xref: /linux/net/ipv4/tcp.c (revision 50f2944009a25bb39a09f2f7bab64a73ce928bef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 
439 	/* See draft-stevens-tcpca-spec-01 for discussion of the
440 	 * initialization of these values.
441 	 */
442 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 	tp->snd_cwnd_clamp = ~0;
444 	tp->mss_cache = TCP_MSS_DEFAULT;
445 
446 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
447 	tcp_assign_congestion_control(sk);
448 
449 	tp->tsoffset = 0;
450 	tp->rack.reo_wnd_steps = 1;
451 
452 	sk->sk_write_space = sk_stream_write_space;
453 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454 
455 	icsk->icsk_sync_mss = tcp_sync_mss;
456 
457 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
458 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
459 
460 	sk_sockets_allocated_inc(sk);
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 	return sk_is_readable(sk);
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sock, wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 		u16 urg_data = READ_ONCE(tp->urg_data);
551 
552 		if (unlikely(urg_data) &&
553 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
554 		    !sock_flag(sk, SOCK_URGINLINE))
555 			target++;
556 
557 		if (tcp_stream_is_readable(sk, target))
558 			mask |= EPOLLIN | EPOLLRDNORM;
559 
560 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
561 			if (__sk_stream_is_writeable(sk, 1)) {
562 				mask |= EPOLLOUT | EPOLLWRNORM;
563 			} else {  /* send SIGIO later */
564 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
565 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
566 
567 				/* Race breaker. If space is freed after
568 				 * wspace test but before the flags are set,
569 				 * IO signal will be lost. Memory barrier
570 				 * pairs with the input side.
571 				 */
572 				smp_mb__after_atomic();
573 				if (__sk_stream_is_writeable(sk, 1))
574 					mask |= EPOLLOUT | EPOLLWRNORM;
575 			}
576 		} else
577 			mask |= EPOLLOUT | EPOLLWRNORM;
578 
579 		if (urg_data & TCP_URG_VALID)
580 			mask |= EPOLLPRI;
581 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
582 		/* Active TCP fastopen socket with defer_connect
583 		 * Return EPOLLOUT so application can call write()
584 		 * in order for kernel to generate SYN+data
585 		 */
586 		mask |= EPOLLOUT | EPOLLWRNORM;
587 	}
588 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
589 	smp_rmb();
590 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
591 		mask |= EPOLLERR;
592 
593 	return mask;
594 }
595 EXPORT_SYMBOL(tcp_poll);
596 
597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
598 {
599 	struct tcp_sock *tp = tcp_sk(sk);
600 	int answ;
601 	bool slow;
602 
603 	switch (cmd) {
604 	case SIOCINQ:
605 		if (sk->sk_state == TCP_LISTEN)
606 			return -EINVAL;
607 
608 		slow = lock_sock_fast(sk);
609 		answ = tcp_inq(sk);
610 		unlock_sock_fast(sk, slow);
611 		break;
612 	case SIOCATMARK:
613 		answ = READ_ONCE(tp->urg_data) &&
614 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
615 		break;
616 	case SIOCOUTQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 			answ = 0;
622 		else
623 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
624 		break;
625 	case SIOCOUTQNSD:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = READ_ONCE(tp->write_seq) -
633 			       READ_ONCE(tp->snd_nxt);
634 		break;
635 	default:
636 		return -ENOIOCTLCMD;
637 	}
638 
639 	return put_user(answ, (int __user *)arg);
640 }
641 EXPORT_SYMBOL(tcp_ioctl);
642 
643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
644 {
645 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
646 	tp->pushed_seq = tp->write_seq;
647 }
648 
649 static inline bool forced_push(const struct tcp_sock *tp)
650 {
651 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
652 }
653 
654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
658 
659 	tcb->seq     = tcb->end_seq = tp->write_seq;
660 	tcb->tcp_flags = TCPHDR_ACK;
661 	__skb_header_release(skb);
662 	tcp_add_write_queue_tail(sk, skb);
663 	sk_wmem_queued_add(sk, skb->truesize);
664 	sk_mem_charge(sk, skb->truesize);
665 	if (tp->nonagle & TCP_NAGLE_PUSH)
666 		tp->nonagle &= ~TCP_NAGLE_PUSH;
667 
668 	tcp_slow_start_after_idle_check(sk);
669 }
670 
671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
672 {
673 	if (flags & MSG_OOB)
674 		tp->snd_up = tp->write_seq;
675 }
676 
677 /* If a not yet filled skb is pushed, do not send it if
678  * we have data packets in Qdisc or NIC queues :
679  * Because TX completion will happen shortly, it gives a chance
680  * to coalesce future sendmsg() payload into this skb, without
681  * need for a timer, and with no latency trade off.
682  * As packets containing data payload have a bigger truesize
683  * than pure acks (dataless) packets, the last checks prevent
684  * autocorking if we only have an ACK in Qdisc/NIC queues,
685  * or if TX completion was delayed after we processed ACK packet.
686  */
687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
688 				int size_goal)
689 {
690 	return skb->len < size_goal &&
691 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
692 	       !tcp_rtx_queue_empty(sk) &&
693 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
694 	       tcp_skb_can_collapse_to(skb);
695 }
696 
697 void tcp_push(struct sock *sk, int flags, int mss_now,
698 	      int nonagle, int size_goal)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 	struct sk_buff *skb;
702 
703 	skb = tcp_write_queue_tail(sk);
704 	if (!skb)
705 		return;
706 	if (!(flags & MSG_MORE) || forced_push(tp))
707 		tcp_mark_push(tp, skb);
708 
709 	tcp_mark_urg(tp, flags);
710 
711 	if (tcp_should_autocork(sk, skb, size_goal)) {
712 
713 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
714 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
716 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 		}
718 		/* It is possible TX completion already happened
719 		 * before we set TSQ_THROTTLED.
720 		 */
721 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
722 			return;
723 	}
724 
725 	if (flags & MSG_MORE)
726 		nonagle = TCP_NAGLE_CORK;
727 
728 	__tcp_push_pending_frames(sk, mss_now, nonagle);
729 }
730 
731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
732 				unsigned int offset, size_t len)
733 {
734 	struct tcp_splice_state *tss = rd_desc->arg.data;
735 	int ret;
736 
737 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
738 			      min(rd_desc->count, len), tss->flags);
739 	if (ret > 0)
740 		rd_desc->count -= ret;
741 	return ret;
742 }
743 
744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 {
746 	/* Store TCP splice context information in read_descriptor_t. */
747 	read_descriptor_t rd_desc = {
748 		.arg.data = tss,
749 		.count	  = tss->len,
750 	};
751 
752 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 }
754 
755 /**
756  *  tcp_splice_read - splice data from TCP socket to a pipe
757  * @sock:	socket to splice from
758  * @ppos:	position (not valid)
759  * @pipe:	pipe to splice to
760  * @len:	number of bytes to splice
761  * @flags:	splice modifier flags
762  *
763  * Description:
764  *    Will read pages from given socket and fill them into a pipe.
765  *
766  **/
767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
768 			struct pipe_inode_info *pipe, size_t len,
769 			unsigned int flags)
770 {
771 	struct sock *sk = sock->sk;
772 	struct tcp_splice_state tss = {
773 		.pipe = pipe,
774 		.len = len,
775 		.flags = flags,
776 	};
777 	long timeo;
778 	ssize_t spliced;
779 	int ret;
780 
781 	sock_rps_record_flow(sk);
782 	/*
783 	 * We can't seek on a socket input
784 	 */
785 	if (unlikely(*ppos))
786 		return -ESPIPE;
787 
788 	ret = spliced = 0;
789 
790 	lock_sock(sk);
791 
792 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 	while (tss.len) {
794 		ret = __tcp_splice_read(sk, &tss);
795 		if (ret < 0)
796 			break;
797 		else if (!ret) {
798 			if (spliced)
799 				break;
800 			if (sock_flag(sk, SOCK_DONE))
801 				break;
802 			if (sk->sk_err) {
803 				ret = sock_error(sk);
804 				break;
805 			}
806 			if (sk->sk_shutdown & RCV_SHUTDOWN)
807 				break;
808 			if (sk->sk_state == TCP_CLOSE) {
809 				/*
810 				 * This occurs when user tries to read
811 				 * from never connected socket.
812 				 */
813 				ret = -ENOTCONN;
814 				break;
815 			}
816 			if (!timeo) {
817 				ret = -EAGAIN;
818 				break;
819 			}
820 			/* if __tcp_splice_read() got nothing while we have
821 			 * an skb in receive queue, we do not want to loop.
822 			 * This might happen with URG data.
823 			 */
824 			if (!skb_queue_empty(&sk->sk_receive_queue))
825 				break;
826 			sk_wait_data(sk, &timeo, NULL);
827 			if (signal_pending(current)) {
828 				ret = sock_intr_errno(timeo);
829 				break;
830 			}
831 			continue;
832 		}
833 		tss.len -= ret;
834 		spliced += ret;
835 
836 		if (!timeo)
837 			break;
838 		release_sock(sk);
839 		lock_sock(sk);
840 
841 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
842 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
843 		    signal_pending(current))
844 			break;
845 	}
846 
847 	release_sock(sk);
848 
849 	if (spliced)
850 		return spliced;
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL(tcp_splice_read);
855 
856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
857 				     bool force_schedule)
858 {
859 	struct sk_buff *skb;
860 
861 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 	if (likely(skb)) {
863 		bool mem_scheduled;
864 
865 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
897 
898 	/* We try hard to avoid divides here */
899 	size_goal = tp->gso_segs * mss_now;
900 	if (unlikely(new_size_goal < size_goal ||
901 		     new_size_goal >= size_goal + mss_now)) {
902 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
903 				     sk->sk_gso_max_segs);
904 		size_goal = tp->gso_segs * mss_now;
905 	}
906 
907 	return max(size_goal, mss_now);
908 }
909 
910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
911 {
912 	int mss_now;
913 
914 	mss_now = tcp_current_mss(sk);
915 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
916 
917 	return mss_now;
918 }
919 
920 /* In some cases, both sendpage() and sendmsg() could have added
921  * an skb to the write queue, but failed adding payload on it.
922  * We need to remove it to consume less memory, but more
923  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
924  * users.
925  */
926 void tcp_remove_empty_skb(struct sock *sk)
927 {
928 	struct sk_buff *skb = tcp_write_queue_tail(sk);
929 
930 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
931 		tcp_unlink_write_queue(skb, sk);
932 		if (tcp_write_queue_empty(sk))
933 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
934 		tcp_wmem_free_skb(sk, skb);
935 	}
936 }
937 
938 /* skb changing from pure zc to mixed, must charge zc */
939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
940 {
941 	if (unlikely(skb_zcopy_pure(skb))) {
942 		u32 extra = skb->truesize -
943 			    SKB_TRUESIZE(skb_end_offset(skb));
944 
945 		if (!sk_wmem_schedule(sk, extra))
946 			return -ENOMEM;
947 
948 		sk_mem_charge(sk, extra);
949 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
950 	}
951 	return 0;
952 }
953 
954 
955 static int tcp_wmem_schedule(struct sock *sk, int copy)
956 {
957 	int left;
958 
959 	if (likely(sk_wmem_schedule(sk, copy)))
960 		return copy;
961 
962 	/* We could be in trouble if we have nothing queued.
963 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
964 	 * to guarantee some progress.
965 	 */
966 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
967 	if (left > 0)
968 		sk_forced_mem_schedule(sk, min(left, copy));
969 	return min(copy, sk->sk_forward_alloc);
970 }
971 
972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
973 				      struct page *page, int offset, size_t *size)
974 {
975 	struct sk_buff *skb = tcp_write_queue_tail(sk);
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	bool can_coalesce;
978 	int copy, i;
979 
980 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
981 	    !tcp_skb_can_collapse_to(skb)) {
982 new_segment:
983 		if (!sk_stream_memory_free(sk))
984 			return NULL;
985 
986 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
987 					   tcp_rtx_and_write_queues_empty(sk));
988 		if (!skb)
989 			return NULL;
990 
991 #ifdef CONFIG_TLS_DEVICE
992 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
993 #endif
994 		tcp_skb_entail(sk, skb);
995 		copy = size_goal;
996 	}
997 
998 	if (copy > *size)
999 		copy = *size;
1000 
1001 	i = skb_shinfo(skb)->nr_frags;
1002 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
1004 		tcp_mark_push(tp, skb);
1005 		goto new_segment;
1006 	}
1007 	if (tcp_downgrade_zcopy_pure(sk, skb))
1008 		return NULL;
1009 
1010 	copy = tcp_wmem_schedule(sk, copy);
1011 	if (!copy)
1012 		return NULL;
1013 
1014 	if (can_coalesce) {
1015 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 	} else {
1017 		get_page(page);
1018 		skb_fill_page_desc(skb, i, page, offset, copy);
1019 	}
1020 
1021 	if (!(flags & MSG_NO_SHARED_FRAGS))
1022 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1023 
1024 	skb->len += copy;
1025 	skb->data_len += copy;
1026 	skb->truesize += copy;
1027 	sk_wmem_queued_add(sk, copy);
1028 	sk_mem_charge(sk, copy);
1029 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1030 	TCP_SKB_CB(skb)->end_seq += copy;
1031 	tcp_skb_pcount_set(skb, 0);
1032 
1033 	*size = copy;
1034 	return skb;
1035 }
1036 
1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1038 			 size_t size, int flags)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	int mss_now, size_goal;
1042 	int err;
1043 	ssize_t copied;
1044 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 
1046 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1047 	    WARN_ONCE(!sendpage_ok(page),
1048 		      "page must not be a Slab one and have page_count > 0"))
1049 		return -EINVAL;
1050 
1051 	/* Wait for a connection to finish. One exception is TCP Fast Open
1052 	 * (passive side) where data is allowed to be sent before a connection
1053 	 * is fully established.
1054 	 */
1055 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 	    !tcp_passive_fastopen(sk)) {
1057 		err = sk_stream_wait_connect(sk, &timeo);
1058 		if (err != 0)
1059 			goto out_err;
1060 	}
1061 
1062 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1063 
1064 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 	copied = 0;
1066 
1067 	err = -EPIPE;
1068 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1069 		goto out_err;
1070 
1071 	while (size > 0) {
1072 		struct sk_buff *skb;
1073 		size_t copy = size;
1074 
1075 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1076 		if (!skb)
1077 			goto wait_for_space;
1078 
1079 		if (!copied)
1080 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081 
1082 		copied += copy;
1083 		offset += copy;
1084 		size -= copy;
1085 		if (!size)
1086 			goto out;
1087 
1088 		if (skb->len < size_goal || (flags & MSG_OOB))
1089 			continue;
1090 
1091 		if (forced_push(tp)) {
1092 			tcp_mark_push(tp, skb);
1093 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 		} else if (skb == tcp_send_head(sk))
1095 			tcp_push_one(sk, mss_now);
1096 		continue;
1097 
1098 wait_for_space:
1099 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1101 			 TCP_NAGLE_PUSH, size_goal);
1102 
1103 		err = sk_stream_wait_memory(sk, &timeo);
1104 		if (err != 0)
1105 			goto do_error;
1106 
1107 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 	}
1109 
1110 out:
1111 	if (copied) {
1112 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1113 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1114 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1115 	}
1116 	return copied;
1117 
1118 do_error:
1119 	tcp_remove_empty_skb(sk);
1120 	if (copied)
1121 		goto out;
1122 out_err:
1123 	/* make sure we wake any epoll edge trigger waiter */
1124 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1125 		sk->sk_write_space(sk);
1126 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1127 	}
1128 	return sk_stream_error(sk, flags, err);
1129 }
1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1131 
1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1133 			size_t size, int flags)
1134 {
1135 	if (!(sk->sk_route_caps & NETIF_F_SG))
1136 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1137 
1138 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1139 
1140 	return do_tcp_sendpages(sk, page, offset, size, flags);
1141 }
1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1143 
1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1145 		 size_t size, int flags)
1146 {
1147 	int ret;
1148 
1149 	lock_sock(sk);
1150 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1151 	release_sock(sk);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(tcp_sendpage);
1156 
1157 void tcp_free_fastopen_req(struct tcp_sock *tp)
1158 {
1159 	if (tp->fastopen_req) {
1160 		kfree(tp->fastopen_req);
1161 		tp->fastopen_req = NULL;
1162 	}
1163 }
1164 
1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1166 				int *copied, size_t size,
1167 				struct ubuf_info *uarg)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 	struct inet_sock *inet = inet_sk(sk);
1171 	struct sockaddr *uaddr = msg->msg_name;
1172 	int err, flags;
1173 
1174 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1175 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1176 	     uaddr->sa_family == AF_UNSPEC))
1177 		return -EOPNOTSUPP;
1178 	if (tp->fastopen_req)
1179 		return -EALREADY; /* Another Fast Open is in progress */
1180 
1181 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1182 				   sk->sk_allocation);
1183 	if (unlikely(!tp->fastopen_req))
1184 		return -ENOBUFS;
1185 	tp->fastopen_req->data = msg;
1186 	tp->fastopen_req->size = size;
1187 	tp->fastopen_req->uarg = uarg;
1188 
1189 	if (inet->defer_connect) {
1190 		err = tcp_connect(sk);
1191 		/* Same failure procedure as in tcp_v4/6_connect */
1192 		if (err) {
1193 			tcp_set_state(sk, TCP_CLOSE);
1194 			inet->inet_dport = 0;
1195 			sk->sk_route_caps = 0;
1196 		}
1197 	}
1198 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1199 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1200 				    msg->msg_namelen, flags, 1);
1201 	/* fastopen_req could already be freed in __inet_stream_connect
1202 	 * if the connection times out or gets rst
1203 	 */
1204 	if (tp->fastopen_req) {
1205 		*copied = tp->fastopen_req->copied;
1206 		tcp_free_fastopen_req(tp);
1207 		inet->defer_connect = 0;
1208 	}
1209 	return err;
1210 }
1211 
1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1213 {
1214 	struct tcp_sock *tp = tcp_sk(sk);
1215 	struct ubuf_info *uarg = NULL;
1216 	struct sk_buff *skb;
1217 	struct sockcm_cookie sockc;
1218 	int flags, err, copied = 0;
1219 	int mss_now = 0, size_goal, copied_syn = 0;
1220 	int process_backlog = 0;
1221 	bool zc = false;
1222 	long timeo;
1223 
1224 	flags = msg->msg_flags;
1225 
1226 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1227 		skb = tcp_write_queue_tail(sk);
1228 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1229 		if (!uarg) {
1230 			err = -ENOBUFS;
1231 			goto out_err;
1232 		}
1233 
1234 		zc = sk->sk_route_caps & NETIF_F_SG;
1235 		if (!zc)
1236 			uarg->zerocopy = 0;
1237 	}
1238 
1239 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1240 	    !tp->repair) {
1241 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1242 		if (err == -EINPROGRESS && copied_syn > 0)
1243 			goto out;
1244 		else if (err)
1245 			goto out_err;
1246 	}
1247 
1248 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1249 
1250 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1251 
1252 	/* Wait for a connection to finish. One exception is TCP Fast Open
1253 	 * (passive side) where data is allowed to be sent before a connection
1254 	 * is fully established.
1255 	 */
1256 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1257 	    !tcp_passive_fastopen(sk)) {
1258 		err = sk_stream_wait_connect(sk, &timeo);
1259 		if (err != 0)
1260 			goto do_error;
1261 	}
1262 
1263 	if (unlikely(tp->repair)) {
1264 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1265 			copied = tcp_send_rcvq(sk, msg, size);
1266 			goto out_nopush;
1267 		}
1268 
1269 		err = -EINVAL;
1270 		if (tp->repair_queue == TCP_NO_QUEUE)
1271 			goto out_err;
1272 
1273 		/* 'common' sending to sendq */
1274 	}
1275 
1276 	sockcm_init(&sockc, sk);
1277 	if (msg->msg_controllen) {
1278 		err = sock_cmsg_send(sk, msg, &sockc);
1279 		if (unlikely(err)) {
1280 			err = -EINVAL;
1281 			goto out_err;
1282 		}
1283 	}
1284 
1285 	/* This should be in poll */
1286 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1287 
1288 	/* Ok commence sending. */
1289 	copied = 0;
1290 
1291 restart:
1292 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1293 
1294 	err = -EPIPE;
1295 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1296 		goto do_error;
1297 
1298 	while (msg_data_left(msg)) {
1299 		int copy = 0;
1300 
1301 		skb = tcp_write_queue_tail(sk);
1302 		if (skb)
1303 			copy = size_goal - skb->len;
1304 
1305 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1306 			bool first_skb;
1307 
1308 new_segment:
1309 			if (!sk_stream_memory_free(sk))
1310 				goto wait_for_space;
1311 
1312 			if (unlikely(process_backlog >= 16)) {
1313 				process_backlog = 0;
1314 				if (sk_flush_backlog(sk))
1315 					goto restart;
1316 			}
1317 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1318 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1319 						   first_skb);
1320 			if (!skb)
1321 				goto wait_for_space;
1322 
1323 			process_backlog++;
1324 
1325 			tcp_skb_entail(sk, skb);
1326 			copy = size_goal;
1327 
1328 			/* All packets are restored as if they have
1329 			 * already been sent. skb_mstamp_ns isn't set to
1330 			 * avoid wrong rtt estimation.
1331 			 */
1332 			if (tp->repair)
1333 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1334 		}
1335 
1336 		/* Try to append data to the end of skb. */
1337 		if (copy > msg_data_left(msg))
1338 			copy = msg_data_left(msg);
1339 
1340 		if (!zc) {
1341 			bool merge = true;
1342 			int i = skb_shinfo(skb)->nr_frags;
1343 			struct page_frag *pfrag = sk_page_frag(sk);
1344 
1345 			if (!sk_page_frag_refill(sk, pfrag))
1346 				goto wait_for_space;
1347 
1348 			if (!skb_can_coalesce(skb, i, pfrag->page,
1349 					      pfrag->offset)) {
1350 				if (i >= sysctl_max_skb_frags) {
1351 					tcp_mark_push(tp, skb);
1352 					goto new_segment;
1353 				}
1354 				merge = false;
1355 			}
1356 
1357 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1358 
1359 			if (tcp_downgrade_zcopy_pure(sk, skb))
1360 				goto wait_for_space;
1361 
1362 			copy = tcp_wmem_schedule(sk, copy);
1363 			if (!copy)
1364 				goto wait_for_space;
1365 
1366 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1367 						       pfrag->page,
1368 						       pfrag->offset,
1369 						       copy);
1370 			if (err)
1371 				goto do_error;
1372 
1373 			/* Update the skb. */
1374 			if (merge) {
1375 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1376 			} else {
1377 				skb_fill_page_desc(skb, i, pfrag->page,
1378 						   pfrag->offset, copy);
1379 				page_ref_inc(pfrag->page);
1380 			}
1381 			pfrag->offset += copy;
1382 		} else {
1383 			/* First append to a fragless skb builds initial
1384 			 * pure zerocopy skb
1385 			 */
1386 			if (!skb->len)
1387 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1388 
1389 			if (!skb_zcopy_pure(skb)) {
1390 				copy = tcp_wmem_schedule(sk, copy);
1391 				if (!copy)
1392 					goto wait_for_space;
1393 			}
1394 
1395 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1396 			if (err == -EMSGSIZE || err == -EEXIST) {
1397 				tcp_mark_push(tp, skb);
1398 				goto new_segment;
1399 			}
1400 			if (err < 0)
1401 				goto do_error;
1402 			copy = err;
1403 		}
1404 
1405 		if (!copied)
1406 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1407 
1408 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1409 		TCP_SKB_CB(skb)->end_seq += copy;
1410 		tcp_skb_pcount_set(skb, 0);
1411 
1412 		copied += copy;
1413 		if (!msg_data_left(msg)) {
1414 			if (unlikely(flags & MSG_EOR))
1415 				TCP_SKB_CB(skb)->eor = 1;
1416 			goto out;
1417 		}
1418 
1419 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1420 			continue;
1421 
1422 		if (forced_push(tp)) {
1423 			tcp_mark_push(tp, skb);
1424 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1425 		} else if (skb == tcp_send_head(sk))
1426 			tcp_push_one(sk, mss_now);
1427 		continue;
1428 
1429 wait_for_space:
1430 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1431 		if (copied)
1432 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1433 				 TCP_NAGLE_PUSH, size_goal);
1434 
1435 		err = sk_stream_wait_memory(sk, &timeo);
1436 		if (err != 0)
1437 			goto do_error;
1438 
1439 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1440 	}
1441 
1442 out:
1443 	if (copied) {
1444 		tcp_tx_timestamp(sk, sockc.tsflags);
1445 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1446 	}
1447 out_nopush:
1448 	net_zcopy_put(uarg);
1449 	return copied + copied_syn;
1450 
1451 do_error:
1452 	tcp_remove_empty_skb(sk);
1453 
1454 	if (copied + copied_syn)
1455 		goto out;
1456 out_err:
1457 	net_zcopy_put_abort(uarg, true);
1458 	err = sk_stream_error(sk, flags, err);
1459 	/* make sure we wake any epoll edge trigger waiter */
1460 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1461 		sk->sk_write_space(sk);
1462 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1463 	}
1464 	return err;
1465 }
1466 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1467 
1468 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1469 {
1470 	int ret;
1471 
1472 	lock_sock(sk);
1473 	ret = tcp_sendmsg_locked(sk, msg, size);
1474 	release_sock(sk);
1475 
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(tcp_sendmsg);
1479 
1480 /*
1481  *	Handle reading urgent data. BSD has very simple semantics for
1482  *	this, no blocking and very strange errors 8)
1483  */
1484 
1485 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1486 {
1487 	struct tcp_sock *tp = tcp_sk(sk);
1488 
1489 	/* No URG data to read. */
1490 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1491 	    tp->urg_data == TCP_URG_READ)
1492 		return -EINVAL;	/* Yes this is right ! */
1493 
1494 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1495 		return -ENOTCONN;
1496 
1497 	if (tp->urg_data & TCP_URG_VALID) {
1498 		int err = 0;
1499 		char c = tp->urg_data;
1500 
1501 		if (!(flags & MSG_PEEK))
1502 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1503 
1504 		/* Read urgent data. */
1505 		msg->msg_flags |= MSG_OOB;
1506 
1507 		if (len > 0) {
1508 			if (!(flags & MSG_TRUNC))
1509 				err = memcpy_to_msg(msg, &c, 1);
1510 			len = 1;
1511 		} else
1512 			msg->msg_flags |= MSG_TRUNC;
1513 
1514 		return err ? -EFAULT : len;
1515 	}
1516 
1517 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1518 		return 0;
1519 
1520 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1521 	 * the available implementations agree in this case:
1522 	 * this call should never block, independent of the
1523 	 * blocking state of the socket.
1524 	 * Mike <pall@rz.uni-karlsruhe.de>
1525 	 */
1526 	return -EAGAIN;
1527 }
1528 
1529 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1530 {
1531 	struct sk_buff *skb;
1532 	int copied = 0, err = 0;
1533 
1534 	/* XXX -- need to support SO_PEEK_OFF */
1535 
1536 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1537 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1538 		if (err)
1539 			return err;
1540 		copied += skb->len;
1541 	}
1542 
1543 	skb_queue_walk(&sk->sk_write_queue, skb) {
1544 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1545 		if (err)
1546 			break;
1547 
1548 		copied += skb->len;
1549 	}
1550 
1551 	return err ?: copied;
1552 }
1553 
1554 /* Clean up the receive buffer for full frames taken by the user,
1555  * then send an ACK if necessary.  COPIED is the number of bytes
1556  * tcp_recvmsg has given to the user so far, it speeds up the
1557  * calculation of whether or not we must ACK for the sake of
1558  * a window update.
1559  */
1560 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1561 {
1562 	struct tcp_sock *tp = tcp_sk(sk);
1563 	bool time_to_ack = false;
1564 
1565 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1566 
1567 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1568 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1569 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1570 
1571 	if (inet_csk_ack_scheduled(sk)) {
1572 		const struct inet_connection_sock *icsk = inet_csk(sk);
1573 
1574 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1575 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1576 		    /*
1577 		     * If this read emptied read buffer, we send ACK, if
1578 		     * connection is not bidirectional, user drained
1579 		     * receive buffer and there was a small segment
1580 		     * in queue.
1581 		     */
1582 		    (copied > 0 &&
1583 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1584 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1585 		       !inet_csk_in_pingpong_mode(sk))) &&
1586 		      !atomic_read(&sk->sk_rmem_alloc)))
1587 			time_to_ack = true;
1588 	}
1589 
1590 	/* We send an ACK if we can now advertise a non-zero window
1591 	 * which has been raised "significantly".
1592 	 *
1593 	 * Even if window raised up to infinity, do not send window open ACK
1594 	 * in states, where we will not receive more. It is useless.
1595 	 */
1596 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1597 		__u32 rcv_window_now = tcp_receive_window(tp);
1598 
1599 		/* Optimize, __tcp_select_window() is not cheap. */
1600 		if (2*rcv_window_now <= tp->window_clamp) {
1601 			__u32 new_window = __tcp_select_window(sk);
1602 
1603 			/* Send ACK now, if this read freed lots of space
1604 			 * in our buffer. Certainly, new_window is new window.
1605 			 * We can advertise it now, if it is not less than current one.
1606 			 * "Lots" means "at least twice" here.
1607 			 */
1608 			if (new_window && new_window >= 2 * rcv_window_now)
1609 				time_to_ack = true;
1610 		}
1611 	}
1612 	if (time_to_ack)
1613 		tcp_send_ack(sk);
1614 }
1615 
1616 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1617 {
1618 	__skb_unlink(skb, &sk->sk_receive_queue);
1619 	if (likely(skb->destructor == sock_rfree)) {
1620 		sock_rfree(skb);
1621 		skb->destructor = NULL;
1622 		skb->sk = NULL;
1623 		return skb_attempt_defer_free(skb);
1624 	}
1625 	__kfree_skb(skb);
1626 }
1627 
1628 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1629 {
1630 	struct sk_buff *skb;
1631 	u32 offset;
1632 
1633 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1634 		offset = seq - TCP_SKB_CB(skb)->seq;
1635 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1636 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1637 			offset--;
1638 		}
1639 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1640 			*off = offset;
1641 			return skb;
1642 		}
1643 		/* This looks weird, but this can happen if TCP collapsing
1644 		 * splitted a fat GRO packet, while we released socket lock
1645 		 * in skb_splice_bits()
1646 		 */
1647 		tcp_eat_recv_skb(sk, skb);
1648 	}
1649 	return NULL;
1650 }
1651 
1652 /*
1653  * This routine provides an alternative to tcp_recvmsg() for routines
1654  * that would like to handle copying from skbuffs directly in 'sendfile'
1655  * fashion.
1656  * Note:
1657  *	- It is assumed that the socket was locked by the caller.
1658  *	- The routine does not block.
1659  *	- At present, there is no support for reading OOB data
1660  *	  or for 'peeking' the socket using this routine
1661  *	  (although both would be easy to implement).
1662  */
1663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1664 		  sk_read_actor_t recv_actor)
1665 {
1666 	struct sk_buff *skb;
1667 	struct tcp_sock *tp = tcp_sk(sk);
1668 	u32 seq = tp->copied_seq;
1669 	u32 offset;
1670 	int copied = 0;
1671 
1672 	if (sk->sk_state == TCP_LISTEN)
1673 		return -ENOTCONN;
1674 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1675 		if (offset < skb->len) {
1676 			int used;
1677 			size_t len;
1678 
1679 			len = skb->len - offset;
1680 			/* Stop reading if we hit a patch of urgent data */
1681 			if (unlikely(tp->urg_data)) {
1682 				u32 urg_offset = tp->urg_seq - seq;
1683 				if (urg_offset < len)
1684 					len = urg_offset;
1685 				if (!len)
1686 					break;
1687 			}
1688 			used = recv_actor(desc, skb, offset, len);
1689 			if (used <= 0) {
1690 				if (!copied)
1691 					copied = used;
1692 				break;
1693 			}
1694 			if (WARN_ON_ONCE(used > len))
1695 				used = len;
1696 			seq += used;
1697 			copied += used;
1698 			offset += used;
1699 
1700 			/* If recv_actor drops the lock (e.g. TCP splice
1701 			 * receive) the skb pointer might be invalid when
1702 			 * getting here: tcp_collapse might have deleted it
1703 			 * while aggregating skbs from the socket queue.
1704 			 */
1705 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1706 			if (!skb)
1707 				break;
1708 			/* TCP coalescing might have appended data to the skb.
1709 			 * Try to splice more frags
1710 			 */
1711 			if (offset + 1 != skb->len)
1712 				continue;
1713 		}
1714 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1715 			tcp_eat_recv_skb(sk, skb);
1716 			++seq;
1717 			break;
1718 		}
1719 		tcp_eat_recv_skb(sk, skb);
1720 		if (!desc->count)
1721 			break;
1722 		WRITE_ONCE(tp->copied_seq, seq);
1723 	}
1724 	WRITE_ONCE(tp->copied_seq, seq);
1725 
1726 	tcp_rcv_space_adjust(sk);
1727 
1728 	/* Clean up data we have read: This will do ACK frames. */
1729 	if (copied > 0) {
1730 		tcp_recv_skb(sk, seq, &offset);
1731 		tcp_cleanup_rbuf(sk, copied);
1732 	}
1733 	return copied;
1734 }
1735 EXPORT_SYMBOL(tcp_read_sock);
1736 
1737 int tcp_peek_len(struct socket *sock)
1738 {
1739 	return tcp_inq(sock->sk);
1740 }
1741 EXPORT_SYMBOL(tcp_peek_len);
1742 
1743 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1744 int tcp_set_rcvlowat(struct sock *sk, int val)
1745 {
1746 	int cap;
1747 
1748 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1749 		cap = sk->sk_rcvbuf >> 1;
1750 	else
1751 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1752 	val = min(val, cap);
1753 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1754 
1755 	/* Check if we need to signal EPOLLIN right now */
1756 	tcp_data_ready(sk);
1757 
1758 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1759 		return 0;
1760 
1761 	val <<= 1;
1762 	if (val > sk->sk_rcvbuf) {
1763 		WRITE_ONCE(sk->sk_rcvbuf, val);
1764 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1765 	}
1766 	return 0;
1767 }
1768 EXPORT_SYMBOL(tcp_set_rcvlowat);
1769 
1770 void tcp_update_recv_tstamps(struct sk_buff *skb,
1771 			     struct scm_timestamping_internal *tss)
1772 {
1773 	if (skb->tstamp)
1774 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1775 	else
1776 		tss->ts[0] = (struct timespec64) {0};
1777 
1778 	if (skb_hwtstamps(skb)->hwtstamp)
1779 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1780 	else
1781 		tss->ts[2] = (struct timespec64) {0};
1782 }
1783 
1784 #ifdef CONFIG_MMU
1785 static const struct vm_operations_struct tcp_vm_ops = {
1786 };
1787 
1788 int tcp_mmap(struct file *file, struct socket *sock,
1789 	     struct vm_area_struct *vma)
1790 {
1791 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1792 		return -EPERM;
1793 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1794 
1795 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1796 	vma->vm_flags |= VM_MIXEDMAP;
1797 
1798 	vma->vm_ops = &tcp_vm_ops;
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL(tcp_mmap);
1802 
1803 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1804 				       u32 *offset_frag)
1805 {
1806 	skb_frag_t *frag;
1807 
1808 	if (unlikely(offset_skb >= skb->len))
1809 		return NULL;
1810 
1811 	offset_skb -= skb_headlen(skb);
1812 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1813 		return NULL;
1814 
1815 	frag = skb_shinfo(skb)->frags;
1816 	while (offset_skb) {
1817 		if (skb_frag_size(frag) > offset_skb) {
1818 			*offset_frag = offset_skb;
1819 			return frag;
1820 		}
1821 		offset_skb -= skb_frag_size(frag);
1822 		++frag;
1823 	}
1824 	*offset_frag = 0;
1825 	return frag;
1826 }
1827 
1828 static bool can_map_frag(const skb_frag_t *frag)
1829 {
1830 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1831 }
1832 
1833 static int find_next_mappable_frag(const skb_frag_t *frag,
1834 				   int remaining_in_skb)
1835 {
1836 	int offset = 0;
1837 
1838 	if (likely(can_map_frag(frag)))
1839 		return 0;
1840 
1841 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1842 		offset += skb_frag_size(frag);
1843 		++frag;
1844 	}
1845 	return offset;
1846 }
1847 
1848 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1849 					  struct tcp_zerocopy_receive *zc,
1850 					  struct sk_buff *skb, u32 offset)
1851 {
1852 	u32 frag_offset, partial_frag_remainder = 0;
1853 	int mappable_offset;
1854 	skb_frag_t *frag;
1855 
1856 	/* worst case: skip to next skb. try to improve on this case below */
1857 	zc->recv_skip_hint = skb->len - offset;
1858 
1859 	/* Find the frag containing this offset (and how far into that frag) */
1860 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1861 	if (!frag)
1862 		return;
1863 
1864 	if (frag_offset) {
1865 		struct skb_shared_info *info = skb_shinfo(skb);
1866 
1867 		/* We read part of the last frag, must recvmsg() rest of skb. */
1868 		if (frag == &info->frags[info->nr_frags - 1])
1869 			return;
1870 
1871 		/* Else, we must at least read the remainder in this frag. */
1872 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1873 		zc->recv_skip_hint -= partial_frag_remainder;
1874 		++frag;
1875 	}
1876 
1877 	/* partial_frag_remainder: If part way through a frag, must read rest.
1878 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1879 	 * in partial_frag_remainder.
1880 	 */
1881 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1882 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1883 }
1884 
1885 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1886 			      int flags, struct scm_timestamping_internal *tss,
1887 			      int *cmsg_flags);
1888 static int receive_fallback_to_copy(struct sock *sk,
1889 				    struct tcp_zerocopy_receive *zc, int inq,
1890 				    struct scm_timestamping_internal *tss)
1891 {
1892 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1893 	struct msghdr msg = {};
1894 	struct iovec iov;
1895 	int err;
1896 
1897 	zc->length = 0;
1898 	zc->recv_skip_hint = 0;
1899 
1900 	if (copy_address != zc->copybuf_address)
1901 		return -EINVAL;
1902 
1903 	err = import_single_range(READ, (void __user *)copy_address,
1904 				  inq, &iov, &msg.msg_iter);
1905 	if (err)
1906 		return err;
1907 
1908 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1909 				 tss, &zc->msg_flags);
1910 	if (err < 0)
1911 		return err;
1912 
1913 	zc->copybuf_len = err;
1914 	if (likely(zc->copybuf_len)) {
1915 		struct sk_buff *skb;
1916 		u32 offset;
1917 
1918 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1919 		if (skb)
1920 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1921 	}
1922 	return 0;
1923 }
1924 
1925 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1926 				   struct sk_buff *skb, u32 copylen,
1927 				   u32 *offset, u32 *seq)
1928 {
1929 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1930 	struct msghdr msg = {};
1931 	struct iovec iov;
1932 	int err;
1933 
1934 	if (copy_address != zc->copybuf_address)
1935 		return -EINVAL;
1936 
1937 	err = import_single_range(READ, (void __user *)copy_address,
1938 				  copylen, &iov, &msg.msg_iter);
1939 	if (err)
1940 		return err;
1941 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1942 	if (err)
1943 		return err;
1944 	zc->recv_skip_hint -= copylen;
1945 	*offset += copylen;
1946 	*seq += copylen;
1947 	return (__s32)copylen;
1948 }
1949 
1950 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1951 				  struct sock *sk,
1952 				  struct sk_buff *skb,
1953 				  u32 *seq,
1954 				  s32 copybuf_len,
1955 				  struct scm_timestamping_internal *tss)
1956 {
1957 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1958 
1959 	if (!copylen)
1960 		return 0;
1961 	/* skb is null if inq < PAGE_SIZE. */
1962 	if (skb) {
1963 		offset = *seq - TCP_SKB_CB(skb)->seq;
1964 	} else {
1965 		skb = tcp_recv_skb(sk, *seq, &offset);
1966 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1967 			tcp_update_recv_tstamps(skb, tss);
1968 			zc->msg_flags |= TCP_CMSG_TS;
1969 		}
1970 	}
1971 
1972 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1973 						  seq);
1974 	return zc->copybuf_len < 0 ? 0 : copylen;
1975 }
1976 
1977 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1978 					      struct page **pending_pages,
1979 					      unsigned long pages_remaining,
1980 					      unsigned long *address,
1981 					      u32 *length,
1982 					      u32 *seq,
1983 					      struct tcp_zerocopy_receive *zc,
1984 					      u32 total_bytes_to_map,
1985 					      int err)
1986 {
1987 	/* At least one page did not map. Try zapping if we skipped earlier. */
1988 	if (err == -EBUSY &&
1989 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1990 		u32 maybe_zap_len;
1991 
1992 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1993 				*length + /* Mapped or pending */
1994 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1995 		zap_page_range(vma, *address, maybe_zap_len);
1996 		err = 0;
1997 	}
1998 
1999 	if (!err) {
2000 		unsigned long leftover_pages = pages_remaining;
2001 		int bytes_mapped;
2002 
2003 		/* We called zap_page_range, try to reinsert. */
2004 		err = vm_insert_pages(vma, *address,
2005 				      pending_pages,
2006 				      &pages_remaining);
2007 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2008 		*seq += bytes_mapped;
2009 		*address += bytes_mapped;
2010 	}
2011 	if (err) {
2012 		/* Either we were unable to zap, OR we zapped, retried an
2013 		 * insert, and still had an issue. Either ways, pages_remaining
2014 		 * is the number of pages we were unable to map, and we unroll
2015 		 * some state we speculatively touched before.
2016 		 */
2017 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2018 
2019 		*length -= bytes_not_mapped;
2020 		zc->recv_skip_hint += bytes_not_mapped;
2021 	}
2022 	return err;
2023 }
2024 
2025 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2026 					struct page **pages,
2027 					unsigned int pages_to_map,
2028 					unsigned long *address,
2029 					u32 *length,
2030 					u32 *seq,
2031 					struct tcp_zerocopy_receive *zc,
2032 					u32 total_bytes_to_map)
2033 {
2034 	unsigned long pages_remaining = pages_to_map;
2035 	unsigned int pages_mapped;
2036 	unsigned int bytes_mapped;
2037 	int err;
2038 
2039 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2040 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2041 	bytes_mapped = PAGE_SIZE * pages_mapped;
2042 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2043 	 * mapping (some but not all of the pages).
2044 	 */
2045 	*seq += bytes_mapped;
2046 	*address += bytes_mapped;
2047 
2048 	if (likely(!err))
2049 		return 0;
2050 
2051 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2052 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2053 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2054 		err);
2055 }
2056 
2057 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2058 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2059 				      struct tcp_zerocopy_receive *zc,
2060 				      struct scm_timestamping_internal *tss)
2061 {
2062 	unsigned long msg_control_addr;
2063 	struct msghdr cmsg_dummy;
2064 
2065 	msg_control_addr = (unsigned long)zc->msg_control;
2066 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2067 	cmsg_dummy.msg_controllen =
2068 		(__kernel_size_t)zc->msg_controllen;
2069 	cmsg_dummy.msg_flags = in_compat_syscall()
2070 		? MSG_CMSG_COMPAT : 0;
2071 	cmsg_dummy.msg_control_is_user = true;
2072 	zc->msg_flags = 0;
2073 	if (zc->msg_control == msg_control_addr &&
2074 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2075 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2076 		zc->msg_control = (__u64)
2077 			((uintptr_t)cmsg_dummy.msg_control);
2078 		zc->msg_controllen =
2079 			(__u64)cmsg_dummy.msg_controllen;
2080 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2081 	}
2082 }
2083 
2084 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2085 static int tcp_zerocopy_receive(struct sock *sk,
2086 				struct tcp_zerocopy_receive *zc,
2087 				struct scm_timestamping_internal *tss)
2088 {
2089 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2090 	unsigned long address = (unsigned long)zc->address;
2091 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2092 	s32 copybuf_len = zc->copybuf_len;
2093 	struct tcp_sock *tp = tcp_sk(sk);
2094 	const skb_frag_t *frags = NULL;
2095 	unsigned int pages_to_map = 0;
2096 	struct vm_area_struct *vma;
2097 	struct sk_buff *skb = NULL;
2098 	u32 seq = tp->copied_seq;
2099 	u32 total_bytes_to_map;
2100 	int inq = tcp_inq(sk);
2101 	int ret;
2102 
2103 	zc->copybuf_len = 0;
2104 	zc->msg_flags = 0;
2105 
2106 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2107 		return -EINVAL;
2108 
2109 	if (sk->sk_state == TCP_LISTEN)
2110 		return -ENOTCONN;
2111 
2112 	sock_rps_record_flow(sk);
2113 
2114 	if (inq && inq <= copybuf_len)
2115 		return receive_fallback_to_copy(sk, zc, inq, tss);
2116 
2117 	if (inq < PAGE_SIZE) {
2118 		zc->length = 0;
2119 		zc->recv_skip_hint = inq;
2120 		if (!inq && sock_flag(sk, SOCK_DONE))
2121 			return -EIO;
2122 		return 0;
2123 	}
2124 
2125 	mmap_read_lock(current->mm);
2126 
2127 	vma = vma_lookup(current->mm, address);
2128 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2129 		mmap_read_unlock(current->mm);
2130 		return -EINVAL;
2131 	}
2132 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2133 	avail_len = min_t(u32, vma_len, inq);
2134 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2135 	if (total_bytes_to_map) {
2136 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2137 			zap_page_range(vma, address, total_bytes_to_map);
2138 		zc->length = total_bytes_to_map;
2139 		zc->recv_skip_hint = 0;
2140 	} else {
2141 		zc->length = avail_len;
2142 		zc->recv_skip_hint = avail_len;
2143 	}
2144 	ret = 0;
2145 	while (length + PAGE_SIZE <= zc->length) {
2146 		int mappable_offset;
2147 		struct page *page;
2148 
2149 		if (zc->recv_skip_hint < PAGE_SIZE) {
2150 			u32 offset_frag;
2151 
2152 			if (skb) {
2153 				if (zc->recv_skip_hint > 0)
2154 					break;
2155 				skb = skb->next;
2156 				offset = seq - TCP_SKB_CB(skb)->seq;
2157 			} else {
2158 				skb = tcp_recv_skb(sk, seq, &offset);
2159 			}
2160 
2161 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2162 				tcp_update_recv_tstamps(skb, tss);
2163 				zc->msg_flags |= TCP_CMSG_TS;
2164 			}
2165 			zc->recv_skip_hint = skb->len - offset;
2166 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2167 			if (!frags || offset_frag)
2168 				break;
2169 		}
2170 
2171 		mappable_offset = find_next_mappable_frag(frags,
2172 							  zc->recv_skip_hint);
2173 		if (mappable_offset) {
2174 			zc->recv_skip_hint = mappable_offset;
2175 			break;
2176 		}
2177 		page = skb_frag_page(frags);
2178 		prefetchw(page);
2179 		pages[pages_to_map++] = page;
2180 		length += PAGE_SIZE;
2181 		zc->recv_skip_hint -= PAGE_SIZE;
2182 		frags++;
2183 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2184 		    zc->recv_skip_hint < PAGE_SIZE) {
2185 			/* Either full batch, or we're about to go to next skb
2186 			 * (and we cannot unroll failed ops across skbs).
2187 			 */
2188 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2189 							   pages_to_map,
2190 							   &address, &length,
2191 							   &seq, zc,
2192 							   total_bytes_to_map);
2193 			if (ret)
2194 				goto out;
2195 			pages_to_map = 0;
2196 		}
2197 	}
2198 	if (pages_to_map) {
2199 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2200 						   &address, &length, &seq,
2201 						   zc, total_bytes_to_map);
2202 	}
2203 out:
2204 	mmap_read_unlock(current->mm);
2205 	/* Try to copy straggler data. */
2206 	if (!ret)
2207 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2208 
2209 	if (length + copylen) {
2210 		WRITE_ONCE(tp->copied_seq, seq);
2211 		tcp_rcv_space_adjust(sk);
2212 
2213 		/* Clean up data we have read: This will do ACK frames. */
2214 		tcp_recv_skb(sk, seq, &offset);
2215 		tcp_cleanup_rbuf(sk, length + copylen);
2216 		ret = 0;
2217 		if (length == zc->length)
2218 			zc->recv_skip_hint = 0;
2219 	} else {
2220 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2221 			ret = -EIO;
2222 	}
2223 	zc->length = length;
2224 	return ret;
2225 }
2226 #endif
2227 
2228 /* Similar to __sock_recv_timestamp, but does not require an skb */
2229 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2230 			struct scm_timestamping_internal *tss)
2231 {
2232 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2233 	bool has_timestamping = false;
2234 
2235 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2236 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2237 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2238 				if (new_tstamp) {
2239 					struct __kernel_timespec kts = {
2240 						.tv_sec = tss->ts[0].tv_sec,
2241 						.tv_nsec = tss->ts[0].tv_nsec,
2242 					};
2243 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2244 						 sizeof(kts), &kts);
2245 				} else {
2246 					struct __kernel_old_timespec ts_old = {
2247 						.tv_sec = tss->ts[0].tv_sec,
2248 						.tv_nsec = tss->ts[0].tv_nsec,
2249 					};
2250 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2251 						 sizeof(ts_old), &ts_old);
2252 				}
2253 			} else {
2254 				if (new_tstamp) {
2255 					struct __kernel_sock_timeval stv = {
2256 						.tv_sec = tss->ts[0].tv_sec,
2257 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2258 					};
2259 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2260 						 sizeof(stv), &stv);
2261 				} else {
2262 					struct __kernel_old_timeval tv = {
2263 						.tv_sec = tss->ts[0].tv_sec,
2264 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2265 					};
2266 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2267 						 sizeof(tv), &tv);
2268 				}
2269 			}
2270 		}
2271 
2272 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2273 			has_timestamping = true;
2274 		else
2275 			tss->ts[0] = (struct timespec64) {0};
2276 	}
2277 
2278 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2279 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2280 			has_timestamping = true;
2281 		else
2282 			tss->ts[2] = (struct timespec64) {0};
2283 	}
2284 
2285 	if (has_timestamping) {
2286 		tss->ts[1] = (struct timespec64) {0};
2287 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2288 			put_cmsg_scm_timestamping64(msg, tss);
2289 		else
2290 			put_cmsg_scm_timestamping(msg, tss);
2291 	}
2292 }
2293 
2294 static int tcp_inq_hint(struct sock *sk)
2295 {
2296 	const struct tcp_sock *tp = tcp_sk(sk);
2297 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2298 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2299 	int inq;
2300 
2301 	inq = rcv_nxt - copied_seq;
2302 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2303 		lock_sock(sk);
2304 		inq = tp->rcv_nxt - tp->copied_seq;
2305 		release_sock(sk);
2306 	}
2307 	/* After receiving a FIN, tell the user-space to continue reading
2308 	 * by returning a non-zero inq.
2309 	 */
2310 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2311 		inq = 1;
2312 	return inq;
2313 }
2314 
2315 /*
2316  *	This routine copies from a sock struct into the user buffer.
2317  *
2318  *	Technical note: in 2.3 we work on _locked_ socket, so that
2319  *	tricks with *seq access order and skb->users are not required.
2320  *	Probably, code can be easily improved even more.
2321  */
2322 
2323 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2324 			      int flags, struct scm_timestamping_internal *tss,
2325 			      int *cmsg_flags)
2326 {
2327 	struct tcp_sock *tp = tcp_sk(sk);
2328 	int copied = 0;
2329 	u32 peek_seq;
2330 	u32 *seq;
2331 	unsigned long used;
2332 	int err;
2333 	int target;		/* Read at least this many bytes */
2334 	long timeo;
2335 	struct sk_buff *skb, *last;
2336 	u32 urg_hole = 0;
2337 
2338 	err = -ENOTCONN;
2339 	if (sk->sk_state == TCP_LISTEN)
2340 		goto out;
2341 
2342 	if (tp->recvmsg_inq) {
2343 		*cmsg_flags = TCP_CMSG_INQ;
2344 		msg->msg_get_inq = 1;
2345 	}
2346 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2347 
2348 	/* Urgent data needs to be handled specially. */
2349 	if (flags & MSG_OOB)
2350 		goto recv_urg;
2351 
2352 	if (unlikely(tp->repair)) {
2353 		err = -EPERM;
2354 		if (!(flags & MSG_PEEK))
2355 			goto out;
2356 
2357 		if (tp->repair_queue == TCP_SEND_QUEUE)
2358 			goto recv_sndq;
2359 
2360 		err = -EINVAL;
2361 		if (tp->repair_queue == TCP_NO_QUEUE)
2362 			goto out;
2363 
2364 		/* 'common' recv queue MSG_PEEK-ing */
2365 	}
2366 
2367 	seq = &tp->copied_seq;
2368 	if (flags & MSG_PEEK) {
2369 		peek_seq = tp->copied_seq;
2370 		seq = &peek_seq;
2371 	}
2372 
2373 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2374 
2375 	do {
2376 		u32 offset;
2377 
2378 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2379 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2380 			if (copied)
2381 				break;
2382 			if (signal_pending(current)) {
2383 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2384 				break;
2385 			}
2386 		}
2387 
2388 		/* Next get a buffer. */
2389 
2390 		last = skb_peek_tail(&sk->sk_receive_queue);
2391 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2392 			last = skb;
2393 			/* Now that we have two receive queues this
2394 			 * shouldn't happen.
2395 			 */
2396 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2397 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2398 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2399 				 flags))
2400 				break;
2401 
2402 			offset = *seq - TCP_SKB_CB(skb)->seq;
2403 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2404 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2405 				offset--;
2406 			}
2407 			if (offset < skb->len)
2408 				goto found_ok_skb;
2409 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2410 				goto found_fin_ok;
2411 			WARN(!(flags & MSG_PEEK),
2412 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2413 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2414 		}
2415 
2416 		/* Well, if we have backlog, try to process it now yet. */
2417 
2418 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2419 			break;
2420 
2421 		if (copied) {
2422 			if (!timeo ||
2423 			    sk->sk_err ||
2424 			    sk->sk_state == TCP_CLOSE ||
2425 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2426 			    signal_pending(current))
2427 				break;
2428 		} else {
2429 			if (sock_flag(sk, SOCK_DONE))
2430 				break;
2431 
2432 			if (sk->sk_err) {
2433 				copied = sock_error(sk);
2434 				break;
2435 			}
2436 
2437 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2438 				break;
2439 
2440 			if (sk->sk_state == TCP_CLOSE) {
2441 				/* This occurs when user tries to read
2442 				 * from never connected socket.
2443 				 */
2444 				copied = -ENOTCONN;
2445 				break;
2446 			}
2447 
2448 			if (!timeo) {
2449 				copied = -EAGAIN;
2450 				break;
2451 			}
2452 
2453 			if (signal_pending(current)) {
2454 				copied = sock_intr_errno(timeo);
2455 				break;
2456 			}
2457 		}
2458 
2459 		if (copied >= target) {
2460 			/* Do not sleep, just process backlog. */
2461 			__sk_flush_backlog(sk);
2462 		} else {
2463 			tcp_cleanup_rbuf(sk, copied);
2464 			sk_wait_data(sk, &timeo, last);
2465 		}
2466 
2467 		if ((flags & MSG_PEEK) &&
2468 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2469 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2470 					    current->comm,
2471 					    task_pid_nr(current));
2472 			peek_seq = tp->copied_seq;
2473 		}
2474 		continue;
2475 
2476 found_ok_skb:
2477 		/* Ok so how much can we use? */
2478 		used = skb->len - offset;
2479 		if (len < used)
2480 			used = len;
2481 
2482 		/* Do we have urgent data here? */
2483 		if (unlikely(tp->urg_data)) {
2484 			u32 urg_offset = tp->urg_seq - *seq;
2485 			if (urg_offset < used) {
2486 				if (!urg_offset) {
2487 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2488 						WRITE_ONCE(*seq, *seq + 1);
2489 						urg_hole++;
2490 						offset++;
2491 						used--;
2492 						if (!used)
2493 							goto skip_copy;
2494 					}
2495 				} else
2496 					used = urg_offset;
2497 			}
2498 		}
2499 
2500 		if (!(flags & MSG_TRUNC)) {
2501 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2502 			if (err) {
2503 				/* Exception. Bailout! */
2504 				if (!copied)
2505 					copied = -EFAULT;
2506 				break;
2507 			}
2508 		}
2509 
2510 		WRITE_ONCE(*seq, *seq + used);
2511 		copied += used;
2512 		len -= used;
2513 
2514 		tcp_rcv_space_adjust(sk);
2515 
2516 skip_copy:
2517 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2518 			WRITE_ONCE(tp->urg_data, 0);
2519 			tcp_fast_path_check(sk);
2520 		}
2521 
2522 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2523 			tcp_update_recv_tstamps(skb, tss);
2524 			*cmsg_flags |= TCP_CMSG_TS;
2525 		}
2526 
2527 		if (used + offset < skb->len)
2528 			continue;
2529 
2530 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2531 			goto found_fin_ok;
2532 		if (!(flags & MSG_PEEK))
2533 			tcp_eat_recv_skb(sk, skb);
2534 		continue;
2535 
2536 found_fin_ok:
2537 		/* Process the FIN. */
2538 		WRITE_ONCE(*seq, *seq + 1);
2539 		if (!(flags & MSG_PEEK))
2540 			tcp_eat_recv_skb(sk, skb);
2541 		break;
2542 	} while (len > 0);
2543 
2544 	/* According to UNIX98, msg_name/msg_namelen are ignored
2545 	 * on connected socket. I was just happy when found this 8) --ANK
2546 	 */
2547 
2548 	/* Clean up data we have read: This will do ACK frames. */
2549 	tcp_cleanup_rbuf(sk, copied);
2550 	return copied;
2551 
2552 out:
2553 	return err;
2554 
2555 recv_urg:
2556 	err = tcp_recv_urg(sk, msg, len, flags);
2557 	goto out;
2558 
2559 recv_sndq:
2560 	err = tcp_peek_sndq(sk, msg, len);
2561 	goto out;
2562 }
2563 
2564 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2565 		int *addr_len)
2566 {
2567 	int cmsg_flags = 0, ret;
2568 	struct scm_timestamping_internal tss;
2569 
2570 	if (unlikely(flags & MSG_ERRQUEUE))
2571 		return inet_recv_error(sk, msg, len, addr_len);
2572 
2573 	if (sk_can_busy_loop(sk) &&
2574 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2575 	    sk->sk_state == TCP_ESTABLISHED)
2576 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2577 
2578 	lock_sock(sk);
2579 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2580 	release_sock(sk);
2581 
2582 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2583 		if (cmsg_flags & TCP_CMSG_TS)
2584 			tcp_recv_timestamp(msg, sk, &tss);
2585 		if (msg->msg_get_inq) {
2586 			msg->msg_inq = tcp_inq_hint(sk);
2587 			if (cmsg_flags & TCP_CMSG_INQ)
2588 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2589 					 sizeof(msg->msg_inq), &msg->msg_inq);
2590 		}
2591 	}
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(tcp_recvmsg);
2595 
2596 void tcp_set_state(struct sock *sk, int state)
2597 {
2598 	int oldstate = sk->sk_state;
2599 
2600 	/* We defined a new enum for TCP states that are exported in BPF
2601 	 * so as not force the internal TCP states to be frozen. The
2602 	 * following checks will detect if an internal state value ever
2603 	 * differs from the BPF value. If this ever happens, then we will
2604 	 * need to remap the internal value to the BPF value before calling
2605 	 * tcp_call_bpf_2arg.
2606 	 */
2607 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2608 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2609 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2610 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2611 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2612 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2613 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2614 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2615 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2616 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2617 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2618 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2619 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2620 
2621 	/* bpf uapi header bpf.h defines an anonymous enum with values
2622 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2623 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2624 	 * But clang built vmlinux does not have this enum in DWARF
2625 	 * since clang removes the above code before generating IR/debuginfo.
2626 	 * Let us explicitly emit the type debuginfo to ensure the
2627 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2628 	 * regardless of which compiler is used.
2629 	 */
2630 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2631 
2632 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2633 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2634 
2635 	switch (state) {
2636 	case TCP_ESTABLISHED:
2637 		if (oldstate != TCP_ESTABLISHED)
2638 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2639 		break;
2640 
2641 	case TCP_CLOSE:
2642 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2643 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2644 
2645 		sk->sk_prot->unhash(sk);
2646 		if (inet_csk(sk)->icsk_bind_hash &&
2647 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2648 			inet_put_port(sk);
2649 		fallthrough;
2650 	default:
2651 		if (oldstate == TCP_ESTABLISHED)
2652 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653 	}
2654 
2655 	/* Change state AFTER socket is unhashed to avoid closed
2656 	 * socket sitting in hash tables.
2657 	 */
2658 	inet_sk_state_store(sk, state);
2659 }
2660 EXPORT_SYMBOL_GPL(tcp_set_state);
2661 
2662 /*
2663  *	State processing on a close. This implements the state shift for
2664  *	sending our FIN frame. Note that we only send a FIN for some
2665  *	states. A shutdown() may have already sent the FIN, or we may be
2666  *	closed.
2667  */
2668 
2669 static const unsigned char new_state[16] = {
2670   /* current state:        new state:      action:	*/
2671   [0 /* (Invalid) */]	= TCP_CLOSE,
2672   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2673   [TCP_SYN_SENT]	= TCP_CLOSE,
2674   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2675   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2676   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2677   [TCP_TIME_WAIT]	= TCP_CLOSE,
2678   [TCP_CLOSE]		= TCP_CLOSE,
2679   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2680   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2681   [TCP_LISTEN]		= TCP_CLOSE,
2682   [TCP_CLOSING]		= TCP_CLOSING,
2683   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2684 };
2685 
2686 static int tcp_close_state(struct sock *sk)
2687 {
2688 	int next = (int)new_state[sk->sk_state];
2689 	int ns = next & TCP_STATE_MASK;
2690 
2691 	tcp_set_state(sk, ns);
2692 
2693 	return next & TCP_ACTION_FIN;
2694 }
2695 
2696 /*
2697  *	Shutdown the sending side of a connection. Much like close except
2698  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2699  */
2700 
2701 void tcp_shutdown(struct sock *sk, int how)
2702 {
2703 	/*	We need to grab some memory, and put together a FIN,
2704 	 *	and then put it into the queue to be sent.
2705 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2706 	 */
2707 	if (!(how & SEND_SHUTDOWN))
2708 		return;
2709 
2710 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2711 	if ((1 << sk->sk_state) &
2712 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2713 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2714 		/* Clear out any half completed packets.  FIN if needed. */
2715 		if (tcp_close_state(sk))
2716 			tcp_send_fin(sk);
2717 	}
2718 }
2719 EXPORT_SYMBOL(tcp_shutdown);
2720 
2721 int tcp_orphan_count_sum(void)
2722 {
2723 	int i, total = 0;
2724 
2725 	for_each_possible_cpu(i)
2726 		total += per_cpu(tcp_orphan_count, i);
2727 
2728 	return max(total, 0);
2729 }
2730 
2731 static int tcp_orphan_cache;
2732 static struct timer_list tcp_orphan_timer;
2733 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2734 
2735 static void tcp_orphan_update(struct timer_list *unused)
2736 {
2737 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2738 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2739 }
2740 
2741 static bool tcp_too_many_orphans(int shift)
2742 {
2743 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2744 }
2745 
2746 bool tcp_check_oom(struct sock *sk, int shift)
2747 {
2748 	bool too_many_orphans, out_of_socket_memory;
2749 
2750 	too_many_orphans = tcp_too_many_orphans(shift);
2751 	out_of_socket_memory = tcp_out_of_memory(sk);
2752 
2753 	if (too_many_orphans)
2754 		net_info_ratelimited("too many orphaned sockets\n");
2755 	if (out_of_socket_memory)
2756 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2757 	return too_many_orphans || out_of_socket_memory;
2758 }
2759 
2760 void __tcp_close(struct sock *sk, long timeout)
2761 {
2762 	struct sk_buff *skb;
2763 	int data_was_unread = 0;
2764 	int state;
2765 
2766 	sk->sk_shutdown = SHUTDOWN_MASK;
2767 
2768 	if (sk->sk_state == TCP_LISTEN) {
2769 		tcp_set_state(sk, TCP_CLOSE);
2770 
2771 		/* Special case. */
2772 		inet_csk_listen_stop(sk);
2773 
2774 		goto adjudge_to_death;
2775 	}
2776 
2777 	/*  We need to flush the recv. buffs.  We do this only on the
2778 	 *  descriptor close, not protocol-sourced closes, because the
2779 	 *  reader process may not have drained the data yet!
2780 	 */
2781 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2782 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2783 
2784 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2785 			len--;
2786 		data_was_unread += len;
2787 		__kfree_skb(skb);
2788 	}
2789 
2790 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2791 	if (sk->sk_state == TCP_CLOSE)
2792 		goto adjudge_to_death;
2793 
2794 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2795 	 * data was lost. To witness the awful effects of the old behavior of
2796 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2797 	 * GET in an FTP client, suspend the process, wait for the client to
2798 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2799 	 * Note: timeout is always zero in such a case.
2800 	 */
2801 	if (unlikely(tcp_sk(sk)->repair)) {
2802 		sk->sk_prot->disconnect(sk, 0);
2803 	} else if (data_was_unread) {
2804 		/* Unread data was tossed, zap the connection. */
2805 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2806 		tcp_set_state(sk, TCP_CLOSE);
2807 		tcp_send_active_reset(sk, sk->sk_allocation);
2808 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2809 		/* Check zero linger _after_ checking for unread data. */
2810 		sk->sk_prot->disconnect(sk, 0);
2811 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2812 	} else if (tcp_close_state(sk)) {
2813 		/* We FIN if the application ate all the data before
2814 		 * zapping the connection.
2815 		 */
2816 
2817 		/* RED-PEN. Formally speaking, we have broken TCP state
2818 		 * machine. State transitions:
2819 		 *
2820 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2821 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2822 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2823 		 *
2824 		 * are legal only when FIN has been sent (i.e. in window),
2825 		 * rather than queued out of window. Purists blame.
2826 		 *
2827 		 * F.e. "RFC state" is ESTABLISHED,
2828 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2829 		 *
2830 		 * The visible declinations are that sometimes
2831 		 * we enter time-wait state, when it is not required really
2832 		 * (harmless), do not send active resets, when they are
2833 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2834 		 * they look as CLOSING or LAST_ACK for Linux)
2835 		 * Probably, I missed some more holelets.
2836 		 * 						--ANK
2837 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2838 		 * in a single packet! (May consider it later but will
2839 		 * probably need API support or TCP_CORK SYN-ACK until
2840 		 * data is written and socket is closed.)
2841 		 */
2842 		tcp_send_fin(sk);
2843 	}
2844 
2845 	sk_stream_wait_close(sk, timeout);
2846 
2847 adjudge_to_death:
2848 	state = sk->sk_state;
2849 	sock_hold(sk);
2850 	sock_orphan(sk);
2851 
2852 	local_bh_disable();
2853 	bh_lock_sock(sk);
2854 	/* remove backlog if any, without releasing ownership. */
2855 	__release_sock(sk);
2856 
2857 	this_cpu_inc(tcp_orphan_count);
2858 
2859 	/* Have we already been destroyed by a softirq or backlog? */
2860 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2861 		goto out;
2862 
2863 	/*	This is a (useful) BSD violating of the RFC. There is a
2864 	 *	problem with TCP as specified in that the other end could
2865 	 *	keep a socket open forever with no application left this end.
2866 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2867 	 *	our end. If they send after that then tough - BUT: long enough
2868 	 *	that we won't make the old 4*rto = almost no time - whoops
2869 	 *	reset mistake.
2870 	 *
2871 	 *	Nope, it was not mistake. It is really desired behaviour
2872 	 *	f.e. on http servers, when such sockets are useless, but
2873 	 *	consume significant resources. Let's do it with special
2874 	 *	linger2	option.					--ANK
2875 	 */
2876 
2877 	if (sk->sk_state == TCP_FIN_WAIT2) {
2878 		struct tcp_sock *tp = tcp_sk(sk);
2879 		if (tp->linger2 < 0) {
2880 			tcp_set_state(sk, TCP_CLOSE);
2881 			tcp_send_active_reset(sk, GFP_ATOMIC);
2882 			__NET_INC_STATS(sock_net(sk),
2883 					LINUX_MIB_TCPABORTONLINGER);
2884 		} else {
2885 			const int tmo = tcp_fin_time(sk);
2886 
2887 			if (tmo > TCP_TIMEWAIT_LEN) {
2888 				inet_csk_reset_keepalive_timer(sk,
2889 						tmo - TCP_TIMEWAIT_LEN);
2890 			} else {
2891 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2892 				goto out;
2893 			}
2894 		}
2895 	}
2896 	if (sk->sk_state != TCP_CLOSE) {
2897 		if (tcp_check_oom(sk, 0)) {
2898 			tcp_set_state(sk, TCP_CLOSE);
2899 			tcp_send_active_reset(sk, GFP_ATOMIC);
2900 			__NET_INC_STATS(sock_net(sk),
2901 					LINUX_MIB_TCPABORTONMEMORY);
2902 		} else if (!check_net(sock_net(sk))) {
2903 			/* Not possible to send reset; just close */
2904 			tcp_set_state(sk, TCP_CLOSE);
2905 		}
2906 	}
2907 
2908 	if (sk->sk_state == TCP_CLOSE) {
2909 		struct request_sock *req;
2910 
2911 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2912 						lockdep_sock_is_held(sk));
2913 		/* We could get here with a non-NULL req if the socket is
2914 		 * aborted (e.g., closed with unread data) before 3WHS
2915 		 * finishes.
2916 		 */
2917 		if (req)
2918 			reqsk_fastopen_remove(sk, req, false);
2919 		inet_csk_destroy_sock(sk);
2920 	}
2921 	/* Otherwise, socket is reprieved until protocol close. */
2922 
2923 out:
2924 	bh_unlock_sock(sk);
2925 	local_bh_enable();
2926 }
2927 
2928 void tcp_close(struct sock *sk, long timeout)
2929 {
2930 	lock_sock(sk);
2931 	__tcp_close(sk, timeout);
2932 	release_sock(sk);
2933 	sock_put(sk);
2934 }
2935 EXPORT_SYMBOL(tcp_close);
2936 
2937 /* These states need RST on ABORT according to RFC793 */
2938 
2939 static inline bool tcp_need_reset(int state)
2940 {
2941 	return (1 << state) &
2942 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2943 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2944 }
2945 
2946 static void tcp_rtx_queue_purge(struct sock *sk)
2947 {
2948 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2949 
2950 	tcp_sk(sk)->highest_sack = NULL;
2951 	while (p) {
2952 		struct sk_buff *skb = rb_to_skb(p);
2953 
2954 		p = rb_next(p);
2955 		/* Since we are deleting whole queue, no need to
2956 		 * list_del(&skb->tcp_tsorted_anchor)
2957 		 */
2958 		tcp_rtx_queue_unlink(skb, sk);
2959 		tcp_wmem_free_skb(sk, skb);
2960 	}
2961 }
2962 
2963 void tcp_write_queue_purge(struct sock *sk)
2964 {
2965 	struct sk_buff *skb;
2966 
2967 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2968 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2969 		tcp_skb_tsorted_anchor_cleanup(skb);
2970 		tcp_wmem_free_skb(sk, skb);
2971 	}
2972 	tcp_rtx_queue_purge(sk);
2973 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2974 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2975 	tcp_sk(sk)->packets_out = 0;
2976 	inet_csk(sk)->icsk_backoff = 0;
2977 }
2978 
2979 int tcp_disconnect(struct sock *sk, int flags)
2980 {
2981 	struct inet_sock *inet = inet_sk(sk);
2982 	struct inet_connection_sock *icsk = inet_csk(sk);
2983 	struct tcp_sock *tp = tcp_sk(sk);
2984 	int old_state = sk->sk_state;
2985 	u32 seq;
2986 
2987 	if (old_state != TCP_CLOSE)
2988 		tcp_set_state(sk, TCP_CLOSE);
2989 
2990 	/* ABORT function of RFC793 */
2991 	if (old_state == TCP_LISTEN) {
2992 		inet_csk_listen_stop(sk);
2993 	} else if (unlikely(tp->repair)) {
2994 		sk->sk_err = ECONNABORTED;
2995 	} else if (tcp_need_reset(old_state) ||
2996 		   (tp->snd_nxt != tp->write_seq &&
2997 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2998 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2999 		 * states
3000 		 */
3001 		tcp_send_active_reset(sk, gfp_any());
3002 		sk->sk_err = ECONNRESET;
3003 	} else if (old_state == TCP_SYN_SENT)
3004 		sk->sk_err = ECONNRESET;
3005 
3006 	tcp_clear_xmit_timers(sk);
3007 	__skb_queue_purge(&sk->sk_receive_queue);
3008 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3009 	WRITE_ONCE(tp->urg_data, 0);
3010 	tcp_write_queue_purge(sk);
3011 	tcp_fastopen_active_disable_ofo_check(sk);
3012 	skb_rbtree_purge(&tp->out_of_order_queue);
3013 
3014 	inet->inet_dport = 0;
3015 
3016 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3017 		inet_reset_saddr(sk);
3018 
3019 	sk->sk_shutdown = 0;
3020 	sock_reset_flag(sk, SOCK_DONE);
3021 	tp->srtt_us = 0;
3022 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3023 	tp->rcv_rtt_last_tsecr = 0;
3024 
3025 	seq = tp->write_seq + tp->max_window + 2;
3026 	if (!seq)
3027 		seq = 1;
3028 	WRITE_ONCE(tp->write_seq, seq);
3029 
3030 	icsk->icsk_backoff = 0;
3031 	icsk->icsk_probes_out = 0;
3032 	icsk->icsk_probes_tstamp = 0;
3033 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3034 	icsk->icsk_rto_min = TCP_RTO_MIN;
3035 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3036 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3037 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3038 	tp->snd_cwnd_cnt = 0;
3039 	tp->window_clamp = 0;
3040 	tp->delivered = 0;
3041 	tp->delivered_ce = 0;
3042 	if (icsk->icsk_ca_ops->release)
3043 		icsk->icsk_ca_ops->release(sk);
3044 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3045 	icsk->icsk_ca_initialized = 0;
3046 	tcp_set_ca_state(sk, TCP_CA_Open);
3047 	tp->is_sack_reneg = 0;
3048 	tcp_clear_retrans(tp);
3049 	tp->total_retrans = 0;
3050 	inet_csk_delack_init(sk);
3051 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3052 	 * issue in __tcp_select_window()
3053 	 */
3054 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3055 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3056 	__sk_dst_reset(sk);
3057 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3058 	tcp_saved_syn_free(tp);
3059 	tp->compressed_ack = 0;
3060 	tp->segs_in = 0;
3061 	tp->segs_out = 0;
3062 	tp->bytes_sent = 0;
3063 	tp->bytes_acked = 0;
3064 	tp->bytes_received = 0;
3065 	tp->bytes_retrans = 0;
3066 	tp->data_segs_in = 0;
3067 	tp->data_segs_out = 0;
3068 	tp->duplicate_sack[0].start_seq = 0;
3069 	tp->duplicate_sack[0].end_seq = 0;
3070 	tp->dsack_dups = 0;
3071 	tp->reord_seen = 0;
3072 	tp->retrans_out = 0;
3073 	tp->sacked_out = 0;
3074 	tp->tlp_high_seq = 0;
3075 	tp->last_oow_ack_time = 0;
3076 	/* There's a bubble in the pipe until at least the first ACK. */
3077 	tp->app_limited = ~0U;
3078 	tp->rack.mstamp = 0;
3079 	tp->rack.advanced = 0;
3080 	tp->rack.reo_wnd_steps = 1;
3081 	tp->rack.last_delivered = 0;
3082 	tp->rack.reo_wnd_persist = 0;
3083 	tp->rack.dsack_seen = 0;
3084 	tp->syn_data_acked = 0;
3085 	tp->rx_opt.saw_tstamp = 0;
3086 	tp->rx_opt.dsack = 0;
3087 	tp->rx_opt.num_sacks = 0;
3088 	tp->rcv_ooopack = 0;
3089 
3090 
3091 	/* Clean up fastopen related fields */
3092 	tcp_free_fastopen_req(tp);
3093 	inet->defer_connect = 0;
3094 	tp->fastopen_client_fail = 0;
3095 
3096 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3097 
3098 	if (sk->sk_frag.page) {
3099 		put_page(sk->sk_frag.page);
3100 		sk->sk_frag.page = NULL;
3101 		sk->sk_frag.offset = 0;
3102 	}
3103 	sk_error_report(sk);
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL(tcp_disconnect);
3107 
3108 static inline bool tcp_can_repair_sock(const struct sock *sk)
3109 {
3110 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3111 		(sk->sk_state != TCP_LISTEN);
3112 }
3113 
3114 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3115 {
3116 	struct tcp_repair_window opt;
3117 
3118 	if (!tp->repair)
3119 		return -EPERM;
3120 
3121 	if (len != sizeof(opt))
3122 		return -EINVAL;
3123 
3124 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3125 		return -EFAULT;
3126 
3127 	if (opt.max_window < opt.snd_wnd)
3128 		return -EINVAL;
3129 
3130 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3131 		return -EINVAL;
3132 
3133 	if (after(opt.rcv_wup, tp->rcv_nxt))
3134 		return -EINVAL;
3135 
3136 	tp->snd_wl1	= opt.snd_wl1;
3137 	tp->snd_wnd	= opt.snd_wnd;
3138 	tp->max_window	= opt.max_window;
3139 
3140 	tp->rcv_wnd	= opt.rcv_wnd;
3141 	tp->rcv_wup	= opt.rcv_wup;
3142 
3143 	return 0;
3144 }
3145 
3146 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3147 		unsigned int len)
3148 {
3149 	struct tcp_sock *tp = tcp_sk(sk);
3150 	struct tcp_repair_opt opt;
3151 	size_t offset = 0;
3152 
3153 	while (len >= sizeof(opt)) {
3154 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3155 			return -EFAULT;
3156 
3157 		offset += sizeof(opt);
3158 		len -= sizeof(opt);
3159 
3160 		switch (opt.opt_code) {
3161 		case TCPOPT_MSS:
3162 			tp->rx_opt.mss_clamp = opt.opt_val;
3163 			tcp_mtup_init(sk);
3164 			break;
3165 		case TCPOPT_WINDOW:
3166 			{
3167 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3168 				u16 rcv_wscale = opt.opt_val >> 16;
3169 
3170 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3171 					return -EFBIG;
3172 
3173 				tp->rx_opt.snd_wscale = snd_wscale;
3174 				tp->rx_opt.rcv_wscale = rcv_wscale;
3175 				tp->rx_opt.wscale_ok = 1;
3176 			}
3177 			break;
3178 		case TCPOPT_SACK_PERM:
3179 			if (opt.opt_val != 0)
3180 				return -EINVAL;
3181 
3182 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3183 			break;
3184 		case TCPOPT_TIMESTAMP:
3185 			if (opt.opt_val != 0)
3186 				return -EINVAL;
3187 
3188 			tp->rx_opt.tstamp_ok = 1;
3189 			break;
3190 		}
3191 	}
3192 
3193 	return 0;
3194 }
3195 
3196 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3197 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3198 
3199 static void tcp_enable_tx_delay(void)
3200 {
3201 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3202 		static int __tcp_tx_delay_enabled = 0;
3203 
3204 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3205 			static_branch_enable(&tcp_tx_delay_enabled);
3206 			pr_info("TCP_TX_DELAY enabled\n");
3207 		}
3208 	}
3209 }
3210 
3211 /* When set indicates to always queue non-full frames.  Later the user clears
3212  * this option and we transmit any pending partial frames in the queue.  This is
3213  * meant to be used alongside sendfile() to get properly filled frames when the
3214  * user (for example) must write out headers with a write() call first and then
3215  * use sendfile to send out the data parts.
3216  *
3217  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3218  * TCP_NODELAY.
3219  */
3220 void __tcp_sock_set_cork(struct sock *sk, bool on)
3221 {
3222 	struct tcp_sock *tp = tcp_sk(sk);
3223 
3224 	if (on) {
3225 		tp->nonagle |= TCP_NAGLE_CORK;
3226 	} else {
3227 		tp->nonagle &= ~TCP_NAGLE_CORK;
3228 		if (tp->nonagle & TCP_NAGLE_OFF)
3229 			tp->nonagle |= TCP_NAGLE_PUSH;
3230 		tcp_push_pending_frames(sk);
3231 	}
3232 }
3233 
3234 void tcp_sock_set_cork(struct sock *sk, bool on)
3235 {
3236 	lock_sock(sk);
3237 	__tcp_sock_set_cork(sk, on);
3238 	release_sock(sk);
3239 }
3240 EXPORT_SYMBOL(tcp_sock_set_cork);
3241 
3242 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3243  * remembered, but it is not activated until cork is cleared.
3244  *
3245  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3246  * even TCP_CORK for currently queued segments.
3247  */
3248 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3249 {
3250 	if (on) {
3251 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3252 		tcp_push_pending_frames(sk);
3253 	} else {
3254 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3255 	}
3256 }
3257 
3258 void tcp_sock_set_nodelay(struct sock *sk)
3259 {
3260 	lock_sock(sk);
3261 	__tcp_sock_set_nodelay(sk, true);
3262 	release_sock(sk);
3263 }
3264 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3265 
3266 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3267 {
3268 	if (!val) {
3269 		inet_csk_enter_pingpong_mode(sk);
3270 		return;
3271 	}
3272 
3273 	inet_csk_exit_pingpong_mode(sk);
3274 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3275 	    inet_csk_ack_scheduled(sk)) {
3276 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3277 		tcp_cleanup_rbuf(sk, 1);
3278 		if (!(val & 1))
3279 			inet_csk_enter_pingpong_mode(sk);
3280 	}
3281 }
3282 
3283 void tcp_sock_set_quickack(struct sock *sk, int val)
3284 {
3285 	lock_sock(sk);
3286 	__tcp_sock_set_quickack(sk, val);
3287 	release_sock(sk);
3288 }
3289 EXPORT_SYMBOL(tcp_sock_set_quickack);
3290 
3291 int tcp_sock_set_syncnt(struct sock *sk, int val)
3292 {
3293 	if (val < 1 || val > MAX_TCP_SYNCNT)
3294 		return -EINVAL;
3295 
3296 	lock_sock(sk);
3297 	inet_csk(sk)->icsk_syn_retries = val;
3298 	release_sock(sk);
3299 	return 0;
3300 }
3301 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3302 
3303 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3304 {
3305 	lock_sock(sk);
3306 	inet_csk(sk)->icsk_user_timeout = val;
3307 	release_sock(sk);
3308 }
3309 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3310 
3311 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3312 {
3313 	struct tcp_sock *tp = tcp_sk(sk);
3314 
3315 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3316 		return -EINVAL;
3317 
3318 	tp->keepalive_time = val * HZ;
3319 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3320 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3321 		u32 elapsed = keepalive_time_elapsed(tp);
3322 
3323 		if (tp->keepalive_time > elapsed)
3324 			elapsed = tp->keepalive_time - elapsed;
3325 		else
3326 			elapsed = 0;
3327 		inet_csk_reset_keepalive_timer(sk, elapsed);
3328 	}
3329 
3330 	return 0;
3331 }
3332 
3333 int tcp_sock_set_keepidle(struct sock *sk, int val)
3334 {
3335 	int err;
3336 
3337 	lock_sock(sk);
3338 	err = tcp_sock_set_keepidle_locked(sk, val);
3339 	release_sock(sk);
3340 	return err;
3341 }
3342 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3343 
3344 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3345 {
3346 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3347 		return -EINVAL;
3348 
3349 	lock_sock(sk);
3350 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3351 	release_sock(sk);
3352 	return 0;
3353 }
3354 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3355 
3356 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3357 {
3358 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3359 		return -EINVAL;
3360 
3361 	lock_sock(sk);
3362 	tcp_sk(sk)->keepalive_probes = val;
3363 	release_sock(sk);
3364 	return 0;
3365 }
3366 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3367 
3368 int tcp_set_window_clamp(struct sock *sk, int val)
3369 {
3370 	struct tcp_sock *tp = tcp_sk(sk);
3371 
3372 	if (!val) {
3373 		if (sk->sk_state != TCP_CLOSE)
3374 			return -EINVAL;
3375 		tp->window_clamp = 0;
3376 	} else {
3377 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3378 			SOCK_MIN_RCVBUF / 2 : val;
3379 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3380 	}
3381 	return 0;
3382 }
3383 
3384 /*
3385  *	Socket option code for TCP.
3386  */
3387 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3388 		sockptr_t optval, unsigned int optlen)
3389 {
3390 	struct tcp_sock *tp = tcp_sk(sk);
3391 	struct inet_connection_sock *icsk = inet_csk(sk);
3392 	struct net *net = sock_net(sk);
3393 	int val;
3394 	int err = 0;
3395 
3396 	/* These are data/string values, all the others are ints */
3397 	switch (optname) {
3398 	case TCP_CONGESTION: {
3399 		char name[TCP_CA_NAME_MAX];
3400 
3401 		if (optlen < 1)
3402 			return -EINVAL;
3403 
3404 		val = strncpy_from_sockptr(name, optval,
3405 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3406 		if (val < 0)
3407 			return -EFAULT;
3408 		name[val] = 0;
3409 
3410 		lock_sock(sk);
3411 		err = tcp_set_congestion_control(sk, name, true,
3412 						 ns_capable(sock_net(sk)->user_ns,
3413 							    CAP_NET_ADMIN));
3414 		release_sock(sk);
3415 		return err;
3416 	}
3417 	case TCP_ULP: {
3418 		char name[TCP_ULP_NAME_MAX];
3419 
3420 		if (optlen < 1)
3421 			return -EINVAL;
3422 
3423 		val = strncpy_from_sockptr(name, optval,
3424 					min_t(long, TCP_ULP_NAME_MAX - 1,
3425 					      optlen));
3426 		if (val < 0)
3427 			return -EFAULT;
3428 		name[val] = 0;
3429 
3430 		lock_sock(sk);
3431 		err = tcp_set_ulp(sk, name);
3432 		release_sock(sk);
3433 		return err;
3434 	}
3435 	case TCP_FASTOPEN_KEY: {
3436 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3437 		__u8 *backup_key = NULL;
3438 
3439 		/* Allow a backup key as well to facilitate key rotation
3440 		 * First key is the active one.
3441 		 */
3442 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3443 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3444 			return -EINVAL;
3445 
3446 		if (copy_from_sockptr(key, optval, optlen))
3447 			return -EFAULT;
3448 
3449 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3450 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3451 
3452 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3453 	}
3454 	default:
3455 		/* fallthru */
3456 		break;
3457 	}
3458 
3459 	if (optlen < sizeof(int))
3460 		return -EINVAL;
3461 
3462 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3463 		return -EFAULT;
3464 
3465 	lock_sock(sk);
3466 
3467 	switch (optname) {
3468 	case TCP_MAXSEG:
3469 		/* Values greater than interface MTU won't take effect. However
3470 		 * at the point when this call is done we typically don't yet
3471 		 * know which interface is going to be used
3472 		 */
3473 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3474 			err = -EINVAL;
3475 			break;
3476 		}
3477 		tp->rx_opt.user_mss = val;
3478 		break;
3479 
3480 	case TCP_NODELAY:
3481 		__tcp_sock_set_nodelay(sk, val);
3482 		break;
3483 
3484 	case TCP_THIN_LINEAR_TIMEOUTS:
3485 		if (val < 0 || val > 1)
3486 			err = -EINVAL;
3487 		else
3488 			tp->thin_lto = val;
3489 		break;
3490 
3491 	case TCP_THIN_DUPACK:
3492 		if (val < 0 || val > 1)
3493 			err = -EINVAL;
3494 		break;
3495 
3496 	case TCP_REPAIR:
3497 		if (!tcp_can_repair_sock(sk))
3498 			err = -EPERM;
3499 		else if (val == TCP_REPAIR_ON) {
3500 			tp->repair = 1;
3501 			sk->sk_reuse = SK_FORCE_REUSE;
3502 			tp->repair_queue = TCP_NO_QUEUE;
3503 		} else if (val == TCP_REPAIR_OFF) {
3504 			tp->repair = 0;
3505 			sk->sk_reuse = SK_NO_REUSE;
3506 			tcp_send_window_probe(sk);
3507 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3508 			tp->repair = 0;
3509 			sk->sk_reuse = SK_NO_REUSE;
3510 		} else
3511 			err = -EINVAL;
3512 
3513 		break;
3514 
3515 	case TCP_REPAIR_QUEUE:
3516 		if (!tp->repair)
3517 			err = -EPERM;
3518 		else if ((unsigned int)val < TCP_QUEUES_NR)
3519 			tp->repair_queue = val;
3520 		else
3521 			err = -EINVAL;
3522 		break;
3523 
3524 	case TCP_QUEUE_SEQ:
3525 		if (sk->sk_state != TCP_CLOSE) {
3526 			err = -EPERM;
3527 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3528 			if (!tcp_rtx_queue_empty(sk))
3529 				err = -EPERM;
3530 			else
3531 				WRITE_ONCE(tp->write_seq, val);
3532 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3533 			if (tp->rcv_nxt != tp->copied_seq) {
3534 				err = -EPERM;
3535 			} else {
3536 				WRITE_ONCE(tp->rcv_nxt, val);
3537 				WRITE_ONCE(tp->copied_seq, val);
3538 			}
3539 		} else {
3540 			err = -EINVAL;
3541 		}
3542 		break;
3543 
3544 	case TCP_REPAIR_OPTIONS:
3545 		if (!tp->repair)
3546 			err = -EINVAL;
3547 		else if (sk->sk_state == TCP_ESTABLISHED)
3548 			err = tcp_repair_options_est(sk, optval, optlen);
3549 		else
3550 			err = -EPERM;
3551 		break;
3552 
3553 	case TCP_CORK:
3554 		__tcp_sock_set_cork(sk, val);
3555 		break;
3556 
3557 	case TCP_KEEPIDLE:
3558 		err = tcp_sock_set_keepidle_locked(sk, val);
3559 		break;
3560 	case TCP_KEEPINTVL:
3561 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3562 			err = -EINVAL;
3563 		else
3564 			tp->keepalive_intvl = val * HZ;
3565 		break;
3566 	case TCP_KEEPCNT:
3567 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3568 			err = -EINVAL;
3569 		else
3570 			tp->keepalive_probes = val;
3571 		break;
3572 	case TCP_SYNCNT:
3573 		if (val < 1 || val > MAX_TCP_SYNCNT)
3574 			err = -EINVAL;
3575 		else
3576 			icsk->icsk_syn_retries = val;
3577 		break;
3578 
3579 	case TCP_SAVE_SYN:
3580 		/* 0: disable, 1: enable, 2: start from ether_header */
3581 		if (val < 0 || val > 2)
3582 			err = -EINVAL;
3583 		else
3584 			tp->save_syn = val;
3585 		break;
3586 
3587 	case TCP_LINGER2:
3588 		if (val < 0)
3589 			tp->linger2 = -1;
3590 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3591 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3592 		else
3593 			tp->linger2 = val * HZ;
3594 		break;
3595 
3596 	case TCP_DEFER_ACCEPT:
3597 		/* Translate value in seconds to number of retransmits */
3598 		icsk->icsk_accept_queue.rskq_defer_accept =
3599 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3600 					TCP_RTO_MAX / HZ);
3601 		break;
3602 
3603 	case TCP_WINDOW_CLAMP:
3604 		err = tcp_set_window_clamp(sk, val);
3605 		break;
3606 
3607 	case TCP_QUICKACK:
3608 		__tcp_sock_set_quickack(sk, val);
3609 		break;
3610 
3611 #ifdef CONFIG_TCP_MD5SIG
3612 	case TCP_MD5SIG:
3613 	case TCP_MD5SIG_EXT:
3614 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3615 		break;
3616 #endif
3617 	case TCP_USER_TIMEOUT:
3618 		/* Cap the max time in ms TCP will retry or probe the window
3619 		 * before giving up and aborting (ETIMEDOUT) a connection.
3620 		 */
3621 		if (val < 0)
3622 			err = -EINVAL;
3623 		else
3624 			icsk->icsk_user_timeout = val;
3625 		break;
3626 
3627 	case TCP_FASTOPEN:
3628 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3629 		    TCPF_LISTEN))) {
3630 			tcp_fastopen_init_key_once(net);
3631 
3632 			fastopen_queue_tune(sk, val);
3633 		} else {
3634 			err = -EINVAL;
3635 		}
3636 		break;
3637 	case TCP_FASTOPEN_CONNECT:
3638 		if (val > 1 || val < 0) {
3639 			err = -EINVAL;
3640 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3641 			if (sk->sk_state == TCP_CLOSE)
3642 				tp->fastopen_connect = val;
3643 			else
3644 				err = -EINVAL;
3645 		} else {
3646 			err = -EOPNOTSUPP;
3647 		}
3648 		break;
3649 	case TCP_FASTOPEN_NO_COOKIE:
3650 		if (val > 1 || val < 0)
3651 			err = -EINVAL;
3652 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3653 			err = -EINVAL;
3654 		else
3655 			tp->fastopen_no_cookie = val;
3656 		break;
3657 	case TCP_TIMESTAMP:
3658 		if (!tp->repair)
3659 			err = -EPERM;
3660 		else
3661 			tp->tsoffset = val - tcp_time_stamp_raw();
3662 		break;
3663 	case TCP_REPAIR_WINDOW:
3664 		err = tcp_repair_set_window(tp, optval, optlen);
3665 		break;
3666 	case TCP_NOTSENT_LOWAT:
3667 		tp->notsent_lowat = val;
3668 		sk->sk_write_space(sk);
3669 		break;
3670 	case TCP_INQ:
3671 		if (val > 1 || val < 0)
3672 			err = -EINVAL;
3673 		else
3674 			tp->recvmsg_inq = val;
3675 		break;
3676 	case TCP_TX_DELAY:
3677 		if (val)
3678 			tcp_enable_tx_delay();
3679 		tp->tcp_tx_delay = val;
3680 		break;
3681 	default:
3682 		err = -ENOPROTOOPT;
3683 		break;
3684 	}
3685 
3686 	release_sock(sk);
3687 	return err;
3688 }
3689 
3690 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3691 		   unsigned int optlen)
3692 {
3693 	const struct inet_connection_sock *icsk = inet_csk(sk);
3694 
3695 	if (level != SOL_TCP)
3696 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3697 						     optval, optlen);
3698 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3699 }
3700 EXPORT_SYMBOL(tcp_setsockopt);
3701 
3702 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3703 				      struct tcp_info *info)
3704 {
3705 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3706 	enum tcp_chrono i;
3707 
3708 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3709 		stats[i] = tp->chrono_stat[i - 1];
3710 		if (i == tp->chrono_type)
3711 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3712 		stats[i] *= USEC_PER_SEC / HZ;
3713 		total += stats[i];
3714 	}
3715 
3716 	info->tcpi_busy_time = total;
3717 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3718 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3719 }
3720 
3721 /* Return information about state of tcp endpoint in API format. */
3722 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3723 {
3724 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3725 	const struct inet_connection_sock *icsk = inet_csk(sk);
3726 	unsigned long rate;
3727 	u32 now;
3728 	u64 rate64;
3729 	bool slow;
3730 
3731 	memset(info, 0, sizeof(*info));
3732 	if (sk->sk_type != SOCK_STREAM)
3733 		return;
3734 
3735 	info->tcpi_state = inet_sk_state_load(sk);
3736 
3737 	/* Report meaningful fields for all TCP states, including listeners */
3738 	rate = READ_ONCE(sk->sk_pacing_rate);
3739 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3740 	info->tcpi_pacing_rate = rate64;
3741 
3742 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3743 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3744 	info->tcpi_max_pacing_rate = rate64;
3745 
3746 	info->tcpi_reordering = tp->reordering;
3747 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3748 
3749 	if (info->tcpi_state == TCP_LISTEN) {
3750 		/* listeners aliased fields :
3751 		 * tcpi_unacked -> Number of children ready for accept()
3752 		 * tcpi_sacked  -> max backlog
3753 		 */
3754 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3755 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3756 		return;
3757 	}
3758 
3759 	slow = lock_sock_fast(sk);
3760 
3761 	info->tcpi_ca_state = icsk->icsk_ca_state;
3762 	info->tcpi_retransmits = icsk->icsk_retransmits;
3763 	info->tcpi_probes = icsk->icsk_probes_out;
3764 	info->tcpi_backoff = icsk->icsk_backoff;
3765 
3766 	if (tp->rx_opt.tstamp_ok)
3767 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3768 	if (tcp_is_sack(tp))
3769 		info->tcpi_options |= TCPI_OPT_SACK;
3770 	if (tp->rx_opt.wscale_ok) {
3771 		info->tcpi_options |= TCPI_OPT_WSCALE;
3772 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3773 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3774 	}
3775 
3776 	if (tp->ecn_flags & TCP_ECN_OK)
3777 		info->tcpi_options |= TCPI_OPT_ECN;
3778 	if (tp->ecn_flags & TCP_ECN_SEEN)
3779 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3780 	if (tp->syn_data_acked)
3781 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3782 
3783 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3784 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3785 	info->tcpi_snd_mss = tp->mss_cache;
3786 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3787 
3788 	info->tcpi_unacked = tp->packets_out;
3789 	info->tcpi_sacked = tp->sacked_out;
3790 
3791 	info->tcpi_lost = tp->lost_out;
3792 	info->tcpi_retrans = tp->retrans_out;
3793 
3794 	now = tcp_jiffies32;
3795 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3796 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3797 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3798 
3799 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3800 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3801 	info->tcpi_rtt = tp->srtt_us >> 3;
3802 	info->tcpi_rttvar = tp->mdev_us >> 2;
3803 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3804 	info->tcpi_advmss = tp->advmss;
3805 
3806 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3807 	info->tcpi_rcv_space = tp->rcvq_space.space;
3808 
3809 	info->tcpi_total_retrans = tp->total_retrans;
3810 
3811 	info->tcpi_bytes_acked = tp->bytes_acked;
3812 	info->tcpi_bytes_received = tp->bytes_received;
3813 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3814 	tcp_get_info_chrono_stats(tp, info);
3815 
3816 	info->tcpi_segs_out = tp->segs_out;
3817 
3818 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3819 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3820 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3821 
3822 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3823 	info->tcpi_data_segs_out = tp->data_segs_out;
3824 
3825 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3826 	rate64 = tcp_compute_delivery_rate(tp);
3827 	if (rate64)
3828 		info->tcpi_delivery_rate = rate64;
3829 	info->tcpi_delivered = tp->delivered;
3830 	info->tcpi_delivered_ce = tp->delivered_ce;
3831 	info->tcpi_bytes_sent = tp->bytes_sent;
3832 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3833 	info->tcpi_dsack_dups = tp->dsack_dups;
3834 	info->tcpi_reord_seen = tp->reord_seen;
3835 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3836 	info->tcpi_snd_wnd = tp->snd_wnd;
3837 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3838 	unlock_sock_fast(sk, slow);
3839 }
3840 EXPORT_SYMBOL_GPL(tcp_get_info);
3841 
3842 static size_t tcp_opt_stats_get_size(void)
3843 {
3844 	return
3845 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3846 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3847 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3848 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3849 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3850 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3851 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3852 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3853 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3854 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3855 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3856 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3858 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3859 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3860 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3862 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3863 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3865 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3866 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3867 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3869 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3870 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3871 		0;
3872 }
3873 
3874 /* Returns TTL or hop limit of an incoming packet from skb. */
3875 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3876 {
3877 	if (skb->protocol == htons(ETH_P_IP))
3878 		return ip_hdr(skb)->ttl;
3879 	else if (skb->protocol == htons(ETH_P_IPV6))
3880 		return ipv6_hdr(skb)->hop_limit;
3881 	else
3882 		return 0;
3883 }
3884 
3885 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3886 					       const struct sk_buff *orig_skb,
3887 					       const struct sk_buff *ack_skb)
3888 {
3889 	const struct tcp_sock *tp = tcp_sk(sk);
3890 	struct sk_buff *stats;
3891 	struct tcp_info info;
3892 	unsigned long rate;
3893 	u64 rate64;
3894 
3895 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3896 	if (!stats)
3897 		return NULL;
3898 
3899 	tcp_get_info_chrono_stats(tp, &info);
3900 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3901 			  info.tcpi_busy_time, TCP_NLA_PAD);
3902 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3903 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3904 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3905 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3906 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3907 			  tp->data_segs_out, TCP_NLA_PAD);
3908 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3909 			  tp->total_retrans, TCP_NLA_PAD);
3910 
3911 	rate = READ_ONCE(sk->sk_pacing_rate);
3912 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3913 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3914 
3915 	rate64 = tcp_compute_delivery_rate(tp);
3916 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3917 
3918 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3919 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3920 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3921 
3922 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3923 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3924 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3925 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3926 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3927 
3928 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3929 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3930 
3931 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3932 			  TCP_NLA_PAD);
3933 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3934 			  TCP_NLA_PAD);
3935 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3936 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3937 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3938 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3939 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3940 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3941 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3942 			  TCP_NLA_PAD);
3943 	if (ack_skb)
3944 		nla_put_u8(stats, TCP_NLA_TTL,
3945 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3946 
3947 	return stats;
3948 }
3949 
3950 static int do_tcp_getsockopt(struct sock *sk, int level,
3951 		int optname, char __user *optval, int __user *optlen)
3952 {
3953 	struct inet_connection_sock *icsk = inet_csk(sk);
3954 	struct tcp_sock *tp = tcp_sk(sk);
3955 	struct net *net = sock_net(sk);
3956 	int val, len;
3957 
3958 	if (get_user(len, optlen))
3959 		return -EFAULT;
3960 
3961 	len = min_t(unsigned int, len, sizeof(int));
3962 
3963 	if (len < 0)
3964 		return -EINVAL;
3965 
3966 	switch (optname) {
3967 	case TCP_MAXSEG:
3968 		val = tp->mss_cache;
3969 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3970 			val = tp->rx_opt.user_mss;
3971 		if (tp->repair)
3972 			val = tp->rx_opt.mss_clamp;
3973 		break;
3974 	case TCP_NODELAY:
3975 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3976 		break;
3977 	case TCP_CORK:
3978 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3979 		break;
3980 	case TCP_KEEPIDLE:
3981 		val = keepalive_time_when(tp) / HZ;
3982 		break;
3983 	case TCP_KEEPINTVL:
3984 		val = keepalive_intvl_when(tp) / HZ;
3985 		break;
3986 	case TCP_KEEPCNT:
3987 		val = keepalive_probes(tp);
3988 		break;
3989 	case TCP_SYNCNT:
3990 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3991 		break;
3992 	case TCP_LINGER2:
3993 		val = tp->linger2;
3994 		if (val >= 0)
3995 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3996 		break;
3997 	case TCP_DEFER_ACCEPT:
3998 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3999 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4000 		break;
4001 	case TCP_WINDOW_CLAMP:
4002 		val = tp->window_clamp;
4003 		break;
4004 	case TCP_INFO: {
4005 		struct tcp_info info;
4006 
4007 		if (get_user(len, optlen))
4008 			return -EFAULT;
4009 
4010 		tcp_get_info(sk, &info);
4011 
4012 		len = min_t(unsigned int, len, sizeof(info));
4013 		if (put_user(len, optlen))
4014 			return -EFAULT;
4015 		if (copy_to_user(optval, &info, len))
4016 			return -EFAULT;
4017 		return 0;
4018 	}
4019 	case TCP_CC_INFO: {
4020 		const struct tcp_congestion_ops *ca_ops;
4021 		union tcp_cc_info info;
4022 		size_t sz = 0;
4023 		int attr;
4024 
4025 		if (get_user(len, optlen))
4026 			return -EFAULT;
4027 
4028 		ca_ops = icsk->icsk_ca_ops;
4029 		if (ca_ops && ca_ops->get_info)
4030 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4031 
4032 		len = min_t(unsigned int, len, sz);
4033 		if (put_user(len, optlen))
4034 			return -EFAULT;
4035 		if (copy_to_user(optval, &info, len))
4036 			return -EFAULT;
4037 		return 0;
4038 	}
4039 	case TCP_QUICKACK:
4040 		val = !inet_csk_in_pingpong_mode(sk);
4041 		break;
4042 
4043 	case TCP_CONGESTION:
4044 		if (get_user(len, optlen))
4045 			return -EFAULT;
4046 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4047 		if (put_user(len, optlen))
4048 			return -EFAULT;
4049 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4050 			return -EFAULT;
4051 		return 0;
4052 
4053 	case TCP_ULP:
4054 		if (get_user(len, optlen))
4055 			return -EFAULT;
4056 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4057 		if (!icsk->icsk_ulp_ops) {
4058 			if (put_user(0, optlen))
4059 				return -EFAULT;
4060 			return 0;
4061 		}
4062 		if (put_user(len, optlen))
4063 			return -EFAULT;
4064 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4065 			return -EFAULT;
4066 		return 0;
4067 
4068 	case TCP_FASTOPEN_KEY: {
4069 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4070 		unsigned int key_len;
4071 
4072 		if (get_user(len, optlen))
4073 			return -EFAULT;
4074 
4075 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4076 				TCP_FASTOPEN_KEY_LENGTH;
4077 		len = min_t(unsigned int, len, key_len);
4078 		if (put_user(len, optlen))
4079 			return -EFAULT;
4080 		if (copy_to_user(optval, key, len))
4081 			return -EFAULT;
4082 		return 0;
4083 	}
4084 	case TCP_THIN_LINEAR_TIMEOUTS:
4085 		val = tp->thin_lto;
4086 		break;
4087 
4088 	case TCP_THIN_DUPACK:
4089 		val = 0;
4090 		break;
4091 
4092 	case TCP_REPAIR:
4093 		val = tp->repair;
4094 		break;
4095 
4096 	case TCP_REPAIR_QUEUE:
4097 		if (tp->repair)
4098 			val = tp->repair_queue;
4099 		else
4100 			return -EINVAL;
4101 		break;
4102 
4103 	case TCP_REPAIR_WINDOW: {
4104 		struct tcp_repair_window opt;
4105 
4106 		if (get_user(len, optlen))
4107 			return -EFAULT;
4108 
4109 		if (len != sizeof(opt))
4110 			return -EINVAL;
4111 
4112 		if (!tp->repair)
4113 			return -EPERM;
4114 
4115 		opt.snd_wl1	= tp->snd_wl1;
4116 		opt.snd_wnd	= tp->snd_wnd;
4117 		opt.max_window	= tp->max_window;
4118 		opt.rcv_wnd	= tp->rcv_wnd;
4119 		opt.rcv_wup	= tp->rcv_wup;
4120 
4121 		if (copy_to_user(optval, &opt, len))
4122 			return -EFAULT;
4123 		return 0;
4124 	}
4125 	case TCP_QUEUE_SEQ:
4126 		if (tp->repair_queue == TCP_SEND_QUEUE)
4127 			val = tp->write_seq;
4128 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4129 			val = tp->rcv_nxt;
4130 		else
4131 			return -EINVAL;
4132 		break;
4133 
4134 	case TCP_USER_TIMEOUT:
4135 		val = icsk->icsk_user_timeout;
4136 		break;
4137 
4138 	case TCP_FASTOPEN:
4139 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4140 		break;
4141 
4142 	case TCP_FASTOPEN_CONNECT:
4143 		val = tp->fastopen_connect;
4144 		break;
4145 
4146 	case TCP_FASTOPEN_NO_COOKIE:
4147 		val = tp->fastopen_no_cookie;
4148 		break;
4149 
4150 	case TCP_TX_DELAY:
4151 		val = tp->tcp_tx_delay;
4152 		break;
4153 
4154 	case TCP_TIMESTAMP:
4155 		val = tcp_time_stamp_raw() + tp->tsoffset;
4156 		break;
4157 	case TCP_NOTSENT_LOWAT:
4158 		val = tp->notsent_lowat;
4159 		break;
4160 	case TCP_INQ:
4161 		val = tp->recvmsg_inq;
4162 		break;
4163 	case TCP_SAVE_SYN:
4164 		val = tp->save_syn;
4165 		break;
4166 	case TCP_SAVED_SYN: {
4167 		if (get_user(len, optlen))
4168 			return -EFAULT;
4169 
4170 		lock_sock(sk);
4171 		if (tp->saved_syn) {
4172 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4173 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4174 					     optlen)) {
4175 					release_sock(sk);
4176 					return -EFAULT;
4177 				}
4178 				release_sock(sk);
4179 				return -EINVAL;
4180 			}
4181 			len = tcp_saved_syn_len(tp->saved_syn);
4182 			if (put_user(len, optlen)) {
4183 				release_sock(sk);
4184 				return -EFAULT;
4185 			}
4186 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4187 				release_sock(sk);
4188 				return -EFAULT;
4189 			}
4190 			tcp_saved_syn_free(tp);
4191 			release_sock(sk);
4192 		} else {
4193 			release_sock(sk);
4194 			len = 0;
4195 			if (put_user(len, optlen))
4196 				return -EFAULT;
4197 		}
4198 		return 0;
4199 	}
4200 #ifdef CONFIG_MMU
4201 	case TCP_ZEROCOPY_RECEIVE: {
4202 		struct scm_timestamping_internal tss;
4203 		struct tcp_zerocopy_receive zc = {};
4204 		int err;
4205 
4206 		if (get_user(len, optlen))
4207 			return -EFAULT;
4208 		if (len < 0 ||
4209 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4210 			return -EINVAL;
4211 		if (unlikely(len > sizeof(zc))) {
4212 			err = check_zeroed_user(optval + sizeof(zc),
4213 						len - sizeof(zc));
4214 			if (err < 1)
4215 				return err == 0 ? -EINVAL : err;
4216 			len = sizeof(zc);
4217 			if (put_user(len, optlen))
4218 				return -EFAULT;
4219 		}
4220 		if (copy_from_user(&zc, optval, len))
4221 			return -EFAULT;
4222 		if (zc.reserved)
4223 			return -EINVAL;
4224 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4225 			return -EINVAL;
4226 		lock_sock(sk);
4227 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4228 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4229 							  &zc, &len, err);
4230 		release_sock(sk);
4231 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4232 			goto zerocopy_rcv_cmsg;
4233 		switch (len) {
4234 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4235 			goto zerocopy_rcv_cmsg;
4236 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4237 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4238 		case offsetofend(struct tcp_zerocopy_receive, flags):
4239 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4240 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4241 		case offsetofend(struct tcp_zerocopy_receive, err):
4242 			goto zerocopy_rcv_sk_err;
4243 		case offsetofend(struct tcp_zerocopy_receive, inq):
4244 			goto zerocopy_rcv_inq;
4245 		case offsetofend(struct tcp_zerocopy_receive, length):
4246 		default:
4247 			goto zerocopy_rcv_out;
4248 		}
4249 zerocopy_rcv_cmsg:
4250 		if (zc.msg_flags & TCP_CMSG_TS)
4251 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4252 		else
4253 			zc.msg_flags = 0;
4254 zerocopy_rcv_sk_err:
4255 		if (!err)
4256 			zc.err = sock_error(sk);
4257 zerocopy_rcv_inq:
4258 		zc.inq = tcp_inq_hint(sk);
4259 zerocopy_rcv_out:
4260 		if (!err && copy_to_user(optval, &zc, len))
4261 			err = -EFAULT;
4262 		return err;
4263 	}
4264 #endif
4265 	default:
4266 		return -ENOPROTOOPT;
4267 	}
4268 
4269 	if (put_user(len, optlen))
4270 		return -EFAULT;
4271 	if (copy_to_user(optval, &val, len))
4272 		return -EFAULT;
4273 	return 0;
4274 }
4275 
4276 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4277 {
4278 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4279 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4280 	 */
4281 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4282 		return true;
4283 
4284 	return false;
4285 }
4286 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4287 
4288 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4289 		   int __user *optlen)
4290 {
4291 	struct inet_connection_sock *icsk = inet_csk(sk);
4292 
4293 	if (level != SOL_TCP)
4294 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4295 						     optval, optlen);
4296 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4297 }
4298 EXPORT_SYMBOL(tcp_getsockopt);
4299 
4300 #ifdef CONFIG_TCP_MD5SIG
4301 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4302 static DEFINE_MUTEX(tcp_md5sig_mutex);
4303 static bool tcp_md5sig_pool_populated = false;
4304 
4305 static void __tcp_alloc_md5sig_pool(void)
4306 {
4307 	struct crypto_ahash *hash;
4308 	int cpu;
4309 
4310 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4311 	if (IS_ERR(hash))
4312 		return;
4313 
4314 	for_each_possible_cpu(cpu) {
4315 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4316 		struct ahash_request *req;
4317 
4318 		if (!scratch) {
4319 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4320 					       sizeof(struct tcphdr),
4321 					       GFP_KERNEL,
4322 					       cpu_to_node(cpu));
4323 			if (!scratch)
4324 				return;
4325 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4326 		}
4327 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4328 			continue;
4329 
4330 		req = ahash_request_alloc(hash, GFP_KERNEL);
4331 		if (!req)
4332 			return;
4333 
4334 		ahash_request_set_callback(req, 0, NULL, NULL);
4335 
4336 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4337 	}
4338 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4339 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4340 	 */
4341 	smp_wmb();
4342 	tcp_md5sig_pool_populated = true;
4343 }
4344 
4345 bool tcp_alloc_md5sig_pool(void)
4346 {
4347 	if (unlikely(!tcp_md5sig_pool_populated)) {
4348 		mutex_lock(&tcp_md5sig_mutex);
4349 
4350 		if (!tcp_md5sig_pool_populated) {
4351 			__tcp_alloc_md5sig_pool();
4352 			if (tcp_md5sig_pool_populated)
4353 				static_branch_inc(&tcp_md5_needed);
4354 		}
4355 
4356 		mutex_unlock(&tcp_md5sig_mutex);
4357 	}
4358 	return tcp_md5sig_pool_populated;
4359 }
4360 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4361 
4362 
4363 /**
4364  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4365  *
4366  *	We use percpu structure, so if we succeed, we exit with preemption
4367  *	and BH disabled, to make sure another thread or softirq handling
4368  *	wont try to get same context.
4369  */
4370 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4371 {
4372 	local_bh_disable();
4373 
4374 	if (tcp_md5sig_pool_populated) {
4375 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4376 		smp_rmb();
4377 		return this_cpu_ptr(&tcp_md5sig_pool);
4378 	}
4379 	local_bh_enable();
4380 	return NULL;
4381 }
4382 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4383 
4384 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4385 			  const struct sk_buff *skb, unsigned int header_len)
4386 {
4387 	struct scatterlist sg;
4388 	const struct tcphdr *tp = tcp_hdr(skb);
4389 	struct ahash_request *req = hp->md5_req;
4390 	unsigned int i;
4391 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4392 					   skb_headlen(skb) - header_len : 0;
4393 	const struct skb_shared_info *shi = skb_shinfo(skb);
4394 	struct sk_buff *frag_iter;
4395 
4396 	sg_init_table(&sg, 1);
4397 
4398 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4399 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4400 	if (crypto_ahash_update(req))
4401 		return 1;
4402 
4403 	for (i = 0; i < shi->nr_frags; ++i) {
4404 		const skb_frag_t *f = &shi->frags[i];
4405 		unsigned int offset = skb_frag_off(f);
4406 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4407 
4408 		sg_set_page(&sg, page, skb_frag_size(f),
4409 			    offset_in_page(offset));
4410 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4411 		if (crypto_ahash_update(req))
4412 			return 1;
4413 	}
4414 
4415 	skb_walk_frags(skb, frag_iter)
4416 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4417 			return 1;
4418 
4419 	return 0;
4420 }
4421 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4422 
4423 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4424 {
4425 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4426 	struct scatterlist sg;
4427 
4428 	sg_init_one(&sg, key->key, keylen);
4429 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4430 
4431 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4432 	return data_race(crypto_ahash_update(hp->md5_req));
4433 }
4434 EXPORT_SYMBOL(tcp_md5_hash_key);
4435 
4436 /* Called with rcu_read_lock() */
4437 enum skb_drop_reason
4438 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4439 		     const void *saddr, const void *daddr,
4440 		     int family, int dif, int sdif)
4441 {
4442 	/*
4443 	 * This gets called for each TCP segment that arrives
4444 	 * so we want to be efficient.
4445 	 * We have 3 drop cases:
4446 	 * o No MD5 hash and one expected.
4447 	 * o MD5 hash and we're not expecting one.
4448 	 * o MD5 hash and its wrong.
4449 	 */
4450 	const __u8 *hash_location = NULL;
4451 	struct tcp_md5sig_key *hash_expected;
4452 	const struct tcphdr *th = tcp_hdr(skb);
4453 	struct tcp_sock *tp = tcp_sk(sk);
4454 	int genhash, l3index;
4455 	u8 newhash[16];
4456 
4457 	/* sdif set, means packet ingressed via a device
4458 	 * in an L3 domain and dif is set to the l3mdev
4459 	 */
4460 	l3index = sdif ? dif : 0;
4461 
4462 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4463 	hash_location = tcp_parse_md5sig_option(th);
4464 
4465 	/* We've parsed the options - do we have a hash? */
4466 	if (!hash_expected && !hash_location)
4467 		return SKB_NOT_DROPPED_YET;
4468 
4469 	if (hash_expected && !hash_location) {
4470 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4471 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4472 	}
4473 
4474 	if (!hash_expected && hash_location) {
4475 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4476 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4477 	}
4478 
4479 	/* check the signature */
4480 	genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected,
4481 						 NULL, skb);
4482 
4483 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4484 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4485 		if (family == AF_INET) {
4486 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4487 					saddr, ntohs(th->source),
4488 					daddr, ntohs(th->dest),
4489 					genhash ? " tcp_v4_calc_md5_hash failed"
4490 					: "", l3index);
4491 		} else {
4492 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4493 					genhash ? "failed" : "mismatch",
4494 					saddr, ntohs(th->source),
4495 					daddr, ntohs(th->dest), l3index);
4496 		}
4497 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4498 	}
4499 	return SKB_NOT_DROPPED_YET;
4500 }
4501 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4502 
4503 #endif
4504 
4505 void tcp_done(struct sock *sk)
4506 {
4507 	struct request_sock *req;
4508 
4509 	/* We might be called with a new socket, after
4510 	 * inet_csk_prepare_forced_close() has been called
4511 	 * so we can not use lockdep_sock_is_held(sk)
4512 	 */
4513 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4514 
4515 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4516 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4517 
4518 	tcp_set_state(sk, TCP_CLOSE);
4519 	tcp_clear_xmit_timers(sk);
4520 	if (req)
4521 		reqsk_fastopen_remove(sk, req, false);
4522 
4523 	sk->sk_shutdown = SHUTDOWN_MASK;
4524 
4525 	if (!sock_flag(sk, SOCK_DEAD))
4526 		sk->sk_state_change(sk);
4527 	else
4528 		inet_csk_destroy_sock(sk);
4529 }
4530 EXPORT_SYMBOL_GPL(tcp_done);
4531 
4532 int tcp_abort(struct sock *sk, int err)
4533 {
4534 	if (!sk_fullsock(sk)) {
4535 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4536 			struct request_sock *req = inet_reqsk(sk);
4537 
4538 			local_bh_disable();
4539 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4540 			local_bh_enable();
4541 			return 0;
4542 		}
4543 		return -EOPNOTSUPP;
4544 	}
4545 
4546 	/* Don't race with userspace socket closes such as tcp_close. */
4547 	lock_sock(sk);
4548 
4549 	if (sk->sk_state == TCP_LISTEN) {
4550 		tcp_set_state(sk, TCP_CLOSE);
4551 		inet_csk_listen_stop(sk);
4552 	}
4553 
4554 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4555 	local_bh_disable();
4556 	bh_lock_sock(sk);
4557 
4558 	if (!sock_flag(sk, SOCK_DEAD)) {
4559 		sk->sk_err = err;
4560 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4561 		smp_wmb();
4562 		sk_error_report(sk);
4563 		if (tcp_need_reset(sk->sk_state))
4564 			tcp_send_active_reset(sk, GFP_ATOMIC);
4565 		tcp_done(sk);
4566 	}
4567 
4568 	bh_unlock_sock(sk);
4569 	local_bh_enable();
4570 	tcp_write_queue_purge(sk);
4571 	release_sock(sk);
4572 	return 0;
4573 }
4574 EXPORT_SYMBOL_GPL(tcp_abort);
4575 
4576 extern struct tcp_congestion_ops tcp_reno;
4577 
4578 static __initdata unsigned long thash_entries;
4579 static int __init set_thash_entries(char *str)
4580 {
4581 	ssize_t ret;
4582 
4583 	if (!str)
4584 		return 0;
4585 
4586 	ret = kstrtoul(str, 0, &thash_entries);
4587 	if (ret)
4588 		return 0;
4589 
4590 	return 1;
4591 }
4592 __setup("thash_entries=", set_thash_entries);
4593 
4594 static void __init tcp_init_mem(void)
4595 {
4596 	unsigned long limit = nr_free_buffer_pages() / 16;
4597 
4598 	limit = max(limit, 128UL);
4599 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4600 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4601 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4602 }
4603 
4604 void __init tcp_init(void)
4605 {
4606 	int max_rshare, max_wshare, cnt;
4607 	unsigned long limit;
4608 	unsigned int i;
4609 
4610 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4611 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4612 		     sizeof_field(struct sk_buff, cb));
4613 
4614 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4615 
4616 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4617 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4618 
4619 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4620 			    thash_entries, 21,  /* one slot per 2 MB*/
4621 			    0, 64 * 1024);
4622 	tcp_hashinfo.bind_bucket_cachep =
4623 		kmem_cache_create("tcp_bind_bucket",
4624 				  sizeof(struct inet_bind_bucket), 0,
4625 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4626 				  SLAB_ACCOUNT,
4627 				  NULL);
4628 
4629 	/* Size and allocate the main established and bind bucket
4630 	 * hash tables.
4631 	 *
4632 	 * The methodology is similar to that of the buffer cache.
4633 	 */
4634 	tcp_hashinfo.ehash =
4635 		alloc_large_system_hash("TCP established",
4636 					sizeof(struct inet_ehash_bucket),
4637 					thash_entries,
4638 					17, /* one slot per 128 KB of memory */
4639 					0,
4640 					NULL,
4641 					&tcp_hashinfo.ehash_mask,
4642 					0,
4643 					thash_entries ? 0 : 512 * 1024);
4644 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4645 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4646 
4647 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4648 		panic("TCP: failed to alloc ehash_locks");
4649 	tcp_hashinfo.bhash =
4650 		alloc_large_system_hash("TCP bind",
4651 					sizeof(struct inet_bind_hashbucket),
4652 					tcp_hashinfo.ehash_mask + 1,
4653 					17, /* one slot per 128 KB of memory */
4654 					0,
4655 					&tcp_hashinfo.bhash_size,
4656 					NULL,
4657 					0,
4658 					64 * 1024);
4659 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4660 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4661 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4662 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4663 	}
4664 
4665 
4666 	cnt = tcp_hashinfo.ehash_mask + 1;
4667 	sysctl_tcp_max_orphans = cnt / 2;
4668 
4669 	tcp_init_mem();
4670 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4671 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4672 	max_wshare = min(4UL*1024*1024, limit);
4673 	max_rshare = min(6UL*1024*1024, limit);
4674 
4675 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4676 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4677 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4678 
4679 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4680 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4681 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4682 
4683 	pr_info("Hash tables configured (established %u bind %u)\n",
4684 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4685 
4686 	tcp_v4_init();
4687 	tcp_metrics_init();
4688 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4689 	tcp_tasklet_init();
4690 	mptcp_init();
4691 }
4692