1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_SYMBOL(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_SYMBOL(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_SYMBOL(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 436 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 437 icsk->icsk_delack_max = TCP_DELACK_MAX; 438 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 439 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 440 441 /* So many TCP implementations out there (incorrectly) count the 442 * initial SYN frame in their delayed-ACK and congestion control 443 * algorithms that we must have the following bandaid to talk 444 * efficiently to them. -DaveM 445 */ 446 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 447 448 /* There's a bubble in the pipe until at least the first ACK. */ 449 tp->app_limited = ~0U; 450 tp->rate_app_limited = 1; 451 452 /* See draft-stevens-tcpca-spec-01 for discussion of the 453 * initialization of these values. 454 */ 455 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 456 tp->snd_cwnd_clamp = ~0; 457 tp->mss_cache = TCP_MSS_DEFAULT; 458 459 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 460 tcp_assign_congestion_control(sk); 461 462 tp->tsoffset = 0; 463 tp->rack.reo_wnd_steps = 1; 464 465 sk->sk_write_space = sk_stream_write_space; 466 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 467 468 icsk->icsk_sync_mss = tcp_sync_mss; 469 470 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 471 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 472 tcp_scaling_ratio_init(sk); 473 474 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 475 sk_sockets_allocated_inc(sk); 476 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 477 } 478 EXPORT_SYMBOL(tcp_init_sock); 479 480 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 481 { 482 struct sk_buff *skb = tcp_write_queue_tail(sk); 483 u32 tsflags = sockc->tsflags; 484 485 if (tsflags && skb) { 486 struct skb_shared_info *shinfo = skb_shinfo(skb); 487 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 488 489 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 490 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 491 tcb->txstamp_ack = 1; 492 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 493 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 494 } 495 } 496 497 static bool tcp_stream_is_readable(struct sock *sk, int target) 498 { 499 if (tcp_epollin_ready(sk, target)) 500 return true; 501 return sk_is_readable(sk); 502 } 503 504 /* 505 * Wait for a TCP event. 506 * 507 * Note that we don't need to lock the socket, as the upper poll layers 508 * take care of normal races (between the test and the event) and we don't 509 * go look at any of the socket buffers directly. 510 */ 511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 512 { 513 __poll_t mask; 514 struct sock *sk = sock->sk; 515 const struct tcp_sock *tp = tcp_sk(sk); 516 u8 shutdown; 517 int state; 518 519 sock_poll_wait(file, sock, wait); 520 521 state = inet_sk_state_load(sk); 522 if (state == TCP_LISTEN) 523 return inet_csk_listen_poll(sk); 524 525 /* Socket is not locked. We are protected from async events 526 * by poll logic and correct handling of state changes 527 * made by other threads is impossible in any case. 528 */ 529 530 mask = 0; 531 532 /* 533 * EPOLLHUP is certainly not done right. But poll() doesn't 534 * have a notion of HUP in just one direction, and for a 535 * socket the read side is more interesting. 536 * 537 * Some poll() documentation says that EPOLLHUP is incompatible 538 * with the EPOLLOUT/POLLWR flags, so somebody should check this 539 * all. But careful, it tends to be safer to return too many 540 * bits than too few, and you can easily break real applications 541 * if you don't tell them that something has hung up! 542 * 543 * Check-me. 544 * 545 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 546 * our fs/select.c). It means that after we received EOF, 547 * poll always returns immediately, making impossible poll() on write() 548 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 549 * if and only if shutdown has been made in both directions. 550 * Actually, it is interesting to look how Solaris and DUX 551 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 552 * then we could set it on SND_SHUTDOWN. BTW examples given 553 * in Stevens' books assume exactly this behaviour, it explains 554 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 555 * 556 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 557 * blocking on fresh not-connected or disconnected socket. --ANK 558 */ 559 shutdown = READ_ONCE(sk->sk_shutdown); 560 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 561 mask |= EPOLLHUP; 562 if (shutdown & RCV_SHUTDOWN) 563 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 564 565 /* Connected or passive Fast Open socket? */ 566 if (state != TCP_SYN_SENT && 567 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 568 int target = sock_rcvlowat(sk, 0, INT_MAX); 569 u16 urg_data = READ_ONCE(tp->urg_data); 570 571 if (unlikely(urg_data) && 572 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 573 !sock_flag(sk, SOCK_URGINLINE)) 574 target++; 575 576 if (tcp_stream_is_readable(sk, target)) 577 mask |= EPOLLIN | EPOLLRDNORM; 578 579 if (!(shutdown & SEND_SHUTDOWN)) { 580 if (__sk_stream_is_writeable(sk, 1)) { 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 } else { /* send SIGIO later */ 583 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 584 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 585 586 /* Race breaker. If space is freed after 587 * wspace test but before the flags are set, 588 * IO signal will be lost. Memory barrier 589 * pairs with the input side. 590 */ 591 smp_mb__after_atomic(); 592 if (__sk_stream_is_writeable(sk, 1)) 593 mask |= EPOLLOUT | EPOLLWRNORM; 594 } 595 } else 596 mask |= EPOLLOUT | EPOLLWRNORM; 597 598 if (urg_data & TCP_URG_VALID) 599 mask |= EPOLLPRI; 600 } else if (state == TCP_SYN_SENT && 601 inet_test_bit(DEFER_CONNECT, sk)) { 602 /* Active TCP fastopen socket with defer_connect 603 * Return EPOLLOUT so application can call write() 604 * in order for kernel to generate SYN+data 605 */ 606 mask |= EPOLLOUT | EPOLLWRNORM; 607 } 608 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 609 smp_rmb(); 610 if (READ_ONCE(sk->sk_err) || 611 !skb_queue_empty_lockless(&sk->sk_error_queue)) 612 mask |= EPOLLERR; 613 614 return mask; 615 } 616 EXPORT_SYMBOL(tcp_poll); 617 618 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 619 { 620 struct tcp_sock *tp = tcp_sk(sk); 621 int answ; 622 bool slow; 623 624 switch (cmd) { 625 case SIOCINQ: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 slow = lock_sock_fast(sk); 630 answ = tcp_inq(sk); 631 unlock_sock_fast(sk, slow); 632 break; 633 case SIOCATMARK: 634 answ = READ_ONCE(tp->urg_data) && 635 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 636 break; 637 case SIOCOUTQ: 638 if (sk->sk_state == TCP_LISTEN) 639 return -EINVAL; 640 641 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 642 answ = 0; 643 else 644 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 645 break; 646 case SIOCOUTQNSD: 647 if (sk->sk_state == TCP_LISTEN) 648 return -EINVAL; 649 650 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 651 answ = 0; 652 else 653 answ = READ_ONCE(tp->write_seq) - 654 READ_ONCE(tp->snd_nxt); 655 break; 656 default: 657 return -ENOIOCTLCMD; 658 } 659 660 *karg = answ; 661 return 0; 662 } 663 EXPORT_SYMBOL(tcp_ioctl); 664 665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 666 { 667 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 668 tp->pushed_seq = tp->write_seq; 669 } 670 671 static inline bool forced_push(const struct tcp_sock *tp) 672 { 673 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 674 } 675 676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 677 { 678 struct tcp_sock *tp = tcp_sk(sk); 679 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 680 681 tcb->seq = tcb->end_seq = tp->write_seq; 682 tcb->tcp_flags = TCPHDR_ACK; 683 __skb_header_release(skb); 684 tcp_add_write_queue_tail(sk, skb); 685 sk_wmem_queued_add(sk, skb->truesize); 686 sk_mem_charge(sk, skb->truesize); 687 if (tp->nonagle & TCP_NAGLE_PUSH) 688 tp->nonagle &= ~TCP_NAGLE_PUSH; 689 690 tcp_slow_start_after_idle_check(sk); 691 } 692 693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 694 { 695 if (flags & MSG_OOB) 696 tp->snd_up = tp->write_seq; 697 } 698 699 /* If a not yet filled skb is pushed, do not send it if 700 * we have data packets in Qdisc or NIC queues : 701 * Because TX completion will happen shortly, it gives a chance 702 * to coalesce future sendmsg() payload into this skb, without 703 * need for a timer, and with no latency trade off. 704 * As packets containing data payload have a bigger truesize 705 * than pure acks (dataless) packets, the last checks prevent 706 * autocorking if we only have an ACK in Qdisc/NIC queues, 707 * or if TX completion was delayed after we processed ACK packet. 708 */ 709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 710 int size_goal) 711 { 712 return skb->len < size_goal && 713 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 714 !tcp_rtx_queue_empty(sk) && 715 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 716 tcp_skb_can_collapse_to(skb); 717 } 718 719 void tcp_push(struct sock *sk, int flags, int mss_now, 720 int nonagle, int size_goal) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 struct sk_buff *skb; 724 725 skb = tcp_write_queue_tail(sk); 726 if (!skb) 727 return; 728 if (!(flags & MSG_MORE) || forced_push(tp)) 729 tcp_mark_push(tp, skb); 730 731 tcp_mark_urg(tp, flags); 732 733 if (tcp_should_autocork(sk, skb, size_goal)) { 734 735 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 736 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 738 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 739 smp_mb__after_atomic(); 740 } 741 /* It is possible TX completion already happened 742 * before we set TSQ_THROTTLED. 743 */ 744 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 745 return; 746 } 747 748 if (flags & MSG_MORE) 749 nonagle = TCP_NAGLE_CORK; 750 751 __tcp_push_pending_frames(sk, mss_now, nonagle); 752 } 753 754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 755 unsigned int offset, size_t len) 756 { 757 struct tcp_splice_state *tss = rd_desc->arg.data; 758 int ret; 759 760 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 761 min(rd_desc->count, len), tss->flags); 762 if (ret > 0) 763 rd_desc->count -= ret; 764 return ret; 765 } 766 767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 768 { 769 /* Store TCP splice context information in read_descriptor_t. */ 770 read_descriptor_t rd_desc = { 771 .arg.data = tss, 772 .count = tss->len, 773 }; 774 775 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 776 } 777 778 /** 779 * tcp_splice_read - splice data from TCP socket to a pipe 780 * @sock: socket to splice from 781 * @ppos: position (not valid) 782 * @pipe: pipe to splice to 783 * @len: number of bytes to splice 784 * @flags: splice modifier flags 785 * 786 * Description: 787 * Will read pages from given socket and fill them into a pipe. 788 * 789 **/ 790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 791 struct pipe_inode_info *pipe, size_t len, 792 unsigned int flags) 793 { 794 struct sock *sk = sock->sk; 795 struct tcp_splice_state tss = { 796 .pipe = pipe, 797 .len = len, 798 .flags = flags, 799 }; 800 long timeo; 801 ssize_t spliced; 802 int ret; 803 804 sock_rps_record_flow(sk); 805 /* 806 * We can't seek on a socket input 807 */ 808 if (unlikely(*ppos)) 809 return -ESPIPE; 810 811 ret = spliced = 0; 812 813 lock_sock(sk); 814 815 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 816 while (tss.len) { 817 ret = __tcp_splice_read(sk, &tss); 818 if (ret < 0) 819 break; 820 else if (!ret) { 821 if (spliced) 822 break; 823 if (sock_flag(sk, SOCK_DONE)) 824 break; 825 if (sk->sk_err) { 826 ret = sock_error(sk); 827 break; 828 } 829 if (sk->sk_shutdown & RCV_SHUTDOWN) 830 break; 831 if (sk->sk_state == TCP_CLOSE) { 832 /* 833 * This occurs when user tries to read 834 * from never connected socket. 835 */ 836 ret = -ENOTCONN; 837 break; 838 } 839 if (!timeo) { 840 ret = -EAGAIN; 841 break; 842 } 843 /* if __tcp_splice_read() got nothing while we have 844 * an skb in receive queue, we do not want to loop. 845 * This might happen with URG data. 846 */ 847 if (!skb_queue_empty(&sk->sk_receive_queue)) 848 break; 849 ret = sk_wait_data(sk, &timeo, NULL); 850 if (ret < 0) 851 break; 852 if (signal_pending(current)) { 853 ret = sock_intr_errno(timeo); 854 break; 855 } 856 continue; 857 } 858 tss.len -= ret; 859 spliced += ret; 860 861 if (!tss.len || !timeo) 862 break; 863 release_sock(sk); 864 lock_sock(sk); 865 866 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 867 (sk->sk_shutdown & RCV_SHUTDOWN) || 868 signal_pending(current)) 869 break; 870 } 871 872 release_sock(sk); 873 874 if (spliced) 875 return spliced; 876 877 return ret; 878 } 879 EXPORT_SYMBOL(tcp_splice_read); 880 881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 882 bool force_schedule) 883 { 884 struct sk_buff *skb; 885 886 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 887 if (likely(skb)) { 888 bool mem_scheduled; 889 890 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 891 if (force_schedule) { 892 mem_scheduled = true; 893 sk_forced_mem_schedule(sk, skb->truesize); 894 } else { 895 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 896 } 897 if (likely(mem_scheduled)) { 898 skb_reserve(skb, MAX_TCP_HEADER); 899 skb->ip_summed = CHECKSUM_PARTIAL; 900 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 901 return skb; 902 } 903 __kfree_skb(skb); 904 } else { 905 sk->sk_prot->enter_memory_pressure(sk); 906 sk_stream_moderate_sndbuf(sk); 907 } 908 return NULL; 909 } 910 911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 912 int large_allowed) 913 { 914 struct tcp_sock *tp = tcp_sk(sk); 915 u32 new_size_goal, size_goal; 916 917 if (!large_allowed) 918 return mss_now; 919 920 /* Note : tcp_tso_autosize() will eventually split this later */ 921 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 922 923 /* We try hard to avoid divides here */ 924 size_goal = tp->gso_segs * mss_now; 925 if (unlikely(new_size_goal < size_goal || 926 new_size_goal >= size_goal + mss_now)) { 927 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 928 sk->sk_gso_max_segs); 929 size_goal = tp->gso_segs * mss_now; 930 } 931 932 return max(size_goal, mss_now); 933 } 934 935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 936 { 937 int mss_now; 938 939 mss_now = tcp_current_mss(sk); 940 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 941 942 return mss_now; 943 } 944 945 /* In some cases, sendmsg() could have added an skb to the write queue, 946 * but failed adding payload on it. We need to remove it to consume less 947 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 948 * epoll() users. Another reason is that tcp_write_xmit() does not like 949 * finding an empty skb in the write queue. 950 */ 951 void tcp_remove_empty_skb(struct sock *sk) 952 { 953 struct sk_buff *skb = tcp_write_queue_tail(sk); 954 955 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 956 tcp_unlink_write_queue(skb, sk); 957 if (tcp_write_queue_empty(sk)) 958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 959 tcp_wmem_free_skb(sk, skb); 960 } 961 } 962 963 /* skb changing from pure zc to mixed, must charge zc */ 964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 965 { 966 if (unlikely(skb_zcopy_pure(skb))) { 967 u32 extra = skb->truesize - 968 SKB_TRUESIZE(skb_end_offset(skb)); 969 970 if (!sk_wmem_schedule(sk, extra)) 971 return -ENOMEM; 972 973 sk_mem_charge(sk, extra); 974 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 975 } 976 return 0; 977 } 978 979 980 int tcp_wmem_schedule(struct sock *sk, int copy) 981 { 982 int left; 983 984 if (likely(sk_wmem_schedule(sk, copy))) 985 return copy; 986 987 /* We could be in trouble if we have nothing queued. 988 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 989 * to guarantee some progress. 990 */ 991 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 992 if (left > 0) 993 sk_forced_mem_schedule(sk, min(left, copy)); 994 return min(copy, sk->sk_forward_alloc); 995 } 996 997 void tcp_free_fastopen_req(struct tcp_sock *tp) 998 { 999 if (tp->fastopen_req) { 1000 kfree(tp->fastopen_req); 1001 tp->fastopen_req = NULL; 1002 } 1003 } 1004 1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1006 size_t size, struct ubuf_info *uarg) 1007 { 1008 struct tcp_sock *tp = tcp_sk(sk); 1009 struct inet_sock *inet = inet_sk(sk); 1010 struct sockaddr *uaddr = msg->msg_name; 1011 int err, flags; 1012 1013 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1014 TFO_CLIENT_ENABLE) || 1015 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1016 uaddr->sa_family == AF_UNSPEC)) 1017 return -EOPNOTSUPP; 1018 if (tp->fastopen_req) 1019 return -EALREADY; /* Another Fast Open is in progress */ 1020 1021 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1022 sk->sk_allocation); 1023 if (unlikely(!tp->fastopen_req)) 1024 return -ENOBUFS; 1025 tp->fastopen_req->data = msg; 1026 tp->fastopen_req->size = size; 1027 tp->fastopen_req->uarg = uarg; 1028 1029 if (inet_test_bit(DEFER_CONNECT, sk)) { 1030 err = tcp_connect(sk); 1031 /* Same failure procedure as in tcp_v4/6_connect */ 1032 if (err) { 1033 tcp_set_state(sk, TCP_CLOSE); 1034 inet->inet_dport = 0; 1035 sk->sk_route_caps = 0; 1036 } 1037 } 1038 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1039 err = __inet_stream_connect(sk->sk_socket, uaddr, 1040 msg->msg_namelen, flags, 1); 1041 /* fastopen_req could already be freed in __inet_stream_connect 1042 * if the connection times out or gets rst 1043 */ 1044 if (tp->fastopen_req) { 1045 *copied = tp->fastopen_req->copied; 1046 tcp_free_fastopen_req(tp); 1047 inet_clear_bit(DEFER_CONNECT, sk); 1048 } 1049 return err; 1050 } 1051 1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1053 { 1054 struct tcp_sock *tp = tcp_sk(sk); 1055 struct ubuf_info *uarg = NULL; 1056 struct sk_buff *skb; 1057 struct sockcm_cookie sockc; 1058 int flags, err, copied = 0; 1059 int mss_now = 0, size_goal, copied_syn = 0; 1060 int process_backlog = 0; 1061 int zc = 0; 1062 long timeo; 1063 1064 flags = msg->msg_flags; 1065 1066 if ((flags & MSG_ZEROCOPY) && size) { 1067 if (msg->msg_ubuf) { 1068 uarg = msg->msg_ubuf; 1069 if (sk->sk_route_caps & NETIF_F_SG) 1070 zc = MSG_ZEROCOPY; 1071 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1072 skb = tcp_write_queue_tail(sk); 1073 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1074 if (!uarg) { 1075 err = -ENOBUFS; 1076 goto out_err; 1077 } 1078 if (sk->sk_route_caps & NETIF_F_SG) 1079 zc = MSG_ZEROCOPY; 1080 else 1081 uarg_to_msgzc(uarg)->zerocopy = 0; 1082 } 1083 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1084 if (sk->sk_route_caps & NETIF_F_SG) 1085 zc = MSG_SPLICE_PAGES; 1086 } 1087 1088 if (unlikely(flags & MSG_FASTOPEN || 1089 inet_test_bit(DEFER_CONNECT, sk)) && 1090 !tp->repair) { 1091 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1092 if (err == -EINPROGRESS && copied_syn > 0) 1093 goto out; 1094 else if (err) 1095 goto out_err; 1096 } 1097 1098 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1099 1100 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1101 1102 /* Wait for a connection to finish. One exception is TCP Fast Open 1103 * (passive side) where data is allowed to be sent before a connection 1104 * is fully established. 1105 */ 1106 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1107 !tcp_passive_fastopen(sk)) { 1108 err = sk_stream_wait_connect(sk, &timeo); 1109 if (err != 0) 1110 goto do_error; 1111 } 1112 1113 if (unlikely(tp->repair)) { 1114 if (tp->repair_queue == TCP_RECV_QUEUE) { 1115 copied = tcp_send_rcvq(sk, msg, size); 1116 goto out_nopush; 1117 } 1118 1119 err = -EINVAL; 1120 if (tp->repair_queue == TCP_NO_QUEUE) 1121 goto out_err; 1122 1123 /* 'common' sending to sendq */ 1124 } 1125 1126 sockcm_init(&sockc, sk); 1127 if (msg->msg_controllen) { 1128 err = sock_cmsg_send(sk, msg, &sockc); 1129 if (unlikely(err)) { 1130 err = -EINVAL; 1131 goto out_err; 1132 } 1133 } 1134 1135 /* This should be in poll */ 1136 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1137 1138 /* Ok commence sending. */ 1139 copied = 0; 1140 1141 restart: 1142 mss_now = tcp_send_mss(sk, &size_goal, flags); 1143 1144 err = -EPIPE; 1145 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1146 goto do_error; 1147 1148 while (msg_data_left(msg)) { 1149 ssize_t copy = 0; 1150 1151 skb = tcp_write_queue_tail(sk); 1152 if (skb) 1153 copy = size_goal - skb->len; 1154 1155 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1156 bool first_skb; 1157 1158 new_segment: 1159 if (!sk_stream_memory_free(sk)) 1160 goto wait_for_space; 1161 1162 if (unlikely(process_backlog >= 16)) { 1163 process_backlog = 0; 1164 if (sk_flush_backlog(sk)) 1165 goto restart; 1166 } 1167 first_skb = tcp_rtx_and_write_queues_empty(sk); 1168 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1169 first_skb); 1170 if (!skb) 1171 goto wait_for_space; 1172 1173 process_backlog++; 1174 1175 #ifdef CONFIG_SKB_DECRYPTED 1176 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1177 #endif 1178 tcp_skb_entail(sk, skb); 1179 copy = size_goal; 1180 1181 /* All packets are restored as if they have 1182 * already been sent. skb_mstamp_ns isn't set to 1183 * avoid wrong rtt estimation. 1184 */ 1185 if (tp->repair) 1186 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1187 } 1188 1189 /* Try to append data to the end of skb. */ 1190 if (copy > msg_data_left(msg)) 1191 copy = msg_data_left(msg); 1192 1193 if (zc == 0) { 1194 bool merge = true; 1195 int i = skb_shinfo(skb)->nr_frags; 1196 struct page_frag *pfrag = sk_page_frag(sk); 1197 1198 if (!sk_page_frag_refill(sk, pfrag)) 1199 goto wait_for_space; 1200 1201 if (!skb_can_coalesce(skb, i, pfrag->page, 1202 pfrag->offset)) { 1203 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1204 tcp_mark_push(tp, skb); 1205 goto new_segment; 1206 } 1207 merge = false; 1208 } 1209 1210 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1211 1212 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1213 if (tcp_downgrade_zcopy_pure(sk, skb)) 1214 goto wait_for_space; 1215 skb_zcopy_downgrade_managed(skb); 1216 } 1217 1218 copy = tcp_wmem_schedule(sk, copy); 1219 if (!copy) 1220 goto wait_for_space; 1221 1222 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1223 pfrag->page, 1224 pfrag->offset, 1225 copy); 1226 if (err) 1227 goto do_error; 1228 1229 /* Update the skb. */ 1230 if (merge) { 1231 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1232 } else { 1233 skb_fill_page_desc(skb, i, pfrag->page, 1234 pfrag->offset, copy); 1235 page_ref_inc(pfrag->page); 1236 } 1237 pfrag->offset += copy; 1238 } else if (zc == MSG_ZEROCOPY) { 1239 /* First append to a fragless skb builds initial 1240 * pure zerocopy skb 1241 */ 1242 if (!skb->len) 1243 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1244 1245 if (!skb_zcopy_pure(skb)) { 1246 copy = tcp_wmem_schedule(sk, copy); 1247 if (!copy) 1248 goto wait_for_space; 1249 } 1250 1251 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1252 if (err == -EMSGSIZE || err == -EEXIST) { 1253 tcp_mark_push(tp, skb); 1254 goto new_segment; 1255 } 1256 if (err < 0) 1257 goto do_error; 1258 copy = err; 1259 } else if (zc == MSG_SPLICE_PAGES) { 1260 /* Splice in data if we can; copy if we can't. */ 1261 if (tcp_downgrade_zcopy_pure(sk, skb)) 1262 goto wait_for_space; 1263 copy = tcp_wmem_schedule(sk, copy); 1264 if (!copy) 1265 goto wait_for_space; 1266 1267 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1268 sk->sk_allocation); 1269 if (err < 0) { 1270 if (err == -EMSGSIZE) { 1271 tcp_mark_push(tp, skb); 1272 goto new_segment; 1273 } 1274 goto do_error; 1275 } 1276 copy = err; 1277 1278 if (!(flags & MSG_NO_SHARED_FRAGS)) 1279 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1280 1281 sk_wmem_queued_add(sk, copy); 1282 sk_mem_charge(sk, copy); 1283 } 1284 1285 if (!copied) 1286 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1287 1288 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1289 TCP_SKB_CB(skb)->end_seq += copy; 1290 tcp_skb_pcount_set(skb, 0); 1291 1292 copied += copy; 1293 if (!msg_data_left(msg)) { 1294 if (unlikely(flags & MSG_EOR)) 1295 TCP_SKB_CB(skb)->eor = 1; 1296 goto out; 1297 } 1298 1299 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1300 continue; 1301 1302 if (forced_push(tp)) { 1303 tcp_mark_push(tp, skb); 1304 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1305 } else if (skb == tcp_send_head(sk)) 1306 tcp_push_one(sk, mss_now); 1307 continue; 1308 1309 wait_for_space: 1310 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1311 tcp_remove_empty_skb(sk); 1312 if (copied) 1313 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1314 TCP_NAGLE_PUSH, size_goal); 1315 1316 err = sk_stream_wait_memory(sk, &timeo); 1317 if (err != 0) 1318 goto do_error; 1319 1320 mss_now = tcp_send_mss(sk, &size_goal, flags); 1321 } 1322 1323 out: 1324 if (copied) { 1325 tcp_tx_timestamp(sk, &sockc); 1326 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1327 } 1328 out_nopush: 1329 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1330 if (uarg && !msg->msg_ubuf) 1331 net_zcopy_put(uarg); 1332 return copied + copied_syn; 1333 1334 do_error: 1335 tcp_remove_empty_skb(sk); 1336 1337 if (copied + copied_syn) 1338 goto out; 1339 out_err: 1340 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1341 if (uarg && !msg->msg_ubuf) 1342 net_zcopy_put_abort(uarg, true); 1343 err = sk_stream_error(sk, flags, err); 1344 /* make sure we wake any epoll edge trigger waiter */ 1345 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1346 sk->sk_write_space(sk); 1347 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1348 } 1349 return err; 1350 } 1351 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1352 1353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1354 { 1355 int ret; 1356 1357 lock_sock(sk); 1358 ret = tcp_sendmsg_locked(sk, msg, size); 1359 release_sock(sk); 1360 1361 return ret; 1362 } 1363 EXPORT_SYMBOL(tcp_sendmsg); 1364 1365 void tcp_splice_eof(struct socket *sock) 1366 { 1367 struct sock *sk = sock->sk; 1368 struct tcp_sock *tp = tcp_sk(sk); 1369 int mss_now, size_goal; 1370 1371 if (!tcp_write_queue_tail(sk)) 1372 return; 1373 1374 lock_sock(sk); 1375 mss_now = tcp_send_mss(sk, &size_goal, 0); 1376 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1377 release_sock(sk); 1378 } 1379 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1380 1381 /* 1382 * Handle reading urgent data. BSD has very simple semantics for 1383 * this, no blocking and very strange errors 8) 1384 */ 1385 1386 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 1390 /* No URG data to read. */ 1391 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1392 tp->urg_data == TCP_URG_READ) 1393 return -EINVAL; /* Yes this is right ! */ 1394 1395 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1396 return -ENOTCONN; 1397 1398 if (tp->urg_data & TCP_URG_VALID) { 1399 int err = 0; 1400 char c = tp->urg_data; 1401 1402 if (!(flags & MSG_PEEK)) 1403 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1404 1405 /* Read urgent data. */ 1406 msg->msg_flags |= MSG_OOB; 1407 1408 if (len > 0) { 1409 if (!(flags & MSG_TRUNC)) 1410 err = memcpy_to_msg(msg, &c, 1); 1411 len = 1; 1412 } else 1413 msg->msg_flags |= MSG_TRUNC; 1414 1415 return err ? -EFAULT : len; 1416 } 1417 1418 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1419 return 0; 1420 1421 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1422 * the available implementations agree in this case: 1423 * this call should never block, independent of the 1424 * blocking state of the socket. 1425 * Mike <pall@rz.uni-karlsruhe.de> 1426 */ 1427 return -EAGAIN; 1428 } 1429 1430 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1431 { 1432 struct sk_buff *skb; 1433 int copied = 0, err = 0; 1434 1435 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1436 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1437 if (err) 1438 return err; 1439 copied += skb->len; 1440 } 1441 1442 skb_queue_walk(&sk->sk_write_queue, skb) { 1443 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1444 if (err) 1445 break; 1446 1447 copied += skb->len; 1448 } 1449 1450 return err ?: copied; 1451 } 1452 1453 /* Clean up the receive buffer for full frames taken by the user, 1454 * then send an ACK if necessary. COPIED is the number of bytes 1455 * tcp_recvmsg has given to the user so far, it speeds up the 1456 * calculation of whether or not we must ACK for the sake of 1457 * a window update. 1458 */ 1459 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1460 { 1461 struct tcp_sock *tp = tcp_sk(sk); 1462 bool time_to_ack = false; 1463 1464 if (inet_csk_ack_scheduled(sk)) { 1465 const struct inet_connection_sock *icsk = inet_csk(sk); 1466 1467 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1468 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1469 /* 1470 * If this read emptied read buffer, we send ACK, if 1471 * connection is not bidirectional, user drained 1472 * receive buffer and there was a small segment 1473 * in queue. 1474 */ 1475 (copied > 0 && 1476 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1477 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1478 !inet_csk_in_pingpong_mode(sk))) && 1479 !atomic_read(&sk->sk_rmem_alloc))) 1480 time_to_ack = true; 1481 } 1482 1483 /* We send an ACK if we can now advertise a non-zero window 1484 * which has been raised "significantly". 1485 * 1486 * Even if window raised up to infinity, do not send window open ACK 1487 * in states, where we will not receive more. It is useless. 1488 */ 1489 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1490 __u32 rcv_window_now = tcp_receive_window(tp); 1491 1492 /* Optimize, __tcp_select_window() is not cheap. */ 1493 if (2*rcv_window_now <= tp->window_clamp) { 1494 __u32 new_window = __tcp_select_window(sk); 1495 1496 /* Send ACK now, if this read freed lots of space 1497 * in our buffer. Certainly, new_window is new window. 1498 * We can advertise it now, if it is not less than current one. 1499 * "Lots" means "at least twice" here. 1500 */ 1501 if (new_window && new_window >= 2 * rcv_window_now) 1502 time_to_ack = true; 1503 } 1504 } 1505 if (time_to_ack) 1506 tcp_send_ack(sk); 1507 } 1508 1509 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1510 { 1511 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 1514 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1515 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1516 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1517 __tcp_cleanup_rbuf(sk, copied); 1518 } 1519 1520 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1521 { 1522 __skb_unlink(skb, &sk->sk_receive_queue); 1523 if (likely(skb->destructor == sock_rfree)) { 1524 sock_rfree(skb); 1525 skb->destructor = NULL; 1526 skb->sk = NULL; 1527 return skb_attempt_defer_free(skb); 1528 } 1529 __kfree_skb(skb); 1530 } 1531 1532 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1533 { 1534 struct sk_buff *skb; 1535 u32 offset; 1536 1537 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1538 offset = seq - TCP_SKB_CB(skb)->seq; 1539 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1540 pr_err_once("%s: found a SYN, please report !\n", __func__); 1541 offset--; 1542 } 1543 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1544 *off = offset; 1545 return skb; 1546 } 1547 /* This looks weird, but this can happen if TCP collapsing 1548 * splitted a fat GRO packet, while we released socket lock 1549 * in skb_splice_bits() 1550 */ 1551 tcp_eat_recv_skb(sk, skb); 1552 } 1553 return NULL; 1554 } 1555 EXPORT_SYMBOL(tcp_recv_skb); 1556 1557 /* 1558 * This routine provides an alternative to tcp_recvmsg() for routines 1559 * that would like to handle copying from skbuffs directly in 'sendfile' 1560 * fashion. 1561 * Note: 1562 * - It is assumed that the socket was locked by the caller. 1563 * - The routine does not block. 1564 * - At present, there is no support for reading OOB data 1565 * or for 'peeking' the socket using this routine 1566 * (although both would be easy to implement). 1567 */ 1568 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1569 sk_read_actor_t recv_actor) 1570 { 1571 struct sk_buff *skb; 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 u32 seq = tp->copied_seq; 1574 u32 offset; 1575 int copied = 0; 1576 1577 if (sk->sk_state == TCP_LISTEN) 1578 return -ENOTCONN; 1579 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1580 if (offset < skb->len) { 1581 int used; 1582 size_t len; 1583 1584 len = skb->len - offset; 1585 /* Stop reading if we hit a patch of urgent data */ 1586 if (unlikely(tp->urg_data)) { 1587 u32 urg_offset = tp->urg_seq - seq; 1588 if (urg_offset < len) 1589 len = urg_offset; 1590 if (!len) 1591 break; 1592 } 1593 used = recv_actor(desc, skb, offset, len); 1594 if (used <= 0) { 1595 if (!copied) 1596 copied = used; 1597 break; 1598 } 1599 if (WARN_ON_ONCE(used > len)) 1600 used = len; 1601 seq += used; 1602 copied += used; 1603 offset += used; 1604 1605 /* If recv_actor drops the lock (e.g. TCP splice 1606 * receive) the skb pointer might be invalid when 1607 * getting here: tcp_collapse might have deleted it 1608 * while aggregating skbs from the socket queue. 1609 */ 1610 skb = tcp_recv_skb(sk, seq - 1, &offset); 1611 if (!skb) 1612 break; 1613 /* TCP coalescing might have appended data to the skb. 1614 * Try to splice more frags 1615 */ 1616 if (offset + 1 != skb->len) 1617 continue; 1618 } 1619 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1620 tcp_eat_recv_skb(sk, skb); 1621 ++seq; 1622 break; 1623 } 1624 tcp_eat_recv_skb(sk, skb); 1625 if (!desc->count) 1626 break; 1627 WRITE_ONCE(tp->copied_seq, seq); 1628 } 1629 WRITE_ONCE(tp->copied_seq, seq); 1630 1631 tcp_rcv_space_adjust(sk); 1632 1633 /* Clean up data we have read: This will do ACK frames. */ 1634 if (copied > 0) { 1635 tcp_recv_skb(sk, seq, &offset); 1636 tcp_cleanup_rbuf(sk, copied); 1637 } 1638 return copied; 1639 } 1640 EXPORT_SYMBOL(tcp_read_sock); 1641 1642 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1643 { 1644 struct sk_buff *skb; 1645 int copied = 0; 1646 1647 if (sk->sk_state == TCP_LISTEN) 1648 return -ENOTCONN; 1649 1650 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1651 u8 tcp_flags; 1652 int used; 1653 1654 __skb_unlink(skb, &sk->sk_receive_queue); 1655 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1656 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1657 used = recv_actor(sk, skb); 1658 if (used < 0) { 1659 if (!copied) 1660 copied = used; 1661 break; 1662 } 1663 copied += used; 1664 1665 if (tcp_flags & TCPHDR_FIN) 1666 break; 1667 } 1668 return copied; 1669 } 1670 EXPORT_SYMBOL(tcp_read_skb); 1671 1672 void tcp_read_done(struct sock *sk, size_t len) 1673 { 1674 struct tcp_sock *tp = tcp_sk(sk); 1675 u32 seq = tp->copied_seq; 1676 struct sk_buff *skb; 1677 size_t left; 1678 u32 offset; 1679 1680 if (sk->sk_state == TCP_LISTEN) 1681 return; 1682 1683 left = len; 1684 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1685 int used; 1686 1687 used = min_t(size_t, skb->len - offset, left); 1688 seq += used; 1689 left -= used; 1690 1691 if (skb->len > offset + used) 1692 break; 1693 1694 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1695 tcp_eat_recv_skb(sk, skb); 1696 ++seq; 1697 break; 1698 } 1699 tcp_eat_recv_skb(sk, skb); 1700 } 1701 WRITE_ONCE(tp->copied_seq, seq); 1702 1703 tcp_rcv_space_adjust(sk); 1704 1705 /* Clean up data we have read: This will do ACK frames. */ 1706 if (left != len) 1707 tcp_cleanup_rbuf(sk, len - left); 1708 } 1709 EXPORT_SYMBOL(tcp_read_done); 1710 1711 int tcp_peek_len(struct socket *sock) 1712 { 1713 return tcp_inq(sock->sk); 1714 } 1715 EXPORT_SYMBOL(tcp_peek_len); 1716 1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1718 int tcp_set_rcvlowat(struct sock *sk, int val) 1719 { 1720 int space, cap; 1721 1722 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1723 cap = sk->sk_rcvbuf >> 1; 1724 else 1725 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1726 val = min(val, cap); 1727 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1728 1729 /* Check if we need to signal EPOLLIN right now */ 1730 tcp_data_ready(sk); 1731 1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1733 return 0; 1734 1735 space = tcp_space_from_win(sk, val); 1736 if (space > sk->sk_rcvbuf) { 1737 WRITE_ONCE(sk->sk_rcvbuf, space); 1738 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1739 } 1740 return 0; 1741 } 1742 EXPORT_SYMBOL(tcp_set_rcvlowat); 1743 1744 void tcp_update_recv_tstamps(struct sk_buff *skb, 1745 struct scm_timestamping_internal *tss) 1746 { 1747 if (skb->tstamp) 1748 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1749 else 1750 tss->ts[0] = (struct timespec64) {0}; 1751 1752 if (skb_hwtstamps(skb)->hwtstamp) 1753 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1754 else 1755 tss->ts[2] = (struct timespec64) {0}; 1756 } 1757 1758 #ifdef CONFIG_MMU 1759 static const struct vm_operations_struct tcp_vm_ops = { 1760 }; 1761 1762 int tcp_mmap(struct file *file, struct socket *sock, 1763 struct vm_area_struct *vma) 1764 { 1765 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1766 return -EPERM; 1767 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1768 1769 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1770 vm_flags_set(vma, VM_MIXEDMAP); 1771 1772 vma->vm_ops = &tcp_vm_ops; 1773 return 0; 1774 } 1775 EXPORT_SYMBOL(tcp_mmap); 1776 1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1778 u32 *offset_frag) 1779 { 1780 skb_frag_t *frag; 1781 1782 if (unlikely(offset_skb >= skb->len)) 1783 return NULL; 1784 1785 offset_skb -= skb_headlen(skb); 1786 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1787 return NULL; 1788 1789 frag = skb_shinfo(skb)->frags; 1790 while (offset_skb) { 1791 if (skb_frag_size(frag) > offset_skb) { 1792 *offset_frag = offset_skb; 1793 return frag; 1794 } 1795 offset_skb -= skb_frag_size(frag); 1796 ++frag; 1797 } 1798 *offset_frag = 0; 1799 return frag; 1800 } 1801 1802 static bool can_map_frag(const skb_frag_t *frag) 1803 { 1804 struct page *page; 1805 1806 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1807 return false; 1808 1809 page = skb_frag_page(frag); 1810 1811 if (PageCompound(page) || page->mapping) 1812 return false; 1813 1814 return true; 1815 } 1816 1817 static int find_next_mappable_frag(const skb_frag_t *frag, 1818 int remaining_in_skb) 1819 { 1820 int offset = 0; 1821 1822 if (likely(can_map_frag(frag))) 1823 return 0; 1824 1825 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1826 offset += skb_frag_size(frag); 1827 ++frag; 1828 } 1829 return offset; 1830 } 1831 1832 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1833 struct tcp_zerocopy_receive *zc, 1834 struct sk_buff *skb, u32 offset) 1835 { 1836 u32 frag_offset, partial_frag_remainder = 0; 1837 int mappable_offset; 1838 skb_frag_t *frag; 1839 1840 /* worst case: skip to next skb. try to improve on this case below */ 1841 zc->recv_skip_hint = skb->len - offset; 1842 1843 /* Find the frag containing this offset (and how far into that frag) */ 1844 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1845 if (!frag) 1846 return; 1847 1848 if (frag_offset) { 1849 struct skb_shared_info *info = skb_shinfo(skb); 1850 1851 /* We read part of the last frag, must recvmsg() rest of skb. */ 1852 if (frag == &info->frags[info->nr_frags - 1]) 1853 return; 1854 1855 /* Else, we must at least read the remainder in this frag. */ 1856 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1857 zc->recv_skip_hint -= partial_frag_remainder; 1858 ++frag; 1859 } 1860 1861 /* partial_frag_remainder: If part way through a frag, must read rest. 1862 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1863 * in partial_frag_remainder. 1864 */ 1865 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1866 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1867 } 1868 1869 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1870 int flags, struct scm_timestamping_internal *tss, 1871 int *cmsg_flags); 1872 static int receive_fallback_to_copy(struct sock *sk, 1873 struct tcp_zerocopy_receive *zc, int inq, 1874 struct scm_timestamping_internal *tss) 1875 { 1876 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1877 struct msghdr msg = {}; 1878 int err; 1879 1880 zc->length = 0; 1881 zc->recv_skip_hint = 0; 1882 1883 if (copy_address != zc->copybuf_address) 1884 return -EINVAL; 1885 1886 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1887 &msg.msg_iter); 1888 if (err) 1889 return err; 1890 1891 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1892 tss, &zc->msg_flags); 1893 if (err < 0) 1894 return err; 1895 1896 zc->copybuf_len = err; 1897 if (likely(zc->copybuf_len)) { 1898 struct sk_buff *skb; 1899 u32 offset; 1900 1901 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1902 if (skb) 1903 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1904 } 1905 return 0; 1906 } 1907 1908 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1909 struct sk_buff *skb, u32 copylen, 1910 u32 *offset, u32 *seq) 1911 { 1912 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1913 struct msghdr msg = {}; 1914 int err; 1915 1916 if (copy_address != zc->copybuf_address) 1917 return -EINVAL; 1918 1919 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1920 &msg.msg_iter); 1921 if (err) 1922 return err; 1923 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1924 if (err) 1925 return err; 1926 zc->recv_skip_hint -= copylen; 1927 *offset += copylen; 1928 *seq += copylen; 1929 return (__s32)copylen; 1930 } 1931 1932 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1933 struct sock *sk, 1934 struct sk_buff *skb, 1935 u32 *seq, 1936 s32 copybuf_len, 1937 struct scm_timestamping_internal *tss) 1938 { 1939 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1940 1941 if (!copylen) 1942 return 0; 1943 /* skb is null if inq < PAGE_SIZE. */ 1944 if (skb) { 1945 offset = *seq - TCP_SKB_CB(skb)->seq; 1946 } else { 1947 skb = tcp_recv_skb(sk, *seq, &offset); 1948 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1949 tcp_update_recv_tstamps(skb, tss); 1950 zc->msg_flags |= TCP_CMSG_TS; 1951 } 1952 } 1953 1954 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1955 seq); 1956 return zc->copybuf_len < 0 ? 0 : copylen; 1957 } 1958 1959 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1960 struct page **pending_pages, 1961 unsigned long pages_remaining, 1962 unsigned long *address, 1963 u32 *length, 1964 u32 *seq, 1965 struct tcp_zerocopy_receive *zc, 1966 u32 total_bytes_to_map, 1967 int err) 1968 { 1969 /* At least one page did not map. Try zapping if we skipped earlier. */ 1970 if (err == -EBUSY && 1971 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1972 u32 maybe_zap_len; 1973 1974 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1975 *length + /* Mapped or pending */ 1976 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1977 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1978 err = 0; 1979 } 1980 1981 if (!err) { 1982 unsigned long leftover_pages = pages_remaining; 1983 int bytes_mapped; 1984 1985 /* We called zap_page_range_single, try to reinsert. */ 1986 err = vm_insert_pages(vma, *address, 1987 pending_pages, 1988 &pages_remaining); 1989 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1990 *seq += bytes_mapped; 1991 *address += bytes_mapped; 1992 } 1993 if (err) { 1994 /* Either we were unable to zap, OR we zapped, retried an 1995 * insert, and still had an issue. Either ways, pages_remaining 1996 * is the number of pages we were unable to map, and we unroll 1997 * some state we speculatively touched before. 1998 */ 1999 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2000 2001 *length -= bytes_not_mapped; 2002 zc->recv_skip_hint += bytes_not_mapped; 2003 } 2004 return err; 2005 } 2006 2007 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2008 struct page **pages, 2009 unsigned int pages_to_map, 2010 unsigned long *address, 2011 u32 *length, 2012 u32 *seq, 2013 struct tcp_zerocopy_receive *zc, 2014 u32 total_bytes_to_map) 2015 { 2016 unsigned long pages_remaining = pages_to_map; 2017 unsigned int pages_mapped; 2018 unsigned int bytes_mapped; 2019 int err; 2020 2021 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2022 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2023 bytes_mapped = PAGE_SIZE * pages_mapped; 2024 /* Even if vm_insert_pages fails, it may have partially succeeded in 2025 * mapping (some but not all of the pages). 2026 */ 2027 *seq += bytes_mapped; 2028 *address += bytes_mapped; 2029 2030 if (likely(!err)) 2031 return 0; 2032 2033 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2034 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2035 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2036 err); 2037 } 2038 2039 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2040 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2041 struct tcp_zerocopy_receive *zc, 2042 struct scm_timestamping_internal *tss) 2043 { 2044 unsigned long msg_control_addr; 2045 struct msghdr cmsg_dummy; 2046 2047 msg_control_addr = (unsigned long)zc->msg_control; 2048 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2049 cmsg_dummy.msg_controllen = 2050 (__kernel_size_t)zc->msg_controllen; 2051 cmsg_dummy.msg_flags = in_compat_syscall() 2052 ? MSG_CMSG_COMPAT : 0; 2053 cmsg_dummy.msg_control_is_user = true; 2054 zc->msg_flags = 0; 2055 if (zc->msg_control == msg_control_addr && 2056 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2057 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2058 zc->msg_control = (__u64) 2059 ((uintptr_t)cmsg_dummy.msg_control_user); 2060 zc->msg_controllen = 2061 (__u64)cmsg_dummy.msg_controllen; 2062 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2063 } 2064 } 2065 2066 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2067 unsigned long address, 2068 bool *mmap_locked) 2069 { 2070 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2071 2072 if (vma) { 2073 if (vma->vm_ops != &tcp_vm_ops) { 2074 vma_end_read(vma); 2075 return NULL; 2076 } 2077 *mmap_locked = false; 2078 return vma; 2079 } 2080 2081 mmap_read_lock(mm); 2082 vma = vma_lookup(mm, address); 2083 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2084 mmap_read_unlock(mm); 2085 return NULL; 2086 } 2087 *mmap_locked = true; 2088 return vma; 2089 } 2090 2091 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2092 static int tcp_zerocopy_receive(struct sock *sk, 2093 struct tcp_zerocopy_receive *zc, 2094 struct scm_timestamping_internal *tss) 2095 { 2096 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2097 unsigned long address = (unsigned long)zc->address; 2098 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2099 s32 copybuf_len = zc->copybuf_len; 2100 struct tcp_sock *tp = tcp_sk(sk); 2101 const skb_frag_t *frags = NULL; 2102 unsigned int pages_to_map = 0; 2103 struct vm_area_struct *vma; 2104 struct sk_buff *skb = NULL; 2105 u32 seq = tp->copied_seq; 2106 u32 total_bytes_to_map; 2107 int inq = tcp_inq(sk); 2108 bool mmap_locked; 2109 int ret; 2110 2111 zc->copybuf_len = 0; 2112 zc->msg_flags = 0; 2113 2114 if (address & (PAGE_SIZE - 1) || address != zc->address) 2115 return -EINVAL; 2116 2117 if (sk->sk_state == TCP_LISTEN) 2118 return -ENOTCONN; 2119 2120 sock_rps_record_flow(sk); 2121 2122 if (inq && inq <= copybuf_len) 2123 return receive_fallback_to_copy(sk, zc, inq, tss); 2124 2125 if (inq < PAGE_SIZE) { 2126 zc->length = 0; 2127 zc->recv_skip_hint = inq; 2128 if (!inq && sock_flag(sk, SOCK_DONE)) 2129 return -EIO; 2130 return 0; 2131 } 2132 2133 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2134 if (!vma) 2135 return -EINVAL; 2136 2137 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2138 avail_len = min_t(u32, vma_len, inq); 2139 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2140 if (total_bytes_to_map) { 2141 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2142 zap_page_range_single(vma, address, total_bytes_to_map, 2143 NULL); 2144 zc->length = total_bytes_to_map; 2145 zc->recv_skip_hint = 0; 2146 } else { 2147 zc->length = avail_len; 2148 zc->recv_skip_hint = avail_len; 2149 } 2150 ret = 0; 2151 while (length + PAGE_SIZE <= zc->length) { 2152 int mappable_offset; 2153 struct page *page; 2154 2155 if (zc->recv_skip_hint < PAGE_SIZE) { 2156 u32 offset_frag; 2157 2158 if (skb) { 2159 if (zc->recv_skip_hint > 0) 2160 break; 2161 skb = skb->next; 2162 offset = seq - TCP_SKB_CB(skb)->seq; 2163 } else { 2164 skb = tcp_recv_skb(sk, seq, &offset); 2165 } 2166 2167 if (!skb_frags_readable(skb)) 2168 break; 2169 2170 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2171 tcp_update_recv_tstamps(skb, tss); 2172 zc->msg_flags |= TCP_CMSG_TS; 2173 } 2174 zc->recv_skip_hint = skb->len - offset; 2175 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2176 if (!frags || offset_frag) 2177 break; 2178 } 2179 2180 mappable_offset = find_next_mappable_frag(frags, 2181 zc->recv_skip_hint); 2182 if (mappable_offset) { 2183 zc->recv_skip_hint = mappable_offset; 2184 break; 2185 } 2186 page = skb_frag_page(frags); 2187 if (WARN_ON_ONCE(!page)) 2188 break; 2189 2190 prefetchw(page); 2191 pages[pages_to_map++] = page; 2192 length += PAGE_SIZE; 2193 zc->recv_skip_hint -= PAGE_SIZE; 2194 frags++; 2195 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2196 zc->recv_skip_hint < PAGE_SIZE) { 2197 /* Either full batch, or we're about to go to next skb 2198 * (and we cannot unroll failed ops across skbs). 2199 */ 2200 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2201 pages_to_map, 2202 &address, &length, 2203 &seq, zc, 2204 total_bytes_to_map); 2205 if (ret) 2206 goto out; 2207 pages_to_map = 0; 2208 } 2209 } 2210 if (pages_to_map) { 2211 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2212 &address, &length, &seq, 2213 zc, total_bytes_to_map); 2214 } 2215 out: 2216 if (mmap_locked) 2217 mmap_read_unlock(current->mm); 2218 else 2219 vma_end_read(vma); 2220 /* Try to copy straggler data. */ 2221 if (!ret) 2222 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2223 2224 if (length + copylen) { 2225 WRITE_ONCE(tp->copied_seq, seq); 2226 tcp_rcv_space_adjust(sk); 2227 2228 /* Clean up data we have read: This will do ACK frames. */ 2229 tcp_recv_skb(sk, seq, &offset); 2230 tcp_cleanup_rbuf(sk, length + copylen); 2231 ret = 0; 2232 if (length == zc->length) 2233 zc->recv_skip_hint = 0; 2234 } else { 2235 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2236 ret = -EIO; 2237 } 2238 zc->length = length; 2239 return ret; 2240 } 2241 #endif 2242 2243 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2244 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2245 struct scm_timestamping_internal *tss) 2246 { 2247 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2248 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2249 bool has_timestamping = false; 2250 2251 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2252 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2253 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2254 if (new_tstamp) { 2255 struct __kernel_timespec kts = { 2256 .tv_sec = tss->ts[0].tv_sec, 2257 .tv_nsec = tss->ts[0].tv_nsec, 2258 }; 2259 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2260 sizeof(kts), &kts); 2261 } else { 2262 struct __kernel_old_timespec ts_old = { 2263 .tv_sec = tss->ts[0].tv_sec, 2264 .tv_nsec = tss->ts[0].tv_nsec, 2265 }; 2266 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2267 sizeof(ts_old), &ts_old); 2268 } 2269 } else { 2270 if (new_tstamp) { 2271 struct __kernel_sock_timeval stv = { 2272 .tv_sec = tss->ts[0].tv_sec, 2273 .tv_usec = tss->ts[0].tv_nsec / 1000, 2274 }; 2275 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2276 sizeof(stv), &stv); 2277 } else { 2278 struct __kernel_old_timeval tv = { 2279 .tv_sec = tss->ts[0].tv_sec, 2280 .tv_usec = tss->ts[0].tv_nsec / 1000, 2281 }; 2282 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2283 sizeof(tv), &tv); 2284 } 2285 } 2286 } 2287 2288 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2289 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2290 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2291 has_timestamping = true; 2292 else 2293 tss->ts[0] = (struct timespec64) {0}; 2294 } 2295 2296 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2297 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2298 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2299 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2300 has_timestamping = true; 2301 else 2302 tss->ts[2] = (struct timespec64) {0}; 2303 } 2304 2305 if (has_timestamping) { 2306 tss->ts[1] = (struct timespec64) {0}; 2307 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2308 put_cmsg_scm_timestamping64(msg, tss); 2309 else 2310 put_cmsg_scm_timestamping(msg, tss); 2311 } 2312 } 2313 2314 static int tcp_inq_hint(struct sock *sk) 2315 { 2316 const struct tcp_sock *tp = tcp_sk(sk); 2317 u32 copied_seq = READ_ONCE(tp->copied_seq); 2318 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2319 int inq; 2320 2321 inq = rcv_nxt - copied_seq; 2322 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2323 lock_sock(sk); 2324 inq = tp->rcv_nxt - tp->copied_seq; 2325 release_sock(sk); 2326 } 2327 /* After receiving a FIN, tell the user-space to continue reading 2328 * by returning a non-zero inq. 2329 */ 2330 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2331 inq = 1; 2332 return inq; 2333 } 2334 2335 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2336 struct tcp_xa_pool { 2337 u8 max; /* max <= MAX_SKB_FRAGS */ 2338 u8 idx; /* idx <= max */ 2339 __u32 tokens[MAX_SKB_FRAGS]; 2340 netmem_ref netmems[MAX_SKB_FRAGS]; 2341 }; 2342 2343 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2344 { 2345 int i; 2346 2347 /* Commit part that has been copied to user space. */ 2348 for (i = 0; i < p->idx; i++) 2349 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2350 (__force void *)p->netmems[i], GFP_KERNEL); 2351 /* Rollback what has been pre-allocated and is no longer needed. */ 2352 for (; i < p->max; i++) 2353 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2354 2355 p->max = 0; 2356 p->idx = 0; 2357 } 2358 2359 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2360 { 2361 if (!p->max) 2362 return; 2363 2364 xa_lock_bh(&sk->sk_user_frags); 2365 2366 tcp_xa_pool_commit_locked(sk, p); 2367 2368 xa_unlock_bh(&sk->sk_user_frags); 2369 } 2370 2371 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2372 unsigned int max_frags) 2373 { 2374 int err, k; 2375 2376 if (p->idx < p->max) 2377 return 0; 2378 2379 xa_lock_bh(&sk->sk_user_frags); 2380 2381 tcp_xa_pool_commit_locked(sk, p); 2382 2383 for (k = 0; k < max_frags; k++) { 2384 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2385 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2386 if (err) 2387 break; 2388 } 2389 2390 xa_unlock_bh(&sk->sk_user_frags); 2391 2392 p->max = k; 2393 p->idx = 0; 2394 return k ? 0 : err; 2395 } 2396 2397 /* On error, returns the -errno. On success, returns number of bytes sent to the 2398 * user. May not consume all of @remaining_len. 2399 */ 2400 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2401 unsigned int offset, struct msghdr *msg, 2402 int remaining_len) 2403 { 2404 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2405 struct tcp_xa_pool tcp_xa_pool; 2406 unsigned int start; 2407 int i, copy, n; 2408 int sent = 0; 2409 int err = 0; 2410 2411 tcp_xa_pool.max = 0; 2412 tcp_xa_pool.idx = 0; 2413 do { 2414 start = skb_headlen(skb); 2415 2416 if (skb_frags_readable(skb)) { 2417 err = -ENODEV; 2418 goto out; 2419 } 2420 2421 /* Copy header. */ 2422 copy = start - offset; 2423 if (copy > 0) { 2424 copy = min(copy, remaining_len); 2425 2426 n = copy_to_iter(skb->data + offset, copy, 2427 &msg->msg_iter); 2428 if (n != copy) { 2429 err = -EFAULT; 2430 goto out; 2431 } 2432 2433 offset += copy; 2434 remaining_len -= copy; 2435 2436 /* First a dmabuf_cmsg for # bytes copied to user 2437 * buffer. 2438 */ 2439 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2440 dmabuf_cmsg.frag_size = copy; 2441 err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR, 2442 sizeof(dmabuf_cmsg), &dmabuf_cmsg); 2443 if (err || msg->msg_flags & MSG_CTRUNC) { 2444 msg->msg_flags &= ~MSG_CTRUNC; 2445 if (!err) 2446 err = -ETOOSMALL; 2447 goto out; 2448 } 2449 2450 sent += copy; 2451 2452 if (remaining_len == 0) 2453 goto out; 2454 } 2455 2456 /* after that, send information of dmabuf pages through a 2457 * sequence of cmsg 2458 */ 2459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2461 struct net_iov *niov; 2462 u64 frag_offset; 2463 int end; 2464 2465 /* !skb_frags_readable() should indicate that ALL the 2466 * frags in this skb are dmabuf net_iovs. We're checking 2467 * for that flag above, but also check individual frags 2468 * here. If the tcp stack is not setting 2469 * skb_frags_readable() correctly, we still don't want 2470 * to crash here. 2471 */ 2472 if (!skb_frag_net_iov(frag)) { 2473 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2474 err = -ENODEV; 2475 goto out; 2476 } 2477 2478 niov = skb_frag_net_iov(frag); 2479 end = start + skb_frag_size(frag); 2480 copy = end - offset; 2481 2482 if (copy > 0) { 2483 copy = min(copy, remaining_len); 2484 2485 frag_offset = net_iov_virtual_addr(niov) + 2486 skb_frag_off(frag) + offset - 2487 start; 2488 dmabuf_cmsg.frag_offset = frag_offset; 2489 dmabuf_cmsg.frag_size = copy; 2490 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2491 skb_shinfo(skb)->nr_frags - i); 2492 if (err) 2493 goto out; 2494 2495 /* Will perform the exchange later */ 2496 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2497 dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov); 2498 2499 offset += copy; 2500 remaining_len -= copy; 2501 2502 err = put_cmsg(msg, SOL_SOCKET, 2503 SO_DEVMEM_DMABUF, 2504 sizeof(dmabuf_cmsg), 2505 &dmabuf_cmsg); 2506 if (err || msg->msg_flags & MSG_CTRUNC) { 2507 msg->msg_flags &= ~MSG_CTRUNC; 2508 if (!err) 2509 err = -ETOOSMALL; 2510 goto out; 2511 } 2512 2513 atomic_long_inc(&niov->pp_ref_count); 2514 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2515 2516 sent += copy; 2517 2518 if (remaining_len == 0) 2519 goto out; 2520 } 2521 start = end; 2522 } 2523 2524 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2525 if (!remaining_len) 2526 goto out; 2527 2528 /* if remaining_len is not satisfied yet, we need to go to the 2529 * next frag in the frag_list to satisfy remaining_len. 2530 */ 2531 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2532 2533 offset = offset - start; 2534 } while (skb); 2535 2536 if (remaining_len) { 2537 err = -EFAULT; 2538 goto out; 2539 } 2540 2541 out: 2542 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2543 if (!sent) 2544 sent = err; 2545 2546 return sent; 2547 } 2548 2549 /* 2550 * This routine copies from a sock struct into the user buffer. 2551 * 2552 * Technical note: in 2.3 we work on _locked_ socket, so that 2553 * tricks with *seq access order and skb->users are not required. 2554 * Probably, code can be easily improved even more. 2555 */ 2556 2557 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2558 int flags, struct scm_timestamping_internal *tss, 2559 int *cmsg_flags) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 int last_copied_dmabuf = -1; /* uninitialized */ 2563 int copied = 0; 2564 u32 peek_seq; 2565 u32 *seq; 2566 unsigned long used; 2567 int err; 2568 int target; /* Read at least this many bytes */ 2569 long timeo; 2570 struct sk_buff *skb, *last; 2571 u32 peek_offset = 0; 2572 u32 urg_hole = 0; 2573 2574 err = -ENOTCONN; 2575 if (sk->sk_state == TCP_LISTEN) 2576 goto out; 2577 2578 if (tp->recvmsg_inq) { 2579 *cmsg_flags = TCP_CMSG_INQ; 2580 msg->msg_get_inq = 1; 2581 } 2582 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2583 2584 /* Urgent data needs to be handled specially. */ 2585 if (flags & MSG_OOB) 2586 goto recv_urg; 2587 2588 if (unlikely(tp->repair)) { 2589 err = -EPERM; 2590 if (!(flags & MSG_PEEK)) 2591 goto out; 2592 2593 if (tp->repair_queue == TCP_SEND_QUEUE) 2594 goto recv_sndq; 2595 2596 err = -EINVAL; 2597 if (tp->repair_queue == TCP_NO_QUEUE) 2598 goto out; 2599 2600 /* 'common' recv queue MSG_PEEK-ing */ 2601 } 2602 2603 seq = &tp->copied_seq; 2604 if (flags & MSG_PEEK) { 2605 peek_offset = max(sk_peek_offset(sk, flags), 0); 2606 peek_seq = tp->copied_seq + peek_offset; 2607 seq = &peek_seq; 2608 } 2609 2610 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2611 2612 do { 2613 u32 offset; 2614 2615 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2616 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2617 if (copied) 2618 break; 2619 if (signal_pending(current)) { 2620 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2621 break; 2622 } 2623 } 2624 2625 /* Next get a buffer. */ 2626 2627 last = skb_peek_tail(&sk->sk_receive_queue); 2628 skb_queue_walk(&sk->sk_receive_queue, skb) { 2629 last = skb; 2630 /* Now that we have two receive queues this 2631 * shouldn't happen. 2632 */ 2633 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2634 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2635 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2636 flags)) 2637 break; 2638 2639 offset = *seq - TCP_SKB_CB(skb)->seq; 2640 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2641 pr_err_once("%s: found a SYN, please report !\n", __func__); 2642 offset--; 2643 } 2644 if (offset < skb->len) 2645 goto found_ok_skb; 2646 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2647 goto found_fin_ok; 2648 WARN(!(flags & MSG_PEEK), 2649 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2650 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2651 } 2652 2653 /* Well, if we have backlog, try to process it now yet. */ 2654 2655 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2656 break; 2657 2658 if (copied) { 2659 if (!timeo || 2660 sk->sk_err || 2661 sk->sk_state == TCP_CLOSE || 2662 (sk->sk_shutdown & RCV_SHUTDOWN) || 2663 signal_pending(current)) 2664 break; 2665 } else { 2666 if (sock_flag(sk, SOCK_DONE)) 2667 break; 2668 2669 if (sk->sk_err) { 2670 copied = sock_error(sk); 2671 break; 2672 } 2673 2674 if (sk->sk_shutdown & RCV_SHUTDOWN) 2675 break; 2676 2677 if (sk->sk_state == TCP_CLOSE) { 2678 /* This occurs when user tries to read 2679 * from never connected socket. 2680 */ 2681 copied = -ENOTCONN; 2682 break; 2683 } 2684 2685 if (!timeo) { 2686 copied = -EAGAIN; 2687 break; 2688 } 2689 2690 if (signal_pending(current)) { 2691 copied = sock_intr_errno(timeo); 2692 break; 2693 } 2694 } 2695 2696 if (copied >= target) { 2697 /* Do not sleep, just process backlog. */ 2698 __sk_flush_backlog(sk); 2699 } else { 2700 tcp_cleanup_rbuf(sk, copied); 2701 err = sk_wait_data(sk, &timeo, last); 2702 if (err < 0) { 2703 err = copied ? : err; 2704 goto out; 2705 } 2706 } 2707 2708 if ((flags & MSG_PEEK) && 2709 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2710 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2711 current->comm, 2712 task_pid_nr(current)); 2713 peek_seq = tp->copied_seq + peek_offset; 2714 } 2715 continue; 2716 2717 found_ok_skb: 2718 /* Ok so how much can we use? */ 2719 used = skb->len - offset; 2720 if (len < used) 2721 used = len; 2722 2723 /* Do we have urgent data here? */ 2724 if (unlikely(tp->urg_data)) { 2725 u32 urg_offset = tp->urg_seq - *seq; 2726 if (urg_offset < used) { 2727 if (!urg_offset) { 2728 if (!sock_flag(sk, SOCK_URGINLINE)) { 2729 WRITE_ONCE(*seq, *seq + 1); 2730 urg_hole++; 2731 offset++; 2732 used--; 2733 if (!used) 2734 goto skip_copy; 2735 } 2736 } else 2737 used = urg_offset; 2738 } 2739 } 2740 2741 if (!(flags & MSG_TRUNC)) { 2742 if (last_copied_dmabuf != -1 && 2743 last_copied_dmabuf != !skb_frags_readable(skb)) 2744 break; 2745 2746 if (skb_frags_readable(skb)) { 2747 err = skb_copy_datagram_msg(skb, offset, msg, 2748 used); 2749 if (err) { 2750 /* Exception. Bailout! */ 2751 if (!copied) 2752 copied = -EFAULT; 2753 break; 2754 } 2755 } else { 2756 if (!(flags & MSG_SOCK_DEVMEM)) { 2757 /* dmabuf skbs can only be received 2758 * with the MSG_SOCK_DEVMEM flag. 2759 */ 2760 if (!copied) 2761 copied = -EFAULT; 2762 2763 break; 2764 } 2765 2766 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2767 used); 2768 if (err <= 0) { 2769 if (!copied) 2770 copied = -EFAULT; 2771 2772 break; 2773 } 2774 used = err; 2775 } 2776 } 2777 2778 last_copied_dmabuf = !skb_frags_readable(skb); 2779 2780 WRITE_ONCE(*seq, *seq + used); 2781 copied += used; 2782 len -= used; 2783 if (flags & MSG_PEEK) 2784 sk_peek_offset_fwd(sk, used); 2785 else 2786 sk_peek_offset_bwd(sk, used); 2787 tcp_rcv_space_adjust(sk); 2788 2789 skip_copy: 2790 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2791 WRITE_ONCE(tp->urg_data, 0); 2792 tcp_fast_path_check(sk); 2793 } 2794 2795 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2796 tcp_update_recv_tstamps(skb, tss); 2797 *cmsg_flags |= TCP_CMSG_TS; 2798 } 2799 2800 if (used + offset < skb->len) 2801 continue; 2802 2803 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2804 goto found_fin_ok; 2805 if (!(flags & MSG_PEEK)) 2806 tcp_eat_recv_skb(sk, skb); 2807 continue; 2808 2809 found_fin_ok: 2810 /* Process the FIN. */ 2811 WRITE_ONCE(*seq, *seq + 1); 2812 if (!(flags & MSG_PEEK)) 2813 tcp_eat_recv_skb(sk, skb); 2814 break; 2815 } while (len > 0); 2816 2817 /* According to UNIX98, msg_name/msg_namelen are ignored 2818 * on connected socket. I was just happy when found this 8) --ANK 2819 */ 2820 2821 /* Clean up data we have read: This will do ACK frames. */ 2822 tcp_cleanup_rbuf(sk, copied); 2823 return copied; 2824 2825 out: 2826 return err; 2827 2828 recv_urg: 2829 err = tcp_recv_urg(sk, msg, len, flags); 2830 goto out; 2831 2832 recv_sndq: 2833 err = tcp_peek_sndq(sk, msg, len); 2834 goto out; 2835 } 2836 2837 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2838 int *addr_len) 2839 { 2840 int cmsg_flags = 0, ret; 2841 struct scm_timestamping_internal tss; 2842 2843 if (unlikely(flags & MSG_ERRQUEUE)) 2844 return inet_recv_error(sk, msg, len, addr_len); 2845 2846 if (sk_can_busy_loop(sk) && 2847 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2848 sk->sk_state == TCP_ESTABLISHED) 2849 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2850 2851 lock_sock(sk); 2852 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2853 release_sock(sk); 2854 2855 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2856 if (cmsg_flags & TCP_CMSG_TS) 2857 tcp_recv_timestamp(msg, sk, &tss); 2858 if (msg->msg_get_inq) { 2859 msg->msg_inq = tcp_inq_hint(sk); 2860 if (cmsg_flags & TCP_CMSG_INQ) 2861 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2862 sizeof(msg->msg_inq), &msg->msg_inq); 2863 } 2864 } 2865 return ret; 2866 } 2867 EXPORT_SYMBOL(tcp_recvmsg); 2868 2869 void tcp_set_state(struct sock *sk, int state) 2870 { 2871 int oldstate = sk->sk_state; 2872 2873 /* We defined a new enum for TCP states that are exported in BPF 2874 * so as not force the internal TCP states to be frozen. The 2875 * following checks will detect if an internal state value ever 2876 * differs from the BPF value. If this ever happens, then we will 2877 * need to remap the internal value to the BPF value before calling 2878 * tcp_call_bpf_2arg. 2879 */ 2880 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2881 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2882 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2883 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2884 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2885 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2886 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2887 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2888 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2889 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2890 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2891 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2892 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2893 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2894 2895 /* bpf uapi header bpf.h defines an anonymous enum with values 2896 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2897 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2898 * But clang built vmlinux does not have this enum in DWARF 2899 * since clang removes the above code before generating IR/debuginfo. 2900 * Let us explicitly emit the type debuginfo to ensure the 2901 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2902 * regardless of which compiler is used. 2903 */ 2904 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2905 2906 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2907 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2908 2909 switch (state) { 2910 case TCP_ESTABLISHED: 2911 if (oldstate != TCP_ESTABLISHED) 2912 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2913 break; 2914 case TCP_CLOSE_WAIT: 2915 if (oldstate == TCP_SYN_RECV) 2916 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2917 break; 2918 2919 case TCP_CLOSE: 2920 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2921 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2922 2923 sk->sk_prot->unhash(sk); 2924 if (inet_csk(sk)->icsk_bind_hash && 2925 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2926 inet_put_port(sk); 2927 fallthrough; 2928 default: 2929 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2930 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2931 } 2932 2933 /* Change state AFTER socket is unhashed to avoid closed 2934 * socket sitting in hash tables. 2935 */ 2936 inet_sk_state_store(sk, state); 2937 } 2938 EXPORT_SYMBOL_GPL(tcp_set_state); 2939 2940 /* 2941 * State processing on a close. This implements the state shift for 2942 * sending our FIN frame. Note that we only send a FIN for some 2943 * states. A shutdown() may have already sent the FIN, or we may be 2944 * closed. 2945 */ 2946 2947 static const unsigned char new_state[16] = { 2948 /* current state: new state: action: */ 2949 [0 /* (Invalid) */] = TCP_CLOSE, 2950 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2951 [TCP_SYN_SENT] = TCP_CLOSE, 2952 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2953 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2954 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2955 [TCP_TIME_WAIT] = TCP_CLOSE, 2956 [TCP_CLOSE] = TCP_CLOSE, 2957 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2958 [TCP_LAST_ACK] = TCP_LAST_ACK, 2959 [TCP_LISTEN] = TCP_CLOSE, 2960 [TCP_CLOSING] = TCP_CLOSING, 2961 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2962 }; 2963 2964 static int tcp_close_state(struct sock *sk) 2965 { 2966 int next = (int)new_state[sk->sk_state]; 2967 int ns = next & TCP_STATE_MASK; 2968 2969 tcp_set_state(sk, ns); 2970 2971 return next & TCP_ACTION_FIN; 2972 } 2973 2974 /* 2975 * Shutdown the sending side of a connection. Much like close except 2976 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2977 */ 2978 2979 void tcp_shutdown(struct sock *sk, int how) 2980 { 2981 /* We need to grab some memory, and put together a FIN, 2982 * and then put it into the queue to be sent. 2983 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2984 */ 2985 if (!(how & SEND_SHUTDOWN)) 2986 return; 2987 2988 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2989 if ((1 << sk->sk_state) & 2990 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2991 TCPF_CLOSE_WAIT)) { 2992 /* Clear out any half completed packets. FIN if needed. */ 2993 if (tcp_close_state(sk)) 2994 tcp_send_fin(sk); 2995 } 2996 } 2997 EXPORT_SYMBOL(tcp_shutdown); 2998 2999 int tcp_orphan_count_sum(void) 3000 { 3001 int i, total = 0; 3002 3003 for_each_possible_cpu(i) 3004 total += per_cpu(tcp_orphan_count, i); 3005 3006 return max(total, 0); 3007 } 3008 3009 static int tcp_orphan_cache; 3010 static struct timer_list tcp_orphan_timer; 3011 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3012 3013 static void tcp_orphan_update(struct timer_list *unused) 3014 { 3015 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3016 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3017 } 3018 3019 static bool tcp_too_many_orphans(int shift) 3020 { 3021 return READ_ONCE(tcp_orphan_cache) << shift > 3022 READ_ONCE(sysctl_tcp_max_orphans); 3023 } 3024 3025 static bool tcp_out_of_memory(const struct sock *sk) 3026 { 3027 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3028 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3029 return true; 3030 return false; 3031 } 3032 3033 bool tcp_check_oom(const struct sock *sk, int shift) 3034 { 3035 bool too_many_orphans, out_of_socket_memory; 3036 3037 too_many_orphans = tcp_too_many_orphans(shift); 3038 out_of_socket_memory = tcp_out_of_memory(sk); 3039 3040 if (too_many_orphans) 3041 net_info_ratelimited("too many orphaned sockets\n"); 3042 if (out_of_socket_memory) 3043 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3044 return too_many_orphans || out_of_socket_memory; 3045 } 3046 3047 void __tcp_close(struct sock *sk, long timeout) 3048 { 3049 struct sk_buff *skb; 3050 int data_was_unread = 0; 3051 int state; 3052 3053 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3054 3055 if (sk->sk_state == TCP_LISTEN) { 3056 tcp_set_state(sk, TCP_CLOSE); 3057 3058 /* Special case. */ 3059 inet_csk_listen_stop(sk); 3060 3061 goto adjudge_to_death; 3062 } 3063 3064 /* We need to flush the recv. buffs. We do this only on the 3065 * descriptor close, not protocol-sourced closes, because the 3066 * reader process may not have drained the data yet! 3067 */ 3068 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3069 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3070 3071 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3072 len--; 3073 data_was_unread += len; 3074 __kfree_skb(skb); 3075 } 3076 3077 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3078 if (sk->sk_state == TCP_CLOSE) 3079 goto adjudge_to_death; 3080 3081 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3082 * data was lost. To witness the awful effects of the old behavior of 3083 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3084 * GET in an FTP client, suspend the process, wait for the client to 3085 * advertise a zero window, then kill -9 the FTP client, wheee... 3086 * Note: timeout is always zero in such a case. 3087 */ 3088 if (unlikely(tcp_sk(sk)->repair)) { 3089 sk->sk_prot->disconnect(sk, 0); 3090 } else if (data_was_unread) { 3091 /* Unread data was tossed, zap the connection. */ 3092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3093 tcp_set_state(sk, TCP_CLOSE); 3094 tcp_send_active_reset(sk, sk->sk_allocation, 3095 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3096 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3097 /* Check zero linger _after_ checking for unread data. */ 3098 sk->sk_prot->disconnect(sk, 0); 3099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3100 } else if (tcp_close_state(sk)) { 3101 /* We FIN if the application ate all the data before 3102 * zapping the connection. 3103 */ 3104 3105 /* RED-PEN. Formally speaking, we have broken TCP state 3106 * machine. State transitions: 3107 * 3108 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3109 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3110 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3111 * 3112 * are legal only when FIN has been sent (i.e. in window), 3113 * rather than queued out of window. Purists blame. 3114 * 3115 * F.e. "RFC state" is ESTABLISHED, 3116 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3117 * 3118 * The visible declinations are that sometimes 3119 * we enter time-wait state, when it is not required really 3120 * (harmless), do not send active resets, when they are 3121 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3122 * they look as CLOSING or LAST_ACK for Linux) 3123 * Probably, I missed some more holelets. 3124 * --ANK 3125 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3126 * in a single packet! (May consider it later but will 3127 * probably need API support or TCP_CORK SYN-ACK until 3128 * data is written and socket is closed.) 3129 */ 3130 tcp_send_fin(sk); 3131 } 3132 3133 sk_stream_wait_close(sk, timeout); 3134 3135 adjudge_to_death: 3136 state = sk->sk_state; 3137 sock_hold(sk); 3138 sock_orphan(sk); 3139 3140 local_bh_disable(); 3141 bh_lock_sock(sk); 3142 /* remove backlog if any, without releasing ownership. */ 3143 __release_sock(sk); 3144 3145 this_cpu_inc(tcp_orphan_count); 3146 3147 /* Have we already been destroyed by a softirq or backlog? */ 3148 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3149 goto out; 3150 3151 /* This is a (useful) BSD violating of the RFC. There is a 3152 * problem with TCP as specified in that the other end could 3153 * keep a socket open forever with no application left this end. 3154 * We use a 1 minute timeout (about the same as BSD) then kill 3155 * our end. If they send after that then tough - BUT: long enough 3156 * that we won't make the old 4*rto = almost no time - whoops 3157 * reset mistake. 3158 * 3159 * Nope, it was not mistake. It is really desired behaviour 3160 * f.e. on http servers, when such sockets are useless, but 3161 * consume significant resources. Let's do it with special 3162 * linger2 option. --ANK 3163 */ 3164 3165 if (sk->sk_state == TCP_FIN_WAIT2) { 3166 struct tcp_sock *tp = tcp_sk(sk); 3167 if (READ_ONCE(tp->linger2) < 0) { 3168 tcp_set_state(sk, TCP_CLOSE); 3169 tcp_send_active_reset(sk, GFP_ATOMIC, 3170 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3171 __NET_INC_STATS(sock_net(sk), 3172 LINUX_MIB_TCPABORTONLINGER); 3173 } else { 3174 const int tmo = tcp_fin_time(sk); 3175 3176 if (tmo > TCP_TIMEWAIT_LEN) { 3177 inet_csk_reset_keepalive_timer(sk, 3178 tmo - TCP_TIMEWAIT_LEN); 3179 } else { 3180 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3181 goto out; 3182 } 3183 } 3184 } 3185 if (sk->sk_state != TCP_CLOSE) { 3186 if (tcp_check_oom(sk, 0)) { 3187 tcp_set_state(sk, TCP_CLOSE); 3188 tcp_send_active_reset(sk, GFP_ATOMIC, 3189 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3190 __NET_INC_STATS(sock_net(sk), 3191 LINUX_MIB_TCPABORTONMEMORY); 3192 } else if (!check_net(sock_net(sk))) { 3193 /* Not possible to send reset; just close */ 3194 tcp_set_state(sk, TCP_CLOSE); 3195 } 3196 } 3197 3198 if (sk->sk_state == TCP_CLOSE) { 3199 struct request_sock *req; 3200 3201 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3202 lockdep_sock_is_held(sk)); 3203 /* We could get here with a non-NULL req if the socket is 3204 * aborted (e.g., closed with unread data) before 3WHS 3205 * finishes. 3206 */ 3207 if (req) 3208 reqsk_fastopen_remove(sk, req, false); 3209 inet_csk_destroy_sock(sk); 3210 } 3211 /* Otherwise, socket is reprieved until protocol close. */ 3212 3213 out: 3214 bh_unlock_sock(sk); 3215 local_bh_enable(); 3216 } 3217 3218 void tcp_close(struct sock *sk, long timeout) 3219 { 3220 lock_sock(sk); 3221 __tcp_close(sk, timeout); 3222 release_sock(sk); 3223 if (!sk->sk_net_refcnt) 3224 inet_csk_clear_xmit_timers_sync(sk); 3225 sock_put(sk); 3226 } 3227 EXPORT_SYMBOL(tcp_close); 3228 3229 /* These states need RST on ABORT according to RFC793 */ 3230 3231 static inline bool tcp_need_reset(int state) 3232 { 3233 return (1 << state) & 3234 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3235 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3236 } 3237 3238 static void tcp_rtx_queue_purge(struct sock *sk) 3239 { 3240 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3241 3242 tcp_sk(sk)->highest_sack = NULL; 3243 while (p) { 3244 struct sk_buff *skb = rb_to_skb(p); 3245 3246 p = rb_next(p); 3247 /* Since we are deleting whole queue, no need to 3248 * list_del(&skb->tcp_tsorted_anchor) 3249 */ 3250 tcp_rtx_queue_unlink(skb, sk); 3251 tcp_wmem_free_skb(sk, skb); 3252 } 3253 } 3254 3255 void tcp_write_queue_purge(struct sock *sk) 3256 { 3257 struct sk_buff *skb; 3258 3259 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3260 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3261 tcp_skb_tsorted_anchor_cleanup(skb); 3262 tcp_wmem_free_skb(sk, skb); 3263 } 3264 tcp_rtx_queue_purge(sk); 3265 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3266 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3267 tcp_sk(sk)->packets_out = 0; 3268 inet_csk(sk)->icsk_backoff = 0; 3269 } 3270 3271 int tcp_disconnect(struct sock *sk, int flags) 3272 { 3273 struct inet_sock *inet = inet_sk(sk); 3274 struct inet_connection_sock *icsk = inet_csk(sk); 3275 struct tcp_sock *tp = tcp_sk(sk); 3276 int old_state = sk->sk_state; 3277 u32 seq; 3278 3279 if (old_state != TCP_CLOSE) 3280 tcp_set_state(sk, TCP_CLOSE); 3281 3282 /* ABORT function of RFC793 */ 3283 if (old_state == TCP_LISTEN) { 3284 inet_csk_listen_stop(sk); 3285 } else if (unlikely(tp->repair)) { 3286 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3287 } else if (tcp_need_reset(old_state)) { 3288 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3289 WRITE_ONCE(sk->sk_err, ECONNRESET); 3290 } else if (tp->snd_nxt != tp->write_seq && 3291 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3292 /* The last check adjusts for discrepancy of Linux wrt. RFC 3293 * states 3294 */ 3295 tcp_send_active_reset(sk, gfp_any(), 3296 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3297 WRITE_ONCE(sk->sk_err, ECONNRESET); 3298 } else if (old_state == TCP_SYN_SENT) 3299 WRITE_ONCE(sk->sk_err, ECONNRESET); 3300 3301 tcp_clear_xmit_timers(sk); 3302 __skb_queue_purge(&sk->sk_receive_queue); 3303 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3304 WRITE_ONCE(tp->urg_data, 0); 3305 sk_set_peek_off(sk, -1); 3306 tcp_write_queue_purge(sk); 3307 tcp_fastopen_active_disable_ofo_check(sk); 3308 skb_rbtree_purge(&tp->out_of_order_queue); 3309 3310 inet->inet_dport = 0; 3311 3312 inet_bhash2_reset_saddr(sk); 3313 3314 WRITE_ONCE(sk->sk_shutdown, 0); 3315 sock_reset_flag(sk, SOCK_DONE); 3316 tp->srtt_us = 0; 3317 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3318 tp->rcv_rtt_last_tsecr = 0; 3319 3320 seq = tp->write_seq + tp->max_window + 2; 3321 if (!seq) 3322 seq = 1; 3323 WRITE_ONCE(tp->write_seq, seq); 3324 3325 icsk->icsk_backoff = 0; 3326 icsk->icsk_probes_out = 0; 3327 icsk->icsk_probes_tstamp = 0; 3328 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3329 icsk->icsk_rto_min = TCP_RTO_MIN; 3330 icsk->icsk_delack_max = TCP_DELACK_MAX; 3331 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3332 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3333 tp->snd_cwnd_cnt = 0; 3334 tp->is_cwnd_limited = 0; 3335 tp->max_packets_out = 0; 3336 tp->window_clamp = 0; 3337 tp->delivered = 0; 3338 tp->delivered_ce = 0; 3339 if (icsk->icsk_ca_ops->release) 3340 icsk->icsk_ca_ops->release(sk); 3341 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3342 icsk->icsk_ca_initialized = 0; 3343 tcp_set_ca_state(sk, TCP_CA_Open); 3344 tp->is_sack_reneg = 0; 3345 tcp_clear_retrans(tp); 3346 tp->total_retrans = 0; 3347 inet_csk_delack_init(sk); 3348 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3349 * issue in __tcp_select_window() 3350 */ 3351 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3352 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3353 __sk_dst_reset(sk); 3354 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3355 tcp_saved_syn_free(tp); 3356 tp->compressed_ack = 0; 3357 tp->segs_in = 0; 3358 tp->segs_out = 0; 3359 tp->bytes_sent = 0; 3360 tp->bytes_acked = 0; 3361 tp->bytes_received = 0; 3362 tp->bytes_retrans = 0; 3363 tp->data_segs_in = 0; 3364 tp->data_segs_out = 0; 3365 tp->duplicate_sack[0].start_seq = 0; 3366 tp->duplicate_sack[0].end_seq = 0; 3367 tp->dsack_dups = 0; 3368 tp->reord_seen = 0; 3369 tp->retrans_out = 0; 3370 tp->sacked_out = 0; 3371 tp->tlp_high_seq = 0; 3372 tp->last_oow_ack_time = 0; 3373 tp->plb_rehash = 0; 3374 /* There's a bubble in the pipe until at least the first ACK. */ 3375 tp->app_limited = ~0U; 3376 tp->rate_app_limited = 1; 3377 tp->rack.mstamp = 0; 3378 tp->rack.advanced = 0; 3379 tp->rack.reo_wnd_steps = 1; 3380 tp->rack.last_delivered = 0; 3381 tp->rack.reo_wnd_persist = 0; 3382 tp->rack.dsack_seen = 0; 3383 tp->syn_data_acked = 0; 3384 tp->rx_opt.saw_tstamp = 0; 3385 tp->rx_opt.dsack = 0; 3386 tp->rx_opt.num_sacks = 0; 3387 tp->rcv_ooopack = 0; 3388 3389 3390 /* Clean up fastopen related fields */ 3391 tcp_free_fastopen_req(tp); 3392 inet_clear_bit(DEFER_CONNECT, sk); 3393 tp->fastopen_client_fail = 0; 3394 3395 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3396 3397 if (sk->sk_frag.page) { 3398 put_page(sk->sk_frag.page); 3399 sk->sk_frag.page = NULL; 3400 sk->sk_frag.offset = 0; 3401 } 3402 sk_error_report(sk); 3403 return 0; 3404 } 3405 EXPORT_SYMBOL(tcp_disconnect); 3406 3407 static inline bool tcp_can_repair_sock(const struct sock *sk) 3408 { 3409 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3410 (sk->sk_state != TCP_LISTEN); 3411 } 3412 3413 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3414 { 3415 struct tcp_repair_window opt; 3416 3417 if (!tp->repair) 3418 return -EPERM; 3419 3420 if (len != sizeof(opt)) 3421 return -EINVAL; 3422 3423 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3424 return -EFAULT; 3425 3426 if (opt.max_window < opt.snd_wnd) 3427 return -EINVAL; 3428 3429 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3430 return -EINVAL; 3431 3432 if (after(opt.rcv_wup, tp->rcv_nxt)) 3433 return -EINVAL; 3434 3435 tp->snd_wl1 = opt.snd_wl1; 3436 tp->snd_wnd = opt.snd_wnd; 3437 tp->max_window = opt.max_window; 3438 3439 tp->rcv_wnd = opt.rcv_wnd; 3440 tp->rcv_wup = opt.rcv_wup; 3441 3442 return 0; 3443 } 3444 3445 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3446 unsigned int len) 3447 { 3448 struct tcp_sock *tp = tcp_sk(sk); 3449 struct tcp_repair_opt opt; 3450 size_t offset = 0; 3451 3452 while (len >= sizeof(opt)) { 3453 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3454 return -EFAULT; 3455 3456 offset += sizeof(opt); 3457 len -= sizeof(opt); 3458 3459 switch (opt.opt_code) { 3460 case TCPOPT_MSS: 3461 tp->rx_opt.mss_clamp = opt.opt_val; 3462 tcp_mtup_init(sk); 3463 break; 3464 case TCPOPT_WINDOW: 3465 { 3466 u16 snd_wscale = opt.opt_val & 0xFFFF; 3467 u16 rcv_wscale = opt.opt_val >> 16; 3468 3469 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3470 return -EFBIG; 3471 3472 tp->rx_opt.snd_wscale = snd_wscale; 3473 tp->rx_opt.rcv_wscale = rcv_wscale; 3474 tp->rx_opt.wscale_ok = 1; 3475 } 3476 break; 3477 case TCPOPT_SACK_PERM: 3478 if (opt.opt_val != 0) 3479 return -EINVAL; 3480 3481 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3482 break; 3483 case TCPOPT_TIMESTAMP: 3484 if (opt.opt_val != 0) 3485 return -EINVAL; 3486 3487 tp->rx_opt.tstamp_ok = 1; 3488 break; 3489 } 3490 } 3491 3492 return 0; 3493 } 3494 3495 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3496 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3497 3498 static void tcp_enable_tx_delay(void) 3499 { 3500 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3501 static int __tcp_tx_delay_enabled = 0; 3502 3503 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3504 static_branch_enable(&tcp_tx_delay_enabled); 3505 pr_info("TCP_TX_DELAY enabled\n"); 3506 } 3507 } 3508 } 3509 3510 /* When set indicates to always queue non-full frames. Later the user clears 3511 * this option and we transmit any pending partial frames in the queue. This is 3512 * meant to be used alongside sendfile() to get properly filled frames when the 3513 * user (for example) must write out headers with a write() call first and then 3514 * use sendfile to send out the data parts. 3515 * 3516 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3517 * TCP_NODELAY. 3518 */ 3519 void __tcp_sock_set_cork(struct sock *sk, bool on) 3520 { 3521 struct tcp_sock *tp = tcp_sk(sk); 3522 3523 if (on) { 3524 tp->nonagle |= TCP_NAGLE_CORK; 3525 } else { 3526 tp->nonagle &= ~TCP_NAGLE_CORK; 3527 if (tp->nonagle & TCP_NAGLE_OFF) 3528 tp->nonagle |= TCP_NAGLE_PUSH; 3529 tcp_push_pending_frames(sk); 3530 } 3531 } 3532 3533 void tcp_sock_set_cork(struct sock *sk, bool on) 3534 { 3535 lock_sock(sk); 3536 __tcp_sock_set_cork(sk, on); 3537 release_sock(sk); 3538 } 3539 EXPORT_SYMBOL(tcp_sock_set_cork); 3540 3541 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3542 * remembered, but it is not activated until cork is cleared. 3543 * 3544 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3545 * even TCP_CORK for currently queued segments. 3546 */ 3547 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3548 { 3549 if (on) { 3550 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3551 tcp_push_pending_frames(sk); 3552 } else { 3553 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3554 } 3555 } 3556 3557 void tcp_sock_set_nodelay(struct sock *sk) 3558 { 3559 lock_sock(sk); 3560 __tcp_sock_set_nodelay(sk, true); 3561 release_sock(sk); 3562 } 3563 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3564 3565 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3566 { 3567 if (!val) { 3568 inet_csk_enter_pingpong_mode(sk); 3569 return; 3570 } 3571 3572 inet_csk_exit_pingpong_mode(sk); 3573 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3574 inet_csk_ack_scheduled(sk)) { 3575 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3576 tcp_cleanup_rbuf(sk, 1); 3577 if (!(val & 1)) 3578 inet_csk_enter_pingpong_mode(sk); 3579 } 3580 } 3581 3582 void tcp_sock_set_quickack(struct sock *sk, int val) 3583 { 3584 lock_sock(sk); 3585 __tcp_sock_set_quickack(sk, val); 3586 release_sock(sk); 3587 } 3588 EXPORT_SYMBOL(tcp_sock_set_quickack); 3589 3590 int tcp_sock_set_syncnt(struct sock *sk, int val) 3591 { 3592 if (val < 1 || val > MAX_TCP_SYNCNT) 3593 return -EINVAL; 3594 3595 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3596 return 0; 3597 } 3598 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3599 3600 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3601 { 3602 /* Cap the max time in ms TCP will retry or probe the window 3603 * before giving up and aborting (ETIMEDOUT) a connection. 3604 */ 3605 if (val < 0) 3606 return -EINVAL; 3607 3608 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3609 return 0; 3610 } 3611 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3612 3613 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3614 { 3615 struct tcp_sock *tp = tcp_sk(sk); 3616 3617 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3618 return -EINVAL; 3619 3620 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3621 WRITE_ONCE(tp->keepalive_time, val * HZ); 3622 if (sock_flag(sk, SOCK_KEEPOPEN) && 3623 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3624 u32 elapsed = keepalive_time_elapsed(tp); 3625 3626 if (tp->keepalive_time > elapsed) 3627 elapsed = tp->keepalive_time - elapsed; 3628 else 3629 elapsed = 0; 3630 inet_csk_reset_keepalive_timer(sk, elapsed); 3631 } 3632 3633 return 0; 3634 } 3635 3636 int tcp_sock_set_keepidle(struct sock *sk, int val) 3637 { 3638 int err; 3639 3640 lock_sock(sk); 3641 err = tcp_sock_set_keepidle_locked(sk, val); 3642 release_sock(sk); 3643 return err; 3644 } 3645 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3646 3647 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3648 { 3649 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3650 return -EINVAL; 3651 3652 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3653 return 0; 3654 } 3655 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3656 3657 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3658 { 3659 if (val < 1 || val > MAX_TCP_KEEPCNT) 3660 return -EINVAL; 3661 3662 /* Paired with READ_ONCE() in keepalive_probes() */ 3663 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3664 return 0; 3665 } 3666 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3667 3668 int tcp_set_window_clamp(struct sock *sk, int val) 3669 { 3670 struct tcp_sock *tp = tcp_sk(sk); 3671 3672 if (!val) { 3673 if (sk->sk_state != TCP_CLOSE) 3674 return -EINVAL; 3675 WRITE_ONCE(tp->window_clamp, 0); 3676 } else { 3677 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3678 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3679 SOCK_MIN_RCVBUF / 2 : val; 3680 3681 if (new_window_clamp == old_window_clamp) 3682 return 0; 3683 3684 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3685 if (new_window_clamp < old_window_clamp) { 3686 /* need to apply the reserved mem provisioning only 3687 * when shrinking the window clamp 3688 */ 3689 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3690 3691 } else { 3692 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3693 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3694 tp->rcv_ssthresh); 3695 } 3696 } 3697 return 0; 3698 } 3699 3700 /* 3701 * Socket option code for TCP. 3702 */ 3703 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3704 sockptr_t optval, unsigned int optlen) 3705 { 3706 struct tcp_sock *tp = tcp_sk(sk); 3707 struct inet_connection_sock *icsk = inet_csk(sk); 3708 struct net *net = sock_net(sk); 3709 int val; 3710 int err = 0; 3711 3712 /* These are data/string values, all the others are ints */ 3713 switch (optname) { 3714 case TCP_CONGESTION: { 3715 char name[TCP_CA_NAME_MAX]; 3716 3717 if (optlen < 1) 3718 return -EINVAL; 3719 3720 val = strncpy_from_sockptr(name, optval, 3721 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3722 if (val < 0) 3723 return -EFAULT; 3724 name[val] = 0; 3725 3726 sockopt_lock_sock(sk); 3727 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3728 sockopt_ns_capable(sock_net(sk)->user_ns, 3729 CAP_NET_ADMIN)); 3730 sockopt_release_sock(sk); 3731 return err; 3732 } 3733 case TCP_ULP: { 3734 char name[TCP_ULP_NAME_MAX]; 3735 3736 if (optlen < 1) 3737 return -EINVAL; 3738 3739 val = strncpy_from_sockptr(name, optval, 3740 min_t(long, TCP_ULP_NAME_MAX - 1, 3741 optlen)); 3742 if (val < 0) 3743 return -EFAULT; 3744 name[val] = 0; 3745 3746 sockopt_lock_sock(sk); 3747 err = tcp_set_ulp(sk, name); 3748 sockopt_release_sock(sk); 3749 return err; 3750 } 3751 case TCP_FASTOPEN_KEY: { 3752 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3753 __u8 *backup_key = NULL; 3754 3755 /* Allow a backup key as well to facilitate key rotation 3756 * First key is the active one. 3757 */ 3758 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3759 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3760 return -EINVAL; 3761 3762 if (copy_from_sockptr(key, optval, optlen)) 3763 return -EFAULT; 3764 3765 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3766 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3767 3768 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3769 } 3770 default: 3771 /* fallthru */ 3772 break; 3773 } 3774 3775 if (optlen < sizeof(int)) 3776 return -EINVAL; 3777 3778 if (copy_from_sockptr(&val, optval, sizeof(val))) 3779 return -EFAULT; 3780 3781 /* Handle options that can be set without locking the socket. */ 3782 switch (optname) { 3783 case TCP_SYNCNT: 3784 return tcp_sock_set_syncnt(sk, val); 3785 case TCP_USER_TIMEOUT: 3786 return tcp_sock_set_user_timeout(sk, val); 3787 case TCP_KEEPINTVL: 3788 return tcp_sock_set_keepintvl(sk, val); 3789 case TCP_KEEPCNT: 3790 return tcp_sock_set_keepcnt(sk, val); 3791 case TCP_LINGER2: 3792 if (val < 0) 3793 WRITE_ONCE(tp->linger2, -1); 3794 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3795 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3796 else 3797 WRITE_ONCE(tp->linger2, val * HZ); 3798 return 0; 3799 case TCP_DEFER_ACCEPT: 3800 /* Translate value in seconds to number of retransmits */ 3801 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3802 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3803 TCP_RTO_MAX / HZ)); 3804 return 0; 3805 } 3806 3807 sockopt_lock_sock(sk); 3808 3809 switch (optname) { 3810 case TCP_MAXSEG: 3811 /* Values greater than interface MTU won't take effect. However 3812 * at the point when this call is done we typically don't yet 3813 * know which interface is going to be used 3814 */ 3815 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3816 err = -EINVAL; 3817 break; 3818 } 3819 tp->rx_opt.user_mss = val; 3820 break; 3821 3822 case TCP_NODELAY: 3823 __tcp_sock_set_nodelay(sk, val); 3824 break; 3825 3826 case TCP_THIN_LINEAR_TIMEOUTS: 3827 if (val < 0 || val > 1) 3828 err = -EINVAL; 3829 else 3830 tp->thin_lto = val; 3831 break; 3832 3833 case TCP_THIN_DUPACK: 3834 if (val < 0 || val > 1) 3835 err = -EINVAL; 3836 break; 3837 3838 case TCP_REPAIR: 3839 if (!tcp_can_repair_sock(sk)) 3840 err = -EPERM; 3841 else if (val == TCP_REPAIR_ON) { 3842 tp->repair = 1; 3843 sk->sk_reuse = SK_FORCE_REUSE; 3844 tp->repair_queue = TCP_NO_QUEUE; 3845 } else if (val == TCP_REPAIR_OFF) { 3846 tp->repair = 0; 3847 sk->sk_reuse = SK_NO_REUSE; 3848 tcp_send_window_probe(sk); 3849 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3850 tp->repair = 0; 3851 sk->sk_reuse = SK_NO_REUSE; 3852 } else 3853 err = -EINVAL; 3854 3855 break; 3856 3857 case TCP_REPAIR_QUEUE: 3858 if (!tp->repair) 3859 err = -EPERM; 3860 else if ((unsigned int)val < TCP_QUEUES_NR) 3861 tp->repair_queue = val; 3862 else 3863 err = -EINVAL; 3864 break; 3865 3866 case TCP_QUEUE_SEQ: 3867 if (sk->sk_state != TCP_CLOSE) { 3868 err = -EPERM; 3869 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3870 if (!tcp_rtx_queue_empty(sk)) 3871 err = -EPERM; 3872 else 3873 WRITE_ONCE(tp->write_seq, val); 3874 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3875 if (tp->rcv_nxt != tp->copied_seq) { 3876 err = -EPERM; 3877 } else { 3878 WRITE_ONCE(tp->rcv_nxt, val); 3879 WRITE_ONCE(tp->copied_seq, val); 3880 } 3881 } else { 3882 err = -EINVAL; 3883 } 3884 break; 3885 3886 case TCP_REPAIR_OPTIONS: 3887 if (!tp->repair) 3888 err = -EINVAL; 3889 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3890 err = tcp_repair_options_est(sk, optval, optlen); 3891 else 3892 err = -EPERM; 3893 break; 3894 3895 case TCP_CORK: 3896 __tcp_sock_set_cork(sk, val); 3897 break; 3898 3899 case TCP_KEEPIDLE: 3900 err = tcp_sock_set_keepidle_locked(sk, val); 3901 break; 3902 case TCP_SAVE_SYN: 3903 /* 0: disable, 1: enable, 2: start from ether_header */ 3904 if (val < 0 || val > 2) 3905 err = -EINVAL; 3906 else 3907 tp->save_syn = val; 3908 break; 3909 3910 case TCP_WINDOW_CLAMP: 3911 err = tcp_set_window_clamp(sk, val); 3912 break; 3913 3914 case TCP_QUICKACK: 3915 __tcp_sock_set_quickack(sk, val); 3916 break; 3917 3918 case TCP_AO_REPAIR: 3919 if (!tcp_can_repair_sock(sk)) { 3920 err = -EPERM; 3921 break; 3922 } 3923 err = tcp_ao_set_repair(sk, optval, optlen); 3924 break; 3925 #ifdef CONFIG_TCP_AO 3926 case TCP_AO_ADD_KEY: 3927 case TCP_AO_DEL_KEY: 3928 case TCP_AO_INFO: { 3929 /* If this is the first TCP-AO setsockopt() on the socket, 3930 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3931 * in any state. 3932 */ 3933 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3934 goto ao_parse; 3935 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3936 lockdep_sock_is_held(sk))) 3937 goto ao_parse; 3938 if (tp->repair) 3939 goto ao_parse; 3940 err = -EISCONN; 3941 break; 3942 ao_parse: 3943 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3944 break; 3945 } 3946 #endif 3947 #ifdef CONFIG_TCP_MD5SIG 3948 case TCP_MD5SIG: 3949 case TCP_MD5SIG_EXT: 3950 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3951 break; 3952 #endif 3953 case TCP_FASTOPEN: 3954 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3955 TCPF_LISTEN))) { 3956 tcp_fastopen_init_key_once(net); 3957 3958 fastopen_queue_tune(sk, val); 3959 } else { 3960 err = -EINVAL; 3961 } 3962 break; 3963 case TCP_FASTOPEN_CONNECT: 3964 if (val > 1 || val < 0) { 3965 err = -EINVAL; 3966 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3967 TFO_CLIENT_ENABLE) { 3968 if (sk->sk_state == TCP_CLOSE) 3969 tp->fastopen_connect = val; 3970 else 3971 err = -EINVAL; 3972 } else { 3973 err = -EOPNOTSUPP; 3974 } 3975 break; 3976 case TCP_FASTOPEN_NO_COOKIE: 3977 if (val > 1 || val < 0) 3978 err = -EINVAL; 3979 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3980 err = -EINVAL; 3981 else 3982 tp->fastopen_no_cookie = val; 3983 break; 3984 case TCP_TIMESTAMP: 3985 if (!tp->repair) { 3986 err = -EPERM; 3987 break; 3988 } 3989 /* val is an opaque field, 3990 * and low order bit contains usec_ts enable bit. 3991 * Its a best effort, and we do not care if user makes an error. 3992 */ 3993 tp->tcp_usec_ts = val & 1; 3994 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3995 break; 3996 case TCP_REPAIR_WINDOW: 3997 err = tcp_repair_set_window(tp, optval, optlen); 3998 break; 3999 case TCP_NOTSENT_LOWAT: 4000 WRITE_ONCE(tp->notsent_lowat, val); 4001 sk->sk_write_space(sk); 4002 break; 4003 case TCP_INQ: 4004 if (val > 1 || val < 0) 4005 err = -EINVAL; 4006 else 4007 tp->recvmsg_inq = val; 4008 break; 4009 case TCP_TX_DELAY: 4010 if (val) 4011 tcp_enable_tx_delay(); 4012 WRITE_ONCE(tp->tcp_tx_delay, val); 4013 break; 4014 default: 4015 err = -ENOPROTOOPT; 4016 break; 4017 } 4018 4019 sockopt_release_sock(sk); 4020 return err; 4021 } 4022 4023 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4024 unsigned int optlen) 4025 { 4026 const struct inet_connection_sock *icsk = inet_csk(sk); 4027 4028 if (level != SOL_TCP) 4029 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4030 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4031 optval, optlen); 4032 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4033 } 4034 EXPORT_SYMBOL(tcp_setsockopt); 4035 4036 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4037 struct tcp_info *info) 4038 { 4039 u64 stats[__TCP_CHRONO_MAX], total = 0; 4040 enum tcp_chrono i; 4041 4042 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4043 stats[i] = tp->chrono_stat[i - 1]; 4044 if (i == tp->chrono_type) 4045 stats[i] += tcp_jiffies32 - tp->chrono_start; 4046 stats[i] *= USEC_PER_SEC / HZ; 4047 total += stats[i]; 4048 } 4049 4050 info->tcpi_busy_time = total; 4051 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4052 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4053 } 4054 4055 /* Return information about state of tcp endpoint in API format. */ 4056 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4057 { 4058 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4059 const struct inet_connection_sock *icsk = inet_csk(sk); 4060 unsigned long rate; 4061 u32 now; 4062 u64 rate64; 4063 bool slow; 4064 4065 memset(info, 0, sizeof(*info)); 4066 if (sk->sk_type != SOCK_STREAM) 4067 return; 4068 4069 info->tcpi_state = inet_sk_state_load(sk); 4070 4071 /* Report meaningful fields for all TCP states, including listeners */ 4072 rate = READ_ONCE(sk->sk_pacing_rate); 4073 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4074 info->tcpi_pacing_rate = rate64; 4075 4076 rate = READ_ONCE(sk->sk_max_pacing_rate); 4077 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4078 info->tcpi_max_pacing_rate = rate64; 4079 4080 info->tcpi_reordering = tp->reordering; 4081 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4082 4083 if (info->tcpi_state == TCP_LISTEN) { 4084 /* listeners aliased fields : 4085 * tcpi_unacked -> Number of children ready for accept() 4086 * tcpi_sacked -> max backlog 4087 */ 4088 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4089 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4090 return; 4091 } 4092 4093 slow = lock_sock_fast(sk); 4094 4095 info->tcpi_ca_state = icsk->icsk_ca_state; 4096 info->tcpi_retransmits = icsk->icsk_retransmits; 4097 info->tcpi_probes = icsk->icsk_probes_out; 4098 info->tcpi_backoff = icsk->icsk_backoff; 4099 4100 if (tp->rx_opt.tstamp_ok) 4101 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4102 if (tcp_is_sack(tp)) 4103 info->tcpi_options |= TCPI_OPT_SACK; 4104 if (tp->rx_opt.wscale_ok) { 4105 info->tcpi_options |= TCPI_OPT_WSCALE; 4106 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4107 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4108 } 4109 4110 if (tp->ecn_flags & TCP_ECN_OK) 4111 info->tcpi_options |= TCPI_OPT_ECN; 4112 if (tp->ecn_flags & TCP_ECN_SEEN) 4113 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4114 if (tp->syn_data_acked) 4115 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4116 if (tp->tcp_usec_ts) 4117 info->tcpi_options |= TCPI_OPT_USEC_TS; 4118 4119 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4120 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4121 tcp_delack_max(sk))); 4122 info->tcpi_snd_mss = tp->mss_cache; 4123 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4124 4125 info->tcpi_unacked = tp->packets_out; 4126 info->tcpi_sacked = tp->sacked_out; 4127 4128 info->tcpi_lost = tp->lost_out; 4129 info->tcpi_retrans = tp->retrans_out; 4130 4131 now = tcp_jiffies32; 4132 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4133 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4134 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4135 4136 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4137 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4138 info->tcpi_rtt = tp->srtt_us >> 3; 4139 info->tcpi_rttvar = tp->mdev_us >> 2; 4140 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4141 info->tcpi_advmss = tp->advmss; 4142 4143 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4144 info->tcpi_rcv_space = tp->rcvq_space.space; 4145 4146 info->tcpi_total_retrans = tp->total_retrans; 4147 4148 info->tcpi_bytes_acked = tp->bytes_acked; 4149 info->tcpi_bytes_received = tp->bytes_received; 4150 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4151 tcp_get_info_chrono_stats(tp, info); 4152 4153 info->tcpi_segs_out = tp->segs_out; 4154 4155 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4156 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4157 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4158 4159 info->tcpi_min_rtt = tcp_min_rtt(tp); 4160 info->tcpi_data_segs_out = tp->data_segs_out; 4161 4162 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4163 rate64 = tcp_compute_delivery_rate(tp); 4164 if (rate64) 4165 info->tcpi_delivery_rate = rate64; 4166 info->tcpi_delivered = tp->delivered; 4167 info->tcpi_delivered_ce = tp->delivered_ce; 4168 info->tcpi_bytes_sent = tp->bytes_sent; 4169 info->tcpi_bytes_retrans = tp->bytes_retrans; 4170 info->tcpi_dsack_dups = tp->dsack_dups; 4171 info->tcpi_reord_seen = tp->reord_seen; 4172 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4173 info->tcpi_snd_wnd = tp->snd_wnd; 4174 info->tcpi_rcv_wnd = tp->rcv_wnd; 4175 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4176 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4177 4178 info->tcpi_total_rto = tp->total_rto; 4179 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4180 info->tcpi_total_rto_time = tp->total_rto_time; 4181 if (tp->rto_stamp) 4182 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4183 4184 unlock_sock_fast(sk, slow); 4185 } 4186 EXPORT_SYMBOL_GPL(tcp_get_info); 4187 4188 static size_t tcp_opt_stats_get_size(void) 4189 { 4190 return 4191 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4192 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4193 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4194 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4195 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4196 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4197 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4198 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4199 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4200 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4201 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4202 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4203 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4204 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4205 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4206 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4207 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4208 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4209 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4210 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4211 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4212 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4213 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4214 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4215 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4216 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4217 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4218 0; 4219 } 4220 4221 /* Returns TTL or hop limit of an incoming packet from skb. */ 4222 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4223 { 4224 if (skb->protocol == htons(ETH_P_IP)) 4225 return ip_hdr(skb)->ttl; 4226 else if (skb->protocol == htons(ETH_P_IPV6)) 4227 return ipv6_hdr(skb)->hop_limit; 4228 else 4229 return 0; 4230 } 4231 4232 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4233 const struct sk_buff *orig_skb, 4234 const struct sk_buff *ack_skb) 4235 { 4236 const struct tcp_sock *tp = tcp_sk(sk); 4237 struct sk_buff *stats; 4238 struct tcp_info info; 4239 unsigned long rate; 4240 u64 rate64; 4241 4242 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4243 if (!stats) 4244 return NULL; 4245 4246 tcp_get_info_chrono_stats(tp, &info); 4247 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4248 info.tcpi_busy_time, TCP_NLA_PAD); 4249 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4250 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4251 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4252 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4253 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4254 tp->data_segs_out, TCP_NLA_PAD); 4255 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4256 tp->total_retrans, TCP_NLA_PAD); 4257 4258 rate = READ_ONCE(sk->sk_pacing_rate); 4259 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4260 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4261 4262 rate64 = tcp_compute_delivery_rate(tp); 4263 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4264 4265 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4266 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4267 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4268 4269 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4270 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4271 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4272 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4273 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4274 4275 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4276 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4277 4278 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4279 TCP_NLA_PAD); 4280 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4281 TCP_NLA_PAD); 4282 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4283 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4284 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4285 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4286 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4287 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4288 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4289 TCP_NLA_PAD); 4290 if (ack_skb) 4291 nla_put_u8(stats, TCP_NLA_TTL, 4292 tcp_skb_ttl_or_hop_limit(ack_skb)); 4293 4294 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4295 return stats; 4296 } 4297 4298 int do_tcp_getsockopt(struct sock *sk, int level, 4299 int optname, sockptr_t optval, sockptr_t optlen) 4300 { 4301 struct inet_connection_sock *icsk = inet_csk(sk); 4302 struct tcp_sock *tp = tcp_sk(sk); 4303 struct net *net = sock_net(sk); 4304 int val, len; 4305 4306 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4307 return -EFAULT; 4308 4309 if (len < 0) 4310 return -EINVAL; 4311 4312 len = min_t(unsigned int, len, sizeof(int)); 4313 4314 switch (optname) { 4315 case TCP_MAXSEG: 4316 val = tp->mss_cache; 4317 if (tp->rx_opt.user_mss && 4318 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4319 val = tp->rx_opt.user_mss; 4320 if (tp->repair) 4321 val = tp->rx_opt.mss_clamp; 4322 break; 4323 case TCP_NODELAY: 4324 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4325 break; 4326 case TCP_CORK: 4327 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4328 break; 4329 case TCP_KEEPIDLE: 4330 val = keepalive_time_when(tp) / HZ; 4331 break; 4332 case TCP_KEEPINTVL: 4333 val = keepalive_intvl_when(tp) / HZ; 4334 break; 4335 case TCP_KEEPCNT: 4336 val = keepalive_probes(tp); 4337 break; 4338 case TCP_SYNCNT: 4339 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4340 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4341 break; 4342 case TCP_LINGER2: 4343 val = READ_ONCE(tp->linger2); 4344 if (val >= 0) 4345 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4346 break; 4347 case TCP_DEFER_ACCEPT: 4348 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4349 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4350 TCP_RTO_MAX / HZ); 4351 break; 4352 case TCP_WINDOW_CLAMP: 4353 val = READ_ONCE(tp->window_clamp); 4354 break; 4355 case TCP_INFO: { 4356 struct tcp_info info; 4357 4358 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4359 return -EFAULT; 4360 4361 tcp_get_info(sk, &info); 4362 4363 len = min_t(unsigned int, len, sizeof(info)); 4364 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4365 return -EFAULT; 4366 if (copy_to_sockptr(optval, &info, len)) 4367 return -EFAULT; 4368 return 0; 4369 } 4370 case TCP_CC_INFO: { 4371 const struct tcp_congestion_ops *ca_ops; 4372 union tcp_cc_info info; 4373 size_t sz = 0; 4374 int attr; 4375 4376 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4377 return -EFAULT; 4378 4379 ca_ops = icsk->icsk_ca_ops; 4380 if (ca_ops && ca_ops->get_info) 4381 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4382 4383 len = min_t(unsigned int, len, sz); 4384 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4385 return -EFAULT; 4386 if (copy_to_sockptr(optval, &info, len)) 4387 return -EFAULT; 4388 return 0; 4389 } 4390 case TCP_QUICKACK: 4391 val = !inet_csk_in_pingpong_mode(sk); 4392 break; 4393 4394 case TCP_CONGESTION: 4395 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4396 return -EFAULT; 4397 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4398 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4399 return -EFAULT; 4400 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4401 return -EFAULT; 4402 return 0; 4403 4404 case TCP_ULP: 4405 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4406 return -EFAULT; 4407 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4408 if (!icsk->icsk_ulp_ops) { 4409 len = 0; 4410 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4411 return -EFAULT; 4412 return 0; 4413 } 4414 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4415 return -EFAULT; 4416 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4417 return -EFAULT; 4418 return 0; 4419 4420 case TCP_FASTOPEN_KEY: { 4421 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4422 unsigned int key_len; 4423 4424 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4425 return -EFAULT; 4426 4427 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4428 TCP_FASTOPEN_KEY_LENGTH; 4429 len = min_t(unsigned int, len, key_len); 4430 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4431 return -EFAULT; 4432 if (copy_to_sockptr(optval, key, len)) 4433 return -EFAULT; 4434 return 0; 4435 } 4436 case TCP_THIN_LINEAR_TIMEOUTS: 4437 val = tp->thin_lto; 4438 break; 4439 4440 case TCP_THIN_DUPACK: 4441 val = 0; 4442 break; 4443 4444 case TCP_REPAIR: 4445 val = tp->repair; 4446 break; 4447 4448 case TCP_REPAIR_QUEUE: 4449 if (tp->repair) 4450 val = tp->repair_queue; 4451 else 4452 return -EINVAL; 4453 break; 4454 4455 case TCP_REPAIR_WINDOW: { 4456 struct tcp_repair_window opt; 4457 4458 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4459 return -EFAULT; 4460 4461 if (len != sizeof(opt)) 4462 return -EINVAL; 4463 4464 if (!tp->repair) 4465 return -EPERM; 4466 4467 opt.snd_wl1 = tp->snd_wl1; 4468 opt.snd_wnd = tp->snd_wnd; 4469 opt.max_window = tp->max_window; 4470 opt.rcv_wnd = tp->rcv_wnd; 4471 opt.rcv_wup = tp->rcv_wup; 4472 4473 if (copy_to_sockptr(optval, &opt, len)) 4474 return -EFAULT; 4475 return 0; 4476 } 4477 case TCP_QUEUE_SEQ: 4478 if (tp->repair_queue == TCP_SEND_QUEUE) 4479 val = tp->write_seq; 4480 else if (tp->repair_queue == TCP_RECV_QUEUE) 4481 val = tp->rcv_nxt; 4482 else 4483 return -EINVAL; 4484 break; 4485 4486 case TCP_USER_TIMEOUT: 4487 val = READ_ONCE(icsk->icsk_user_timeout); 4488 break; 4489 4490 case TCP_FASTOPEN: 4491 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4492 break; 4493 4494 case TCP_FASTOPEN_CONNECT: 4495 val = tp->fastopen_connect; 4496 break; 4497 4498 case TCP_FASTOPEN_NO_COOKIE: 4499 val = tp->fastopen_no_cookie; 4500 break; 4501 4502 case TCP_TX_DELAY: 4503 val = READ_ONCE(tp->tcp_tx_delay); 4504 break; 4505 4506 case TCP_TIMESTAMP: 4507 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4508 if (tp->tcp_usec_ts) 4509 val |= 1; 4510 else 4511 val &= ~1; 4512 break; 4513 case TCP_NOTSENT_LOWAT: 4514 val = READ_ONCE(tp->notsent_lowat); 4515 break; 4516 case TCP_INQ: 4517 val = tp->recvmsg_inq; 4518 break; 4519 case TCP_SAVE_SYN: 4520 val = tp->save_syn; 4521 break; 4522 case TCP_SAVED_SYN: { 4523 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4524 return -EFAULT; 4525 4526 sockopt_lock_sock(sk); 4527 if (tp->saved_syn) { 4528 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4529 len = tcp_saved_syn_len(tp->saved_syn); 4530 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4531 sockopt_release_sock(sk); 4532 return -EFAULT; 4533 } 4534 sockopt_release_sock(sk); 4535 return -EINVAL; 4536 } 4537 len = tcp_saved_syn_len(tp->saved_syn); 4538 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4539 sockopt_release_sock(sk); 4540 return -EFAULT; 4541 } 4542 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4543 sockopt_release_sock(sk); 4544 return -EFAULT; 4545 } 4546 tcp_saved_syn_free(tp); 4547 sockopt_release_sock(sk); 4548 } else { 4549 sockopt_release_sock(sk); 4550 len = 0; 4551 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4552 return -EFAULT; 4553 } 4554 return 0; 4555 } 4556 #ifdef CONFIG_MMU 4557 case TCP_ZEROCOPY_RECEIVE: { 4558 struct scm_timestamping_internal tss; 4559 struct tcp_zerocopy_receive zc = {}; 4560 int err; 4561 4562 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4563 return -EFAULT; 4564 if (len < 0 || 4565 len < offsetofend(struct tcp_zerocopy_receive, length)) 4566 return -EINVAL; 4567 if (unlikely(len > sizeof(zc))) { 4568 err = check_zeroed_sockptr(optval, sizeof(zc), 4569 len - sizeof(zc)); 4570 if (err < 1) 4571 return err == 0 ? -EINVAL : err; 4572 len = sizeof(zc); 4573 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4574 return -EFAULT; 4575 } 4576 if (copy_from_sockptr(&zc, optval, len)) 4577 return -EFAULT; 4578 if (zc.reserved) 4579 return -EINVAL; 4580 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4581 return -EINVAL; 4582 sockopt_lock_sock(sk); 4583 err = tcp_zerocopy_receive(sk, &zc, &tss); 4584 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4585 &zc, &len, err); 4586 sockopt_release_sock(sk); 4587 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4588 goto zerocopy_rcv_cmsg; 4589 switch (len) { 4590 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4591 goto zerocopy_rcv_cmsg; 4592 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4593 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4594 case offsetofend(struct tcp_zerocopy_receive, flags): 4595 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4596 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4597 case offsetofend(struct tcp_zerocopy_receive, err): 4598 goto zerocopy_rcv_sk_err; 4599 case offsetofend(struct tcp_zerocopy_receive, inq): 4600 goto zerocopy_rcv_inq; 4601 case offsetofend(struct tcp_zerocopy_receive, length): 4602 default: 4603 goto zerocopy_rcv_out; 4604 } 4605 zerocopy_rcv_cmsg: 4606 if (zc.msg_flags & TCP_CMSG_TS) 4607 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4608 else 4609 zc.msg_flags = 0; 4610 zerocopy_rcv_sk_err: 4611 if (!err) 4612 zc.err = sock_error(sk); 4613 zerocopy_rcv_inq: 4614 zc.inq = tcp_inq_hint(sk); 4615 zerocopy_rcv_out: 4616 if (!err && copy_to_sockptr(optval, &zc, len)) 4617 err = -EFAULT; 4618 return err; 4619 } 4620 #endif 4621 case TCP_AO_REPAIR: 4622 if (!tcp_can_repair_sock(sk)) 4623 return -EPERM; 4624 return tcp_ao_get_repair(sk, optval, optlen); 4625 case TCP_AO_GET_KEYS: 4626 case TCP_AO_INFO: { 4627 int err; 4628 4629 sockopt_lock_sock(sk); 4630 if (optname == TCP_AO_GET_KEYS) 4631 err = tcp_ao_get_mkts(sk, optval, optlen); 4632 else 4633 err = tcp_ao_get_sock_info(sk, optval, optlen); 4634 sockopt_release_sock(sk); 4635 4636 return err; 4637 } 4638 case TCP_IS_MPTCP: 4639 val = 0; 4640 break; 4641 default: 4642 return -ENOPROTOOPT; 4643 } 4644 4645 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4646 return -EFAULT; 4647 if (copy_to_sockptr(optval, &val, len)) 4648 return -EFAULT; 4649 return 0; 4650 } 4651 4652 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4653 { 4654 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4655 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4656 */ 4657 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4658 return true; 4659 4660 return false; 4661 } 4662 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4663 4664 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4665 int __user *optlen) 4666 { 4667 struct inet_connection_sock *icsk = inet_csk(sk); 4668 4669 if (level != SOL_TCP) 4670 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4671 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4672 optval, optlen); 4673 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4674 USER_SOCKPTR(optlen)); 4675 } 4676 EXPORT_SYMBOL(tcp_getsockopt); 4677 4678 #ifdef CONFIG_TCP_MD5SIG 4679 int tcp_md5_sigpool_id = -1; 4680 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4681 4682 int tcp_md5_alloc_sigpool(void) 4683 { 4684 size_t scratch_size; 4685 int ret; 4686 4687 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4688 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4689 if (ret >= 0) { 4690 /* As long as any md5 sigpool was allocated, the return 4691 * id would stay the same. Re-write the id only for the case 4692 * when previously all MD5 keys were deleted and this call 4693 * allocates the first MD5 key, which may return a different 4694 * sigpool id than was used previously. 4695 */ 4696 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4697 return 0; 4698 } 4699 return ret; 4700 } 4701 4702 void tcp_md5_release_sigpool(void) 4703 { 4704 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4705 } 4706 4707 void tcp_md5_add_sigpool(void) 4708 { 4709 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4710 } 4711 4712 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4713 const struct tcp_md5sig_key *key) 4714 { 4715 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4716 struct scatterlist sg; 4717 4718 sg_init_one(&sg, key->key, keylen); 4719 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4720 4721 /* We use data_race() because tcp_md5_do_add() might change 4722 * key->key under us 4723 */ 4724 return data_race(crypto_ahash_update(hp->req)); 4725 } 4726 EXPORT_SYMBOL(tcp_md5_hash_key); 4727 4728 /* Called with rcu_read_lock() */ 4729 static enum skb_drop_reason 4730 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4731 const void *saddr, const void *daddr, 4732 int family, int l3index, const __u8 *hash_location) 4733 { 4734 /* This gets called for each TCP segment that has TCP-MD5 option. 4735 * We have 3 drop cases: 4736 * o No MD5 hash and one expected. 4737 * o MD5 hash and we're not expecting one. 4738 * o MD5 hash and its wrong. 4739 */ 4740 const struct tcp_sock *tp = tcp_sk(sk); 4741 struct tcp_md5sig_key *key; 4742 u8 newhash[16]; 4743 int genhash; 4744 4745 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4746 4747 if (!key && hash_location) { 4748 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4749 trace_tcp_hash_md5_unexpected(sk, skb); 4750 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4751 } 4752 4753 /* Check the signature. 4754 * To support dual stack listeners, we need to handle 4755 * IPv4-mapped case. 4756 */ 4757 if (family == AF_INET) 4758 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4759 else 4760 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4761 NULL, skb); 4762 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4764 trace_tcp_hash_md5_mismatch(sk, skb); 4765 return SKB_DROP_REASON_TCP_MD5FAILURE; 4766 } 4767 return SKB_NOT_DROPPED_YET; 4768 } 4769 #else 4770 static inline enum skb_drop_reason 4771 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4772 const void *saddr, const void *daddr, 4773 int family, int l3index, const __u8 *hash_location) 4774 { 4775 return SKB_NOT_DROPPED_YET; 4776 } 4777 4778 #endif 4779 4780 /* Called with rcu_read_lock() */ 4781 enum skb_drop_reason 4782 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4783 const struct sk_buff *skb, 4784 const void *saddr, const void *daddr, 4785 int family, int dif, int sdif) 4786 { 4787 const struct tcphdr *th = tcp_hdr(skb); 4788 const struct tcp_ao_hdr *aoh; 4789 const __u8 *md5_location; 4790 int l3index; 4791 4792 /* Invalid option or two times meet any of auth options */ 4793 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4794 trace_tcp_hash_bad_header(sk, skb); 4795 return SKB_DROP_REASON_TCP_AUTH_HDR; 4796 } 4797 4798 if (req) { 4799 if (tcp_rsk_used_ao(req) != !!aoh) { 4800 u8 keyid, rnext, maclen; 4801 4802 if (aoh) { 4803 keyid = aoh->keyid; 4804 rnext = aoh->rnext_keyid; 4805 maclen = tcp_ao_hdr_maclen(aoh); 4806 } else { 4807 keyid = rnext = maclen = 0; 4808 } 4809 4810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4811 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4812 return SKB_DROP_REASON_TCP_AOFAILURE; 4813 } 4814 } 4815 4816 /* sdif set, means packet ingressed via a device 4817 * in an L3 domain and dif is set to the l3mdev 4818 */ 4819 l3index = sdif ? dif : 0; 4820 4821 /* Fast path: unsigned segments */ 4822 if (likely(!md5_location && !aoh)) { 4823 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4824 * for the remote peer. On TCP-AO established connection 4825 * the last key is impossible to remove, so there's 4826 * always at least one current_key. 4827 */ 4828 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4829 trace_tcp_hash_ao_required(sk, skb); 4830 return SKB_DROP_REASON_TCP_AONOTFOUND; 4831 } 4832 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4834 trace_tcp_hash_md5_required(sk, skb); 4835 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4836 } 4837 return SKB_NOT_DROPPED_YET; 4838 } 4839 4840 if (aoh) 4841 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4842 4843 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4844 l3index, md5_location); 4845 } 4846 EXPORT_SYMBOL_GPL(tcp_inbound_hash); 4847 4848 void tcp_done(struct sock *sk) 4849 { 4850 struct request_sock *req; 4851 4852 /* We might be called with a new socket, after 4853 * inet_csk_prepare_forced_close() has been called 4854 * so we can not use lockdep_sock_is_held(sk) 4855 */ 4856 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4857 4858 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4859 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4860 4861 tcp_set_state(sk, TCP_CLOSE); 4862 tcp_clear_xmit_timers(sk); 4863 if (req) 4864 reqsk_fastopen_remove(sk, req, false); 4865 4866 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4867 4868 if (!sock_flag(sk, SOCK_DEAD)) 4869 sk->sk_state_change(sk); 4870 else 4871 inet_csk_destroy_sock(sk); 4872 } 4873 EXPORT_SYMBOL_GPL(tcp_done); 4874 4875 int tcp_abort(struct sock *sk, int err) 4876 { 4877 int state = inet_sk_state_load(sk); 4878 4879 if (state == TCP_NEW_SYN_RECV) { 4880 struct request_sock *req = inet_reqsk(sk); 4881 4882 local_bh_disable(); 4883 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4884 local_bh_enable(); 4885 return 0; 4886 } 4887 if (state == TCP_TIME_WAIT) { 4888 struct inet_timewait_sock *tw = inet_twsk(sk); 4889 4890 refcount_inc(&tw->tw_refcnt); 4891 local_bh_disable(); 4892 inet_twsk_deschedule_put(tw); 4893 local_bh_enable(); 4894 return 0; 4895 } 4896 4897 /* BPF context ensures sock locking. */ 4898 if (!has_current_bpf_ctx()) 4899 /* Don't race with userspace socket closes such as tcp_close. */ 4900 lock_sock(sk); 4901 4902 /* Avoid closing the same socket twice. */ 4903 if (sk->sk_state == TCP_CLOSE) { 4904 if (!has_current_bpf_ctx()) 4905 release_sock(sk); 4906 return -ENOENT; 4907 } 4908 4909 if (sk->sk_state == TCP_LISTEN) { 4910 tcp_set_state(sk, TCP_CLOSE); 4911 inet_csk_listen_stop(sk); 4912 } 4913 4914 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4915 local_bh_disable(); 4916 bh_lock_sock(sk); 4917 4918 if (tcp_need_reset(sk->sk_state)) 4919 tcp_send_active_reset(sk, GFP_ATOMIC, 4920 SK_RST_REASON_TCP_STATE); 4921 tcp_done_with_error(sk, err); 4922 4923 bh_unlock_sock(sk); 4924 local_bh_enable(); 4925 if (!has_current_bpf_ctx()) 4926 release_sock(sk); 4927 return 0; 4928 } 4929 EXPORT_SYMBOL_GPL(tcp_abort); 4930 4931 extern struct tcp_congestion_ops tcp_reno; 4932 4933 static __initdata unsigned long thash_entries; 4934 static int __init set_thash_entries(char *str) 4935 { 4936 ssize_t ret; 4937 4938 if (!str) 4939 return 0; 4940 4941 ret = kstrtoul(str, 0, &thash_entries); 4942 if (ret) 4943 return 0; 4944 4945 return 1; 4946 } 4947 __setup("thash_entries=", set_thash_entries); 4948 4949 static void __init tcp_init_mem(void) 4950 { 4951 unsigned long limit = nr_free_buffer_pages() / 16; 4952 4953 limit = max(limit, 128UL); 4954 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4955 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4956 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4957 } 4958 4959 static void __init tcp_struct_check(void) 4960 { 4961 /* TX read-mostly hotpath cache lines */ 4962 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4963 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4964 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4965 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4966 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4967 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4968 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4969 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4970 4971 /* TXRX read-mostly hotpath cache lines */ 4972 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4973 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4974 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4975 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4976 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4977 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4978 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4979 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4980 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4981 4982 /* RX read-mostly hotpath cache lines */ 4983 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4984 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4985 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4986 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4987 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4988 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4989 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4990 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4994 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4995 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4996 4997 /* TX read-write hotpath cache lines */ 4998 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4999 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5000 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5001 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5006 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5007 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5008 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5012 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5013 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5014 5015 /* TXRX read-write hotpath cache lines */ 5016 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5030 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5031 5032 /* 32bit arches with 8byte alignment on u64 fields might need padding 5033 * before tcp_clock_cache. 5034 */ 5035 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5036 5037 /* RX read-write hotpath cache lines */ 5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5052 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5053 } 5054 5055 void __init tcp_init(void) 5056 { 5057 int max_rshare, max_wshare, cnt; 5058 unsigned long limit; 5059 unsigned int i; 5060 5061 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5062 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5063 sizeof_field(struct sk_buff, cb)); 5064 5065 tcp_struct_check(); 5066 5067 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5068 5069 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5070 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5071 5072 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5073 thash_entries, 21, /* one slot per 2 MB*/ 5074 0, 64 * 1024); 5075 tcp_hashinfo.bind_bucket_cachep = 5076 kmem_cache_create("tcp_bind_bucket", 5077 sizeof(struct inet_bind_bucket), 0, 5078 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5079 SLAB_ACCOUNT, 5080 NULL); 5081 tcp_hashinfo.bind2_bucket_cachep = 5082 kmem_cache_create("tcp_bind2_bucket", 5083 sizeof(struct inet_bind2_bucket), 0, 5084 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5085 SLAB_ACCOUNT, 5086 NULL); 5087 5088 /* Size and allocate the main established and bind bucket 5089 * hash tables. 5090 * 5091 * The methodology is similar to that of the buffer cache. 5092 */ 5093 tcp_hashinfo.ehash = 5094 alloc_large_system_hash("TCP established", 5095 sizeof(struct inet_ehash_bucket), 5096 thash_entries, 5097 17, /* one slot per 128 KB of memory */ 5098 0, 5099 NULL, 5100 &tcp_hashinfo.ehash_mask, 5101 0, 5102 thash_entries ? 0 : 512 * 1024); 5103 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5104 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5105 5106 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5107 panic("TCP: failed to alloc ehash_locks"); 5108 tcp_hashinfo.bhash = 5109 alloc_large_system_hash("TCP bind", 5110 2 * sizeof(struct inet_bind_hashbucket), 5111 tcp_hashinfo.ehash_mask + 1, 5112 17, /* one slot per 128 KB of memory */ 5113 0, 5114 &tcp_hashinfo.bhash_size, 5115 NULL, 5116 0, 5117 64 * 1024); 5118 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5119 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5120 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5121 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5122 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5123 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5124 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5125 } 5126 5127 tcp_hashinfo.pernet = false; 5128 5129 cnt = tcp_hashinfo.ehash_mask + 1; 5130 sysctl_tcp_max_orphans = cnt / 2; 5131 5132 tcp_init_mem(); 5133 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5134 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5135 max_wshare = min(4UL*1024*1024, limit); 5136 max_rshare = min(6UL*1024*1024, limit); 5137 5138 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5139 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5140 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5141 5142 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5143 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5144 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5145 5146 pr_info("Hash tables configured (established %u bind %u)\n", 5147 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5148 5149 tcp_v4_init(); 5150 tcp_metrics_init(); 5151 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5152 tcp_tasklet_init(); 5153 mptcp_init(); 5154 } 5155