1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_SYMBOL(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_SYMBOL(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_SYMBOL(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 436 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 437 icsk->icsk_delack_max = TCP_DELACK_MAX; 438 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 439 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 440 441 /* So many TCP implementations out there (incorrectly) count the 442 * initial SYN frame in their delayed-ACK and congestion control 443 * algorithms that we must have the following bandaid to talk 444 * efficiently to them. -DaveM 445 */ 446 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 447 448 /* There's a bubble in the pipe until at least the first ACK. */ 449 tp->app_limited = ~0U; 450 tp->rate_app_limited = 1; 451 452 /* See draft-stevens-tcpca-spec-01 for discussion of the 453 * initialization of these values. 454 */ 455 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 456 tp->snd_cwnd_clamp = ~0; 457 tp->mss_cache = TCP_MSS_DEFAULT; 458 459 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 460 tcp_assign_congestion_control(sk); 461 462 tp->tsoffset = 0; 463 tp->rack.reo_wnd_steps = 1; 464 465 sk->sk_write_space = sk_stream_write_space; 466 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 467 468 icsk->icsk_sync_mss = tcp_sync_mss; 469 470 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 471 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 472 tcp_scaling_ratio_init(sk); 473 474 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 475 sk_sockets_allocated_inc(sk); 476 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 477 } 478 EXPORT_SYMBOL(tcp_init_sock); 479 480 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 481 { 482 struct sk_buff *skb = tcp_write_queue_tail(sk); 483 u32 tsflags = sockc->tsflags; 484 485 if (tsflags && skb) { 486 struct skb_shared_info *shinfo = skb_shinfo(skb); 487 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 488 489 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 490 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 491 tcb->txstamp_ack = 1; 492 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 493 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 494 } 495 } 496 497 static bool tcp_stream_is_readable(struct sock *sk, int target) 498 { 499 if (tcp_epollin_ready(sk, target)) 500 return true; 501 return sk_is_readable(sk); 502 } 503 504 /* 505 * Wait for a TCP event. 506 * 507 * Note that we don't need to lock the socket, as the upper poll layers 508 * take care of normal races (between the test and the event) and we don't 509 * go look at any of the socket buffers directly. 510 */ 511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 512 { 513 __poll_t mask; 514 struct sock *sk = sock->sk; 515 const struct tcp_sock *tp = tcp_sk(sk); 516 u8 shutdown; 517 int state; 518 519 sock_poll_wait(file, sock, wait); 520 521 state = inet_sk_state_load(sk); 522 if (state == TCP_LISTEN) 523 return inet_csk_listen_poll(sk); 524 525 /* Socket is not locked. We are protected from async events 526 * by poll logic and correct handling of state changes 527 * made by other threads is impossible in any case. 528 */ 529 530 mask = 0; 531 532 /* 533 * EPOLLHUP is certainly not done right. But poll() doesn't 534 * have a notion of HUP in just one direction, and for a 535 * socket the read side is more interesting. 536 * 537 * Some poll() documentation says that EPOLLHUP is incompatible 538 * with the EPOLLOUT/POLLWR flags, so somebody should check this 539 * all. But careful, it tends to be safer to return too many 540 * bits than too few, and you can easily break real applications 541 * if you don't tell them that something has hung up! 542 * 543 * Check-me. 544 * 545 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 546 * our fs/select.c). It means that after we received EOF, 547 * poll always returns immediately, making impossible poll() on write() 548 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 549 * if and only if shutdown has been made in both directions. 550 * Actually, it is interesting to look how Solaris and DUX 551 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 552 * then we could set it on SND_SHUTDOWN. BTW examples given 553 * in Stevens' books assume exactly this behaviour, it explains 554 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 555 * 556 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 557 * blocking on fresh not-connected or disconnected socket. --ANK 558 */ 559 shutdown = READ_ONCE(sk->sk_shutdown); 560 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 561 mask |= EPOLLHUP; 562 if (shutdown & RCV_SHUTDOWN) 563 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 564 565 /* Connected or passive Fast Open socket? */ 566 if (state != TCP_SYN_SENT && 567 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 568 int target = sock_rcvlowat(sk, 0, INT_MAX); 569 u16 urg_data = READ_ONCE(tp->urg_data); 570 571 if (unlikely(urg_data) && 572 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 573 !sock_flag(sk, SOCK_URGINLINE)) 574 target++; 575 576 if (tcp_stream_is_readable(sk, target)) 577 mask |= EPOLLIN | EPOLLRDNORM; 578 579 if (!(shutdown & SEND_SHUTDOWN)) { 580 if (__sk_stream_is_writeable(sk, 1)) { 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 } else { /* send SIGIO later */ 583 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 584 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 585 586 /* Race breaker. If space is freed after 587 * wspace test but before the flags are set, 588 * IO signal will be lost. Memory barrier 589 * pairs with the input side. 590 */ 591 smp_mb__after_atomic(); 592 if (__sk_stream_is_writeable(sk, 1)) 593 mask |= EPOLLOUT | EPOLLWRNORM; 594 } 595 } else 596 mask |= EPOLLOUT | EPOLLWRNORM; 597 598 if (urg_data & TCP_URG_VALID) 599 mask |= EPOLLPRI; 600 } else if (state == TCP_SYN_SENT && 601 inet_test_bit(DEFER_CONNECT, sk)) { 602 /* Active TCP fastopen socket with defer_connect 603 * Return EPOLLOUT so application can call write() 604 * in order for kernel to generate SYN+data 605 */ 606 mask |= EPOLLOUT | EPOLLWRNORM; 607 } 608 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 609 smp_rmb(); 610 if (READ_ONCE(sk->sk_err) || 611 !skb_queue_empty_lockless(&sk->sk_error_queue)) 612 mask |= EPOLLERR; 613 614 return mask; 615 } 616 EXPORT_SYMBOL(tcp_poll); 617 618 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 619 { 620 struct tcp_sock *tp = tcp_sk(sk); 621 int answ; 622 bool slow; 623 624 switch (cmd) { 625 case SIOCINQ: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 slow = lock_sock_fast(sk); 630 answ = tcp_inq(sk); 631 unlock_sock_fast(sk, slow); 632 break; 633 case SIOCATMARK: 634 answ = READ_ONCE(tp->urg_data) && 635 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 636 break; 637 case SIOCOUTQ: 638 if (sk->sk_state == TCP_LISTEN) 639 return -EINVAL; 640 641 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 642 answ = 0; 643 else 644 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 645 break; 646 case SIOCOUTQNSD: 647 if (sk->sk_state == TCP_LISTEN) 648 return -EINVAL; 649 650 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 651 answ = 0; 652 else 653 answ = READ_ONCE(tp->write_seq) - 654 READ_ONCE(tp->snd_nxt); 655 break; 656 default: 657 return -ENOIOCTLCMD; 658 } 659 660 *karg = answ; 661 return 0; 662 } 663 EXPORT_SYMBOL(tcp_ioctl); 664 665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 666 { 667 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 668 tp->pushed_seq = tp->write_seq; 669 } 670 671 static inline bool forced_push(const struct tcp_sock *tp) 672 { 673 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 674 } 675 676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 677 { 678 struct tcp_sock *tp = tcp_sk(sk); 679 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 680 681 tcb->seq = tcb->end_seq = tp->write_seq; 682 tcb->tcp_flags = TCPHDR_ACK; 683 __skb_header_release(skb); 684 tcp_add_write_queue_tail(sk, skb); 685 sk_wmem_queued_add(sk, skb->truesize); 686 sk_mem_charge(sk, skb->truesize); 687 if (tp->nonagle & TCP_NAGLE_PUSH) 688 tp->nonagle &= ~TCP_NAGLE_PUSH; 689 690 tcp_slow_start_after_idle_check(sk); 691 } 692 693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 694 { 695 if (flags & MSG_OOB) 696 tp->snd_up = tp->write_seq; 697 } 698 699 /* If a not yet filled skb is pushed, do not send it if 700 * we have data packets in Qdisc or NIC queues : 701 * Because TX completion will happen shortly, it gives a chance 702 * to coalesce future sendmsg() payload into this skb, without 703 * need for a timer, and with no latency trade off. 704 * As packets containing data payload have a bigger truesize 705 * than pure acks (dataless) packets, the last checks prevent 706 * autocorking if we only have an ACK in Qdisc/NIC queues, 707 * or if TX completion was delayed after we processed ACK packet. 708 */ 709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 710 int size_goal) 711 { 712 return skb->len < size_goal && 713 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 714 !tcp_rtx_queue_empty(sk) && 715 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 716 tcp_skb_can_collapse_to(skb); 717 } 718 719 void tcp_push(struct sock *sk, int flags, int mss_now, 720 int nonagle, int size_goal) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 struct sk_buff *skb; 724 725 skb = tcp_write_queue_tail(sk); 726 if (!skb) 727 return; 728 if (!(flags & MSG_MORE) || forced_push(tp)) 729 tcp_mark_push(tp, skb); 730 731 tcp_mark_urg(tp, flags); 732 733 if (tcp_should_autocork(sk, skb, size_goal)) { 734 735 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 736 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 738 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 739 smp_mb__after_atomic(); 740 } 741 /* It is possible TX completion already happened 742 * before we set TSQ_THROTTLED. 743 */ 744 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 745 return; 746 } 747 748 if (flags & MSG_MORE) 749 nonagle = TCP_NAGLE_CORK; 750 751 __tcp_push_pending_frames(sk, mss_now, nonagle); 752 } 753 754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 755 unsigned int offset, size_t len) 756 { 757 struct tcp_splice_state *tss = rd_desc->arg.data; 758 int ret; 759 760 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 761 min(rd_desc->count, len), tss->flags); 762 if (ret > 0) 763 rd_desc->count -= ret; 764 return ret; 765 } 766 767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 768 { 769 /* Store TCP splice context information in read_descriptor_t. */ 770 read_descriptor_t rd_desc = { 771 .arg.data = tss, 772 .count = tss->len, 773 }; 774 775 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 776 } 777 778 /** 779 * tcp_splice_read - splice data from TCP socket to a pipe 780 * @sock: socket to splice from 781 * @ppos: position (not valid) 782 * @pipe: pipe to splice to 783 * @len: number of bytes to splice 784 * @flags: splice modifier flags 785 * 786 * Description: 787 * Will read pages from given socket and fill them into a pipe. 788 * 789 **/ 790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 791 struct pipe_inode_info *pipe, size_t len, 792 unsigned int flags) 793 { 794 struct sock *sk = sock->sk; 795 struct tcp_splice_state tss = { 796 .pipe = pipe, 797 .len = len, 798 .flags = flags, 799 }; 800 long timeo; 801 ssize_t spliced; 802 int ret; 803 804 sock_rps_record_flow(sk); 805 /* 806 * We can't seek on a socket input 807 */ 808 if (unlikely(*ppos)) 809 return -ESPIPE; 810 811 ret = spliced = 0; 812 813 lock_sock(sk); 814 815 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 816 while (tss.len) { 817 ret = __tcp_splice_read(sk, &tss); 818 if (ret < 0) 819 break; 820 else if (!ret) { 821 if (spliced) 822 break; 823 if (sock_flag(sk, SOCK_DONE)) 824 break; 825 if (sk->sk_err) { 826 ret = sock_error(sk); 827 break; 828 } 829 if (sk->sk_shutdown & RCV_SHUTDOWN) 830 break; 831 if (sk->sk_state == TCP_CLOSE) { 832 /* 833 * This occurs when user tries to read 834 * from never connected socket. 835 */ 836 ret = -ENOTCONN; 837 break; 838 } 839 if (!timeo) { 840 ret = -EAGAIN; 841 break; 842 } 843 /* if __tcp_splice_read() got nothing while we have 844 * an skb in receive queue, we do not want to loop. 845 * This might happen with URG data. 846 */ 847 if (!skb_queue_empty(&sk->sk_receive_queue)) 848 break; 849 ret = sk_wait_data(sk, &timeo, NULL); 850 if (ret < 0) 851 break; 852 if (signal_pending(current)) { 853 ret = sock_intr_errno(timeo); 854 break; 855 } 856 continue; 857 } 858 tss.len -= ret; 859 spliced += ret; 860 861 if (!tss.len || !timeo) 862 break; 863 release_sock(sk); 864 lock_sock(sk); 865 866 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 867 (sk->sk_shutdown & RCV_SHUTDOWN) || 868 signal_pending(current)) 869 break; 870 } 871 872 release_sock(sk); 873 874 if (spliced) 875 return spliced; 876 877 return ret; 878 } 879 EXPORT_SYMBOL(tcp_splice_read); 880 881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 882 bool force_schedule) 883 { 884 struct sk_buff *skb; 885 886 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 887 if (likely(skb)) { 888 bool mem_scheduled; 889 890 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 891 if (force_schedule) { 892 mem_scheduled = true; 893 sk_forced_mem_schedule(sk, skb->truesize); 894 } else { 895 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 896 } 897 if (likely(mem_scheduled)) { 898 skb_reserve(skb, MAX_TCP_HEADER); 899 skb->ip_summed = CHECKSUM_PARTIAL; 900 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 901 return skb; 902 } 903 __kfree_skb(skb); 904 } else { 905 sk->sk_prot->enter_memory_pressure(sk); 906 sk_stream_moderate_sndbuf(sk); 907 } 908 return NULL; 909 } 910 911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 912 int large_allowed) 913 { 914 struct tcp_sock *tp = tcp_sk(sk); 915 u32 new_size_goal, size_goal; 916 917 if (!large_allowed) 918 return mss_now; 919 920 /* Note : tcp_tso_autosize() will eventually split this later */ 921 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 922 923 /* We try hard to avoid divides here */ 924 size_goal = tp->gso_segs * mss_now; 925 if (unlikely(new_size_goal < size_goal || 926 new_size_goal >= size_goal + mss_now)) { 927 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 928 sk->sk_gso_max_segs); 929 size_goal = tp->gso_segs * mss_now; 930 } 931 932 return max(size_goal, mss_now); 933 } 934 935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 936 { 937 int mss_now; 938 939 mss_now = tcp_current_mss(sk); 940 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 941 942 return mss_now; 943 } 944 945 /* In some cases, sendmsg() could have added an skb to the write queue, 946 * but failed adding payload on it. We need to remove it to consume less 947 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 948 * epoll() users. Another reason is that tcp_write_xmit() does not like 949 * finding an empty skb in the write queue. 950 */ 951 void tcp_remove_empty_skb(struct sock *sk) 952 { 953 struct sk_buff *skb = tcp_write_queue_tail(sk); 954 955 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 956 tcp_unlink_write_queue(skb, sk); 957 if (tcp_write_queue_empty(sk)) 958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 959 tcp_wmem_free_skb(sk, skb); 960 } 961 } 962 963 /* skb changing from pure zc to mixed, must charge zc */ 964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 965 { 966 if (unlikely(skb_zcopy_pure(skb))) { 967 u32 extra = skb->truesize - 968 SKB_TRUESIZE(skb_end_offset(skb)); 969 970 if (!sk_wmem_schedule(sk, extra)) 971 return -ENOMEM; 972 973 sk_mem_charge(sk, extra); 974 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 975 } 976 return 0; 977 } 978 979 980 int tcp_wmem_schedule(struct sock *sk, int copy) 981 { 982 int left; 983 984 if (likely(sk_wmem_schedule(sk, copy))) 985 return copy; 986 987 /* We could be in trouble if we have nothing queued. 988 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 989 * to guarantee some progress. 990 */ 991 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 992 if (left > 0) 993 sk_forced_mem_schedule(sk, min(left, copy)); 994 return min(copy, sk->sk_forward_alloc); 995 } 996 997 void tcp_free_fastopen_req(struct tcp_sock *tp) 998 { 999 if (tp->fastopen_req) { 1000 kfree(tp->fastopen_req); 1001 tp->fastopen_req = NULL; 1002 } 1003 } 1004 1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1006 size_t size, struct ubuf_info *uarg) 1007 { 1008 struct tcp_sock *tp = tcp_sk(sk); 1009 struct inet_sock *inet = inet_sk(sk); 1010 struct sockaddr *uaddr = msg->msg_name; 1011 int err, flags; 1012 1013 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1014 TFO_CLIENT_ENABLE) || 1015 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1016 uaddr->sa_family == AF_UNSPEC)) 1017 return -EOPNOTSUPP; 1018 if (tp->fastopen_req) 1019 return -EALREADY; /* Another Fast Open is in progress */ 1020 1021 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1022 sk->sk_allocation); 1023 if (unlikely(!tp->fastopen_req)) 1024 return -ENOBUFS; 1025 tp->fastopen_req->data = msg; 1026 tp->fastopen_req->size = size; 1027 tp->fastopen_req->uarg = uarg; 1028 1029 if (inet_test_bit(DEFER_CONNECT, sk)) { 1030 err = tcp_connect(sk); 1031 /* Same failure procedure as in tcp_v4/6_connect */ 1032 if (err) { 1033 tcp_set_state(sk, TCP_CLOSE); 1034 inet->inet_dport = 0; 1035 sk->sk_route_caps = 0; 1036 } 1037 } 1038 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1039 err = __inet_stream_connect(sk->sk_socket, uaddr, 1040 msg->msg_namelen, flags, 1); 1041 /* fastopen_req could already be freed in __inet_stream_connect 1042 * if the connection times out or gets rst 1043 */ 1044 if (tp->fastopen_req) { 1045 *copied = tp->fastopen_req->copied; 1046 tcp_free_fastopen_req(tp); 1047 inet_clear_bit(DEFER_CONNECT, sk); 1048 } 1049 return err; 1050 } 1051 1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1053 { 1054 struct tcp_sock *tp = tcp_sk(sk); 1055 struct ubuf_info *uarg = NULL; 1056 struct sk_buff *skb; 1057 struct sockcm_cookie sockc; 1058 int flags, err, copied = 0; 1059 int mss_now = 0, size_goal, copied_syn = 0; 1060 int process_backlog = 0; 1061 int zc = 0; 1062 long timeo; 1063 1064 flags = msg->msg_flags; 1065 1066 if ((flags & MSG_ZEROCOPY) && size) { 1067 if (msg->msg_ubuf) { 1068 uarg = msg->msg_ubuf; 1069 if (sk->sk_route_caps & NETIF_F_SG) 1070 zc = MSG_ZEROCOPY; 1071 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1072 skb = tcp_write_queue_tail(sk); 1073 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1074 if (!uarg) { 1075 err = -ENOBUFS; 1076 goto out_err; 1077 } 1078 if (sk->sk_route_caps & NETIF_F_SG) 1079 zc = MSG_ZEROCOPY; 1080 else 1081 uarg_to_msgzc(uarg)->zerocopy = 0; 1082 } 1083 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1084 if (sk->sk_route_caps & NETIF_F_SG) 1085 zc = MSG_SPLICE_PAGES; 1086 } 1087 1088 if (unlikely(flags & MSG_FASTOPEN || 1089 inet_test_bit(DEFER_CONNECT, sk)) && 1090 !tp->repair) { 1091 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1092 if (err == -EINPROGRESS && copied_syn > 0) 1093 goto out; 1094 else if (err) 1095 goto out_err; 1096 } 1097 1098 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1099 1100 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1101 1102 /* Wait for a connection to finish. One exception is TCP Fast Open 1103 * (passive side) where data is allowed to be sent before a connection 1104 * is fully established. 1105 */ 1106 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1107 !tcp_passive_fastopen(sk)) { 1108 err = sk_stream_wait_connect(sk, &timeo); 1109 if (err != 0) 1110 goto do_error; 1111 } 1112 1113 if (unlikely(tp->repair)) { 1114 if (tp->repair_queue == TCP_RECV_QUEUE) { 1115 copied = tcp_send_rcvq(sk, msg, size); 1116 goto out_nopush; 1117 } 1118 1119 err = -EINVAL; 1120 if (tp->repair_queue == TCP_NO_QUEUE) 1121 goto out_err; 1122 1123 /* 'common' sending to sendq */ 1124 } 1125 1126 sockcm_init(&sockc, sk); 1127 if (msg->msg_controllen) { 1128 err = sock_cmsg_send(sk, msg, &sockc); 1129 if (unlikely(err)) { 1130 err = -EINVAL; 1131 goto out_err; 1132 } 1133 } 1134 1135 /* This should be in poll */ 1136 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1137 1138 /* Ok commence sending. */ 1139 copied = 0; 1140 1141 restart: 1142 mss_now = tcp_send_mss(sk, &size_goal, flags); 1143 1144 err = -EPIPE; 1145 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1146 goto do_error; 1147 1148 while (msg_data_left(msg)) { 1149 ssize_t copy = 0; 1150 1151 skb = tcp_write_queue_tail(sk); 1152 if (skb) 1153 copy = size_goal - skb->len; 1154 1155 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1156 bool first_skb; 1157 1158 new_segment: 1159 if (!sk_stream_memory_free(sk)) 1160 goto wait_for_space; 1161 1162 if (unlikely(process_backlog >= 16)) { 1163 process_backlog = 0; 1164 if (sk_flush_backlog(sk)) 1165 goto restart; 1166 } 1167 first_skb = tcp_rtx_and_write_queues_empty(sk); 1168 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1169 first_skb); 1170 if (!skb) 1171 goto wait_for_space; 1172 1173 process_backlog++; 1174 1175 #ifdef CONFIG_SKB_DECRYPTED 1176 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1177 #endif 1178 tcp_skb_entail(sk, skb); 1179 copy = size_goal; 1180 1181 /* All packets are restored as if they have 1182 * already been sent. skb_mstamp_ns isn't set to 1183 * avoid wrong rtt estimation. 1184 */ 1185 if (tp->repair) 1186 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1187 } 1188 1189 /* Try to append data to the end of skb. */ 1190 if (copy > msg_data_left(msg)) 1191 copy = msg_data_left(msg); 1192 1193 if (zc == 0) { 1194 bool merge = true; 1195 int i = skb_shinfo(skb)->nr_frags; 1196 struct page_frag *pfrag = sk_page_frag(sk); 1197 1198 if (!sk_page_frag_refill(sk, pfrag)) 1199 goto wait_for_space; 1200 1201 if (!skb_can_coalesce(skb, i, pfrag->page, 1202 pfrag->offset)) { 1203 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1204 tcp_mark_push(tp, skb); 1205 goto new_segment; 1206 } 1207 merge = false; 1208 } 1209 1210 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1211 1212 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1213 if (tcp_downgrade_zcopy_pure(sk, skb)) 1214 goto wait_for_space; 1215 skb_zcopy_downgrade_managed(skb); 1216 } 1217 1218 copy = tcp_wmem_schedule(sk, copy); 1219 if (!copy) 1220 goto wait_for_space; 1221 1222 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1223 pfrag->page, 1224 pfrag->offset, 1225 copy); 1226 if (err) 1227 goto do_error; 1228 1229 /* Update the skb. */ 1230 if (merge) { 1231 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1232 } else { 1233 skb_fill_page_desc(skb, i, pfrag->page, 1234 pfrag->offset, copy); 1235 page_ref_inc(pfrag->page); 1236 } 1237 pfrag->offset += copy; 1238 } else if (zc == MSG_ZEROCOPY) { 1239 /* First append to a fragless skb builds initial 1240 * pure zerocopy skb 1241 */ 1242 if (!skb->len) 1243 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1244 1245 if (!skb_zcopy_pure(skb)) { 1246 copy = tcp_wmem_schedule(sk, copy); 1247 if (!copy) 1248 goto wait_for_space; 1249 } 1250 1251 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1252 if (err == -EMSGSIZE || err == -EEXIST) { 1253 tcp_mark_push(tp, skb); 1254 goto new_segment; 1255 } 1256 if (err < 0) 1257 goto do_error; 1258 copy = err; 1259 } else if (zc == MSG_SPLICE_PAGES) { 1260 /* Splice in data if we can; copy if we can't. */ 1261 if (tcp_downgrade_zcopy_pure(sk, skb)) 1262 goto wait_for_space; 1263 copy = tcp_wmem_schedule(sk, copy); 1264 if (!copy) 1265 goto wait_for_space; 1266 1267 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1268 sk->sk_allocation); 1269 if (err < 0) { 1270 if (err == -EMSGSIZE) { 1271 tcp_mark_push(tp, skb); 1272 goto new_segment; 1273 } 1274 goto do_error; 1275 } 1276 copy = err; 1277 1278 if (!(flags & MSG_NO_SHARED_FRAGS)) 1279 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1280 1281 sk_wmem_queued_add(sk, copy); 1282 sk_mem_charge(sk, copy); 1283 } 1284 1285 if (!copied) 1286 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1287 1288 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1289 TCP_SKB_CB(skb)->end_seq += copy; 1290 tcp_skb_pcount_set(skb, 0); 1291 1292 copied += copy; 1293 if (!msg_data_left(msg)) { 1294 if (unlikely(flags & MSG_EOR)) 1295 TCP_SKB_CB(skb)->eor = 1; 1296 goto out; 1297 } 1298 1299 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1300 continue; 1301 1302 if (forced_push(tp)) { 1303 tcp_mark_push(tp, skb); 1304 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1305 } else if (skb == tcp_send_head(sk)) 1306 tcp_push_one(sk, mss_now); 1307 continue; 1308 1309 wait_for_space: 1310 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1311 tcp_remove_empty_skb(sk); 1312 if (copied) 1313 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1314 TCP_NAGLE_PUSH, size_goal); 1315 1316 err = sk_stream_wait_memory(sk, &timeo); 1317 if (err != 0) 1318 goto do_error; 1319 1320 mss_now = tcp_send_mss(sk, &size_goal, flags); 1321 } 1322 1323 out: 1324 if (copied) { 1325 tcp_tx_timestamp(sk, &sockc); 1326 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1327 } 1328 out_nopush: 1329 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1330 if (uarg && !msg->msg_ubuf) 1331 net_zcopy_put(uarg); 1332 return copied + copied_syn; 1333 1334 do_error: 1335 tcp_remove_empty_skb(sk); 1336 1337 if (copied + copied_syn) 1338 goto out; 1339 out_err: 1340 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1341 if (uarg && !msg->msg_ubuf) 1342 net_zcopy_put_abort(uarg, true); 1343 err = sk_stream_error(sk, flags, err); 1344 /* make sure we wake any epoll edge trigger waiter */ 1345 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1346 sk->sk_write_space(sk); 1347 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1348 } 1349 return err; 1350 } 1351 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1352 1353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1354 { 1355 int ret; 1356 1357 lock_sock(sk); 1358 ret = tcp_sendmsg_locked(sk, msg, size); 1359 release_sock(sk); 1360 1361 return ret; 1362 } 1363 EXPORT_SYMBOL(tcp_sendmsg); 1364 1365 void tcp_splice_eof(struct socket *sock) 1366 { 1367 struct sock *sk = sock->sk; 1368 struct tcp_sock *tp = tcp_sk(sk); 1369 int mss_now, size_goal; 1370 1371 if (!tcp_write_queue_tail(sk)) 1372 return; 1373 1374 lock_sock(sk); 1375 mss_now = tcp_send_mss(sk, &size_goal, 0); 1376 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1377 release_sock(sk); 1378 } 1379 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1380 1381 /* 1382 * Handle reading urgent data. BSD has very simple semantics for 1383 * this, no blocking and very strange errors 8) 1384 */ 1385 1386 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 1390 /* No URG data to read. */ 1391 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1392 tp->urg_data == TCP_URG_READ) 1393 return -EINVAL; /* Yes this is right ! */ 1394 1395 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1396 return -ENOTCONN; 1397 1398 if (tp->urg_data & TCP_URG_VALID) { 1399 int err = 0; 1400 char c = tp->urg_data; 1401 1402 if (!(flags & MSG_PEEK)) 1403 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1404 1405 /* Read urgent data. */ 1406 msg->msg_flags |= MSG_OOB; 1407 1408 if (len > 0) { 1409 if (!(flags & MSG_TRUNC)) 1410 err = memcpy_to_msg(msg, &c, 1); 1411 len = 1; 1412 } else 1413 msg->msg_flags |= MSG_TRUNC; 1414 1415 return err ? -EFAULT : len; 1416 } 1417 1418 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1419 return 0; 1420 1421 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1422 * the available implementations agree in this case: 1423 * this call should never block, independent of the 1424 * blocking state of the socket. 1425 * Mike <pall@rz.uni-karlsruhe.de> 1426 */ 1427 return -EAGAIN; 1428 } 1429 1430 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1431 { 1432 struct sk_buff *skb; 1433 int copied = 0, err = 0; 1434 1435 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1436 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1437 if (err) 1438 return err; 1439 copied += skb->len; 1440 } 1441 1442 skb_queue_walk(&sk->sk_write_queue, skb) { 1443 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1444 if (err) 1445 break; 1446 1447 copied += skb->len; 1448 } 1449 1450 return err ?: copied; 1451 } 1452 1453 /* Clean up the receive buffer for full frames taken by the user, 1454 * then send an ACK if necessary. COPIED is the number of bytes 1455 * tcp_recvmsg has given to the user so far, it speeds up the 1456 * calculation of whether or not we must ACK for the sake of 1457 * a window update. 1458 */ 1459 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1460 { 1461 struct tcp_sock *tp = tcp_sk(sk); 1462 bool time_to_ack = false; 1463 1464 if (inet_csk_ack_scheduled(sk)) { 1465 const struct inet_connection_sock *icsk = inet_csk(sk); 1466 1467 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1468 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1469 /* 1470 * If this read emptied read buffer, we send ACK, if 1471 * connection is not bidirectional, user drained 1472 * receive buffer and there was a small segment 1473 * in queue. 1474 */ 1475 (copied > 0 && 1476 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1477 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1478 !inet_csk_in_pingpong_mode(sk))) && 1479 !atomic_read(&sk->sk_rmem_alloc))) 1480 time_to_ack = true; 1481 } 1482 1483 /* We send an ACK if we can now advertise a non-zero window 1484 * which has been raised "significantly". 1485 * 1486 * Even if window raised up to infinity, do not send window open ACK 1487 * in states, where we will not receive more. It is useless. 1488 */ 1489 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1490 __u32 rcv_window_now = tcp_receive_window(tp); 1491 1492 /* Optimize, __tcp_select_window() is not cheap. */ 1493 if (2*rcv_window_now <= tp->window_clamp) { 1494 __u32 new_window = __tcp_select_window(sk); 1495 1496 /* Send ACK now, if this read freed lots of space 1497 * in our buffer. Certainly, new_window is new window. 1498 * We can advertise it now, if it is not less than current one. 1499 * "Lots" means "at least twice" here. 1500 */ 1501 if (new_window && new_window >= 2 * rcv_window_now) 1502 time_to_ack = true; 1503 } 1504 } 1505 if (time_to_ack) 1506 tcp_send_ack(sk); 1507 } 1508 1509 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1510 { 1511 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 1514 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1515 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1516 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1517 __tcp_cleanup_rbuf(sk, copied); 1518 } 1519 1520 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1521 { 1522 __skb_unlink(skb, &sk->sk_receive_queue); 1523 if (likely(skb->destructor == sock_rfree)) { 1524 sock_rfree(skb); 1525 skb->destructor = NULL; 1526 skb->sk = NULL; 1527 return skb_attempt_defer_free(skb); 1528 } 1529 __kfree_skb(skb); 1530 } 1531 1532 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1533 { 1534 struct sk_buff *skb; 1535 u32 offset; 1536 1537 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1538 offset = seq - TCP_SKB_CB(skb)->seq; 1539 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1540 pr_err_once("%s: found a SYN, please report !\n", __func__); 1541 offset--; 1542 } 1543 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1544 *off = offset; 1545 return skb; 1546 } 1547 /* This looks weird, but this can happen if TCP collapsing 1548 * splitted a fat GRO packet, while we released socket lock 1549 * in skb_splice_bits() 1550 */ 1551 tcp_eat_recv_skb(sk, skb); 1552 } 1553 return NULL; 1554 } 1555 EXPORT_SYMBOL(tcp_recv_skb); 1556 1557 /* 1558 * This routine provides an alternative to tcp_recvmsg() for routines 1559 * that would like to handle copying from skbuffs directly in 'sendfile' 1560 * fashion. 1561 * Note: 1562 * - It is assumed that the socket was locked by the caller. 1563 * - The routine does not block. 1564 * - At present, there is no support for reading OOB data 1565 * or for 'peeking' the socket using this routine 1566 * (although both would be easy to implement). 1567 */ 1568 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1569 sk_read_actor_t recv_actor, bool noack, 1570 u32 *copied_seq) 1571 { 1572 struct sk_buff *skb; 1573 struct tcp_sock *tp = tcp_sk(sk); 1574 u32 seq = *copied_seq; 1575 u32 offset; 1576 int copied = 0; 1577 1578 if (sk->sk_state == TCP_LISTEN) 1579 return -ENOTCONN; 1580 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1581 if (offset < skb->len) { 1582 int used; 1583 size_t len; 1584 1585 len = skb->len - offset; 1586 /* Stop reading if we hit a patch of urgent data */ 1587 if (unlikely(tp->urg_data)) { 1588 u32 urg_offset = tp->urg_seq - seq; 1589 if (urg_offset < len) 1590 len = urg_offset; 1591 if (!len) 1592 break; 1593 } 1594 used = recv_actor(desc, skb, offset, len); 1595 if (used <= 0) { 1596 if (!copied) 1597 copied = used; 1598 break; 1599 } 1600 if (WARN_ON_ONCE(used > len)) 1601 used = len; 1602 seq += used; 1603 copied += used; 1604 offset += used; 1605 1606 /* If recv_actor drops the lock (e.g. TCP splice 1607 * receive) the skb pointer might be invalid when 1608 * getting here: tcp_collapse might have deleted it 1609 * while aggregating skbs from the socket queue. 1610 */ 1611 skb = tcp_recv_skb(sk, seq - 1, &offset); 1612 if (!skb) 1613 break; 1614 /* TCP coalescing might have appended data to the skb. 1615 * Try to splice more frags 1616 */ 1617 if (offset + 1 != skb->len) 1618 continue; 1619 } 1620 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1621 tcp_eat_recv_skb(sk, skb); 1622 ++seq; 1623 break; 1624 } 1625 tcp_eat_recv_skb(sk, skb); 1626 if (!desc->count) 1627 break; 1628 WRITE_ONCE(*copied_seq, seq); 1629 } 1630 WRITE_ONCE(*copied_seq, seq); 1631 1632 if (noack) 1633 goto out; 1634 1635 tcp_rcv_space_adjust(sk); 1636 1637 /* Clean up data we have read: This will do ACK frames. */ 1638 if (copied > 0) { 1639 tcp_recv_skb(sk, seq, &offset); 1640 tcp_cleanup_rbuf(sk, copied); 1641 } 1642 out: 1643 return copied; 1644 } 1645 1646 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1647 sk_read_actor_t recv_actor) 1648 { 1649 return __tcp_read_sock(sk, desc, recv_actor, false, 1650 &tcp_sk(sk)->copied_seq); 1651 } 1652 EXPORT_SYMBOL(tcp_read_sock); 1653 1654 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1655 sk_read_actor_t recv_actor, bool noack, 1656 u32 *copied_seq) 1657 { 1658 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1659 } 1660 1661 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1662 { 1663 struct sk_buff *skb; 1664 int copied = 0; 1665 1666 if (sk->sk_state == TCP_LISTEN) 1667 return -ENOTCONN; 1668 1669 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1670 u8 tcp_flags; 1671 int used; 1672 1673 __skb_unlink(skb, &sk->sk_receive_queue); 1674 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1675 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1676 used = recv_actor(sk, skb); 1677 if (used < 0) { 1678 if (!copied) 1679 copied = used; 1680 break; 1681 } 1682 copied += used; 1683 1684 if (tcp_flags & TCPHDR_FIN) 1685 break; 1686 } 1687 return copied; 1688 } 1689 EXPORT_SYMBOL(tcp_read_skb); 1690 1691 void tcp_read_done(struct sock *sk, size_t len) 1692 { 1693 struct tcp_sock *tp = tcp_sk(sk); 1694 u32 seq = tp->copied_seq; 1695 struct sk_buff *skb; 1696 size_t left; 1697 u32 offset; 1698 1699 if (sk->sk_state == TCP_LISTEN) 1700 return; 1701 1702 left = len; 1703 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1704 int used; 1705 1706 used = min_t(size_t, skb->len - offset, left); 1707 seq += used; 1708 left -= used; 1709 1710 if (skb->len > offset + used) 1711 break; 1712 1713 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1714 tcp_eat_recv_skb(sk, skb); 1715 ++seq; 1716 break; 1717 } 1718 tcp_eat_recv_skb(sk, skb); 1719 } 1720 WRITE_ONCE(tp->copied_seq, seq); 1721 1722 tcp_rcv_space_adjust(sk); 1723 1724 /* Clean up data we have read: This will do ACK frames. */ 1725 if (left != len) 1726 tcp_cleanup_rbuf(sk, len - left); 1727 } 1728 EXPORT_SYMBOL(tcp_read_done); 1729 1730 int tcp_peek_len(struct socket *sock) 1731 { 1732 return tcp_inq(sock->sk); 1733 } 1734 EXPORT_SYMBOL(tcp_peek_len); 1735 1736 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1737 int tcp_set_rcvlowat(struct sock *sk, int val) 1738 { 1739 int space, cap; 1740 1741 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1742 cap = sk->sk_rcvbuf >> 1; 1743 else 1744 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1745 val = min(val, cap); 1746 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1747 1748 /* Check if we need to signal EPOLLIN right now */ 1749 tcp_data_ready(sk); 1750 1751 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1752 return 0; 1753 1754 space = tcp_space_from_win(sk, val); 1755 if (space > sk->sk_rcvbuf) { 1756 WRITE_ONCE(sk->sk_rcvbuf, space); 1757 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1758 } 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(tcp_set_rcvlowat); 1762 1763 void tcp_update_recv_tstamps(struct sk_buff *skb, 1764 struct scm_timestamping_internal *tss) 1765 { 1766 if (skb->tstamp) 1767 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1768 else 1769 tss->ts[0] = (struct timespec64) {0}; 1770 1771 if (skb_hwtstamps(skb)->hwtstamp) 1772 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1773 else 1774 tss->ts[2] = (struct timespec64) {0}; 1775 } 1776 1777 #ifdef CONFIG_MMU 1778 static const struct vm_operations_struct tcp_vm_ops = { 1779 }; 1780 1781 int tcp_mmap(struct file *file, struct socket *sock, 1782 struct vm_area_struct *vma) 1783 { 1784 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1785 return -EPERM; 1786 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1787 1788 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1789 vm_flags_set(vma, VM_MIXEDMAP); 1790 1791 vma->vm_ops = &tcp_vm_ops; 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(tcp_mmap); 1795 1796 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1797 u32 *offset_frag) 1798 { 1799 skb_frag_t *frag; 1800 1801 if (unlikely(offset_skb >= skb->len)) 1802 return NULL; 1803 1804 offset_skb -= skb_headlen(skb); 1805 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1806 return NULL; 1807 1808 frag = skb_shinfo(skb)->frags; 1809 while (offset_skb) { 1810 if (skb_frag_size(frag) > offset_skb) { 1811 *offset_frag = offset_skb; 1812 return frag; 1813 } 1814 offset_skb -= skb_frag_size(frag); 1815 ++frag; 1816 } 1817 *offset_frag = 0; 1818 return frag; 1819 } 1820 1821 static bool can_map_frag(const skb_frag_t *frag) 1822 { 1823 struct page *page; 1824 1825 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1826 return false; 1827 1828 page = skb_frag_page(frag); 1829 1830 if (PageCompound(page) || page->mapping) 1831 return false; 1832 1833 return true; 1834 } 1835 1836 static int find_next_mappable_frag(const skb_frag_t *frag, 1837 int remaining_in_skb) 1838 { 1839 int offset = 0; 1840 1841 if (likely(can_map_frag(frag))) 1842 return 0; 1843 1844 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1845 offset += skb_frag_size(frag); 1846 ++frag; 1847 } 1848 return offset; 1849 } 1850 1851 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1852 struct tcp_zerocopy_receive *zc, 1853 struct sk_buff *skb, u32 offset) 1854 { 1855 u32 frag_offset, partial_frag_remainder = 0; 1856 int mappable_offset; 1857 skb_frag_t *frag; 1858 1859 /* worst case: skip to next skb. try to improve on this case below */ 1860 zc->recv_skip_hint = skb->len - offset; 1861 1862 /* Find the frag containing this offset (and how far into that frag) */ 1863 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1864 if (!frag) 1865 return; 1866 1867 if (frag_offset) { 1868 struct skb_shared_info *info = skb_shinfo(skb); 1869 1870 /* We read part of the last frag, must recvmsg() rest of skb. */ 1871 if (frag == &info->frags[info->nr_frags - 1]) 1872 return; 1873 1874 /* Else, we must at least read the remainder in this frag. */ 1875 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1876 zc->recv_skip_hint -= partial_frag_remainder; 1877 ++frag; 1878 } 1879 1880 /* partial_frag_remainder: If part way through a frag, must read rest. 1881 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1882 * in partial_frag_remainder. 1883 */ 1884 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1885 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1886 } 1887 1888 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1889 int flags, struct scm_timestamping_internal *tss, 1890 int *cmsg_flags); 1891 static int receive_fallback_to_copy(struct sock *sk, 1892 struct tcp_zerocopy_receive *zc, int inq, 1893 struct scm_timestamping_internal *tss) 1894 { 1895 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1896 struct msghdr msg = {}; 1897 int err; 1898 1899 zc->length = 0; 1900 zc->recv_skip_hint = 0; 1901 1902 if (copy_address != zc->copybuf_address) 1903 return -EINVAL; 1904 1905 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1906 &msg.msg_iter); 1907 if (err) 1908 return err; 1909 1910 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1911 tss, &zc->msg_flags); 1912 if (err < 0) 1913 return err; 1914 1915 zc->copybuf_len = err; 1916 if (likely(zc->copybuf_len)) { 1917 struct sk_buff *skb; 1918 u32 offset; 1919 1920 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1921 if (skb) 1922 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1923 } 1924 return 0; 1925 } 1926 1927 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1928 struct sk_buff *skb, u32 copylen, 1929 u32 *offset, u32 *seq) 1930 { 1931 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1932 struct msghdr msg = {}; 1933 int err; 1934 1935 if (copy_address != zc->copybuf_address) 1936 return -EINVAL; 1937 1938 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1939 &msg.msg_iter); 1940 if (err) 1941 return err; 1942 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1943 if (err) 1944 return err; 1945 zc->recv_skip_hint -= copylen; 1946 *offset += copylen; 1947 *seq += copylen; 1948 return (__s32)copylen; 1949 } 1950 1951 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1952 struct sock *sk, 1953 struct sk_buff *skb, 1954 u32 *seq, 1955 s32 copybuf_len, 1956 struct scm_timestamping_internal *tss) 1957 { 1958 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1959 1960 if (!copylen) 1961 return 0; 1962 /* skb is null if inq < PAGE_SIZE. */ 1963 if (skb) { 1964 offset = *seq - TCP_SKB_CB(skb)->seq; 1965 } else { 1966 skb = tcp_recv_skb(sk, *seq, &offset); 1967 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1968 tcp_update_recv_tstamps(skb, tss); 1969 zc->msg_flags |= TCP_CMSG_TS; 1970 } 1971 } 1972 1973 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1974 seq); 1975 return zc->copybuf_len < 0 ? 0 : copylen; 1976 } 1977 1978 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1979 struct page **pending_pages, 1980 unsigned long pages_remaining, 1981 unsigned long *address, 1982 u32 *length, 1983 u32 *seq, 1984 struct tcp_zerocopy_receive *zc, 1985 u32 total_bytes_to_map, 1986 int err) 1987 { 1988 /* At least one page did not map. Try zapping if we skipped earlier. */ 1989 if (err == -EBUSY && 1990 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1991 u32 maybe_zap_len; 1992 1993 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1994 *length + /* Mapped or pending */ 1995 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1996 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1997 err = 0; 1998 } 1999 2000 if (!err) { 2001 unsigned long leftover_pages = pages_remaining; 2002 int bytes_mapped; 2003 2004 /* We called zap_page_range_single, try to reinsert. */ 2005 err = vm_insert_pages(vma, *address, 2006 pending_pages, 2007 &pages_remaining); 2008 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2009 *seq += bytes_mapped; 2010 *address += bytes_mapped; 2011 } 2012 if (err) { 2013 /* Either we were unable to zap, OR we zapped, retried an 2014 * insert, and still had an issue. Either ways, pages_remaining 2015 * is the number of pages we were unable to map, and we unroll 2016 * some state we speculatively touched before. 2017 */ 2018 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2019 2020 *length -= bytes_not_mapped; 2021 zc->recv_skip_hint += bytes_not_mapped; 2022 } 2023 return err; 2024 } 2025 2026 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2027 struct page **pages, 2028 unsigned int pages_to_map, 2029 unsigned long *address, 2030 u32 *length, 2031 u32 *seq, 2032 struct tcp_zerocopy_receive *zc, 2033 u32 total_bytes_to_map) 2034 { 2035 unsigned long pages_remaining = pages_to_map; 2036 unsigned int pages_mapped; 2037 unsigned int bytes_mapped; 2038 int err; 2039 2040 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2041 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2042 bytes_mapped = PAGE_SIZE * pages_mapped; 2043 /* Even if vm_insert_pages fails, it may have partially succeeded in 2044 * mapping (some but not all of the pages). 2045 */ 2046 *seq += bytes_mapped; 2047 *address += bytes_mapped; 2048 2049 if (likely(!err)) 2050 return 0; 2051 2052 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2053 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2054 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2055 err); 2056 } 2057 2058 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2059 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2060 struct tcp_zerocopy_receive *zc, 2061 struct scm_timestamping_internal *tss) 2062 { 2063 unsigned long msg_control_addr; 2064 struct msghdr cmsg_dummy; 2065 2066 msg_control_addr = (unsigned long)zc->msg_control; 2067 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2068 cmsg_dummy.msg_controllen = 2069 (__kernel_size_t)zc->msg_controllen; 2070 cmsg_dummy.msg_flags = in_compat_syscall() 2071 ? MSG_CMSG_COMPAT : 0; 2072 cmsg_dummy.msg_control_is_user = true; 2073 zc->msg_flags = 0; 2074 if (zc->msg_control == msg_control_addr && 2075 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2076 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2077 zc->msg_control = (__u64) 2078 ((uintptr_t)cmsg_dummy.msg_control_user); 2079 zc->msg_controllen = 2080 (__u64)cmsg_dummy.msg_controllen; 2081 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2082 } 2083 } 2084 2085 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2086 unsigned long address, 2087 bool *mmap_locked) 2088 { 2089 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2090 2091 if (vma) { 2092 if (vma->vm_ops != &tcp_vm_ops) { 2093 vma_end_read(vma); 2094 return NULL; 2095 } 2096 *mmap_locked = false; 2097 return vma; 2098 } 2099 2100 mmap_read_lock(mm); 2101 vma = vma_lookup(mm, address); 2102 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2103 mmap_read_unlock(mm); 2104 return NULL; 2105 } 2106 *mmap_locked = true; 2107 return vma; 2108 } 2109 2110 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2111 static int tcp_zerocopy_receive(struct sock *sk, 2112 struct tcp_zerocopy_receive *zc, 2113 struct scm_timestamping_internal *tss) 2114 { 2115 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2116 unsigned long address = (unsigned long)zc->address; 2117 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2118 s32 copybuf_len = zc->copybuf_len; 2119 struct tcp_sock *tp = tcp_sk(sk); 2120 const skb_frag_t *frags = NULL; 2121 unsigned int pages_to_map = 0; 2122 struct vm_area_struct *vma; 2123 struct sk_buff *skb = NULL; 2124 u32 seq = tp->copied_seq; 2125 u32 total_bytes_to_map; 2126 int inq = tcp_inq(sk); 2127 bool mmap_locked; 2128 int ret; 2129 2130 zc->copybuf_len = 0; 2131 zc->msg_flags = 0; 2132 2133 if (address & (PAGE_SIZE - 1) || address != zc->address) 2134 return -EINVAL; 2135 2136 if (sk->sk_state == TCP_LISTEN) 2137 return -ENOTCONN; 2138 2139 sock_rps_record_flow(sk); 2140 2141 if (inq && inq <= copybuf_len) 2142 return receive_fallback_to_copy(sk, zc, inq, tss); 2143 2144 if (inq < PAGE_SIZE) { 2145 zc->length = 0; 2146 zc->recv_skip_hint = inq; 2147 if (!inq && sock_flag(sk, SOCK_DONE)) 2148 return -EIO; 2149 return 0; 2150 } 2151 2152 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2153 if (!vma) 2154 return -EINVAL; 2155 2156 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2157 avail_len = min_t(u32, vma_len, inq); 2158 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2159 if (total_bytes_to_map) { 2160 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2161 zap_page_range_single(vma, address, total_bytes_to_map, 2162 NULL); 2163 zc->length = total_bytes_to_map; 2164 zc->recv_skip_hint = 0; 2165 } else { 2166 zc->length = avail_len; 2167 zc->recv_skip_hint = avail_len; 2168 } 2169 ret = 0; 2170 while (length + PAGE_SIZE <= zc->length) { 2171 int mappable_offset; 2172 struct page *page; 2173 2174 if (zc->recv_skip_hint < PAGE_SIZE) { 2175 u32 offset_frag; 2176 2177 if (skb) { 2178 if (zc->recv_skip_hint > 0) 2179 break; 2180 skb = skb->next; 2181 offset = seq - TCP_SKB_CB(skb)->seq; 2182 } else { 2183 skb = tcp_recv_skb(sk, seq, &offset); 2184 } 2185 2186 if (!skb_frags_readable(skb)) 2187 break; 2188 2189 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2190 tcp_update_recv_tstamps(skb, tss); 2191 zc->msg_flags |= TCP_CMSG_TS; 2192 } 2193 zc->recv_skip_hint = skb->len - offset; 2194 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2195 if (!frags || offset_frag) 2196 break; 2197 } 2198 2199 mappable_offset = find_next_mappable_frag(frags, 2200 zc->recv_skip_hint); 2201 if (mappable_offset) { 2202 zc->recv_skip_hint = mappable_offset; 2203 break; 2204 } 2205 page = skb_frag_page(frags); 2206 if (WARN_ON_ONCE(!page)) 2207 break; 2208 2209 prefetchw(page); 2210 pages[pages_to_map++] = page; 2211 length += PAGE_SIZE; 2212 zc->recv_skip_hint -= PAGE_SIZE; 2213 frags++; 2214 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2215 zc->recv_skip_hint < PAGE_SIZE) { 2216 /* Either full batch, or we're about to go to next skb 2217 * (and we cannot unroll failed ops across skbs). 2218 */ 2219 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2220 pages_to_map, 2221 &address, &length, 2222 &seq, zc, 2223 total_bytes_to_map); 2224 if (ret) 2225 goto out; 2226 pages_to_map = 0; 2227 } 2228 } 2229 if (pages_to_map) { 2230 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2231 &address, &length, &seq, 2232 zc, total_bytes_to_map); 2233 } 2234 out: 2235 if (mmap_locked) 2236 mmap_read_unlock(current->mm); 2237 else 2238 vma_end_read(vma); 2239 /* Try to copy straggler data. */ 2240 if (!ret) 2241 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2242 2243 if (length + copylen) { 2244 WRITE_ONCE(tp->copied_seq, seq); 2245 tcp_rcv_space_adjust(sk); 2246 2247 /* Clean up data we have read: This will do ACK frames. */ 2248 tcp_recv_skb(sk, seq, &offset); 2249 tcp_cleanup_rbuf(sk, length + copylen); 2250 ret = 0; 2251 if (length == zc->length) 2252 zc->recv_skip_hint = 0; 2253 } else { 2254 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2255 ret = -EIO; 2256 } 2257 zc->length = length; 2258 return ret; 2259 } 2260 #endif 2261 2262 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2263 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2264 struct scm_timestamping_internal *tss) 2265 { 2266 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2267 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2268 bool has_timestamping = false; 2269 2270 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2271 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2272 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2273 if (new_tstamp) { 2274 struct __kernel_timespec kts = { 2275 .tv_sec = tss->ts[0].tv_sec, 2276 .tv_nsec = tss->ts[0].tv_nsec, 2277 }; 2278 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2279 sizeof(kts), &kts); 2280 } else { 2281 struct __kernel_old_timespec ts_old = { 2282 .tv_sec = tss->ts[0].tv_sec, 2283 .tv_nsec = tss->ts[0].tv_nsec, 2284 }; 2285 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2286 sizeof(ts_old), &ts_old); 2287 } 2288 } else { 2289 if (new_tstamp) { 2290 struct __kernel_sock_timeval stv = { 2291 .tv_sec = tss->ts[0].tv_sec, 2292 .tv_usec = tss->ts[0].tv_nsec / 1000, 2293 }; 2294 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2295 sizeof(stv), &stv); 2296 } else { 2297 struct __kernel_old_timeval tv = { 2298 .tv_sec = tss->ts[0].tv_sec, 2299 .tv_usec = tss->ts[0].tv_nsec / 1000, 2300 }; 2301 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2302 sizeof(tv), &tv); 2303 } 2304 } 2305 } 2306 2307 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2308 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2309 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2310 has_timestamping = true; 2311 else 2312 tss->ts[0] = (struct timespec64) {0}; 2313 } 2314 2315 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2316 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2317 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2318 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2319 has_timestamping = true; 2320 else 2321 tss->ts[2] = (struct timespec64) {0}; 2322 } 2323 2324 if (has_timestamping) { 2325 tss->ts[1] = (struct timespec64) {0}; 2326 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2327 put_cmsg_scm_timestamping64(msg, tss); 2328 else 2329 put_cmsg_scm_timestamping(msg, tss); 2330 } 2331 } 2332 2333 static int tcp_inq_hint(struct sock *sk) 2334 { 2335 const struct tcp_sock *tp = tcp_sk(sk); 2336 u32 copied_seq = READ_ONCE(tp->copied_seq); 2337 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2338 int inq; 2339 2340 inq = rcv_nxt - copied_seq; 2341 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2342 lock_sock(sk); 2343 inq = tp->rcv_nxt - tp->copied_seq; 2344 release_sock(sk); 2345 } 2346 /* After receiving a FIN, tell the user-space to continue reading 2347 * by returning a non-zero inq. 2348 */ 2349 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2350 inq = 1; 2351 return inq; 2352 } 2353 2354 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2355 struct tcp_xa_pool { 2356 u8 max; /* max <= MAX_SKB_FRAGS */ 2357 u8 idx; /* idx <= max */ 2358 __u32 tokens[MAX_SKB_FRAGS]; 2359 netmem_ref netmems[MAX_SKB_FRAGS]; 2360 }; 2361 2362 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2363 { 2364 int i; 2365 2366 /* Commit part that has been copied to user space. */ 2367 for (i = 0; i < p->idx; i++) 2368 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2369 (__force void *)p->netmems[i], GFP_KERNEL); 2370 /* Rollback what has been pre-allocated and is no longer needed. */ 2371 for (; i < p->max; i++) 2372 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2373 2374 p->max = 0; 2375 p->idx = 0; 2376 } 2377 2378 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2379 { 2380 if (!p->max) 2381 return; 2382 2383 xa_lock_bh(&sk->sk_user_frags); 2384 2385 tcp_xa_pool_commit_locked(sk, p); 2386 2387 xa_unlock_bh(&sk->sk_user_frags); 2388 } 2389 2390 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2391 unsigned int max_frags) 2392 { 2393 int err, k; 2394 2395 if (p->idx < p->max) 2396 return 0; 2397 2398 xa_lock_bh(&sk->sk_user_frags); 2399 2400 tcp_xa_pool_commit_locked(sk, p); 2401 2402 for (k = 0; k < max_frags; k++) { 2403 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2404 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2405 if (err) 2406 break; 2407 } 2408 2409 xa_unlock_bh(&sk->sk_user_frags); 2410 2411 p->max = k; 2412 p->idx = 0; 2413 return k ? 0 : err; 2414 } 2415 2416 /* On error, returns the -errno. On success, returns number of bytes sent to the 2417 * user. May not consume all of @remaining_len. 2418 */ 2419 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2420 unsigned int offset, struct msghdr *msg, 2421 int remaining_len) 2422 { 2423 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2424 struct tcp_xa_pool tcp_xa_pool; 2425 unsigned int start; 2426 int i, copy, n; 2427 int sent = 0; 2428 int err = 0; 2429 2430 tcp_xa_pool.max = 0; 2431 tcp_xa_pool.idx = 0; 2432 do { 2433 start = skb_headlen(skb); 2434 2435 if (skb_frags_readable(skb)) { 2436 err = -ENODEV; 2437 goto out; 2438 } 2439 2440 /* Copy header. */ 2441 copy = start - offset; 2442 if (copy > 0) { 2443 copy = min(copy, remaining_len); 2444 2445 n = copy_to_iter(skb->data + offset, copy, 2446 &msg->msg_iter); 2447 if (n != copy) { 2448 err = -EFAULT; 2449 goto out; 2450 } 2451 2452 offset += copy; 2453 remaining_len -= copy; 2454 2455 /* First a dmabuf_cmsg for # bytes copied to user 2456 * buffer. 2457 */ 2458 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2459 dmabuf_cmsg.frag_size = copy; 2460 err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR, 2461 sizeof(dmabuf_cmsg), &dmabuf_cmsg); 2462 if (err || msg->msg_flags & MSG_CTRUNC) { 2463 msg->msg_flags &= ~MSG_CTRUNC; 2464 if (!err) 2465 err = -ETOOSMALL; 2466 goto out; 2467 } 2468 2469 sent += copy; 2470 2471 if (remaining_len == 0) 2472 goto out; 2473 } 2474 2475 /* after that, send information of dmabuf pages through a 2476 * sequence of cmsg 2477 */ 2478 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2479 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2480 struct net_iov *niov; 2481 u64 frag_offset; 2482 int end; 2483 2484 /* !skb_frags_readable() should indicate that ALL the 2485 * frags in this skb are dmabuf net_iovs. We're checking 2486 * for that flag above, but also check individual frags 2487 * here. If the tcp stack is not setting 2488 * skb_frags_readable() correctly, we still don't want 2489 * to crash here. 2490 */ 2491 if (!skb_frag_net_iov(frag)) { 2492 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2493 err = -ENODEV; 2494 goto out; 2495 } 2496 2497 niov = skb_frag_net_iov(frag); 2498 end = start + skb_frag_size(frag); 2499 copy = end - offset; 2500 2501 if (copy > 0) { 2502 copy = min(copy, remaining_len); 2503 2504 frag_offset = net_iov_virtual_addr(niov) + 2505 skb_frag_off(frag) + offset - 2506 start; 2507 dmabuf_cmsg.frag_offset = frag_offset; 2508 dmabuf_cmsg.frag_size = copy; 2509 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2510 skb_shinfo(skb)->nr_frags - i); 2511 if (err) 2512 goto out; 2513 2514 /* Will perform the exchange later */ 2515 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2516 dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov); 2517 2518 offset += copy; 2519 remaining_len -= copy; 2520 2521 err = put_cmsg(msg, SOL_SOCKET, 2522 SO_DEVMEM_DMABUF, 2523 sizeof(dmabuf_cmsg), 2524 &dmabuf_cmsg); 2525 if (err || msg->msg_flags & MSG_CTRUNC) { 2526 msg->msg_flags &= ~MSG_CTRUNC; 2527 if (!err) 2528 err = -ETOOSMALL; 2529 goto out; 2530 } 2531 2532 atomic_long_inc(&niov->pp_ref_count); 2533 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2534 2535 sent += copy; 2536 2537 if (remaining_len == 0) 2538 goto out; 2539 } 2540 start = end; 2541 } 2542 2543 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2544 if (!remaining_len) 2545 goto out; 2546 2547 /* if remaining_len is not satisfied yet, we need to go to the 2548 * next frag in the frag_list to satisfy remaining_len. 2549 */ 2550 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2551 2552 offset = offset - start; 2553 } while (skb); 2554 2555 if (remaining_len) { 2556 err = -EFAULT; 2557 goto out; 2558 } 2559 2560 out: 2561 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2562 if (!sent) 2563 sent = err; 2564 2565 return sent; 2566 } 2567 2568 /* 2569 * This routine copies from a sock struct into the user buffer. 2570 * 2571 * Technical note: in 2.3 we work on _locked_ socket, so that 2572 * tricks with *seq access order and skb->users are not required. 2573 * Probably, code can be easily improved even more. 2574 */ 2575 2576 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2577 int flags, struct scm_timestamping_internal *tss, 2578 int *cmsg_flags) 2579 { 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 int last_copied_dmabuf = -1; /* uninitialized */ 2582 int copied = 0; 2583 u32 peek_seq; 2584 u32 *seq; 2585 unsigned long used; 2586 int err; 2587 int target; /* Read at least this many bytes */ 2588 long timeo; 2589 struct sk_buff *skb, *last; 2590 u32 peek_offset = 0; 2591 u32 urg_hole = 0; 2592 2593 err = -ENOTCONN; 2594 if (sk->sk_state == TCP_LISTEN) 2595 goto out; 2596 2597 if (tp->recvmsg_inq) { 2598 *cmsg_flags = TCP_CMSG_INQ; 2599 msg->msg_get_inq = 1; 2600 } 2601 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2602 2603 /* Urgent data needs to be handled specially. */ 2604 if (flags & MSG_OOB) 2605 goto recv_urg; 2606 2607 if (unlikely(tp->repair)) { 2608 err = -EPERM; 2609 if (!(flags & MSG_PEEK)) 2610 goto out; 2611 2612 if (tp->repair_queue == TCP_SEND_QUEUE) 2613 goto recv_sndq; 2614 2615 err = -EINVAL; 2616 if (tp->repair_queue == TCP_NO_QUEUE) 2617 goto out; 2618 2619 /* 'common' recv queue MSG_PEEK-ing */ 2620 } 2621 2622 seq = &tp->copied_seq; 2623 if (flags & MSG_PEEK) { 2624 peek_offset = max(sk_peek_offset(sk, flags), 0); 2625 peek_seq = tp->copied_seq + peek_offset; 2626 seq = &peek_seq; 2627 } 2628 2629 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2630 2631 do { 2632 u32 offset; 2633 2634 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2635 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2636 if (copied) 2637 break; 2638 if (signal_pending(current)) { 2639 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2640 break; 2641 } 2642 } 2643 2644 /* Next get a buffer. */ 2645 2646 last = skb_peek_tail(&sk->sk_receive_queue); 2647 skb_queue_walk(&sk->sk_receive_queue, skb) { 2648 last = skb; 2649 /* Now that we have two receive queues this 2650 * shouldn't happen. 2651 */ 2652 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2653 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2654 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2655 flags)) 2656 break; 2657 2658 offset = *seq - TCP_SKB_CB(skb)->seq; 2659 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2660 pr_err_once("%s: found a SYN, please report !\n", __func__); 2661 offset--; 2662 } 2663 if (offset < skb->len) 2664 goto found_ok_skb; 2665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2666 goto found_fin_ok; 2667 WARN(!(flags & MSG_PEEK), 2668 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2669 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2670 } 2671 2672 /* Well, if we have backlog, try to process it now yet. */ 2673 2674 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2675 break; 2676 2677 if (copied) { 2678 if (!timeo || 2679 sk->sk_err || 2680 sk->sk_state == TCP_CLOSE || 2681 (sk->sk_shutdown & RCV_SHUTDOWN) || 2682 signal_pending(current)) 2683 break; 2684 } else { 2685 if (sock_flag(sk, SOCK_DONE)) 2686 break; 2687 2688 if (sk->sk_err) { 2689 copied = sock_error(sk); 2690 break; 2691 } 2692 2693 if (sk->sk_shutdown & RCV_SHUTDOWN) 2694 break; 2695 2696 if (sk->sk_state == TCP_CLOSE) { 2697 /* This occurs when user tries to read 2698 * from never connected socket. 2699 */ 2700 copied = -ENOTCONN; 2701 break; 2702 } 2703 2704 if (!timeo) { 2705 copied = -EAGAIN; 2706 break; 2707 } 2708 2709 if (signal_pending(current)) { 2710 copied = sock_intr_errno(timeo); 2711 break; 2712 } 2713 } 2714 2715 if (copied >= target) { 2716 /* Do not sleep, just process backlog. */ 2717 __sk_flush_backlog(sk); 2718 } else { 2719 tcp_cleanup_rbuf(sk, copied); 2720 err = sk_wait_data(sk, &timeo, last); 2721 if (err < 0) { 2722 err = copied ? : err; 2723 goto out; 2724 } 2725 } 2726 2727 if ((flags & MSG_PEEK) && 2728 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2729 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2730 current->comm, 2731 task_pid_nr(current)); 2732 peek_seq = tp->copied_seq + peek_offset; 2733 } 2734 continue; 2735 2736 found_ok_skb: 2737 /* Ok so how much can we use? */ 2738 used = skb->len - offset; 2739 if (len < used) 2740 used = len; 2741 2742 /* Do we have urgent data here? */ 2743 if (unlikely(tp->urg_data)) { 2744 u32 urg_offset = tp->urg_seq - *seq; 2745 if (urg_offset < used) { 2746 if (!urg_offset) { 2747 if (!sock_flag(sk, SOCK_URGINLINE)) { 2748 WRITE_ONCE(*seq, *seq + 1); 2749 urg_hole++; 2750 offset++; 2751 used--; 2752 if (!used) 2753 goto skip_copy; 2754 } 2755 } else 2756 used = urg_offset; 2757 } 2758 } 2759 2760 if (!(flags & MSG_TRUNC)) { 2761 if (last_copied_dmabuf != -1 && 2762 last_copied_dmabuf != !skb_frags_readable(skb)) 2763 break; 2764 2765 if (skb_frags_readable(skb)) { 2766 err = skb_copy_datagram_msg(skb, offset, msg, 2767 used); 2768 if (err) { 2769 /* Exception. Bailout! */ 2770 if (!copied) 2771 copied = -EFAULT; 2772 break; 2773 } 2774 } else { 2775 if (!(flags & MSG_SOCK_DEVMEM)) { 2776 /* dmabuf skbs can only be received 2777 * with the MSG_SOCK_DEVMEM flag. 2778 */ 2779 if (!copied) 2780 copied = -EFAULT; 2781 2782 break; 2783 } 2784 2785 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2786 used); 2787 if (err <= 0) { 2788 if (!copied) 2789 copied = -EFAULT; 2790 2791 break; 2792 } 2793 used = err; 2794 } 2795 } 2796 2797 last_copied_dmabuf = !skb_frags_readable(skb); 2798 2799 WRITE_ONCE(*seq, *seq + used); 2800 copied += used; 2801 len -= used; 2802 if (flags & MSG_PEEK) 2803 sk_peek_offset_fwd(sk, used); 2804 else 2805 sk_peek_offset_bwd(sk, used); 2806 tcp_rcv_space_adjust(sk); 2807 2808 skip_copy: 2809 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2810 WRITE_ONCE(tp->urg_data, 0); 2811 tcp_fast_path_check(sk); 2812 } 2813 2814 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2815 tcp_update_recv_tstamps(skb, tss); 2816 *cmsg_flags |= TCP_CMSG_TS; 2817 } 2818 2819 if (used + offset < skb->len) 2820 continue; 2821 2822 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2823 goto found_fin_ok; 2824 if (!(flags & MSG_PEEK)) 2825 tcp_eat_recv_skb(sk, skb); 2826 continue; 2827 2828 found_fin_ok: 2829 /* Process the FIN. */ 2830 WRITE_ONCE(*seq, *seq + 1); 2831 if (!(flags & MSG_PEEK)) 2832 tcp_eat_recv_skb(sk, skb); 2833 break; 2834 } while (len > 0); 2835 2836 /* According to UNIX98, msg_name/msg_namelen are ignored 2837 * on connected socket. I was just happy when found this 8) --ANK 2838 */ 2839 2840 /* Clean up data we have read: This will do ACK frames. */ 2841 tcp_cleanup_rbuf(sk, copied); 2842 return copied; 2843 2844 out: 2845 return err; 2846 2847 recv_urg: 2848 err = tcp_recv_urg(sk, msg, len, flags); 2849 goto out; 2850 2851 recv_sndq: 2852 err = tcp_peek_sndq(sk, msg, len); 2853 goto out; 2854 } 2855 2856 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2857 int *addr_len) 2858 { 2859 int cmsg_flags = 0, ret; 2860 struct scm_timestamping_internal tss; 2861 2862 if (unlikely(flags & MSG_ERRQUEUE)) 2863 return inet_recv_error(sk, msg, len, addr_len); 2864 2865 if (sk_can_busy_loop(sk) && 2866 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2867 sk->sk_state == TCP_ESTABLISHED) 2868 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2869 2870 lock_sock(sk); 2871 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2872 release_sock(sk); 2873 2874 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2875 if (cmsg_flags & TCP_CMSG_TS) 2876 tcp_recv_timestamp(msg, sk, &tss); 2877 if (msg->msg_get_inq) { 2878 msg->msg_inq = tcp_inq_hint(sk); 2879 if (cmsg_flags & TCP_CMSG_INQ) 2880 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2881 sizeof(msg->msg_inq), &msg->msg_inq); 2882 } 2883 } 2884 return ret; 2885 } 2886 EXPORT_SYMBOL(tcp_recvmsg); 2887 2888 void tcp_set_state(struct sock *sk, int state) 2889 { 2890 int oldstate = sk->sk_state; 2891 2892 /* We defined a new enum for TCP states that are exported in BPF 2893 * so as not force the internal TCP states to be frozen. The 2894 * following checks will detect if an internal state value ever 2895 * differs from the BPF value. If this ever happens, then we will 2896 * need to remap the internal value to the BPF value before calling 2897 * tcp_call_bpf_2arg. 2898 */ 2899 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2900 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2901 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2902 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2903 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2904 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2905 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2906 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2907 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2908 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2909 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2910 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2911 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2912 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2913 2914 /* bpf uapi header bpf.h defines an anonymous enum with values 2915 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2916 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2917 * But clang built vmlinux does not have this enum in DWARF 2918 * since clang removes the above code before generating IR/debuginfo. 2919 * Let us explicitly emit the type debuginfo to ensure the 2920 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2921 * regardless of which compiler is used. 2922 */ 2923 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2924 2925 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2926 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2927 2928 switch (state) { 2929 case TCP_ESTABLISHED: 2930 if (oldstate != TCP_ESTABLISHED) 2931 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2932 break; 2933 case TCP_CLOSE_WAIT: 2934 if (oldstate == TCP_SYN_RECV) 2935 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2936 break; 2937 2938 case TCP_CLOSE: 2939 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2940 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2941 2942 sk->sk_prot->unhash(sk); 2943 if (inet_csk(sk)->icsk_bind_hash && 2944 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2945 inet_put_port(sk); 2946 fallthrough; 2947 default: 2948 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2949 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2950 } 2951 2952 /* Change state AFTER socket is unhashed to avoid closed 2953 * socket sitting in hash tables. 2954 */ 2955 inet_sk_state_store(sk, state); 2956 } 2957 EXPORT_SYMBOL_GPL(tcp_set_state); 2958 2959 /* 2960 * State processing on a close. This implements the state shift for 2961 * sending our FIN frame. Note that we only send a FIN for some 2962 * states. A shutdown() may have already sent the FIN, or we may be 2963 * closed. 2964 */ 2965 2966 static const unsigned char new_state[16] = { 2967 /* current state: new state: action: */ 2968 [0 /* (Invalid) */] = TCP_CLOSE, 2969 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2970 [TCP_SYN_SENT] = TCP_CLOSE, 2971 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2972 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2973 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2974 [TCP_TIME_WAIT] = TCP_CLOSE, 2975 [TCP_CLOSE] = TCP_CLOSE, 2976 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2977 [TCP_LAST_ACK] = TCP_LAST_ACK, 2978 [TCP_LISTEN] = TCP_CLOSE, 2979 [TCP_CLOSING] = TCP_CLOSING, 2980 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2981 }; 2982 2983 static int tcp_close_state(struct sock *sk) 2984 { 2985 int next = (int)new_state[sk->sk_state]; 2986 int ns = next & TCP_STATE_MASK; 2987 2988 tcp_set_state(sk, ns); 2989 2990 return next & TCP_ACTION_FIN; 2991 } 2992 2993 /* 2994 * Shutdown the sending side of a connection. Much like close except 2995 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2996 */ 2997 2998 void tcp_shutdown(struct sock *sk, int how) 2999 { 3000 /* We need to grab some memory, and put together a FIN, 3001 * and then put it into the queue to be sent. 3002 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3003 */ 3004 if (!(how & SEND_SHUTDOWN)) 3005 return; 3006 3007 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3008 if ((1 << sk->sk_state) & 3009 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3010 TCPF_CLOSE_WAIT)) { 3011 /* Clear out any half completed packets. FIN if needed. */ 3012 if (tcp_close_state(sk)) 3013 tcp_send_fin(sk); 3014 } 3015 } 3016 EXPORT_SYMBOL(tcp_shutdown); 3017 3018 int tcp_orphan_count_sum(void) 3019 { 3020 int i, total = 0; 3021 3022 for_each_possible_cpu(i) 3023 total += per_cpu(tcp_orphan_count, i); 3024 3025 return max(total, 0); 3026 } 3027 3028 static int tcp_orphan_cache; 3029 static struct timer_list tcp_orphan_timer; 3030 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3031 3032 static void tcp_orphan_update(struct timer_list *unused) 3033 { 3034 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3035 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3036 } 3037 3038 static bool tcp_too_many_orphans(int shift) 3039 { 3040 return READ_ONCE(tcp_orphan_cache) << shift > 3041 READ_ONCE(sysctl_tcp_max_orphans); 3042 } 3043 3044 static bool tcp_out_of_memory(const struct sock *sk) 3045 { 3046 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3047 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3048 return true; 3049 return false; 3050 } 3051 3052 bool tcp_check_oom(const struct sock *sk, int shift) 3053 { 3054 bool too_many_orphans, out_of_socket_memory; 3055 3056 too_many_orphans = tcp_too_many_orphans(shift); 3057 out_of_socket_memory = tcp_out_of_memory(sk); 3058 3059 if (too_many_orphans) 3060 net_info_ratelimited("too many orphaned sockets\n"); 3061 if (out_of_socket_memory) 3062 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3063 return too_many_orphans || out_of_socket_memory; 3064 } 3065 3066 void __tcp_close(struct sock *sk, long timeout) 3067 { 3068 struct sk_buff *skb; 3069 int data_was_unread = 0; 3070 int state; 3071 3072 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3073 3074 if (sk->sk_state == TCP_LISTEN) { 3075 tcp_set_state(sk, TCP_CLOSE); 3076 3077 /* Special case. */ 3078 inet_csk_listen_stop(sk); 3079 3080 goto adjudge_to_death; 3081 } 3082 3083 /* We need to flush the recv. buffs. We do this only on the 3084 * descriptor close, not protocol-sourced closes, because the 3085 * reader process may not have drained the data yet! 3086 */ 3087 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3088 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3089 3090 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3091 len--; 3092 data_was_unread += len; 3093 __kfree_skb(skb); 3094 } 3095 3096 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3097 if (sk->sk_state == TCP_CLOSE) 3098 goto adjudge_to_death; 3099 3100 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3101 * data was lost. To witness the awful effects of the old behavior of 3102 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3103 * GET in an FTP client, suspend the process, wait for the client to 3104 * advertise a zero window, then kill -9 the FTP client, wheee... 3105 * Note: timeout is always zero in such a case. 3106 */ 3107 if (unlikely(tcp_sk(sk)->repair)) { 3108 sk->sk_prot->disconnect(sk, 0); 3109 } else if (data_was_unread) { 3110 /* Unread data was tossed, zap the connection. */ 3111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3112 tcp_set_state(sk, TCP_CLOSE); 3113 tcp_send_active_reset(sk, sk->sk_allocation, 3114 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3115 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3116 /* Check zero linger _after_ checking for unread data. */ 3117 sk->sk_prot->disconnect(sk, 0); 3118 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3119 } else if (tcp_close_state(sk)) { 3120 /* We FIN if the application ate all the data before 3121 * zapping the connection. 3122 */ 3123 3124 /* RED-PEN. Formally speaking, we have broken TCP state 3125 * machine. State transitions: 3126 * 3127 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3128 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3129 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3130 * 3131 * are legal only when FIN has been sent (i.e. in window), 3132 * rather than queued out of window. Purists blame. 3133 * 3134 * F.e. "RFC state" is ESTABLISHED, 3135 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3136 * 3137 * The visible declinations are that sometimes 3138 * we enter time-wait state, when it is not required really 3139 * (harmless), do not send active resets, when they are 3140 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3141 * they look as CLOSING or LAST_ACK for Linux) 3142 * Probably, I missed some more holelets. 3143 * --ANK 3144 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3145 * in a single packet! (May consider it later but will 3146 * probably need API support or TCP_CORK SYN-ACK until 3147 * data is written and socket is closed.) 3148 */ 3149 tcp_send_fin(sk); 3150 } 3151 3152 sk_stream_wait_close(sk, timeout); 3153 3154 adjudge_to_death: 3155 state = sk->sk_state; 3156 sock_hold(sk); 3157 sock_orphan(sk); 3158 3159 local_bh_disable(); 3160 bh_lock_sock(sk); 3161 /* remove backlog if any, without releasing ownership. */ 3162 __release_sock(sk); 3163 3164 this_cpu_inc(tcp_orphan_count); 3165 3166 /* Have we already been destroyed by a softirq or backlog? */ 3167 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3168 goto out; 3169 3170 /* This is a (useful) BSD violating of the RFC. There is a 3171 * problem with TCP as specified in that the other end could 3172 * keep a socket open forever with no application left this end. 3173 * We use a 1 minute timeout (about the same as BSD) then kill 3174 * our end. If they send after that then tough - BUT: long enough 3175 * that we won't make the old 4*rto = almost no time - whoops 3176 * reset mistake. 3177 * 3178 * Nope, it was not mistake. It is really desired behaviour 3179 * f.e. on http servers, when such sockets are useless, but 3180 * consume significant resources. Let's do it with special 3181 * linger2 option. --ANK 3182 */ 3183 3184 if (sk->sk_state == TCP_FIN_WAIT2) { 3185 struct tcp_sock *tp = tcp_sk(sk); 3186 if (READ_ONCE(tp->linger2) < 0) { 3187 tcp_set_state(sk, TCP_CLOSE); 3188 tcp_send_active_reset(sk, GFP_ATOMIC, 3189 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3190 __NET_INC_STATS(sock_net(sk), 3191 LINUX_MIB_TCPABORTONLINGER); 3192 } else { 3193 const int tmo = tcp_fin_time(sk); 3194 3195 if (tmo > TCP_TIMEWAIT_LEN) { 3196 inet_csk_reset_keepalive_timer(sk, 3197 tmo - TCP_TIMEWAIT_LEN); 3198 } else { 3199 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3200 goto out; 3201 } 3202 } 3203 } 3204 if (sk->sk_state != TCP_CLOSE) { 3205 if (tcp_check_oom(sk, 0)) { 3206 tcp_set_state(sk, TCP_CLOSE); 3207 tcp_send_active_reset(sk, GFP_ATOMIC, 3208 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3209 __NET_INC_STATS(sock_net(sk), 3210 LINUX_MIB_TCPABORTONMEMORY); 3211 } else if (!check_net(sock_net(sk))) { 3212 /* Not possible to send reset; just close */ 3213 tcp_set_state(sk, TCP_CLOSE); 3214 } 3215 } 3216 3217 if (sk->sk_state == TCP_CLOSE) { 3218 struct request_sock *req; 3219 3220 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3221 lockdep_sock_is_held(sk)); 3222 /* We could get here with a non-NULL req if the socket is 3223 * aborted (e.g., closed with unread data) before 3WHS 3224 * finishes. 3225 */ 3226 if (req) 3227 reqsk_fastopen_remove(sk, req, false); 3228 inet_csk_destroy_sock(sk); 3229 } 3230 /* Otherwise, socket is reprieved until protocol close. */ 3231 3232 out: 3233 bh_unlock_sock(sk); 3234 local_bh_enable(); 3235 } 3236 3237 void tcp_close(struct sock *sk, long timeout) 3238 { 3239 lock_sock(sk); 3240 __tcp_close(sk, timeout); 3241 release_sock(sk); 3242 if (!sk->sk_net_refcnt) 3243 inet_csk_clear_xmit_timers_sync(sk); 3244 sock_put(sk); 3245 } 3246 EXPORT_SYMBOL(tcp_close); 3247 3248 /* These states need RST on ABORT according to RFC793 */ 3249 3250 static inline bool tcp_need_reset(int state) 3251 { 3252 return (1 << state) & 3253 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3254 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3255 } 3256 3257 static void tcp_rtx_queue_purge(struct sock *sk) 3258 { 3259 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3260 3261 tcp_sk(sk)->highest_sack = NULL; 3262 while (p) { 3263 struct sk_buff *skb = rb_to_skb(p); 3264 3265 p = rb_next(p); 3266 /* Since we are deleting whole queue, no need to 3267 * list_del(&skb->tcp_tsorted_anchor) 3268 */ 3269 tcp_rtx_queue_unlink(skb, sk); 3270 tcp_wmem_free_skb(sk, skb); 3271 } 3272 } 3273 3274 void tcp_write_queue_purge(struct sock *sk) 3275 { 3276 struct sk_buff *skb; 3277 3278 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3279 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3280 tcp_skb_tsorted_anchor_cleanup(skb); 3281 tcp_wmem_free_skb(sk, skb); 3282 } 3283 tcp_rtx_queue_purge(sk); 3284 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3285 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3286 tcp_sk(sk)->packets_out = 0; 3287 inet_csk(sk)->icsk_backoff = 0; 3288 } 3289 3290 int tcp_disconnect(struct sock *sk, int flags) 3291 { 3292 struct inet_sock *inet = inet_sk(sk); 3293 struct inet_connection_sock *icsk = inet_csk(sk); 3294 struct tcp_sock *tp = tcp_sk(sk); 3295 int old_state = sk->sk_state; 3296 u32 seq; 3297 3298 if (old_state != TCP_CLOSE) 3299 tcp_set_state(sk, TCP_CLOSE); 3300 3301 /* ABORT function of RFC793 */ 3302 if (old_state == TCP_LISTEN) { 3303 inet_csk_listen_stop(sk); 3304 } else if (unlikely(tp->repair)) { 3305 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3306 } else if (tcp_need_reset(old_state)) { 3307 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3308 WRITE_ONCE(sk->sk_err, ECONNRESET); 3309 } else if (tp->snd_nxt != tp->write_seq && 3310 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3311 /* The last check adjusts for discrepancy of Linux wrt. RFC 3312 * states 3313 */ 3314 tcp_send_active_reset(sk, gfp_any(), 3315 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3316 WRITE_ONCE(sk->sk_err, ECONNRESET); 3317 } else if (old_state == TCP_SYN_SENT) 3318 WRITE_ONCE(sk->sk_err, ECONNRESET); 3319 3320 tcp_clear_xmit_timers(sk); 3321 __skb_queue_purge(&sk->sk_receive_queue); 3322 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3323 WRITE_ONCE(tp->urg_data, 0); 3324 sk_set_peek_off(sk, -1); 3325 tcp_write_queue_purge(sk); 3326 tcp_fastopen_active_disable_ofo_check(sk); 3327 skb_rbtree_purge(&tp->out_of_order_queue); 3328 3329 inet->inet_dport = 0; 3330 3331 inet_bhash2_reset_saddr(sk); 3332 3333 WRITE_ONCE(sk->sk_shutdown, 0); 3334 sock_reset_flag(sk, SOCK_DONE); 3335 tp->srtt_us = 0; 3336 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3337 tp->rcv_rtt_last_tsecr = 0; 3338 3339 seq = tp->write_seq + tp->max_window + 2; 3340 if (!seq) 3341 seq = 1; 3342 WRITE_ONCE(tp->write_seq, seq); 3343 3344 icsk->icsk_backoff = 0; 3345 icsk->icsk_probes_out = 0; 3346 icsk->icsk_probes_tstamp = 0; 3347 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3348 icsk->icsk_rto_min = TCP_RTO_MIN; 3349 icsk->icsk_delack_max = TCP_DELACK_MAX; 3350 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3351 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3352 tp->snd_cwnd_cnt = 0; 3353 tp->is_cwnd_limited = 0; 3354 tp->max_packets_out = 0; 3355 tp->window_clamp = 0; 3356 tp->delivered = 0; 3357 tp->delivered_ce = 0; 3358 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3359 icsk->icsk_ca_ops->release(sk); 3360 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3361 icsk->icsk_ca_initialized = 0; 3362 tcp_set_ca_state(sk, TCP_CA_Open); 3363 tp->is_sack_reneg = 0; 3364 tcp_clear_retrans(tp); 3365 tp->total_retrans = 0; 3366 inet_csk_delack_init(sk); 3367 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3368 * issue in __tcp_select_window() 3369 */ 3370 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3371 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3372 __sk_dst_reset(sk); 3373 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3374 tcp_saved_syn_free(tp); 3375 tp->compressed_ack = 0; 3376 tp->segs_in = 0; 3377 tp->segs_out = 0; 3378 tp->bytes_sent = 0; 3379 tp->bytes_acked = 0; 3380 tp->bytes_received = 0; 3381 tp->bytes_retrans = 0; 3382 tp->data_segs_in = 0; 3383 tp->data_segs_out = 0; 3384 tp->duplicate_sack[0].start_seq = 0; 3385 tp->duplicate_sack[0].end_seq = 0; 3386 tp->dsack_dups = 0; 3387 tp->reord_seen = 0; 3388 tp->retrans_out = 0; 3389 tp->sacked_out = 0; 3390 tp->tlp_high_seq = 0; 3391 tp->last_oow_ack_time = 0; 3392 tp->plb_rehash = 0; 3393 /* There's a bubble in the pipe until at least the first ACK. */ 3394 tp->app_limited = ~0U; 3395 tp->rate_app_limited = 1; 3396 tp->rack.mstamp = 0; 3397 tp->rack.advanced = 0; 3398 tp->rack.reo_wnd_steps = 1; 3399 tp->rack.last_delivered = 0; 3400 tp->rack.reo_wnd_persist = 0; 3401 tp->rack.dsack_seen = 0; 3402 tp->syn_data_acked = 0; 3403 tp->rx_opt.saw_tstamp = 0; 3404 tp->rx_opt.dsack = 0; 3405 tp->rx_opt.num_sacks = 0; 3406 tp->rcv_ooopack = 0; 3407 3408 3409 /* Clean up fastopen related fields */ 3410 tcp_free_fastopen_req(tp); 3411 inet_clear_bit(DEFER_CONNECT, sk); 3412 tp->fastopen_client_fail = 0; 3413 3414 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3415 3416 if (sk->sk_frag.page) { 3417 put_page(sk->sk_frag.page); 3418 sk->sk_frag.page = NULL; 3419 sk->sk_frag.offset = 0; 3420 } 3421 sk_error_report(sk); 3422 return 0; 3423 } 3424 EXPORT_SYMBOL(tcp_disconnect); 3425 3426 static inline bool tcp_can_repair_sock(const struct sock *sk) 3427 { 3428 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3429 (sk->sk_state != TCP_LISTEN); 3430 } 3431 3432 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3433 { 3434 struct tcp_repair_window opt; 3435 3436 if (!tp->repair) 3437 return -EPERM; 3438 3439 if (len != sizeof(opt)) 3440 return -EINVAL; 3441 3442 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3443 return -EFAULT; 3444 3445 if (opt.max_window < opt.snd_wnd) 3446 return -EINVAL; 3447 3448 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3449 return -EINVAL; 3450 3451 if (after(opt.rcv_wup, tp->rcv_nxt)) 3452 return -EINVAL; 3453 3454 tp->snd_wl1 = opt.snd_wl1; 3455 tp->snd_wnd = opt.snd_wnd; 3456 tp->max_window = opt.max_window; 3457 3458 tp->rcv_wnd = opt.rcv_wnd; 3459 tp->rcv_wup = opt.rcv_wup; 3460 3461 return 0; 3462 } 3463 3464 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3465 unsigned int len) 3466 { 3467 struct tcp_sock *tp = tcp_sk(sk); 3468 struct tcp_repair_opt opt; 3469 size_t offset = 0; 3470 3471 while (len >= sizeof(opt)) { 3472 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3473 return -EFAULT; 3474 3475 offset += sizeof(opt); 3476 len -= sizeof(opt); 3477 3478 switch (opt.opt_code) { 3479 case TCPOPT_MSS: 3480 tp->rx_opt.mss_clamp = opt.opt_val; 3481 tcp_mtup_init(sk); 3482 break; 3483 case TCPOPT_WINDOW: 3484 { 3485 u16 snd_wscale = opt.opt_val & 0xFFFF; 3486 u16 rcv_wscale = opt.opt_val >> 16; 3487 3488 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3489 return -EFBIG; 3490 3491 tp->rx_opt.snd_wscale = snd_wscale; 3492 tp->rx_opt.rcv_wscale = rcv_wscale; 3493 tp->rx_opt.wscale_ok = 1; 3494 } 3495 break; 3496 case TCPOPT_SACK_PERM: 3497 if (opt.opt_val != 0) 3498 return -EINVAL; 3499 3500 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3501 break; 3502 case TCPOPT_TIMESTAMP: 3503 if (opt.opt_val != 0) 3504 return -EINVAL; 3505 3506 tp->rx_opt.tstamp_ok = 1; 3507 break; 3508 } 3509 } 3510 3511 return 0; 3512 } 3513 3514 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3515 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3516 3517 static void tcp_enable_tx_delay(void) 3518 { 3519 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3520 static int __tcp_tx_delay_enabled = 0; 3521 3522 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3523 static_branch_enable(&tcp_tx_delay_enabled); 3524 pr_info("TCP_TX_DELAY enabled\n"); 3525 } 3526 } 3527 } 3528 3529 /* When set indicates to always queue non-full frames. Later the user clears 3530 * this option and we transmit any pending partial frames in the queue. This is 3531 * meant to be used alongside sendfile() to get properly filled frames when the 3532 * user (for example) must write out headers with a write() call first and then 3533 * use sendfile to send out the data parts. 3534 * 3535 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3536 * TCP_NODELAY. 3537 */ 3538 void __tcp_sock_set_cork(struct sock *sk, bool on) 3539 { 3540 struct tcp_sock *tp = tcp_sk(sk); 3541 3542 if (on) { 3543 tp->nonagle |= TCP_NAGLE_CORK; 3544 } else { 3545 tp->nonagle &= ~TCP_NAGLE_CORK; 3546 if (tp->nonagle & TCP_NAGLE_OFF) 3547 tp->nonagle |= TCP_NAGLE_PUSH; 3548 tcp_push_pending_frames(sk); 3549 } 3550 } 3551 3552 void tcp_sock_set_cork(struct sock *sk, bool on) 3553 { 3554 lock_sock(sk); 3555 __tcp_sock_set_cork(sk, on); 3556 release_sock(sk); 3557 } 3558 EXPORT_SYMBOL(tcp_sock_set_cork); 3559 3560 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3561 * remembered, but it is not activated until cork is cleared. 3562 * 3563 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3564 * even TCP_CORK for currently queued segments. 3565 */ 3566 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3567 { 3568 if (on) { 3569 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3570 tcp_push_pending_frames(sk); 3571 } else { 3572 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3573 } 3574 } 3575 3576 void tcp_sock_set_nodelay(struct sock *sk) 3577 { 3578 lock_sock(sk); 3579 __tcp_sock_set_nodelay(sk, true); 3580 release_sock(sk); 3581 } 3582 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3583 3584 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3585 { 3586 if (!val) { 3587 inet_csk_enter_pingpong_mode(sk); 3588 return; 3589 } 3590 3591 inet_csk_exit_pingpong_mode(sk); 3592 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3593 inet_csk_ack_scheduled(sk)) { 3594 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3595 tcp_cleanup_rbuf(sk, 1); 3596 if (!(val & 1)) 3597 inet_csk_enter_pingpong_mode(sk); 3598 } 3599 } 3600 3601 void tcp_sock_set_quickack(struct sock *sk, int val) 3602 { 3603 lock_sock(sk); 3604 __tcp_sock_set_quickack(sk, val); 3605 release_sock(sk); 3606 } 3607 EXPORT_SYMBOL(tcp_sock_set_quickack); 3608 3609 int tcp_sock_set_syncnt(struct sock *sk, int val) 3610 { 3611 if (val < 1 || val > MAX_TCP_SYNCNT) 3612 return -EINVAL; 3613 3614 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3615 return 0; 3616 } 3617 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3618 3619 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3620 { 3621 /* Cap the max time in ms TCP will retry or probe the window 3622 * before giving up and aborting (ETIMEDOUT) a connection. 3623 */ 3624 if (val < 0) 3625 return -EINVAL; 3626 3627 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3628 return 0; 3629 } 3630 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3631 3632 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3633 { 3634 struct tcp_sock *tp = tcp_sk(sk); 3635 3636 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3637 return -EINVAL; 3638 3639 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3640 WRITE_ONCE(tp->keepalive_time, val * HZ); 3641 if (sock_flag(sk, SOCK_KEEPOPEN) && 3642 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3643 u32 elapsed = keepalive_time_elapsed(tp); 3644 3645 if (tp->keepalive_time > elapsed) 3646 elapsed = tp->keepalive_time - elapsed; 3647 else 3648 elapsed = 0; 3649 inet_csk_reset_keepalive_timer(sk, elapsed); 3650 } 3651 3652 return 0; 3653 } 3654 3655 int tcp_sock_set_keepidle(struct sock *sk, int val) 3656 { 3657 int err; 3658 3659 lock_sock(sk); 3660 err = tcp_sock_set_keepidle_locked(sk, val); 3661 release_sock(sk); 3662 return err; 3663 } 3664 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3665 3666 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3667 { 3668 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3669 return -EINVAL; 3670 3671 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3672 return 0; 3673 } 3674 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3675 3676 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3677 { 3678 if (val < 1 || val > MAX_TCP_KEEPCNT) 3679 return -EINVAL; 3680 3681 /* Paired with READ_ONCE() in keepalive_probes() */ 3682 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3683 return 0; 3684 } 3685 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3686 3687 int tcp_set_window_clamp(struct sock *sk, int val) 3688 { 3689 struct tcp_sock *tp = tcp_sk(sk); 3690 3691 if (!val) { 3692 if (sk->sk_state != TCP_CLOSE) 3693 return -EINVAL; 3694 WRITE_ONCE(tp->window_clamp, 0); 3695 } else { 3696 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3697 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3698 SOCK_MIN_RCVBUF / 2 : val; 3699 3700 if (new_window_clamp == old_window_clamp) 3701 return 0; 3702 3703 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3704 if (new_window_clamp < old_window_clamp) { 3705 /* need to apply the reserved mem provisioning only 3706 * when shrinking the window clamp 3707 */ 3708 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3709 3710 } else { 3711 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3712 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3713 tp->rcv_ssthresh); 3714 } 3715 } 3716 return 0; 3717 } 3718 3719 /* 3720 * Socket option code for TCP. 3721 */ 3722 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3723 sockptr_t optval, unsigned int optlen) 3724 { 3725 struct tcp_sock *tp = tcp_sk(sk); 3726 struct inet_connection_sock *icsk = inet_csk(sk); 3727 struct net *net = sock_net(sk); 3728 int val; 3729 int err = 0; 3730 3731 /* These are data/string values, all the others are ints */ 3732 switch (optname) { 3733 case TCP_CONGESTION: { 3734 char name[TCP_CA_NAME_MAX]; 3735 3736 if (optlen < 1) 3737 return -EINVAL; 3738 3739 val = strncpy_from_sockptr(name, optval, 3740 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3741 if (val < 0) 3742 return -EFAULT; 3743 name[val] = 0; 3744 3745 sockopt_lock_sock(sk); 3746 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3747 sockopt_ns_capable(sock_net(sk)->user_ns, 3748 CAP_NET_ADMIN)); 3749 sockopt_release_sock(sk); 3750 return err; 3751 } 3752 case TCP_ULP: { 3753 char name[TCP_ULP_NAME_MAX]; 3754 3755 if (optlen < 1) 3756 return -EINVAL; 3757 3758 val = strncpy_from_sockptr(name, optval, 3759 min_t(long, TCP_ULP_NAME_MAX - 1, 3760 optlen)); 3761 if (val < 0) 3762 return -EFAULT; 3763 name[val] = 0; 3764 3765 sockopt_lock_sock(sk); 3766 err = tcp_set_ulp(sk, name); 3767 sockopt_release_sock(sk); 3768 return err; 3769 } 3770 case TCP_FASTOPEN_KEY: { 3771 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3772 __u8 *backup_key = NULL; 3773 3774 /* Allow a backup key as well to facilitate key rotation 3775 * First key is the active one. 3776 */ 3777 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3778 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3779 return -EINVAL; 3780 3781 if (copy_from_sockptr(key, optval, optlen)) 3782 return -EFAULT; 3783 3784 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3785 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3786 3787 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3788 } 3789 default: 3790 /* fallthru */ 3791 break; 3792 } 3793 3794 if (optlen < sizeof(int)) 3795 return -EINVAL; 3796 3797 if (copy_from_sockptr(&val, optval, sizeof(val))) 3798 return -EFAULT; 3799 3800 /* Handle options that can be set without locking the socket. */ 3801 switch (optname) { 3802 case TCP_SYNCNT: 3803 return tcp_sock_set_syncnt(sk, val); 3804 case TCP_USER_TIMEOUT: 3805 return tcp_sock_set_user_timeout(sk, val); 3806 case TCP_KEEPINTVL: 3807 return tcp_sock_set_keepintvl(sk, val); 3808 case TCP_KEEPCNT: 3809 return tcp_sock_set_keepcnt(sk, val); 3810 case TCP_LINGER2: 3811 if (val < 0) 3812 WRITE_ONCE(tp->linger2, -1); 3813 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3814 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3815 else 3816 WRITE_ONCE(tp->linger2, val * HZ); 3817 return 0; 3818 case TCP_DEFER_ACCEPT: 3819 /* Translate value in seconds to number of retransmits */ 3820 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3821 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3822 TCP_RTO_MAX / HZ)); 3823 return 0; 3824 } 3825 3826 sockopt_lock_sock(sk); 3827 3828 switch (optname) { 3829 case TCP_MAXSEG: 3830 /* Values greater than interface MTU won't take effect. However 3831 * at the point when this call is done we typically don't yet 3832 * know which interface is going to be used 3833 */ 3834 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3835 err = -EINVAL; 3836 break; 3837 } 3838 tp->rx_opt.user_mss = val; 3839 break; 3840 3841 case TCP_NODELAY: 3842 __tcp_sock_set_nodelay(sk, val); 3843 break; 3844 3845 case TCP_THIN_LINEAR_TIMEOUTS: 3846 if (val < 0 || val > 1) 3847 err = -EINVAL; 3848 else 3849 tp->thin_lto = val; 3850 break; 3851 3852 case TCP_THIN_DUPACK: 3853 if (val < 0 || val > 1) 3854 err = -EINVAL; 3855 break; 3856 3857 case TCP_REPAIR: 3858 if (!tcp_can_repair_sock(sk)) 3859 err = -EPERM; 3860 else if (val == TCP_REPAIR_ON) { 3861 tp->repair = 1; 3862 sk->sk_reuse = SK_FORCE_REUSE; 3863 tp->repair_queue = TCP_NO_QUEUE; 3864 } else if (val == TCP_REPAIR_OFF) { 3865 tp->repair = 0; 3866 sk->sk_reuse = SK_NO_REUSE; 3867 tcp_send_window_probe(sk); 3868 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3869 tp->repair = 0; 3870 sk->sk_reuse = SK_NO_REUSE; 3871 } else 3872 err = -EINVAL; 3873 3874 break; 3875 3876 case TCP_REPAIR_QUEUE: 3877 if (!tp->repair) 3878 err = -EPERM; 3879 else if ((unsigned int)val < TCP_QUEUES_NR) 3880 tp->repair_queue = val; 3881 else 3882 err = -EINVAL; 3883 break; 3884 3885 case TCP_QUEUE_SEQ: 3886 if (sk->sk_state != TCP_CLOSE) { 3887 err = -EPERM; 3888 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3889 if (!tcp_rtx_queue_empty(sk)) 3890 err = -EPERM; 3891 else 3892 WRITE_ONCE(tp->write_seq, val); 3893 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3894 if (tp->rcv_nxt != tp->copied_seq) { 3895 err = -EPERM; 3896 } else { 3897 WRITE_ONCE(tp->rcv_nxt, val); 3898 WRITE_ONCE(tp->copied_seq, val); 3899 } 3900 } else { 3901 err = -EINVAL; 3902 } 3903 break; 3904 3905 case TCP_REPAIR_OPTIONS: 3906 if (!tp->repair) 3907 err = -EINVAL; 3908 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3909 err = tcp_repair_options_est(sk, optval, optlen); 3910 else 3911 err = -EPERM; 3912 break; 3913 3914 case TCP_CORK: 3915 __tcp_sock_set_cork(sk, val); 3916 break; 3917 3918 case TCP_KEEPIDLE: 3919 err = tcp_sock_set_keepidle_locked(sk, val); 3920 break; 3921 case TCP_SAVE_SYN: 3922 /* 0: disable, 1: enable, 2: start from ether_header */ 3923 if (val < 0 || val > 2) 3924 err = -EINVAL; 3925 else 3926 tp->save_syn = val; 3927 break; 3928 3929 case TCP_WINDOW_CLAMP: 3930 err = tcp_set_window_clamp(sk, val); 3931 break; 3932 3933 case TCP_QUICKACK: 3934 __tcp_sock_set_quickack(sk, val); 3935 break; 3936 3937 case TCP_AO_REPAIR: 3938 if (!tcp_can_repair_sock(sk)) { 3939 err = -EPERM; 3940 break; 3941 } 3942 err = tcp_ao_set_repair(sk, optval, optlen); 3943 break; 3944 #ifdef CONFIG_TCP_AO 3945 case TCP_AO_ADD_KEY: 3946 case TCP_AO_DEL_KEY: 3947 case TCP_AO_INFO: { 3948 /* If this is the first TCP-AO setsockopt() on the socket, 3949 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3950 * in any state. 3951 */ 3952 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3953 goto ao_parse; 3954 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3955 lockdep_sock_is_held(sk))) 3956 goto ao_parse; 3957 if (tp->repair) 3958 goto ao_parse; 3959 err = -EISCONN; 3960 break; 3961 ao_parse: 3962 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3963 break; 3964 } 3965 #endif 3966 #ifdef CONFIG_TCP_MD5SIG 3967 case TCP_MD5SIG: 3968 case TCP_MD5SIG_EXT: 3969 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3970 break; 3971 #endif 3972 case TCP_FASTOPEN: 3973 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3974 TCPF_LISTEN))) { 3975 tcp_fastopen_init_key_once(net); 3976 3977 fastopen_queue_tune(sk, val); 3978 } else { 3979 err = -EINVAL; 3980 } 3981 break; 3982 case TCP_FASTOPEN_CONNECT: 3983 if (val > 1 || val < 0) { 3984 err = -EINVAL; 3985 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3986 TFO_CLIENT_ENABLE) { 3987 if (sk->sk_state == TCP_CLOSE) 3988 tp->fastopen_connect = val; 3989 else 3990 err = -EINVAL; 3991 } else { 3992 err = -EOPNOTSUPP; 3993 } 3994 break; 3995 case TCP_FASTOPEN_NO_COOKIE: 3996 if (val > 1 || val < 0) 3997 err = -EINVAL; 3998 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3999 err = -EINVAL; 4000 else 4001 tp->fastopen_no_cookie = val; 4002 break; 4003 case TCP_TIMESTAMP: 4004 if (!tp->repair) { 4005 err = -EPERM; 4006 break; 4007 } 4008 /* val is an opaque field, 4009 * and low order bit contains usec_ts enable bit. 4010 * Its a best effort, and we do not care if user makes an error. 4011 */ 4012 tp->tcp_usec_ts = val & 1; 4013 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4014 break; 4015 case TCP_REPAIR_WINDOW: 4016 err = tcp_repair_set_window(tp, optval, optlen); 4017 break; 4018 case TCP_NOTSENT_LOWAT: 4019 WRITE_ONCE(tp->notsent_lowat, val); 4020 sk->sk_write_space(sk); 4021 break; 4022 case TCP_INQ: 4023 if (val > 1 || val < 0) 4024 err = -EINVAL; 4025 else 4026 tp->recvmsg_inq = val; 4027 break; 4028 case TCP_TX_DELAY: 4029 if (val) 4030 tcp_enable_tx_delay(); 4031 WRITE_ONCE(tp->tcp_tx_delay, val); 4032 break; 4033 default: 4034 err = -ENOPROTOOPT; 4035 break; 4036 } 4037 4038 sockopt_release_sock(sk); 4039 return err; 4040 } 4041 4042 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4043 unsigned int optlen) 4044 { 4045 const struct inet_connection_sock *icsk = inet_csk(sk); 4046 4047 if (level != SOL_TCP) 4048 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4049 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4050 optval, optlen); 4051 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4052 } 4053 EXPORT_SYMBOL(tcp_setsockopt); 4054 4055 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4056 struct tcp_info *info) 4057 { 4058 u64 stats[__TCP_CHRONO_MAX], total = 0; 4059 enum tcp_chrono i; 4060 4061 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4062 stats[i] = tp->chrono_stat[i - 1]; 4063 if (i == tp->chrono_type) 4064 stats[i] += tcp_jiffies32 - tp->chrono_start; 4065 stats[i] *= USEC_PER_SEC / HZ; 4066 total += stats[i]; 4067 } 4068 4069 info->tcpi_busy_time = total; 4070 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4071 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4072 } 4073 4074 /* Return information about state of tcp endpoint in API format. */ 4075 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4076 { 4077 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4078 const struct inet_connection_sock *icsk = inet_csk(sk); 4079 unsigned long rate; 4080 u32 now; 4081 u64 rate64; 4082 bool slow; 4083 4084 memset(info, 0, sizeof(*info)); 4085 if (sk->sk_type != SOCK_STREAM) 4086 return; 4087 4088 info->tcpi_state = inet_sk_state_load(sk); 4089 4090 /* Report meaningful fields for all TCP states, including listeners */ 4091 rate = READ_ONCE(sk->sk_pacing_rate); 4092 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4093 info->tcpi_pacing_rate = rate64; 4094 4095 rate = READ_ONCE(sk->sk_max_pacing_rate); 4096 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4097 info->tcpi_max_pacing_rate = rate64; 4098 4099 info->tcpi_reordering = tp->reordering; 4100 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4101 4102 if (info->tcpi_state == TCP_LISTEN) { 4103 /* listeners aliased fields : 4104 * tcpi_unacked -> Number of children ready for accept() 4105 * tcpi_sacked -> max backlog 4106 */ 4107 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4108 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4109 return; 4110 } 4111 4112 slow = lock_sock_fast(sk); 4113 4114 info->tcpi_ca_state = icsk->icsk_ca_state; 4115 info->tcpi_retransmits = icsk->icsk_retransmits; 4116 info->tcpi_probes = icsk->icsk_probes_out; 4117 info->tcpi_backoff = icsk->icsk_backoff; 4118 4119 if (tp->rx_opt.tstamp_ok) 4120 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4121 if (tcp_is_sack(tp)) 4122 info->tcpi_options |= TCPI_OPT_SACK; 4123 if (tp->rx_opt.wscale_ok) { 4124 info->tcpi_options |= TCPI_OPT_WSCALE; 4125 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4126 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4127 } 4128 4129 if (tp->ecn_flags & TCP_ECN_OK) 4130 info->tcpi_options |= TCPI_OPT_ECN; 4131 if (tp->ecn_flags & TCP_ECN_SEEN) 4132 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4133 if (tp->syn_data_acked) 4134 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4135 if (tp->tcp_usec_ts) 4136 info->tcpi_options |= TCPI_OPT_USEC_TS; 4137 4138 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4139 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4140 tcp_delack_max(sk))); 4141 info->tcpi_snd_mss = tp->mss_cache; 4142 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4143 4144 info->tcpi_unacked = tp->packets_out; 4145 info->tcpi_sacked = tp->sacked_out; 4146 4147 info->tcpi_lost = tp->lost_out; 4148 info->tcpi_retrans = tp->retrans_out; 4149 4150 now = tcp_jiffies32; 4151 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4152 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4153 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4154 4155 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4156 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4157 info->tcpi_rtt = tp->srtt_us >> 3; 4158 info->tcpi_rttvar = tp->mdev_us >> 2; 4159 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4160 info->tcpi_advmss = tp->advmss; 4161 4162 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4163 info->tcpi_rcv_space = tp->rcvq_space.space; 4164 4165 info->tcpi_total_retrans = tp->total_retrans; 4166 4167 info->tcpi_bytes_acked = tp->bytes_acked; 4168 info->tcpi_bytes_received = tp->bytes_received; 4169 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4170 tcp_get_info_chrono_stats(tp, info); 4171 4172 info->tcpi_segs_out = tp->segs_out; 4173 4174 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4175 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4176 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4177 4178 info->tcpi_min_rtt = tcp_min_rtt(tp); 4179 info->tcpi_data_segs_out = tp->data_segs_out; 4180 4181 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4182 rate64 = tcp_compute_delivery_rate(tp); 4183 if (rate64) 4184 info->tcpi_delivery_rate = rate64; 4185 info->tcpi_delivered = tp->delivered; 4186 info->tcpi_delivered_ce = tp->delivered_ce; 4187 info->tcpi_bytes_sent = tp->bytes_sent; 4188 info->tcpi_bytes_retrans = tp->bytes_retrans; 4189 info->tcpi_dsack_dups = tp->dsack_dups; 4190 info->tcpi_reord_seen = tp->reord_seen; 4191 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4192 info->tcpi_snd_wnd = tp->snd_wnd; 4193 info->tcpi_rcv_wnd = tp->rcv_wnd; 4194 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4195 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4196 4197 info->tcpi_total_rto = tp->total_rto; 4198 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4199 info->tcpi_total_rto_time = tp->total_rto_time; 4200 if (tp->rto_stamp) 4201 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4202 4203 unlock_sock_fast(sk, slow); 4204 } 4205 EXPORT_SYMBOL_GPL(tcp_get_info); 4206 4207 static size_t tcp_opt_stats_get_size(void) 4208 { 4209 return 4210 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4211 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4212 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4213 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4214 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4215 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4216 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4217 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4218 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4219 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4220 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4221 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4222 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4223 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4224 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4225 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4226 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4227 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4228 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4229 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4230 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4231 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4232 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4233 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4234 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4235 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4236 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4237 0; 4238 } 4239 4240 /* Returns TTL or hop limit of an incoming packet from skb. */ 4241 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4242 { 4243 if (skb->protocol == htons(ETH_P_IP)) 4244 return ip_hdr(skb)->ttl; 4245 else if (skb->protocol == htons(ETH_P_IPV6)) 4246 return ipv6_hdr(skb)->hop_limit; 4247 else 4248 return 0; 4249 } 4250 4251 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4252 const struct sk_buff *orig_skb, 4253 const struct sk_buff *ack_skb) 4254 { 4255 const struct tcp_sock *tp = tcp_sk(sk); 4256 struct sk_buff *stats; 4257 struct tcp_info info; 4258 unsigned long rate; 4259 u64 rate64; 4260 4261 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4262 if (!stats) 4263 return NULL; 4264 4265 tcp_get_info_chrono_stats(tp, &info); 4266 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4267 info.tcpi_busy_time, TCP_NLA_PAD); 4268 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4269 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4270 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4271 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4272 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4273 tp->data_segs_out, TCP_NLA_PAD); 4274 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4275 tp->total_retrans, TCP_NLA_PAD); 4276 4277 rate = READ_ONCE(sk->sk_pacing_rate); 4278 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4279 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4280 4281 rate64 = tcp_compute_delivery_rate(tp); 4282 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4283 4284 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4285 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4286 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4287 4288 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4289 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4290 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4291 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4292 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4293 4294 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4295 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4296 4297 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4298 TCP_NLA_PAD); 4299 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4300 TCP_NLA_PAD); 4301 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4302 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4303 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4304 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4305 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4306 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4307 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4308 TCP_NLA_PAD); 4309 if (ack_skb) 4310 nla_put_u8(stats, TCP_NLA_TTL, 4311 tcp_skb_ttl_or_hop_limit(ack_skb)); 4312 4313 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4314 return stats; 4315 } 4316 4317 int do_tcp_getsockopt(struct sock *sk, int level, 4318 int optname, sockptr_t optval, sockptr_t optlen) 4319 { 4320 struct inet_connection_sock *icsk = inet_csk(sk); 4321 struct tcp_sock *tp = tcp_sk(sk); 4322 struct net *net = sock_net(sk); 4323 int val, len; 4324 4325 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4326 return -EFAULT; 4327 4328 if (len < 0) 4329 return -EINVAL; 4330 4331 len = min_t(unsigned int, len, sizeof(int)); 4332 4333 switch (optname) { 4334 case TCP_MAXSEG: 4335 val = tp->mss_cache; 4336 if (tp->rx_opt.user_mss && 4337 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4338 val = tp->rx_opt.user_mss; 4339 if (tp->repair) 4340 val = tp->rx_opt.mss_clamp; 4341 break; 4342 case TCP_NODELAY: 4343 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4344 break; 4345 case TCP_CORK: 4346 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4347 break; 4348 case TCP_KEEPIDLE: 4349 val = keepalive_time_when(tp) / HZ; 4350 break; 4351 case TCP_KEEPINTVL: 4352 val = keepalive_intvl_when(tp) / HZ; 4353 break; 4354 case TCP_KEEPCNT: 4355 val = keepalive_probes(tp); 4356 break; 4357 case TCP_SYNCNT: 4358 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4359 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4360 break; 4361 case TCP_LINGER2: 4362 val = READ_ONCE(tp->linger2); 4363 if (val >= 0) 4364 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4365 break; 4366 case TCP_DEFER_ACCEPT: 4367 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4368 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4369 TCP_RTO_MAX / HZ); 4370 break; 4371 case TCP_WINDOW_CLAMP: 4372 val = READ_ONCE(tp->window_clamp); 4373 break; 4374 case TCP_INFO: { 4375 struct tcp_info info; 4376 4377 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4378 return -EFAULT; 4379 4380 tcp_get_info(sk, &info); 4381 4382 len = min_t(unsigned int, len, sizeof(info)); 4383 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4384 return -EFAULT; 4385 if (copy_to_sockptr(optval, &info, len)) 4386 return -EFAULT; 4387 return 0; 4388 } 4389 case TCP_CC_INFO: { 4390 const struct tcp_congestion_ops *ca_ops; 4391 union tcp_cc_info info; 4392 size_t sz = 0; 4393 int attr; 4394 4395 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4396 return -EFAULT; 4397 4398 ca_ops = icsk->icsk_ca_ops; 4399 if (ca_ops && ca_ops->get_info) 4400 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4401 4402 len = min_t(unsigned int, len, sz); 4403 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4404 return -EFAULT; 4405 if (copy_to_sockptr(optval, &info, len)) 4406 return -EFAULT; 4407 return 0; 4408 } 4409 case TCP_QUICKACK: 4410 val = !inet_csk_in_pingpong_mode(sk); 4411 break; 4412 4413 case TCP_CONGESTION: 4414 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4415 return -EFAULT; 4416 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4417 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4418 return -EFAULT; 4419 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4420 return -EFAULT; 4421 return 0; 4422 4423 case TCP_ULP: 4424 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4425 return -EFAULT; 4426 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4427 if (!icsk->icsk_ulp_ops) { 4428 len = 0; 4429 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4430 return -EFAULT; 4431 return 0; 4432 } 4433 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4434 return -EFAULT; 4435 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4436 return -EFAULT; 4437 return 0; 4438 4439 case TCP_FASTOPEN_KEY: { 4440 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4441 unsigned int key_len; 4442 4443 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4444 return -EFAULT; 4445 4446 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4447 TCP_FASTOPEN_KEY_LENGTH; 4448 len = min_t(unsigned int, len, key_len); 4449 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4450 return -EFAULT; 4451 if (copy_to_sockptr(optval, key, len)) 4452 return -EFAULT; 4453 return 0; 4454 } 4455 case TCP_THIN_LINEAR_TIMEOUTS: 4456 val = tp->thin_lto; 4457 break; 4458 4459 case TCP_THIN_DUPACK: 4460 val = 0; 4461 break; 4462 4463 case TCP_REPAIR: 4464 val = tp->repair; 4465 break; 4466 4467 case TCP_REPAIR_QUEUE: 4468 if (tp->repair) 4469 val = tp->repair_queue; 4470 else 4471 return -EINVAL; 4472 break; 4473 4474 case TCP_REPAIR_WINDOW: { 4475 struct tcp_repair_window opt; 4476 4477 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4478 return -EFAULT; 4479 4480 if (len != sizeof(opt)) 4481 return -EINVAL; 4482 4483 if (!tp->repair) 4484 return -EPERM; 4485 4486 opt.snd_wl1 = tp->snd_wl1; 4487 opt.snd_wnd = tp->snd_wnd; 4488 opt.max_window = tp->max_window; 4489 opt.rcv_wnd = tp->rcv_wnd; 4490 opt.rcv_wup = tp->rcv_wup; 4491 4492 if (copy_to_sockptr(optval, &opt, len)) 4493 return -EFAULT; 4494 return 0; 4495 } 4496 case TCP_QUEUE_SEQ: 4497 if (tp->repair_queue == TCP_SEND_QUEUE) 4498 val = tp->write_seq; 4499 else if (tp->repair_queue == TCP_RECV_QUEUE) 4500 val = tp->rcv_nxt; 4501 else 4502 return -EINVAL; 4503 break; 4504 4505 case TCP_USER_TIMEOUT: 4506 val = READ_ONCE(icsk->icsk_user_timeout); 4507 break; 4508 4509 case TCP_FASTOPEN: 4510 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4511 break; 4512 4513 case TCP_FASTOPEN_CONNECT: 4514 val = tp->fastopen_connect; 4515 break; 4516 4517 case TCP_FASTOPEN_NO_COOKIE: 4518 val = tp->fastopen_no_cookie; 4519 break; 4520 4521 case TCP_TX_DELAY: 4522 val = READ_ONCE(tp->tcp_tx_delay); 4523 break; 4524 4525 case TCP_TIMESTAMP: 4526 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4527 if (tp->tcp_usec_ts) 4528 val |= 1; 4529 else 4530 val &= ~1; 4531 break; 4532 case TCP_NOTSENT_LOWAT: 4533 val = READ_ONCE(tp->notsent_lowat); 4534 break; 4535 case TCP_INQ: 4536 val = tp->recvmsg_inq; 4537 break; 4538 case TCP_SAVE_SYN: 4539 val = tp->save_syn; 4540 break; 4541 case TCP_SAVED_SYN: { 4542 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4543 return -EFAULT; 4544 4545 sockopt_lock_sock(sk); 4546 if (tp->saved_syn) { 4547 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4548 len = tcp_saved_syn_len(tp->saved_syn); 4549 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4550 sockopt_release_sock(sk); 4551 return -EFAULT; 4552 } 4553 sockopt_release_sock(sk); 4554 return -EINVAL; 4555 } 4556 len = tcp_saved_syn_len(tp->saved_syn); 4557 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4558 sockopt_release_sock(sk); 4559 return -EFAULT; 4560 } 4561 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4562 sockopt_release_sock(sk); 4563 return -EFAULT; 4564 } 4565 tcp_saved_syn_free(tp); 4566 sockopt_release_sock(sk); 4567 } else { 4568 sockopt_release_sock(sk); 4569 len = 0; 4570 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4571 return -EFAULT; 4572 } 4573 return 0; 4574 } 4575 #ifdef CONFIG_MMU 4576 case TCP_ZEROCOPY_RECEIVE: { 4577 struct scm_timestamping_internal tss; 4578 struct tcp_zerocopy_receive zc = {}; 4579 int err; 4580 4581 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4582 return -EFAULT; 4583 if (len < 0 || 4584 len < offsetofend(struct tcp_zerocopy_receive, length)) 4585 return -EINVAL; 4586 if (unlikely(len > sizeof(zc))) { 4587 err = check_zeroed_sockptr(optval, sizeof(zc), 4588 len - sizeof(zc)); 4589 if (err < 1) 4590 return err == 0 ? -EINVAL : err; 4591 len = sizeof(zc); 4592 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4593 return -EFAULT; 4594 } 4595 if (copy_from_sockptr(&zc, optval, len)) 4596 return -EFAULT; 4597 if (zc.reserved) 4598 return -EINVAL; 4599 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4600 return -EINVAL; 4601 sockopt_lock_sock(sk); 4602 err = tcp_zerocopy_receive(sk, &zc, &tss); 4603 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4604 &zc, &len, err); 4605 sockopt_release_sock(sk); 4606 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4607 goto zerocopy_rcv_cmsg; 4608 switch (len) { 4609 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4610 goto zerocopy_rcv_cmsg; 4611 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4612 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4613 case offsetofend(struct tcp_zerocopy_receive, flags): 4614 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4615 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4616 case offsetofend(struct tcp_zerocopy_receive, err): 4617 goto zerocopy_rcv_sk_err; 4618 case offsetofend(struct tcp_zerocopy_receive, inq): 4619 goto zerocopy_rcv_inq; 4620 case offsetofend(struct tcp_zerocopy_receive, length): 4621 default: 4622 goto zerocopy_rcv_out; 4623 } 4624 zerocopy_rcv_cmsg: 4625 if (zc.msg_flags & TCP_CMSG_TS) 4626 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4627 else 4628 zc.msg_flags = 0; 4629 zerocopy_rcv_sk_err: 4630 if (!err) 4631 zc.err = sock_error(sk); 4632 zerocopy_rcv_inq: 4633 zc.inq = tcp_inq_hint(sk); 4634 zerocopy_rcv_out: 4635 if (!err && copy_to_sockptr(optval, &zc, len)) 4636 err = -EFAULT; 4637 return err; 4638 } 4639 #endif 4640 case TCP_AO_REPAIR: 4641 if (!tcp_can_repair_sock(sk)) 4642 return -EPERM; 4643 return tcp_ao_get_repair(sk, optval, optlen); 4644 case TCP_AO_GET_KEYS: 4645 case TCP_AO_INFO: { 4646 int err; 4647 4648 sockopt_lock_sock(sk); 4649 if (optname == TCP_AO_GET_KEYS) 4650 err = tcp_ao_get_mkts(sk, optval, optlen); 4651 else 4652 err = tcp_ao_get_sock_info(sk, optval, optlen); 4653 sockopt_release_sock(sk); 4654 4655 return err; 4656 } 4657 case TCP_IS_MPTCP: 4658 val = 0; 4659 break; 4660 default: 4661 return -ENOPROTOOPT; 4662 } 4663 4664 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4665 return -EFAULT; 4666 if (copy_to_sockptr(optval, &val, len)) 4667 return -EFAULT; 4668 return 0; 4669 } 4670 4671 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4672 { 4673 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4674 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4675 */ 4676 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4677 return true; 4678 4679 return false; 4680 } 4681 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4682 4683 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4684 int __user *optlen) 4685 { 4686 struct inet_connection_sock *icsk = inet_csk(sk); 4687 4688 if (level != SOL_TCP) 4689 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4690 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4691 optval, optlen); 4692 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4693 USER_SOCKPTR(optlen)); 4694 } 4695 EXPORT_SYMBOL(tcp_getsockopt); 4696 4697 #ifdef CONFIG_TCP_MD5SIG 4698 int tcp_md5_sigpool_id = -1; 4699 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4700 4701 int tcp_md5_alloc_sigpool(void) 4702 { 4703 size_t scratch_size; 4704 int ret; 4705 4706 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4707 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4708 if (ret >= 0) { 4709 /* As long as any md5 sigpool was allocated, the return 4710 * id would stay the same. Re-write the id only for the case 4711 * when previously all MD5 keys were deleted and this call 4712 * allocates the first MD5 key, which may return a different 4713 * sigpool id than was used previously. 4714 */ 4715 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4716 return 0; 4717 } 4718 return ret; 4719 } 4720 4721 void tcp_md5_release_sigpool(void) 4722 { 4723 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4724 } 4725 4726 void tcp_md5_add_sigpool(void) 4727 { 4728 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4729 } 4730 4731 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4732 const struct tcp_md5sig_key *key) 4733 { 4734 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4735 struct scatterlist sg; 4736 4737 sg_init_one(&sg, key->key, keylen); 4738 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4739 4740 /* We use data_race() because tcp_md5_do_add() might change 4741 * key->key under us 4742 */ 4743 return data_race(crypto_ahash_update(hp->req)); 4744 } 4745 EXPORT_SYMBOL(tcp_md5_hash_key); 4746 4747 /* Called with rcu_read_lock() */ 4748 static enum skb_drop_reason 4749 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4750 const void *saddr, const void *daddr, 4751 int family, int l3index, const __u8 *hash_location) 4752 { 4753 /* This gets called for each TCP segment that has TCP-MD5 option. 4754 * We have 3 drop cases: 4755 * o No MD5 hash and one expected. 4756 * o MD5 hash and we're not expecting one. 4757 * o MD5 hash and its wrong. 4758 */ 4759 const struct tcp_sock *tp = tcp_sk(sk); 4760 struct tcp_md5sig_key *key; 4761 u8 newhash[16]; 4762 int genhash; 4763 4764 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4765 4766 if (!key && hash_location) { 4767 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4768 trace_tcp_hash_md5_unexpected(sk, skb); 4769 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4770 } 4771 4772 /* Check the signature. 4773 * To support dual stack listeners, we need to handle 4774 * IPv4-mapped case. 4775 */ 4776 if (family == AF_INET) 4777 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4778 else 4779 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4780 NULL, skb); 4781 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4782 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4783 trace_tcp_hash_md5_mismatch(sk, skb); 4784 return SKB_DROP_REASON_TCP_MD5FAILURE; 4785 } 4786 return SKB_NOT_DROPPED_YET; 4787 } 4788 #else 4789 static inline enum skb_drop_reason 4790 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4791 const void *saddr, const void *daddr, 4792 int family, int l3index, const __u8 *hash_location) 4793 { 4794 return SKB_NOT_DROPPED_YET; 4795 } 4796 4797 #endif 4798 4799 /* Called with rcu_read_lock() */ 4800 enum skb_drop_reason 4801 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4802 const struct sk_buff *skb, 4803 const void *saddr, const void *daddr, 4804 int family, int dif, int sdif) 4805 { 4806 const struct tcphdr *th = tcp_hdr(skb); 4807 const struct tcp_ao_hdr *aoh; 4808 const __u8 *md5_location; 4809 int l3index; 4810 4811 /* Invalid option or two times meet any of auth options */ 4812 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4813 trace_tcp_hash_bad_header(sk, skb); 4814 return SKB_DROP_REASON_TCP_AUTH_HDR; 4815 } 4816 4817 if (req) { 4818 if (tcp_rsk_used_ao(req) != !!aoh) { 4819 u8 keyid, rnext, maclen; 4820 4821 if (aoh) { 4822 keyid = aoh->keyid; 4823 rnext = aoh->rnext_keyid; 4824 maclen = tcp_ao_hdr_maclen(aoh); 4825 } else { 4826 keyid = rnext = maclen = 0; 4827 } 4828 4829 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4830 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4831 return SKB_DROP_REASON_TCP_AOFAILURE; 4832 } 4833 } 4834 4835 /* sdif set, means packet ingressed via a device 4836 * in an L3 domain and dif is set to the l3mdev 4837 */ 4838 l3index = sdif ? dif : 0; 4839 4840 /* Fast path: unsigned segments */ 4841 if (likely(!md5_location && !aoh)) { 4842 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4843 * for the remote peer. On TCP-AO established connection 4844 * the last key is impossible to remove, so there's 4845 * always at least one current_key. 4846 */ 4847 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4848 trace_tcp_hash_ao_required(sk, skb); 4849 return SKB_DROP_REASON_TCP_AONOTFOUND; 4850 } 4851 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4853 trace_tcp_hash_md5_required(sk, skb); 4854 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4855 } 4856 return SKB_NOT_DROPPED_YET; 4857 } 4858 4859 if (aoh) 4860 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4861 4862 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4863 l3index, md5_location); 4864 } 4865 EXPORT_SYMBOL_GPL(tcp_inbound_hash); 4866 4867 void tcp_done(struct sock *sk) 4868 { 4869 struct request_sock *req; 4870 4871 /* We might be called with a new socket, after 4872 * inet_csk_prepare_forced_close() has been called 4873 * so we can not use lockdep_sock_is_held(sk) 4874 */ 4875 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4876 4877 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4878 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4879 4880 tcp_set_state(sk, TCP_CLOSE); 4881 tcp_clear_xmit_timers(sk); 4882 if (req) 4883 reqsk_fastopen_remove(sk, req, false); 4884 4885 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4886 4887 if (!sock_flag(sk, SOCK_DEAD)) 4888 sk->sk_state_change(sk); 4889 else 4890 inet_csk_destroy_sock(sk); 4891 } 4892 EXPORT_SYMBOL_GPL(tcp_done); 4893 4894 int tcp_abort(struct sock *sk, int err) 4895 { 4896 int state = inet_sk_state_load(sk); 4897 4898 if (state == TCP_NEW_SYN_RECV) { 4899 struct request_sock *req = inet_reqsk(sk); 4900 4901 local_bh_disable(); 4902 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4903 local_bh_enable(); 4904 return 0; 4905 } 4906 if (state == TCP_TIME_WAIT) { 4907 struct inet_timewait_sock *tw = inet_twsk(sk); 4908 4909 refcount_inc(&tw->tw_refcnt); 4910 local_bh_disable(); 4911 inet_twsk_deschedule_put(tw); 4912 local_bh_enable(); 4913 return 0; 4914 } 4915 4916 /* BPF context ensures sock locking. */ 4917 if (!has_current_bpf_ctx()) 4918 /* Don't race with userspace socket closes such as tcp_close. */ 4919 lock_sock(sk); 4920 4921 /* Avoid closing the same socket twice. */ 4922 if (sk->sk_state == TCP_CLOSE) { 4923 if (!has_current_bpf_ctx()) 4924 release_sock(sk); 4925 return -ENOENT; 4926 } 4927 4928 if (sk->sk_state == TCP_LISTEN) { 4929 tcp_set_state(sk, TCP_CLOSE); 4930 inet_csk_listen_stop(sk); 4931 } 4932 4933 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4934 local_bh_disable(); 4935 bh_lock_sock(sk); 4936 4937 if (tcp_need_reset(sk->sk_state)) 4938 tcp_send_active_reset(sk, GFP_ATOMIC, 4939 SK_RST_REASON_TCP_STATE); 4940 tcp_done_with_error(sk, err); 4941 4942 bh_unlock_sock(sk); 4943 local_bh_enable(); 4944 if (!has_current_bpf_ctx()) 4945 release_sock(sk); 4946 return 0; 4947 } 4948 EXPORT_SYMBOL_GPL(tcp_abort); 4949 4950 extern struct tcp_congestion_ops tcp_reno; 4951 4952 static __initdata unsigned long thash_entries; 4953 static int __init set_thash_entries(char *str) 4954 { 4955 ssize_t ret; 4956 4957 if (!str) 4958 return 0; 4959 4960 ret = kstrtoul(str, 0, &thash_entries); 4961 if (ret) 4962 return 0; 4963 4964 return 1; 4965 } 4966 __setup("thash_entries=", set_thash_entries); 4967 4968 static void __init tcp_init_mem(void) 4969 { 4970 unsigned long limit = nr_free_buffer_pages() / 16; 4971 4972 limit = max(limit, 128UL); 4973 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4974 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4975 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4976 } 4977 4978 static void __init tcp_struct_check(void) 4979 { 4980 /* TX read-mostly hotpath cache lines */ 4981 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4982 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4983 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4984 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4985 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4986 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4987 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4988 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4989 4990 /* TXRX read-mostly hotpath cache lines */ 4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4994 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4995 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4996 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4997 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4998 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4999 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5000 5001 /* RX read-mostly hotpath cache lines */ 5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5006 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5007 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5008 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5012 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5013 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5014 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5015 5016 /* TX read-write hotpath cache lines */ 5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5030 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5031 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5032 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5033 5034 /* TXRX read-write hotpath cache lines */ 5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5036 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5050 5051 /* 32bit arches with 8byte alignment on u64 fields might need padding 5052 * before tcp_clock_cache. 5053 */ 5054 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5055 5056 /* RX read-write hotpath cache lines */ 5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5070 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5071 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5072 } 5073 5074 void __init tcp_init(void) 5075 { 5076 int max_rshare, max_wshare, cnt; 5077 unsigned long limit; 5078 unsigned int i; 5079 5080 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5081 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5082 sizeof_field(struct sk_buff, cb)); 5083 5084 tcp_struct_check(); 5085 5086 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5087 5088 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5089 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5090 5091 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5092 thash_entries, 21, /* one slot per 2 MB*/ 5093 0, 64 * 1024); 5094 tcp_hashinfo.bind_bucket_cachep = 5095 kmem_cache_create("tcp_bind_bucket", 5096 sizeof(struct inet_bind_bucket), 0, 5097 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5098 SLAB_ACCOUNT, 5099 NULL); 5100 tcp_hashinfo.bind2_bucket_cachep = 5101 kmem_cache_create("tcp_bind2_bucket", 5102 sizeof(struct inet_bind2_bucket), 0, 5103 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5104 SLAB_ACCOUNT, 5105 NULL); 5106 5107 /* Size and allocate the main established and bind bucket 5108 * hash tables. 5109 * 5110 * The methodology is similar to that of the buffer cache. 5111 */ 5112 tcp_hashinfo.ehash = 5113 alloc_large_system_hash("TCP established", 5114 sizeof(struct inet_ehash_bucket), 5115 thash_entries, 5116 17, /* one slot per 128 KB of memory */ 5117 0, 5118 NULL, 5119 &tcp_hashinfo.ehash_mask, 5120 0, 5121 thash_entries ? 0 : 512 * 1024); 5122 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5123 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5124 5125 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5126 panic("TCP: failed to alloc ehash_locks"); 5127 tcp_hashinfo.bhash = 5128 alloc_large_system_hash("TCP bind", 5129 2 * sizeof(struct inet_bind_hashbucket), 5130 tcp_hashinfo.ehash_mask + 1, 5131 17, /* one slot per 128 KB of memory */ 5132 0, 5133 &tcp_hashinfo.bhash_size, 5134 NULL, 5135 0, 5136 64 * 1024); 5137 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5138 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5139 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5140 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5141 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5142 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5143 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5144 } 5145 5146 tcp_hashinfo.pernet = false; 5147 5148 cnt = tcp_hashinfo.ehash_mask + 1; 5149 sysctl_tcp_max_orphans = cnt / 2; 5150 5151 tcp_init_mem(); 5152 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5153 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5154 max_wshare = min(4UL*1024*1024, limit); 5155 max_rshare = min(6UL*1024*1024, limit); 5156 5157 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5158 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5159 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5160 5161 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5162 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5163 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5164 5165 pr_info("Hash tables configured (established %u bind %u)\n", 5166 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5167 5168 tcp_v4_init(); 5169 tcp_metrics_init(); 5170 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5171 tcp_tasklet_init(); 5172 mptcp_init(); 5173 } 5174