1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 458 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1175 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1176 uaddr->sa_family == AF_UNSPEC)) 1177 return -EOPNOTSUPP; 1178 if (tp->fastopen_req) 1179 return -EALREADY; /* Another Fast Open is in progress */ 1180 1181 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1182 sk->sk_allocation); 1183 if (unlikely(!tp->fastopen_req)) 1184 return -ENOBUFS; 1185 tp->fastopen_req->data = msg; 1186 tp->fastopen_req->size = size; 1187 tp->fastopen_req->uarg = uarg; 1188 1189 if (inet->defer_connect) { 1190 err = tcp_connect(sk); 1191 /* Same failure procedure as in tcp_v4/6_connect */ 1192 if (err) { 1193 tcp_set_state(sk, TCP_CLOSE); 1194 inet->inet_dport = 0; 1195 sk->sk_route_caps = 0; 1196 } 1197 } 1198 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1199 err = __inet_stream_connect(sk->sk_socket, uaddr, 1200 msg->msg_namelen, flags, 1); 1201 /* fastopen_req could already be freed in __inet_stream_connect 1202 * if the connection times out or gets rst 1203 */ 1204 if (tp->fastopen_req) { 1205 *copied = tp->fastopen_req->copied; 1206 tcp_free_fastopen_req(tp); 1207 inet->defer_connect = 0; 1208 } 1209 return err; 1210 } 1211 1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1213 { 1214 struct tcp_sock *tp = tcp_sk(sk); 1215 struct ubuf_info *uarg = NULL; 1216 struct sk_buff *skb; 1217 struct sockcm_cookie sockc; 1218 int flags, err, copied = 0; 1219 int mss_now = 0, size_goal, copied_syn = 0; 1220 int process_backlog = 0; 1221 bool zc = false; 1222 long timeo; 1223 1224 flags = msg->msg_flags; 1225 1226 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1227 skb = tcp_write_queue_tail(sk); 1228 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1229 if (!uarg) { 1230 err = -ENOBUFS; 1231 goto out_err; 1232 } 1233 1234 zc = sk->sk_route_caps & NETIF_F_SG; 1235 if (!zc) 1236 uarg->zerocopy = 0; 1237 } 1238 1239 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1240 !tp->repair) { 1241 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1242 if (err == -EINPROGRESS && copied_syn > 0) 1243 goto out; 1244 else if (err) 1245 goto out_err; 1246 } 1247 1248 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1249 1250 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1251 1252 /* Wait for a connection to finish. One exception is TCP Fast Open 1253 * (passive side) where data is allowed to be sent before a connection 1254 * is fully established. 1255 */ 1256 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1257 !tcp_passive_fastopen(sk)) { 1258 err = sk_stream_wait_connect(sk, &timeo); 1259 if (err != 0) 1260 goto do_error; 1261 } 1262 1263 if (unlikely(tp->repair)) { 1264 if (tp->repair_queue == TCP_RECV_QUEUE) { 1265 copied = tcp_send_rcvq(sk, msg, size); 1266 goto out_nopush; 1267 } 1268 1269 err = -EINVAL; 1270 if (tp->repair_queue == TCP_NO_QUEUE) 1271 goto out_err; 1272 1273 /* 'common' sending to sendq */ 1274 } 1275 1276 sockcm_init(&sockc, sk); 1277 if (msg->msg_controllen) { 1278 err = sock_cmsg_send(sk, msg, &sockc); 1279 if (unlikely(err)) { 1280 err = -EINVAL; 1281 goto out_err; 1282 } 1283 } 1284 1285 /* This should be in poll */ 1286 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1287 1288 /* Ok commence sending. */ 1289 copied = 0; 1290 1291 restart: 1292 mss_now = tcp_send_mss(sk, &size_goal, flags); 1293 1294 err = -EPIPE; 1295 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1296 goto do_error; 1297 1298 while (msg_data_left(msg)) { 1299 int copy = 0; 1300 1301 skb = tcp_write_queue_tail(sk); 1302 if (skb) 1303 copy = size_goal - skb->len; 1304 1305 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1306 bool first_skb; 1307 1308 new_segment: 1309 if (!sk_stream_memory_free(sk)) 1310 goto wait_for_space; 1311 1312 if (unlikely(process_backlog >= 16)) { 1313 process_backlog = 0; 1314 if (sk_flush_backlog(sk)) 1315 goto restart; 1316 } 1317 first_skb = tcp_rtx_and_write_queues_empty(sk); 1318 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1319 first_skb); 1320 if (!skb) 1321 goto wait_for_space; 1322 1323 process_backlog++; 1324 1325 tcp_skb_entail(sk, skb); 1326 copy = size_goal; 1327 1328 /* All packets are restored as if they have 1329 * already been sent. skb_mstamp_ns isn't set to 1330 * avoid wrong rtt estimation. 1331 */ 1332 if (tp->repair) 1333 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1334 } 1335 1336 /* Try to append data to the end of skb. */ 1337 if (copy > msg_data_left(msg)) 1338 copy = msg_data_left(msg); 1339 1340 if (!zc) { 1341 bool merge = true; 1342 int i = skb_shinfo(skb)->nr_frags; 1343 struct page_frag *pfrag = sk_page_frag(sk); 1344 1345 if (!sk_page_frag_refill(sk, pfrag)) 1346 goto wait_for_space; 1347 1348 if (!skb_can_coalesce(skb, i, pfrag->page, 1349 pfrag->offset)) { 1350 if (i >= sysctl_max_skb_frags) { 1351 tcp_mark_push(tp, skb); 1352 goto new_segment; 1353 } 1354 merge = false; 1355 } 1356 1357 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1358 1359 if (tcp_downgrade_zcopy_pure(sk, skb)) 1360 goto wait_for_space; 1361 1362 copy = tcp_wmem_schedule(sk, copy); 1363 if (!copy) 1364 goto wait_for_space; 1365 1366 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1367 pfrag->page, 1368 pfrag->offset, 1369 copy); 1370 if (err) 1371 goto do_error; 1372 1373 /* Update the skb. */ 1374 if (merge) { 1375 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1376 } else { 1377 skb_fill_page_desc(skb, i, pfrag->page, 1378 pfrag->offset, copy); 1379 page_ref_inc(pfrag->page); 1380 } 1381 pfrag->offset += copy; 1382 } else { 1383 /* First append to a fragless skb builds initial 1384 * pure zerocopy skb 1385 */ 1386 if (!skb->len) 1387 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1388 1389 if (!skb_zcopy_pure(skb)) { 1390 copy = tcp_wmem_schedule(sk, copy); 1391 if (!copy) 1392 goto wait_for_space; 1393 } 1394 1395 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1396 if (err == -EMSGSIZE || err == -EEXIST) { 1397 tcp_mark_push(tp, skb); 1398 goto new_segment; 1399 } 1400 if (err < 0) 1401 goto do_error; 1402 copy = err; 1403 } 1404 1405 if (!copied) 1406 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1407 1408 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1409 TCP_SKB_CB(skb)->end_seq += copy; 1410 tcp_skb_pcount_set(skb, 0); 1411 1412 copied += copy; 1413 if (!msg_data_left(msg)) { 1414 if (unlikely(flags & MSG_EOR)) 1415 TCP_SKB_CB(skb)->eor = 1; 1416 goto out; 1417 } 1418 1419 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1420 continue; 1421 1422 if (forced_push(tp)) { 1423 tcp_mark_push(tp, skb); 1424 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1425 } else if (skb == tcp_send_head(sk)) 1426 tcp_push_one(sk, mss_now); 1427 continue; 1428 1429 wait_for_space: 1430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1431 if (copied) 1432 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1433 TCP_NAGLE_PUSH, size_goal); 1434 1435 err = sk_stream_wait_memory(sk, &timeo); 1436 if (err != 0) 1437 goto do_error; 1438 1439 mss_now = tcp_send_mss(sk, &size_goal, flags); 1440 } 1441 1442 out: 1443 if (copied) { 1444 tcp_tx_timestamp(sk, sockc.tsflags); 1445 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1446 } 1447 out_nopush: 1448 net_zcopy_put(uarg); 1449 return copied + copied_syn; 1450 1451 do_error: 1452 tcp_remove_empty_skb(sk); 1453 1454 if (copied + copied_syn) 1455 goto out; 1456 out_err: 1457 net_zcopy_put_abort(uarg, true); 1458 err = sk_stream_error(sk, flags, err); 1459 /* make sure we wake any epoll edge trigger waiter */ 1460 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1461 sk->sk_write_space(sk); 1462 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1463 } 1464 return err; 1465 } 1466 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1467 1468 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1469 { 1470 int ret; 1471 1472 lock_sock(sk); 1473 ret = tcp_sendmsg_locked(sk, msg, size); 1474 release_sock(sk); 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL(tcp_sendmsg); 1479 1480 /* 1481 * Handle reading urgent data. BSD has very simple semantics for 1482 * this, no blocking and very strange errors 8) 1483 */ 1484 1485 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1486 { 1487 struct tcp_sock *tp = tcp_sk(sk); 1488 1489 /* No URG data to read. */ 1490 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1491 tp->urg_data == TCP_URG_READ) 1492 return -EINVAL; /* Yes this is right ! */ 1493 1494 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1495 return -ENOTCONN; 1496 1497 if (tp->urg_data & TCP_URG_VALID) { 1498 int err = 0; 1499 char c = tp->urg_data; 1500 1501 if (!(flags & MSG_PEEK)) 1502 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1503 1504 /* Read urgent data. */ 1505 msg->msg_flags |= MSG_OOB; 1506 1507 if (len > 0) { 1508 if (!(flags & MSG_TRUNC)) 1509 err = memcpy_to_msg(msg, &c, 1); 1510 len = 1; 1511 } else 1512 msg->msg_flags |= MSG_TRUNC; 1513 1514 return err ? -EFAULT : len; 1515 } 1516 1517 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1518 return 0; 1519 1520 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1521 * the available implementations agree in this case: 1522 * this call should never block, independent of the 1523 * blocking state of the socket. 1524 * Mike <pall@rz.uni-karlsruhe.de> 1525 */ 1526 return -EAGAIN; 1527 } 1528 1529 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1530 { 1531 struct sk_buff *skb; 1532 int copied = 0, err = 0; 1533 1534 /* XXX -- need to support SO_PEEK_OFF */ 1535 1536 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1537 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1538 if (err) 1539 return err; 1540 copied += skb->len; 1541 } 1542 1543 skb_queue_walk(&sk->sk_write_queue, skb) { 1544 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1545 if (err) 1546 break; 1547 1548 copied += skb->len; 1549 } 1550 1551 return err ?: copied; 1552 } 1553 1554 /* Clean up the receive buffer for full frames taken by the user, 1555 * then send an ACK if necessary. COPIED is the number of bytes 1556 * tcp_recvmsg has given to the user so far, it speeds up the 1557 * calculation of whether or not we must ACK for the sake of 1558 * a window update. 1559 */ 1560 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1561 { 1562 struct tcp_sock *tp = tcp_sk(sk); 1563 bool time_to_ack = false; 1564 1565 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1566 1567 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1568 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1569 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1570 1571 if (inet_csk_ack_scheduled(sk)) { 1572 const struct inet_connection_sock *icsk = inet_csk(sk); 1573 1574 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1575 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1576 /* 1577 * If this read emptied read buffer, we send ACK, if 1578 * connection is not bidirectional, user drained 1579 * receive buffer and there was a small segment 1580 * in queue. 1581 */ 1582 (copied > 0 && 1583 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1584 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1585 !inet_csk_in_pingpong_mode(sk))) && 1586 !atomic_read(&sk->sk_rmem_alloc))) 1587 time_to_ack = true; 1588 } 1589 1590 /* We send an ACK if we can now advertise a non-zero window 1591 * which has been raised "significantly". 1592 * 1593 * Even if window raised up to infinity, do not send window open ACK 1594 * in states, where we will not receive more. It is useless. 1595 */ 1596 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1597 __u32 rcv_window_now = tcp_receive_window(tp); 1598 1599 /* Optimize, __tcp_select_window() is not cheap. */ 1600 if (2*rcv_window_now <= tp->window_clamp) { 1601 __u32 new_window = __tcp_select_window(sk); 1602 1603 /* Send ACK now, if this read freed lots of space 1604 * in our buffer. Certainly, new_window is new window. 1605 * We can advertise it now, if it is not less than current one. 1606 * "Lots" means "at least twice" here. 1607 */ 1608 if (new_window && new_window >= 2 * rcv_window_now) 1609 time_to_ack = true; 1610 } 1611 } 1612 if (time_to_ack) 1613 tcp_send_ack(sk); 1614 } 1615 1616 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1617 { 1618 __skb_unlink(skb, &sk->sk_receive_queue); 1619 if (likely(skb->destructor == sock_rfree)) { 1620 sock_rfree(skb); 1621 skb->destructor = NULL; 1622 skb->sk = NULL; 1623 return skb_attempt_defer_free(skb); 1624 } 1625 __kfree_skb(skb); 1626 } 1627 1628 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1629 { 1630 struct sk_buff *skb; 1631 u32 offset; 1632 1633 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1634 offset = seq - TCP_SKB_CB(skb)->seq; 1635 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1636 pr_err_once("%s: found a SYN, please report !\n", __func__); 1637 offset--; 1638 } 1639 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1640 *off = offset; 1641 return skb; 1642 } 1643 /* This looks weird, but this can happen if TCP collapsing 1644 * splitted a fat GRO packet, while we released socket lock 1645 * in skb_splice_bits() 1646 */ 1647 tcp_eat_recv_skb(sk, skb); 1648 } 1649 return NULL; 1650 } 1651 1652 /* 1653 * This routine provides an alternative to tcp_recvmsg() for routines 1654 * that would like to handle copying from skbuffs directly in 'sendfile' 1655 * fashion. 1656 * Note: 1657 * - It is assumed that the socket was locked by the caller. 1658 * - The routine does not block. 1659 * - At present, there is no support for reading OOB data 1660 * or for 'peeking' the socket using this routine 1661 * (although both would be easy to implement). 1662 */ 1663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1664 sk_read_actor_t recv_actor) 1665 { 1666 struct sk_buff *skb; 1667 struct tcp_sock *tp = tcp_sk(sk); 1668 u32 seq = tp->copied_seq; 1669 u32 offset; 1670 int copied = 0; 1671 1672 if (sk->sk_state == TCP_LISTEN) 1673 return -ENOTCONN; 1674 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1675 if (offset < skb->len) { 1676 int used; 1677 size_t len; 1678 1679 len = skb->len - offset; 1680 /* Stop reading if we hit a patch of urgent data */ 1681 if (unlikely(tp->urg_data)) { 1682 u32 urg_offset = tp->urg_seq - seq; 1683 if (urg_offset < len) 1684 len = urg_offset; 1685 if (!len) 1686 break; 1687 } 1688 used = recv_actor(desc, skb, offset, len); 1689 if (used <= 0) { 1690 if (!copied) 1691 copied = used; 1692 break; 1693 } 1694 if (WARN_ON_ONCE(used > len)) 1695 used = len; 1696 seq += used; 1697 copied += used; 1698 offset += used; 1699 1700 /* If recv_actor drops the lock (e.g. TCP splice 1701 * receive) the skb pointer might be invalid when 1702 * getting here: tcp_collapse might have deleted it 1703 * while aggregating skbs from the socket queue. 1704 */ 1705 skb = tcp_recv_skb(sk, seq - 1, &offset); 1706 if (!skb) 1707 break; 1708 /* TCP coalescing might have appended data to the skb. 1709 * Try to splice more frags 1710 */ 1711 if (offset + 1 != skb->len) 1712 continue; 1713 } 1714 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1715 tcp_eat_recv_skb(sk, skb); 1716 ++seq; 1717 break; 1718 } 1719 tcp_eat_recv_skb(sk, skb); 1720 if (!desc->count) 1721 break; 1722 WRITE_ONCE(tp->copied_seq, seq); 1723 } 1724 WRITE_ONCE(tp->copied_seq, seq); 1725 1726 tcp_rcv_space_adjust(sk); 1727 1728 /* Clean up data we have read: This will do ACK frames. */ 1729 if (copied > 0) { 1730 tcp_recv_skb(sk, seq, &offset); 1731 tcp_cleanup_rbuf(sk, copied); 1732 } 1733 return copied; 1734 } 1735 EXPORT_SYMBOL(tcp_read_sock); 1736 1737 int tcp_peek_len(struct socket *sock) 1738 { 1739 return tcp_inq(sock->sk); 1740 } 1741 EXPORT_SYMBOL(tcp_peek_len); 1742 1743 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1744 int tcp_set_rcvlowat(struct sock *sk, int val) 1745 { 1746 int cap; 1747 1748 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1749 cap = sk->sk_rcvbuf >> 1; 1750 else 1751 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1752 val = min(val, cap); 1753 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1754 1755 /* Check if we need to signal EPOLLIN right now */ 1756 tcp_data_ready(sk); 1757 1758 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1759 return 0; 1760 1761 val <<= 1; 1762 if (val > sk->sk_rcvbuf) { 1763 WRITE_ONCE(sk->sk_rcvbuf, val); 1764 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1765 } 1766 return 0; 1767 } 1768 EXPORT_SYMBOL(tcp_set_rcvlowat); 1769 1770 void tcp_update_recv_tstamps(struct sk_buff *skb, 1771 struct scm_timestamping_internal *tss) 1772 { 1773 if (skb->tstamp) 1774 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1775 else 1776 tss->ts[0] = (struct timespec64) {0}; 1777 1778 if (skb_hwtstamps(skb)->hwtstamp) 1779 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1780 else 1781 tss->ts[2] = (struct timespec64) {0}; 1782 } 1783 1784 #ifdef CONFIG_MMU 1785 static const struct vm_operations_struct tcp_vm_ops = { 1786 }; 1787 1788 int tcp_mmap(struct file *file, struct socket *sock, 1789 struct vm_area_struct *vma) 1790 { 1791 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1792 return -EPERM; 1793 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1794 1795 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1796 vma->vm_flags |= VM_MIXEDMAP; 1797 1798 vma->vm_ops = &tcp_vm_ops; 1799 return 0; 1800 } 1801 EXPORT_SYMBOL(tcp_mmap); 1802 1803 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1804 u32 *offset_frag) 1805 { 1806 skb_frag_t *frag; 1807 1808 if (unlikely(offset_skb >= skb->len)) 1809 return NULL; 1810 1811 offset_skb -= skb_headlen(skb); 1812 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1813 return NULL; 1814 1815 frag = skb_shinfo(skb)->frags; 1816 while (offset_skb) { 1817 if (skb_frag_size(frag) > offset_skb) { 1818 *offset_frag = offset_skb; 1819 return frag; 1820 } 1821 offset_skb -= skb_frag_size(frag); 1822 ++frag; 1823 } 1824 *offset_frag = 0; 1825 return frag; 1826 } 1827 1828 static bool can_map_frag(const skb_frag_t *frag) 1829 { 1830 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1831 } 1832 1833 static int find_next_mappable_frag(const skb_frag_t *frag, 1834 int remaining_in_skb) 1835 { 1836 int offset = 0; 1837 1838 if (likely(can_map_frag(frag))) 1839 return 0; 1840 1841 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1842 offset += skb_frag_size(frag); 1843 ++frag; 1844 } 1845 return offset; 1846 } 1847 1848 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1849 struct tcp_zerocopy_receive *zc, 1850 struct sk_buff *skb, u32 offset) 1851 { 1852 u32 frag_offset, partial_frag_remainder = 0; 1853 int mappable_offset; 1854 skb_frag_t *frag; 1855 1856 /* worst case: skip to next skb. try to improve on this case below */ 1857 zc->recv_skip_hint = skb->len - offset; 1858 1859 /* Find the frag containing this offset (and how far into that frag) */ 1860 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1861 if (!frag) 1862 return; 1863 1864 if (frag_offset) { 1865 struct skb_shared_info *info = skb_shinfo(skb); 1866 1867 /* We read part of the last frag, must recvmsg() rest of skb. */ 1868 if (frag == &info->frags[info->nr_frags - 1]) 1869 return; 1870 1871 /* Else, we must at least read the remainder in this frag. */ 1872 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1873 zc->recv_skip_hint -= partial_frag_remainder; 1874 ++frag; 1875 } 1876 1877 /* partial_frag_remainder: If part way through a frag, must read rest. 1878 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1879 * in partial_frag_remainder. 1880 */ 1881 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1882 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1883 } 1884 1885 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1886 int flags, struct scm_timestamping_internal *tss, 1887 int *cmsg_flags); 1888 static int receive_fallback_to_copy(struct sock *sk, 1889 struct tcp_zerocopy_receive *zc, int inq, 1890 struct scm_timestamping_internal *tss) 1891 { 1892 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1893 struct msghdr msg = {}; 1894 struct iovec iov; 1895 int err; 1896 1897 zc->length = 0; 1898 zc->recv_skip_hint = 0; 1899 1900 if (copy_address != zc->copybuf_address) 1901 return -EINVAL; 1902 1903 err = import_single_range(READ, (void __user *)copy_address, 1904 inq, &iov, &msg.msg_iter); 1905 if (err) 1906 return err; 1907 1908 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1909 tss, &zc->msg_flags); 1910 if (err < 0) 1911 return err; 1912 1913 zc->copybuf_len = err; 1914 if (likely(zc->copybuf_len)) { 1915 struct sk_buff *skb; 1916 u32 offset; 1917 1918 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1919 if (skb) 1920 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1921 } 1922 return 0; 1923 } 1924 1925 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1926 struct sk_buff *skb, u32 copylen, 1927 u32 *offset, u32 *seq) 1928 { 1929 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1930 struct msghdr msg = {}; 1931 struct iovec iov; 1932 int err; 1933 1934 if (copy_address != zc->copybuf_address) 1935 return -EINVAL; 1936 1937 err = import_single_range(READ, (void __user *)copy_address, 1938 copylen, &iov, &msg.msg_iter); 1939 if (err) 1940 return err; 1941 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1942 if (err) 1943 return err; 1944 zc->recv_skip_hint -= copylen; 1945 *offset += copylen; 1946 *seq += copylen; 1947 return (__s32)copylen; 1948 } 1949 1950 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1951 struct sock *sk, 1952 struct sk_buff *skb, 1953 u32 *seq, 1954 s32 copybuf_len, 1955 struct scm_timestamping_internal *tss) 1956 { 1957 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1958 1959 if (!copylen) 1960 return 0; 1961 /* skb is null if inq < PAGE_SIZE. */ 1962 if (skb) { 1963 offset = *seq - TCP_SKB_CB(skb)->seq; 1964 } else { 1965 skb = tcp_recv_skb(sk, *seq, &offset); 1966 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1967 tcp_update_recv_tstamps(skb, tss); 1968 zc->msg_flags |= TCP_CMSG_TS; 1969 } 1970 } 1971 1972 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1973 seq); 1974 return zc->copybuf_len < 0 ? 0 : copylen; 1975 } 1976 1977 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1978 struct page **pending_pages, 1979 unsigned long pages_remaining, 1980 unsigned long *address, 1981 u32 *length, 1982 u32 *seq, 1983 struct tcp_zerocopy_receive *zc, 1984 u32 total_bytes_to_map, 1985 int err) 1986 { 1987 /* At least one page did not map. Try zapping if we skipped earlier. */ 1988 if (err == -EBUSY && 1989 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1990 u32 maybe_zap_len; 1991 1992 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1993 *length + /* Mapped or pending */ 1994 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1995 zap_page_range(vma, *address, maybe_zap_len); 1996 err = 0; 1997 } 1998 1999 if (!err) { 2000 unsigned long leftover_pages = pages_remaining; 2001 int bytes_mapped; 2002 2003 /* We called zap_page_range, try to reinsert. */ 2004 err = vm_insert_pages(vma, *address, 2005 pending_pages, 2006 &pages_remaining); 2007 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2008 *seq += bytes_mapped; 2009 *address += bytes_mapped; 2010 } 2011 if (err) { 2012 /* Either we were unable to zap, OR we zapped, retried an 2013 * insert, and still had an issue. Either ways, pages_remaining 2014 * is the number of pages we were unable to map, and we unroll 2015 * some state we speculatively touched before. 2016 */ 2017 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2018 2019 *length -= bytes_not_mapped; 2020 zc->recv_skip_hint += bytes_not_mapped; 2021 } 2022 return err; 2023 } 2024 2025 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2026 struct page **pages, 2027 unsigned int pages_to_map, 2028 unsigned long *address, 2029 u32 *length, 2030 u32 *seq, 2031 struct tcp_zerocopy_receive *zc, 2032 u32 total_bytes_to_map) 2033 { 2034 unsigned long pages_remaining = pages_to_map; 2035 unsigned int pages_mapped; 2036 unsigned int bytes_mapped; 2037 int err; 2038 2039 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2040 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2041 bytes_mapped = PAGE_SIZE * pages_mapped; 2042 /* Even if vm_insert_pages fails, it may have partially succeeded in 2043 * mapping (some but not all of the pages). 2044 */ 2045 *seq += bytes_mapped; 2046 *address += bytes_mapped; 2047 2048 if (likely(!err)) 2049 return 0; 2050 2051 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2052 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2053 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2054 err); 2055 } 2056 2057 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2058 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2059 struct tcp_zerocopy_receive *zc, 2060 struct scm_timestamping_internal *tss) 2061 { 2062 unsigned long msg_control_addr; 2063 struct msghdr cmsg_dummy; 2064 2065 msg_control_addr = (unsigned long)zc->msg_control; 2066 cmsg_dummy.msg_control = (void *)msg_control_addr; 2067 cmsg_dummy.msg_controllen = 2068 (__kernel_size_t)zc->msg_controllen; 2069 cmsg_dummy.msg_flags = in_compat_syscall() 2070 ? MSG_CMSG_COMPAT : 0; 2071 cmsg_dummy.msg_control_is_user = true; 2072 zc->msg_flags = 0; 2073 if (zc->msg_control == msg_control_addr && 2074 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2075 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2076 zc->msg_control = (__u64) 2077 ((uintptr_t)cmsg_dummy.msg_control); 2078 zc->msg_controllen = 2079 (__u64)cmsg_dummy.msg_controllen; 2080 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2081 } 2082 } 2083 2084 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2085 static int tcp_zerocopy_receive(struct sock *sk, 2086 struct tcp_zerocopy_receive *zc, 2087 struct scm_timestamping_internal *tss) 2088 { 2089 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2090 unsigned long address = (unsigned long)zc->address; 2091 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2092 s32 copybuf_len = zc->copybuf_len; 2093 struct tcp_sock *tp = tcp_sk(sk); 2094 const skb_frag_t *frags = NULL; 2095 unsigned int pages_to_map = 0; 2096 struct vm_area_struct *vma; 2097 struct sk_buff *skb = NULL; 2098 u32 seq = tp->copied_seq; 2099 u32 total_bytes_to_map; 2100 int inq = tcp_inq(sk); 2101 int ret; 2102 2103 zc->copybuf_len = 0; 2104 zc->msg_flags = 0; 2105 2106 if (address & (PAGE_SIZE - 1) || address != zc->address) 2107 return -EINVAL; 2108 2109 if (sk->sk_state == TCP_LISTEN) 2110 return -ENOTCONN; 2111 2112 sock_rps_record_flow(sk); 2113 2114 if (inq && inq <= copybuf_len) 2115 return receive_fallback_to_copy(sk, zc, inq, tss); 2116 2117 if (inq < PAGE_SIZE) { 2118 zc->length = 0; 2119 zc->recv_skip_hint = inq; 2120 if (!inq && sock_flag(sk, SOCK_DONE)) 2121 return -EIO; 2122 return 0; 2123 } 2124 2125 mmap_read_lock(current->mm); 2126 2127 vma = vma_lookup(current->mm, address); 2128 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2129 mmap_read_unlock(current->mm); 2130 return -EINVAL; 2131 } 2132 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2133 avail_len = min_t(u32, vma_len, inq); 2134 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2135 if (total_bytes_to_map) { 2136 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2137 zap_page_range(vma, address, total_bytes_to_map); 2138 zc->length = total_bytes_to_map; 2139 zc->recv_skip_hint = 0; 2140 } else { 2141 zc->length = avail_len; 2142 zc->recv_skip_hint = avail_len; 2143 } 2144 ret = 0; 2145 while (length + PAGE_SIZE <= zc->length) { 2146 int mappable_offset; 2147 struct page *page; 2148 2149 if (zc->recv_skip_hint < PAGE_SIZE) { 2150 u32 offset_frag; 2151 2152 if (skb) { 2153 if (zc->recv_skip_hint > 0) 2154 break; 2155 skb = skb->next; 2156 offset = seq - TCP_SKB_CB(skb)->seq; 2157 } else { 2158 skb = tcp_recv_skb(sk, seq, &offset); 2159 } 2160 2161 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2162 tcp_update_recv_tstamps(skb, tss); 2163 zc->msg_flags |= TCP_CMSG_TS; 2164 } 2165 zc->recv_skip_hint = skb->len - offset; 2166 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2167 if (!frags || offset_frag) 2168 break; 2169 } 2170 2171 mappable_offset = find_next_mappable_frag(frags, 2172 zc->recv_skip_hint); 2173 if (mappable_offset) { 2174 zc->recv_skip_hint = mappable_offset; 2175 break; 2176 } 2177 page = skb_frag_page(frags); 2178 prefetchw(page); 2179 pages[pages_to_map++] = page; 2180 length += PAGE_SIZE; 2181 zc->recv_skip_hint -= PAGE_SIZE; 2182 frags++; 2183 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2184 zc->recv_skip_hint < PAGE_SIZE) { 2185 /* Either full batch, or we're about to go to next skb 2186 * (and we cannot unroll failed ops across skbs). 2187 */ 2188 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2189 pages_to_map, 2190 &address, &length, 2191 &seq, zc, 2192 total_bytes_to_map); 2193 if (ret) 2194 goto out; 2195 pages_to_map = 0; 2196 } 2197 } 2198 if (pages_to_map) { 2199 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2200 &address, &length, &seq, 2201 zc, total_bytes_to_map); 2202 } 2203 out: 2204 mmap_read_unlock(current->mm); 2205 /* Try to copy straggler data. */ 2206 if (!ret) 2207 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2208 2209 if (length + copylen) { 2210 WRITE_ONCE(tp->copied_seq, seq); 2211 tcp_rcv_space_adjust(sk); 2212 2213 /* Clean up data we have read: This will do ACK frames. */ 2214 tcp_recv_skb(sk, seq, &offset); 2215 tcp_cleanup_rbuf(sk, length + copylen); 2216 ret = 0; 2217 if (length == zc->length) 2218 zc->recv_skip_hint = 0; 2219 } else { 2220 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2221 ret = -EIO; 2222 } 2223 zc->length = length; 2224 return ret; 2225 } 2226 #endif 2227 2228 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2229 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2230 struct scm_timestamping_internal *tss) 2231 { 2232 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2233 bool has_timestamping = false; 2234 2235 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2236 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2237 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2238 if (new_tstamp) { 2239 struct __kernel_timespec kts = { 2240 .tv_sec = tss->ts[0].tv_sec, 2241 .tv_nsec = tss->ts[0].tv_nsec, 2242 }; 2243 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2244 sizeof(kts), &kts); 2245 } else { 2246 struct __kernel_old_timespec ts_old = { 2247 .tv_sec = tss->ts[0].tv_sec, 2248 .tv_nsec = tss->ts[0].tv_nsec, 2249 }; 2250 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2251 sizeof(ts_old), &ts_old); 2252 } 2253 } else { 2254 if (new_tstamp) { 2255 struct __kernel_sock_timeval stv = { 2256 .tv_sec = tss->ts[0].tv_sec, 2257 .tv_usec = tss->ts[0].tv_nsec / 1000, 2258 }; 2259 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2260 sizeof(stv), &stv); 2261 } else { 2262 struct __kernel_old_timeval tv = { 2263 .tv_sec = tss->ts[0].tv_sec, 2264 .tv_usec = tss->ts[0].tv_nsec / 1000, 2265 }; 2266 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2267 sizeof(tv), &tv); 2268 } 2269 } 2270 } 2271 2272 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2273 has_timestamping = true; 2274 else 2275 tss->ts[0] = (struct timespec64) {0}; 2276 } 2277 2278 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2279 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2280 has_timestamping = true; 2281 else 2282 tss->ts[2] = (struct timespec64) {0}; 2283 } 2284 2285 if (has_timestamping) { 2286 tss->ts[1] = (struct timespec64) {0}; 2287 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2288 put_cmsg_scm_timestamping64(msg, tss); 2289 else 2290 put_cmsg_scm_timestamping(msg, tss); 2291 } 2292 } 2293 2294 static int tcp_inq_hint(struct sock *sk) 2295 { 2296 const struct tcp_sock *tp = tcp_sk(sk); 2297 u32 copied_seq = READ_ONCE(tp->copied_seq); 2298 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2299 int inq; 2300 2301 inq = rcv_nxt - copied_seq; 2302 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2303 lock_sock(sk); 2304 inq = tp->rcv_nxt - tp->copied_seq; 2305 release_sock(sk); 2306 } 2307 /* After receiving a FIN, tell the user-space to continue reading 2308 * by returning a non-zero inq. 2309 */ 2310 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2311 inq = 1; 2312 return inq; 2313 } 2314 2315 /* 2316 * This routine copies from a sock struct into the user buffer. 2317 * 2318 * Technical note: in 2.3 we work on _locked_ socket, so that 2319 * tricks with *seq access order and skb->users are not required. 2320 * Probably, code can be easily improved even more. 2321 */ 2322 2323 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2324 int flags, struct scm_timestamping_internal *tss, 2325 int *cmsg_flags) 2326 { 2327 struct tcp_sock *tp = tcp_sk(sk); 2328 int copied = 0; 2329 u32 peek_seq; 2330 u32 *seq; 2331 unsigned long used; 2332 int err; 2333 int target; /* Read at least this many bytes */ 2334 long timeo; 2335 struct sk_buff *skb, *last; 2336 u32 urg_hole = 0; 2337 2338 err = -ENOTCONN; 2339 if (sk->sk_state == TCP_LISTEN) 2340 goto out; 2341 2342 if (tp->recvmsg_inq) { 2343 *cmsg_flags = TCP_CMSG_INQ; 2344 msg->msg_get_inq = 1; 2345 } 2346 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2347 2348 /* Urgent data needs to be handled specially. */ 2349 if (flags & MSG_OOB) 2350 goto recv_urg; 2351 2352 if (unlikely(tp->repair)) { 2353 err = -EPERM; 2354 if (!(flags & MSG_PEEK)) 2355 goto out; 2356 2357 if (tp->repair_queue == TCP_SEND_QUEUE) 2358 goto recv_sndq; 2359 2360 err = -EINVAL; 2361 if (tp->repair_queue == TCP_NO_QUEUE) 2362 goto out; 2363 2364 /* 'common' recv queue MSG_PEEK-ing */ 2365 } 2366 2367 seq = &tp->copied_seq; 2368 if (flags & MSG_PEEK) { 2369 peek_seq = tp->copied_seq; 2370 seq = &peek_seq; 2371 } 2372 2373 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2374 2375 do { 2376 u32 offset; 2377 2378 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2379 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2380 if (copied) 2381 break; 2382 if (signal_pending(current)) { 2383 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2384 break; 2385 } 2386 } 2387 2388 /* Next get a buffer. */ 2389 2390 last = skb_peek_tail(&sk->sk_receive_queue); 2391 skb_queue_walk(&sk->sk_receive_queue, skb) { 2392 last = skb; 2393 /* Now that we have two receive queues this 2394 * shouldn't happen. 2395 */ 2396 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2397 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2398 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2399 flags)) 2400 break; 2401 2402 offset = *seq - TCP_SKB_CB(skb)->seq; 2403 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2404 pr_err_once("%s: found a SYN, please report !\n", __func__); 2405 offset--; 2406 } 2407 if (offset < skb->len) 2408 goto found_ok_skb; 2409 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2410 goto found_fin_ok; 2411 WARN(!(flags & MSG_PEEK), 2412 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2413 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2414 } 2415 2416 /* Well, if we have backlog, try to process it now yet. */ 2417 2418 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2419 break; 2420 2421 if (copied) { 2422 if (!timeo || 2423 sk->sk_err || 2424 sk->sk_state == TCP_CLOSE || 2425 (sk->sk_shutdown & RCV_SHUTDOWN) || 2426 signal_pending(current)) 2427 break; 2428 } else { 2429 if (sock_flag(sk, SOCK_DONE)) 2430 break; 2431 2432 if (sk->sk_err) { 2433 copied = sock_error(sk); 2434 break; 2435 } 2436 2437 if (sk->sk_shutdown & RCV_SHUTDOWN) 2438 break; 2439 2440 if (sk->sk_state == TCP_CLOSE) { 2441 /* This occurs when user tries to read 2442 * from never connected socket. 2443 */ 2444 copied = -ENOTCONN; 2445 break; 2446 } 2447 2448 if (!timeo) { 2449 copied = -EAGAIN; 2450 break; 2451 } 2452 2453 if (signal_pending(current)) { 2454 copied = sock_intr_errno(timeo); 2455 break; 2456 } 2457 } 2458 2459 if (copied >= target) { 2460 /* Do not sleep, just process backlog. */ 2461 __sk_flush_backlog(sk); 2462 } else { 2463 tcp_cleanup_rbuf(sk, copied); 2464 sk_wait_data(sk, &timeo, last); 2465 } 2466 2467 if ((flags & MSG_PEEK) && 2468 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2469 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2470 current->comm, 2471 task_pid_nr(current)); 2472 peek_seq = tp->copied_seq; 2473 } 2474 continue; 2475 2476 found_ok_skb: 2477 /* Ok so how much can we use? */ 2478 used = skb->len - offset; 2479 if (len < used) 2480 used = len; 2481 2482 /* Do we have urgent data here? */ 2483 if (unlikely(tp->urg_data)) { 2484 u32 urg_offset = tp->urg_seq - *seq; 2485 if (urg_offset < used) { 2486 if (!urg_offset) { 2487 if (!sock_flag(sk, SOCK_URGINLINE)) { 2488 WRITE_ONCE(*seq, *seq + 1); 2489 urg_hole++; 2490 offset++; 2491 used--; 2492 if (!used) 2493 goto skip_copy; 2494 } 2495 } else 2496 used = urg_offset; 2497 } 2498 } 2499 2500 if (!(flags & MSG_TRUNC)) { 2501 err = skb_copy_datagram_msg(skb, offset, msg, used); 2502 if (err) { 2503 /* Exception. Bailout! */ 2504 if (!copied) 2505 copied = -EFAULT; 2506 break; 2507 } 2508 } 2509 2510 WRITE_ONCE(*seq, *seq + used); 2511 copied += used; 2512 len -= used; 2513 2514 tcp_rcv_space_adjust(sk); 2515 2516 skip_copy: 2517 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2518 WRITE_ONCE(tp->urg_data, 0); 2519 tcp_fast_path_check(sk); 2520 } 2521 2522 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2523 tcp_update_recv_tstamps(skb, tss); 2524 *cmsg_flags |= TCP_CMSG_TS; 2525 } 2526 2527 if (used + offset < skb->len) 2528 continue; 2529 2530 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2531 goto found_fin_ok; 2532 if (!(flags & MSG_PEEK)) 2533 tcp_eat_recv_skb(sk, skb); 2534 continue; 2535 2536 found_fin_ok: 2537 /* Process the FIN. */ 2538 WRITE_ONCE(*seq, *seq + 1); 2539 if (!(flags & MSG_PEEK)) 2540 tcp_eat_recv_skb(sk, skb); 2541 break; 2542 } while (len > 0); 2543 2544 /* According to UNIX98, msg_name/msg_namelen are ignored 2545 * on connected socket. I was just happy when found this 8) --ANK 2546 */ 2547 2548 /* Clean up data we have read: This will do ACK frames. */ 2549 tcp_cleanup_rbuf(sk, copied); 2550 return copied; 2551 2552 out: 2553 return err; 2554 2555 recv_urg: 2556 err = tcp_recv_urg(sk, msg, len, flags); 2557 goto out; 2558 2559 recv_sndq: 2560 err = tcp_peek_sndq(sk, msg, len); 2561 goto out; 2562 } 2563 2564 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2565 int *addr_len) 2566 { 2567 int cmsg_flags = 0, ret; 2568 struct scm_timestamping_internal tss; 2569 2570 if (unlikely(flags & MSG_ERRQUEUE)) 2571 return inet_recv_error(sk, msg, len, addr_len); 2572 2573 if (sk_can_busy_loop(sk) && 2574 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2575 sk->sk_state == TCP_ESTABLISHED) 2576 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2577 2578 lock_sock(sk); 2579 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2580 release_sock(sk); 2581 2582 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2583 if (cmsg_flags & TCP_CMSG_TS) 2584 tcp_recv_timestamp(msg, sk, &tss); 2585 if (msg->msg_get_inq) { 2586 msg->msg_inq = tcp_inq_hint(sk); 2587 if (cmsg_flags & TCP_CMSG_INQ) 2588 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2589 sizeof(msg->msg_inq), &msg->msg_inq); 2590 } 2591 } 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(tcp_recvmsg); 2595 2596 void tcp_set_state(struct sock *sk, int state) 2597 { 2598 int oldstate = sk->sk_state; 2599 2600 /* We defined a new enum for TCP states that are exported in BPF 2601 * so as not force the internal TCP states to be frozen. The 2602 * following checks will detect if an internal state value ever 2603 * differs from the BPF value. If this ever happens, then we will 2604 * need to remap the internal value to the BPF value before calling 2605 * tcp_call_bpf_2arg. 2606 */ 2607 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2608 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2609 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2610 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2611 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2612 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2613 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2614 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2615 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2616 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2617 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2618 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2619 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2620 2621 /* bpf uapi header bpf.h defines an anonymous enum with values 2622 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2623 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2624 * But clang built vmlinux does not have this enum in DWARF 2625 * since clang removes the above code before generating IR/debuginfo. 2626 * Let us explicitly emit the type debuginfo to ensure the 2627 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2628 * regardless of which compiler is used. 2629 */ 2630 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2631 2632 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2633 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2634 2635 switch (state) { 2636 case TCP_ESTABLISHED: 2637 if (oldstate != TCP_ESTABLISHED) 2638 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2639 break; 2640 2641 case TCP_CLOSE: 2642 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2643 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2644 2645 sk->sk_prot->unhash(sk); 2646 if (inet_csk(sk)->icsk_bind_hash && 2647 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2648 inet_put_port(sk); 2649 fallthrough; 2650 default: 2651 if (oldstate == TCP_ESTABLISHED) 2652 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2653 } 2654 2655 /* Change state AFTER socket is unhashed to avoid closed 2656 * socket sitting in hash tables. 2657 */ 2658 inet_sk_state_store(sk, state); 2659 } 2660 EXPORT_SYMBOL_GPL(tcp_set_state); 2661 2662 /* 2663 * State processing on a close. This implements the state shift for 2664 * sending our FIN frame. Note that we only send a FIN for some 2665 * states. A shutdown() may have already sent the FIN, or we may be 2666 * closed. 2667 */ 2668 2669 static const unsigned char new_state[16] = { 2670 /* current state: new state: action: */ 2671 [0 /* (Invalid) */] = TCP_CLOSE, 2672 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2673 [TCP_SYN_SENT] = TCP_CLOSE, 2674 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2675 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2676 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2677 [TCP_TIME_WAIT] = TCP_CLOSE, 2678 [TCP_CLOSE] = TCP_CLOSE, 2679 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2680 [TCP_LAST_ACK] = TCP_LAST_ACK, 2681 [TCP_LISTEN] = TCP_CLOSE, 2682 [TCP_CLOSING] = TCP_CLOSING, 2683 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2684 }; 2685 2686 static int tcp_close_state(struct sock *sk) 2687 { 2688 int next = (int)new_state[sk->sk_state]; 2689 int ns = next & TCP_STATE_MASK; 2690 2691 tcp_set_state(sk, ns); 2692 2693 return next & TCP_ACTION_FIN; 2694 } 2695 2696 /* 2697 * Shutdown the sending side of a connection. Much like close except 2698 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2699 */ 2700 2701 void tcp_shutdown(struct sock *sk, int how) 2702 { 2703 /* We need to grab some memory, and put together a FIN, 2704 * and then put it into the queue to be sent. 2705 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2706 */ 2707 if (!(how & SEND_SHUTDOWN)) 2708 return; 2709 2710 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2711 if ((1 << sk->sk_state) & 2712 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2713 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2714 /* Clear out any half completed packets. FIN if needed. */ 2715 if (tcp_close_state(sk)) 2716 tcp_send_fin(sk); 2717 } 2718 } 2719 EXPORT_SYMBOL(tcp_shutdown); 2720 2721 int tcp_orphan_count_sum(void) 2722 { 2723 int i, total = 0; 2724 2725 for_each_possible_cpu(i) 2726 total += per_cpu(tcp_orphan_count, i); 2727 2728 return max(total, 0); 2729 } 2730 2731 static int tcp_orphan_cache; 2732 static struct timer_list tcp_orphan_timer; 2733 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2734 2735 static void tcp_orphan_update(struct timer_list *unused) 2736 { 2737 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2738 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2739 } 2740 2741 static bool tcp_too_many_orphans(int shift) 2742 { 2743 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2744 } 2745 2746 bool tcp_check_oom(struct sock *sk, int shift) 2747 { 2748 bool too_many_orphans, out_of_socket_memory; 2749 2750 too_many_orphans = tcp_too_many_orphans(shift); 2751 out_of_socket_memory = tcp_out_of_memory(sk); 2752 2753 if (too_many_orphans) 2754 net_info_ratelimited("too many orphaned sockets\n"); 2755 if (out_of_socket_memory) 2756 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2757 return too_many_orphans || out_of_socket_memory; 2758 } 2759 2760 void __tcp_close(struct sock *sk, long timeout) 2761 { 2762 struct sk_buff *skb; 2763 int data_was_unread = 0; 2764 int state; 2765 2766 sk->sk_shutdown = SHUTDOWN_MASK; 2767 2768 if (sk->sk_state == TCP_LISTEN) { 2769 tcp_set_state(sk, TCP_CLOSE); 2770 2771 /* Special case. */ 2772 inet_csk_listen_stop(sk); 2773 2774 goto adjudge_to_death; 2775 } 2776 2777 /* We need to flush the recv. buffs. We do this only on the 2778 * descriptor close, not protocol-sourced closes, because the 2779 * reader process may not have drained the data yet! 2780 */ 2781 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2782 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2783 2784 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2785 len--; 2786 data_was_unread += len; 2787 __kfree_skb(skb); 2788 } 2789 2790 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2791 if (sk->sk_state == TCP_CLOSE) 2792 goto adjudge_to_death; 2793 2794 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2795 * data was lost. To witness the awful effects of the old behavior of 2796 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2797 * GET in an FTP client, suspend the process, wait for the client to 2798 * advertise a zero window, then kill -9 the FTP client, wheee... 2799 * Note: timeout is always zero in such a case. 2800 */ 2801 if (unlikely(tcp_sk(sk)->repair)) { 2802 sk->sk_prot->disconnect(sk, 0); 2803 } else if (data_was_unread) { 2804 /* Unread data was tossed, zap the connection. */ 2805 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2806 tcp_set_state(sk, TCP_CLOSE); 2807 tcp_send_active_reset(sk, sk->sk_allocation); 2808 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2809 /* Check zero linger _after_ checking for unread data. */ 2810 sk->sk_prot->disconnect(sk, 0); 2811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2812 } else if (tcp_close_state(sk)) { 2813 /* We FIN if the application ate all the data before 2814 * zapping the connection. 2815 */ 2816 2817 /* RED-PEN. Formally speaking, we have broken TCP state 2818 * machine. State transitions: 2819 * 2820 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2821 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2822 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2823 * 2824 * are legal only when FIN has been sent (i.e. in window), 2825 * rather than queued out of window. Purists blame. 2826 * 2827 * F.e. "RFC state" is ESTABLISHED, 2828 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2829 * 2830 * The visible declinations are that sometimes 2831 * we enter time-wait state, when it is not required really 2832 * (harmless), do not send active resets, when they are 2833 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2834 * they look as CLOSING or LAST_ACK for Linux) 2835 * Probably, I missed some more holelets. 2836 * --ANK 2837 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2838 * in a single packet! (May consider it later but will 2839 * probably need API support or TCP_CORK SYN-ACK until 2840 * data is written and socket is closed.) 2841 */ 2842 tcp_send_fin(sk); 2843 } 2844 2845 sk_stream_wait_close(sk, timeout); 2846 2847 adjudge_to_death: 2848 state = sk->sk_state; 2849 sock_hold(sk); 2850 sock_orphan(sk); 2851 2852 local_bh_disable(); 2853 bh_lock_sock(sk); 2854 /* remove backlog if any, without releasing ownership. */ 2855 __release_sock(sk); 2856 2857 this_cpu_inc(tcp_orphan_count); 2858 2859 /* Have we already been destroyed by a softirq or backlog? */ 2860 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2861 goto out; 2862 2863 /* This is a (useful) BSD violating of the RFC. There is a 2864 * problem with TCP as specified in that the other end could 2865 * keep a socket open forever with no application left this end. 2866 * We use a 1 minute timeout (about the same as BSD) then kill 2867 * our end. If they send after that then tough - BUT: long enough 2868 * that we won't make the old 4*rto = almost no time - whoops 2869 * reset mistake. 2870 * 2871 * Nope, it was not mistake. It is really desired behaviour 2872 * f.e. on http servers, when such sockets are useless, but 2873 * consume significant resources. Let's do it with special 2874 * linger2 option. --ANK 2875 */ 2876 2877 if (sk->sk_state == TCP_FIN_WAIT2) { 2878 struct tcp_sock *tp = tcp_sk(sk); 2879 if (tp->linger2 < 0) { 2880 tcp_set_state(sk, TCP_CLOSE); 2881 tcp_send_active_reset(sk, GFP_ATOMIC); 2882 __NET_INC_STATS(sock_net(sk), 2883 LINUX_MIB_TCPABORTONLINGER); 2884 } else { 2885 const int tmo = tcp_fin_time(sk); 2886 2887 if (tmo > TCP_TIMEWAIT_LEN) { 2888 inet_csk_reset_keepalive_timer(sk, 2889 tmo - TCP_TIMEWAIT_LEN); 2890 } else { 2891 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2892 goto out; 2893 } 2894 } 2895 } 2896 if (sk->sk_state != TCP_CLOSE) { 2897 if (tcp_check_oom(sk, 0)) { 2898 tcp_set_state(sk, TCP_CLOSE); 2899 tcp_send_active_reset(sk, GFP_ATOMIC); 2900 __NET_INC_STATS(sock_net(sk), 2901 LINUX_MIB_TCPABORTONMEMORY); 2902 } else if (!check_net(sock_net(sk))) { 2903 /* Not possible to send reset; just close */ 2904 tcp_set_state(sk, TCP_CLOSE); 2905 } 2906 } 2907 2908 if (sk->sk_state == TCP_CLOSE) { 2909 struct request_sock *req; 2910 2911 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2912 lockdep_sock_is_held(sk)); 2913 /* We could get here with a non-NULL req if the socket is 2914 * aborted (e.g., closed with unread data) before 3WHS 2915 * finishes. 2916 */ 2917 if (req) 2918 reqsk_fastopen_remove(sk, req, false); 2919 inet_csk_destroy_sock(sk); 2920 } 2921 /* Otherwise, socket is reprieved until protocol close. */ 2922 2923 out: 2924 bh_unlock_sock(sk); 2925 local_bh_enable(); 2926 } 2927 2928 void tcp_close(struct sock *sk, long timeout) 2929 { 2930 lock_sock(sk); 2931 __tcp_close(sk, timeout); 2932 release_sock(sk); 2933 sock_put(sk); 2934 } 2935 EXPORT_SYMBOL(tcp_close); 2936 2937 /* These states need RST on ABORT according to RFC793 */ 2938 2939 static inline bool tcp_need_reset(int state) 2940 { 2941 return (1 << state) & 2942 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2943 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2944 } 2945 2946 static void tcp_rtx_queue_purge(struct sock *sk) 2947 { 2948 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2949 2950 tcp_sk(sk)->highest_sack = NULL; 2951 while (p) { 2952 struct sk_buff *skb = rb_to_skb(p); 2953 2954 p = rb_next(p); 2955 /* Since we are deleting whole queue, no need to 2956 * list_del(&skb->tcp_tsorted_anchor) 2957 */ 2958 tcp_rtx_queue_unlink(skb, sk); 2959 tcp_wmem_free_skb(sk, skb); 2960 } 2961 } 2962 2963 void tcp_write_queue_purge(struct sock *sk) 2964 { 2965 struct sk_buff *skb; 2966 2967 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2968 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2969 tcp_skb_tsorted_anchor_cleanup(skb); 2970 tcp_wmem_free_skb(sk, skb); 2971 } 2972 tcp_rtx_queue_purge(sk); 2973 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2974 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2975 tcp_sk(sk)->packets_out = 0; 2976 inet_csk(sk)->icsk_backoff = 0; 2977 } 2978 2979 int tcp_disconnect(struct sock *sk, int flags) 2980 { 2981 struct inet_sock *inet = inet_sk(sk); 2982 struct inet_connection_sock *icsk = inet_csk(sk); 2983 struct tcp_sock *tp = tcp_sk(sk); 2984 int old_state = sk->sk_state; 2985 u32 seq; 2986 2987 if (old_state != TCP_CLOSE) 2988 tcp_set_state(sk, TCP_CLOSE); 2989 2990 /* ABORT function of RFC793 */ 2991 if (old_state == TCP_LISTEN) { 2992 inet_csk_listen_stop(sk); 2993 } else if (unlikely(tp->repair)) { 2994 sk->sk_err = ECONNABORTED; 2995 } else if (tcp_need_reset(old_state) || 2996 (tp->snd_nxt != tp->write_seq && 2997 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2998 /* The last check adjusts for discrepancy of Linux wrt. RFC 2999 * states 3000 */ 3001 tcp_send_active_reset(sk, gfp_any()); 3002 sk->sk_err = ECONNRESET; 3003 } else if (old_state == TCP_SYN_SENT) 3004 sk->sk_err = ECONNRESET; 3005 3006 tcp_clear_xmit_timers(sk); 3007 __skb_queue_purge(&sk->sk_receive_queue); 3008 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3009 WRITE_ONCE(tp->urg_data, 0); 3010 tcp_write_queue_purge(sk); 3011 tcp_fastopen_active_disable_ofo_check(sk); 3012 skb_rbtree_purge(&tp->out_of_order_queue); 3013 3014 inet->inet_dport = 0; 3015 3016 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3017 inet_reset_saddr(sk); 3018 3019 sk->sk_shutdown = 0; 3020 sock_reset_flag(sk, SOCK_DONE); 3021 tp->srtt_us = 0; 3022 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3023 tp->rcv_rtt_last_tsecr = 0; 3024 3025 seq = tp->write_seq + tp->max_window + 2; 3026 if (!seq) 3027 seq = 1; 3028 WRITE_ONCE(tp->write_seq, seq); 3029 3030 icsk->icsk_backoff = 0; 3031 icsk->icsk_probes_out = 0; 3032 icsk->icsk_probes_tstamp = 0; 3033 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3034 icsk->icsk_rto_min = TCP_RTO_MIN; 3035 icsk->icsk_delack_max = TCP_DELACK_MAX; 3036 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3037 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3038 tp->snd_cwnd_cnt = 0; 3039 tp->window_clamp = 0; 3040 tp->delivered = 0; 3041 tp->delivered_ce = 0; 3042 if (icsk->icsk_ca_ops->release) 3043 icsk->icsk_ca_ops->release(sk); 3044 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3045 icsk->icsk_ca_initialized = 0; 3046 tcp_set_ca_state(sk, TCP_CA_Open); 3047 tp->is_sack_reneg = 0; 3048 tcp_clear_retrans(tp); 3049 tp->total_retrans = 0; 3050 inet_csk_delack_init(sk); 3051 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3052 * issue in __tcp_select_window() 3053 */ 3054 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3055 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3056 __sk_dst_reset(sk); 3057 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3058 tcp_saved_syn_free(tp); 3059 tp->compressed_ack = 0; 3060 tp->segs_in = 0; 3061 tp->segs_out = 0; 3062 tp->bytes_sent = 0; 3063 tp->bytes_acked = 0; 3064 tp->bytes_received = 0; 3065 tp->bytes_retrans = 0; 3066 tp->data_segs_in = 0; 3067 tp->data_segs_out = 0; 3068 tp->duplicate_sack[0].start_seq = 0; 3069 tp->duplicate_sack[0].end_seq = 0; 3070 tp->dsack_dups = 0; 3071 tp->reord_seen = 0; 3072 tp->retrans_out = 0; 3073 tp->sacked_out = 0; 3074 tp->tlp_high_seq = 0; 3075 tp->last_oow_ack_time = 0; 3076 /* There's a bubble in the pipe until at least the first ACK. */ 3077 tp->app_limited = ~0U; 3078 tp->rack.mstamp = 0; 3079 tp->rack.advanced = 0; 3080 tp->rack.reo_wnd_steps = 1; 3081 tp->rack.last_delivered = 0; 3082 tp->rack.reo_wnd_persist = 0; 3083 tp->rack.dsack_seen = 0; 3084 tp->syn_data_acked = 0; 3085 tp->rx_opt.saw_tstamp = 0; 3086 tp->rx_opt.dsack = 0; 3087 tp->rx_opt.num_sacks = 0; 3088 tp->rcv_ooopack = 0; 3089 3090 3091 /* Clean up fastopen related fields */ 3092 tcp_free_fastopen_req(tp); 3093 inet->defer_connect = 0; 3094 tp->fastopen_client_fail = 0; 3095 3096 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3097 3098 if (sk->sk_frag.page) { 3099 put_page(sk->sk_frag.page); 3100 sk->sk_frag.page = NULL; 3101 sk->sk_frag.offset = 0; 3102 } 3103 sk_error_report(sk); 3104 return 0; 3105 } 3106 EXPORT_SYMBOL(tcp_disconnect); 3107 3108 static inline bool tcp_can_repair_sock(const struct sock *sk) 3109 { 3110 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3111 (sk->sk_state != TCP_LISTEN); 3112 } 3113 3114 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3115 { 3116 struct tcp_repair_window opt; 3117 3118 if (!tp->repair) 3119 return -EPERM; 3120 3121 if (len != sizeof(opt)) 3122 return -EINVAL; 3123 3124 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3125 return -EFAULT; 3126 3127 if (opt.max_window < opt.snd_wnd) 3128 return -EINVAL; 3129 3130 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3131 return -EINVAL; 3132 3133 if (after(opt.rcv_wup, tp->rcv_nxt)) 3134 return -EINVAL; 3135 3136 tp->snd_wl1 = opt.snd_wl1; 3137 tp->snd_wnd = opt.snd_wnd; 3138 tp->max_window = opt.max_window; 3139 3140 tp->rcv_wnd = opt.rcv_wnd; 3141 tp->rcv_wup = opt.rcv_wup; 3142 3143 return 0; 3144 } 3145 3146 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3147 unsigned int len) 3148 { 3149 struct tcp_sock *tp = tcp_sk(sk); 3150 struct tcp_repair_opt opt; 3151 size_t offset = 0; 3152 3153 while (len >= sizeof(opt)) { 3154 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3155 return -EFAULT; 3156 3157 offset += sizeof(opt); 3158 len -= sizeof(opt); 3159 3160 switch (opt.opt_code) { 3161 case TCPOPT_MSS: 3162 tp->rx_opt.mss_clamp = opt.opt_val; 3163 tcp_mtup_init(sk); 3164 break; 3165 case TCPOPT_WINDOW: 3166 { 3167 u16 snd_wscale = opt.opt_val & 0xFFFF; 3168 u16 rcv_wscale = opt.opt_val >> 16; 3169 3170 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3171 return -EFBIG; 3172 3173 tp->rx_opt.snd_wscale = snd_wscale; 3174 tp->rx_opt.rcv_wscale = rcv_wscale; 3175 tp->rx_opt.wscale_ok = 1; 3176 } 3177 break; 3178 case TCPOPT_SACK_PERM: 3179 if (opt.opt_val != 0) 3180 return -EINVAL; 3181 3182 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3183 break; 3184 case TCPOPT_TIMESTAMP: 3185 if (opt.opt_val != 0) 3186 return -EINVAL; 3187 3188 tp->rx_opt.tstamp_ok = 1; 3189 break; 3190 } 3191 } 3192 3193 return 0; 3194 } 3195 3196 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3197 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3198 3199 static void tcp_enable_tx_delay(void) 3200 { 3201 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3202 static int __tcp_tx_delay_enabled = 0; 3203 3204 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3205 static_branch_enable(&tcp_tx_delay_enabled); 3206 pr_info("TCP_TX_DELAY enabled\n"); 3207 } 3208 } 3209 } 3210 3211 /* When set indicates to always queue non-full frames. Later the user clears 3212 * this option and we transmit any pending partial frames in the queue. This is 3213 * meant to be used alongside sendfile() to get properly filled frames when the 3214 * user (for example) must write out headers with a write() call first and then 3215 * use sendfile to send out the data parts. 3216 * 3217 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3218 * TCP_NODELAY. 3219 */ 3220 void __tcp_sock_set_cork(struct sock *sk, bool on) 3221 { 3222 struct tcp_sock *tp = tcp_sk(sk); 3223 3224 if (on) { 3225 tp->nonagle |= TCP_NAGLE_CORK; 3226 } else { 3227 tp->nonagle &= ~TCP_NAGLE_CORK; 3228 if (tp->nonagle & TCP_NAGLE_OFF) 3229 tp->nonagle |= TCP_NAGLE_PUSH; 3230 tcp_push_pending_frames(sk); 3231 } 3232 } 3233 3234 void tcp_sock_set_cork(struct sock *sk, bool on) 3235 { 3236 lock_sock(sk); 3237 __tcp_sock_set_cork(sk, on); 3238 release_sock(sk); 3239 } 3240 EXPORT_SYMBOL(tcp_sock_set_cork); 3241 3242 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3243 * remembered, but it is not activated until cork is cleared. 3244 * 3245 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3246 * even TCP_CORK for currently queued segments. 3247 */ 3248 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3249 { 3250 if (on) { 3251 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3252 tcp_push_pending_frames(sk); 3253 } else { 3254 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3255 } 3256 } 3257 3258 void tcp_sock_set_nodelay(struct sock *sk) 3259 { 3260 lock_sock(sk); 3261 __tcp_sock_set_nodelay(sk, true); 3262 release_sock(sk); 3263 } 3264 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3265 3266 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3267 { 3268 if (!val) { 3269 inet_csk_enter_pingpong_mode(sk); 3270 return; 3271 } 3272 3273 inet_csk_exit_pingpong_mode(sk); 3274 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3275 inet_csk_ack_scheduled(sk)) { 3276 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3277 tcp_cleanup_rbuf(sk, 1); 3278 if (!(val & 1)) 3279 inet_csk_enter_pingpong_mode(sk); 3280 } 3281 } 3282 3283 void tcp_sock_set_quickack(struct sock *sk, int val) 3284 { 3285 lock_sock(sk); 3286 __tcp_sock_set_quickack(sk, val); 3287 release_sock(sk); 3288 } 3289 EXPORT_SYMBOL(tcp_sock_set_quickack); 3290 3291 int tcp_sock_set_syncnt(struct sock *sk, int val) 3292 { 3293 if (val < 1 || val > MAX_TCP_SYNCNT) 3294 return -EINVAL; 3295 3296 lock_sock(sk); 3297 inet_csk(sk)->icsk_syn_retries = val; 3298 release_sock(sk); 3299 return 0; 3300 } 3301 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3302 3303 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3304 { 3305 lock_sock(sk); 3306 inet_csk(sk)->icsk_user_timeout = val; 3307 release_sock(sk); 3308 } 3309 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3310 3311 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3312 { 3313 struct tcp_sock *tp = tcp_sk(sk); 3314 3315 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3316 return -EINVAL; 3317 3318 tp->keepalive_time = val * HZ; 3319 if (sock_flag(sk, SOCK_KEEPOPEN) && 3320 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3321 u32 elapsed = keepalive_time_elapsed(tp); 3322 3323 if (tp->keepalive_time > elapsed) 3324 elapsed = tp->keepalive_time - elapsed; 3325 else 3326 elapsed = 0; 3327 inet_csk_reset_keepalive_timer(sk, elapsed); 3328 } 3329 3330 return 0; 3331 } 3332 3333 int tcp_sock_set_keepidle(struct sock *sk, int val) 3334 { 3335 int err; 3336 3337 lock_sock(sk); 3338 err = tcp_sock_set_keepidle_locked(sk, val); 3339 release_sock(sk); 3340 return err; 3341 } 3342 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3343 3344 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3345 { 3346 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3347 return -EINVAL; 3348 3349 lock_sock(sk); 3350 tcp_sk(sk)->keepalive_intvl = val * HZ; 3351 release_sock(sk); 3352 return 0; 3353 } 3354 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3355 3356 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3357 { 3358 if (val < 1 || val > MAX_TCP_KEEPCNT) 3359 return -EINVAL; 3360 3361 lock_sock(sk); 3362 tcp_sk(sk)->keepalive_probes = val; 3363 release_sock(sk); 3364 return 0; 3365 } 3366 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3367 3368 int tcp_set_window_clamp(struct sock *sk, int val) 3369 { 3370 struct tcp_sock *tp = tcp_sk(sk); 3371 3372 if (!val) { 3373 if (sk->sk_state != TCP_CLOSE) 3374 return -EINVAL; 3375 tp->window_clamp = 0; 3376 } else { 3377 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3378 SOCK_MIN_RCVBUF / 2 : val; 3379 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3380 } 3381 return 0; 3382 } 3383 3384 /* 3385 * Socket option code for TCP. 3386 */ 3387 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3388 sockptr_t optval, unsigned int optlen) 3389 { 3390 struct tcp_sock *tp = tcp_sk(sk); 3391 struct inet_connection_sock *icsk = inet_csk(sk); 3392 struct net *net = sock_net(sk); 3393 int val; 3394 int err = 0; 3395 3396 /* These are data/string values, all the others are ints */ 3397 switch (optname) { 3398 case TCP_CONGESTION: { 3399 char name[TCP_CA_NAME_MAX]; 3400 3401 if (optlen < 1) 3402 return -EINVAL; 3403 3404 val = strncpy_from_sockptr(name, optval, 3405 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3406 if (val < 0) 3407 return -EFAULT; 3408 name[val] = 0; 3409 3410 lock_sock(sk); 3411 err = tcp_set_congestion_control(sk, name, true, 3412 ns_capable(sock_net(sk)->user_ns, 3413 CAP_NET_ADMIN)); 3414 release_sock(sk); 3415 return err; 3416 } 3417 case TCP_ULP: { 3418 char name[TCP_ULP_NAME_MAX]; 3419 3420 if (optlen < 1) 3421 return -EINVAL; 3422 3423 val = strncpy_from_sockptr(name, optval, 3424 min_t(long, TCP_ULP_NAME_MAX - 1, 3425 optlen)); 3426 if (val < 0) 3427 return -EFAULT; 3428 name[val] = 0; 3429 3430 lock_sock(sk); 3431 err = tcp_set_ulp(sk, name); 3432 release_sock(sk); 3433 return err; 3434 } 3435 case TCP_FASTOPEN_KEY: { 3436 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3437 __u8 *backup_key = NULL; 3438 3439 /* Allow a backup key as well to facilitate key rotation 3440 * First key is the active one. 3441 */ 3442 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3443 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3444 return -EINVAL; 3445 3446 if (copy_from_sockptr(key, optval, optlen)) 3447 return -EFAULT; 3448 3449 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3450 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3451 3452 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3453 } 3454 default: 3455 /* fallthru */ 3456 break; 3457 } 3458 3459 if (optlen < sizeof(int)) 3460 return -EINVAL; 3461 3462 if (copy_from_sockptr(&val, optval, sizeof(val))) 3463 return -EFAULT; 3464 3465 lock_sock(sk); 3466 3467 switch (optname) { 3468 case TCP_MAXSEG: 3469 /* Values greater than interface MTU won't take effect. However 3470 * at the point when this call is done we typically don't yet 3471 * know which interface is going to be used 3472 */ 3473 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3474 err = -EINVAL; 3475 break; 3476 } 3477 tp->rx_opt.user_mss = val; 3478 break; 3479 3480 case TCP_NODELAY: 3481 __tcp_sock_set_nodelay(sk, val); 3482 break; 3483 3484 case TCP_THIN_LINEAR_TIMEOUTS: 3485 if (val < 0 || val > 1) 3486 err = -EINVAL; 3487 else 3488 tp->thin_lto = val; 3489 break; 3490 3491 case TCP_THIN_DUPACK: 3492 if (val < 0 || val > 1) 3493 err = -EINVAL; 3494 break; 3495 3496 case TCP_REPAIR: 3497 if (!tcp_can_repair_sock(sk)) 3498 err = -EPERM; 3499 else if (val == TCP_REPAIR_ON) { 3500 tp->repair = 1; 3501 sk->sk_reuse = SK_FORCE_REUSE; 3502 tp->repair_queue = TCP_NO_QUEUE; 3503 } else if (val == TCP_REPAIR_OFF) { 3504 tp->repair = 0; 3505 sk->sk_reuse = SK_NO_REUSE; 3506 tcp_send_window_probe(sk); 3507 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3508 tp->repair = 0; 3509 sk->sk_reuse = SK_NO_REUSE; 3510 } else 3511 err = -EINVAL; 3512 3513 break; 3514 3515 case TCP_REPAIR_QUEUE: 3516 if (!tp->repair) 3517 err = -EPERM; 3518 else if ((unsigned int)val < TCP_QUEUES_NR) 3519 tp->repair_queue = val; 3520 else 3521 err = -EINVAL; 3522 break; 3523 3524 case TCP_QUEUE_SEQ: 3525 if (sk->sk_state != TCP_CLOSE) { 3526 err = -EPERM; 3527 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3528 if (!tcp_rtx_queue_empty(sk)) 3529 err = -EPERM; 3530 else 3531 WRITE_ONCE(tp->write_seq, val); 3532 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3533 if (tp->rcv_nxt != tp->copied_seq) { 3534 err = -EPERM; 3535 } else { 3536 WRITE_ONCE(tp->rcv_nxt, val); 3537 WRITE_ONCE(tp->copied_seq, val); 3538 } 3539 } else { 3540 err = -EINVAL; 3541 } 3542 break; 3543 3544 case TCP_REPAIR_OPTIONS: 3545 if (!tp->repair) 3546 err = -EINVAL; 3547 else if (sk->sk_state == TCP_ESTABLISHED) 3548 err = tcp_repair_options_est(sk, optval, optlen); 3549 else 3550 err = -EPERM; 3551 break; 3552 3553 case TCP_CORK: 3554 __tcp_sock_set_cork(sk, val); 3555 break; 3556 3557 case TCP_KEEPIDLE: 3558 err = tcp_sock_set_keepidle_locked(sk, val); 3559 break; 3560 case TCP_KEEPINTVL: 3561 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3562 err = -EINVAL; 3563 else 3564 tp->keepalive_intvl = val * HZ; 3565 break; 3566 case TCP_KEEPCNT: 3567 if (val < 1 || val > MAX_TCP_KEEPCNT) 3568 err = -EINVAL; 3569 else 3570 tp->keepalive_probes = val; 3571 break; 3572 case TCP_SYNCNT: 3573 if (val < 1 || val > MAX_TCP_SYNCNT) 3574 err = -EINVAL; 3575 else 3576 icsk->icsk_syn_retries = val; 3577 break; 3578 3579 case TCP_SAVE_SYN: 3580 /* 0: disable, 1: enable, 2: start from ether_header */ 3581 if (val < 0 || val > 2) 3582 err = -EINVAL; 3583 else 3584 tp->save_syn = val; 3585 break; 3586 3587 case TCP_LINGER2: 3588 if (val < 0) 3589 tp->linger2 = -1; 3590 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3591 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3592 else 3593 tp->linger2 = val * HZ; 3594 break; 3595 3596 case TCP_DEFER_ACCEPT: 3597 /* Translate value in seconds to number of retransmits */ 3598 icsk->icsk_accept_queue.rskq_defer_accept = 3599 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3600 TCP_RTO_MAX / HZ); 3601 break; 3602 3603 case TCP_WINDOW_CLAMP: 3604 err = tcp_set_window_clamp(sk, val); 3605 break; 3606 3607 case TCP_QUICKACK: 3608 __tcp_sock_set_quickack(sk, val); 3609 break; 3610 3611 #ifdef CONFIG_TCP_MD5SIG 3612 case TCP_MD5SIG: 3613 case TCP_MD5SIG_EXT: 3614 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3615 break; 3616 #endif 3617 case TCP_USER_TIMEOUT: 3618 /* Cap the max time in ms TCP will retry or probe the window 3619 * before giving up and aborting (ETIMEDOUT) a connection. 3620 */ 3621 if (val < 0) 3622 err = -EINVAL; 3623 else 3624 icsk->icsk_user_timeout = val; 3625 break; 3626 3627 case TCP_FASTOPEN: 3628 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3629 TCPF_LISTEN))) { 3630 tcp_fastopen_init_key_once(net); 3631 3632 fastopen_queue_tune(sk, val); 3633 } else { 3634 err = -EINVAL; 3635 } 3636 break; 3637 case TCP_FASTOPEN_CONNECT: 3638 if (val > 1 || val < 0) { 3639 err = -EINVAL; 3640 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3641 if (sk->sk_state == TCP_CLOSE) 3642 tp->fastopen_connect = val; 3643 else 3644 err = -EINVAL; 3645 } else { 3646 err = -EOPNOTSUPP; 3647 } 3648 break; 3649 case TCP_FASTOPEN_NO_COOKIE: 3650 if (val > 1 || val < 0) 3651 err = -EINVAL; 3652 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3653 err = -EINVAL; 3654 else 3655 tp->fastopen_no_cookie = val; 3656 break; 3657 case TCP_TIMESTAMP: 3658 if (!tp->repair) 3659 err = -EPERM; 3660 else 3661 tp->tsoffset = val - tcp_time_stamp_raw(); 3662 break; 3663 case TCP_REPAIR_WINDOW: 3664 err = tcp_repair_set_window(tp, optval, optlen); 3665 break; 3666 case TCP_NOTSENT_LOWAT: 3667 tp->notsent_lowat = val; 3668 sk->sk_write_space(sk); 3669 break; 3670 case TCP_INQ: 3671 if (val > 1 || val < 0) 3672 err = -EINVAL; 3673 else 3674 tp->recvmsg_inq = val; 3675 break; 3676 case TCP_TX_DELAY: 3677 if (val) 3678 tcp_enable_tx_delay(); 3679 tp->tcp_tx_delay = val; 3680 break; 3681 default: 3682 err = -ENOPROTOOPT; 3683 break; 3684 } 3685 3686 release_sock(sk); 3687 return err; 3688 } 3689 3690 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3691 unsigned int optlen) 3692 { 3693 const struct inet_connection_sock *icsk = inet_csk(sk); 3694 3695 if (level != SOL_TCP) 3696 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3697 optval, optlen); 3698 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3699 } 3700 EXPORT_SYMBOL(tcp_setsockopt); 3701 3702 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3703 struct tcp_info *info) 3704 { 3705 u64 stats[__TCP_CHRONO_MAX], total = 0; 3706 enum tcp_chrono i; 3707 3708 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3709 stats[i] = tp->chrono_stat[i - 1]; 3710 if (i == tp->chrono_type) 3711 stats[i] += tcp_jiffies32 - tp->chrono_start; 3712 stats[i] *= USEC_PER_SEC / HZ; 3713 total += stats[i]; 3714 } 3715 3716 info->tcpi_busy_time = total; 3717 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3718 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3719 } 3720 3721 /* Return information about state of tcp endpoint in API format. */ 3722 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3723 { 3724 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3725 const struct inet_connection_sock *icsk = inet_csk(sk); 3726 unsigned long rate; 3727 u32 now; 3728 u64 rate64; 3729 bool slow; 3730 3731 memset(info, 0, sizeof(*info)); 3732 if (sk->sk_type != SOCK_STREAM) 3733 return; 3734 3735 info->tcpi_state = inet_sk_state_load(sk); 3736 3737 /* Report meaningful fields for all TCP states, including listeners */ 3738 rate = READ_ONCE(sk->sk_pacing_rate); 3739 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3740 info->tcpi_pacing_rate = rate64; 3741 3742 rate = READ_ONCE(sk->sk_max_pacing_rate); 3743 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3744 info->tcpi_max_pacing_rate = rate64; 3745 3746 info->tcpi_reordering = tp->reordering; 3747 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3748 3749 if (info->tcpi_state == TCP_LISTEN) { 3750 /* listeners aliased fields : 3751 * tcpi_unacked -> Number of children ready for accept() 3752 * tcpi_sacked -> max backlog 3753 */ 3754 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3755 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3756 return; 3757 } 3758 3759 slow = lock_sock_fast(sk); 3760 3761 info->tcpi_ca_state = icsk->icsk_ca_state; 3762 info->tcpi_retransmits = icsk->icsk_retransmits; 3763 info->tcpi_probes = icsk->icsk_probes_out; 3764 info->tcpi_backoff = icsk->icsk_backoff; 3765 3766 if (tp->rx_opt.tstamp_ok) 3767 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3768 if (tcp_is_sack(tp)) 3769 info->tcpi_options |= TCPI_OPT_SACK; 3770 if (tp->rx_opt.wscale_ok) { 3771 info->tcpi_options |= TCPI_OPT_WSCALE; 3772 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3773 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3774 } 3775 3776 if (tp->ecn_flags & TCP_ECN_OK) 3777 info->tcpi_options |= TCPI_OPT_ECN; 3778 if (tp->ecn_flags & TCP_ECN_SEEN) 3779 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3780 if (tp->syn_data_acked) 3781 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3782 3783 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3784 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3785 info->tcpi_snd_mss = tp->mss_cache; 3786 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3787 3788 info->tcpi_unacked = tp->packets_out; 3789 info->tcpi_sacked = tp->sacked_out; 3790 3791 info->tcpi_lost = tp->lost_out; 3792 info->tcpi_retrans = tp->retrans_out; 3793 3794 now = tcp_jiffies32; 3795 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3796 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3797 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3798 3799 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3800 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3801 info->tcpi_rtt = tp->srtt_us >> 3; 3802 info->tcpi_rttvar = tp->mdev_us >> 2; 3803 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3804 info->tcpi_advmss = tp->advmss; 3805 3806 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3807 info->tcpi_rcv_space = tp->rcvq_space.space; 3808 3809 info->tcpi_total_retrans = tp->total_retrans; 3810 3811 info->tcpi_bytes_acked = tp->bytes_acked; 3812 info->tcpi_bytes_received = tp->bytes_received; 3813 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3814 tcp_get_info_chrono_stats(tp, info); 3815 3816 info->tcpi_segs_out = tp->segs_out; 3817 3818 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3819 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3820 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3821 3822 info->tcpi_min_rtt = tcp_min_rtt(tp); 3823 info->tcpi_data_segs_out = tp->data_segs_out; 3824 3825 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3826 rate64 = tcp_compute_delivery_rate(tp); 3827 if (rate64) 3828 info->tcpi_delivery_rate = rate64; 3829 info->tcpi_delivered = tp->delivered; 3830 info->tcpi_delivered_ce = tp->delivered_ce; 3831 info->tcpi_bytes_sent = tp->bytes_sent; 3832 info->tcpi_bytes_retrans = tp->bytes_retrans; 3833 info->tcpi_dsack_dups = tp->dsack_dups; 3834 info->tcpi_reord_seen = tp->reord_seen; 3835 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3836 info->tcpi_snd_wnd = tp->snd_wnd; 3837 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3838 unlock_sock_fast(sk, slow); 3839 } 3840 EXPORT_SYMBOL_GPL(tcp_get_info); 3841 3842 static size_t tcp_opt_stats_get_size(void) 3843 { 3844 return 3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3850 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3852 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3853 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3855 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3856 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3858 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3862 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3863 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3867 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3869 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3870 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3871 0; 3872 } 3873 3874 /* Returns TTL or hop limit of an incoming packet from skb. */ 3875 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3876 { 3877 if (skb->protocol == htons(ETH_P_IP)) 3878 return ip_hdr(skb)->ttl; 3879 else if (skb->protocol == htons(ETH_P_IPV6)) 3880 return ipv6_hdr(skb)->hop_limit; 3881 else 3882 return 0; 3883 } 3884 3885 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3886 const struct sk_buff *orig_skb, 3887 const struct sk_buff *ack_skb) 3888 { 3889 const struct tcp_sock *tp = tcp_sk(sk); 3890 struct sk_buff *stats; 3891 struct tcp_info info; 3892 unsigned long rate; 3893 u64 rate64; 3894 3895 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3896 if (!stats) 3897 return NULL; 3898 3899 tcp_get_info_chrono_stats(tp, &info); 3900 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3901 info.tcpi_busy_time, TCP_NLA_PAD); 3902 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3903 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3904 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3905 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3906 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3907 tp->data_segs_out, TCP_NLA_PAD); 3908 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3909 tp->total_retrans, TCP_NLA_PAD); 3910 3911 rate = READ_ONCE(sk->sk_pacing_rate); 3912 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3913 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3914 3915 rate64 = tcp_compute_delivery_rate(tp); 3916 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3917 3918 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3919 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3920 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3921 3922 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3923 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3924 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3925 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3926 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3927 3928 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3929 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3930 3931 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3932 TCP_NLA_PAD); 3933 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3934 TCP_NLA_PAD); 3935 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3936 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3937 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3938 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3939 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3940 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3941 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3942 TCP_NLA_PAD); 3943 if (ack_skb) 3944 nla_put_u8(stats, TCP_NLA_TTL, 3945 tcp_skb_ttl_or_hop_limit(ack_skb)); 3946 3947 return stats; 3948 } 3949 3950 static int do_tcp_getsockopt(struct sock *sk, int level, 3951 int optname, char __user *optval, int __user *optlen) 3952 { 3953 struct inet_connection_sock *icsk = inet_csk(sk); 3954 struct tcp_sock *tp = tcp_sk(sk); 3955 struct net *net = sock_net(sk); 3956 int val, len; 3957 3958 if (get_user(len, optlen)) 3959 return -EFAULT; 3960 3961 len = min_t(unsigned int, len, sizeof(int)); 3962 3963 if (len < 0) 3964 return -EINVAL; 3965 3966 switch (optname) { 3967 case TCP_MAXSEG: 3968 val = tp->mss_cache; 3969 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3970 val = tp->rx_opt.user_mss; 3971 if (tp->repair) 3972 val = tp->rx_opt.mss_clamp; 3973 break; 3974 case TCP_NODELAY: 3975 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3976 break; 3977 case TCP_CORK: 3978 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3979 break; 3980 case TCP_KEEPIDLE: 3981 val = keepalive_time_when(tp) / HZ; 3982 break; 3983 case TCP_KEEPINTVL: 3984 val = keepalive_intvl_when(tp) / HZ; 3985 break; 3986 case TCP_KEEPCNT: 3987 val = keepalive_probes(tp); 3988 break; 3989 case TCP_SYNCNT: 3990 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3991 break; 3992 case TCP_LINGER2: 3993 val = tp->linger2; 3994 if (val >= 0) 3995 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3996 break; 3997 case TCP_DEFER_ACCEPT: 3998 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3999 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4000 break; 4001 case TCP_WINDOW_CLAMP: 4002 val = tp->window_clamp; 4003 break; 4004 case TCP_INFO: { 4005 struct tcp_info info; 4006 4007 if (get_user(len, optlen)) 4008 return -EFAULT; 4009 4010 tcp_get_info(sk, &info); 4011 4012 len = min_t(unsigned int, len, sizeof(info)); 4013 if (put_user(len, optlen)) 4014 return -EFAULT; 4015 if (copy_to_user(optval, &info, len)) 4016 return -EFAULT; 4017 return 0; 4018 } 4019 case TCP_CC_INFO: { 4020 const struct tcp_congestion_ops *ca_ops; 4021 union tcp_cc_info info; 4022 size_t sz = 0; 4023 int attr; 4024 4025 if (get_user(len, optlen)) 4026 return -EFAULT; 4027 4028 ca_ops = icsk->icsk_ca_ops; 4029 if (ca_ops && ca_ops->get_info) 4030 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4031 4032 len = min_t(unsigned int, len, sz); 4033 if (put_user(len, optlen)) 4034 return -EFAULT; 4035 if (copy_to_user(optval, &info, len)) 4036 return -EFAULT; 4037 return 0; 4038 } 4039 case TCP_QUICKACK: 4040 val = !inet_csk_in_pingpong_mode(sk); 4041 break; 4042 4043 case TCP_CONGESTION: 4044 if (get_user(len, optlen)) 4045 return -EFAULT; 4046 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4047 if (put_user(len, optlen)) 4048 return -EFAULT; 4049 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4050 return -EFAULT; 4051 return 0; 4052 4053 case TCP_ULP: 4054 if (get_user(len, optlen)) 4055 return -EFAULT; 4056 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4057 if (!icsk->icsk_ulp_ops) { 4058 if (put_user(0, optlen)) 4059 return -EFAULT; 4060 return 0; 4061 } 4062 if (put_user(len, optlen)) 4063 return -EFAULT; 4064 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4065 return -EFAULT; 4066 return 0; 4067 4068 case TCP_FASTOPEN_KEY: { 4069 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4070 unsigned int key_len; 4071 4072 if (get_user(len, optlen)) 4073 return -EFAULT; 4074 4075 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4076 TCP_FASTOPEN_KEY_LENGTH; 4077 len = min_t(unsigned int, len, key_len); 4078 if (put_user(len, optlen)) 4079 return -EFAULT; 4080 if (copy_to_user(optval, key, len)) 4081 return -EFAULT; 4082 return 0; 4083 } 4084 case TCP_THIN_LINEAR_TIMEOUTS: 4085 val = tp->thin_lto; 4086 break; 4087 4088 case TCP_THIN_DUPACK: 4089 val = 0; 4090 break; 4091 4092 case TCP_REPAIR: 4093 val = tp->repair; 4094 break; 4095 4096 case TCP_REPAIR_QUEUE: 4097 if (tp->repair) 4098 val = tp->repair_queue; 4099 else 4100 return -EINVAL; 4101 break; 4102 4103 case TCP_REPAIR_WINDOW: { 4104 struct tcp_repair_window opt; 4105 4106 if (get_user(len, optlen)) 4107 return -EFAULT; 4108 4109 if (len != sizeof(opt)) 4110 return -EINVAL; 4111 4112 if (!tp->repair) 4113 return -EPERM; 4114 4115 opt.snd_wl1 = tp->snd_wl1; 4116 opt.snd_wnd = tp->snd_wnd; 4117 opt.max_window = tp->max_window; 4118 opt.rcv_wnd = tp->rcv_wnd; 4119 opt.rcv_wup = tp->rcv_wup; 4120 4121 if (copy_to_user(optval, &opt, len)) 4122 return -EFAULT; 4123 return 0; 4124 } 4125 case TCP_QUEUE_SEQ: 4126 if (tp->repair_queue == TCP_SEND_QUEUE) 4127 val = tp->write_seq; 4128 else if (tp->repair_queue == TCP_RECV_QUEUE) 4129 val = tp->rcv_nxt; 4130 else 4131 return -EINVAL; 4132 break; 4133 4134 case TCP_USER_TIMEOUT: 4135 val = icsk->icsk_user_timeout; 4136 break; 4137 4138 case TCP_FASTOPEN: 4139 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4140 break; 4141 4142 case TCP_FASTOPEN_CONNECT: 4143 val = tp->fastopen_connect; 4144 break; 4145 4146 case TCP_FASTOPEN_NO_COOKIE: 4147 val = tp->fastopen_no_cookie; 4148 break; 4149 4150 case TCP_TX_DELAY: 4151 val = tp->tcp_tx_delay; 4152 break; 4153 4154 case TCP_TIMESTAMP: 4155 val = tcp_time_stamp_raw() + tp->tsoffset; 4156 break; 4157 case TCP_NOTSENT_LOWAT: 4158 val = tp->notsent_lowat; 4159 break; 4160 case TCP_INQ: 4161 val = tp->recvmsg_inq; 4162 break; 4163 case TCP_SAVE_SYN: 4164 val = tp->save_syn; 4165 break; 4166 case TCP_SAVED_SYN: { 4167 if (get_user(len, optlen)) 4168 return -EFAULT; 4169 4170 lock_sock(sk); 4171 if (tp->saved_syn) { 4172 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4173 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4174 optlen)) { 4175 release_sock(sk); 4176 return -EFAULT; 4177 } 4178 release_sock(sk); 4179 return -EINVAL; 4180 } 4181 len = tcp_saved_syn_len(tp->saved_syn); 4182 if (put_user(len, optlen)) { 4183 release_sock(sk); 4184 return -EFAULT; 4185 } 4186 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4187 release_sock(sk); 4188 return -EFAULT; 4189 } 4190 tcp_saved_syn_free(tp); 4191 release_sock(sk); 4192 } else { 4193 release_sock(sk); 4194 len = 0; 4195 if (put_user(len, optlen)) 4196 return -EFAULT; 4197 } 4198 return 0; 4199 } 4200 #ifdef CONFIG_MMU 4201 case TCP_ZEROCOPY_RECEIVE: { 4202 struct scm_timestamping_internal tss; 4203 struct tcp_zerocopy_receive zc = {}; 4204 int err; 4205 4206 if (get_user(len, optlen)) 4207 return -EFAULT; 4208 if (len < 0 || 4209 len < offsetofend(struct tcp_zerocopy_receive, length)) 4210 return -EINVAL; 4211 if (unlikely(len > sizeof(zc))) { 4212 err = check_zeroed_user(optval + sizeof(zc), 4213 len - sizeof(zc)); 4214 if (err < 1) 4215 return err == 0 ? -EINVAL : err; 4216 len = sizeof(zc); 4217 if (put_user(len, optlen)) 4218 return -EFAULT; 4219 } 4220 if (copy_from_user(&zc, optval, len)) 4221 return -EFAULT; 4222 if (zc.reserved) 4223 return -EINVAL; 4224 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4225 return -EINVAL; 4226 lock_sock(sk); 4227 err = tcp_zerocopy_receive(sk, &zc, &tss); 4228 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4229 &zc, &len, err); 4230 release_sock(sk); 4231 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4232 goto zerocopy_rcv_cmsg; 4233 switch (len) { 4234 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4235 goto zerocopy_rcv_cmsg; 4236 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4237 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4238 case offsetofend(struct tcp_zerocopy_receive, flags): 4239 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4240 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4241 case offsetofend(struct tcp_zerocopy_receive, err): 4242 goto zerocopy_rcv_sk_err; 4243 case offsetofend(struct tcp_zerocopy_receive, inq): 4244 goto zerocopy_rcv_inq; 4245 case offsetofend(struct tcp_zerocopy_receive, length): 4246 default: 4247 goto zerocopy_rcv_out; 4248 } 4249 zerocopy_rcv_cmsg: 4250 if (zc.msg_flags & TCP_CMSG_TS) 4251 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4252 else 4253 zc.msg_flags = 0; 4254 zerocopy_rcv_sk_err: 4255 if (!err) 4256 zc.err = sock_error(sk); 4257 zerocopy_rcv_inq: 4258 zc.inq = tcp_inq_hint(sk); 4259 zerocopy_rcv_out: 4260 if (!err && copy_to_user(optval, &zc, len)) 4261 err = -EFAULT; 4262 return err; 4263 } 4264 #endif 4265 default: 4266 return -ENOPROTOOPT; 4267 } 4268 4269 if (put_user(len, optlen)) 4270 return -EFAULT; 4271 if (copy_to_user(optval, &val, len)) 4272 return -EFAULT; 4273 return 0; 4274 } 4275 4276 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4277 { 4278 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4279 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4280 */ 4281 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4282 return true; 4283 4284 return false; 4285 } 4286 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4287 4288 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4289 int __user *optlen) 4290 { 4291 struct inet_connection_sock *icsk = inet_csk(sk); 4292 4293 if (level != SOL_TCP) 4294 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4295 optval, optlen); 4296 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4297 } 4298 EXPORT_SYMBOL(tcp_getsockopt); 4299 4300 #ifdef CONFIG_TCP_MD5SIG 4301 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4302 static DEFINE_MUTEX(tcp_md5sig_mutex); 4303 static bool tcp_md5sig_pool_populated = false; 4304 4305 static void __tcp_alloc_md5sig_pool(void) 4306 { 4307 struct crypto_ahash *hash; 4308 int cpu; 4309 4310 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4311 if (IS_ERR(hash)) 4312 return; 4313 4314 for_each_possible_cpu(cpu) { 4315 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4316 struct ahash_request *req; 4317 4318 if (!scratch) { 4319 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4320 sizeof(struct tcphdr), 4321 GFP_KERNEL, 4322 cpu_to_node(cpu)); 4323 if (!scratch) 4324 return; 4325 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4326 } 4327 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4328 continue; 4329 4330 req = ahash_request_alloc(hash, GFP_KERNEL); 4331 if (!req) 4332 return; 4333 4334 ahash_request_set_callback(req, 0, NULL, NULL); 4335 4336 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4337 } 4338 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4339 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4340 */ 4341 smp_wmb(); 4342 tcp_md5sig_pool_populated = true; 4343 } 4344 4345 bool tcp_alloc_md5sig_pool(void) 4346 { 4347 if (unlikely(!tcp_md5sig_pool_populated)) { 4348 mutex_lock(&tcp_md5sig_mutex); 4349 4350 if (!tcp_md5sig_pool_populated) { 4351 __tcp_alloc_md5sig_pool(); 4352 if (tcp_md5sig_pool_populated) 4353 static_branch_inc(&tcp_md5_needed); 4354 } 4355 4356 mutex_unlock(&tcp_md5sig_mutex); 4357 } 4358 return tcp_md5sig_pool_populated; 4359 } 4360 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4361 4362 4363 /** 4364 * tcp_get_md5sig_pool - get md5sig_pool for this user 4365 * 4366 * We use percpu structure, so if we succeed, we exit with preemption 4367 * and BH disabled, to make sure another thread or softirq handling 4368 * wont try to get same context. 4369 */ 4370 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4371 { 4372 local_bh_disable(); 4373 4374 if (tcp_md5sig_pool_populated) { 4375 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4376 smp_rmb(); 4377 return this_cpu_ptr(&tcp_md5sig_pool); 4378 } 4379 local_bh_enable(); 4380 return NULL; 4381 } 4382 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4383 4384 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4385 const struct sk_buff *skb, unsigned int header_len) 4386 { 4387 struct scatterlist sg; 4388 const struct tcphdr *tp = tcp_hdr(skb); 4389 struct ahash_request *req = hp->md5_req; 4390 unsigned int i; 4391 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4392 skb_headlen(skb) - header_len : 0; 4393 const struct skb_shared_info *shi = skb_shinfo(skb); 4394 struct sk_buff *frag_iter; 4395 4396 sg_init_table(&sg, 1); 4397 4398 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4399 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4400 if (crypto_ahash_update(req)) 4401 return 1; 4402 4403 for (i = 0; i < shi->nr_frags; ++i) { 4404 const skb_frag_t *f = &shi->frags[i]; 4405 unsigned int offset = skb_frag_off(f); 4406 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4407 4408 sg_set_page(&sg, page, skb_frag_size(f), 4409 offset_in_page(offset)); 4410 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4411 if (crypto_ahash_update(req)) 4412 return 1; 4413 } 4414 4415 skb_walk_frags(skb, frag_iter) 4416 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4417 return 1; 4418 4419 return 0; 4420 } 4421 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4422 4423 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4424 { 4425 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4426 struct scatterlist sg; 4427 4428 sg_init_one(&sg, key->key, keylen); 4429 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4430 4431 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4432 return data_race(crypto_ahash_update(hp->md5_req)); 4433 } 4434 EXPORT_SYMBOL(tcp_md5_hash_key); 4435 4436 /* Called with rcu_read_lock() */ 4437 enum skb_drop_reason 4438 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4439 const void *saddr, const void *daddr, 4440 int family, int dif, int sdif) 4441 { 4442 /* 4443 * This gets called for each TCP segment that arrives 4444 * so we want to be efficient. 4445 * We have 3 drop cases: 4446 * o No MD5 hash and one expected. 4447 * o MD5 hash and we're not expecting one. 4448 * o MD5 hash and its wrong. 4449 */ 4450 const __u8 *hash_location = NULL; 4451 struct tcp_md5sig_key *hash_expected; 4452 const struct tcphdr *th = tcp_hdr(skb); 4453 struct tcp_sock *tp = tcp_sk(sk); 4454 int genhash, l3index; 4455 u8 newhash[16]; 4456 4457 /* sdif set, means packet ingressed via a device 4458 * in an L3 domain and dif is set to the l3mdev 4459 */ 4460 l3index = sdif ? dif : 0; 4461 4462 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4463 hash_location = tcp_parse_md5sig_option(th); 4464 4465 /* We've parsed the options - do we have a hash? */ 4466 if (!hash_expected && !hash_location) 4467 return SKB_NOT_DROPPED_YET; 4468 4469 if (hash_expected && !hash_location) { 4470 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4471 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4472 } 4473 4474 if (!hash_expected && hash_location) { 4475 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4476 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4477 } 4478 4479 /* check the signature */ 4480 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4481 NULL, skb); 4482 4483 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4485 if (family == AF_INET) { 4486 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4487 saddr, ntohs(th->source), 4488 daddr, ntohs(th->dest), 4489 genhash ? " tcp_v4_calc_md5_hash failed" 4490 : "", l3index); 4491 } else { 4492 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4493 genhash ? "failed" : "mismatch", 4494 saddr, ntohs(th->source), 4495 daddr, ntohs(th->dest), l3index); 4496 } 4497 return SKB_DROP_REASON_TCP_MD5FAILURE; 4498 } 4499 return SKB_NOT_DROPPED_YET; 4500 } 4501 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4502 4503 #endif 4504 4505 void tcp_done(struct sock *sk) 4506 { 4507 struct request_sock *req; 4508 4509 /* We might be called with a new socket, after 4510 * inet_csk_prepare_forced_close() has been called 4511 * so we can not use lockdep_sock_is_held(sk) 4512 */ 4513 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4514 4515 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4516 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4517 4518 tcp_set_state(sk, TCP_CLOSE); 4519 tcp_clear_xmit_timers(sk); 4520 if (req) 4521 reqsk_fastopen_remove(sk, req, false); 4522 4523 sk->sk_shutdown = SHUTDOWN_MASK; 4524 4525 if (!sock_flag(sk, SOCK_DEAD)) 4526 sk->sk_state_change(sk); 4527 else 4528 inet_csk_destroy_sock(sk); 4529 } 4530 EXPORT_SYMBOL_GPL(tcp_done); 4531 4532 int tcp_abort(struct sock *sk, int err) 4533 { 4534 if (!sk_fullsock(sk)) { 4535 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4536 struct request_sock *req = inet_reqsk(sk); 4537 4538 local_bh_disable(); 4539 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4540 local_bh_enable(); 4541 return 0; 4542 } 4543 return -EOPNOTSUPP; 4544 } 4545 4546 /* Don't race with userspace socket closes such as tcp_close. */ 4547 lock_sock(sk); 4548 4549 if (sk->sk_state == TCP_LISTEN) { 4550 tcp_set_state(sk, TCP_CLOSE); 4551 inet_csk_listen_stop(sk); 4552 } 4553 4554 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4555 local_bh_disable(); 4556 bh_lock_sock(sk); 4557 4558 if (!sock_flag(sk, SOCK_DEAD)) { 4559 sk->sk_err = err; 4560 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4561 smp_wmb(); 4562 sk_error_report(sk); 4563 if (tcp_need_reset(sk->sk_state)) 4564 tcp_send_active_reset(sk, GFP_ATOMIC); 4565 tcp_done(sk); 4566 } 4567 4568 bh_unlock_sock(sk); 4569 local_bh_enable(); 4570 tcp_write_queue_purge(sk); 4571 release_sock(sk); 4572 return 0; 4573 } 4574 EXPORT_SYMBOL_GPL(tcp_abort); 4575 4576 extern struct tcp_congestion_ops tcp_reno; 4577 4578 static __initdata unsigned long thash_entries; 4579 static int __init set_thash_entries(char *str) 4580 { 4581 ssize_t ret; 4582 4583 if (!str) 4584 return 0; 4585 4586 ret = kstrtoul(str, 0, &thash_entries); 4587 if (ret) 4588 return 0; 4589 4590 return 1; 4591 } 4592 __setup("thash_entries=", set_thash_entries); 4593 4594 static void __init tcp_init_mem(void) 4595 { 4596 unsigned long limit = nr_free_buffer_pages() / 16; 4597 4598 limit = max(limit, 128UL); 4599 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4600 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4601 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4602 } 4603 4604 void __init tcp_init(void) 4605 { 4606 int max_rshare, max_wshare, cnt; 4607 unsigned long limit; 4608 unsigned int i; 4609 4610 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4611 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4612 sizeof_field(struct sk_buff, cb)); 4613 4614 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4615 4616 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4617 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4618 4619 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4620 thash_entries, 21, /* one slot per 2 MB*/ 4621 0, 64 * 1024); 4622 tcp_hashinfo.bind_bucket_cachep = 4623 kmem_cache_create("tcp_bind_bucket", 4624 sizeof(struct inet_bind_bucket), 0, 4625 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4626 SLAB_ACCOUNT, 4627 NULL); 4628 4629 /* Size and allocate the main established and bind bucket 4630 * hash tables. 4631 * 4632 * The methodology is similar to that of the buffer cache. 4633 */ 4634 tcp_hashinfo.ehash = 4635 alloc_large_system_hash("TCP established", 4636 sizeof(struct inet_ehash_bucket), 4637 thash_entries, 4638 17, /* one slot per 128 KB of memory */ 4639 0, 4640 NULL, 4641 &tcp_hashinfo.ehash_mask, 4642 0, 4643 thash_entries ? 0 : 512 * 1024); 4644 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4645 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4646 4647 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4648 panic("TCP: failed to alloc ehash_locks"); 4649 tcp_hashinfo.bhash = 4650 alloc_large_system_hash("TCP bind", 4651 sizeof(struct inet_bind_hashbucket), 4652 tcp_hashinfo.ehash_mask + 1, 4653 17, /* one slot per 128 KB of memory */ 4654 0, 4655 &tcp_hashinfo.bhash_size, 4656 NULL, 4657 0, 4658 64 * 1024); 4659 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4660 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4661 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4662 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4663 } 4664 4665 4666 cnt = tcp_hashinfo.ehash_mask + 1; 4667 sysctl_tcp_max_orphans = cnt / 2; 4668 4669 tcp_init_mem(); 4670 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4671 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4672 max_wshare = min(4UL*1024*1024, limit); 4673 max_rshare = min(6UL*1024*1024, limit); 4674 4675 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4676 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4677 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4678 4679 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4680 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4681 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4682 4683 pr_info("Hash tables configured (established %u bind %u)\n", 4684 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4685 4686 tcp_v4_init(); 4687 tcp_metrics_init(); 4688 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4689 tcp_tasklet_init(); 4690 mptcp_init(); 4691 } 4692