tp->delivered_ce = 0; 3409 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3410 icsk->icsk_ca_ops->release(sk); 3411 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3412 icsk->icsk_ca_initialized = 0; 3413 tcp_set_ca_state(sk, TCP_CA_Open); 3414 tp->is_sack_reneg = 0; 3415 tcp_clear_retrans(tp); 3416 tp->total_retrans = 0; 3417 inet_csk_delack_init(sk); 3418 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3419 * issue in __tcp_select_window() 3420 */ 3421 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3422 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3423 __sk_dst_reset(sk); 3424 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3425 tcp_saved_syn_free(tp); 3426 tp->compressed_ack = 0; 3427 tp->segs_in = 0; 3428 tp->segs_out = 0; 3429 tp->bytes_sent = 0; 3430 tp->bytes_acked = 0; 3431 tp->bytes_received = 0; 3432 tp->bytes_retrans = 0; 3433 tp->data_segs_in = 0; 3434 tp->data_segs_out = 0; 3435 tp->duplicate_sack[0].start_seq = 0; 3436 tp->duplicate_sack[0].end_seq = 0; 3437 tp->dsack_dups = 0; 3438 tp->reord_seen = 0; 3439 tp->retrans_out = 0; 3440 tp->sacked_out = 0; 3441 tp->tlp_high_seq = 0; 3442 tp->last_oow_ack_time = 0; 3443 tp->plb_rehash = 0; 3444 /* There's a bubble in the pipe until at least the first ACK. */ 3445 tp->app_limited = ~0U; 3446 tp->rate_app_limited = 1; 3447 tp->rack.mstamp = 0; 3448 tp->rack.advanced = 0; 3449 tp->rack.reo_wnd_steps = 1; 3450 tp->rack.last_delivered = 0; 3451 tp->rack.reo_wnd_persist = 0; 3452 tp->rack.dsack_seen = 0; 3453 tp->syn_data_acked = 0; 3454 tp->syn_fastopen_child = 0; 3455 tp->rx_opt.saw_tstamp = 0; 3456 tp->rx_opt.dsack = 0; 3457 tp->rx_opt.num_sacks = 0; 3458 tp->rcv_ooopack = 0; 3459 3460 3461 /* Clean up fastopen related fields */ 3462 tcp_free_fastopen_req(tp); 3463 inet_clear_bit(DEFER_CONNECT, sk); 3464 tp->fastopen_client_fail = 0; 3465 3466 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3467 3468 if (sk->sk_frag.page) { 3469 put_page(sk->sk_frag.page); 3470 sk->sk_frag.page = NULL; 3471 sk->sk_frag.offset = 0; 3472 } 3473 sk_error_report(sk); 3474 return 0; 3475 } 3476 EXPORT_SYMBOL(tcp_disconnect); 3477 3478 static inline bool tcp_can_repair_sock(const struct sock *sk) 3479 { 3480 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3481 (sk->sk_state != TCP_LISTEN); 3482 } 3483 3484 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3485 { 3486 struct tcp_repair_window opt; 3487 3488 if (!tp->repair) 3489 return -EPERM; 3490 3491 if (len != sizeof(opt)) 3492 return -EINVAL; 3493 3494 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3495 return -EFAULT; 3496 3497 if (opt.max_window < opt.snd_wnd) 3498 return -EINVAL; 3499 3500 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3501 return -EINVAL; 3502 3503 if (after(opt.rcv_wup, tp->rcv_nxt)) 3504 return -EINVAL; 3505 3506 tp->snd_wl1 = opt.snd_wl1; 3507 tp->snd_wnd = opt.snd_wnd; 3508 tp->max_window = opt.max_window; 3509 3510 tp->rcv_wnd = opt.rcv_wnd; 3511 tp->rcv_wup = opt.rcv_wup; 3512 3513 return 0; 3514 } 3515 3516 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3517 unsigned int len) 3518 { 3519 struct tcp_sock *tp = tcp_sk(sk); 3520 struct tcp_repair_opt opt; 3521 size_t offset = 0; 3522 3523 while (len >= sizeof(opt)) { 3524 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3525 return -EFAULT; 3526 3527 offset += sizeof(opt); 3528 len -= sizeof(opt); 3529 3530 switch (opt.opt_code) { 3531 case TCPOPT_MSS: 3532 tp->rx_opt.mss_clamp = opt.opt_val; 3533 tcp_mtup_init(sk); 3534 break; 3535 case TCPOPT_WINDOW: 3536 { 3537 u16 snd_wscale = opt.opt_val & 0xFFFF; 3538 u16 rcv_wscale = opt.opt_val >> 16; 3539 3540 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3541 return -EFBIG; 3542 3543 tp->rx_opt.snd_wscale = snd_wscale; 3544 tp->rx_opt.rcv_wscale = rcv_wscale; 3545 tp->rx_opt.wscale_ok = 1; 3546 } 3547 break; 3548 case TCPOPT_SACK_PERM: 3549 if (opt.opt_val != 0) 3550 return -EINVAL; 3551 3552 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3553 break; 3554 case TCPOPT_TIMESTAMP: 3555 if (opt.opt_val != 0) 3556 return -EINVAL; 3557 3558 tp->rx_opt.tstamp_ok = 1; 3559 break; 3560 } 3561 } 3562 3563 return 0; 3564 } 3565 3566 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3567 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3568 3569 static void tcp_enable_tx_delay(void) 3570 { 3571 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3572 static int __tcp_tx_delay_enabled = 0; 3573 3574 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3575 static_branch_enable(&tcp_tx_delay_enabled); 3576 pr_info("TCP_TX_DELAY enabled\n"); 3577 } 3578 } 3579 } 3580 3581 /* When set indicates to always queue non-full frames. Later the user clears 3582 * this option and we transmit any pending partial frames in the queue. This is 3583 * meant to be used alongside sendfile() to get properly filled frames when the 3584 * user (for example) must write out headers with a write() call first and then 3585 * use sendfile to send out the data parts. 3586 * 3587 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3588 * TCP_NODELAY. 3589 */ 3590 void __tcp_sock_set_cork(struct sock *sk, bool on) 3591 { 3592 struct tcp_sock *tp = tcp_sk(sk); 3593 3594 if (on) { 3595 tp->nonagle |= TCP_NAGLE_CORK; 3596 } else { 3597 tp->nonagle &= ~TCP_NAGLE_CORK; 3598 if (tp->nonagle & TCP_NAGLE_OFF) 3599 tp->nonagle |= TCP_NAGLE_PUSH; 3600 tcp_push_pending_frames(sk); 3601 } 3602 } 3603 3604 void tcp_sock_set_cork(struct sock *sk, bool on) 3605 { 3606 lock_sock(sk); 3607 __tcp_sock_set_cork(sk, on); 3608 release_sock(sk); 3609 } 3610 EXPORT_SYMBOL(tcp_sock_set_cork); 3611 3612 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3613 * remembered, but it is not activated until cork is cleared. 3614 * 3615 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3616 * even TCP_CORK for currently queued segments. 3617 */ 3618 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3619 { 3620 if (on) { 3621 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3622 tcp_push_pending_frames(sk); 3623 } else { 3624 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3625 } 3626 } 3627 3628 void tcp_sock_set_nodelay(struct sock *sk) 3629 { 3630 lock_sock(sk); 3631 __tcp_sock_set_nodelay(sk, true); 3632 release_sock(sk); 3633 } 3634 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3635 3636 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3637 { 3638 if (!val) { 3639 inet_csk_enter_pingpong_mode(sk); 3640 return; 3641 } 3642 3643 inet_csk_exit_pingpong_mode(sk); 3644 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3645 inet_csk_ack_scheduled(sk)) { 3646 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3647 tcp_cleanup_rbuf(sk, 1); 3648 if (!(val & 1)) 3649 inet_csk_enter_pingpong_mode(sk); 3650 } 3651 } 3652 3653 void tcp_sock_set_quickack(struct sock *sk, int val) 3654 { 3655 lock_sock(sk); 3656 __tcp_sock_set_quickack(sk, val); 3657 release_sock(sk); 3658 } 3659 EXPORT_SYMBOL(tcp_sock_set_quickack); 3660 3661 int tcp_sock_set_syncnt(struct sock *sk, int val) 3662 { 3663 if (val < 1 || val > MAX_TCP_SYNCNT) 3664 return -EINVAL; 3665 3666 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3667 return 0; 3668 } 3669 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3670 3671 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3672 { 3673 /* Cap the max time in ms TCP will retry or probe the window 3674 * before giving up and aborting (ETIMEDOUT) a connection. 3675 */ 3676 if (val < 0) 3677 return -EINVAL; 3678 3679 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3680 return 0; 3681 } 3682 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3683 3684 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3685 { 3686 struct tcp_sock *tp = tcp_sk(sk); 3687 3688 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3689 return -EINVAL; 3690 3691 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3692 WRITE_ONCE(tp->keepalive_time, val * HZ); 3693 if (sock_flag(sk, SOCK_KEEPOPEN) && 3694 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3695 u32 elapsed = keepalive_time_elapsed(tp); 3696 3697 if (tp->keepalive_time > elapsed) 3698 elapsed = tp->keepalive_time - elapsed; 3699 else 3700 elapsed = 0; 3701 tcp_reset_keepalive_timer(sk, elapsed); 3702 } 3703 3704 return 0; 3705 } 3706 3707 int tcp_sock_set_keepidle(struct sock *sk, int val) 3708 { 3709 int err; 3710 3711 lock_sock(sk); 3712 err = tcp_sock_set_keepidle_locked(sk, val); 3713 release_sock(sk); 3714 return err; 3715 } 3716 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3717 3718 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3719 { 3720 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3721 return -EINVAL; 3722 3723 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3724 return 0; 3725 } 3726 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3727 3728 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3729 { 3730 if (val < 1 || val > MAX_TCP_KEEPCNT) 3731 return -EINVAL; 3732 3733 /* Paired with READ_ONCE() in keepalive_probes() */ 3734 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3735 return 0; 3736 } 3737 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3738 3739 int tcp_set_window_clamp(struct sock *sk, int val) 3740 { 3741 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3742 struct tcp_sock *tp = tcp_sk(sk); 3743 3744 if (!val) { 3745 if (sk->sk_state != TCP_CLOSE) 3746 return -EINVAL; 3747 WRITE_ONCE(tp->window_clamp, 0); 3748 return 0; 3749 } 3750 3751 old_window_clamp = tp->window_clamp; 3752 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3753 3754 if (new_window_clamp == old_window_clamp) 3755 return 0; 3756 3757 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3758 3759 /* Need to apply the reserved mem provisioning only 3760 * when shrinking the window clamp. 3761 */ 3762 if (new_window_clamp < old_window_clamp) { 3763 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3764 } else { 3765 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3766 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3767 } 3768 return 0; 3769 } 3770 3771 int tcp_sock_set_maxseg(struct sock *sk, int val) 3772 { 3773 /* Values greater than interface MTU won't take effect. However 3774 * at the point when this call is done we typically don't yet 3775 * know which interface is going to be used 3776 */ 3777 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) 3778 return -EINVAL; 3779 3780 WRITE_ONCE(tcp_sk(sk)->rx_opt.user_mss, val); 3781 return 0; 3782 } 3783 3784 /* 3785 * Socket option code for TCP. 3786 */ 3787 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3788 sockptr_t optval, unsigned int optlen) 3789 { 3790 struct tcp_sock *tp = tcp_sk(sk); 3791 struct inet_connection_sock *icsk = inet_csk(sk); 3792 struct net *net = sock_net(sk); 3793 int val; 3794 int err = 0; 3795 3796 /* These are data/string values, all the others are ints */ 3797 switch (optname) { 3798 case TCP_CONGESTION: { 3799 char name[TCP_CA_NAME_MAX]; 3800 3801 if (optlen < 1) 3802 return -EINVAL; 3803 3804 val = strncpy_from_sockptr(name, optval, 3805 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3806 if (val < 0) 3807 return -EFAULT; 3808 name[val] = 0; 3809 3810 sockopt_lock_sock(sk); 3811 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3812 sockopt_ns_capable(sock_net(sk)->user_ns, 3813 CAP_NET_ADMIN)); 3814 sockopt_release_sock(sk); 3815 return err; 3816 } 3817 case TCP_ULP: { 3818 char name[TCP_ULP_NAME_MAX]; 3819 3820 if (optlen < 1) 3821 return -EINVAL; 3822 3823 val = strncpy_from_sockptr(name, optval, 3824 min_t(long, TCP_ULP_NAME_MAX - 1, 3825 optlen)); 3826 if (val < 0) 3827 return -EFAULT; 3828 name[val] = 0; 3829 3830 sockopt_lock_sock(sk); 3831 err = tcp_set_ulp(sk, name); 3832 sockopt_release_sock(sk); 3833 return err; 3834 } 3835 case TCP_FASTOPEN_KEY: { 3836 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3837 __u8 *backup_key = NULL; 3838 3839 /* Allow a backup key as well to facilitate key rotation 3840 * First key is the active one. 3841 */ 3842 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3843 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3844 return -EINVAL; 3845 3846 if (copy_from_sockptr(key, optval, optlen)) 3847 return -EFAULT; 3848 3849 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3850 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3851 3852 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3853 } 3854 default: 3855 /* fallthru */ 3856 break; 3857 } 3858 3859 if (optlen < sizeof(int)) 3860 return -EINVAL; 3861 3862 if (copy_from_sockptr(&val, optval, sizeof(val))) 3863 return -EFAULT; 3864 3865 /* Handle options that can be set without locking the socket. */ 3866 switch (optname) { 3867 case TCP_SYNCNT: 3868 return tcp_sock_set_syncnt(sk, val); 3869 case TCP_USER_TIMEOUT: 3870 return tcp_sock_set_user_timeout(sk, val); 3871 case TCP_KEEPINTVL: 3872 return tcp_sock_set_keepintvl(sk, val); 3873 case TCP_KEEPCNT: 3874 return tcp_sock_set_keepcnt(sk, val); 3875 case TCP_LINGER2: 3876 if (val < 0) 3877 WRITE_ONCE(tp->linger2, -1); 3878 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3879 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3880 else 3881 WRITE_ONCE(tp->linger2, val * HZ); 3882 return 0; 3883 case TCP_DEFER_ACCEPT: 3884 /* Translate value in seconds to number of retransmits */ 3885 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3886 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3887 TCP_RTO_MAX / HZ)); 3888 return 0; 3889 case TCP_RTO_MAX_MS: 3890 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3891 return -EINVAL; 3892 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3893 return 0; 3894 case TCP_RTO_MIN_US: { 3895 int rto_min = usecs_to_jiffies(val); 3896 3897 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3898 return -EINVAL; 3899 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3900 return 0; 3901 } 3902 case TCP_DELACK_MAX_US: { 3903 int delack_max = usecs_to_jiffies(val); 3904 3905 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3906 return -EINVAL; 3907 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3908 return 0; 3909 } 3910 case TCP_MAXSEG: 3911 return tcp_sock_set_maxseg(sk, val); 3912 } 3913 3914 sockopt_lock_sock(sk); 3915 3916 switch (optname) { 3917 case TCP_NODELAY: 3918 __tcp_sock_set_nodelay(sk, val); 3919 break; 3920 3921 case TCP_THIN_LINEAR_TIMEOUTS: 3922 if (val < 0 || val > 1) 3923 err = -EINVAL; 3924 else 3925 tp->thin_lto = val; 3926 break; 3927 3928 case TCP_THIN_DUPACK: 3929 if (val < 0 || val > 1) 3930 err = -EINVAL; 3931 break; 3932 3933 case TCP_REPAIR: 3934 if (!tcp_can_repair_sock(sk)) 3935 err = -EPERM; 3936 else if (val == TCP_REPAIR_ON) { 3937 tp->repair = 1; 3938 sk->sk_reuse = SK_FORCE_REUSE; 3939 tp->repair_queue = TCP_NO_QUEUE; 3940 } else if (val == TCP_REPAIR_OFF) { 3941 tp->repair = 0; 3942 sk->sk_reuse = SK_NO_REUSE; 3943 tcp_send_window_probe(sk); 3944 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3945 tp->repair = 0; 3946 sk->sk_reuse = SK_NO_REUSE; 3947 } else 3948 err = -EINVAL; 3949 3950 break; 3951 3952 case TCP_REPAIR_QUEUE: 3953 if (!tp->repair) 3954 err = -EPERM; 3955 else if ((unsigned int)val < TCP_QUEUES_NR) 3956 tp->repair_queue = val; 3957 else 3958 err = -EINVAL; 3959 break; 3960 3961 case TCP_QUEUE_SEQ: 3962 if (sk->sk_state != TCP_CLOSE) { 3963 err = -EPERM; 3964 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3965 if (!tcp_rtx_queue_empty(sk)) 3966 err = -EPERM; 3967 else 3968 WRITE_ONCE(tp->write_seq, val); 3969 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3970 if (tp->rcv_nxt != tp->copied_seq) { 3971 err = -EPERM; 3972 } else { 3973 WRITE_ONCE(tp->rcv_nxt, val); 3974 WRITE_ONCE(tp->copied_seq, val); 3975 } 3976 } else { 3977 err = -EINVAL; 3978 } 3979 break; 3980 3981 case TCP_REPAIR_OPTIONS: 3982 if (!tp->repair) 3983 err = -EINVAL; 3984 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3985 err = tcp_repair_options_est(sk, optval, optlen); 3986 else 3987 err = -EPERM; 3988 break; 3989 3990 case TCP_CORK: 3991 __tcp_sock_set_cork(sk, val); 3992 break; 3993 3994 case TCP_KEEPIDLE: 3995 err = tcp_sock_set_keepidle_locked(sk, val); 3996 break; 3997 case TCP_SAVE_SYN: 3998 /* 0: disable, 1: enable, 2: start from ether_header */ 3999 if (val < 0 || val > 2) 4000 err = -EINVAL; 4001 else 4002 tp->save_syn = val; 4003 break; 4004 4005 case TCP_WINDOW_CLAMP: 4006 err = tcp_set_window_clamp(sk, val); 4007 break; 4008 4009 case TCP_QUICKACK: 4010 __tcp_sock_set_quickack(sk, val); 4011 break; 4012 4013 case TCP_AO_REPAIR: 4014 if (!tcp_can_repair_sock(sk)) { 4015 err = -EPERM; 4016 break; 4017 } 4018 err = tcp_ao_set_repair(sk, optval, optlen); 4019 break; 4020 #ifdef CONFIG_TCP_AO 4021 case TCP_AO_ADD_KEY: 4022 case TCP_AO_DEL_KEY: 4023 case TCP_AO_INFO: { 4024 /* If this is the first TCP-AO setsockopt() on the socket, 4025 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 4026 * in any state. 4027 */ 4028 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 4029 goto ao_parse; 4030 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 4031 lockdep_sock_is_held(sk))) 4032 goto ao_parse; 4033 if (tp->repair) 4034 goto ao_parse; 4035 err = -EISCONN; 4036 break; 4037 ao_parse: 4038 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 4039 break; 4040 } 4041 #endif 4042 #ifdef CONFIG_TCP_MD5SIG 4043 case TCP_MD5SIG: 4044 case TCP_MD5SIG_EXT: 4045 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4046 break; 4047 #endif 4048 case TCP_FASTOPEN: 4049 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4050 TCPF_LISTEN))) { 4051 tcp_fastopen_init_key_once(net); 4052 4053 fastopen_queue_tune(sk, val); 4054 } else { 4055 err = -EINVAL; 4056 } 4057 break; 4058 case TCP_FASTOPEN_CONNECT: 4059 if (val > 1 || val < 0) { 4060 err = -EINVAL; 4061 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4062 TFO_CLIENT_ENABLE) { 4063 if (sk->sk_state == TCP_CLOSE) 4064 tp->fastopen_connect = val; 4065 else 4066 err = -EINVAL; 4067 } else { 4068 err = -EOPNOTSUPP; 4069 } 4070 break; 4071 case TCP_FASTOPEN_NO_COOKIE: 4072 if (val > 1 || val < 0) 4073 err = -EINVAL; 4074 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4075 err = -EINVAL; 4076 else 4077 tp->fastopen_no_cookie = val; 4078 break; 4079 case TCP_TIMESTAMP: 4080 if (!tp->repair) { 4081 err = -EPERM; 4082 break; 4083 } 4084 /* val is an opaque field, 4085 * and low order bit contains usec_ts enable bit. 4086 * Its a best effort, and we do not care if user makes an error. 4087 */ 4088 tp->tcp_usec_ts = val & 1; 4089 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4090 break; 4091 case TCP_REPAIR_WINDOW: 4092 err = tcp_repair_set_window(tp, optval, optlen); 4093 break; 4094 case TCP_NOTSENT_LOWAT: 4095 WRITE_ONCE(tp->notsent_lowat, val); 4096 sk->sk_write_space(sk); 4097 break; 4098 case TCP_INQ: 4099 if (val > 1 || val < 0) 4100 err = -EINVAL; 4101 else 4102 tp->recvmsg_inq = val; 4103 break; 4104 case TCP_TX_DELAY: 4105 if (val) 4106 tcp_enable_tx_delay(); 4107 WRITE_ONCE(tp->tcp_tx_delay, val); 4108 break; 4109 default: 4110 err = -ENOPROTOOPT; 4111 break; 4112 } 4113 4114 sockopt_release_sock(sk); 4115 return err; 4116 } 4117 4118 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4119 unsigned int optlen) 4120 { 4121 const struct inet_connection_sock *icsk = inet_csk(sk); 4122 4123 if (level != SOL_TCP) 4124 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4125 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4126 optval, optlen); 4127 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4128 } 4129 EXPORT_IPV6_MOD(tcp_setsockopt); 4130 4131 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4132 struct tcp_info *info) 4133 { 4134 u64 stats[__TCP_CHRONO_MAX], total = 0; 4135 enum tcp_chrono i; 4136 4137 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4138 stats[i] = tp->chrono_stat[i - 1]; 4139 if (i == tp->chrono_type) 4140 stats[i] += tcp_jiffies32 - tp->chrono_start; 4141 stats[i] *= USEC_PER_SEC / HZ; 4142 total += stats[i]; 4143 } 4144 4145 info->tcpi_busy_time = total; 4146 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4147 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4148 } 4149 4150 /* Return information about state of tcp endpoint in API format. */ 4151 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4152 { 4153 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4154 const struct inet_connection_sock *icsk = inet_csk(sk); 4155 unsigned long rate; 4156 u32 now; 4157 u64 rate64; 4158 bool slow; 4159 4160 memset(info, 0, sizeof(*info)); 4161 if (sk->sk_type != SOCK_STREAM) 4162 return; 4163 4164 info->tcpi_state = inet_sk_state_load(sk); 4165 4166 /* Report meaningful fields for all TCP states, including listeners */ 4167 rate = READ_ONCE(sk->sk_pacing_rate); 4168 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4169 info->tcpi_pacing_rate = rate64; 4170 4171 rate = READ_ONCE(sk->sk_max_pacing_rate); 4172 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4173 info->tcpi_max_pacing_rate = rate64; 4174 4175 info->tcpi_reordering = tp->reordering; 4176 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4177 4178 if (info->tcpi_state == TCP_LISTEN) { 4179 /* listeners aliased fields : 4180 * tcpi_unacked -> Number of children ready for accept() 4181 * tcpi_sacked -> max backlog 4182 */ 4183 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4184 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4185 return; 4186 } 4187 4188 slow = lock_sock_fast(sk); 4189 4190 info->tcpi_ca_state = icsk->icsk_ca_state; 4191 info->tcpi_retransmits = icsk->icsk_retransmits; 4192 info->tcpi_probes = icsk->icsk_probes_out; 4193 info->tcpi_backoff = icsk->icsk_backoff; 4194 4195 if (tp->rx_opt.tstamp_ok) 4196 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4197 if (tcp_is_sack(tp)) 4198 info->tcpi_options |= TCPI_OPT_SACK; 4199 if (tp->rx_opt.wscale_ok) { 4200 info->tcpi_options |= TCPI_OPT_WSCALE; 4201 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4202 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4203 } 4204 4205 if (tcp_ecn_mode_any(tp)) 4206 info->tcpi_options |= TCPI_OPT_ECN; 4207 if (tp->ecn_flags & TCP_ECN_SEEN) 4208 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4209 if (tp->syn_data_acked) 4210 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4211 if (tp->tcp_usec_ts) 4212 info->tcpi_options |= TCPI_OPT_USEC_TS; 4213 if (tp->syn_fastopen_child) 4214 info->tcpi_options |= TCPI_OPT_TFO_CHILD; 4215 4216 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4217 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4218 tcp_delack_max(sk))); 4219 info->tcpi_snd_mss = tp->mss_cache; 4220 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4221 4222 info->tcpi_unacked = tp->packets_out; 4223 info->tcpi_sacked = tp->sacked_out; 4224 4225 info->tcpi_lost = tp->lost_out; 4226 info->tcpi_retrans = tp->retrans_out; 4227 4228 now = tcp_jiffies32; 4229 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4230 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4231 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4232 4233 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4234 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4235 info->tcpi_rtt = tp->srtt_us >> 3; 4236 info->tcpi_rttvar = tp->mdev_us >> 2; 4237 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4238 info->tcpi_advmss = tp->advmss; 4239 4240 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4241 info->tcpi_rcv_space = tp->rcvq_space.space; 4242 4243 info->tcpi_total_retrans = tp->total_retrans; 4244 4245 info->tcpi_bytes_acked = tp->bytes_acked; 4246 info->tcpi_bytes_received = tp->bytes_received; 4247 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4248 tcp_get_info_chrono_stats(tp, info); 4249 4250 info->tcpi_segs_out = tp->segs_out; 4251 4252 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4253 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4254 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4255 4256 info->tcpi_min_rtt = tcp_min_rtt(tp); 4257 info->tcpi_data_segs_out = tp->data_segs_out; 4258 4259 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4260 rate64 = tcp_compute_delivery_rate(tp); 4261 if (rate64) 4262 info->tcpi_delivery_rate = rate64; 4263 info->tcpi_delivered = tp->delivered; 4264 info->tcpi_delivered_ce = tp->delivered_ce; 4265 info->tcpi_bytes_sent = tp->bytes_sent; 4266 info->tcpi_bytes_retrans = tp->bytes_retrans; 4267 info->tcpi_dsack_dups = tp->dsack_dups; 4268 info->tcpi_reord_seen = tp->reord_seen; 4269 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4270 info->tcpi_snd_wnd = tp->snd_wnd; 4271 info->tcpi_rcv_wnd = tp->rcv_wnd; 4272 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4273 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4274 4275 info->tcpi_total_rto = tp->total_rto; 4276 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4277 info->tcpi_total_rto_time = tp->total_rto_time; 4278 if (tp->rto_stamp) 4279 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4280 4281 unlock_sock_fast(sk, slow); 4282 } 4283 EXPORT_SYMBOL_GPL(tcp_get_info); 4284 4285 static size_t tcp_opt_stats_get_size(void) 4286 { 4287 return 4288 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4289 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4290 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4291 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4292 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4293 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4294 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4295 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4296 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4297 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4298 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4299 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4300 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4301 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4302 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4303 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4304 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4305 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4306 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4307 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4308 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4309 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4310 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4311 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4312 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4313 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4314 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4315 0; 4316 } 4317 4318 /* Returns TTL or hop limit of an incoming packet from skb. */ 4319 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4320 { 4321 if (skb->protocol == htons(ETH_P_IP)) 4322 return ip_hdr(skb)->ttl; 4323 else if (skb->protocol == htons(ETH_P_IPV6)) 4324 return ipv6_hdr(skb)->hop_limit; 4325 else 4326 return 0; 4327 } 4328 4329 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4330 const struct sk_buff *orig_skb, 4331 const struct sk_buff *ack_skb) 4332 { 4333 const struct tcp_sock *tp = tcp_sk(sk); 4334 struct sk_buff *stats; 4335 struct tcp_info info; 4336 unsigned long rate; 4337 u64 rate64; 4338 4339 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4340 if (!stats) 4341 return NULL; 4342 4343 tcp_get_info_chrono_stats(tp, &info); 4344 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4345 info.tcpi_busy_time, TCP_NLA_PAD); 4346 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4347 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4348 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4349 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4350 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4351 tp->data_segs_out, TCP_NLA_PAD); 4352 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4353 tp->total_retrans, TCP_NLA_PAD); 4354 4355 rate = READ_ONCE(sk->sk_pacing_rate); 4356 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4357 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4358 4359 rate64 = tcp_compute_delivery_rate(tp); 4360 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4361 4362 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4363 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4364 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4365 4366 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, 4367 READ_ONCE(inet_csk(sk)->icsk_retransmits)); 4368 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4369 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4370 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4371 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4372 4373 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4374 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4375 4376 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4377 TCP_NLA_PAD); 4378 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4379 TCP_NLA_PAD); 4380 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4381 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4382 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4383 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4384 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4385 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4386 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4387 TCP_NLA_PAD); 4388 if (ack_skb) 4389 nla_put_u8(stats, TCP_NLA_TTL, 4390 tcp_skb_ttl_or_hop_limit(ack_skb)); 4391 4392 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4393 return stats; 4394 } 4395 4396 int do_tcp_getsockopt(struct sock *sk, int level, 4397 int optname, sockptr_t optval, sockptr_t optlen) 4398 { 4399 struct inet_connection_sock *icsk = inet_csk(sk); 4400 struct tcp_sock *tp = tcp_sk(sk); 4401 struct net *net = sock_net(sk); 4402 int user_mss; 4403 int val, len; 4404 4405 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4406 return -EFAULT; 4407 4408 if (len < 0) 4409 return -EINVAL; 4410 4411 len = min_t(unsigned int, len, sizeof(int)); 4412 4413 switch (optname) { 4414 case TCP_MAXSEG: 4415 val = tp->mss_cache; 4416 user_mss = READ_ONCE(tp->rx_opt.user_mss); 4417 if (user_mss && 4418 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4419 val = user_mss; 4420 if (tp->repair) 4421 val = tp->rx_opt.mss_clamp; 4422 break; 4423 case TCP_NODELAY: 4424 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4425 break; 4426 case TCP_CORK: 4427 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4428 break; 4429 case TCP_KEEPIDLE: 4430 val = keepalive_time_when(tp) / HZ; 4431 break; 4432 case TCP_KEEPINTVL: 4433 val = keepalive_intvl_when(tp) / HZ; 4434 break; 4435 case TCP_KEEPCNT: 4436 val = keepalive_probes(tp); 4437 break; 4438 case TCP_SYNCNT: 4439 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4440 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4441 break; 4442 case TCP_LINGER2: 4443 val = READ_ONCE(tp->linger2); 4444 if (val >= 0) 4445 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4446 break; 4447 case TCP_DEFER_ACCEPT: 4448 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4449 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4450 TCP_RTO_MAX / HZ); 4451 break; 4452 case TCP_WINDOW_CLAMP: 4453 val = READ_ONCE(tp->window_clamp); 4454 break; 4455 case TCP_INFO: { 4456 struct tcp_info info; 4457 4458 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4459 return -EFAULT; 4460 4461 tcp_get_info(sk, &info); 4462 4463 len = min_t(unsigned int, len, sizeof(info)); 4464 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4465 return -EFAULT; 4466 if (copy_to_sockptr(optval, &info, len)) 4467 return -EFAULT; 4468 return 0; 4469 } 4470 case TCP_CC_INFO: { 4471 const struct tcp_congestion_ops *ca_ops; 4472 union tcp_cc_info info; 4473 size_t sz = 0; 4474 int attr; 4475 4476 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4477 return -EFAULT; 4478 4479 ca_ops = icsk->icsk_ca_ops; 4480 if (ca_ops && ca_ops->get_info) 4481 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4482 4483 len = min_t(unsigned int, len, sz); 4484 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4485 return -EFAULT; 4486 if (copy_to_sockptr(optval, &info, len)) 4487 return -EFAULT; 4488 return 0; 4489 } 4490 case TCP_QUICKACK: 4491 val = !inet_csk_in_pingpong_mode(sk); 4492 break; 4493 4494 case TCP_CONGESTION: 4495 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4496 return -EFAULT; 4497 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4498 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4499 return -EFAULT; 4500 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4501 return -EFAULT; 4502 return 0; 4503 4504 case TCP_ULP: 4505 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4506 return -EFAULT; 4507 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4508 if (!icsk->icsk_ulp_ops) { 4509 len = 0; 4510 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4511 return -EFAULT; 4512 return 0; 4513 } 4514 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4515 return -EFAULT; 4516 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4517 return -EFAULT; 4518 return 0; 4519 4520 case TCP_FASTOPEN_KEY: { 4521 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4522 unsigned int key_len; 4523 4524 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4525 return -EFAULT; 4526 4527 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4528 TCP_FASTOPEN_KEY_LENGTH; 4529 len = min_t(unsigned int, len, key_len); 4530 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4531 return -EFAULT; 4532 if (copy_to_sockptr(optval, key, len)) 4533 return -EFAULT; 4534 return 0; 4535 } 4536 case TCP_THIN_LINEAR_TIMEOUTS: 4537 val = tp->thin_lto; 4538 break; 4539 4540 case TCP_THIN_DUPACK: 4541 val = 0; 4542 break; 4543 4544 case TCP_REPAIR: 4545 val = tp->repair; 4546 break; 4547 4548 case TCP_REPAIR_QUEUE: 4549 if (tp->repair) 4550 val = tp->repair_queue; 4551 else 4552 return -EINVAL; 4553 break; 4554 4555 case TCP_REPAIR_WINDOW: { 4556 struct tcp_repair_window opt; 4557 4558 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4559 return -EFAULT; 4560 4561 if (len != sizeof(opt)) 4562 return -EINVAL; 4563 4564 if (!tp->repair) 4565 return -EPERM; 4566 4567 opt.snd_wl1 = tp->snd_wl1; 4568 opt.snd_wnd = tp->snd_wnd; 4569 opt.max_window = tp->max_window; 4570 opt.rcv_wnd = tp->rcv_wnd; 4571 opt.rcv_wup = tp->rcv_wup; 4572 4573 if (copy_to_sockptr(optval, &opt, len)) 4574 return -EFAULT; 4575 return 0; 4576 } 4577 case TCP_QUEUE_SEQ: 4578 if (tp->repair_queue == TCP_SEND_QUEUE) 4579 val = tp->write_seq; 4580 else if (tp->repair_queue == TCP_RECV_QUEUE) 4581 val = tp->rcv_nxt; 4582 else 4583 return -EINVAL; 4584 break; 4585 4586 case TCP_USER_TIMEOUT: 4587 val = READ_ONCE(icsk->icsk_user_timeout); 4588 break; 4589 4590 case TCP_FASTOPEN: 4591 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4592 break; 4593 4594 case TCP_FASTOPEN_CONNECT: 4595 val = tp->fastopen_connect; 4596 break; 4597 4598 case TCP_FASTOPEN_NO_COOKIE: 4599 val = tp->fastopen_no_cookie; 4600 break; 4601 4602 case TCP_TX_DELAY: 4603 val = READ_ONCE(tp->tcp_tx_delay); 4604 break; 4605 4606 case TCP_TIMESTAMP: 4607 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4608 if (tp->tcp_usec_ts) 4609 val |= 1; 4610 else 4611 val &= ~1; 4612 break; 4613 case TCP_NOTSENT_LOWAT: 4614 val = READ_ONCE(tp->notsent_lowat); 4615 break; 4616 case TCP_INQ: 4617 val = tp->recvmsg_inq; 4618 break; 4619 case TCP_SAVE_SYN: 4620 val = tp->save_syn; 4621 break; 4622 case TCP_SAVED_SYN: { 4623 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4624 return -EFAULT; 4625 4626 sockopt_lock_sock(sk); 4627 if (tp->saved_syn) { 4628 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4629 len = tcp_saved_syn_len(tp->saved_syn); 4630 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4631 sockopt_release_sock(sk); 4632 return -EFAULT; 4633 } 4634 sockopt_release_sock(sk); 4635 return -EINVAL; 4636 } 4637 len = tcp_saved_syn_len(tp->saved_syn); 4638 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4639 sockopt_release_sock(sk); 4640 return -EFAULT; 4641 } 4642 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4643 sockopt_release_sock(sk); 4644 return -EFAULT; 4645 } 4646 tcp_saved_syn_free(tp); 4647 sockopt_release_sock(sk); 4648 } else { 4649 sockopt_release_sock(sk); 4650 len = 0; 4651 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4652 return -EFAULT; 4653 } 4654 return 0; 4655 } 4656 #ifdef CONFIG_MMU 4657 case TCP_ZEROCOPY_RECEIVE: { 4658 struct scm_timestamping_internal tss; 4659 struct tcp_zerocopy_receive zc = {}; 4660 int err; 4661 4662 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4663 return -EFAULT; 4664 if (len < 0 || 4665 len < offsetofend(struct tcp_zerocopy_receive, length)) 4666 return -EINVAL; 4667 if (unlikely(len > sizeof(zc))) { 4668 err = check_zeroed_sockptr(optval, sizeof(zc), 4669 len - sizeof(zc)); 4670 if (err < 1) 4671 return err == 0 ? -EINVAL : err; 4672 len = sizeof(zc); 4673 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4674 return -EFAULT; 4675 } 4676 if (copy_from_sockptr(&zc, optval, len)) 4677 return -EFAULT; 4678 if (zc.reserved) 4679 return -EINVAL; 4680 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4681 return -EINVAL; 4682 sockopt_lock_sock(sk); 4683 err = tcp_zerocopy_receive(sk, &zc, &tss); 4684 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4685 &zc, &len, err); 4686 sockopt_release_sock(sk); 4687 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4688 goto zerocopy_rcv_cmsg; 4689 switch (len) { 4690 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4691 goto zerocopy_rcv_cmsg; 4692 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4693 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4694 case offsetofend(struct tcp_zerocopy_receive, flags): 4695 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4696 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4697 case offsetofend(struct tcp_zerocopy_receive, err): 4698 goto zerocopy_rcv_sk_err; 4699 case offsetofend(struct tcp_zerocopy_receive, inq): 4700 goto zerocopy_rcv_inq; 4701 case offsetofend(struct tcp_zerocopy_receive, length): 4702 default: 4703 goto zerocopy_rcv_out; 4704 } 4705 zerocopy_rcv_cmsg: 4706 if (zc.msg_flags & TCP_CMSG_TS) 4707 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4708 else 4709 zc.msg_flags = 0; 4710 zerocopy_rcv_sk_err: 4711 if (!err) 4712 zc.err = sock_error(sk); 4713 zerocopy_rcv_inq: 4714 zc.inq = tcp_inq_hint(sk); 4715 zerocopy_rcv_out: 4716 if (!err && copy_to_sockptr(optval, &zc, len)) 4717 err = -EFAULT; 4718 return err; 4719 } 4720 #endif 4721 case TCP_AO_REPAIR: 4722 if (!tcp_can_repair_sock(sk)) 4723 return -EPERM; 4724 return tcp_ao_get_repair(sk, optval, optlen); 4725 case TCP_AO_GET_KEYS: 4726 case TCP_AO_INFO: { 4727 int err; 4728 4729 sockopt_lock_sock(sk); 4730 if (optname == TCP_AO_GET_KEYS) 4731 err = tcp_ao_get_mkts(sk, optval, optlen); 4732 else 4733 err = tcp_ao_get_sock_info(sk, optval, optlen); 4734 sockopt_release_sock(sk); 4735 4736 return err; 4737 } 4738 case TCP_IS_MPTCP: 4739 val = 0; 4740 break; 4741 case TCP_RTO_MAX_MS: 4742 val = jiffies_to_msecs(tcp_rto_max(sk)); 4743 break; 4744 case TCP_RTO_MIN_US: 4745 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4746 break; 4747 case TCP_DELACK_MAX_US: 4748 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4749 break; 4750 default: 4751 return -ENOPROTOOPT; 4752 } 4753 4754 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4755 return -EFAULT; 4756 if (copy_to_sockptr(optval, &val, len)) 4757 return -EFAULT; 4758 return 0; 4759 } 4760 4761 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4762 { 4763 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4764 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4765 */ 4766 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4767 return true; 4768 4769 return false; 4770 } 4771 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4772 4773 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4774 int __user *optlen) 4775 { 4776 struct inet_connection_sock *icsk = inet_csk(sk); 4777 4778 if (level != SOL_TCP) 4779 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4780 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4781 optval, optlen); 4782 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4783 USER_SOCKPTR(optlen)); 4784 } 4785 EXPORT_IPV6_MOD(tcp_getsockopt); 4786 4787 #ifdef CONFIG_TCP_MD5SIG 4788 int tcp_md5_sigpool_id = -1; 4789 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); 4790 4791 int tcp_md5_alloc_sigpool(void) 4792 { 4793 size_t scratch_size; 4794 int ret; 4795 4796 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4797 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4798 if (ret >= 0) { 4799 /* As long as any md5 sigpool was allocated, the return 4800 * id would stay the same. Re-write the id only for the case 4801 * when previously all MD5 keys were deleted and this call 4802 * allocates the first MD5 key, which may return a different 4803 * sigpool id than was used previously. 4804 */ 4805 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4806 return 0; 4807 } 4808 return ret; 4809 } 4810 4811 void tcp_md5_release_sigpool(void) 4812 { 4813 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4814 } 4815 4816 void tcp_md5_add_sigpool(void) 4817 { 4818 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4819 } 4820 4821 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4822 const struct tcp_md5sig_key *key) 4823 { 4824 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4825 struct scatterlist sg; 4826 4827 sg_init_one(&sg, key->key, keylen); 4828 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4829 4830 /* We use data_race() because tcp_md5_do_add() might change 4831 * key->key under us 4832 */ 4833 return data_race(crypto_ahash_update(hp->req)); 4834 } 4835 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4836 4837 /* Called with rcu_read_lock() */ 4838 static enum skb_drop_reason 4839 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4840 const void *saddr, const void *daddr, 4841 int family, int l3index, const __u8 *hash_location) 4842 { 4843 /* This gets called for each TCP segment that has TCP-MD5 option. 4844 * We have 3 drop cases: 4845 * o No MD5 hash and one expected. 4846 * o MD5 hash and we're not expecting one. 4847 * o MD5 hash and its wrong. 4848 */ 4849 const struct tcp_sock *tp = tcp_sk(sk); 4850 struct tcp_md5sig_key *key; 4851 u8 newhash[16]; 4852 int genhash; 4853 4854 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4855 4856 if (!key && hash_location) { 4857 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4858 trace_tcp_hash_md5_unexpected(sk, skb); 4859 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4860 } 4861 4862 /* Check the signature. 4863 * To support dual stack listeners, we need to handle 4864 * IPv4-mapped case. 4865 */ 4866 if (family == AF_INET) 4867 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4868 else 4869 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4870 NULL, skb); 4871 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4872 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4873 trace_tcp_hash_md5_mismatch(sk, skb); 4874 return SKB_DROP_REASON_TCP_MD5FAILURE; 4875 } 4876 return SKB_NOT_DROPPED_YET; 4877 } 4878 #else 4879 static inline enum skb_drop_reason 4880 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4881 const void *saddr, const void *daddr, 4882 int family, int l3index, const __u8 *hash_location) 4883 { 4884 return SKB_NOT_DROPPED_YET; 4885 } 4886 4887 #endif 4888 4889 /* Called with rcu_read_lock() */ 4890 enum skb_drop_reason 4891 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4892 const struct sk_buff *skb, 4893 const void *saddr, const void *daddr, 4894 int family, int dif, int sdif) 4895 { 4896 const struct tcphdr *th = tcp_hdr(skb); 4897 const struct tcp_ao_hdr *aoh; 4898 const __u8 *md5_location; 4899 int l3index; 4900 4901 /* Invalid option or two times meet any of auth options */ 4902 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4903 trace_tcp_hash_bad_header(sk, skb); 4904 return SKB_DROP_REASON_TCP_AUTH_HDR; 4905 } 4906 4907 if (req) { 4908 if (tcp_rsk_used_ao(req) != !!aoh) { 4909 u8 keyid, rnext, maclen; 4910 4911 if (aoh) { 4912 keyid = aoh->keyid; 4913 rnext = aoh->rnext_keyid; 4914 maclen = tcp_ao_hdr_maclen(aoh); 4915 } else { 4916 keyid = rnext = maclen = 0; 4917 } 4918 4919 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4920 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4921 return SKB_DROP_REASON_TCP_AOFAILURE; 4922 } 4923 } 4924 4925 /* sdif set, means packet ingressed via a device 4926 * in an L3 domain and dif is set to the l3mdev 4927 */ 4928 l3index = sdif ? dif : 0; 4929 4930 /* Fast path: unsigned segments */ 4931 if (likely(!md5_location && !aoh)) { 4932 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4933 * for the remote peer. On TCP-AO established connection 4934 * the last key is impossible to remove, so there's 4935 * always at least one current_key. 4936 */ 4937 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4938 trace_tcp_hash_ao_required(sk, skb); 4939 return SKB_DROP_REASON_TCP_AONOTFOUND; 4940 } 4941 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4943 trace_tcp_hash_md5_required(sk, skb); 4944 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4945 } 4946 return SKB_NOT_DROPPED_YET; 4947 } 4948 4949 if (aoh) 4950 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4951 4952 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4953 l3index, md5_location); 4954 } 4955 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 4956 4957 void tcp_done(struct sock *sk) 4958 { 4959 struct request_sock *req; 4960 4961 /* We might be called with a new socket, after 4962 * inet_csk_prepare_forced_close() has been called 4963 * so we can not use lockdep_sock_is_held(sk) 4964 */ 4965 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4966 4967 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4968 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4969 4970 tcp_set_state(sk, TCP_CLOSE); 4971 tcp_clear_xmit_timers(sk); 4972 if (req) 4973 reqsk_fastopen_remove(sk, req, false); 4974 4975 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4976 4977 if (!sock_flag(sk, SOCK_DEAD)) 4978 sk->sk_state_change(sk); 4979 else 4980 inet_csk_destroy_sock(sk); 4981 } 4982 EXPORT_SYMBOL_GPL(tcp_done); 4983 4984 int tcp_abort(struct sock *sk, int err) 4985 { 4986 int state = inet_sk_state_load(sk); 4987 4988 if (state == TCP_NEW_SYN_RECV) { 4989 struct request_sock *req = inet_reqsk(sk); 4990 4991 local_bh_disable(); 4992 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4993 local_bh_enable(); 4994 return 0; 4995 } 4996 if (state == TCP_TIME_WAIT) { 4997 struct inet_timewait_sock *tw = inet_twsk(sk); 4998 4999 refcount_inc(&tw->tw_refcnt); 5000 local_bh_disable(); 5001 inet_twsk_deschedule_put(tw); 5002 local_bh_enable(); 5003 return 0; 5004 } 5005 5006 /* BPF context ensures sock locking. */ 5007 if (!has_current_bpf_ctx()) 5008 /* Don't race with userspace socket closes such as tcp_close. */ 5009 lock_sock(sk); 5010 5011 /* Avoid closing the same socket twice. */ 5012 if (sk->sk_state == TCP_CLOSE) { 5013 if (!has_current_bpf_ctx()) 5014 release_sock(sk); 5015 return -ENOENT; 5016 } 5017 5018 if (sk->sk_state == TCP_LISTEN) { 5019 tcp_set_state(sk, TCP_CLOSE); 5020 inet_csk_listen_stop(sk); 5021 } 5022 5023 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 5024 local_bh_disable(); 5025 bh_lock_sock(sk); 5026 5027 if (tcp_need_reset(sk->sk_state)) 5028 tcp_send_active_reset(sk, GFP_ATOMIC, 5029 SK_RST_REASON_TCP_STATE); 5030 tcp_done_with_error(sk, err); 5031 5032 bh_unlock_sock(sk); 5033 local_bh_enable(); 5034 if (!has_current_bpf_ctx()) 5035 release_sock(sk); 5036 return 0; 5037 } 5038 EXPORT_SYMBOL_GPL(tcp_abort); 5039 5040 extern struct tcp_congestion_ops tcp_reno; 5041 5042 static __initdata unsigned long thash_entries; 5043 static int __init set_thash_entries(char *str) 5044 { 5045 ssize_t ret; 5046 5047 if (!str) 5048 return 0; 5049 5050 ret = kstrtoul(str, 0, &thash_entries); 5051 if (ret) 5052 return 0; 5053 5054 return 1; 5055 } 5056 __setup("thash_entries=", set_thash_entries); 5057 5058 static void __init tcp_init_mem(void) 5059 { 5060 unsigned long limit = nr_free_buffer_pages() / 16; 5061 5062 limit = max(limit, 128UL); 5063 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5064 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5065 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5066 } 5067 5068 static void __init tcp_struct_check(void) 5069 { 5070 /* TX read-mostly hotpath cache lines */ 5071 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5077 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 32); 5078 5079 /* TXRX read-mostly hotpath cache lines */ 5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5087 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5088 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5089 5090 /* RX read-mostly hotpath cache lines */ 5091 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5103 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); 5105 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); 5106 #else 5107 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5108 #endif 5109 5110 /* TX read-write hotpath cache lines */ 5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5125 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5126 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5127 5128 /* TXRX read-write hotpath cache lines */ 5129 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5130 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5131 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5132 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5144 5145 /* 32bit arches with 8byte alignment on u64 fields might need padding 5146 * before tcp_clock_cache. 5147 */ 5148 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 91 + 4); 5149 5150 /* RX read-write hotpath cache lines */ 5151 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5152 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5153 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5154 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5155 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5156 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5157 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5158 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5159 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5160 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5161 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5162 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5163 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5164 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5165 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 96); 5166 } 5167 5168 void __init tcp_init(void) 5169 { 5170 int max_rshare, max_wshare, cnt; 5171 unsigned long limit; 5172 unsigned int i; 5173 5174 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5175 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5176 sizeof_field(struct sk_buff, cb)); 5177 5178 tcp_struct_check(); 5179 5180 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5181 5182 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5183 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5184 5185 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5186 thash_entries, 21, /* one slot per 2 MB*/ 5187 0, 64 * 1024); 5188 tcp_hashinfo.bind_bucket_cachep = 5189 kmem_cache_create("tcp_bind_bucket", 5190 sizeof(struct inet_bind_bucket), 0, 5191 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5192 SLAB_ACCOUNT, 5193 NULL); 5194 tcp_hashinfo.bind2_bucket_cachep = 5195 kmem_cache_create("tcp_bind2_bucket", 5196 sizeof(struct inet_bind2_bucket), 0, 5197 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5198 SLAB_ACCOUNT, 5199 NULL); 5200 5201 /* Size and allocate the main established and bind bucket 5202 * hash tables. 5203 * 5204 * The methodology is similar to that of the buffer cache. 5205 */ 5206 tcp_hashinfo.ehash = 5207 alloc_large_system_hash("TCP established", 5208 sizeof(struct inet_ehash_bucket), 5209 thash_entries, 5210 17, /* one slot per 128 KB of memory */ 5211 0, 5212 NULL, 5213 &tcp_hashinfo.ehash_mask, 5214 0, 5215 thash_entries ? 0 : 512 * 1024); 5216 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5217 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5218 5219 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5220 panic("TCP: failed to alloc ehash_locks"); 5221 tcp_hashinfo.bhash = 5222 alloc_large_system_hash("TCP bind", 5223 2 * sizeof(struct inet_bind_hashbucket), 5224 tcp_hashinfo.ehash_mask + 1, 5225 17, /* one slot per 128 KB of memory */ 5226 0, 5227 &tcp_hashinfo.bhash_size, 5228 NULL, 5229 0, 5230 64 * 1024); 5231 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5232 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5233 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5234 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5235 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5236 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5237 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5238 } 5239 5240 tcp_hashinfo.pernet = false; 5241 5242 cnt = tcp_hashinfo.ehash_mask + 1; 5243 sysctl_tcp_max_orphans = cnt / 2; 5244 5245 tcp_init_mem(); 5246 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5247 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5248 max_wshare = min(4UL*1024*1024, limit); 5249 max_rshare = min(32UL*1024*1024, limit); 5250 5251 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5252 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5253 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5254 5255 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5256 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5257 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5258 5259 pr_info("Hash tables configured (established %u bind %u)\n", 5260 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5261 5262 tcp_v4_init(); 5263 tcp_metrics_init(); 5264 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5265 tcp_tsq_work_init(); 5266 mptcp_init(); 5267 } 5268