1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 struct percpu_counter tcp_orphan_count; 284 EXPORT_SYMBOL_GPL(tcp_orphan_count); 285 286 long sysctl_tcp_mem[3] __read_mostly; 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 290 EXPORT_SYMBOL(tcp_memory_allocated); 291 292 #if IS_ENABLED(CONFIG_SMC) 293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 294 EXPORT_SYMBOL(tcp_have_smc); 295 #endif 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 unsigned long tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 320 321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 322 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 323 324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 unsigned long val; 329 330 if (READ_ONCE(tcp_memory_pressure)) 331 return; 332 val = jiffies; 333 334 if (!val) 335 val--; 336 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 338 } 339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 340 341 void tcp_leave_memory_pressure(struct sock *sk) 342 { 343 unsigned long val; 344 345 if (!READ_ONCE(tcp_memory_pressure)) 346 return; 347 val = xchg(&tcp_memory_pressure, 0); 348 if (val) 349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 350 jiffies_to_msecs(jiffies - val)); 351 } 352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 353 354 /* Convert seconds to retransmits based on initial and max timeout */ 355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 356 { 357 u8 res = 0; 358 359 if (seconds > 0) { 360 int period = timeout; 361 362 res = 1; 363 while (seconds > period && res < 255) { 364 res++; 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return res; 372 } 373 374 /* Convert retransmits to seconds based on initial and max timeout */ 375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 376 { 377 int period = 0; 378 379 if (retrans > 0) { 380 period = timeout; 381 while (--retrans) { 382 timeout <<= 1; 383 if (timeout > rto_max) 384 timeout = rto_max; 385 period += timeout; 386 } 387 } 388 return period; 389 } 390 391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 392 { 393 u32 rate = READ_ONCE(tp->rate_delivered); 394 u32 intv = READ_ONCE(tp->rate_interval_us); 395 u64 rate64 = 0; 396 397 if (rate && intv) { 398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 399 do_div(rate64, intv); 400 } 401 return rate64; 402 } 403 404 /* Address-family independent initialization for a tcp_sock. 405 * 406 * NOTE: A lot of things set to zero explicitly by call to 407 * sk_alloc() so need not be done here. 408 */ 409 void tcp_init_sock(struct sock *sk) 410 { 411 struct inet_connection_sock *icsk = inet_csk(sk); 412 struct tcp_sock *tp = tcp_sk(sk); 413 414 tp->out_of_order_queue = RB_ROOT; 415 sk->tcp_rtx_queue = RB_ROOT; 416 tcp_init_xmit_timers(sk); 417 INIT_LIST_HEAD(&tp->tsq_node); 418 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 419 420 icsk->icsk_rto = TCP_TIMEOUT_INIT; 421 icsk->icsk_rto_min = TCP_RTO_MIN; 422 icsk->icsk_delack_max = TCP_DELACK_MAX; 423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 425 426 /* So many TCP implementations out there (incorrectly) count the 427 * initial SYN frame in their delayed-ACK and congestion control 428 * algorithms that we must have the following bandaid to talk 429 * efficiently to them. -DaveM 430 */ 431 tp->snd_cwnd = TCP_INIT_CWND; 432 433 /* There's a bubble in the pipe until at least the first ACK. */ 434 tp->app_limited = ~0U; 435 436 /* See draft-stevens-tcpca-spec-01 for discussion of the 437 * initialization of these values. 438 */ 439 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 440 tp->snd_cwnd_clamp = ~0; 441 tp->mss_cache = TCP_MSS_DEFAULT; 442 443 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 444 tcp_assign_congestion_control(sk); 445 446 tp->tsoffset = 0; 447 tp->rack.reo_wnd_steps = 1; 448 449 sk->sk_write_space = sk_stream_write_space; 450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 451 452 icsk->icsk_sync_mss = tcp_sync_mss; 453 454 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 455 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 456 457 sk_sockets_allocated_inc(sk); 458 sk->sk_route_forced_caps = NETIF_F_GSO; 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 479 int target, struct sock *sk) 480 { 481 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 482 483 if (avail > 0) { 484 if (avail >= target) 485 return true; 486 if (tcp_rmem_pressure(sk)) 487 return true; 488 } 489 if (sk->sk_prot->stream_memory_read) 490 return sk->sk_prot->stream_memory_read(sk); 491 return false; 492 } 493 494 /* 495 * Wait for a TCP event. 496 * 497 * Note that we don't need to lock the socket, as the upper poll layers 498 * take care of normal races (between the test and the event) and we don't 499 * go look at any of the socket buffers directly. 500 */ 501 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 502 { 503 __poll_t mask; 504 struct sock *sk = sock->sk; 505 const struct tcp_sock *tp = tcp_sk(sk); 506 int state; 507 508 sock_poll_wait(file, sock, wait); 509 510 state = inet_sk_state_load(sk); 511 if (state == TCP_LISTEN) 512 return inet_csk_listen_poll(sk); 513 514 /* Socket is not locked. We are protected from async events 515 * by poll logic and correct handling of state changes 516 * made by other threads is impossible in any case. 517 */ 518 519 mask = 0; 520 521 /* 522 * EPOLLHUP is certainly not done right. But poll() doesn't 523 * have a notion of HUP in just one direction, and for a 524 * socket the read side is more interesting. 525 * 526 * Some poll() documentation says that EPOLLHUP is incompatible 527 * with the EPOLLOUT/POLLWR flags, so somebody should check this 528 * all. But careful, it tends to be safer to return too many 529 * bits than too few, and you can easily break real applications 530 * if you don't tell them that something has hung up! 531 * 532 * Check-me. 533 * 534 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 535 * our fs/select.c). It means that after we received EOF, 536 * poll always returns immediately, making impossible poll() on write() 537 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 538 * if and only if shutdown has been made in both directions. 539 * Actually, it is interesting to look how Solaris and DUX 540 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 541 * then we could set it on SND_SHUTDOWN. BTW examples given 542 * in Stevens' books assume exactly this behaviour, it explains 543 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 544 * 545 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 546 * blocking on fresh not-connected or disconnected socket. --ANK 547 */ 548 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 549 mask |= EPOLLHUP; 550 if (sk->sk_shutdown & RCV_SHUTDOWN) 551 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 552 553 /* Connected or passive Fast Open socket? */ 554 if (state != TCP_SYN_SENT && 555 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 556 int target = sock_rcvlowat(sk, 0, INT_MAX); 557 558 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE) && 560 tp->urg_data) 561 target++; 562 563 if (tcp_stream_is_readable(tp, target, sk)) 564 mask |= EPOLLIN | EPOLLRDNORM; 565 566 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 567 if (__sk_stream_is_writeable(sk, 1)) { 568 mask |= EPOLLOUT | EPOLLWRNORM; 569 } else { /* send SIGIO later */ 570 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 571 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 572 573 /* Race breaker. If space is freed after 574 * wspace test but before the flags are set, 575 * IO signal will be lost. Memory barrier 576 * pairs with the input side. 577 */ 578 smp_mb__after_atomic(); 579 if (__sk_stream_is_writeable(sk, 1)) 580 mask |= EPOLLOUT | EPOLLWRNORM; 581 } 582 } else 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 585 if (tp->urg_data & TCP_URG_VALID) 586 mask |= EPOLLPRI; 587 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 597 mask |= EPOLLERR; 598 599 return mask; 600 } 601 EXPORT_SYMBOL(tcp_poll); 602 603 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 int answ; 607 bool slow; 608 609 switch (cmd) { 610 case SIOCINQ: 611 if (sk->sk_state == TCP_LISTEN) 612 return -EINVAL; 613 614 slow = lock_sock_fast(sk); 615 answ = tcp_inq(sk); 616 unlock_sock_fast(sk, slow); 617 break; 618 case SIOCATMARK: 619 answ = tp->urg_data && 620 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 621 break; 622 case SIOCOUTQ: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 630 break; 631 case SIOCOUTQNSD: 632 if (sk->sk_state == TCP_LISTEN) 633 return -EINVAL; 634 635 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 636 answ = 0; 637 else 638 answ = READ_ONCE(tp->write_seq) - 639 READ_ONCE(tp->snd_nxt); 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 if (likely(!size)) { 869 skb = sk->sk_tx_skb_cache; 870 if (skb) { 871 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 872 sk->sk_tx_skb_cache = NULL; 873 pskb_trim(skb, 0); 874 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 875 skb_shinfo(skb)->tx_flags = 0; 876 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 877 return skb; 878 } 879 } 880 /* The TCP header must be at least 32-bit aligned. */ 881 size = ALIGN(size, 4); 882 883 if (unlikely(tcp_under_memory_pressure(sk))) 884 sk_mem_reclaim_partial(sk); 885 886 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 887 if (likely(skb)) { 888 bool mem_scheduled; 889 890 if (force_schedule) { 891 mem_scheduled = true; 892 sk_forced_mem_schedule(sk, skb->truesize); 893 } else { 894 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 895 } 896 if (likely(mem_scheduled)) { 897 skb_reserve(skb, sk->sk_prot->max_header); 898 /* 899 * Make sure that we have exactly size bytes 900 * available to the caller, no more, no less. 901 */ 902 skb->reserved_tailroom = skb->end - skb->tail - size; 903 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 904 return skb; 905 } 906 __kfree_skb(skb); 907 } else { 908 sk->sk_prot->enter_memory_pressure(sk); 909 sk_stream_moderate_sndbuf(sk); 910 } 911 return NULL; 912 } 913 914 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 915 int large_allowed) 916 { 917 struct tcp_sock *tp = tcp_sk(sk); 918 u32 new_size_goal, size_goal; 919 920 if (!large_allowed) 921 return mss_now; 922 923 /* Note : tcp_tso_autosize() will eventually split this later */ 924 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 925 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 926 927 /* We try hard to avoid divides here */ 928 size_goal = tp->gso_segs * mss_now; 929 if (unlikely(new_size_goal < size_goal || 930 new_size_goal >= size_goal + mss_now)) { 931 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 932 sk->sk_gso_max_segs); 933 size_goal = tp->gso_segs * mss_now; 934 } 935 936 return max(size_goal, mss_now); 937 } 938 939 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 940 { 941 int mss_now; 942 943 mss_now = tcp_current_mss(sk); 944 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 945 946 return mss_now; 947 } 948 949 /* In some cases, both sendpage() and sendmsg() could have added 950 * an skb to the write queue, but failed adding payload on it. 951 * We need to remove it to consume less memory, but more 952 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 953 * users. 954 */ 955 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 956 { 957 if (skb && !skb->len) { 958 tcp_unlink_write_queue(skb, sk); 959 if (tcp_write_queue_empty(sk)) 960 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 961 sk_wmem_free_skb(sk, skb); 962 } 963 } 964 965 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 966 size_t size, int flags) 967 { 968 struct tcp_sock *tp = tcp_sk(sk); 969 int mss_now, size_goal; 970 int err; 971 ssize_t copied; 972 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 973 974 if (IS_ENABLED(CONFIG_DEBUG_VM) && 975 WARN_ONCE(!sendpage_ok(page), 976 "page must not be a Slab one and have page_count > 0")) 977 return -EINVAL; 978 979 /* Wait for a connection to finish. One exception is TCP Fast Open 980 * (passive side) where data is allowed to be sent before a connection 981 * is fully established. 982 */ 983 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 984 !tcp_passive_fastopen(sk)) { 985 err = sk_stream_wait_connect(sk, &timeo); 986 if (err != 0) 987 goto out_err; 988 } 989 990 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 991 992 mss_now = tcp_send_mss(sk, &size_goal, flags); 993 copied = 0; 994 995 err = -EPIPE; 996 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 997 goto out_err; 998 999 while (size > 0) { 1000 struct sk_buff *skb = tcp_write_queue_tail(sk); 1001 int copy, i; 1002 bool can_coalesce; 1003 1004 if (!skb || (copy = size_goal - skb->len) <= 0 || 1005 !tcp_skb_can_collapse_to(skb)) { 1006 new_segment: 1007 if (!sk_stream_memory_free(sk)) 1008 goto wait_for_space; 1009 1010 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1011 tcp_rtx_and_write_queues_empty(sk)); 1012 if (!skb) 1013 goto wait_for_space; 1014 1015 #ifdef CONFIG_TLS_DEVICE 1016 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1017 #endif 1018 skb_entail(sk, skb); 1019 copy = size_goal; 1020 } 1021 1022 if (copy > size) 1023 copy = size; 1024 1025 i = skb_shinfo(skb)->nr_frags; 1026 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1027 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1028 tcp_mark_push(tp, skb); 1029 goto new_segment; 1030 } 1031 if (!sk_wmem_schedule(sk, copy)) 1032 goto wait_for_space; 1033 1034 if (can_coalesce) { 1035 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1036 } else { 1037 get_page(page); 1038 skb_fill_page_desc(skb, i, page, offset, copy); 1039 } 1040 1041 if (!(flags & MSG_NO_SHARED_FRAGS)) 1042 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1043 1044 skb->len += copy; 1045 skb->data_len += copy; 1046 skb->truesize += copy; 1047 sk_wmem_queued_add(sk, copy); 1048 sk_mem_charge(sk, copy); 1049 skb->ip_summed = CHECKSUM_PARTIAL; 1050 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1051 TCP_SKB_CB(skb)->end_seq += copy; 1052 tcp_skb_pcount_set(skb, 0); 1053 1054 if (!copied) 1055 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1056 1057 copied += copy; 1058 offset += copy; 1059 size -= copy; 1060 if (!size) 1061 goto out; 1062 1063 if (skb->len < size_goal || (flags & MSG_OOB)) 1064 continue; 1065 1066 if (forced_push(tp)) { 1067 tcp_mark_push(tp, skb); 1068 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1069 } else if (skb == tcp_send_head(sk)) 1070 tcp_push_one(sk, mss_now); 1071 continue; 1072 1073 wait_for_space: 1074 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1075 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1076 TCP_NAGLE_PUSH, size_goal); 1077 1078 err = sk_stream_wait_memory(sk, &timeo); 1079 if (err != 0) 1080 goto do_error; 1081 1082 mss_now = tcp_send_mss(sk, &size_goal, flags); 1083 } 1084 1085 out: 1086 if (copied) { 1087 tcp_tx_timestamp(sk, sk->sk_tsflags); 1088 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1089 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1090 } 1091 return copied; 1092 1093 do_error: 1094 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1095 if (copied) 1096 goto out; 1097 out_err: 1098 /* make sure we wake any epoll edge trigger waiter */ 1099 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1100 sk->sk_write_space(sk); 1101 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1102 } 1103 return sk_stream_error(sk, flags, err); 1104 } 1105 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1106 1107 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1108 size_t size, int flags) 1109 { 1110 if (!(sk->sk_route_caps & NETIF_F_SG)) 1111 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1112 1113 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1114 1115 return do_tcp_sendpages(sk, page, offset, size, flags); 1116 } 1117 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1118 1119 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1120 size_t size, int flags) 1121 { 1122 int ret; 1123 1124 lock_sock(sk); 1125 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1126 release_sock(sk); 1127 1128 return ret; 1129 } 1130 EXPORT_SYMBOL(tcp_sendpage); 1131 1132 void tcp_free_fastopen_req(struct tcp_sock *tp) 1133 { 1134 if (tp->fastopen_req) { 1135 kfree(tp->fastopen_req); 1136 tp->fastopen_req = NULL; 1137 } 1138 } 1139 1140 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1141 int *copied, size_t size, 1142 struct ubuf_info *uarg) 1143 { 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 struct inet_sock *inet = inet_sk(sk); 1146 struct sockaddr *uaddr = msg->msg_name; 1147 int err, flags; 1148 1149 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1150 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1151 uaddr->sa_family == AF_UNSPEC)) 1152 return -EOPNOTSUPP; 1153 if (tp->fastopen_req) 1154 return -EALREADY; /* Another Fast Open is in progress */ 1155 1156 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1157 sk->sk_allocation); 1158 if (unlikely(!tp->fastopen_req)) 1159 return -ENOBUFS; 1160 tp->fastopen_req->data = msg; 1161 tp->fastopen_req->size = size; 1162 tp->fastopen_req->uarg = uarg; 1163 1164 if (inet->defer_connect) { 1165 err = tcp_connect(sk); 1166 /* Same failure procedure as in tcp_v4/6_connect */ 1167 if (err) { 1168 tcp_set_state(sk, TCP_CLOSE); 1169 inet->inet_dport = 0; 1170 sk->sk_route_caps = 0; 1171 } 1172 } 1173 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1174 err = __inet_stream_connect(sk->sk_socket, uaddr, 1175 msg->msg_namelen, flags, 1); 1176 /* fastopen_req could already be freed in __inet_stream_connect 1177 * if the connection times out or gets rst 1178 */ 1179 if (tp->fastopen_req) { 1180 *copied = tp->fastopen_req->copied; 1181 tcp_free_fastopen_req(tp); 1182 inet->defer_connect = 0; 1183 } 1184 return err; 1185 } 1186 1187 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1188 { 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 struct ubuf_info *uarg = NULL; 1191 struct sk_buff *skb; 1192 struct sockcm_cookie sockc; 1193 int flags, err, copied = 0; 1194 int mss_now = 0, size_goal, copied_syn = 0; 1195 int process_backlog = 0; 1196 bool zc = false; 1197 long timeo; 1198 1199 flags = msg->msg_flags; 1200 1201 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1202 skb = tcp_write_queue_tail(sk); 1203 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1204 if (!uarg) { 1205 err = -ENOBUFS; 1206 goto out_err; 1207 } 1208 1209 zc = sk->sk_route_caps & NETIF_F_SG; 1210 if (!zc) 1211 uarg->zerocopy = 0; 1212 } 1213 1214 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1215 !tp->repair) { 1216 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1217 if (err == -EINPROGRESS && copied_syn > 0) 1218 goto out; 1219 else if (err) 1220 goto out_err; 1221 } 1222 1223 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1224 1225 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1226 1227 /* Wait for a connection to finish. One exception is TCP Fast Open 1228 * (passive side) where data is allowed to be sent before a connection 1229 * is fully established. 1230 */ 1231 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1232 !tcp_passive_fastopen(sk)) { 1233 err = sk_stream_wait_connect(sk, &timeo); 1234 if (err != 0) 1235 goto do_error; 1236 } 1237 1238 if (unlikely(tp->repair)) { 1239 if (tp->repair_queue == TCP_RECV_QUEUE) { 1240 copied = tcp_send_rcvq(sk, msg, size); 1241 goto out_nopush; 1242 } 1243 1244 err = -EINVAL; 1245 if (tp->repair_queue == TCP_NO_QUEUE) 1246 goto out_err; 1247 1248 /* 'common' sending to sendq */ 1249 } 1250 1251 sockcm_init(&sockc, sk); 1252 if (msg->msg_controllen) { 1253 err = sock_cmsg_send(sk, msg, &sockc); 1254 if (unlikely(err)) { 1255 err = -EINVAL; 1256 goto out_err; 1257 } 1258 } 1259 1260 /* This should be in poll */ 1261 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1262 1263 /* Ok commence sending. */ 1264 copied = 0; 1265 1266 restart: 1267 mss_now = tcp_send_mss(sk, &size_goal, flags); 1268 1269 err = -EPIPE; 1270 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1271 goto do_error; 1272 1273 while (msg_data_left(msg)) { 1274 int copy = 0; 1275 1276 skb = tcp_write_queue_tail(sk); 1277 if (skb) 1278 copy = size_goal - skb->len; 1279 1280 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1281 bool first_skb; 1282 1283 new_segment: 1284 if (!sk_stream_memory_free(sk)) 1285 goto wait_for_space; 1286 1287 if (unlikely(process_backlog >= 16)) { 1288 process_backlog = 0; 1289 if (sk_flush_backlog(sk)) 1290 goto restart; 1291 } 1292 first_skb = tcp_rtx_and_write_queues_empty(sk); 1293 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1294 first_skb); 1295 if (!skb) 1296 goto wait_for_space; 1297 1298 process_backlog++; 1299 skb->ip_summed = CHECKSUM_PARTIAL; 1300 1301 skb_entail(sk, skb); 1302 copy = size_goal; 1303 1304 /* All packets are restored as if they have 1305 * already been sent. skb_mstamp_ns isn't set to 1306 * avoid wrong rtt estimation. 1307 */ 1308 if (tp->repair) 1309 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1310 } 1311 1312 /* Try to append data to the end of skb. */ 1313 if (copy > msg_data_left(msg)) 1314 copy = msg_data_left(msg); 1315 1316 /* Where to copy to? */ 1317 if (skb_availroom(skb) > 0 && !zc) { 1318 /* We have some space in skb head. Superb! */ 1319 copy = min_t(int, copy, skb_availroom(skb)); 1320 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1321 if (err) 1322 goto do_fault; 1323 } else if (!zc) { 1324 bool merge = true; 1325 int i = skb_shinfo(skb)->nr_frags; 1326 struct page_frag *pfrag = sk_page_frag(sk); 1327 1328 if (!sk_page_frag_refill(sk, pfrag)) 1329 goto wait_for_space; 1330 1331 if (!skb_can_coalesce(skb, i, pfrag->page, 1332 pfrag->offset)) { 1333 if (i >= sysctl_max_skb_frags) { 1334 tcp_mark_push(tp, skb); 1335 goto new_segment; 1336 } 1337 merge = false; 1338 } 1339 1340 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1341 1342 if (!sk_wmem_schedule(sk, copy)) 1343 goto wait_for_space; 1344 1345 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1346 pfrag->page, 1347 pfrag->offset, 1348 copy); 1349 if (err) 1350 goto do_error; 1351 1352 /* Update the skb. */ 1353 if (merge) { 1354 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1355 } else { 1356 skb_fill_page_desc(skb, i, pfrag->page, 1357 pfrag->offset, copy); 1358 page_ref_inc(pfrag->page); 1359 } 1360 pfrag->offset += copy; 1361 } else { 1362 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1363 if (err == -EMSGSIZE || err == -EEXIST) { 1364 tcp_mark_push(tp, skb); 1365 goto new_segment; 1366 } 1367 if (err < 0) 1368 goto do_error; 1369 copy = err; 1370 } 1371 1372 if (!copied) 1373 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1374 1375 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 copied += copy; 1380 if (!msg_data_left(msg)) { 1381 if (unlikely(flags & MSG_EOR)) 1382 TCP_SKB_CB(skb)->eor = 1; 1383 goto out; 1384 } 1385 1386 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1387 continue; 1388 1389 if (forced_push(tp)) { 1390 tcp_mark_push(tp, skb); 1391 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1392 } else if (skb == tcp_send_head(sk)) 1393 tcp_push_one(sk, mss_now); 1394 continue; 1395 1396 wait_for_space: 1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1398 if (copied) 1399 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1400 TCP_NAGLE_PUSH, size_goal); 1401 1402 err = sk_stream_wait_memory(sk, &timeo); 1403 if (err != 0) 1404 goto do_error; 1405 1406 mss_now = tcp_send_mss(sk, &size_goal, flags); 1407 } 1408 1409 out: 1410 if (copied) { 1411 tcp_tx_timestamp(sk, sockc.tsflags); 1412 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1413 } 1414 out_nopush: 1415 sock_zerocopy_put(uarg); 1416 return copied + copied_syn; 1417 1418 do_error: 1419 skb = tcp_write_queue_tail(sk); 1420 do_fault: 1421 tcp_remove_empty_skb(sk, skb); 1422 1423 if (copied + copied_syn) 1424 goto out; 1425 out_err: 1426 sock_zerocopy_put_abort(uarg, true); 1427 err = sk_stream_error(sk, flags, err); 1428 /* make sure we wake any epoll edge trigger waiter */ 1429 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1430 sk->sk_write_space(sk); 1431 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1432 } 1433 return err; 1434 } 1435 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1436 1437 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1438 { 1439 int ret; 1440 1441 lock_sock(sk); 1442 ret = tcp_sendmsg_locked(sk, msg, size); 1443 release_sock(sk); 1444 1445 return ret; 1446 } 1447 EXPORT_SYMBOL(tcp_sendmsg); 1448 1449 /* 1450 * Handle reading urgent data. BSD has very simple semantics for 1451 * this, no blocking and very strange errors 8) 1452 */ 1453 1454 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1455 { 1456 struct tcp_sock *tp = tcp_sk(sk); 1457 1458 /* No URG data to read. */ 1459 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1460 tp->urg_data == TCP_URG_READ) 1461 return -EINVAL; /* Yes this is right ! */ 1462 1463 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1464 return -ENOTCONN; 1465 1466 if (tp->urg_data & TCP_URG_VALID) { 1467 int err = 0; 1468 char c = tp->urg_data; 1469 1470 if (!(flags & MSG_PEEK)) 1471 tp->urg_data = TCP_URG_READ; 1472 1473 /* Read urgent data. */ 1474 msg->msg_flags |= MSG_OOB; 1475 1476 if (len > 0) { 1477 if (!(flags & MSG_TRUNC)) 1478 err = memcpy_to_msg(msg, &c, 1); 1479 len = 1; 1480 } else 1481 msg->msg_flags |= MSG_TRUNC; 1482 1483 return err ? -EFAULT : len; 1484 } 1485 1486 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1487 return 0; 1488 1489 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1490 * the available implementations agree in this case: 1491 * this call should never block, independent of the 1492 * blocking state of the socket. 1493 * Mike <pall@rz.uni-karlsruhe.de> 1494 */ 1495 return -EAGAIN; 1496 } 1497 1498 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1499 { 1500 struct sk_buff *skb; 1501 int copied = 0, err = 0; 1502 1503 /* XXX -- need to support SO_PEEK_OFF */ 1504 1505 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1506 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1507 if (err) 1508 return err; 1509 copied += skb->len; 1510 } 1511 1512 skb_queue_walk(&sk->sk_write_queue, skb) { 1513 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1514 if (err) 1515 break; 1516 1517 copied += skb->len; 1518 } 1519 1520 return err ?: copied; 1521 } 1522 1523 /* Clean up the receive buffer for full frames taken by the user, 1524 * then send an ACK if necessary. COPIED is the number of bytes 1525 * tcp_recvmsg has given to the user so far, it speeds up the 1526 * calculation of whether or not we must ACK for the sake of 1527 * a window update. 1528 */ 1529 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1530 { 1531 struct tcp_sock *tp = tcp_sk(sk); 1532 bool time_to_ack = false; 1533 1534 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1535 1536 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1537 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1538 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1539 1540 if (inet_csk_ack_scheduled(sk)) { 1541 const struct inet_connection_sock *icsk = inet_csk(sk); 1542 1543 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1544 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1545 /* 1546 * If this read emptied read buffer, we send ACK, if 1547 * connection is not bidirectional, user drained 1548 * receive buffer and there was a small segment 1549 * in queue. 1550 */ 1551 (copied > 0 && 1552 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1553 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1554 !inet_csk_in_pingpong_mode(sk))) && 1555 !atomic_read(&sk->sk_rmem_alloc))) 1556 time_to_ack = true; 1557 } 1558 1559 /* We send an ACK if we can now advertise a non-zero window 1560 * which has been raised "significantly". 1561 * 1562 * Even if window raised up to infinity, do not send window open ACK 1563 * in states, where we will not receive more. It is useless. 1564 */ 1565 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1566 __u32 rcv_window_now = tcp_receive_window(tp); 1567 1568 /* Optimize, __tcp_select_window() is not cheap. */ 1569 if (2*rcv_window_now <= tp->window_clamp) { 1570 __u32 new_window = __tcp_select_window(sk); 1571 1572 /* Send ACK now, if this read freed lots of space 1573 * in our buffer. Certainly, new_window is new window. 1574 * We can advertise it now, if it is not less than current one. 1575 * "Lots" means "at least twice" here. 1576 */ 1577 if (new_window && new_window >= 2 * rcv_window_now) 1578 time_to_ack = true; 1579 } 1580 } 1581 if (time_to_ack) 1582 tcp_send_ack(sk); 1583 } 1584 1585 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1586 { 1587 struct sk_buff *skb; 1588 u32 offset; 1589 1590 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1591 offset = seq - TCP_SKB_CB(skb)->seq; 1592 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1593 pr_err_once("%s: found a SYN, please report !\n", __func__); 1594 offset--; 1595 } 1596 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1597 *off = offset; 1598 return skb; 1599 } 1600 /* This looks weird, but this can happen if TCP collapsing 1601 * splitted a fat GRO packet, while we released socket lock 1602 * in skb_splice_bits() 1603 */ 1604 sk_eat_skb(sk, skb); 1605 } 1606 return NULL; 1607 } 1608 1609 /* 1610 * This routine provides an alternative to tcp_recvmsg() for routines 1611 * that would like to handle copying from skbuffs directly in 'sendfile' 1612 * fashion. 1613 * Note: 1614 * - It is assumed that the socket was locked by the caller. 1615 * - The routine does not block. 1616 * - At present, there is no support for reading OOB data 1617 * or for 'peeking' the socket using this routine 1618 * (although both would be easy to implement). 1619 */ 1620 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1621 sk_read_actor_t recv_actor) 1622 { 1623 struct sk_buff *skb; 1624 struct tcp_sock *tp = tcp_sk(sk); 1625 u32 seq = tp->copied_seq; 1626 u32 offset; 1627 int copied = 0; 1628 1629 if (sk->sk_state == TCP_LISTEN) 1630 return -ENOTCONN; 1631 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1632 if (offset < skb->len) { 1633 int used; 1634 size_t len; 1635 1636 len = skb->len - offset; 1637 /* Stop reading if we hit a patch of urgent data */ 1638 if (tp->urg_data) { 1639 u32 urg_offset = tp->urg_seq - seq; 1640 if (urg_offset < len) 1641 len = urg_offset; 1642 if (!len) 1643 break; 1644 } 1645 used = recv_actor(desc, skb, offset, len); 1646 if (used <= 0) { 1647 if (!copied) 1648 copied = used; 1649 break; 1650 } else if (used <= len) { 1651 seq += used; 1652 copied += used; 1653 offset += used; 1654 } 1655 /* If recv_actor drops the lock (e.g. TCP splice 1656 * receive) the skb pointer might be invalid when 1657 * getting here: tcp_collapse might have deleted it 1658 * while aggregating skbs from the socket queue. 1659 */ 1660 skb = tcp_recv_skb(sk, seq - 1, &offset); 1661 if (!skb) 1662 break; 1663 /* TCP coalescing might have appended data to the skb. 1664 * Try to splice more frags 1665 */ 1666 if (offset + 1 != skb->len) 1667 continue; 1668 } 1669 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1670 sk_eat_skb(sk, skb); 1671 ++seq; 1672 break; 1673 } 1674 sk_eat_skb(sk, skb); 1675 if (!desc->count) 1676 break; 1677 WRITE_ONCE(tp->copied_seq, seq); 1678 } 1679 WRITE_ONCE(tp->copied_seq, seq); 1680 1681 tcp_rcv_space_adjust(sk); 1682 1683 /* Clean up data we have read: This will do ACK frames. */ 1684 if (copied > 0) { 1685 tcp_recv_skb(sk, seq, &offset); 1686 tcp_cleanup_rbuf(sk, copied); 1687 } 1688 return copied; 1689 } 1690 EXPORT_SYMBOL(tcp_read_sock); 1691 1692 int tcp_peek_len(struct socket *sock) 1693 { 1694 return tcp_inq(sock->sk); 1695 } 1696 EXPORT_SYMBOL(tcp_peek_len); 1697 1698 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1699 int tcp_set_rcvlowat(struct sock *sk, int val) 1700 { 1701 int cap; 1702 1703 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1704 cap = sk->sk_rcvbuf >> 1; 1705 else 1706 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1707 val = min(val, cap); 1708 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1709 1710 /* Check if we need to signal EPOLLIN right now */ 1711 tcp_data_ready(sk); 1712 1713 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1714 return 0; 1715 1716 val <<= 1; 1717 if (val > sk->sk_rcvbuf) { 1718 WRITE_ONCE(sk->sk_rcvbuf, val); 1719 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1720 } 1721 return 0; 1722 } 1723 EXPORT_SYMBOL(tcp_set_rcvlowat); 1724 1725 #ifdef CONFIG_MMU 1726 static const struct vm_operations_struct tcp_vm_ops = { 1727 }; 1728 1729 int tcp_mmap(struct file *file, struct socket *sock, 1730 struct vm_area_struct *vma) 1731 { 1732 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1733 return -EPERM; 1734 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1735 1736 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1737 vma->vm_flags |= VM_MIXEDMAP; 1738 1739 vma->vm_ops = &tcp_vm_ops; 1740 return 0; 1741 } 1742 EXPORT_SYMBOL(tcp_mmap); 1743 1744 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1745 struct page **pages, 1746 unsigned long pages_to_map, 1747 unsigned long *insert_addr, 1748 u32 *length_with_pending, 1749 u32 *seq, 1750 struct tcp_zerocopy_receive *zc) 1751 { 1752 unsigned long pages_remaining = pages_to_map; 1753 int bytes_mapped; 1754 int ret; 1755 1756 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining); 1757 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining); 1758 /* Even if vm_insert_pages fails, it may have partially succeeded in 1759 * mapping (some but not all of the pages). 1760 */ 1761 *seq += bytes_mapped; 1762 *insert_addr += bytes_mapped; 1763 if (ret) { 1764 /* But if vm_insert_pages did fail, we have to unroll some state 1765 * we speculatively touched before. 1766 */ 1767 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1768 *length_with_pending -= bytes_not_mapped; 1769 zc->recv_skip_hint += bytes_not_mapped; 1770 } 1771 return ret; 1772 } 1773 1774 static int tcp_zerocopy_receive(struct sock *sk, 1775 struct tcp_zerocopy_receive *zc) 1776 { 1777 unsigned long address = (unsigned long)zc->address; 1778 u32 length = 0, seq, offset, zap_len; 1779 #define PAGE_BATCH_SIZE 8 1780 struct page *pages[PAGE_BATCH_SIZE]; 1781 const skb_frag_t *frags = NULL; 1782 struct vm_area_struct *vma; 1783 struct sk_buff *skb = NULL; 1784 unsigned long pg_idx = 0; 1785 unsigned long curr_addr; 1786 struct tcp_sock *tp; 1787 int inq; 1788 int ret; 1789 1790 if (address & (PAGE_SIZE - 1) || address != zc->address) 1791 return -EINVAL; 1792 1793 if (sk->sk_state == TCP_LISTEN) 1794 return -ENOTCONN; 1795 1796 sock_rps_record_flow(sk); 1797 1798 tp = tcp_sk(sk); 1799 1800 mmap_read_lock(current->mm); 1801 1802 vma = find_vma(current->mm, address); 1803 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 1804 mmap_read_unlock(current->mm); 1805 return -EINVAL; 1806 } 1807 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1808 1809 seq = tp->copied_seq; 1810 inq = tcp_inq(sk); 1811 zc->length = min_t(u32, zc->length, inq); 1812 zap_len = zc->length & ~(PAGE_SIZE - 1); 1813 if (zap_len) { 1814 zap_page_range(vma, address, zap_len); 1815 zc->recv_skip_hint = 0; 1816 } else { 1817 zc->recv_skip_hint = zc->length; 1818 } 1819 ret = 0; 1820 curr_addr = address; 1821 while (length + PAGE_SIZE <= zc->length) { 1822 if (zc->recv_skip_hint < PAGE_SIZE) { 1823 /* If we're here, finish the current batch. */ 1824 if (pg_idx) { 1825 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 1826 pg_idx, 1827 &curr_addr, 1828 &length, 1829 &seq, zc); 1830 if (ret) 1831 goto out; 1832 pg_idx = 0; 1833 } 1834 if (skb) { 1835 if (zc->recv_skip_hint > 0) 1836 break; 1837 skb = skb->next; 1838 offset = seq - TCP_SKB_CB(skb)->seq; 1839 } else { 1840 skb = tcp_recv_skb(sk, seq, &offset); 1841 } 1842 zc->recv_skip_hint = skb->len - offset; 1843 offset -= skb_headlen(skb); 1844 if ((int)offset < 0 || skb_has_frag_list(skb)) 1845 break; 1846 frags = skb_shinfo(skb)->frags; 1847 while (offset) { 1848 if (skb_frag_size(frags) > offset) 1849 goto out; 1850 offset -= skb_frag_size(frags); 1851 frags++; 1852 } 1853 } 1854 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1855 int remaining = zc->recv_skip_hint; 1856 1857 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1858 skb_frag_off(frags))) { 1859 remaining -= skb_frag_size(frags); 1860 frags++; 1861 } 1862 zc->recv_skip_hint -= remaining; 1863 break; 1864 } 1865 pages[pg_idx] = skb_frag_page(frags); 1866 pg_idx++; 1867 length += PAGE_SIZE; 1868 zc->recv_skip_hint -= PAGE_SIZE; 1869 frags++; 1870 if (pg_idx == PAGE_BATCH_SIZE) { 1871 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1872 &curr_addr, &length, 1873 &seq, zc); 1874 if (ret) 1875 goto out; 1876 pg_idx = 0; 1877 } 1878 } 1879 if (pg_idx) { 1880 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1881 &curr_addr, &length, &seq, 1882 zc); 1883 } 1884 out: 1885 mmap_read_unlock(current->mm); 1886 if (length) { 1887 WRITE_ONCE(tp->copied_seq, seq); 1888 tcp_rcv_space_adjust(sk); 1889 1890 /* Clean up data we have read: This will do ACK frames. */ 1891 tcp_recv_skb(sk, seq, &offset); 1892 tcp_cleanup_rbuf(sk, length); 1893 ret = 0; 1894 if (length == zc->length) 1895 zc->recv_skip_hint = 0; 1896 } else { 1897 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1898 ret = -EIO; 1899 } 1900 zc->length = length; 1901 return ret; 1902 } 1903 #endif 1904 1905 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1906 struct scm_timestamping_internal *tss) 1907 { 1908 if (skb->tstamp) 1909 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1910 else 1911 tss->ts[0] = (struct timespec64) {0}; 1912 1913 if (skb_hwtstamps(skb)->hwtstamp) 1914 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1915 else 1916 tss->ts[2] = (struct timespec64) {0}; 1917 } 1918 1919 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1920 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1921 struct scm_timestamping_internal *tss) 1922 { 1923 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1924 bool has_timestamping = false; 1925 1926 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1927 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1928 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1929 if (new_tstamp) { 1930 struct __kernel_timespec kts = { 1931 .tv_sec = tss->ts[0].tv_sec, 1932 .tv_nsec = tss->ts[0].tv_nsec, 1933 }; 1934 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1935 sizeof(kts), &kts); 1936 } else { 1937 struct __kernel_old_timespec ts_old = { 1938 .tv_sec = tss->ts[0].tv_sec, 1939 .tv_nsec = tss->ts[0].tv_nsec, 1940 }; 1941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1942 sizeof(ts_old), &ts_old); 1943 } 1944 } else { 1945 if (new_tstamp) { 1946 struct __kernel_sock_timeval stv = { 1947 .tv_sec = tss->ts[0].tv_sec, 1948 .tv_usec = tss->ts[0].tv_nsec / 1000, 1949 }; 1950 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1951 sizeof(stv), &stv); 1952 } else { 1953 struct __kernel_old_timeval tv = { 1954 .tv_sec = tss->ts[0].tv_sec, 1955 .tv_usec = tss->ts[0].tv_nsec / 1000, 1956 }; 1957 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1958 sizeof(tv), &tv); 1959 } 1960 } 1961 } 1962 1963 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1964 has_timestamping = true; 1965 else 1966 tss->ts[0] = (struct timespec64) {0}; 1967 } 1968 1969 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1970 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1971 has_timestamping = true; 1972 else 1973 tss->ts[2] = (struct timespec64) {0}; 1974 } 1975 1976 if (has_timestamping) { 1977 tss->ts[1] = (struct timespec64) {0}; 1978 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1979 put_cmsg_scm_timestamping64(msg, tss); 1980 else 1981 put_cmsg_scm_timestamping(msg, tss); 1982 } 1983 } 1984 1985 static int tcp_inq_hint(struct sock *sk) 1986 { 1987 const struct tcp_sock *tp = tcp_sk(sk); 1988 u32 copied_seq = READ_ONCE(tp->copied_seq); 1989 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1990 int inq; 1991 1992 inq = rcv_nxt - copied_seq; 1993 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1994 lock_sock(sk); 1995 inq = tp->rcv_nxt - tp->copied_seq; 1996 release_sock(sk); 1997 } 1998 /* After receiving a FIN, tell the user-space to continue reading 1999 * by returning a non-zero inq. 2000 */ 2001 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2002 inq = 1; 2003 return inq; 2004 } 2005 2006 /* 2007 * This routine copies from a sock struct into the user buffer. 2008 * 2009 * Technical note: in 2.3 we work on _locked_ socket, so that 2010 * tricks with *seq access order and skb->users are not required. 2011 * Probably, code can be easily improved even more. 2012 */ 2013 2014 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2015 int flags, int *addr_len) 2016 { 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 int copied = 0; 2019 u32 peek_seq; 2020 u32 *seq; 2021 unsigned long used; 2022 int err, inq; 2023 int target; /* Read at least this many bytes */ 2024 long timeo; 2025 struct sk_buff *skb, *last; 2026 u32 urg_hole = 0; 2027 struct scm_timestamping_internal tss; 2028 int cmsg_flags; 2029 2030 if (unlikely(flags & MSG_ERRQUEUE)) 2031 return inet_recv_error(sk, msg, len, addr_len); 2032 2033 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 2034 (sk->sk_state == TCP_ESTABLISHED)) 2035 sk_busy_loop(sk, nonblock); 2036 2037 lock_sock(sk); 2038 2039 err = -ENOTCONN; 2040 if (sk->sk_state == TCP_LISTEN) 2041 goto out; 2042 2043 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 2044 timeo = sock_rcvtimeo(sk, nonblock); 2045 2046 /* Urgent data needs to be handled specially. */ 2047 if (flags & MSG_OOB) 2048 goto recv_urg; 2049 2050 if (unlikely(tp->repair)) { 2051 err = -EPERM; 2052 if (!(flags & MSG_PEEK)) 2053 goto out; 2054 2055 if (tp->repair_queue == TCP_SEND_QUEUE) 2056 goto recv_sndq; 2057 2058 err = -EINVAL; 2059 if (tp->repair_queue == TCP_NO_QUEUE) 2060 goto out; 2061 2062 /* 'common' recv queue MSG_PEEK-ing */ 2063 } 2064 2065 seq = &tp->copied_seq; 2066 if (flags & MSG_PEEK) { 2067 peek_seq = tp->copied_seq; 2068 seq = &peek_seq; 2069 } 2070 2071 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2072 2073 do { 2074 u32 offset; 2075 2076 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2077 if (tp->urg_data && tp->urg_seq == *seq) { 2078 if (copied) 2079 break; 2080 if (signal_pending(current)) { 2081 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2082 break; 2083 } 2084 } 2085 2086 /* Next get a buffer. */ 2087 2088 last = skb_peek_tail(&sk->sk_receive_queue); 2089 skb_queue_walk(&sk->sk_receive_queue, skb) { 2090 last = skb; 2091 /* Now that we have two receive queues this 2092 * shouldn't happen. 2093 */ 2094 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2095 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2096 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2097 flags)) 2098 break; 2099 2100 offset = *seq - TCP_SKB_CB(skb)->seq; 2101 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2102 pr_err_once("%s: found a SYN, please report !\n", __func__); 2103 offset--; 2104 } 2105 if (offset < skb->len) 2106 goto found_ok_skb; 2107 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2108 goto found_fin_ok; 2109 WARN(!(flags & MSG_PEEK), 2110 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2111 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2112 } 2113 2114 /* Well, if we have backlog, try to process it now yet. */ 2115 2116 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2117 break; 2118 2119 if (copied) { 2120 if (sk->sk_err || 2121 sk->sk_state == TCP_CLOSE || 2122 (sk->sk_shutdown & RCV_SHUTDOWN) || 2123 !timeo || 2124 signal_pending(current)) 2125 break; 2126 } else { 2127 if (sock_flag(sk, SOCK_DONE)) 2128 break; 2129 2130 if (sk->sk_err) { 2131 copied = sock_error(sk); 2132 break; 2133 } 2134 2135 if (sk->sk_shutdown & RCV_SHUTDOWN) 2136 break; 2137 2138 if (sk->sk_state == TCP_CLOSE) { 2139 /* This occurs when user tries to read 2140 * from never connected socket. 2141 */ 2142 copied = -ENOTCONN; 2143 break; 2144 } 2145 2146 if (!timeo) { 2147 copied = -EAGAIN; 2148 break; 2149 } 2150 2151 if (signal_pending(current)) { 2152 copied = sock_intr_errno(timeo); 2153 break; 2154 } 2155 } 2156 2157 tcp_cleanup_rbuf(sk, copied); 2158 2159 if (copied >= target) { 2160 /* Do not sleep, just process backlog. */ 2161 release_sock(sk); 2162 lock_sock(sk); 2163 } else { 2164 sk_wait_data(sk, &timeo, last); 2165 } 2166 2167 if ((flags & MSG_PEEK) && 2168 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2169 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2170 current->comm, 2171 task_pid_nr(current)); 2172 peek_seq = tp->copied_seq; 2173 } 2174 continue; 2175 2176 found_ok_skb: 2177 /* Ok so how much can we use? */ 2178 used = skb->len - offset; 2179 if (len < used) 2180 used = len; 2181 2182 /* Do we have urgent data here? */ 2183 if (tp->urg_data) { 2184 u32 urg_offset = tp->urg_seq - *seq; 2185 if (urg_offset < used) { 2186 if (!urg_offset) { 2187 if (!sock_flag(sk, SOCK_URGINLINE)) { 2188 WRITE_ONCE(*seq, *seq + 1); 2189 urg_hole++; 2190 offset++; 2191 used--; 2192 if (!used) 2193 goto skip_copy; 2194 } 2195 } else 2196 used = urg_offset; 2197 } 2198 } 2199 2200 if (!(flags & MSG_TRUNC)) { 2201 err = skb_copy_datagram_msg(skb, offset, msg, used); 2202 if (err) { 2203 /* Exception. Bailout! */ 2204 if (!copied) 2205 copied = -EFAULT; 2206 break; 2207 } 2208 } 2209 2210 WRITE_ONCE(*seq, *seq + used); 2211 copied += used; 2212 len -= used; 2213 2214 tcp_rcv_space_adjust(sk); 2215 2216 skip_copy: 2217 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2218 tp->urg_data = 0; 2219 tcp_fast_path_check(sk); 2220 } 2221 2222 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2223 tcp_update_recv_tstamps(skb, &tss); 2224 cmsg_flags |= 2; 2225 } 2226 2227 if (used + offset < skb->len) 2228 continue; 2229 2230 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2231 goto found_fin_ok; 2232 if (!(flags & MSG_PEEK)) 2233 sk_eat_skb(sk, skb); 2234 continue; 2235 2236 found_fin_ok: 2237 /* Process the FIN. */ 2238 WRITE_ONCE(*seq, *seq + 1); 2239 if (!(flags & MSG_PEEK)) 2240 sk_eat_skb(sk, skb); 2241 break; 2242 } while (len > 0); 2243 2244 /* According to UNIX98, msg_name/msg_namelen are ignored 2245 * on connected socket. I was just happy when found this 8) --ANK 2246 */ 2247 2248 /* Clean up data we have read: This will do ACK frames. */ 2249 tcp_cleanup_rbuf(sk, copied); 2250 2251 release_sock(sk); 2252 2253 if (cmsg_flags) { 2254 if (cmsg_flags & 2) 2255 tcp_recv_timestamp(msg, sk, &tss); 2256 if (cmsg_flags & 1) { 2257 inq = tcp_inq_hint(sk); 2258 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2259 } 2260 } 2261 2262 return copied; 2263 2264 out: 2265 release_sock(sk); 2266 return err; 2267 2268 recv_urg: 2269 err = tcp_recv_urg(sk, msg, len, flags); 2270 goto out; 2271 2272 recv_sndq: 2273 err = tcp_peek_sndq(sk, msg, len); 2274 goto out; 2275 } 2276 EXPORT_SYMBOL(tcp_recvmsg); 2277 2278 void tcp_set_state(struct sock *sk, int state) 2279 { 2280 int oldstate = sk->sk_state; 2281 2282 /* We defined a new enum for TCP states that are exported in BPF 2283 * so as not force the internal TCP states to be frozen. The 2284 * following checks will detect if an internal state value ever 2285 * differs from the BPF value. If this ever happens, then we will 2286 * need to remap the internal value to the BPF value before calling 2287 * tcp_call_bpf_2arg. 2288 */ 2289 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2290 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2291 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2292 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2293 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2294 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2295 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2296 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2297 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2298 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2299 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2300 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2301 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2302 2303 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2304 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2305 2306 switch (state) { 2307 case TCP_ESTABLISHED: 2308 if (oldstate != TCP_ESTABLISHED) 2309 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2310 break; 2311 2312 case TCP_CLOSE: 2313 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2314 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2315 2316 sk->sk_prot->unhash(sk); 2317 if (inet_csk(sk)->icsk_bind_hash && 2318 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2319 inet_put_port(sk); 2320 fallthrough; 2321 default: 2322 if (oldstate == TCP_ESTABLISHED) 2323 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2324 } 2325 2326 /* Change state AFTER socket is unhashed to avoid closed 2327 * socket sitting in hash tables. 2328 */ 2329 inet_sk_state_store(sk, state); 2330 } 2331 EXPORT_SYMBOL_GPL(tcp_set_state); 2332 2333 /* 2334 * State processing on a close. This implements the state shift for 2335 * sending our FIN frame. Note that we only send a FIN for some 2336 * states. A shutdown() may have already sent the FIN, or we may be 2337 * closed. 2338 */ 2339 2340 static const unsigned char new_state[16] = { 2341 /* current state: new state: action: */ 2342 [0 /* (Invalid) */] = TCP_CLOSE, 2343 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2344 [TCP_SYN_SENT] = TCP_CLOSE, 2345 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2346 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2347 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2348 [TCP_TIME_WAIT] = TCP_CLOSE, 2349 [TCP_CLOSE] = TCP_CLOSE, 2350 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2351 [TCP_LAST_ACK] = TCP_LAST_ACK, 2352 [TCP_LISTEN] = TCP_CLOSE, 2353 [TCP_CLOSING] = TCP_CLOSING, 2354 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2355 }; 2356 2357 static int tcp_close_state(struct sock *sk) 2358 { 2359 int next = (int)new_state[sk->sk_state]; 2360 int ns = next & TCP_STATE_MASK; 2361 2362 tcp_set_state(sk, ns); 2363 2364 return next & TCP_ACTION_FIN; 2365 } 2366 2367 /* 2368 * Shutdown the sending side of a connection. Much like close except 2369 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2370 */ 2371 2372 void tcp_shutdown(struct sock *sk, int how) 2373 { 2374 /* We need to grab some memory, and put together a FIN, 2375 * and then put it into the queue to be sent. 2376 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2377 */ 2378 if (!(how & SEND_SHUTDOWN)) 2379 return; 2380 2381 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2382 if ((1 << sk->sk_state) & 2383 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2384 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2385 /* Clear out any half completed packets. FIN if needed. */ 2386 if (tcp_close_state(sk)) 2387 tcp_send_fin(sk); 2388 } 2389 } 2390 EXPORT_SYMBOL(tcp_shutdown); 2391 2392 bool tcp_check_oom(struct sock *sk, int shift) 2393 { 2394 bool too_many_orphans, out_of_socket_memory; 2395 2396 too_many_orphans = tcp_too_many_orphans(sk, shift); 2397 out_of_socket_memory = tcp_out_of_memory(sk); 2398 2399 if (too_many_orphans) 2400 net_info_ratelimited("too many orphaned sockets\n"); 2401 if (out_of_socket_memory) 2402 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2403 return too_many_orphans || out_of_socket_memory; 2404 } 2405 2406 void tcp_close(struct sock *sk, long timeout) 2407 { 2408 struct sk_buff *skb; 2409 int data_was_unread = 0; 2410 int state; 2411 2412 lock_sock(sk); 2413 sk->sk_shutdown = SHUTDOWN_MASK; 2414 2415 if (sk->sk_state == TCP_LISTEN) { 2416 tcp_set_state(sk, TCP_CLOSE); 2417 2418 /* Special case. */ 2419 inet_csk_listen_stop(sk); 2420 2421 goto adjudge_to_death; 2422 } 2423 2424 /* We need to flush the recv. buffs. We do this only on the 2425 * descriptor close, not protocol-sourced closes, because the 2426 * reader process may not have drained the data yet! 2427 */ 2428 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2429 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2430 2431 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2432 len--; 2433 data_was_unread += len; 2434 __kfree_skb(skb); 2435 } 2436 2437 sk_mem_reclaim(sk); 2438 2439 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2440 if (sk->sk_state == TCP_CLOSE) 2441 goto adjudge_to_death; 2442 2443 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2444 * data was lost. To witness the awful effects of the old behavior of 2445 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2446 * GET in an FTP client, suspend the process, wait for the client to 2447 * advertise a zero window, then kill -9 the FTP client, wheee... 2448 * Note: timeout is always zero in such a case. 2449 */ 2450 if (unlikely(tcp_sk(sk)->repair)) { 2451 sk->sk_prot->disconnect(sk, 0); 2452 } else if (data_was_unread) { 2453 /* Unread data was tossed, zap the connection. */ 2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2455 tcp_set_state(sk, TCP_CLOSE); 2456 tcp_send_active_reset(sk, sk->sk_allocation); 2457 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2458 /* Check zero linger _after_ checking for unread data. */ 2459 sk->sk_prot->disconnect(sk, 0); 2460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2461 } else if (tcp_close_state(sk)) { 2462 /* We FIN if the application ate all the data before 2463 * zapping the connection. 2464 */ 2465 2466 /* RED-PEN. Formally speaking, we have broken TCP state 2467 * machine. State transitions: 2468 * 2469 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2470 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2471 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2472 * 2473 * are legal only when FIN has been sent (i.e. in window), 2474 * rather than queued out of window. Purists blame. 2475 * 2476 * F.e. "RFC state" is ESTABLISHED, 2477 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2478 * 2479 * The visible declinations are that sometimes 2480 * we enter time-wait state, when it is not required really 2481 * (harmless), do not send active resets, when they are 2482 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2483 * they look as CLOSING or LAST_ACK for Linux) 2484 * Probably, I missed some more holelets. 2485 * --ANK 2486 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2487 * in a single packet! (May consider it later but will 2488 * probably need API support or TCP_CORK SYN-ACK until 2489 * data is written and socket is closed.) 2490 */ 2491 tcp_send_fin(sk); 2492 } 2493 2494 sk_stream_wait_close(sk, timeout); 2495 2496 adjudge_to_death: 2497 state = sk->sk_state; 2498 sock_hold(sk); 2499 sock_orphan(sk); 2500 2501 local_bh_disable(); 2502 bh_lock_sock(sk); 2503 /* remove backlog if any, without releasing ownership. */ 2504 __release_sock(sk); 2505 2506 percpu_counter_inc(sk->sk_prot->orphan_count); 2507 2508 /* Have we already been destroyed by a softirq or backlog? */ 2509 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2510 goto out; 2511 2512 /* This is a (useful) BSD violating of the RFC. There is a 2513 * problem with TCP as specified in that the other end could 2514 * keep a socket open forever with no application left this end. 2515 * We use a 1 minute timeout (about the same as BSD) then kill 2516 * our end. If they send after that then tough - BUT: long enough 2517 * that we won't make the old 4*rto = almost no time - whoops 2518 * reset mistake. 2519 * 2520 * Nope, it was not mistake. It is really desired behaviour 2521 * f.e. on http servers, when such sockets are useless, but 2522 * consume significant resources. Let's do it with special 2523 * linger2 option. --ANK 2524 */ 2525 2526 if (sk->sk_state == TCP_FIN_WAIT2) { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 if (tp->linger2 < 0) { 2529 tcp_set_state(sk, TCP_CLOSE); 2530 tcp_send_active_reset(sk, GFP_ATOMIC); 2531 __NET_INC_STATS(sock_net(sk), 2532 LINUX_MIB_TCPABORTONLINGER); 2533 } else { 2534 const int tmo = tcp_fin_time(sk); 2535 2536 if (tmo > TCP_TIMEWAIT_LEN) { 2537 inet_csk_reset_keepalive_timer(sk, 2538 tmo - TCP_TIMEWAIT_LEN); 2539 } else { 2540 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2541 goto out; 2542 } 2543 } 2544 } 2545 if (sk->sk_state != TCP_CLOSE) { 2546 sk_mem_reclaim(sk); 2547 if (tcp_check_oom(sk, 0)) { 2548 tcp_set_state(sk, TCP_CLOSE); 2549 tcp_send_active_reset(sk, GFP_ATOMIC); 2550 __NET_INC_STATS(sock_net(sk), 2551 LINUX_MIB_TCPABORTONMEMORY); 2552 } else if (!check_net(sock_net(sk))) { 2553 /* Not possible to send reset; just close */ 2554 tcp_set_state(sk, TCP_CLOSE); 2555 } 2556 } 2557 2558 if (sk->sk_state == TCP_CLOSE) { 2559 struct request_sock *req; 2560 2561 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2562 lockdep_sock_is_held(sk)); 2563 /* We could get here with a non-NULL req if the socket is 2564 * aborted (e.g., closed with unread data) before 3WHS 2565 * finishes. 2566 */ 2567 if (req) 2568 reqsk_fastopen_remove(sk, req, false); 2569 inet_csk_destroy_sock(sk); 2570 } 2571 /* Otherwise, socket is reprieved until protocol close. */ 2572 2573 out: 2574 bh_unlock_sock(sk); 2575 local_bh_enable(); 2576 release_sock(sk); 2577 sock_put(sk); 2578 } 2579 EXPORT_SYMBOL(tcp_close); 2580 2581 /* These states need RST on ABORT according to RFC793 */ 2582 2583 static inline bool tcp_need_reset(int state) 2584 { 2585 return (1 << state) & 2586 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2587 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2588 } 2589 2590 static void tcp_rtx_queue_purge(struct sock *sk) 2591 { 2592 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2593 2594 tcp_sk(sk)->highest_sack = NULL; 2595 while (p) { 2596 struct sk_buff *skb = rb_to_skb(p); 2597 2598 p = rb_next(p); 2599 /* Since we are deleting whole queue, no need to 2600 * list_del(&skb->tcp_tsorted_anchor) 2601 */ 2602 tcp_rtx_queue_unlink(skb, sk); 2603 sk_wmem_free_skb(sk, skb); 2604 } 2605 } 2606 2607 void tcp_write_queue_purge(struct sock *sk) 2608 { 2609 struct sk_buff *skb; 2610 2611 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2612 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2613 tcp_skb_tsorted_anchor_cleanup(skb); 2614 sk_wmem_free_skb(sk, skb); 2615 } 2616 tcp_rtx_queue_purge(sk); 2617 skb = sk->sk_tx_skb_cache; 2618 if (skb) { 2619 __kfree_skb(skb); 2620 sk->sk_tx_skb_cache = NULL; 2621 } 2622 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2623 sk_mem_reclaim(sk); 2624 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2625 tcp_sk(sk)->packets_out = 0; 2626 inet_csk(sk)->icsk_backoff = 0; 2627 } 2628 2629 int tcp_disconnect(struct sock *sk, int flags) 2630 { 2631 struct inet_sock *inet = inet_sk(sk); 2632 struct inet_connection_sock *icsk = inet_csk(sk); 2633 struct tcp_sock *tp = tcp_sk(sk); 2634 int old_state = sk->sk_state; 2635 u32 seq; 2636 2637 if (old_state != TCP_CLOSE) 2638 tcp_set_state(sk, TCP_CLOSE); 2639 2640 /* ABORT function of RFC793 */ 2641 if (old_state == TCP_LISTEN) { 2642 inet_csk_listen_stop(sk); 2643 } else if (unlikely(tp->repair)) { 2644 sk->sk_err = ECONNABORTED; 2645 } else if (tcp_need_reset(old_state) || 2646 (tp->snd_nxt != tp->write_seq && 2647 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2648 /* The last check adjusts for discrepancy of Linux wrt. RFC 2649 * states 2650 */ 2651 tcp_send_active_reset(sk, gfp_any()); 2652 sk->sk_err = ECONNRESET; 2653 } else if (old_state == TCP_SYN_SENT) 2654 sk->sk_err = ECONNRESET; 2655 2656 tcp_clear_xmit_timers(sk); 2657 __skb_queue_purge(&sk->sk_receive_queue); 2658 if (sk->sk_rx_skb_cache) { 2659 __kfree_skb(sk->sk_rx_skb_cache); 2660 sk->sk_rx_skb_cache = NULL; 2661 } 2662 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2663 tp->urg_data = 0; 2664 tcp_write_queue_purge(sk); 2665 tcp_fastopen_active_disable_ofo_check(sk); 2666 skb_rbtree_purge(&tp->out_of_order_queue); 2667 2668 inet->inet_dport = 0; 2669 2670 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2671 inet_reset_saddr(sk); 2672 2673 sk->sk_shutdown = 0; 2674 sock_reset_flag(sk, SOCK_DONE); 2675 tp->srtt_us = 0; 2676 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2677 tp->rcv_rtt_last_tsecr = 0; 2678 2679 seq = tp->write_seq + tp->max_window + 2; 2680 if (!seq) 2681 seq = 1; 2682 WRITE_ONCE(tp->write_seq, seq); 2683 2684 icsk->icsk_backoff = 0; 2685 icsk->icsk_probes_out = 0; 2686 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2687 icsk->icsk_rto_min = TCP_RTO_MIN; 2688 icsk->icsk_delack_max = TCP_DELACK_MAX; 2689 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2690 tp->snd_cwnd = TCP_INIT_CWND; 2691 tp->snd_cwnd_cnt = 0; 2692 tp->window_clamp = 0; 2693 tp->delivered = 0; 2694 tp->delivered_ce = 0; 2695 if (icsk->icsk_ca_ops->release) 2696 icsk->icsk_ca_ops->release(sk); 2697 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2698 icsk->icsk_ca_initialized = 0; 2699 tcp_set_ca_state(sk, TCP_CA_Open); 2700 tp->is_sack_reneg = 0; 2701 tcp_clear_retrans(tp); 2702 tp->total_retrans = 0; 2703 inet_csk_delack_init(sk); 2704 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2705 * issue in __tcp_select_window() 2706 */ 2707 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2708 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2709 __sk_dst_reset(sk); 2710 dst_release(sk->sk_rx_dst); 2711 sk->sk_rx_dst = NULL; 2712 tcp_saved_syn_free(tp); 2713 tp->compressed_ack = 0; 2714 tp->segs_in = 0; 2715 tp->segs_out = 0; 2716 tp->bytes_sent = 0; 2717 tp->bytes_acked = 0; 2718 tp->bytes_received = 0; 2719 tp->bytes_retrans = 0; 2720 tp->data_segs_in = 0; 2721 tp->data_segs_out = 0; 2722 tp->duplicate_sack[0].start_seq = 0; 2723 tp->duplicate_sack[0].end_seq = 0; 2724 tp->dsack_dups = 0; 2725 tp->reord_seen = 0; 2726 tp->retrans_out = 0; 2727 tp->sacked_out = 0; 2728 tp->tlp_high_seq = 0; 2729 tp->last_oow_ack_time = 0; 2730 /* There's a bubble in the pipe until at least the first ACK. */ 2731 tp->app_limited = ~0U; 2732 tp->rack.mstamp = 0; 2733 tp->rack.advanced = 0; 2734 tp->rack.reo_wnd_steps = 1; 2735 tp->rack.last_delivered = 0; 2736 tp->rack.reo_wnd_persist = 0; 2737 tp->rack.dsack_seen = 0; 2738 tp->syn_data_acked = 0; 2739 tp->rx_opt.saw_tstamp = 0; 2740 tp->rx_opt.dsack = 0; 2741 tp->rx_opt.num_sacks = 0; 2742 tp->rcv_ooopack = 0; 2743 2744 2745 /* Clean up fastopen related fields */ 2746 tcp_free_fastopen_req(tp); 2747 inet->defer_connect = 0; 2748 tp->fastopen_client_fail = 0; 2749 2750 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2751 2752 if (sk->sk_frag.page) { 2753 put_page(sk->sk_frag.page); 2754 sk->sk_frag.page = NULL; 2755 sk->sk_frag.offset = 0; 2756 } 2757 2758 sk->sk_error_report(sk); 2759 return 0; 2760 } 2761 EXPORT_SYMBOL(tcp_disconnect); 2762 2763 static inline bool tcp_can_repair_sock(const struct sock *sk) 2764 { 2765 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2766 (sk->sk_state != TCP_LISTEN); 2767 } 2768 2769 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 2770 { 2771 struct tcp_repair_window opt; 2772 2773 if (!tp->repair) 2774 return -EPERM; 2775 2776 if (len != sizeof(opt)) 2777 return -EINVAL; 2778 2779 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 2780 return -EFAULT; 2781 2782 if (opt.max_window < opt.snd_wnd) 2783 return -EINVAL; 2784 2785 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2786 return -EINVAL; 2787 2788 if (after(opt.rcv_wup, tp->rcv_nxt)) 2789 return -EINVAL; 2790 2791 tp->snd_wl1 = opt.snd_wl1; 2792 tp->snd_wnd = opt.snd_wnd; 2793 tp->max_window = opt.max_window; 2794 2795 tp->rcv_wnd = opt.rcv_wnd; 2796 tp->rcv_wup = opt.rcv_wup; 2797 2798 return 0; 2799 } 2800 2801 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 2802 unsigned int len) 2803 { 2804 struct tcp_sock *tp = tcp_sk(sk); 2805 struct tcp_repair_opt opt; 2806 size_t offset = 0; 2807 2808 while (len >= sizeof(opt)) { 2809 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 2810 return -EFAULT; 2811 2812 offset += sizeof(opt); 2813 len -= sizeof(opt); 2814 2815 switch (opt.opt_code) { 2816 case TCPOPT_MSS: 2817 tp->rx_opt.mss_clamp = opt.opt_val; 2818 tcp_mtup_init(sk); 2819 break; 2820 case TCPOPT_WINDOW: 2821 { 2822 u16 snd_wscale = opt.opt_val & 0xFFFF; 2823 u16 rcv_wscale = opt.opt_val >> 16; 2824 2825 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2826 return -EFBIG; 2827 2828 tp->rx_opt.snd_wscale = snd_wscale; 2829 tp->rx_opt.rcv_wscale = rcv_wscale; 2830 tp->rx_opt.wscale_ok = 1; 2831 } 2832 break; 2833 case TCPOPT_SACK_PERM: 2834 if (opt.opt_val != 0) 2835 return -EINVAL; 2836 2837 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2838 break; 2839 case TCPOPT_TIMESTAMP: 2840 if (opt.opt_val != 0) 2841 return -EINVAL; 2842 2843 tp->rx_opt.tstamp_ok = 1; 2844 break; 2845 } 2846 } 2847 2848 return 0; 2849 } 2850 2851 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2852 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2853 2854 static void tcp_enable_tx_delay(void) 2855 { 2856 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2857 static int __tcp_tx_delay_enabled = 0; 2858 2859 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2860 static_branch_enable(&tcp_tx_delay_enabled); 2861 pr_info("TCP_TX_DELAY enabled\n"); 2862 } 2863 } 2864 } 2865 2866 /* When set indicates to always queue non-full frames. Later the user clears 2867 * this option and we transmit any pending partial frames in the queue. This is 2868 * meant to be used alongside sendfile() to get properly filled frames when the 2869 * user (for example) must write out headers with a write() call first and then 2870 * use sendfile to send out the data parts. 2871 * 2872 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 2873 * TCP_NODELAY. 2874 */ 2875 static void __tcp_sock_set_cork(struct sock *sk, bool on) 2876 { 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 2879 if (on) { 2880 tp->nonagle |= TCP_NAGLE_CORK; 2881 } else { 2882 tp->nonagle &= ~TCP_NAGLE_CORK; 2883 if (tp->nonagle & TCP_NAGLE_OFF) 2884 tp->nonagle |= TCP_NAGLE_PUSH; 2885 tcp_push_pending_frames(sk); 2886 } 2887 } 2888 2889 void tcp_sock_set_cork(struct sock *sk, bool on) 2890 { 2891 lock_sock(sk); 2892 __tcp_sock_set_cork(sk, on); 2893 release_sock(sk); 2894 } 2895 EXPORT_SYMBOL(tcp_sock_set_cork); 2896 2897 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 2898 * remembered, but it is not activated until cork is cleared. 2899 * 2900 * However, when TCP_NODELAY is set we make an explicit push, which overrides 2901 * even TCP_CORK for currently queued segments. 2902 */ 2903 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 2904 { 2905 if (on) { 2906 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2907 tcp_push_pending_frames(sk); 2908 } else { 2909 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 2910 } 2911 } 2912 2913 void tcp_sock_set_nodelay(struct sock *sk) 2914 { 2915 lock_sock(sk); 2916 __tcp_sock_set_nodelay(sk, true); 2917 release_sock(sk); 2918 } 2919 EXPORT_SYMBOL(tcp_sock_set_nodelay); 2920 2921 static void __tcp_sock_set_quickack(struct sock *sk, int val) 2922 { 2923 if (!val) { 2924 inet_csk_enter_pingpong_mode(sk); 2925 return; 2926 } 2927 2928 inet_csk_exit_pingpong_mode(sk); 2929 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2930 inet_csk_ack_scheduled(sk)) { 2931 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 2932 tcp_cleanup_rbuf(sk, 1); 2933 if (!(val & 1)) 2934 inet_csk_enter_pingpong_mode(sk); 2935 } 2936 } 2937 2938 void tcp_sock_set_quickack(struct sock *sk, int val) 2939 { 2940 lock_sock(sk); 2941 __tcp_sock_set_quickack(sk, val); 2942 release_sock(sk); 2943 } 2944 EXPORT_SYMBOL(tcp_sock_set_quickack); 2945 2946 int tcp_sock_set_syncnt(struct sock *sk, int val) 2947 { 2948 if (val < 1 || val > MAX_TCP_SYNCNT) 2949 return -EINVAL; 2950 2951 lock_sock(sk); 2952 inet_csk(sk)->icsk_syn_retries = val; 2953 release_sock(sk); 2954 return 0; 2955 } 2956 EXPORT_SYMBOL(tcp_sock_set_syncnt); 2957 2958 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 2959 { 2960 lock_sock(sk); 2961 inet_csk(sk)->icsk_user_timeout = val; 2962 release_sock(sk); 2963 } 2964 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 2965 2966 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 2967 { 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 2970 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2971 return -EINVAL; 2972 2973 tp->keepalive_time = val * HZ; 2974 if (sock_flag(sk, SOCK_KEEPOPEN) && 2975 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 2976 u32 elapsed = keepalive_time_elapsed(tp); 2977 2978 if (tp->keepalive_time > elapsed) 2979 elapsed = tp->keepalive_time - elapsed; 2980 else 2981 elapsed = 0; 2982 inet_csk_reset_keepalive_timer(sk, elapsed); 2983 } 2984 2985 return 0; 2986 } 2987 2988 int tcp_sock_set_keepidle(struct sock *sk, int val) 2989 { 2990 int err; 2991 2992 lock_sock(sk); 2993 err = tcp_sock_set_keepidle_locked(sk, val); 2994 release_sock(sk); 2995 return err; 2996 } 2997 EXPORT_SYMBOL(tcp_sock_set_keepidle); 2998 2999 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3000 { 3001 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3002 return -EINVAL; 3003 3004 lock_sock(sk); 3005 tcp_sk(sk)->keepalive_intvl = val * HZ; 3006 release_sock(sk); 3007 return 0; 3008 } 3009 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3010 3011 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3012 { 3013 if (val < 1 || val > MAX_TCP_KEEPCNT) 3014 return -EINVAL; 3015 3016 lock_sock(sk); 3017 tcp_sk(sk)->keepalive_probes = val; 3018 release_sock(sk); 3019 return 0; 3020 } 3021 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3022 3023 /* 3024 * Socket option code for TCP. 3025 */ 3026 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3027 sockptr_t optval, unsigned int optlen) 3028 { 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 struct inet_connection_sock *icsk = inet_csk(sk); 3031 struct net *net = sock_net(sk); 3032 int val; 3033 int err = 0; 3034 3035 /* These are data/string values, all the others are ints */ 3036 switch (optname) { 3037 case TCP_CONGESTION: { 3038 char name[TCP_CA_NAME_MAX]; 3039 3040 if (optlen < 1) 3041 return -EINVAL; 3042 3043 val = strncpy_from_sockptr(name, optval, 3044 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3045 if (val < 0) 3046 return -EFAULT; 3047 name[val] = 0; 3048 3049 lock_sock(sk); 3050 err = tcp_set_congestion_control(sk, name, true, 3051 ns_capable(sock_net(sk)->user_ns, 3052 CAP_NET_ADMIN)); 3053 release_sock(sk); 3054 return err; 3055 } 3056 case TCP_ULP: { 3057 char name[TCP_ULP_NAME_MAX]; 3058 3059 if (optlen < 1) 3060 return -EINVAL; 3061 3062 val = strncpy_from_sockptr(name, optval, 3063 min_t(long, TCP_ULP_NAME_MAX - 1, 3064 optlen)); 3065 if (val < 0) 3066 return -EFAULT; 3067 name[val] = 0; 3068 3069 lock_sock(sk); 3070 err = tcp_set_ulp(sk, name); 3071 release_sock(sk); 3072 return err; 3073 } 3074 case TCP_FASTOPEN_KEY: { 3075 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3076 __u8 *backup_key = NULL; 3077 3078 /* Allow a backup key as well to facilitate key rotation 3079 * First key is the active one. 3080 */ 3081 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3082 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3083 return -EINVAL; 3084 3085 if (copy_from_sockptr(key, optval, optlen)) 3086 return -EFAULT; 3087 3088 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3089 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3090 3091 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3092 } 3093 default: 3094 /* fallthru */ 3095 break; 3096 } 3097 3098 if (optlen < sizeof(int)) 3099 return -EINVAL; 3100 3101 if (copy_from_sockptr(&val, optval, sizeof(val))) 3102 return -EFAULT; 3103 3104 lock_sock(sk); 3105 3106 switch (optname) { 3107 case TCP_MAXSEG: 3108 /* Values greater than interface MTU won't take effect. However 3109 * at the point when this call is done we typically don't yet 3110 * know which interface is going to be used 3111 */ 3112 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3113 err = -EINVAL; 3114 break; 3115 } 3116 tp->rx_opt.user_mss = val; 3117 break; 3118 3119 case TCP_NODELAY: 3120 __tcp_sock_set_nodelay(sk, val); 3121 break; 3122 3123 case TCP_THIN_LINEAR_TIMEOUTS: 3124 if (val < 0 || val > 1) 3125 err = -EINVAL; 3126 else 3127 tp->thin_lto = val; 3128 break; 3129 3130 case TCP_THIN_DUPACK: 3131 if (val < 0 || val > 1) 3132 err = -EINVAL; 3133 break; 3134 3135 case TCP_REPAIR: 3136 if (!tcp_can_repair_sock(sk)) 3137 err = -EPERM; 3138 else if (val == TCP_REPAIR_ON) { 3139 tp->repair = 1; 3140 sk->sk_reuse = SK_FORCE_REUSE; 3141 tp->repair_queue = TCP_NO_QUEUE; 3142 } else if (val == TCP_REPAIR_OFF) { 3143 tp->repair = 0; 3144 sk->sk_reuse = SK_NO_REUSE; 3145 tcp_send_window_probe(sk); 3146 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3147 tp->repair = 0; 3148 sk->sk_reuse = SK_NO_REUSE; 3149 } else 3150 err = -EINVAL; 3151 3152 break; 3153 3154 case TCP_REPAIR_QUEUE: 3155 if (!tp->repair) 3156 err = -EPERM; 3157 else if ((unsigned int)val < TCP_QUEUES_NR) 3158 tp->repair_queue = val; 3159 else 3160 err = -EINVAL; 3161 break; 3162 3163 case TCP_QUEUE_SEQ: 3164 if (sk->sk_state != TCP_CLOSE) 3165 err = -EPERM; 3166 else if (tp->repair_queue == TCP_SEND_QUEUE) 3167 WRITE_ONCE(tp->write_seq, val); 3168 else if (tp->repair_queue == TCP_RECV_QUEUE) { 3169 WRITE_ONCE(tp->rcv_nxt, val); 3170 WRITE_ONCE(tp->copied_seq, val); 3171 } 3172 else 3173 err = -EINVAL; 3174 break; 3175 3176 case TCP_REPAIR_OPTIONS: 3177 if (!tp->repair) 3178 err = -EINVAL; 3179 else if (sk->sk_state == TCP_ESTABLISHED) 3180 err = tcp_repair_options_est(sk, optval, optlen); 3181 else 3182 err = -EPERM; 3183 break; 3184 3185 case TCP_CORK: 3186 __tcp_sock_set_cork(sk, val); 3187 break; 3188 3189 case TCP_KEEPIDLE: 3190 err = tcp_sock_set_keepidle_locked(sk, val); 3191 break; 3192 case TCP_KEEPINTVL: 3193 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3194 err = -EINVAL; 3195 else 3196 tp->keepalive_intvl = val * HZ; 3197 break; 3198 case TCP_KEEPCNT: 3199 if (val < 1 || val > MAX_TCP_KEEPCNT) 3200 err = -EINVAL; 3201 else 3202 tp->keepalive_probes = val; 3203 break; 3204 case TCP_SYNCNT: 3205 if (val < 1 || val > MAX_TCP_SYNCNT) 3206 err = -EINVAL; 3207 else 3208 icsk->icsk_syn_retries = val; 3209 break; 3210 3211 case TCP_SAVE_SYN: 3212 /* 0: disable, 1: enable, 2: start from ether_header */ 3213 if (val < 0 || val > 2) 3214 err = -EINVAL; 3215 else 3216 tp->save_syn = val; 3217 break; 3218 3219 case TCP_LINGER2: 3220 if (val < 0) 3221 tp->linger2 = -1; 3222 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3223 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3224 else 3225 tp->linger2 = val * HZ; 3226 break; 3227 3228 case TCP_DEFER_ACCEPT: 3229 /* Translate value in seconds to number of retransmits */ 3230 icsk->icsk_accept_queue.rskq_defer_accept = 3231 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3232 TCP_RTO_MAX / HZ); 3233 break; 3234 3235 case TCP_WINDOW_CLAMP: 3236 if (!val) { 3237 if (sk->sk_state != TCP_CLOSE) { 3238 err = -EINVAL; 3239 break; 3240 } 3241 tp->window_clamp = 0; 3242 } else 3243 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3244 SOCK_MIN_RCVBUF / 2 : val; 3245 break; 3246 3247 case TCP_QUICKACK: 3248 __tcp_sock_set_quickack(sk, val); 3249 break; 3250 3251 #ifdef CONFIG_TCP_MD5SIG 3252 case TCP_MD5SIG: 3253 case TCP_MD5SIG_EXT: 3254 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3255 break; 3256 #endif 3257 case TCP_USER_TIMEOUT: 3258 /* Cap the max time in ms TCP will retry or probe the window 3259 * before giving up and aborting (ETIMEDOUT) a connection. 3260 */ 3261 if (val < 0) 3262 err = -EINVAL; 3263 else 3264 icsk->icsk_user_timeout = val; 3265 break; 3266 3267 case TCP_FASTOPEN: 3268 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3269 TCPF_LISTEN))) { 3270 tcp_fastopen_init_key_once(net); 3271 3272 fastopen_queue_tune(sk, val); 3273 } else { 3274 err = -EINVAL; 3275 } 3276 break; 3277 case TCP_FASTOPEN_CONNECT: 3278 if (val > 1 || val < 0) { 3279 err = -EINVAL; 3280 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3281 if (sk->sk_state == TCP_CLOSE) 3282 tp->fastopen_connect = val; 3283 else 3284 err = -EINVAL; 3285 } else { 3286 err = -EOPNOTSUPP; 3287 } 3288 break; 3289 case TCP_FASTOPEN_NO_COOKIE: 3290 if (val > 1 || val < 0) 3291 err = -EINVAL; 3292 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3293 err = -EINVAL; 3294 else 3295 tp->fastopen_no_cookie = val; 3296 break; 3297 case TCP_TIMESTAMP: 3298 if (!tp->repair) 3299 err = -EPERM; 3300 else 3301 tp->tsoffset = val - tcp_time_stamp_raw(); 3302 break; 3303 case TCP_REPAIR_WINDOW: 3304 err = tcp_repair_set_window(tp, optval, optlen); 3305 break; 3306 case TCP_NOTSENT_LOWAT: 3307 tp->notsent_lowat = val; 3308 sk->sk_write_space(sk); 3309 break; 3310 case TCP_INQ: 3311 if (val > 1 || val < 0) 3312 err = -EINVAL; 3313 else 3314 tp->recvmsg_inq = val; 3315 break; 3316 case TCP_TX_DELAY: 3317 if (val) 3318 tcp_enable_tx_delay(); 3319 tp->tcp_tx_delay = val; 3320 break; 3321 default: 3322 err = -ENOPROTOOPT; 3323 break; 3324 } 3325 3326 release_sock(sk); 3327 return err; 3328 } 3329 3330 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3331 unsigned int optlen) 3332 { 3333 const struct inet_connection_sock *icsk = inet_csk(sk); 3334 3335 if (level != SOL_TCP) 3336 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3337 optval, optlen); 3338 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3339 } 3340 EXPORT_SYMBOL(tcp_setsockopt); 3341 3342 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3343 struct tcp_info *info) 3344 { 3345 u64 stats[__TCP_CHRONO_MAX], total = 0; 3346 enum tcp_chrono i; 3347 3348 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3349 stats[i] = tp->chrono_stat[i - 1]; 3350 if (i == tp->chrono_type) 3351 stats[i] += tcp_jiffies32 - tp->chrono_start; 3352 stats[i] *= USEC_PER_SEC / HZ; 3353 total += stats[i]; 3354 } 3355 3356 info->tcpi_busy_time = total; 3357 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3358 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3359 } 3360 3361 /* Return information about state of tcp endpoint in API format. */ 3362 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3363 { 3364 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3365 const struct inet_connection_sock *icsk = inet_csk(sk); 3366 unsigned long rate; 3367 u32 now; 3368 u64 rate64; 3369 bool slow; 3370 3371 memset(info, 0, sizeof(*info)); 3372 if (sk->sk_type != SOCK_STREAM) 3373 return; 3374 3375 info->tcpi_state = inet_sk_state_load(sk); 3376 3377 /* Report meaningful fields for all TCP states, including listeners */ 3378 rate = READ_ONCE(sk->sk_pacing_rate); 3379 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3380 info->tcpi_pacing_rate = rate64; 3381 3382 rate = READ_ONCE(sk->sk_max_pacing_rate); 3383 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3384 info->tcpi_max_pacing_rate = rate64; 3385 3386 info->tcpi_reordering = tp->reordering; 3387 info->tcpi_snd_cwnd = tp->snd_cwnd; 3388 3389 if (info->tcpi_state == TCP_LISTEN) { 3390 /* listeners aliased fields : 3391 * tcpi_unacked -> Number of children ready for accept() 3392 * tcpi_sacked -> max backlog 3393 */ 3394 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3395 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3396 return; 3397 } 3398 3399 slow = lock_sock_fast(sk); 3400 3401 info->tcpi_ca_state = icsk->icsk_ca_state; 3402 info->tcpi_retransmits = icsk->icsk_retransmits; 3403 info->tcpi_probes = icsk->icsk_probes_out; 3404 info->tcpi_backoff = icsk->icsk_backoff; 3405 3406 if (tp->rx_opt.tstamp_ok) 3407 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3408 if (tcp_is_sack(tp)) 3409 info->tcpi_options |= TCPI_OPT_SACK; 3410 if (tp->rx_opt.wscale_ok) { 3411 info->tcpi_options |= TCPI_OPT_WSCALE; 3412 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3413 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3414 } 3415 3416 if (tp->ecn_flags & TCP_ECN_OK) 3417 info->tcpi_options |= TCPI_OPT_ECN; 3418 if (tp->ecn_flags & TCP_ECN_SEEN) 3419 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3420 if (tp->syn_data_acked) 3421 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3422 3423 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3424 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3425 info->tcpi_snd_mss = tp->mss_cache; 3426 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3427 3428 info->tcpi_unacked = tp->packets_out; 3429 info->tcpi_sacked = tp->sacked_out; 3430 3431 info->tcpi_lost = tp->lost_out; 3432 info->tcpi_retrans = tp->retrans_out; 3433 3434 now = tcp_jiffies32; 3435 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3436 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3437 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3438 3439 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3440 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3441 info->tcpi_rtt = tp->srtt_us >> 3; 3442 info->tcpi_rttvar = tp->mdev_us >> 2; 3443 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3444 info->tcpi_advmss = tp->advmss; 3445 3446 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3447 info->tcpi_rcv_space = tp->rcvq_space.space; 3448 3449 info->tcpi_total_retrans = tp->total_retrans; 3450 3451 info->tcpi_bytes_acked = tp->bytes_acked; 3452 info->tcpi_bytes_received = tp->bytes_received; 3453 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3454 tcp_get_info_chrono_stats(tp, info); 3455 3456 info->tcpi_segs_out = tp->segs_out; 3457 info->tcpi_segs_in = tp->segs_in; 3458 3459 info->tcpi_min_rtt = tcp_min_rtt(tp); 3460 info->tcpi_data_segs_in = tp->data_segs_in; 3461 info->tcpi_data_segs_out = tp->data_segs_out; 3462 3463 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3464 rate64 = tcp_compute_delivery_rate(tp); 3465 if (rate64) 3466 info->tcpi_delivery_rate = rate64; 3467 info->tcpi_delivered = tp->delivered; 3468 info->tcpi_delivered_ce = tp->delivered_ce; 3469 info->tcpi_bytes_sent = tp->bytes_sent; 3470 info->tcpi_bytes_retrans = tp->bytes_retrans; 3471 info->tcpi_dsack_dups = tp->dsack_dups; 3472 info->tcpi_reord_seen = tp->reord_seen; 3473 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3474 info->tcpi_snd_wnd = tp->snd_wnd; 3475 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3476 unlock_sock_fast(sk, slow); 3477 } 3478 EXPORT_SYMBOL_GPL(tcp_get_info); 3479 3480 static size_t tcp_opt_stats_get_size(void) 3481 { 3482 return 3483 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3484 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3485 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3486 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3487 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3488 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3489 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3490 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3491 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3492 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3493 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3494 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3495 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3496 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3497 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3498 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3499 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3500 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3501 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3502 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3503 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3504 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3505 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3506 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3507 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3508 0; 3509 } 3510 3511 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3512 const struct sk_buff *orig_skb) 3513 { 3514 const struct tcp_sock *tp = tcp_sk(sk); 3515 struct sk_buff *stats; 3516 struct tcp_info info; 3517 unsigned long rate; 3518 u64 rate64; 3519 3520 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3521 if (!stats) 3522 return NULL; 3523 3524 tcp_get_info_chrono_stats(tp, &info); 3525 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3526 info.tcpi_busy_time, TCP_NLA_PAD); 3527 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3528 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3529 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3530 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3531 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3532 tp->data_segs_out, TCP_NLA_PAD); 3533 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3534 tp->total_retrans, TCP_NLA_PAD); 3535 3536 rate = READ_ONCE(sk->sk_pacing_rate); 3537 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3538 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3539 3540 rate64 = tcp_compute_delivery_rate(tp); 3541 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3542 3543 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3544 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3545 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3546 3547 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3548 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3549 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3550 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3551 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3552 3553 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3554 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3555 3556 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3557 TCP_NLA_PAD); 3558 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3559 TCP_NLA_PAD); 3560 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3561 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3562 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3563 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3564 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3565 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3566 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3567 TCP_NLA_PAD); 3568 3569 return stats; 3570 } 3571 3572 static int do_tcp_getsockopt(struct sock *sk, int level, 3573 int optname, char __user *optval, int __user *optlen) 3574 { 3575 struct inet_connection_sock *icsk = inet_csk(sk); 3576 struct tcp_sock *tp = tcp_sk(sk); 3577 struct net *net = sock_net(sk); 3578 int val, len; 3579 3580 if (get_user(len, optlen)) 3581 return -EFAULT; 3582 3583 len = min_t(unsigned int, len, sizeof(int)); 3584 3585 if (len < 0) 3586 return -EINVAL; 3587 3588 switch (optname) { 3589 case TCP_MAXSEG: 3590 val = tp->mss_cache; 3591 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3592 val = tp->rx_opt.user_mss; 3593 if (tp->repair) 3594 val = tp->rx_opt.mss_clamp; 3595 break; 3596 case TCP_NODELAY: 3597 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3598 break; 3599 case TCP_CORK: 3600 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3601 break; 3602 case TCP_KEEPIDLE: 3603 val = keepalive_time_when(tp) / HZ; 3604 break; 3605 case TCP_KEEPINTVL: 3606 val = keepalive_intvl_when(tp) / HZ; 3607 break; 3608 case TCP_KEEPCNT: 3609 val = keepalive_probes(tp); 3610 break; 3611 case TCP_SYNCNT: 3612 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3613 break; 3614 case TCP_LINGER2: 3615 val = tp->linger2; 3616 if (val >= 0) 3617 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3618 break; 3619 case TCP_DEFER_ACCEPT: 3620 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3621 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3622 break; 3623 case TCP_WINDOW_CLAMP: 3624 val = tp->window_clamp; 3625 break; 3626 case TCP_INFO: { 3627 struct tcp_info info; 3628 3629 if (get_user(len, optlen)) 3630 return -EFAULT; 3631 3632 tcp_get_info(sk, &info); 3633 3634 len = min_t(unsigned int, len, sizeof(info)); 3635 if (put_user(len, optlen)) 3636 return -EFAULT; 3637 if (copy_to_user(optval, &info, len)) 3638 return -EFAULT; 3639 return 0; 3640 } 3641 case TCP_CC_INFO: { 3642 const struct tcp_congestion_ops *ca_ops; 3643 union tcp_cc_info info; 3644 size_t sz = 0; 3645 int attr; 3646 3647 if (get_user(len, optlen)) 3648 return -EFAULT; 3649 3650 ca_ops = icsk->icsk_ca_ops; 3651 if (ca_ops && ca_ops->get_info) 3652 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3653 3654 len = min_t(unsigned int, len, sz); 3655 if (put_user(len, optlen)) 3656 return -EFAULT; 3657 if (copy_to_user(optval, &info, len)) 3658 return -EFAULT; 3659 return 0; 3660 } 3661 case TCP_QUICKACK: 3662 val = !inet_csk_in_pingpong_mode(sk); 3663 break; 3664 3665 case TCP_CONGESTION: 3666 if (get_user(len, optlen)) 3667 return -EFAULT; 3668 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3669 if (put_user(len, optlen)) 3670 return -EFAULT; 3671 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3672 return -EFAULT; 3673 return 0; 3674 3675 case TCP_ULP: 3676 if (get_user(len, optlen)) 3677 return -EFAULT; 3678 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3679 if (!icsk->icsk_ulp_ops) { 3680 if (put_user(0, optlen)) 3681 return -EFAULT; 3682 return 0; 3683 } 3684 if (put_user(len, optlen)) 3685 return -EFAULT; 3686 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3687 return -EFAULT; 3688 return 0; 3689 3690 case TCP_FASTOPEN_KEY: { 3691 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 3692 unsigned int key_len; 3693 3694 if (get_user(len, optlen)) 3695 return -EFAULT; 3696 3697 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 3698 TCP_FASTOPEN_KEY_LENGTH; 3699 len = min_t(unsigned int, len, key_len); 3700 if (put_user(len, optlen)) 3701 return -EFAULT; 3702 if (copy_to_user(optval, key, len)) 3703 return -EFAULT; 3704 return 0; 3705 } 3706 case TCP_THIN_LINEAR_TIMEOUTS: 3707 val = tp->thin_lto; 3708 break; 3709 3710 case TCP_THIN_DUPACK: 3711 val = 0; 3712 break; 3713 3714 case TCP_REPAIR: 3715 val = tp->repair; 3716 break; 3717 3718 case TCP_REPAIR_QUEUE: 3719 if (tp->repair) 3720 val = tp->repair_queue; 3721 else 3722 return -EINVAL; 3723 break; 3724 3725 case TCP_REPAIR_WINDOW: { 3726 struct tcp_repair_window opt; 3727 3728 if (get_user(len, optlen)) 3729 return -EFAULT; 3730 3731 if (len != sizeof(opt)) 3732 return -EINVAL; 3733 3734 if (!tp->repair) 3735 return -EPERM; 3736 3737 opt.snd_wl1 = tp->snd_wl1; 3738 opt.snd_wnd = tp->snd_wnd; 3739 opt.max_window = tp->max_window; 3740 opt.rcv_wnd = tp->rcv_wnd; 3741 opt.rcv_wup = tp->rcv_wup; 3742 3743 if (copy_to_user(optval, &opt, len)) 3744 return -EFAULT; 3745 return 0; 3746 } 3747 case TCP_QUEUE_SEQ: 3748 if (tp->repair_queue == TCP_SEND_QUEUE) 3749 val = tp->write_seq; 3750 else if (tp->repair_queue == TCP_RECV_QUEUE) 3751 val = tp->rcv_nxt; 3752 else 3753 return -EINVAL; 3754 break; 3755 3756 case TCP_USER_TIMEOUT: 3757 val = icsk->icsk_user_timeout; 3758 break; 3759 3760 case TCP_FASTOPEN: 3761 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3762 break; 3763 3764 case TCP_FASTOPEN_CONNECT: 3765 val = tp->fastopen_connect; 3766 break; 3767 3768 case TCP_FASTOPEN_NO_COOKIE: 3769 val = tp->fastopen_no_cookie; 3770 break; 3771 3772 case TCP_TX_DELAY: 3773 val = tp->tcp_tx_delay; 3774 break; 3775 3776 case TCP_TIMESTAMP: 3777 val = tcp_time_stamp_raw() + tp->tsoffset; 3778 break; 3779 case TCP_NOTSENT_LOWAT: 3780 val = tp->notsent_lowat; 3781 break; 3782 case TCP_INQ: 3783 val = tp->recvmsg_inq; 3784 break; 3785 case TCP_SAVE_SYN: 3786 val = tp->save_syn; 3787 break; 3788 case TCP_SAVED_SYN: { 3789 if (get_user(len, optlen)) 3790 return -EFAULT; 3791 3792 lock_sock(sk); 3793 if (tp->saved_syn) { 3794 if (len < tcp_saved_syn_len(tp->saved_syn)) { 3795 if (put_user(tcp_saved_syn_len(tp->saved_syn), 3796 optlen)) { 3797 release_sock(sk); 3798 return -EFAULT; 3799 } 3800 release_sock(sk); 3801 return -EINVAL; 3802 } 3803 len = tcp_saved_syn_len(tp->saved_syn); 3804 if (put_user(len, optlen)) { 3805 release_sock(sk); 3806 return -EFAULT; 3807 } 3808 if (copy_to_user(optval, tp->saved_syn->data, len)) { 3809 release_sock(sk); 3810 return -EFAULT; 3811 } 3812 tcp_saved_syn_free(tp); 3813 release_sock(sk); 3814 } else { 3815 release_sock(sk); 3816 len = 0; 3817 if (put_user(len, optlen)) 3818 return -EFAULT; 3819 } 3820 return 0; 3821 } 3822 #ifdef CONFIG_MMU 3823 case TCP_ZEROCOPY_RECEIVE: { 3824 struct tcp_zerocopy_receive zc; 3825 int err; 3826 3827 if (get_user(len, optlen)) 3828 return -EFAULT; 3829 if (len < offsetofend(struct tcp_zerocopy_receive, length)) 3830 return -EINVAL; 3831 if (len > sizeof(zc)) { 3832 len = sizeof(zc); 3833 if (put_user(len, optlen)) 3834 return -EFAULT; 3835 } 3836 if (copy_from_user(&zc, optval, len)) 3837 return -EFAULT; 3838 lock_sock(sk); 3839 err = tcp_zerocopy_receive(sk, &zc); 3840 release_sock(sk); 3841 if (len == sizeof(zc)) 3842 goto zerocopy_rcv_sk_err; 3843 switch (len) { 3844 case offsetofend(struct tcp_zerocopy_receive, err): 3845 goto zerocopy_rcv_sk_err; 3846 case offsetofend(struct tcp_zerocopy_receive, inq): 3847 goto zerocopy_rcv_inq; 3848 case offsetofend(struct tcp_zerocopy_receive, length): 3849 default: 3850 goto zerocopy_rcv_out; 3851 } 3852 zerocopy_rcv_sk_err: 3853 if (!err) 3854 zc.err = sock_error(sk); 3855 zerocopy_rcv_inq: 3856 zc.inq = tcp_inq_hint(sk); 3857 zerocopy_rcv_out: 3858 if (!err && copy_to_user(optval, &zc, len)) 3859 err = -EFAULT; 3860 return err; 3861 } 3862 #endif 3863 default: 3864 return -ENOPROTOOPT; 3865 } 3866 3867 if (put_user(len, optlen)) 3868 return -EFAULT; 3869 if (copy_to_user(optval, &val, len)) 3870 return -EFAULT; 3871 return 0; 3872 } 3873 3874 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3875 int __user *optlen) 3876 { 3877 struct inet_connection_sock *icsk = inet_csk(sk); 3878 3879 if (level != SOL_TCP) 3880 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3881 optval, optlen); 3882 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3883 } 3884 EXPORT_SYMBOL(tcp_getsockopt); 3885 3886 #ifdef CONFIG_TCP_MD5SIG 3887 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3888 static DEFINE_MUTEX(tcp_md5sig_mutex); 3889 static bool tcp_md5sig_pool_populated = false; 3890 3891 static void __tcp_alloc_md5sig_pool(void) 3892 { 3893 struct crypto_ahash *hash; 3894 int cpu; 3895 3896 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3897 if (IS_ERR(hash)) 3898 return; 3899 3900 for_each_possible_cpu(cpu) { 3901 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3902 struct ahash_request *req; 3903 3904 if (!scratch) { 3905 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3906 sizeof(struct tcphdr), 3907 GFP_KERNEL, 3908 cpu_to_node(cpu)); 3909 if (!scratch) 3910 return; 3911 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3912 } 3913 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3914 continue; 3915 3916 req = ahash_request_alloc(hash, GFP_KERNEL); 3917 if (!req) 3918 return; 3919 3920 ahash_request_set_callback(req, 0, NULL, NULL); 3921 3922 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3923 } 3924 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3925 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3926 */ 3927 smp_wmb(); 3928 tcp_md5sig_pool_populated = true; 3929 } 3930 3931 bool tcp_alloc_md5sig_pool(void) 3932 { 3933 if (unlikely(!tcp_md5sig_pool_populated)) { 3934 mutex_lock(&tcp_md5sig_mutex); 3935 3936 if (!tcp_md5sig_pool_populated) { 3937 __tcp_alloc_md5sig_pool(); 3938 if (tcp_md5sig_pool_populated) 3939 static_branch_inc(&tcp_md5_needed); 3940 } 3941 3942 mutex_unlock(&tcp_md5sig_mutex); 3943 } 3944 return tcp_md5sig_pool_populated; 3945 } 3946 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3947 3948 3949 /** 3950 * tcp_get_md5sig_pool - get md5sig_pool for this user 3951 * 3952 * We use percpu structure, so if we succeed, we exit with preemption 3953 * and BH disabled, to make sure another thread or softirq handling 3954 * wont try to get same context. 3955 */ 3956 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3957 { 3958 local_bh_disable(); 3959 3960 if (tcp_md5sig_pool_populated) { 3961 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3962 smp_rmb(); 3963 return this_cpu_ptr(&tcp_md5sig_pool); 3964 } 3965 local_bh_enable(); 3966 return NULL; 3967 } 3968 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3969 3970 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3971 const struct sk_buff *skb, unsigned int header_len) 3972 { 3973 struct scatterlist sg; 3974 const struct tcphdr *tp = tcp_hdr(skb); 3975 struct ahash_request *req = hp->md5_req; 3976 unsigned int i; 3977 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3978 skb_headlen(skb) - header_len : 0; 3979 const struct skb_shared_info *shi = skb_shinfo(skb); 3980 struct sk_buff *frag_iter; 3981 3982 sg_init_table(&sg, 1); 3983 3984 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3985 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3986 if (crypto_ahash_update(req)) 3987 return 1; 3988 3989 for (i = 0; i < shi->nr_frags; ++i) { 3990 const skb_frag_t *f = &shi->frags[i]; 3991 unsigned int offset = skb_frag_off(f); 3992 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3993 3994 sg_set_page(&sg, page, skb_frag_size(f), 3995 offset_in_page(offset)); 3996 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3997 if (crypto_ahash_update(req)) 3998 return 1; 3999 } 4000 4001 skb_walk_frags(skb, frag_iter) 4002 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4003 return 1; 4004 4005 return 0; 4006 } 4007 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4008 4009 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4010 { 4011 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4012 struct scatterlist sg; 4013 4014 sg_init_one(&sg, key->key, keylen); 4015 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4016 4017 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4018 return data_race(crypto_ahash_update(hp->md5_req)); 4019 } 4020 EXPORT_SYMBOL(tcp_md5_hash_key); 4021 4022 #endif 4023 4024 void tcp_done(struct sock *sk) 4025 { 4026 struct request_sock *req; 4027 4028 /* We might be called with a new socket, after 4029 * inet_csk_prepare_forced_close() has been called 4030 * so we can not use lockdep_sock_is_held(sk) 4031 */ 4032 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4033 4034 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4035 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4036 4037 tcp_set_state(sk, TCP_CLOSE); 4038 tcp_clear_xmit_timers(sk); 4039 if (req) 4040 reqsk_fastopen_remove(sk, req, false); 4041 4042 sk->sk_shutdown = SHUTDOWN_MASK; 4043 4044 if (!sock_flag(sk, SOCK_DEAD)) 4045 sk->sk_state_change(sk); 4046 else 4047 inet_csk_destroy_sock(sk); 4048 } 4049 EXPORT_SYMBOL_GPL(tcp_done); 4050 4051 int tcp_abort(struct sock *sk, int err) 4052 { 4053 if (!sk_fullsock(sk)) { 4054 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4055 struct request_sock *req = inet_reqsk(sk); 4056 4057 local_bh_disable(); 4058 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4059 local_bh_enable(); 4060 return 0; 4061 } 4062 return -EOPNOTSUPP; 4063 } 4064 4065 /* Don't race with userspace socket closes such as tcp_close. */ 4066 lock_sock(sk); 4067 4068 if (sk->sk_state == TCP_LISTEN) { 4069 tcp_set_state(sk, TCP_CLOSE); 4070 inet_csk_listen_stop(sk); 4071 } 4072 4073 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4074 local_bh_disable(); 4075 bh_lock_sock(sk); 4076 4077 if (!sock_flag(sk, SOCK_DEAD)) { 4078 sk->sk_err = err; 4079 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4080 smp_wmb(); 4081 sk->sk_error_report(sk); 4082 if (tcp_need_reset(sk->sk_state)) 4083 tcp_send_active_reset(sk, GFP_ATOMIC); 4084 tcp_done(sk); 4085 } 4086 4087 bh_unlock_sock(sk); 4088 local_bh_enable(); 4089 tcp_write_queue_purge(sk); 4090 release_sock(sk); 4091 return 0; 4092 } 4093 EXPORT_SYMBOL_GPL(tcp_abort); 4094 4095 extern struct tcp_congestion_ops tcp_reno; 4096 4097 static __initdata unsigned long thash_entries; 4098 static int __init set_thash_entries(char *str) 4099 { 4100 ssize_t ret; 4101 4102 if (!str) 4103 return 0; 4104 4105 ret = kstrtoul(str, 0, &thash_entries); 4106 if (ret) 4107 return 0; 4108 4109 return 1; 4110 } 4111 __setup("thash_entries=", set_thash_entries); 4112 4113 static void __init tcp_init_mem(void) 4114 { 4115 unsigned long limit = nr_free_buffer_pages() / 16; 4116 4117 limit = max(limit, 128UL); 4118 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4119 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4120 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4121 } 4122 4123 void __init tcp_init(void) 4124 { 4125 int max_rshare, max_wshare, cnt; 4126 unsigned long limit; 4127 unsigned int i; 4128 4129 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4130 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4131 sizeof_field(struct sk_buff, cb)); 4132 4133 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4134 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4135 inet_hashinfo_init(&tcp_hashinfo); 4136 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4137 thash_entries, 21, /* one slot per 2 MB*/ 4138 0, 64 * 1024); 4139 tcp_hashinfo.bind_bucket_cachep = 4140 kmem_cache_create("tcp_bind_bucket", 4141 sizeof(struct inet_bind_bucket), 0, 4142 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4143 4144 /* Size and allocate the main established and bind bucket 4145 * hash tables. 4146 * 4147 * The methodology is similar to that of the buffer cache. 4148 */ 4149 tcp_hashinfo.ehash = 4150 alloc_large_system_hash("TCP established", 4151 sizeof(struct inet_ehash_bucket), 4152 thash_entries, 4153 17, /* one slot per 128 KB of memory */ 4154 0, 4155 NULL, 4156 &tcp_hashinfo.ehash_mask, 4157 0, 4158 thash_entries ? 0 : 512 * 1024); 4159 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4160 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4161 4162 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4163 panic("TCP: failed to alloc ehash_locks"); 4164 tcp_hashinfo.bhash = 4165 alloc_large_system_hash("TCP bind", 4166 sizeof(struct inet_bind_hashbucket), 4167 tcp_hashinfo.ehash_mask + 1, 4168 17, /* one slot per 128 KB of memory */ 4169 0, 4170 &tcp_hashinfo.bhash_size, 4171 NULL, 4172 0, 4173 64 * 1024); 4174 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4175 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4176 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4177 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4178 } 4179 4180 4181 cnt = tcp_hashinfo.ehash_mask + 1; 4182 sysctl_tcp_max_orphans = cnt / 2; 4183 4184 tcp_init_mem(); 4185 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4186 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4187 max_wshare = min(4UL*1024*1024, limit); 4188 max_rshare = min(6UL*1024*1024, limit); 4189 4190 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4191 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4192 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4193 4194 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4195 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4196 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4197 4198 pr_info("Hash tables configured (established %u bind %u)\n", 4199 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4200 4201 tcp_v4_init(); 4202 tcp_metrics_init(); 4203 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4204 tcp_tasklet_init(); 4205 mptcp_init(); 4206 } 4207