1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 } 726 /* It is possible TX completion already happened 727 * before we set TSQ_THROTTLED. 728 */ 729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 730 return; 731 } 732 733 if (flags & MSG_MORE) 734 nonagle = TCP_NAGLE_CORK; 735 736 __tcp_push_pending_frames(sk, mss_now, nonagle); 737 } 738 739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 740 unsigned int offset, size_t len) 741 { 742 struct tcp_splice_state *tss = rd_desc->arg.data; 743 int ret; 744 745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 746 min(rd_desc->count, len), tss->flags); 747 if (ret > 0) 748 rd_desc->count -= ret; 749 return ret; 750 } 751 752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 753 { 754 /* Store TCP splice context information in read_descriptor_t. */ 755 read_descriptor_t rd_desc = { 756 .arg.data = tss, 757 .count = tss->len, 758 }; 759 760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 761 } 762 763 /** 764 * tcp_splice_read - splice data from TCP socket to a pipe 765 * @sock: socket to splice from 766 * @ppos: position (not valid) 767 * @pipe: pipe to splice to 768 * @len: number of bytes to splice 769 * @flags: splice modifier flags 770 * 771 * Description: 772 * Will read pages from given socket and fill them into a pipe. 773 * 774 **/ 775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 776 struct pipe_inode_info *pipe, size_t len, 777 unsigned int flags) 778 { 779 struct sock *sk = sock->sk; 780 struct tcp_splice_state tss = { 781 .pipe = pipe, 782 .len = len, 783 .flags = flags, 784 }; 785 long timeo; 786 ssize_t spliced; 787 int ret; 788 789 sock_rps_record_flow(sk); 790 /* 791 * We can't seek on a socket input 792 */ 793 if (unlikely(*ppos)) 794 return -ESPIPE; 795 796 ret = spliced = 0; 797 798 lock_sock(sk); 799 800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 801 while (tss.len) { 802 ret = __tcp_splice_read(sk, &tss); 803 if (ret < 0) 804 break; 805 else if (!ret) { 806 if (spliced) 807 break; 808 if (sock_flag(sk, SOCK_DONE)) 809 break; 810 if (sk->sk_err) { 811 ret = sock_error(sk); 812 break; 813 } 814 if (sk->sk_shutdown & RCV_SHUTDOWN) 815 break; 816 if (sk->sk_state == TCP_CLOSE) { 817 /* 818 * This occurs when user tries to read 819 * from never connected socket. 820 */ 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 ret = sk_wait_data(sk, &timeo, NULL); 835 if (ret < 0) 836 break; 837 if (signal_pending(current)) { 838 ret = sock_intr_errno(timeo); 839 break; 840 } 841 continue; 842 } 843 tss.len -= ret; 844 spliced += ret; 845 846 if (!tss.len || !timeo) 847 break; 848 release_sock(sk); 849 lock_sock(sk); 850 851 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 852 (sk->sk_shutdown & RCV_SHUTDOWN) || 853 signal_pending(current)) 854 break; 855 } 856 857 release_sock(sk); 858 859 if (spliced) 860 return spliced; 861 862 return ret; 863 } 864 EXPORT_SYMBOL(tcp_splice_read); 865 866 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 867 bool force_schedule) 868 { 869 struct sk_buff *skb; 870 871 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 872 if (likely(skb)) { 873 bool mem_scheduled; 874 875 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 876 if (force_schedule) { 877 mem_scheduled = true; 878 sk_forced_mem_schedule(sk, skb->truesize); 879 } else { 880 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 881 } 882 if (likely(mem_scheduled)) { 883 skb_reserve(skb, MAX_TCP_HEADER); 884 skb->ip_summed = CHECKSUM_PARTIAL; 885 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 886 return skb; 887 } 888 __kfree_skb(skb); 889 } else { 890 sk->sk_prot->enter_memory_pressure(sk); 891 sk_stream_moderate_sndbuf(sk); 892 } 893 return NULL; 894 } 895 896 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 897 int large_allowed) 898 { 899 struct tcp_sock *tp = tcp_sk(sk); 900 u32 new_size_goal, size_goal; 901 902 if (!large_allowed) 903 return mss_now; 904 905 /* Note : tcp_tso_autosize() will eventually split this later */ 906 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 907 908 /* We try hard to avoid divides here */ 909 size_goal = tp->gso_segs * mss_now; 910 if (unlikely(new_size_goal < size_goal || 911 new_size_goal >= size_goal + mss_now)) { 912 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 913 sk->sk_gso_max_segs); 914 size_goal = tp->gso_segs * mss_now; 915 } 916 917 return max(size_goal, mss_now); 918 } 919 920 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 921 { 922 int mss_now; 923 924 mss_now = tcp_current_mss(sk); 925 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 926 927 return mss_now; 928 } 929 930 /* In some cases, sendmsg() could have added an skb to the write queue, 931 * but failed adding payload on it. We need to remove it to consume less 932 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 933 * epoll() users. Another reason is that tcp_write_xmit() does not like 934 * finding an empty skb in the write queue. 935 */ 936 void tcp_remove_empty_skb(struct sock *sk) 937 { 938 struct sk_buff *skb = tcp_write_queue_tail(sk); 939 940 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 941 tcp_unlink_write_queue(skb, sk); 942 if (tcp_write_queue_empty(sk)) 943 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 944 tcp_wmem_free_skb(sk, skb); 945 } 946 } 947 948 /* skb changing from pure zc to mixed, must charge zc */ 949 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 950 { 951 if (unlikely(skb_zcopy_pure(skb))) { 952 u32 extra = skb->truesize - 953 SKB_TRUESIZE(skb_end_offset(skb)); 954 955 if (!sk_wmem_schedule(sk, extra)) 956 return -ENOMEM; 957 958 sk_mem_charge(sk, extra); 959 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 960 } 961 return 0; 962 } 963 964 965 int tcp_wmem_schedule(struct sock *sk, int copy) 966 { 967 int left; 968 969 if (likely(sk_wmem_schedule(sk, copy))) 970 return copy; 971 972 /* We could be in trouble if we have nothing queued. 973 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 974 * to guarantee some progress. 975 */ 976 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 977 if (left > 0) 978 sk_forced_mem_schedule(sk, min(left, copy)); 979 return min(copy, sk->sk_forward_alloc); 980 } 981 982 void tcp_free_fastopen_req(struct tcp_sock *tp) 983 { 984 if (tp->fastopen_req) { 985 kfree(tp->fastopen_req); 986 tp->fastopen_req = NULL; 987 } 988 } 989 990 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 991 size_t size, struct ubuf_info *uarg) 992 { 993 struct tcp_sock *tp = tcp_sk(sk); 994 struct inet_sock *inet = inet_sk(sk); 995 struct sockaddr *uaddr = msg->msg_name; 996 int err, flags; 997 998 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 999 TFO_CLIENT_ENABLE) || 1000 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1001 uaddr->sa_family == AF_UNSPEC)) 1002 return -EOPNOTSUPP; 1003 if (tp->fastopen_req) 1004 return -EALREADY; /* Another Fast Open is in progress */ 1005 1006 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1007 sk->sk_allocation); 1008 if (unlikely(!tp->fastopen_req)) 1009 return -ENOBUFS; 1010 tp->fastopen_req->data = msg; 1011 tp->fastopen_req->size = size; 1012 tp->fastopen_req->uarg = uarg; 1013 1014 if (inet_test_bit(DEFER_CONNECT, sk)) { 1015 err = tcp_connect(sk); 1016 /* Same failure procedure as in tcp_v4/6_connect */ 1017 if (err) { 1018 tcp_set_state(sk, TCP_CLOSE); 1019 inet->inet_dport = 0; 1020 sk->sk_route_caps = 0; 1021 } 1022 } 1023 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1024 err = __inet_stream_connect(sk->sk_socket, uaddr, 1025 msg->msg_namelen, flags, 1); 1026 /* fastopen_req could already be freed in __inet_stream_connect 1027 * if the connection times out or gets rst 1028 */ 1029 if (tp->fastopen_req) { 1030 *copied = tp->fastopen_req->copied; 1031 tcp_free_fastopen_req(tp); 1032 inet_clear_bit(DEFER_CONNECT, sk); 1033 } 1034 return err; 1035 } 1036 1037 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1038 { 1039 struct tcp_sock *tp = tcp_sk(sk); 1040 struct ubuf_info *uarg = NULL; 1041 struct sk_buff *skb; 1042 struct sockcm_cookie sockc; 1043 int flags, err, copied = 0; 1044 int mss_now = 0, size_goal, copied_syn = 0; 1045 int process_backlog = 0; 1046 int zc = 0; 1047 long timeo; 1048 1049 flags = msg->msg_flags; 1050 1051 if ((flags & MSG_ZEROCOPY) && size) { 1052 if (msg->msg_ubuf) { 1053 uarg = msg->msg_ubuf; 1054 if (sk->sk_route_caps & NETIF_F_SG) 1055 zc = MSG_ZEROCOPY; 1056 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1057 skb = tcp_write_queue_tail(sk); 1058 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1059 if (!uarg) { 1060 err = -ENOBUFS; 1061 goto out_err; 1062 } 1063 if (sk->sk_route_caps & NETIF_F_SG) 1064 zc = MSG_ZEROCOPY; 1065 else 1066 uarg_to_msgzc(uarg)->zerocopy = 0; 1067 } 1068 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1069 if (sk->sk_route_caps & NETIF_F_SG) 1070 zc = MSG_SPLICE_PAGES; 1071 } 1072 1073 if (unlikely(flags & MSG_FASTOPEN || 1074 inet_test_bit(DEFER_CONNECT, sk)) && 1075 !tp->repair) { 1076 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1077 if (err == -EINPROGRESS && copied_syn > 0) 1078 goto out; 1079 else if (err) 1080 goto out_err; 1081 } 1082 1083 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1084 1085 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1086 1087 /* Wait for a connection to finish. One exception is TCP Fast Open 1088 * (passive side) where data is allowed to be sent before a connection 1089 * is fully established. 1090 */ 1091 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1092 !tcp_passive_fastopen(sk)) { 1093 err = sk_stream_wait_connect(sk, &timeo); 1094 if (err != 0) 1095 goto do_error; 1096 } 1097 1098 if (unlikely(tp->repair)) { 1099 if (tp->repair_queue == TCP_RECV_QUEUE) { 1100 copied = tcp_send_rcvq(sk, msg, size); 1101 goto out_nopush; 1102 } 1103 1104 err = -EINVAL; 1105 if (tp->repair_queue == TCP_NO_QUEUE) 1106 goto out_err; 1107 1108 /* 'common' sending to sendq */ 1109 } 1110 1111 sockcm_init(&sockc, sk); 1112 if (msg->msg_controllen) { 1113 err = sock_cmsg_send(sk, msg, &sockc); 1114 if (unlikely(err)) { 1115 err = -EINVAL; 1116 goto out_err; 1117 } 1118 } 1119 1120 /* This should be in poll */ 1121 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1122 1123 /* Ok commence sending. */ 1124 copied = 0; 1125 1126 restart: 1127 mss_now = tcp_send_mss(sk, &size_goal, flags); 1128 1129 err = -EPIPE; 1130 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1131 goto do_error; 1132 1133 while (msg_data_left(msg)) { 1134 ssize_t copy = 0; 1135 1136 skb = tcp_write_queue_tail(sk); 1137 if (skb) 1138 copy = size_goal - skb->len; 1139 1140 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1141 bool first_skb; 1142 1143 new_segment: 1144 if (!sk_stream_memory_free(sk)) 1145 goto wait_for_space; 1146 1147 if (unlikely(process_backlog >= 16)) { 1148 process_backlog = 0; 1149 if (sk_flush_backlog(sk)) 1150 goto restart; 1151 } 1152 first_skb = tcp_rtx_and_write_queues_empty(sk); 1153 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1154 first_skb); 1155 if (!skb) 1156 goto wait_for_space; 1157 1158 process_backlog++; 1159 1160 tcp_skb_entail(sk, skb); 1161 copy = size_goal; 1162 1163 /* All packets are restored as if they have 1164 * already been sent. skb_mstamp_ns isn't set to 1165 * avoid wrong rtt estimation. 1166 */ 1167 if (tp->repair) 1168 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1169 } 1170 1171 /* Try to append data to the end of skb. */ 1172 if (copy > msg_data_left(msg)) 1173 copy = msg_data_left(msg); 1174 1175 if (zc == 0) { 1176 bool merge = true; 1177 int i = skb_shinfo(skb)->nr_frags; 1178 struct page_frag *pfrag = sk_page_frag(sk); 1179 1180 if (!sk_page_frag_refill(sk, pfrag)) 1181 goto wait_for_space; 1182 1183 if (!skb_can_coalesce(skb, i, pfrag->page, 1184 pfrag->offset)) { 1185 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1186 tcp_mark_push(tp, skb); 1187 goto new_segment; 1188 } 1189 merge = false; 1190 } 1191 1192 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1193 1194 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1195 if (tcp_downgrade_zcopy_pure(sk, skb)) 1196 goto wait_for_space; 1197 skb_zcopy_downgrade_managed(skb); 1198 } 1199 1200 copy = tcp_wmem_schedule(sk, copy); 1201 if (!copy) 1202 goto wait_for_space; 1203 1204 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1205 pfrag->page, 1206 pfrag->offset, 1207 copy); 1208 if (err) 1209 goto do_error; 1210 1211 /* Update the skb. */ 1212 if (merge) { 1213 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1214 } else { 1215 skb_fill_page_desc(skb, i, pfrag->page, 1216 pfrag->offset, copy); 1217 page_ref_inc(pfrag->page); 1218 } 1219 pfrag->offset += copy; 1220 } else if (zc == MSG_ZEROCOPY) { 1221 /* First append to a fragless skb builds initial 1222 * pure zerocopy skb 1223 */ 1224 if (!skb->len) 1225 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1226 1227 if (!skb_zcopy_pure(skb)) { 1228 copy = tcp_wmem_schedule(sk, copy); 1229 if (!copy) 1230 goto wait_for_space; 1231 } 1232 1233 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1234 if (err == -EMSGSIZE || err == -EEXIST) { 1235 tcp_mark_push(tp, skb); 1236 goto new_segment; 1237 } 1238 if (err < 0) 1239 goto do_error; 1240 copy = err; 1241 } else if (zc == MSG_SPLICE_PAGES) { 1242 /* Splice in data if we can; copy if we can't. */ 1243 if (tcp_downgrade_zcopy_pure(sk, skb)) 1244 goto wait_for_space; 1245 copy = tcp_wmem_schedule(sk, copy); 1246 if (!copy) 1247 goto wait_for_space; 1248 1249 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1250 sk->sk_allocation); 1251 if (err < 0) { 1252 if (err == -EMSGSIZE) { 1253 tcp_mark_push(tp, skb); 1254 goto new_segment; 1255 } 1256 goto do_error; 1257 } 1258 copy = err; 1259 1260 if (!(flags & MSG_NO_SHARED_FRAGS)) 1261 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1262 1263 sk_wmem_queued_add(sk, copy); 1264 sk_mem_charge(sk, copy); 1265 } 1266 1267 if (!copied) 1268 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1269 1270 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1271 TCP_SKB_CB(skb)->end_seq += copy; 1272 tcp_skb_pcount_set(skb, 0); 1273 1274 copied += copy; 1275 if (!msg_data_left(msg)) { 1276 if (unlikely(flags & MSG_EOR)) 1277 TCP_SKB_CB(skb)->eor = 1; 1278 goto out; 1279 } 1280 1281 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1282 continue; 1283 1284 if (forced_push(tp)) { 1285 tcp_mark_push(tp, skb); 1286 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1287 } else if (skb == tcp_send_head(sk)) 1288 tcp_push_one(sk, mss_now); 1289 continue; 1290 1291 wait_for_space: 1292 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1293 tcp_remove_empty_skb(sk); 1294 if (copied) 1295 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1296 TCP_NAGLE_PUSH, size_goal); 1297 1298 err = sk_stream_wait_memory(sk, &timeo); 1299 if (err != 0) 1300 goto do_error; 1301 1302 mss_now = tcp_send_mss(sk, &size_goal, flags); 1303 } 1304 1305 out: 1306 if (copied) { 1307 tcp_tx_timestamp(sk, sockc.tsflags); 1308 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1309 } 1310 out_nopush: 1311 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1312 if (uarg && !msg->msg_ubuf) 1313 net_zcopy_put(uarg); 1314 return copied + copied_syn; 1315 1316 do_error: 1317 tcp_remove_empty_skb(sk); 1318 1319 if (copied + copied_syn) 1320 goto out; 1321 out_err: 1322 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1323 if (uarg && !msg->msg_ubuf) 1324 net_zcopy_put_abort(uarg, true); 1325 err = sk_stream_error(sk, flags, err); 1326 /* make sure we wake any epoll edge trigger waiter */ 1327 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1328 sk->sk_write_space(sk); 1329 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1330 } 1331 return err; 1332 } 1333 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1334 1335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1336 { 1337 int ret; 1338 1339 lock_sock(sk); 1340 ret = tcp_sendmsg_locked(sk, msg, size); 1341 release_sock(sk); 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(tcp_sendmsg); 1346 1347 void tcp_splice_eof(struct socket *sock) 1348 { 1349 struct sock *sk = sock->sk; 1350 struct tcp_sock *tp = tcp_sk(sk); 1351 int mss_now, size_goal; 1352 1353 if (!tcp_write_queue_tail(sk)) 1354 return; 1355 1356 lock_sock(sk); 1357 mss_now = tcp_send_mss(sk, &size_goal, 0); 1358 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1359 release_sock(sk); 1360 } 1361 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1362 1363 /* 1364 * Handle reading urgent data. BSD has very simple semantics for 1365 * this, no blocking and very strange errors 8) 1366 */ 1367 1368 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1369 { 1370 struct tcp_sock *tp = tcp_sk(sk); 1371 1372 /* No URG data to read. */ 1373 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1374 tp->urg_data == TCP_URG_READ) 1375 return -EINVAL; /* Yes this is right ! */ 1376 1377 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1378 return -ENOTCONN; 1379 1380 if (tp->urg_data & TCP_URG_VALID) { 1381 int err = 0; 1382 char c = tp->urg_data; 1383 1384 if (!(flags & MSG_PEEK)) 1385 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1386 1387 /* Read urgent data. */ 1388 msg->msg_flags |= MSG_OOB; 1389 1390 if (len > 0) { 1391 if (!(flags & MSG_TRUNC)) 1392 err = memcpy_to_msg(msg, &c, 1); 1393 len = 1; 1394 } else 1395 msg->msg_flags |= MSG_TRUNC; 1396 1397 return err ? -EFAULT : len; 1398 } 1399 1400 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1401 return 0; 1402 1403 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1404 * the available implementations agree in this case: 1405 * this call should never block, independent of the 1406 * blocking state of the socket. 1407 * Mike <pall@rz.uni-karlsruhe.de> 1408 */ 1409 return -EAGAIN; 1410 } 1411 1412 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1413 { 1414 struct sk_buff *skb; 1415 int copied = 0, err = 0; 1416 1417 /* XXX -- need to support SO_PEEK_OFF */ 1418 1419 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1420 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1421 if (err) 1422 return err; 1423 copied += skb->len; 1424 } 1425 1426 skb_queue_walk(&sk->sk_write_queue, skb) { 1427 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1428 if (err) 1429 break; 1430 1431 copied += skb->len; 1432 } 1433 1434 return err ?: copied; 1435 } 1436 1437 /* Clean up the receive buffer for full frames taken by the user, 1438 * then send an ACK if necessary. COPIED is the number of bytes 1439 * tcp_recvmsg has given to the user so far, it speeds up the 1440 * calculation of whether or not we must ACK for the sake of 1441 * a window update. 1442 */ 1443 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1444 { 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 bool time_to_ack = false; 1447 1448 if (inet_csk_ack_scheduled(sk)) { 1449 const struct inet_connection_sock *icsk = inet_csk(sk); 1450 1451 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1452 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1453 /* 1454 * If this read emptied read buffer, we send ACK, if 1455 * connection is not bidirectional, user drained 1456 * receive buffer and there was a small segment 1457 * in queue. 1458 */ 1459 (copied > 0 && 1460 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1462 !inet_csk_in_pingpong_mode(sk))) && 1463 !atomic_read(&sk->sk_rmem_alloc))) 1464 time_to_ack = true; 1465 } 1466 1467 /* We send an ACK if we can now advertise a non-zero window 1468 * which has been raised "significantly". 1469 * 1470 * Even if window raised up to infinity, do not send window open ACK 1471 * in states, where we will not receive more. It is useless. 1472 */ 1473 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1474 __u32 rcv_window_now = tcp_receive_window(tp); 1475 1476 /* Optimize, __tcp_select_window() is not cheap. */ 1477 if (2*rcv_window_now <= tp->window_clamp) { 1478 __u32 new_window = __tcp_select_window(sk); 1479 1480 /* Send ACK now, if this read freed lots of space 1481 * in our buffer. Certainly, new_window is new window. 1482 * We can advertise it now, if it is not less than current one. 1483 * "Lots" means "at least twice" here. 1484 */ 1485 if (new_window && new_window >= 2 * rcv_window_now) 1486 time_to_ack = true; 1487 } 1488 } 1489 if (time_to_ack) 1490 tcp_send_ack(sk); 1491 } 1492 1493 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1494 { 1495 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1499 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1500 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1501 __tcp_cleanup_rbuf(sk, copied); 1502 } 1503 1504 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1505 { 1506 __skb_unlink(skb, &sk->sk_receive_queue); 1507 if (likely(skb->destructor == sock_rfree)) { 1508 sock_rfree(skb); 1509 skb->destructor = NULL; 1510 skb->sk = NULL; 1511 return skb_attempt_defer_free(skb); 1512 } 1513 __kfree_skb(skb); 1514 } 1515 1516 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1517 { 1518 struct sk_buff *skb; 1519 u32 offset; 1520 1521 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1522 offset = seq - TCP_SKB_CB(skb)->seq; 1523 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1524 pr_err_once("%s: found a SYN, please report !\n", __func__); 1525 offset--; 1526 } 1527 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1528 *off = offset; 1529 return skb; 1530 } 1531 /* This looks weird, but this can happen if TCP collapsing 1532 * splitted a fat GRO packet, while we released socket lock 1533 * in skb_splice_bits() 1534 */ 1535 tcp_eat_recv_skb(sk, skb); 1536 } 1537 return NULL; 1538 } 1539 EXPORT_SYMBOL(tcp_recv_skb); 1540 1541 /* 1542 * This routine provides an alternative to tcp_recvmsg() for routines 1543 * that would like to handle copying from skbuffs directly in 'sendfile' 1544 * fashion. 1545 * Note: 1546 * - It is assumed that the socket was locked by the caller. 1547 * - The routine does not block. 1548 * - At present, there is no support for reading OOB data 1549 * or for 'peeking' the socket using this routine 1550 * (although both would be easy to implement). 1551 */ 1552 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1553 sk_read_actor_t recv_actor) 1554 { 1555 struct sk_buff *skb; 1556 struct tcp_sock *tp = tcp_sk(sk); 1557 u32 seq = tp->copied_seq; 1558 u32 offset; 1559 int copied = 0; 1560 1561 if (sk->sk_state == TCP_LISTEN) 1562 return -ENOTCONN; 1563 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1564 if (offset < skb->len) { 1565 int used; 1566 size_t len; 1567 1568 len = skb->len - offset; 1569 /* Stop reading if we hit a patch of urgent data */ 1570 if (unlikely(tp->urg_data)) { 1571 u32 urg_offset = tp->urg_seq - seq; 1572 if (urg_offset < len) 1573 len = urg_offset; 1574 if (!len) 1575 break; 1576 } 1577 used = recv_actor(desc, skb, offset, len); 1578 if (used <= 0) { 1579 if (!copied) 1580 copied = used; 1581 break; 1582 } 1583 if (WARN_ON_ONCE(used > len)) 1584 used = len; 1585 seq += used; 1586 copied += used; 1587 offset += used; 1588 1589 /* If recv_actor drops the lock (e.g. TCP splice 1590 * receive) the skb pointer might be invalid when 1591 * getting here: tcp_collapse might have deleted it 1592 * while aggregating skbs from the socket queue. 1593 */ 1594 skb = tcp_recv_skb(sk, seq - 1, &offset); 1595 if (!skb) 1596 break; 1597 /* TCP coalescing might have appended data to the skb. 1598 * Try to splice more frags 1599 */ 1600 if (offset + 1 != skb->len) 1601 continue; 1602 } 1603 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1604 tcp_eat_recv_skb(sk, skb); 1605 ++seq; 1606 break; 1607 } 1608 tcp_eat_recv_skb(sk, skb); 1609 if (!desc->count) 1610 break; 1611 WRITE_ONCE(tp->copied_seq, seq); 1612 } 1613 WRITE_ONCE(tp->copied_seq, seq); 1614 1615 tcp_rcv_space_adjust(sk); 1616 1617 /* Clean up data we have read: This will do ACK frames. */ 1618 if (copied > 0) { 1619 tcp_recv_skb(sk, seq, &offset); 1620 tcp_cleanup_rbuf(sk, copied); 1621 } 1622 return copied; 1623 } 1624 EXPORT_SYMBOL(tcp_read_sock); 1625 1626 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1627 { 1628 struct sk_buff *skb; 1629 int copied = 0; 1630 1631 if (sk->sk_state == TCP_LISTEN) 1632 return -ENOTCONN; 1633 1634 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1635 u8 tcp_flags; 1636 int used; 1637 1638 __skb_unlink(skb, &sk->sk_receive_queue); 1639 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1640 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1641 used = recv_actor(sk, skb); 1642 if (used < 0) { 1643 if (!copied) 1644 copied = used; 1645 break; 1646 } 1647 copied += used; 1648 1649 if (tcp_flags & TCPHDR_FIN) 1650 break; 1651 } 1652 return copied; 1653 } 1654 EXPORT_SYMBOL(tcp_read_skb); 1655 1656 void tcp_read_done(struct sock *sk, size_t len) 1657 { 1658 struct tcp_sock *tp = tcp_sk(sk); 1659 u32 seq = tp->copied_seq; 1660 struct sk_buff *skb; 1661 size_t left; 1662 u32 offset; 1663 1664 if (sk->sk_state == TCP_LISTEN) 1665 return; 1666 1667 left = len; 1668 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1669 int used; 1670 1671 used = min_t(size_t, skb->len - offset, left); 1672 seq += used; 1673 left -= used; 1674 1675 if (skb->len > offset + used) 1676 break; 1677 1678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1679 tcp_eat_recv_skb(sk, skb); 1680 ++seq; 1681 break; 1682 } 1683 tcp_eat_recv_skb(sk, skb); 1684 } 1685 WRITE_ONCE(tp->copied_seq, seq); 1686 1687 tcp_rcv_space_adjust(sk); 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 if (left != len) 1691 tcp_cleanup_rbuf(sk, len - left); 1692 } 1693 EXPORT_SYMBOL(tcp_read_done); 1694 1695 int tcp_peek_len(struct socket *sock) 1696 { 1697 return tcp_inq(sock->sk); 1698 } 1699 EXPORT_SYMBOL(tcp_peek_len); 1700 1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1702 int tcp_set_rcvlowat(struct sock *sk, int val) 1703 { 1704 int space, cap; 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 cap = sk->sk_rcvbuf >> 1; 1708 else 1709 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1710 val = min(val, cap); 1711 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1712 1713 /* Check if we need to signal EPOLLIN right now */ 1714 tcp_data_ready(sk); 1715 1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1717 return 0; 1718 1719 space = tcp_space_from_win(sk, val); 1720 if (space > sk->sk_rcvbuf) { 1721 WRITE_ONCE(sk->sk_rcvbuf, space); 1722 tcp_sk(sk)->window_clamp = val; 1723 } 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(tcp_set_rcvlowat); 1727 1728 void tcp_update_recv_tstamps(struct sk_buff *skb, 1729 struct scm_timestamping_internal *tss) 1730 { 1731 if (skb->tstamp) 1732 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1733 else 1734 tss->ts[0] = (struct timespec64) {0}; 1735 1736 if (skb_hwtstamps(skb)->hwtstamp) 1737 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1738 else 1739 tss->ts[2] = (struct timespec64) {0}; 1740 } 1741 1742 #ifdef CONFIG_MMU 1743 static const struct vm_operations_struct tcp_vm_ops = { 1744 }; 1745 1746 int tcp_mmap(struct file *file, struct socket *sock, 1747 struct vm_area_struct *vma) 1748 { 1749 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1750 return -EPERM; 1751 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1752 1753 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1754 vm_flags_set(vma, VM_MIXEDMAP); 1755 1756 vma->vm_ops = &tcp_vm_ops; 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(tcp_mmap); 1760 1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1762 u32 *offset_frag) 1763 { 1764 skb_frag_t *frag; 1765 1766 if (unlikely(offset_skb >= skb->len)) 1767 return NULL; 1768 1769 offset_skb -= skb_headlen(skb); 1770 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1771 return NULL; 1772 1773 frag = skb_shinfo(skb)->frags; 1774 while (offset_skb) { 1775 if (skb_frag_size(frag) > offset_skb) { 1776 *offset_frag = offset_skb; 1777 return frag; 1778 } 1779 offset_skb -= skb_frag_size(frag); 1780 ++frag; 1781 } 1782 *offset_frag = 0; 1783 return frag; 1784 } 1785 1786 static bool can_map_frag(const skb_frag_t *frag) 1787 { 1788 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1789 } 1790 1791 static int find_next_mappable_frag(const skb_frag_t *frag, 1792 int remaining_in_skb) 1793 { 1794 int offset = 0; 1795 1796 if (likely(can_map_frag(frag))) 1797 return 0; 1798 1799 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1800 offset += skb_frag_size(frag); 1801 ++frag; 1802 } 1803 return offset; 1804 } 1805 1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1807 struct tcp_zerocopy_receive *zc, 1808 struct sk_buff *skb, u32 offset) 1809 { 1810 u32 frag_offset, partial_frag_remainder = 0; 1811 int mappable_offset; 1812 skb_frag_t *frag; 1813 1814 /* worst case: skip to next skb. try to improve on this case below */ 1815 zc->recv_skip_hint = skb->len - offset; 1816 1817 /* Find the frag containing this offset (and how far into that frag) */ 1818 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1819 if (!frag) 1820 return; 1821 1822 if (frag_offset) { 1823 struct skb_shared_info *info = skb_shinfo(skb); 1824 1825 /* We read part of the last frag, must recvmsg() rest of skb. */ 1826 if (frag == &info->frags[info->nr_frags - 1]) 1827 return; 1828 1829 /* Else, we must at least read the remainder in this frag. */ 1830 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1831 zc->recv_skip_hint -= partial_frag_remainder; 1832 ++frag; 1833 } 1834 1835 /* partial_frag_remainder: If part way through a frag, must read rest. 1836 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1837 * in partial_frag_remainder. 1838 */ 1839 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1840 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1841 } 1842 1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1844 int flags, struct scm_timestamping_internal *tss, 1845 int *cmsg_flags); 1846 static int receive_fallback_to_copy(struct sock *sk, 1847 struct tcp_zerocopy_receive *zc, int inq, 1848 struct scm_timestamping_internal *tss) 1849 { 1850 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1851 struct msghdr msg = {}; 1852 struct iovec iov; 1853 int err; 1854 1855 zc->length = 0; 1856 zc->recv_skip_hint = 0; 1857 1858 if (copy_address != zc->copybuf_address) 1859 return -EINVAL; 1860 1861 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1862 inq, &iov, &msg.msg_iter); 1863 if (err) 1864 return err; 1865 1866 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1867 tss, &zc->msg_flags); 1868 if (err < 0) 1869 return err; 1870 1871 zc->copybuf_len = err; 1872 if (likely(zc->copybuf_len)) { 1873 struct sk_buff *skb; 1874 u32 offset; 1875 1876 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1877 if (skb) 1878 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1879 } 1880 return 0; 1881 } 1882 1883 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1884 struct sk_buff *skb, u32 copylen, 1885 u32 *offset, u32 *seq) 1886 { 1887 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1888 struct msghdr msg = {}; 1889 struct iovec iov; 1890 int err; 1891 1892 if (copy_address != zc->copybuf_address) 1893 return -EINVAL; 1894 1895 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1896 copylen, &iov, &msg.msg_iter); 1897 if (err) 1898 return err; 1899 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1900 if (err) 1901 return err; 1902 zc->recv_skip_hint -= copylen; 1903 *offset += copylen; 1904 *seq += copylen; 1905 return (__s32)copylen; 1906 } 1907 1908 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1909 struct sock *sk, 1910 struct sk_buff *skb, 1911 u32 *seq, 1912 s32 copybuf_len, 1913 struct scm_timestamping_internal *tss) 1914 { 1915 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1916 1917 if (!copylen) 1918 return 0; 1919 /* skb is null if inq < PAGE_SIZE. */ 1920 if (skb) { 1921 offset = *seq - TCP_SKB_CB(skb)->seq; 1922 } else { 1923 skb = tcp_recv_skb(sk, *seq, &offset); 1924 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1925 tcp_update_recv_tstamps(skb, tss); 1926 zc->msg_flags |= TCP_CMSG_TS; 1927 } 1928 } 1929 1930 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1931 seq); 1932 return zc->copybuf_len < 0 ? 0 : copylen; 1933 } 1934 1935 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1936 struct page **pending_pages, 1937 unsigned long pages_remaining, 1938 unsigned long *address, 1939 u32 *length, 1940 u32 *seq, 1941 struct tcp_zerocopy_receive *zc, 1942 u32 total_bytes_to_map, 1943 int err) 1944 { 1945 /* At least one page did not map. Try zapping if we skipped earlier. */ 1946 if (err == -EBUSY && 1947 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1948 u32 maybe_zap_len; 1949 1950 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1951 *length + /* Mapped or pending */ 1952 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1953 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1954 err = 0; 1955 } 1956 1957 if (!err) { 1958 unsigned long leftover_pages = pages_remaining; 1959 int bytes_mapped; 1960 1961 /* We called zap_page_range_single, try to reinsert. */ 1962 err = vm_insert_pages(vma, *address, 1963 pending_pages, 1964 &pages_remaining); 1965 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1966 *seq += bytes_mapped; 1967 *address += bytes_mapped; 1968 } 1969 if (err) { 1970 /* Either we were unable to zap, OR we zapped, retried an 1971 * insert, and still had an issue. Either ways, pages_remaining 1972 * is the number of pages we were unable to map, and we unroll 1973 * some state we speculatively touched before. 1974 */ 1975 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1976 1977 *length -= bytes_not_mapped; 1978 zc->recv_skip_hint += bytes_not_mapped; 1979 } 1980 return err; 1981 } 1982 1983 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1984 struct page **pages, 1985 unsigned int pages_to_map, 1986 unsigned long *address, 1987 u32 *length, 1988 u32 *seq, 1989 struct tcp_zerocopy_receive *zc, 1990 u32 total_bytes_to_map) 1991 { 1992 unsigned long pages_remaining = pages_to_map; 1993 unsigned int pages_mapped; 1994 unsigned int bytes_mapped; 1995 int err; 1996 1997 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1998 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1999 bytes_mapped = PAGE_SIZE * pages_mapped; 2000 /* Even if vm_insert_pages fails, it may have partially succeeded in 2001 * mapping (some but not all of the pages). 2002 */ 2003 *seq += bytes_mapped; 2004 *address += bytes_mapped; 2005 2006 if (likely(!err)) 2007 return 0; 2008 2009 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2010 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2011 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2012 err); 2013 } 2014 2015 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2016 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2017 struct tcp_zerocopy_receive *zc, 2018 struct scm_timestamping_internal *tss) 2019 { 2020 unsigned long msg_control_addr; 2021 struct msghdr cmsg_dummy; 2022 2023 msg_control_addr = (unsigned long)zc->msg_control; 2024 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2025 cmsg_dummy.msg_controllen = 2026 (__kernel_size_t)zc->msg_controllen; 2027 cmsg_dummy.msg_flags = in_compat_syscall() 2028 ? MSG_CMSG_COMPAT : 0; 2029 cmsg_dummy.msg_control_is_user = true; 2030 zc->msg_flags = 0; 2031 if (zc->msg_control == msg_control_addr && 2032 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2033 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2034 zc->msg_control = (__u64) 2035 ((uintptr_t)cmsg_dummy.msg_control_user); 2036 zc->msg_controllen = 2037 (__u64)cmsg_dummy.msg_controllen; 2038 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2039 } 2040 } 2041 2042 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2043 unsigned long address, 2044 bool *mmap_locked) 2045 { 2046 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2047 2048 if (vma) { 2049 if (vma->vm_ops != &tcp_vm_ops) { 2050 vma_end_read(vma); 2051 return NULL; 2052 } 2053 *mmap_locked = false; 2054 return vma; 2055 } 2056 2057 mmap_read_lock(mm); 2058 vma = vma_lookup(mm, address); 2059 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2060 mmap_read_unlock(mm); 2061 return NULL; 2062 } 2063 *mmap_locked = true; 2064 return vma; 2065 } 2066 2067 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2068 static int tcp_zerocopy_receive(struct sock *sk, 2069 struct tcp_zerocopy_receive *zc, 2070 struct scm_timestamping_internal *tss) 2071 { 2072 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2073 unsigned long address = (unsigned long)zc->address; 2074 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2075 s32 copybuf_len = zc->copybuf_len; 2076 struct tcp_sock *tp = tcp_sk(sk); 2077 const skb_frag_t *frags = NULL; 2078 unsigned int pages_to_map = 0; 2079 struct vm_area_struct *vma; 2080 struct sk_buff *skb = NULL; 2081 u32 seq = tp->copied_seq; 2082 u32 total_bytes_to_map; 2083 int inq = tcp_inq(sk); 2084 bool mmap_locked; 2085 int ret; 2086 2087 zc->copybuf_len = 0; 2088 zc->msg_flags = 0; 2089 2090 if (address & (PAGE_SIZE - 1) || address != zc->address) 2091 return -EINVAL; 2092 2093 if (sk->sk_state == TCP_LISTEN) 2094 return -ENOTCONN; 2095 2096 sock_rps_record_flow(sk); 2097 2098 if (inq && inq <= copybuf_len) 2099 return receive_fallback_to_copy(sk, zc, inq, tss); 2100 2101 if (inq < PAGE_SIZE) { 2102 zc->length = 0; 2103 zc->recv_skip_hint = inq; 2104 if (!inq && sock_flag(sk, SOCK_DONE)) 2105 return -EIO; 2106 return 0; 2107 } 2108 2109 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2110 if (!vma) 2111 return -EINVAL; 2112 2113 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2114 avail_len = min_t(u32, vma_len, inq); 2115 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2116 if (total_bytes_to_map) { 2117 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2118 zap_page_range_single(vma, address, total_bytes_to_map, 2119 NULL); 2120 zc->length = total_bytes_to_map; 2121 zc->recv_skip_hint = 0; 2122 } else { 2123 zc->length = avail_len; 2124 zc->recv_skip_hint = avail_len; 2125 } 2126 ret = 0; 2127 while (length + PAGE_SIZE <= zc->length) { 2128 int mappable_offset; 2129 struct page *page; 2130 2131 if (zc->recv_skip_hint < PAGE_SIZE) { 2132 u32 offset_frag; 2133 2134 if (skb) { 2135 if (zc->recv_skip_hint > 0) 2136 break; 2137 skb = skb->next; 2138 offset = seq - TCP_SKB_CB(skb)->seq; 2139 } else { 2140 skb = tcp_recv_skb(sk, seq, &offset); 2141 } 2142 2143 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2144 tcp_update_recv_tstamps(skb, tss); 2145 zc->msg_flags |= TCP_CMSG_TS; 2146 } 2147 zc->recv_skip_hint = skb->len - offset; 2148 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2149 if (!frags || offset_frag) 2150 break; 2151 } 2152 2153 mappable_offset = find_next_mappable_frag(frags, 2154 zc->recv_skip_hint); 2155 if (mappable_offset) { 2156 zc->recv_skip_hint = mappable_offset; 2157 break; 2158 } 2159 page = skb_frag_page(frags); 2160 prefetchw(page); 2161 pages[pages_to_map++] = page; 2162 length += PAGE_SIZE; 2163 zc->recv_skip_hint -= PAGE_SIZE; 2164 frags++; 2165 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2166 zc->recv_skip_hint < PAGE_SIZE) { 2167 /* Either full batch, or we're about to go to next skb 2168 * (and we cannot unroll failed ops across skbs). 2169 */ 2170 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2171 pages_to_map, 2172 &address, &length, 2173 &seq, zc, 2174 total_bytes_to_map); 2175 if (ret) 2176 goto out; 2177 pages_to_map = 0; 2178 } 2179 } 2180 if (pages_to_map) { 2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2182 &address, &length, &seq, 2183 zc, total_bytes_to_map); 2184 } 2185 out: 2186 if (mmap_locked) 2187 mmap_read_unlock(current->mm); 2188 else 2189 vma_end_read(vma); 2190 /* Try to copy straggler data. */ 2191 if (!ret) 2192 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2193 2194 if (length + copylen) { 2195 WRITE_ONCE(tp->copied_seq, seq); 2196 tcp_rcv_space_adjust(sk); 2197 2198 /* Clean up data we have read: This will do ACK frames. */ 2199 tcp_recv_skb(sk, seq, &offset); 2200 tcp_cleanup_rbuf(sk, length + copylen); 2201 ret = 0; 2202 if (length == zc->length) 2203 zc->recv_skip_hint = 0; 2204 } else { 2205 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2206 ret = -EIO; 2207 } 2208 zc->length = length; 2209 return ret; 2210 } 2211 #endif 2212 2213 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2214 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2215 struct scm_timestamping_internal *tss) 2216 { 2217 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2218 bool has_timestamping = false; 2219 2220 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2221 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2222 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2223 if (new_tstamp) { 2224 struct __kernel_timespec kts = { 2225 .tv_sec = tss->ts[0].tv_sec, 2226 .tv_nsec = tss->ts[0].tv_nsec, 2227 }; 2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2229 sizeof(kts), &kts); 2230 } else { 2231 struct __kernel_old_timespec ts_old = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_nsec = tss->ts[0].tv_nsec, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2236 sizeof(ts_old), &ts_old); 2237 } 2238 } else { 2239 if (new_tstamp) { 2240 struct __kernel_sock_timeval stv = { 2241 .tv_sec = tss->ts[0].tv_sec, 2242 .tv_usec = tss->ts[0].tv_nsec / 1000, 2243 }; 2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2245 sizeof(stv), &stv); 2246 } else { 2247 struct __kernel_old_timeval tv = { 2248 .tv_sec = tss->ts[0].tv_sec, 2249 .tv_usec = tss->ts[0].tv_nsec / 1000, 2250 }; 2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2252 sizeof(tv), &tv); 2253 } 2254 } 2255 } 2256 2257 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2258 has_timestamping = true; 2259 else 2260 tss->ts[0] = (struct timespec64) {0}; 2261 } 2262 2263 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2264 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2265 has_timestamping = true; 2266 else 2267 tss->ts[2] = (struct timespec64) {0}; 2268 } 2269 2270 if (has_timestamping) { 2271 tss->ts[1] = (struct timespec64) {0}; 2272 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2273 put_cmsg_scm_timestamping64(msg, tss); 2274 else 2275 put_cmsg_scm_timestamping(msg, tss); 2276 } 2277 } 2278 2279 static int tcp_inq_hint(struct sock *sk) 2280 { 2281 const struct tcp_sock *tp = tcp_sk(sk); 2282 u32 copied_seq = READ_ONCE(tp->copied_seq); 2283 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2284 int inq; 2285 2286 inq = rcv_nxt - copied_seq; 2287 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2288 lock_sock(sk); 2289 inq = tp->rcv_nxt - tp->copied_seq; 2290 release_sock(sk); 2291 } 2292 /* After receiving a FIN, tell the user-space to continue reading 2293 * by returning a non-zero inq. 2294 */ 2295 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2296 inq = 1; 2297 return inq; 2298 } 2299 2300 /* 2301 * This routine copies from a sock struct into the user buffer. 2302 * 2303 * Technical note: in 2.3 we work on _locked_ socket, so that 2304 * tricks with *seq access order and skb->users are not required. 2305 * Probably, code can be easily improved even more. 2306 */ 2307 2308 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2309 int flags, struct scm_timestamping_internal *tss, 2310 int *cmsg_flags) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 int copied = 0; 2314 u32 peek_seq; 2315 u32 *seq; 2316 unsigned long used; 2317 int err; 2318 int target; /* Read at least this many bytes */ 2319 long timeo; 2320 struct sk_buff *skb, *last; 2321 u32 urg_hole = 0; 2322 2323 err = -ENOTCONN; 2324 if (sk->sk_state == TCP_LISTEN) 2325 goto out; 2326 2327 if (tp->recvmsg_inq) { 2328 *cmsg_flags = TCP_CMSG_INQ; 2329 msg->msg_get_inq = 1; 2330 } 2331 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2332 2333 /* Urgent data needs to be handled specially. */ 2334 if (flags & MSG_OOB) 2335 goto recv_urg; 2336 2337 if (unlikely(tp->repair)) { 2338 err = -EPERM; 2339 if (!(flags & MSG_PEEK)) 2340 goto out; 2341 2342 if (tp->repair_queue == TCP_SEND_QUEUE) 2343 goto recv_sndq; 2344 2345 err = -EINVAL; 2346 if (tp->repair_queue == TCP_NO_QUEUE) 2347 goto out; 2348 2349 /* 'common' recv queue MSG_PEEK-ing */ 2350 } 2351 2352 seq = &tp->copied_seq; 2353 if (flags & MSG_PEEK) { 2354 peek_seq = tp->copied_seq; 2355 seq = &peek_seq; 2356 } 2357 2358 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2359 2360 do { 2361 u32 offset; 2362 2363 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2364 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2365 if (copied) 2366 break; 2367 if (signal_pending(current)) { 2368 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2369 break; 2370 } 2371 } 2372 2373 /* Next get a buffer. */ 2374 2375 last = skb_peek_tail(&sk->sk_receive_queue); 2376 skb_queue_walk(&sk->sk_receive_queue, skb) { 2377 last = skb; 2378 /* Now that we have two receive queues this 2379 * shouldn't happen. 2380 */ 2381 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2382 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2383 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2384 flags)) 2385 break; 2386 2387 offset = *seq - TCP_SKB_CB(skb)->seq; 2388 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2389 pr_err_once("%s: found a SYN, please report !\n", __func__); 2390 offset--; 2391 } 2392 if (offset < skb->len) 2393 goto found_ok_skb; 2394 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2395 goto found_fin_ok; 2396 WARN(!(flags & MSG_PEEK), 2397 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2398 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2399 } 2400 2401 /* Well, if we have backlog, try to process it now yet. */ 2402 2403 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2404 break; 2405 2406 if (copied) { 2407 if (!timeo || 2408 sk->sk_err || 2409 sk->sk_state == TCP_CLOSE || 2410 (sk->sk_shutdown & RCV_SHUTDOWN) || 2411 signal_pending(current)) 2412 break; 2413 } else { 2414 if (sock_flag(sk, SOCK_DONE)) 2415 break; 2416 2417 if (sk->sk_err) { 2418 copied = sock_error(sk); 2419 break; 2420 } 2421 2422 if (sk->sk_shutdown & RCV_SHUTDOWN) 2423 break; 2424 2425 if (sk->sk_state == TCP_CLOSE) { 2426 /* This occurs when user tries to read 2427 * from never connected socket. 2428 */ 2429 copied = -ENOTCONN; 2430 break; 2431 } 2432 2433 if (!timeo) { 2434 copied = -EAGAIN; 2435 break; 2436 } 2437 2438 if (signal_pending(current)) { 2439 copied = sock_intr_errno(timeo); 2440 break; 2441 } 2442 } 2443 2444 if (copied >= target) { 2445 /* Do not sleep, just process backlog. */ 2446 __sk_flush_backlog(sk); 2447 } else { 2448 tcp_cleanup_rbuf(sk, copied); 2449 err = sk_wait_data(sk, &timeo, last); 2450 if (err < 0) { 2451 err = copied ? : err; 2452 goto out; 2453 } 2454 } 2455 2456 if ((flags & MSG_PEEK) && 2457 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2458 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2459 current->comm, 2460 task_pid_nr(current)); 2461 peek_seq = tp->copied_seq; 2462 } 2463 continue; 2464 2465 found_ok_skb: 2466 /* Ok so how much can we use? */ 2467 used = skb->len - offset; 2468 if (len < used) 2469 used = len; 2470 2471 /* Do we have urgent data here? */ 2472 if (unlikely(tp->urg_data)) { 2473 u32 urg_offset = tp->urg_seq - *seq; 2474 if (urg_offset < used) { 2475 if (!urg_offset) { 2476 if (!sock_flag(sk, SOCK_URGINLINE)) { 2477 WRITE_ONCE(*seq, *seq + 1); 2478 urg_hole++; 2479 offset++; 2480 used--; 2481 if (!used) 2482 goto skip_copy; 2483 } 2484 } else 2485 used = urg_offset; 2486 } 2487 } 2488 2489 if (!(flags & MSG_TRUNC)) { 2490 err = skb_copy_datagram_msg(skb, offset, msg, used); 2491 if (err) { 2492 /* Exception. Bailout! */ 2493 if (!copied) 2494 copied = -EFAULT; 2495 break; 2496 } 2497 } 2498 2499 WRITE_ONCE(*seq, *seq + used); 2500 copied += used; 2501 len -= used; 2502 2503 tcp_rcv_space_adjust(sk); 2504 2505 skip_copy: 2506 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2507 WRITE_ONCE(tp->urg_data, 0); 2508 tcp_fast_path_check(sk); 2509 } 2510 2511 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2512 tcp_update_recv_tstamps(skb, tss); 2513 *cmsg_flags |= TCP_CMSG_TS; 2514 } 2515 2516 if (used + offset < skb->len) 2517 continue; 2518 2519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2520 goto found_fin_ok; 2521 if (!(flags & MSG_PEEK)) 2522 tcp_eat_recv_skb(sk, skb); 2523 continue; 2524 2525 found_fin_ok: 2526 /* Process the FIN. */ 2527 WRITE_ONCE(*seq, *seq + 1); 2528 if (!(flags & MSG_PEEK)) 2529 tcp_eat_recv_skb(sk, skb); 2530 break; 2531 } while (len > 0); 2532 2533 /* According to UNIX98, msg_name/msg_namelen are ignored 2534 * on connected socket. I was just happy when found this 8) --ANK 2535 */ 2536 2537 /* Clean up data we have read: This will do ACK frames. */ 2538 tcp_cleanup_rbuf(sk, copied); 2539 return copied; 2540 2541 out: 2542 return err; 2543 2544 recv_urg: 2545 err = tcp_recv_urg(sk, msg, len, flags); 2546 goto out; 2547 2548 recv_sndq: 2549 err = tcp_peek_sndq(sk, msg, len); 2550 goto out; 2551 } 2552 2553 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2554 int *addr_len) 2555 { 2556 int cmsg_flags = 0, ret; 2557 struct scm_timestamping_internal tss; 2558 2559 if (unlikely(flags & MSG_ERRQUEUE)) 2560 return inet_recv_error(sk, msg, len, addr_len); 2561 2562 if (sk_can_busy_loop(sk) && 2563 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2564 sk->sk_state == TCP_ESTABLISHED) 2565 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2566 2567 lock_sock(sk); 2568 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2569 release_sock(sk); 2570 2571 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2572 if (cmsg_flags & TCP_CMSG_TS) 2573 tcp_recv_timestamp(msg, sk, &tss); 2574 if (msg->msg_get_inq) { 2575 msg->msg_inq = tcp_inq_hint(sk); 2576 if (cmsg_flags & TCP_CMSG_INQ) 2577 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2578 sizeof(msg->msg_inq), &msg->msg_inq); 2579 } 2580 } 2581 return ret; 2582 } 2583 EXPORT_SYMBOL(tcp_recvmsg); 2584 2585 void tcp_set_state(struct sock *sk, int state) 2586 { 2587 int oldstate = sk->sk_state; 2588 2589 /* We defined a new enum for TCP states that are exported in BPF 2590 * so as not force the internal TCP states to be frozen. The 2591 * following checks will detect if an internal state value ever 2592 * differs from the BPF value. If this ever happens, then we will 2593 * need to remap the internal value to the BPF value before calling 2594 * tcp_call_bpf_2arg. 2595 */ 2596 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2597 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2598 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2599 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2600 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2601 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2602 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2603 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2604 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2605 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2606 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2607 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2608 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2609 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2610 2611 /* bpf uapi header bpf.h defines an anonymous enum with values 2612 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2613 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2614 * But clang built vmlinux does not have this enum in DWARF 2615 * since clang removes the above code before generating IR/debuginfo. 2616 * Let us explicitly emit the type debuginfo to ensure the 2617 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2618 * regardless of which compiler is used. 2619 */ 2620 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2621 2622 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2623 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2624 2625 switch (state) { 2626 case TCP_ESTABLISHED: 2627 if (oldstate != TCP_ESTABLISHED) 2628 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2629 break; 2630 2631 case TCP_CLOSE: 2632 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2633 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2634 2635 sk->sk_prot->unhash(sk); 2636 if (inet_csk(sk)->icsk_bind_hash && 2637 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2638 inet_put_port(sk); 2639 fallthrough; 2640 default: 2641 if (oldstate == TCP_ESTABLISHED) 2642 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2643 } 2644 2645 /* Change state AFTER socket is unhashed to avoid closed 2646 * socket sitting in hash tables. 2647 */ 2648 inet_sk_state_store(sk, state); 2649 } 2650 EXPORT_SYMBOL_GPL(tcp_set_state); 2651 2652 /* 2653 * State processing on a close. This implements the state shift for 2654 * sending our FIN frame. Note that we only send a FIN for some 2655 * states. A shutdown() may have already sent the FIN, or we may be 2656 * closed. 2657 */ 2658 2659 static const unsigned char new_state[16] = { 2660 /* current state: new state: action: */ 2661 [0 /* (Invalid) */] = TCP_CLOSE, 2662 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2663 [TCP_SYN_SENT] = TCP_CLOSE, 2664 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2665 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2666 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2667 [TCP_TIME_WAIT] = TCP_CLOSE, 2668 [TCP_CLOSE] = TCP_CLOSE, 2669 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2670 [TCP_LAST_ACK] = TCP_LAST_ACK, 2671 [TCP_LISTEN] = TCP_CLOSE, 2672 [TCP_CLOSING] = TCP_CLOSING, 2673 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2674 }; 2675 2676 static int tcp_close_state(struct sock *sk) 2677 { 2678 int next = (int)new_state[sk->sk_state]; 2679 int ns = next & TCP_STATE_MASK; 2680 2681 tcp_set_state(sk, ns); 2682 2683 return next & TCP_ACTION_FIN; 2684 } 2685 2686 /* 2687 * Shutdown the sending side of a connection. Much like close except 2688 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2689 */ 2690 2691 void tcp_shutdown(struct sock *sk, int how) 2692 { 2693 /* We need to grab some memory, and put together a FIN, 2694 * and then put it into the queue to be sent. 2695 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2696 */ 2697 if (!(how & SEND_SHUTDOWN)) 2698 return; 2699 2700 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2701 if ((1 << sk->sk_state) & 2702 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2703 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2704 /* Clear out any half completed packets. FIN if needed. */ 2705 if (tcp_close_state(sk)) 2706 tcp_send_fin(sk); 2707 } 2708 } 2709 EXPORT_SYMBOL(tcp_shutdown); 2710 2711 int tcp_orphan_count_sum(void) 2712 { 2713 int i, total = 0; 2714 2715 for_each_possible_cpu(i) 2716 total += per_cpu(tcp_orphan_count, i); 2717 2718 return max(total, 0); 2719 } 2720 2721 static int tcp_orphan_cache; 2722 static struct timer_list tcp_orphan_timer; 2723 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2724 2725 static void tcp_orphan_update(struct timer_list *unused) 2726 { 2727 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2728 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2729 } 2730 2731 static bool tcp_too_many_orphans(int shift) 2732 { 2733 return READ_ONCE(tcp_orphan_cache) << shift > 2734 READ_ONCE(sysctl_tcp_max_orphans); 2735 } 2736 2737 bool tcp_check_oom(struct sock *sk, int shift) 2738 { 2739 bool too_many_orphans, out_of_socket_memory; 2740 2741 too_many_orphans = tcp_too_many_orphans(shift); 2742 out_of_socket_memory = tcp_out_of_memory(sk); 2743 2744 if (too_many_orphans) 2745 net_info_ratelimited("too many orphaned sockets\n"); 2746 if (out_of_socket_memory) 2747 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2748 return too_many_orphans || out_of_socket_memory; 2749 } 2750 2751 void __tcp_close(struct sock *sk, long timeout) 2752 { 2753 struct sk_buff *skb; 2754 int data_was_unread = 0; 2755 int state; 2756 2757 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2758 2759 if (sk->sk_state == TCP_LISTEN) { 2760 tcp_set_state(sk, TCP_CLOSE); 2761 2762 /* Special case. */ 2763 inet_csk_listen_stop(sk); 2764 2765 goto adjudge_to_death; 2766 } 2767 2768 /* We need to flush the recv. buffs. We do this only on the 2769 * descriptor close, not protocol-sourced closes, because the 2770 * reader process may not have drained the data yet! 2771 */ 2772 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2773 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2774 2775 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2776 len--; 2777 data_was_unread += len; 2778 __kfree_skb(skb); 2779 } 2780 2781 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2782 if (sk->sk_state == TCP_CLOSE) 2783 goto adjudge_to_death; 2784 2785 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2786 * data was lost. To witness the awful effects of the old behavior of 2787 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2788 * GET in an FTP client, suspend the process, wait for the client to 2789 * advertise a zero window, then kill -9 the FTP client, wheee... 2790 * Note: timeout is always zero in such a case. 2791 */ 2792 if (unlikely(tcp_sk(sk)->repair)) { 2793 sk->sk_prot->disconnect(sk, 0); 2794 } else if (data_was_unread) { 2795 /* Unread data was tossed, zap the connection. */ 2796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2797 tcp_set_state(sk, TCP_CLOSE); 2798 tcp_send_active_reset(sk, sk->sk_allocation); 2799 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2800 /* Check zero linger _after_ checking for unread data. */ 2801 sk->sk_prot->disconnect(sk, 0); 2802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2803 } else if (tcp_close_state(sk)) { 2804 /* We FIN if the application ate all the data before 2805 * zapping the connection. 2806 */ 2807 2808 /* RED-PEN. Formally speaking, we have broken TCP state 2809 * machine. State transitions: 2810 * 2811 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2812 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2813 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2814 * 2815 * are legal only when FIN has been sent (i.e. in window), 2816 * rather than queued out of window. Purists blame. 2817 * 2818 * F.e. "RFC state" is ESTABLISHED, 2819 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2820 * 2821 * The visible declinations are that sometimes 2822 * we enter time-wait state, when it is not required really 2823 * (harmless), do not send active resets, when they are 2824 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2825 * they look as CLOSING or LAST_ACK for Linux) 2826 * Probably, I missed some more holelets. 2827 * --ANK 2828 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2829 * in a single packet! (May consider it later but will 2830 * probably need API support or TCP_CORK SYN-ACK until 2831 * data is written and socket is closed.) 2832 */ 2833 tcp_send_fin(sk); 2834 } 2835 2836 sk_stream_wait_close(sk, timeout); 2837 2838 adjudge_to_death: 2839 state = sk->sk_state; 2840 sock_hold(sk); 2841 sock_orphan(sk); 2842 2843 local_bh_disable(); 2844 bh_lock_sock(sk); 2845 /* remove backlog if any, without releasing ownership. */ 2846 __release_sock(sk); 2847 2848 this_cpu_inc(tcp_orphan_count); 2849 2850 /* Have we already been destroyed by a softirq or backlog? */ 2851 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2852 goto out; 2853 2854 /* This is a (useful) BSD violating of the RFC. There is a 2855 * problem with TCP as specified in that the other end could 2856 * keep a socket open forever with no application left this end. 2857 * We use a 1 minute timeout (about the same as BSD) then kill 2858 * our end. If they send after that then tough - BUT: long enough 2859 * that we won't make the old 4*rto = almost no time - whoops 2860 * reset mistake. 2861 * 2862 * Nope, it was not mistake. It is really desired behaviour 2863 * f.e. on http servers, when such sockets are useless, but 2864 * consume significant resources. Let's do it with special 2865 * linger2 option. --ANK 2866 */ 2867 2868 if (sk->sk_state == TCP_FIN_WAIT2) { 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 if (READ_ONCE(tp->linger2) < 0) { 2871 tcp_set_state(sk, TCP_CLOSE); 2872 tcp_send_active_reset(sk, GFP_ATOMIC); 2873 __NET_INC_STATS(sock_net(sk), 2874 LINUX_MIB_TCPABORTONLINGER); 2875 } else { 2876 const int tmo = tcp_fin_time(sk); 2877 2878 if (tmo > TCP_TIMEWAIT_LEN) { 2879 inet_csk_reset_keepalive_timer(sk, 2880 tmo - TCP_TIMEWAIT_LEN); 2881 } else { 2882 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2883 goto out; 2884 } 2885 } 2886 } 2887 if (sk->sk_state != TCP_CLOSE) { 2888 if (tcp_check_oom(sk, 0)) { 2889 tcp_set_state(sk, TCP_CLOSE); 2890 tcp_send_active_reset(sk, GFP_ATOMIC); 2891 __NET_INC_STATS(sock_net(sk), 2892 LINUX_MIB_TCPABORTONMEMORY); 2893 } else if (!check_net(sock_net(sk))) { 2894 /* Not possible to send reset; just close */ 2895 tcp_set_state(sk, TCP_CLOSE); 2896 } 2897 } 2898 2899 if (sk->sk_state == TCP_CLOSE) { 2900 struct request_sock *req; 2901 2902 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2903 lockdep_sock_is_held(sk)); 2904 /* We could get here with a non-NULL req if the socket is 2905 * aborted (e.g., closed with unread data) before 3WHS 2906 * finishes. 2907 */ 2908 if (req) 2909 reqsk_fastopen_remove(sk, req, false); 2910 inet_csk_destroy_sock(sk); 2911 } 2912 /* Otherwise, socket is reprieved until protocol close. */ 2913 2914 out: 2915 bh_unlock_sock(sk); 2916 local_bh_enable(); 2917 } 2918 2919 void tcp_close(struct sock *sk, long timeout) 2920 { 2921 lock_sock(sk); 2922 __tcp_close(sk, timeout); 2923 release_sock(sk); 2924 sock_put(sk); 2925 } 2926 EXPORT_SYMBOL(tcp_close); 2927 2928 /* These states need RST on ABORT according to RFC793 */ 2929 2930 static inline bool tcp_need_reset(int state) 2931 { 2932 return (1 << state) & 2933 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2934 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2935 } 2936 2937 static void tcp_rtx_queue_purge(struct sock *sk) 2938 { 2939 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2940 2941 tcp_sk(sk)->highest_sack = NULL; 2942 while (p) { 2943 struct sk_buff *skb = rb_to_skb(p); 2944 2945 p = rb_next(p); 2946 /* Since we are deleting whole queue, no need to 2947 * list_del(&skb->tcp_tsorted_anchor) 2948 */ 2949 tcp_rtx_queue_unlink(skb, sk); 2950 tcp_wmem_free_skb(sk, skb); 2951 } 2952 } 2953 2954 void tcp_write_queue_purge(struct sock *sk) 2955 { 2956 struct sk_buff *skb; 2957 2958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2959 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2960 tcp_skb_tsorted_anchor_cleanup(skb); 2961 tcp_wmem_free_skb(sk, skb); 2962 } 2963 tcp_rtx_queue_purge(sk); 2964 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2965 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2966 tcp_sk(sk)->packets_out = 0; 2967 inet_csk(sk)->icsk_backoff = 0; 2968 } 2969 2970 int tcp_disconnect(struct sock *sk, int flags) 2971 { 2972 struct inet_sock *inet = inet_sk(sk); 2973 struct inet_connection_sock *icsk = inet_csk(sk); 2974 struct tcp_sock *tp = tcp_sk(sk); 2975 int old_state = sk->sk_state; 2976 u32 seq; 2977 2978 if (old_state != TCP_CLOSE) 2979 tcp_set_state(sk, TCP_CLOSE); 2980 2981 /* ABORT function of RFC793 */ 2982 if (old_state == TCP_LISTEN) { 2983 inet_csk_listen_stop(sk); 2984 } else if (unlikely(tp->repair)) { 2985 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2986 } else if (tcp_need_reset(old_state) || 2987 (tp->snd_nxt != tp->write_seq && 2988 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2989 /* The last check adjusts for discrepancy of Linux wrt. RFC 2990 * states 2991 */ 2992 tcp_send_active_reset(sk, gfp_any()); 2993 WRITE_ONCE(sk->sk_err, ECONNRESET); 2994 } else if (old_state == TCP_SYN_SENT) 2995 WRITE_ONCE(sk->sk_err, ECONNRESET); 2996 2997 tcp_clear_xmit_timers(sk); 2998 __skb_queue_purge(&sk->sk_receive_queue); 2999 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3000 WRITE_ONCE(tp->urg_data, 0); 3001 tcp_write_queue_purge(sk); 3002 tcp_fastopen_active_disable_ofo_check(sk); 3003 skb_rbtree_purge(&tp->out_of_order_queue); 3004 3005 inet->inet_dport = 0; 3006 3007 inet_bhash2_reset_saddr(sk); 3008 3009 WRITE_ONCE(sk->sk_shutdown, 0); 3010 sock_reset_flag(sk, SOCK_DONE); 3011 tp->srtt_us = 0; 3012 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3013 tp->rcv_rtt_last_tsecr = 0; 3014 3015 seq = tp->write_seq + tp->max_window + 2; 3016 if (!seq) 3017 seq = 1; 3018 WRITE_ONCE(tp->write_seq, seq); 3019 3020 icsk->icsk_backoff = 0; 3021 icsk->icsk_probes_out = 0; 3022 icsk->icsk_probes_tstamp = 0; 3023 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3024 icsk->icsk_rto_min = TCP_RTO_MIN; 3025 icsk->icsk_delack_max = TCP_DELACK_MAX; 3026 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3027 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3028 tp->snd_cwnd_cnt = 0; 3029 tp->is_cwnd_limited = 0; 3030 tp->max_packets_out = 0; 3031 tp->window_clamp = 0; 3032 tp->delivered = 0; 3033 tp->delivered_ce = 0; 3034 if (icsk->icsk_ca_ops->release) 3035 icsk->icsk_ca_ops->release(sk); 3036 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3037 icsk->icsk_ca_initialized = 0; 3038 tcp_set_ca_state(sk, TCP_CA_Open); 3039 tp->is_sack_reneg = 0; 3040 tcp_clear_retrans(tp); 3041 tp->total_retrans = 0; 3042 inet_csk_delack_init(sk); 3043 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3044 * issue in __tcp_select_window() 3045 */ 3046 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3047 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3048 __sk_dst_reset(sk); 3049 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3050 tcp_saved_syn_free(tp); 3051 tp->compressed_ack = 0; 3052 tp->segs_in = 0; 3053 tp->segs_out = 0; 3054 tp->bytes_sent = 0; 3055 tp->bytes_acked = 0; 3056 tp->bytes_received = 0; 3057 tp->bytes_retrans = 0; 3058 tp->data_segs_in = 0; 3059 tp->data_segs_out = 0; 3060 tp->duplicate_sack[0].start_seq = 0; 3061 tp->duplicate_sack[0].end_seq = 0; 3062 tp->dsack_dups = 0; 3063 tp->reord_seen = 0; 3064 tp->retrans_out = 0; 3065 tp->sacked_out = 0; 3066 tp->tlp_high_seq = 0; 3067 tp->last_oow_ack_time = 0; 3068 tp->plb_rehash = 0; 3069 /* There's a bubble in the pipe until at least the first ACK. */ 3070 tp->app_limited = ~0U; 3071 tp->rate_app_limited = 1; 3072 tp->rack.mstamp = 0; 3073 tp->rack.advanced = 0; 3074 tp->rack.reo_wnd_steps = 1; 3075 tp->rack.last_delivered = 0; 3076 tp->rack.reo_wnd_persist = 0; 3077 tp->rack.dsack_seen = 0; 3078 tp->syn_data_acked = 0; 3079 tp->rx_opt.saw_tstamp = 0; 3080 tp->rx_opt.dsack = 0; 3081 tp->rx_opt.num_sacks = 0; 3082 tp->rcv_ooopack = 0; 3083 3084 3085 /* Clean up fastopen related fields */ 3086 tcp_free_fastopen_req(tp); 3087 inet_clear_bit(DEFER_CONNECT, sk); 3088 tp->fastopen_client_fail = 0; 3089 3090 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3091 3092 if (sk->sk_frag.page) { 3093 put_page(sk->sk_frag.page); 3094 sk->sk_frag.page = NULL; 3095 sk->sk_frag.offset = 0; 3096 } 3097 sk_error_report(sk); 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(tcp_disconnect); 3101 3102 static inline bool tcp_can_repair_sock(const struct sock *sk) 3103 { 3104 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3105 (sk->sk_state != TCP_LISTEN); 3106 } 3107 3108 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3109 { 3110 struct tcp_repair_window opt; 3111 3112 if (!tp->repair) 3113 return -EPERM; 3114 3115 if (len != sizeof(opt)) 3116 return -EINVAL; 3117 3118 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3119 return -EFAULT; 3120 3121 if (opt.max_window < opt.snd_wnd) 3122 return -EINVAL; 3123 3124 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3125 return -EINVAL; 3126 3127 if (after(opt.rcv_wup, tp->rcv_nxt)) 3128 return -EINVAL; 3129 3130 tp->snd_wl1 = opt.snd_wl1; 3131 tp->snd_wnd = opt.snd_wnd; 3132 tp->max_window = opt.max_window; 3133 3134 tp->rcv_wnd = opt.rcv_wnd; 3135 tp->rcv_wup = opt.rcv_wup; 3136 3137 return 0; 3138 } 3139 3140 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3141 unsigned int len) 3142 { 3143 struct tcp_sock *tp = tcp_sk(sk); 3144 struct tcp_repair_opt opt; 3145 size_t offset = 0; 3146 3147 while (len >= sizeof(opt)) { 3148 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3149 return -EFAULT; 3150 3151 offset += sizeof(opt); 3152 len -= sizeof(opt); 3153 3154 switch (opt.opt_code) { 3155 case TCPOPT_MSS: 3156 tp->rx_opt.mss_clamp = opt.opt_val; 3157 tcp_mtup_init(sk); 3158 break; 3159 case TCPOPT_WINDOW: 3160 { 3161 u16 snd_wscale = opt.opt_val & 0xFFFF; 3162 u16 rcv_wscale = opt.opt_val >> 16; 3163 3164 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3165 return -EFBIG; 3166 3167 tp->rx_opt.snd_wscale = snd_wscale; 3168 tp->rx_opt.rcv_wscale = rcv_wscale; 3169 tp->rx_opt.wscale_ok = 1; 3170 } 3171 break; 3172 case TCPOPT_SACK_PERM: 3173 if (opt.opt_val != 0) 3174 return -EINVAL; 3175 3176 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3177 break; 3178 case TCPOPT_TIMESTAMP: 3179 if (opt.opt_val != 0) 3180 return -EINVAL; 3181 3182 tp->rx_opt.tstamp_ok = 1; 3183 break; 3184 } 3185 } 3186 3187 return 0; 3188 } 3189 3190 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3191 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3192 3193 static void tcp_enable_tx_delay(void) 3194 { 3195 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3196 static int __tcp_tx_delay_enabled = 0; 3197 3198 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3199 static_branch_enable(&tcp_tx_delay_enabled); 3200 pr_info("TCP_TX_DELAY enabled\n"); 3201 } 3202 } 3203 } 3204 3205 /* When set indicates to always queue non-full frames. Later the user clears 3206 * this option and we transmit any pending partial frames in the queue. This is 3207 * meant to be used alongside sendfile() to get properly filled frames when the 3208 * user (for example) must write out headers with a write() call first and then 3209 * use sendfile to send out the data parts. 3210 * 3211 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3212 * TCP_NODELAY. 3213 */ 3214 void __tcp_sock_set_cork(struct sock *sk, bool on) 3215 { 3216 struct tcp_sock *tp = tcp_sk(sk); 3217 3218 if (on) { 3219 tp->nonagle |= TCP_NAGLE_CORK; 3220 } else { 3221 tp->nonagle &= ~TCP_NAGLE_CORK; 3222 if (tp->nonagle & TCP_NAGLE_OFF) 3223 tp->nonagle |= TCP_NAGLE_PUSH; 3224 tcp_push_pending_frames(sk); 3225 } 3226 } 3227 3228 void tcp_sock_set_cork(struct sock *sk, bool on) 3229 { 3230 lock_sock(sk); 3231 __tcp_sock_set_cork(sk, on); 3232 release_sock(sk); 3233 } 3234 EXPORT_SYMBOL(tcp_sock_set_cork); 3235 3236 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3237 * remembered, but it is not activated until cork is cleared. 3238 * 3239 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3240 * even TCP_CORK for currently queued segments. 3241 */ 3242 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3243 { 3244 if (on) { 3245 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3246 tcp_push_pending_frames(sk); 3247 } else { 3248 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3249 } 3250 } 3251 3252 void tcp_sock_set_nodelay(struct sock *sk) 3253 { 3254 lock_sock(sk); 3255 __tcp_sock_set_nodelay(sk, true); 3256 release_sock(sk); 3257 } 3258 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3259 3260 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3261 { 3262 if (!val) { 3263 inet_csk_enter_pingpong_mode(sk); 3264 return; 3265 } 3266 3267 inet_csk_exit_pingpong_mode(sk); 3268 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3269 inet_csk_ack_scheduled(sk)) { 3270 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3271 tcp_cleanup_rbuf(sk, 1); 3272 if (!(val & 1)) 3273 inet_csk_enter_pingpong_mode(sk); 3274 } 3275 } 3276 3277 void tcp_sock_set_quickack(struct sock *sk, int val) 3278 { 3279 lock_sock(sk); 3280 __tcp_sock_set_quickack(sk, val); 3281 release_sock(sk); 3282 } 3283 EXPORT_SYMBOL(tcp_sock_set_quickack); 3284 3285 int tcp_sock_set_syncnt(struct sock *sk, int val) 3286 { 3287 if (val < 1 || val > MAX_TCP_SYNCNT) 3288 return -EINVAL; 3289 3290 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3291 return 0; 3292 } 3293 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3294 3295 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3296 { 3297 /* Cap the max time in ms TCP will retry or probe the window 3298 * before giving up and aborting (ETIMEDOUT) a connection. 3299 */ 3300 if (val < 0) 3301 return -EINVAL; 3302 3303 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3304 return 0; 3305 } 3306 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3307 3308 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3309 { 3310 struct tcp_sock *tp = tcp_sk(sk); 3311 3312 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3313 return -EINVAL; 3314 3315 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3316 WRITE_ONCE(tp->keepalive_time, val * HZ); 3317 if (sock_flag(sk, SOCK_KEEPOPEN) && 3318 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3319 u32 elapsed = keepalive_time_elapsed(tp); 3320 3321 if (tp->keepalive_time > elapsed) 3322 elapsed = tp->keepalive_time - elapsed; 3323 else 3324 elapsed = 0; 3325 inet_csk_reset_keepalive_timer(sk, elapsed); 3326 } 3327 3328 return 0; 3329 } 3330 3331 int tcp_sock_set_keepidle(struct sock *sk, int val) 3332 { 3333 int err; 3334 3335 lock_sock(sk); 3336 err = tcp_sock_set_keepidle_locked(sk, val); 3337 release_sock(sk); 3338 return err; 3339 } 3340 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3341 3342 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3343 { 3344 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3345 return -EINVAL; 3346 3347 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3348 return 0; 3349 } 3350 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3351 3352 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3353 { 3354 if (val < 1 || val > MAX_TCP_KEEPCNT) 3355 return -EINVAL; 3356 3357 /* Paired with READ_ONCE() in keepalive_probes() */ 3358 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3359 return 0; 3360 } 3361 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3362 3363 int tcp_set_window_clamp(struct sock *sk, int val) 3364 { 3365 struct tcp_sock *tp = tcp_sk(sk); 3366 3367 if (!val) { 3368 if (sk->sk_state != TCP_CLOSE) 3369 return -EINVAL; 3370 tp->window_clamp = 0; 3371 } else { 3372 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3373 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3374 SOCK_MIN_RCVBUF / 2 : val; 3375 3376 if (new_window_clamp == old_window_clamp) 3377 return 0; 3378 3379 tp->window_clamp = new_window_clamp; 3380 if (new_window_clamp < old_window_clamp) { 3381 /* need to apply the reserved mem provisioning only 3382 * when shrinking the window clamp 3383 */ 3384 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3385 3386 } else { 3387 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3388 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3389 tp->rcv_ssthresh); 3390 } 3391 } 3392 return 0; 3393 } 3394 3395 /* 3396 * Socket option code for TCP. 3397 */ 3398 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3399 sockptr_t optval, unsigned int optlen) 3400 { 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 struct inet_connection_sock *icsk = inet_csk(sk); 3403 struct net *net = sock_net(sk); 3404 int val; 3405 int err = 0; 3406 3407 /* These are data/string values, all the others are ints */ 3408 switch (optname) { 3409 case TCP_CONGESTION: { 3410 char name[TCP_CA_NAME_MAX]; 3411 3412 if (optlen < 1) 3413 return -EINVAL; 3414 3415 val = strncpy_from_sockptr(name, optval, 3416 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3417 if (val < 0) 3418 return -EFAULT; 3419 name[val] = 0; 3420 3421 sockopt_lock_sock(sk); 3422 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3423 sockopt_ns_capable(sock_net(sk)->user_ns, 3424 CAP_NET_ADMIN)); 3425 sockopt_release_sock(sk); 3426 return err; 3427 } 3428 case TCP_ULP: { 3429 char name[TCP_ULP_NAME_MAX]; 3430 3431 if (optlen < 1) 3432 return -EINVAL; 3433 3434 val = strncpy_from_sockptr(name, optval, 3435 min_t(long, TCP_ULP_NAME_MAX - 1, 3436 optlen)); 3437 if (val < 0) 3438 return -EFAULT; 3439 name[val] = 0; 3440 3441 sockopt_lock_sock(sk); 3442 err = tcp_set_ulp(sk, name); 3443 sockopt_release_sock(sk); 3444 return err; 3445 } 3446 case TCP_FASTOPEN_KEY: { 3447 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3448 __u8 *backup_key = NULL; 3449 3450 /* Allow a backup key as well to facilitate key rotation 3451 * First key is the active one. 3452 */ 3453 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3454 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3455 return -EINVAL; 3456 3457 if (copy_from_sockptr(key, optval, optlen)) 3458 return -EFAULT; 3459 3460 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3461 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3462 3463 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3464 } 3465 default: 3466 /* fallthru */ 3467 break; 3468 } 3469 3470 if (optlen < sizeof(int)) 3471 return -EINVAL; 3472 3473 if (copy_from_sockptr(&val, optval, sizeof(val))) 3474 return -EFAULT; 3475 3476 /* Handle options that can be set without locking the socket. */ 3477 switch (optname) { 3478 case TCP_SYNCNT: 3479 return tcp_sock_set_syncnt(sk, val); 3480 case TCP_USER_TIMEOUT: 3481 return tcp_sock_set_user_timeout(sk, val); 3482 case TCP_KEEPINTVL: 3483 return tcp_sock_set_keepintvl(sk, val); 3484 case TCP_KEEPCNT: 3485 return tcp_sock_set_keepcnt(sk, val); 3486 case TCP_LINGER2: 3487 if (val < 0) 3488 WRITE_ONCE(tp->linger2, -1); 3489 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3490 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3491 else 3492 WRITE_ONCE(tp->linger2, val * HZ); 3493 return 0; 3494 case TCP_DEFER_ACCEPT: 3495 /* Translate value in seconds to number of retransmits */ 3496 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3497 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3498 TCP_RTO_MAX / HZ)); 3499 return 0; 3500 } 3501 3502 sockopt_lock_sock(sk); 3503 3504 switch (optname) { 3505 case TCP_MAXSEG: 3506 /* Values greater than interface MTU won't take effect. However 3507 * at the point when this call is done we typically don't yet 3508 * know which interface is going to be used 3509 */ 3510 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3511 err = -EINVAL; 3512 break; 3513 } 3514 tp->rx_opt.user_mss = val; 3515 break; 3516 3517 case TCP_NODELAY: 3518 __tcp_sock_set_nodelay(sk, val); 3519 break; 3520 3521 case TCP_THIN_LINEAR_TIMEOUTS: 3522 if (val < 0 || val > 1) 3523 err = -EINVAL; 3524 else 3525 tp->thin_lto = val; 3526 break; 3527 3528 case TCP_THIN_DUPACK: 3529 if (val < 0 || val > 1) 3530 err = -EINVAL; 3531 break; 3532 3533 case TCP_REPAIR: 3534 if (!tcp_can_repair_sock(sk)) 3535 err = -EPERM; 3536 else if (val == TCP_REPAIR_ON) { 3537 tp->repair = 1; 3538 sk->sk_reuse = SK_FORCE_REUSE; 3539 tp->repair_queue = TCP_NO_QUEUE; 3540 } else if (val == TCP_REPAIR_OFF) { 3541 tp->repair = 0; 3542 sk->sk_reuse = SK_NO_REUSE; 3543 tcp_send_window_probe(sk); 3544 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3545 tp->repair = 0; 3546 sk->sk_reuse = SK_NO_REUSE; 3547 } else 3548 err = -EINVAL; 3549 3550 break; 3551 3552 case TCP_REPAIR_QUEUE: 3553 if (!tp->repair) 3554 err = -EPERM; 3555 else if ((unsigned int)val < TCP_QUEUES_NR) 3556 tp->repair_queue = val; 3557 else 3558 err = -EINVAL; 3559 break; 3560 3561 case TCP_QUEUE_SEQ: 3562 if (sk->sk_state != TCP_CLOSE) { 3563 err = -EPERM; 3564 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3565 if (!tcp_rtx_queue_empty(sk)) 3566 err = -EPERM; 3567 else 3568 WRITE_ONCE(tp->write_seq, val); 3569 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3570 if (tp->rcv_nxt != tp->copied_seq) { 3571 err = -EPERM; 3572 } else { 3573 WRITE_ONCE(tp->rcv_nxt, val); 3574 WRITE_ONCE(tp->copied_seq, val); 3575 } 3576 } else { 3577 err = -EINVAL; 3578 } 3579 break; 3580 3581 case TCP_REPAIR_OPTIONS: 3582 if (!tp->repair) 3583 err = -EINVAL; 3584 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3585 err = tcp_repair_options_est(sk, optval, optlen); 3586 else 3587 err = -EPERM; 3588 break; 3589 3590 case TCP_CORK: 3591 __tcp_sock_set_cork(sk, val); 3592 break; 3593 3594 case TCP_KEEPIDLE: 3595 err = tcp_sock_set_keepidle_locked(sk, val); 3596 break; 3597 case TCP_SAVE_SYN: 3598 /* 0: disable, 1: enable, 2: start from ether_header */ 3599 if (val < 0 || val > 2) 3600 err = -EINVAL; 3601 else 3602 tp->save_syn = val; 3603 break; 3604 3605 case TCP_WINDOW_CLAMP: 3606 err = tcp_set_window_clamp(sk, val); 3607 break; 3608 3609 case TCP_QUICKACK: 3610 __tcp_sock_set_quickack(sk, val); 3611 break; 3612 3613 case TCP_AO_REPAIR: 3614 if (!tcp_can_repair_sock(sk)) { 3615 err = -EPERM; 3616 break; 3617 } 3618 err = tcp_ao_set_repair(sk, optval, optlen); 3619 break; 3620 #ifdef CONFIG_TCP_AO 3621 case TCP_AO_ADD_KEY: 3622 case TCP_AO_DEL_KEY: 3623 case TCP_AO_INFO: { 3624 /* If this is the first TCP-AO setsockopt() on the socket, 3625 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3626 * in any state. 3627 */ 3628 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3629 goto ao_parse; 3630 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3631 lockdep_sock_is_held(sk))) 3632 goto ao_parse; 3633 if (tp->repair) 3634 goto ao_parse; 3635 err = -EISCONN; 3636 break; 3637 ao_parse: 3638 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3639 break; 3640 } 3641 #endif 3642 #ifdef CONFIG_TCP_MD5SIG 3643 case TCP_MD5SIG: 3644 case TCP_MD5SIG_EXT: 3645 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3646 break; 3647 #endif 3648 case TCP_FASTOPEN: 3649 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3650 TCPF_LISTEN))) { 3651 tcp_fastopen_init_key_once(net); 3652 3653 fastopen_queue_tune(sk, val); 3654 } else { 3655 err = -EINVAL; 3656 } 3657 break; 3658 case TCP_FASTOPEN_CONNECT: 3659 if (val > 1 || val < 0) { 3660 err = -EINVAL; 3661 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3662 TFO_CLIENT_ENABLE) { 3663 if (sk->sk_state == TCP_CLOSE) 3664 tp->fastopen_connect = val; 3665 else 3666 err = -EINVAL; 3667 } else { 3668 err = -EOPNOTSUPP; 3669 } 3670 break; 3671 case TCP_FASTOPEN_NO_COOKIE: 3672 if (val > 1 || val < 0) 3673 err = -EINVAL; 3674 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3675 err = -EINVAL; 3676 else 3677 tp->fastopen_no_cookie = val; 3678 break; 3679 case TCP_TIMESTAMP: 3680 if (!tp->repair) { 3681 err = -EPERM; 3682 break; 3683 } 3684 /* val is an opaque field, 3685 * and low order bit contains usec_ts enable bit. 3686 * Its a best effort, and we do not care if user makes an error. 3687 */ 3688 tp->tcp_usec_ts = val & 1; 3689 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3690 break; 3691 case TCP_REPAIR_WINDOW: 3692 err = tcp_repair_set_window(tp, optval, optlen); 3693 break; 3694 case TCP_NOTSENT_LOWAT: 3695 WRITE_ONCE(tp->notsent_lowat, val); 3696 sk->sk_write_space(sk); 3697 break; 3698 case TCP_INQ: 3699 if (val > 1 || val < 0) 3700 err = -EINVAL; 3701 else 3702 tp->recvmsg_inq = val; 3703 break; 3704 case TCP_TX_DELAY: 3705 if (val) 3706 tcp_enable_tx_delay(); 3707 WRITE_ONCE(tp->tcp_tx_delay, val); 3708 break; 3709 default: 3710 err = -ENOPROTOOPT; 3711 break; 3712 } 3713 3714 sockopt_release_sock(sk); 3715 return err; 3716 } 3717 3718 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3719 unsigned int optlen) 3720 { 3721 const struct inet_connection_sock *icsk = inet_csk(sk); 3722 3723 if (level != SOL_TCP) 3724 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3725 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3726 optval, optlen); 3727 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3728 } 3729 EXPORT_SYMBOL(tcp_setsockopt); 3730 3731 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3732 struct tcp_info *info) 3733 { 3734 u64 stats[__TCP_CHRONO_MAX], total = 0; 3735 enum tcp_chrono i; 3736 3737 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3738 stats[i] = tp->chrono_stat[i - 1]; 3739 if (i == tp->chrono_type) 3740 stats[i] += tcp_jiffies32 - tp->chrono_start; 3741 stats[i] *= USEC_PER_SEC / HZ; 3742 total += stats[i]; 3743 } 3744 3745 info->tcpi_busy_time = total; 3746 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3747 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3748 } 3749 3750 /* Return information about state of tcp endpoint in API format. */ 3751 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3752 { 3753 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3754 const struct inet_connection_sock *icsk = inet_csk(sk); 3755 unsigned long rate; 3756 u32 now; 3757 u64 rate64; 3758 bool slow; 3759 3760 memset(info, 0, sizeof(*info)); 3761 if (sk->sk_type != SOCK_STREAM) 3762 return; 3763 3764 info->tcpi_state = inet_sk_state_load(sk); 3765 3766 /* Report meaningful fields for all TCP states, including listeners */ 3767 rate = READ_ONCE(sk->sk_pacing_rate); 3768 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3769 info->tcpi_pacing_rate = rate64; 3770 3771 rate = READ_ONCE(sk->sk_max_pacing_rate); 3772 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3773 info->tcpi_max_pacing_rate = rate64; 3774 3775 info->tcpi_reordering = tp->reordering; 3776 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3777 3778 if (info->tcpi_state == TCP_LISTEN) { 3779 /* listeners aliased fields : 3780 * tcpi_unacked -> Number of children ready for accept() 3781 * tcpi_sacked -> max backlog 3782 */ 3783 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3784 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3785 return; 3786 } 3787 3788 slow = lock_sock_fast(sk); 3789 3790 info->tcpi_ca_state = icsk->icsk_ca_state; 3791 info->tcpi_retransmits = icsk->icsk_retransmits; 3792 info->tcpi_probes = icsk->icsk_probes_out; 3793 info->tcpi_backoff = icsk->icsk_backoff; 3794 3795 if (tp->rx_opt.tstamp_ok) 3796 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3797 if (tcp_is_sack(tp)) 3798 info->tcpi_options |= TCPI_OPT_SACK; 3799 if (tp->rx_opt.wscale_ok) { 3800 info->tcpi_options |= TCPI_OPT_WSCALE; 3801 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3802 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3803 } 3804 3805 if (tp->ecn_flags & TCP_ECN_OK) 3806 info->tcpi_options |= TCPI_OPT_ECN; 3807 if (tp->ecn_flags & TCP_ECN_SEEN) 3808 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3809 if (tp->syn_data_acked) 3810 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3811 if (tp->tcp_usec_ts) 3812 info->tcpi_options |= TCPI_OPT_USEC_TS; 3813 3814 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3815 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3816 tcp_delack_max(sk))); 3817 info->tcpi_snd_mss = tp->mss_cache; 3818 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3819 3820 info->tcpi_unacked = tp->packets_out; 3821 info->tcpi_sacked = tp->sacked_out; 3822 3823 info->tcpi_lost = tp->lost_out; 3824 info->tcpi_retrans = tp->retrans_out; 3825 3826 now = tcp_jiffies32; 3827 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3828 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3829 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3830 3831 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3832 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3833 info->tcpi_rtt = tp->srtt_us >> 3; 3834 info->tcpi_rttvar = tp->mdev_us >> 2; 3835 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3836 info->tcpi_advmss = tp->advmss; 3837 3838 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3839 info->tcpi_rcv_space = tp->rcvq_space.space; 3840 3841 info->tcpi_total_retrans = tp->total_retrans; 3842 3843 info->tcpi_bytes_acked = tp->bytes_acked; 3844 info->tcpi_bytes_received = tp->bytes_received; 3845 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3846 tcp_get_info_chrono_stats(tp, info); 3847 3848 info->tcpi_segs_out = tp->segs_out; 3849 3850 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3851 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3852 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3853 3854 info->tcpi_min_rtt = tcp_min_rtt(tp); 3855 info->tcpi_data_segs_out = tp->data_segs_out; 3856 3857 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3858 rate64 = tcp_compute_delivery_rate(tp); 3859 if (rate64) 3860 info->tcpi_delivery_rate = rate64; 3861 info->tcpi_delivered = tp->delivered; 3862 info->tcpi_delivered_ce = tp->delivered_ce; 3863 info->tcpi_bytes_sent = tp->bytes_sent; 3864 info->tcpi_bytes_retrans = tp->bytes_retrans; 3865 info->tcpi_dsack_dups = tp->dsack_dups; 3866 info->tcpi_reord_seen = tp->reord_seen; 3867 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3868 info->tcpi_snd_wnd = tp->snd_wnd; 3869 info->tcpi_rcv_wnd = tp->rcv_wnd; 3870 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3871 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3872 3873 info->tcpi_total_rto = tp->total_rto; 3874 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3875 info->tcpi_total_rto_time = tp->total_rto_time; 3876 if (tp->rto_stamp) 3877 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3878 3879 unlock_sock_fast(sk, slow); 3880 } 3881 EXPORT_SYMBOL_GPL(tcp_get_info); 3882 3883 static size_t tcp_opt_stats_get_size(void) 3884 { 3885 return 3886 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3888 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3889 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3891 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3892 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3894 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3895 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3896 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3897 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3898 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3899 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3900 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3901 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3902 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3903 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3904 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3906 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3907 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3908 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3909 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3910 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3911 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3912 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3913 0; 3914 } 3915 3916 /* Returns TTL or hop limit of an incoming packet from skb. */ 3917 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3918 { 3919 if (skb->protocol == htons(ETH_P_IP)) 3920 return ip_hdr(skb)->ttl; 3921 else if (skb->protocol == htons(ETH_P_IPV6)) 3922 return ipv6_hdr(skb)->hop_limit; 3923 else 3924 return 0; 3925 } 3926 3927 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3928 const struct sk_buff *orig_skb, 3929 const struct sk_buff *ack_skb) 3930 { 3931 const struct tcp_sock *tp = tcp_sk(sk); 3932 struct sk_buff *stats; 3933 struct tcp_info info; 3934 unsigned long rate; 3935 u64 rate64; 3936 3937 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3938 if (!stats) 3939 return NULL; 3940 3941 tcp_get_info_chrono_stats(tp, &info); 3942 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3943 info.tcpi_busy_time, TCP_NLA_PAD); 3944 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3945 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3946 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3947 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3948 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3949 tp->data_segs_out, TCP_NLA_PAD); 3950 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3951 tp->total_retrans, TCP_NLA_PAD); 3952 3953 rate = READ_ONCE(sk->sk_pacing_rate); 3954 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3955 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3956 3957 rate64 = tcp_compute_delivery_rate(tp); 3958 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3959 3960 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3961 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3962 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3963 3964 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3965 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3966 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3967 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3968 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3969 3970 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3971 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3972 3973 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3974 TCP_NLA_PAD); 3975 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3976 TCP_NLA_PAD); 3977 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3978 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3979 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3980 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3981 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3982 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3983 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3984 TCP_NLA_PAD); 3985 if (ack_skb) 3986 nla_put_u8(stats, TCP_NLA_TTL, 3987 tcp_skb_ttl_or_hop_limit(ack_skb)); 3988 3989 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3990 return stats; 3991 } 3992 3993 int do_tcp_getsockopt(struct sock *sk, int level, 3994 int optname, sockptr_t optval, sockptr_t optlen) 3995 { 3996 struct inet_connection_sock *icsk = inet_csk(sk); 3997 struct tcp_sock *tp = tcp_sk(sk); 3998 struct net *net = sock_net(sk); 3999 int val, len; 4000 4001 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4002 return -EFAULT; 4003 4004 len = min_t(unsigned int, len, sizeof(int)); 4005 4006 if (len < 0) 4007 return -EINVAL; 4008 4009 switch (optname) { 4010 case TCP_MAXSEG: 4011 val = tp->mss_cache; 4012 if (tp->rx_opt.user_mss && 4013 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4014 val = tp->rx_opt.user_mss; 4015 if (tp->repair) 4016 val = tp->rx_opt.mss_clamp; 4017 break; 4018 case TCP_NODELAY: 4019 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4020 break; 4021 case TCP_CORK: 4022 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4023 break; 4024 case TCP_KEEPIDLE: 4025 val = keepalive_time_when(tp) / HZ; 4026 break; 4027 case TCP_KEEPINTVL: 4028 val = keepalive_intvl_when(tp) / HZ; 4029 break; 4030 case TCP_KEEPCNT: 4031 val = keepalive_probes(tp); 4032 break; 4033 case TCP_SYNCNT: 4034 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4035 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4036 break; 4037 case TCP_LINGER2: 4038 val = READ_ONCE(tp->linger2); 4039 if (val >= 0) 4040 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4041 break; 4042 case TCP_DEFER_ACCEPT: 4043 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4044 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4045 TCP_RTO_MAX / HZ); 4046 break; 4047 case TCP_WINDOW_CLAMP: 4048 val = tp->window_clamp; 4049 break; 4050 case TCP_INFO: { 4051 struct tcp_info info; 4052 4053 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4054 return -EFAULT; 4055 4056 tcp_get_info(sk, &info); 4057 4058 len = min_t(unsigned int, len, sizeof(info)); 4059 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4060 return -EFAULT; 4061 if (copy_to_sockptr(optval, &info, len)) 4062 return -EFAULT; 4063 return 0; 4064 } 4065 case TCP_CC_INFO: { 4066 const struct tcp_congestion_ops *ca_ops; 4067 union tcp_cc_info info; 4068 size_t sz = 0; 4069 int attr; 4070 4071 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4072 return -EFAULT; 4073 4074 ca_ops = icsk->icsk_ca_ops; 4075 if (ca_ops && ca_ops->get_info) 4076 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4077 4078 len = min_t(unsigned int, len, sz); 4079 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4080 return -EFAULT; 4081 if (copy_to_sockptr(optval, &info, len)) 4082 return -EFAULT; 4083 return 0; 4084 } 4085 case TCP_QUICKACK: 4086 val = !inet_csk_in_pingpong_mode(sk); 4087 break; 4088 4089 case TCP_CONGESTION: 4090 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4091 return -EFAULT; 4092 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4093 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4094 return -EFAULT; 4095 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4096 return -EFAULT; 4097 return 0; 4098 4099 case TCP_ULP: 4100 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4101 return -EFAULT; 4102 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4103 if (!icsk->icsk_ulp_ops) { 4104 len = 0; 4105 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4106 return -EFAULT; 4107 return 0; 4108 } 4109 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4110 return -EFAULT; 4111 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4112 return -EFAULT; 4113 return 0; 4114 4115 case TCP_FASTOPEN_KEY: { 4116 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4117 unsigned int key_len; 4118 4119 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4120 return -EFAULT; 4121 4122 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4123 TCP_FASTOPEN_KEY_LENGTH; 4124 len = min_t(unsigned int, len, key_len); 4125 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4126 return -EFAULT; 4127 if (copy_to_sockptr(optval, key, len)) 4128 return -EFAULT; 4129 return 0; 4130 } 4131 case TCP_THIN_LINEAR_TIMEOUTS: 4132 val = tp->thin_lto; 4133 break; 4134 4135 case TCP_THIN_DUPACK: 4136 val = 0; 4137 break; 4138 4139 case TCP_REPAIR: 4140 val = tp->repair; 4141 break; 4142 4143 case TCP_REPAIR_QUEUE: 4144 if (tp->repair) 4145 val = tp->repair_queue; 4146 else 4147 return -EINVAL; 4148 break; 4149 4150 case TCP_REPAIR_WINDOW: { 4151 struct tcp_repair_window opt; 4152 4153 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4154 return -EFAULT; 4155 4156 if (len != sizeof(opt)) 4157 return -EINVAL; 4158 4159 if (!tp->repair) 4160 return -EPERM; 4161 4162 opt.snd_wl1 = tp->snd_wl1; 4163 opt.snd_wnd = tp->snd_wnd; 4164 opt.max_window = tp->max_window; 4165 opt.rcv_wnd = tp->rcv_wnd; 4166 opt.rcv_wup = tp->rcv_wup; 4167 4168 if (copy_to_sockptr(optval, &opt, len)) 4169 return -EFAULT; 4170 return 0; 4171 } 4172 case TCP_QUEUE_SEQ: 4173 if (tp->repair_queue == TCP_SEND_QUEUE) 4174 val = tp->write_seq; 4175 else if (tp->repair_queue == TCP_RECV_QUEUE) 4176 val = tp->rcv_nxt; 4177 else 4178 return -EINVAL; 4179 break; 4180 4181 case TCP_USER_TIMEOUT: 4182 val = READ_ONCE(icsk->icsk_user_timeout); 4183 break; 4184 4185 case TCP_FASTOPEN: 4186 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4187 break; 4188 4189 case TCP_FASTOPEN_CONNECT: 4190 val = tp->fastopen_connect; 4191 break; 4192 4193 case TCP_FASTOPEN_NO_COOKIE: 4194 val = tp->fastopen_no_cookie; 4195 break; 4196 4197 case TCP_TX_DELAY: 4198 val = READ_ONCE(tp->tcp_tx_delay); 4199 break; 4200 4201 case TCP_TIMESTAMP: 4202 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4203 if (tp->tcp_usec_ts) 4204 val |= 1; 4205 else 4206 val &= ~1; 4207 break; 4208 case TCP_NOTSENT_LOWAT: 4209 val = READ_ONCE(tp->notsent_lowat); 4210 break; 4211 case TCP_INQ: 4212 val = tp->recvmsg_inq; 4213 break; 4214 case TCP_SAVE_SYN: 4215 val = tp->save_syn; 4216 break; 4217 case TCP_SAVED_SYN: { 4218 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4219 return -EFAULT; 4220 4221 sockopt_lock_sock(sk); 4222 if (tp->saved_syn) { 4223 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4224 len = tcp_saved_syn_len(tp->saved_syn); 4225 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4226 sockopt_release_sock(sk); 4227 return -EFAULT; 4228 } 4229 sockopt_release_sock(sk); 4230 return -EINVAL; 4231 } 4232 len = tcp_saved_syn_len(tp->saved_syn); 4233 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4234 sockopt_release_sock(sk); 4235 return -EFAULT; 4236 } 4237 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4238 sockopt_release_sock(sk); 4239 return -EFAULT; 4240 } 4241 tcp_saved_syn_free(tp); 4242 sockopt_release_sock(sk); 4243 } else { 4244 sockopt_release_sock(sk); 4245 len = 0; 4246 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4247 return -EFAULT; 4248 } 4249 return 0; 4250 } 4251 #ifdef CONFIG_MMU 4252 case TCP_ZEROCOPY_RECEIVE: { 4253 struct scm_timestamping_internal tss; 4254 struct tcp_zerocopy_receive zc = {}; 4255 int err; 4256 4257 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4258 return -EFAULT; 4259 if (len < 0 || 4260 len < offsetofend(struct tcp_zerocopy_receive, length)) 4261 return -EINVAL; 4262 if (unlikely(len > sizeof(zc))) { 4263 err = check_zeroed_sockptr(optval, sizeof(zc), 4264 len - sizeof(zc)); 4265 if (err < 1) 4266 return err == 0 ? -EINVAL : err; 4267 len = sizeof(zc); 4268 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4269 return -EFAULT; 4270 } 4271 if (copy_from_sockptr(&zc, optval, len)) 4272 return -EFAULT; 4273 if (zc.reserved) 4274 return -EINVAL; 4275 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4276 return -EINVAL; 4277 sockopt_lock_sock(sk); 4278 err = tcp_zerocopy_receive(sk, &zc, &tss); 4279 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4280 &zc, &len, err); 4281 sockopt_release_sock(sk); 4282 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4283 goto zerocopy_rcv_cmsg; 4284 switch (len) { 4285 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4286 goto zerocopy_rcv_cmsg; 4287 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4288 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4289 case offsetofend(struct tcp_zerocopy_receive, flags): 4290 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4291 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4292 case offsetofend(struct tcp_zerocopy_receive, err): 4293 goto zerocopy_rcv_sk_err; 4294 case offsetofend(struct tcp_zerocopy_receive, inq): 4295 goto zerocopy_rcv_inq; 4296 case offsetofend(struct tcp_zerocopy_receive, length): 4297 default: 4298 goto zerocopy_rcv_out; 4299 } 4300 zerocopy_rcv_cmsg: 4301 if (zc.msg_flags & TCP_CMSG_TS) 4302 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4303 else 4304 zc.msg_flags = 0; 4305 zerocopy_rcv_sk_err: 4306 if (!err) 4307 zc.err = sock_error(sk); 4308 zerocopy_rcv_inq: 4309 zc.inq = tcp_inq_hint(sk); 4310 zerocopy_rcv_out: 4311 if (!err && copy_to_sockptr(optval, &zc, len)) 4312 err = -EFAULT; 4313 return err; 4314 } 4315 #endif 4316 case TCP_AO_REPAIR: 4317 if (!tcp_can_repair_sock(sk)) 4318 return -EPERM; 4319 return tcp_ao_get_repair(sk, optval, optlen); 4320 case TCP_AO_GET_KEYS: 4321 case TCP_AO_INFO: { 4322 int err; 4323 4324 sockopt_lock_sock(sk); 4325 if (optname == TCP_AO_GET_KEYS) 4326 err = tcp_ao_get_mkts(sk, optval, optlen); 4327 else 4328 err = tcp_ao_get_sock_info(sk, optval, optlen); 4329 sockopt_release_sock(sk); 4330 4331 return err; 4332 } 4333 default: 4334 return -ENOPROTOOPT; 4335 } 4336 4337 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4338 return -EFAULT; 4339 if (copy_to_sockptr(optval, &val, len)) 4340 return -EFAULT; 4341 return 0; 4342 } 4343 4344 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4345 { 4346 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4347 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4348 */ 4349 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4350 return true; 4351 4352 return false; 4353 } 4354 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4355 4356 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4357 int __user *optlen) 4358 { 4359 struct inet_connection_sock *icsk = inet_csk(sk); 4360 4361 if (level != SOL_TCP) 4362 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4363 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4364 optval, optlen); 4365 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4366 USER_SOCKPTR(optlen)); 4367 } 4368 EXPORT_SYMBOL(tcp_getsockopt); 4369 4370 #ifdef CONFIG_TCP_MD5SIG 4371 int tcp_md5_sigpool_id = -1; 4372 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4373 4374 int tcp_md5_alloc_sigpool(void) 4375 { 4376 size_t scratch_size; 4377 int ret; 4378 4379 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4380 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4381 if (ret >= 0) { 4382 /* As long as any md5 sigpool was allocated, the return 4383 * id would stay the same. Re-write the id only for the case 4384 * when previously all MD5 keys were deleted and this call 4385 * allocates the first MD5 key, which may return a different 4386 * sigpool id than was used previously. 4387 */ 4388 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4389 return 0; 4390 } 4391 return ret; 4392 } 4393 4394 void tcp_md5_release_sigpool(void) 4395 { 4396 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4397 } 4398 4399 void tcp_md5_add_sigpool(void) 4400 { 4401 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4402 } 4403 4404 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4405 const struct tcp_md5sig_key *key) 4406 { 4407 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4408 struct scatterlist sg; 4409 4410 sg_init_one(&sg, key->key, keylen); 4411 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4412 4413 /* We use data_race() because tcp_md5_do_add() might change 4414 * key->key under us 4415 */ 4416 return data_race(crypto_ahash_update(hp->req)); 4417 } 4418 EXPORT_SYMBOL(tcp_md5_hash_key); 4419 4420 /* Called with rcu_read_lock() */ 4421 enum skb_drop_reason 4422 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4423 const void *saddr, const void *daddr, 4424 int family, int l3index, const __u8 *hash_location) 4425 { 4426 /* This gets called for each TCP segment that has TCP-MD5 option. 4427 * We have 3 drop cases: 4428 * o No MD5 hash and one expected. 4429 * o MD5 hash and we're not expecting one. 4430 * o MD5 hash and its wrong. 4431 */ 4432 const struct tcp_sock *tp = tcp_sk(sk); 4433 struct tcp_md5sig_key *key; 4434 u8 newhash[16]; 4435 int genhash; 4436 4437 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4438 4439 if (!key && hash_location) { 4440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4441 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4442 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4443 } 4444 4445 /* Check the signature. 4446 * To support dual stack listeners, we need to handle 4447 * IPv4-mapped case. 4448 */ 4449 if (family == AF_INET) 4450 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4451 else 4452 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4453 NULL, skb); 4454 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4455 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4456 if (family == AF_INET) { 4457 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4458 genhash ? "tcp_v4_calc_md5_hash failed" 4459 : "", l3index); 4460 } else { 4461 if (genhash) { 4462 tcp_hash_fail("MD5 Hash failed", 4463 AF_INET6, skb, "L3 index %d", 4464 l3index); 4465 } else { 4466 tcp_hash_fail("MD5 Hash mismatch", 4467 AF_INET6, skb, "L3 index %d", 4468 l3index); 4469 } 4470 } 4471 return SKB_DROP_REASON_TCP_MD5FAILURE; 4472 } 4473 return SKB_NOT_DROPPED_YET; 4474 } 4475 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4476 4477 #endif 4478 4479 void tcp_done(struct sock *sk) 4480 { 4481 struct request_sock *req; 4482 4483 /* We might be called with a new socket, after 4484 * inet_csk_prepare_forced_close() has been called 4485 * so we can not use lockdep_sock_is_held(sk) 4486 */ 4487 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4488 4489 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4490 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4491 4492 tcp_set_state(sk, TCP_CLOSE); 4493 tcp_clear_xmit_timers(sk); 4494 if (req) 4495 reqsk_fastopen_remove(sk, req, false); 4496 4497 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4498 4499 if (!sock_flag(sk, SOCK_DEAD)) 4500 sk->sk_state_change(sk); 4501 else 4502 inet_csk_destroy_sock(sk); 4503 } 4504 EXPORT_SYMBOL_GPL(tcp_done); 4505 4506 int tcp_abort(struct sock *sk, int err) 4507 { 4508 int state = inet_sk_state_load(sk); 4509 4510 if (state == TCP_NEW_SYN_RECV) { 4511 struct request_sock *req = inet_reqsk(sk); 4512 4513 local_bh_disable(); 4514 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4515 local_bh_enable(); 4516 return 0; 4517 } 4518 if (state == TCP_TIME_WAIT) { 4519 struct inet_timewait_sock *tw = inet_twsk(sk); 4520 4521 refcount_inc(&tw->tw_refcnt); 4522 local_bh_disable(); 4523 inet_twsk_deschedule_put(tw); 4524 local_bh_enable(); 4525 return 0; 4526 } 4527 4528 /* BPF context ensures sock locking. */ 4529 if (!has_current_bpf_ctx()) 4530 /* Don't race with userspace socket closes such as tcp_close. */ 4531 lock_sock(sk); 4532 4533 if (sk->sk_state == TCP_LISTEN) { 4534 tcp_set_state(sk, TCP_CLOSE); 4535 inet_csk_listen_stop(sk); 4536 } 4537 4538 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4539 local_bh_disable(); 4540 bh_lock_sock(sk); 4541 4542 if (!sock_flag(sk, SOCK_DEAD)) { 4543 WRITE_ONCE(sk->sk_err, err); 4544 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4545 smp_wmb(); 4546 sk_error_report(sk); 4547 if (tcp_need_reset(sk->sk_state)) 4548 tcp_send_active_reset(sk, GFP_ATOMIC); 4549 tcp_done(sk); 4550 } 4551 4552 bh_unlock_sock(sk); 4553 local_bh_enable(); 4554 tcp_write_queue_purge(sk); 4555 if (!has_current_bpf_ctx()) 4556 release_sock(sk); 4557 return 0; 4558 } 4559 EXPORT_SYMBOL_GPL(tcp_abort); 4560 4561 extern struct tcp_congestion_ops tcp_reno; 4562 4563 static __initdata unsigned long thash_entries; 4564 static int __init set_thash_entries(char *str) 4565 { 4566 ssize_t ret; 4567 4568 if (!str) 4569 return 0; 4570 4571 ret = kstrtoul(str, 0, &thash_entries); 4572 if (ret) 4573 return 0; 4574 4575 return 1; 4576 } 4577 __setup("thash_entries=", set_thash_entries); 4578 4579 static void __init tcp_init_mem(void) 4580 { 4581 unsigned long limit = nr_free_buffer_pages() / 16; 4582 4583 limit = max(limit, 128UL); 4584 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4585 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4586 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4587 } 4588 4589 static void __init tcp_struct_check(void) 4590 { 4591 /* TX read-mostly hotpath cache lines */ 4592 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4593 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4594 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4595 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4596 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4597 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4598 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4599 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4600 4601 /* TXRX read-mostly hotpath cache lines */ 4602 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4603 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4604 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4605 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4606 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4607 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4608 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4609 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 31); 4610 4611 /* RX read-mostly hotpath cache lines */ 4612 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4613 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4614 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4615 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4616 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4617 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4618 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4619 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4620 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4621 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4622 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4623 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4624 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4625 4626 /* TX read-write hotpath cache lines */ 4627 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4628 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4629 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4630 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4631 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4632 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4633 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4637 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4638 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache); 4639 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp); 4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4641 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4642 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4643 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4644 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 113); 4645 4646 /* TXRX read-write hotpath cache lines */ 4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4652 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4654 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4658 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4659 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4660 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76); 4661 4662 /* RX read-write hotpath cache lines */ 4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4667 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4669 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4675 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4676 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4677 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4678 } 4679 4680 void __init tcp_init(void) 4681 { 4682 int max_rshare, max_wshare, cnt; 4683 unsigned long limit; 4684 unsigned int i; 4685 4686 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4687 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4688 sizeof_field(struct sk_buff, cb)); 4689 4690 tcp_struct_check(); 4691 4692 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4693 4694 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4695 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4696 4697 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4698 thash_entries, 21, /* one slot per 2 MB*/ 4699 0, 64 * 1024); 4700 tcp_hashinfo.bind_bucket_cachep = 4701 kmem_cache_create("tcp_bind_bucket", 4702 sizeof(struct inet_bind_bucket), 0, 4703 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4704 SLAB_ACCOUNT, 4705 NULL); 4706 tcp_hashinfo.bind2_bucket_cachep = 4707 kmem_cache_create("tcp_bind2_bucket", 4708 sizeof(struct inet_bind2_bucket), 0, 4709 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4710 SLAB_ACCOUNT, 4711 NULL); 4712 4713 /* Size and allocate the main established and bind bucket 4714 * hash tables. 4715 * 4716 * The methodology is similar to that of the buffer cache. 4717 */ 4718 tcp_hashinfo.ehash = 4719 alloc_large_system_hash("TCP established", 4720 sizeof(struct inet_ehash_bucket), 4721 thash_entries, 4722 17, /* one slot per 128 KB of memory */ 4723 0, 4724 NULL, 4725 &tcp_hashinfo.ehash_mask, 4726 0, 4727 thash_entries ? 0 : 512 * 1024); 4728 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4729 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4730 4731 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4732 panic("TCP: failed to alloc ehash_locks"); 4733 tcp_hashinfo.bhash = 4734 alloc_large_system_hash("TCP bind", 4735 2 * sizeof(struct inet_bind_hashbucket), 4736 tcp_hashinfo.ehash_mask + 1, 4737 17, /* one slot per 128 KB of memory */ 4738 0, 4739 &tcp_hashinfo.bhash_size, 4740 NULL, 4741 0, 4742 64 * 1024); 4743 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4744 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4745 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4746 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4747 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4748 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4749 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4750 } 4751 4752 tcp_hashinfo.pernet = false; 4753 4754 cnt = tcp_hashinfo.ehash_mask + 1; 4755 sysctl_tcp_max_orphans = cnt / 2; 4756 4757 tcp_init_mem(); 4758 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4759 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4760 max_wshare = min(4UL*1024*1024, limit); 4761 max_rshare = min(6UL*1024*1024, limit); 4762 4763 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4764 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4765 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4766 4767 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4768 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4769 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4770 4771 pr_info("Hash tables configured (established %u bind %u)\n", 4772 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4773 4774 tcp_v4_init(); 4775 tcp_metrics_init(); 4776 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4777 tcp_tasklet_init(); 4778 mptcp_init(); 4779 } 4780