xref: /linux/net/ipv4/tcp.c (revision 38c6104e0bc7c8af20ab4897cb0504e3339e4fe4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_SYMBOL(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_SYMBOL(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_SYMBOL(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
436 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
437 	icsk->icsk_delack_max = TCP_DELACK_MAX;
438 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
439 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
440 
441 	/* So many TCP implementations out there (incorrectly) count the
442 	 * initial SYN frame in their delayed-ACK and congestion control
443 	 * algorithms that we must have the following bandaid to talk
444 	 * efficiently to them.  -DaveM
445 	 */
446 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
447 
448 	/* There's a bubble in the pipe until at least the first ACK. */
449 	tp->app_limited = ~0U;
450 	tp->rate_app_limited = 1;
451 
452 	/* See draft-stevens-tcpca-spec-01 for discussion of the
453 	 * initialization of these values.
454 	 */
455 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
456 	tp->snd_cwnd_clamp = ~0;
457 	tp->mss_cache = TCP_MSS_DEFAULT;
458 
459 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
460 	tcp_assign_congestion_control(sk);
461 
462 	tp->tsoffset = 0;
463 	tp->rack.reo_wnd_steps = 1;
464 
465 	sk->sk_write_space = sk_stream_write_space;
466 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
467 
468 	icsk->icsk_sync_mss = tcp_sync_mss;
469 
470 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
471 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
472 	tcp_scaling_ratio_init(sk);
473 
474 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
475 	sk_sockets_allocated_inc(sk);
476 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
477 }
478 EXPORT_SYMBOL(tcp_init_sock);
479 
480 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
481 {
482 	struct sk_buff *skb = tcp_write_queue_tail(sk);
483 	u32 tsflags = sockc->tsflags;
484 
485 	if (tsflags && skb) {
486 		struct skb_shared_info *shinfo = skb_shinfo(skb);
487 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
488 
489 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
490 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
491 			tcb->txstamp_ack = 1;
492 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
493 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
494 	}
495 }
496 
497 static bool tcp_stream_is_readable(struct sock *sk, int target)
498 {
499 	if (tcp_epollin_ready(sk, target))
500 		return true;
501 	return sk_is_readable(sk);
502 }
503 
504 /*
505  *	Wait for a TCP event.
506  *
507  *	Note that we don't need to lock the socket, as the upper poll layers
508  *	take care of normal races (between the test and the event) and we don't
509  *	go look at any of the socket buffers directly.
510  */
511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
512 {
513 	__poll_t mask;
514 	struct sock *sk = sock->sk;
515 	const struct tcp_sock *tp = tcp_sk(sk);
516 	u8 shutdown;
517 	int state;
518 
519 	sock_poll_wait(file, sock, wait);
520 
521 	state = inet_sk_state_load(sk);
522 	if (state == TCP_LISTEN)
523 		return inet_csk_listen_poll(sk);
524 
525 	/* Socket is not locked. We are protected from async events
526 	 * by poll logic and correct handling of state changes
527 	 * made by other threads is impossible in any case.
528 	 */
529 
530 	mask = 0;
531 
532 	/*
533 	 * EPOLLHUP is certainly not done right. But poll() doesn't
534 	 * have a notion of HUP in just one direction, and for a
535 	 * socket the read side is more interesting.
536 	 *
537 	 * Some poll() documentation says that EPOLLHUP is incompatible
538 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
539 	 * all. But careful, it tends to be safer to return too many
540 	 * bits than too few, and you can easily break real applications
541 	 * if you don't tell them that something has hung up!
542 	 *
543 	 * Check-me.
544 	 *
545 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
546 	 * our fs/select.c). It means that after we received EOF,
547 	 * poll always returns immediately, making impossible poll() on write()
548 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
549 	 * if and only if shutdown has been made in both directions.
550 	 * Actually, it is interesting to look how Solaris and DUX
551 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
552 	 * then we could set it on SND_SHUTDOWN. BTW examples given
553 	 * in Stevens' books assume exactly this behaviour, it explains
554 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
555 	 *
556 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
557 	 * blocking on fresh not-connected or disconnected socket. --ANK
558 	 */
559 	shutdown = READ_ONCE(sk->sk_shutdown);
560 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
561 		mask |= EPOLLHUP;
562 	if (shutdown & RCV_SHUTDOWN)
563 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
564 
565 	/* Connected or passive Fast Open socket? */
566 	if (state != TCP_SYN_SENT &&
567 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
568 		int target = sock_rcvlowat(sk, 0, INT_MAX);
569 		u16 urg_data = READ_ONCE(tp->urg_data);
570 
571 		if (unlikely(urg_data) &&
572 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
573 		    !sock_flag(sk, SOCK_URGINLINE))
574 			target++;
575 
576 		if (tcp_stream_is_readable(sk, target))
577 			mask |= EPOLLIN | EPOLLRDNORM;
578 
579 		if (!(shutdown & SEND_SHUTDOWN)) {
580 			if (__sk_stream_is_writeable(sk, 1)) {
581 				mask |= EPOLLOUT | EPOLLWRNORM;
582 			} else {  /* send SIGIO later */
583 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
584 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585 
586 				/* Race breaker. If space is freed after
587 				 * wspace test but before the flags are set,
588 				 * IO signal will be lost. Memory barrier
589 				 * pairs with the input side.
590 				 */
591 				smp_mb__after_atomic();
592 				if (__sk_stream_is_writeable(sk, 1))
593 					mask |= EPOLLOUT | EPOLLWRNORM;
594 			}
595 		} else
596 			mask |= EPOLLOUT | EPOLLWRNORM;
597 
598 		if (urg_data & TCP_URG_VALID)
599 			mask |= EPOLLPRI;
600 	} else if (state == TCP_SYN_SENT &&
601 		   inet_test_bit(DEFER_CONNECT, sk)) {
602 		/* Active TCP fastopen socket with defer_connect
603 		 * Return EPOLLOUT so application can call write()
604 		 * in order for kernel to generate SYN+data
605 		 */
606 		mask |= EPOLLOUT | EPOLLWRNORM;
607 	}
608 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
609 	smp_rmb();
610 	if (READ_ONCE(sk->sk_err) ||
611 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
612 		mask |= EPOLLERR;
613 
614 	return mask;
615 }
616 EXPORT_SYMBOL(tcp_poll);
617 
618 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	int answ;
622 	bool slow;
623 
624 	switch (cmd) {
625 	case SIOCINQ:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		slow = lock_sock_fast(sk);
630 		answ = tcp_inq(sk);
631 		unlock_sock_fast(sk, slow);
632 		break;
633 	case SIOCATMARK:
634 		answ = READ_ONCE(tp->urg_data) &&
635 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
636 		break;
637 	case SIOCOUTQ:
638 		if (sk->sk_state == TCP_LISTEN)
639 			return -EINVAL;
640 
641 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
642 			answ = 0;
643 		else
644 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
645 		break;
646 	case SIOCOUTQNSD:
647 		if (sk->sk_state == TCP_LISTEN)
648 			return -EINVAL;
649 
650 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
651 			answ = 0;
652 		else
653 			answ = READ_ONCE(tp->write_seq) -
654 			       READ_ONCE(tp->snd_nxt);
655 		break;
656 	default:
657 		return -ENOIOCTLCMD;
658 	}
659 
660 	*karg = answ;
661 	return 0;
662 }
663 EXPORT_SYMBOL(tcp_ioctl);
664 
665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
666 {
667 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
668 	tp->pushed_seq = tp->write_seq;
669 }
670 
671 static inline bool forced_push(const struct tcp_sock *tp)
672 {
673 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
674 }
675 
676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
680 
681 	tcb->seq     = tcb->end_seq = tp->write_seq;
682 	tcb->tcp_flags = TCPHDR_ACK;
683 	__skb_header_release(skb);
684 	tcp_add_write_queue_tail(sk, skb);
685 	sk_wmem_queued_add(sk, skb->truesize);
686 	sk_mem_charge(sk, skb->truesize);
687 	if (tp->nonagle & TCP_NAGLE_PUSH)
688 		tp->nonagle &= ~TCP_NAGLE_PUSH;
689 
690 	tcp_slow_start_after_idle_check(sk);
691 }
692 
693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
694 {
695 	if (flags & MSG_OOB)
696 		tp->snd_up = tp->write_seq;
697 }
698 
699 /* If a not yet filled skb is pushed, do not send it if
700  * we have data packets in Qdisc or NIC queues :
701  * Because TX completion will happen shortly, it gives a chance
702  * to coalesce future sendmsg() payload into this skb, without
703  * need for a timer, and with no latency trade off.
704  * As packets containing data payload have a bigger truesize
705  * than pure acks (dataless) packets, the last checks prevent
706  * autocorking if we only have an ACK in Qdisc/NIC queues,
707  * or if TX completion was delayed after we processed ACK packet.
708  */
709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
710 				int size_goal)
711 {
712 	return skb->len < size_goal &&
713 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
714 	       !tcp_rtx_queue_empty(sk) &&
715 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
716 	       tcp_skb_can_collapse_to(skb);
717 }
718 
719 void tcp_push(struct sock *sk, int flags, int mss_now,
720 	      int nonagle, int size_goal)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	struct sk_buff *skb;
724 
725 	skb = tcp_write_queue_tail(sk);
726 	if (!skb)
727 		return;
728 	if (!(flags & MSG_MORE) || forced_push(tp))
729 		tcp_mark_push(tp, skb);
730 
731 	tcp_mark_urg(tp, flags);
732 
733 	if (tcp_should_autocork(sk, skb, size_goal)) {
734 
735 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
736 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
737 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
738 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
739 			smp_mb__after_atomic();
740 		}
741 		/* It is possible TX completion already happened
742 		 * before we set TSQ_THROTTLED.
743 		 */
744 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
745 			return;
746 	}
747 
748 	if (flags & MSG_MORE)
749 		nonagle = TCP_NAGLE_CORK;
750 
751 	__tcp_push_pending_frames(sk, mss_now, nonagle);
752 }
753 
754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
755 				unsigned int offset, size_t len)
756 {
757 	struct tcp_splice_state *tss = rd_desc->arg.data;
758 	int ret;
759 
760 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
761 			      min(rd_desc->count, len), tss->flags);
762 	if (ret > 0)
763 		rd_desc->count -= ret;
764 	return ret;
765 }
766 
767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
768 {
769 	/* Store TCP splice context information in read_descriptor_t. */
770 	read_descriptor_t rd_desc = {
771 		.arg.data = tss,
772 		.count	  = tss->len,
773 	};
774 
775 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
776 }
777 
778 /**
779  *  tcp_splice_read - splice data from TCP socket to a pipe
780  * @sock:	socket to splice from
781  * @ppos:	position (not valid)
782  * @pipe:	pipe to splice to
783  * @len:	number of bytes to splice
784  * @flags:	splice modifier flags
785  *
786  * Description:
787  *    Will read pages from given socket and fill them into a pipe.
788  *
789  **/
790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
791 			struct pipe_inode_info *pipe, size_t len,
792 			unsigned int flags)
793 {
794 	struct sock *sk = sock->sk;
795 	struct tcp_splice_state tss = {
796 		.pipe = pipe,
797 		.len = len,
798 		.flags = flags,
799 	};
800 	long timeo;
801 	ssize_t spliced;
802 	int ret;
803 
804 	sock_rps_record_flow(sk);
805 	/*
806 	 * We can't seek on a socket input
807 	 */
808 	if (unlikely(*ppos))
809 		return -ESPIPE;
810 
811 	ret = spliced = 0;
812 
813 	lock_sock(sk);
814 
815 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
816 	while (tss.len) {
817 		ret = __tcp_splice_read(sk, &tss);
818 		if (ret < 0)
819 			break;
820 		else if (!ret) {
821 			if (spliced)
822 				break;
823 			if (sock_flag(sk, SOCK_DONE))
824 				break;
825 			if (sk->sk_err) {
826 				ret = sock_error(sk);
827 				break;
828 			}
829 			if (sk->sk_shutdown & RCV_SHUTDOWN)
830 				break;
831 			if (sk->sk_state == TCP_CLOSE) {
832 				/*
833 				 * This occurs when user tries to read
834 				 * from never connected socket.
835 				 */
836 				ret = -ENOTCONN;
837 				break;
838 			}
839 			if (!timeo) {
840 				ret = -EAGAIN;
841 				break;
842 			}
843 			/* if __tcp_splice_read() got nothing while we have
844 			 * an skb in receive queue, we do not want to loop.
845 			 * This might happen with URG data.
846 			 */
847 			if (!skb_queue_empty(&sk->sk_receive_queue))
848 				break;
849 			ret = sk_wait_data(sk, &timeo, NULL);
850 			if (ret < 0)
851 				break;
852 			if (signal_pending(current)) {
853 				ret = sock_intr_errno(timeo);
854 				break;
855 			}
856 			continue;
857 		}
858 		tss.len -= ret;
859 		spliced += ret;
860 
861 		if (!tss.len || !timeo)
862 			break;
863 		release_sock(sk);
864 		lock_sock(sk);
865 
866 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
867 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
868 		    signal_pending(current))
869 			break;
870 	}
871 
872 	release_sock(sk);
873 
874 	if (spliced)
875 		return spliced;
876 
877 	return ret;
878 }
879 EXPORT_SYMBOL(tcp_splice_read);
880 
881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
882 				     bool force_schedule)
883 {
884 	struct sk_buff *skb;
885 
886 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
887 	if (likely(skb)) {
888 		bool mem_scheduled;
889 
890 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 		if (force_schedule) {
892 			mem_scheduled = true;
893 			sk_forced_mem_schedule(sk, skb->truesize);
894 		} else {
895 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
896 		}
897 		if (likely(mem_scheduled)) {
898 			skb_reserve(skb, MAX_TCP_HEADER);
899 			skb->ip_summed = CHECKSUM_PARTIAL;
900 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
901 			return skb;
902 		}
903 		__kfree_skb(skb);
904 	} else {
905 		sk->sk_prot->enter_memory_pressure(sk);
906 		sk_stream_moderate_sndbuf(sk);
907 	}
908 	return NULL;
909 }
910 
911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
912 				       int large_allowed)
913 {
914 	struct tcp_sock *tp = tcp_sk(sk);
915 	u32 new_size_goal, size_goal;
916 
917 	if (!large_allowed)
918 		return mss_now;
919 
920 	/* Note : tcp_tso_autosize() will eventually split this later */
921 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
922 
923 	/* We try hard to avoid divides here */
924 	size_goal = tp->gso_segs * mss_now;
925 	if (unlikely(new_size_goal < size_goal ||
926 		     new_size_goal >= size_goal + mss_now)) {
927 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
928 				     sk->sk_gso_max_segs);
929 		size_goal = tp->gso_segs * mss_now;
930 	}
931 
932 	return max(size_goal, mss_now);
933 }
934 
935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
936 {
937 	int mss_now;
938 
939 	mss_now = tcp_current_mss(sk);
940 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
941 
942 	return mss_now;
943 }
944 
945 /* In some cases, sendmsg() could have added an skb to the write queue,
946  * but failed adding payload on it. We need to remove it to consume less
947  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
948  * epoll() users. Another reason is that tcp_write_xmit() does not like
949  * finding an empty skb in the write queue.
950  */
951 void tcp_remove_empty_skb(struct sock *sk)
952 {
953 	struct sk_buff *skb = tcp_write_queue_tail(sk);
954 
955 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
956 		tcp_unlink_write_queue(skb, sk);
957 		if (tcp_write_queue_empty(sk))
958 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 		tcp_wmem_free_skb(sk, skb);
960 	}
961 }
962 
963 /* skb changing from pure zc to mixed, must charge zc */
964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
965 {
966 	if (unlikely(skb_zcopy_pure(skb))) {
967 		u32 extra = skb->truesize -
968 			    SKB_TRUESIZE(skb_end_offset(skb));
969 
970 		if (!sk_wmem_schedule(sk, extra))
971 			return -ENOMEM;
972 
973 		sk_mem_charge(sk, extra);
974 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
975 	}
976 	return 0;
977 }
978 
979 
980 int tcp_wmem_schedule(struct sock *sk, int copy)
981 {
982 	int left;
983 
984 	if (likely(sk_wmem_schedule(sk, copy)))
985 		return copy;
986 
987 	/* We could be in trouble if we have nothing queued.
988 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
989 	 * to guarantee some progress.
990 	 */
991 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
992 	if (left > 0)
993 		sk_forced_mem_schedule(sk, min(left, copy));
994 	return min(copy, sk->sk_forward_alloc);
995 }
996 
997 void tcp_free_fastopen_req(struct tcp_sock *tp)
998 {
999 	if (tp->fastopen_req) {
1000 		kfree(tp->fastopen_req);
1001 		tp->fastopen_req = NULL;
1002 	}
1003 }
1004 
1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006 			 size_t size, struct ubuf_info *uarg)
1007 {
1008 	struct tcp_sock *tp = tcp_sk(sk);
1009 	struct inet_sock *inet = inet_sk(sk);
1010 	struct sockaddr *uaddr = msg->msg_name;
1011 	int err, flags;
1012 
1013 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014 	      TFO_CLIENT_ENABLE) ||
1015 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016 	     uaddr->sa_family == AF_UNSPEC))
1017 		return -EOPNOTSUPP;
1018 	if (tp->fastopen_req)
1019 		return -EALREADY; /* Another Fast Open is in progress */
1020 
1021 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022 				   sk->sk_allocation);
1023 	if (unlikely(!tp->fastopen_req))
1024 		return -ENOBUFS;
1025 	tp->fastopen_req->data = msg;
1026 	tp->fastopen_req->size = size;
1027 	tp->fastopen_req->uarg = uarg;
1028 
1029 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1030 		err = tcp_connect(sk);
1031 		/* Same failure procedure as in tcp_v4/6_connect */
1032 		if (err) {
1033 			tcp_set_state(sk, TCP_CLOSE);
1034 			inet->inet_dport = 0;
1035 			sk->sk_route_caps = 0;
1036 		}
1037 	}
1038 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1040 				    msg->msg_namelen, flags, 1);
1041 	/* fastopen_req could already be freed in __inet_stream_connect
1042 	 * if the connection times out or gets rst
1043 	 */
1044 	if (tp->fastopen_req) {
1045 		*copied = tp->fastopen_req->copied;
1046 		tcp_free_fastopen_req(tp);
1047 		inet_clear_bit(DEFER_CONNECT, sk);
1048 	}
1049 	return err;
1050 }
1051 
1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053 {
1054 	struct tcp_sock *tp = tcp_sk(sk);
1055 	struct ubuf_info *uarg = NULL;
1056 	struct sk_buff *skb;
1057 	struct sockcm_cookie sockc;
1058 	int flags, err, copied = 0;
1059 	int mss_now = 0, size_goal, copied_syn = 0;
1060 	int process_backlog = 0;
1061 	int zc = 0;
1062 	long timeo;
1063 
1064 	flags = msg->msg_flags;
1065 
1066 	if ((flags & MSG_ZEROCOPY) && size) {
1067 		if (msg->msg_ubuf) {
1068 			uarg = msg->msg_ubuf;
1069 			if (sk->sk_route_caps & NETIF_F_SG)
1070 				zc = MSG_ZEROCOPY;
1071 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072 			skb = tcp_write_queue_tail(sk);
1073 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074 			if (!uarg) {
1075 				err = -ENOBUFS;
1076 				goto out_err;
1077 			}
1078 			if (sk->sk_route_caps & NETIF_F_SG)
1079 				zc = MSG_ZEROCOPY;
1080 			else
1081 				uarg_to_msgzc(uarg)->zerocopy = 0;
1082 		}
1083 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084 		if (sk->sk_route_caps & NETIF_F_SG)
1085 			zc = MSG_SPLICE_PAGES;
1086 	}
1087 
1088 	if (unlikely(flags & MSG_FASTOPEN ||
1089 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1090 	    !tp->repair) {
1091 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092 		if (err == -EINPROGRESS && copied_syn > 0)
1093 			goto out;
1094 		else if (err)
1095 			goto out_err;
1096 	}
1097 
1098 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099 
1100 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1101 
1102 	/* Wait for a connection to finish. One exception is TCP Fast Open
1103 	 * (passive side) where data is allowed to be sent before a connection
1104 	 * is fully established.
1105 	 */
1106 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107 	    !tcp_passive_fastopen(sk)) {
1108 		err = sk_stream_wait_connect(sk, &timeo);
1109 		if (err != 0)
1110 			goto do_error;
1111 	}
1112 
1113 	if (unlikely(tp->repair)) {
1114 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1115 			copied = tcp_send_rcvq(sk, msg, size);
1116 			goto out_nopush;
1117 		}
1118 
1119 		err = -EINVAL;
1120 		if (tp->repair_queue == TCP_NO_QUEUE)
1121 			goto out_err;
1122 
1123 		/* 'common' sending to sendq */
1124 	}
1125 
1126 	sockcm_init(&sockc, sk);
1127 	if (msg->msg_controllen) {
1128 		err = sock_cmsg_send(sk, msg, &sockc);
1129 		if (unlikely(err)) {
1130 			err = -EINVAL;
1131 			goto out_err;
1132 		}
1133 	}
1134 
1135 	/* This should be in poll */
1136 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137 
1138 	/* Ok commence sending. */
1139 	copied = 0;
1140 
1141 restart:
1142 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1143 
1144 	err = -EPIPE;
1145 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146 		goto do_error;
1147 
1148 	while (msg_data_left(msg)) {
1149 		ssize_t copy = 0;
1150 
1151 		skb = tcp_write_queue_tail(sk);
1152 		if (skb)
1153 			copy = size_goal - skb->len;
1154 
1155 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1156 			bool first_skb;
1157 
1158 new_segment:
1159 			if (!sk_stream_memory_free(sk))
1160 				goto wait_for_space;
1161 
1162 			if (unlikely(process_backlog >= 16)) {
1163 				process_backlog = 0;
1164 				if (sk_flush_backlog(sk))
1165 					goto restart;
1166 			}
1167 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1168 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1169 						   first_skb);
1170 			if (!skb)
1171 				goto wait_for_space;
1172 
1173 			process_backlog++;
1174 
1175 #ifdef CONFIG_SKB_DECRYPTED
1176 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1177 #endif
1178 			tcp_skb_entail(sk, skb);
1179 			copy = size_goal;
1180 
1181 			/* All packets are restored as if they have
1182 			 * already been sent. skb_mstamp_ns isn't set to
1183 			 * avoid wrong rtt estimation.
1184 			 */
1185 			if (tp->repair)
1186 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187 		}
1188 
1189 		/* Try to append data to the end of skb. */
1190 		if (copy > msg_data_left(msg))
1191 			copy = msg_data_left(msg);
1192 
1193 		if (zc == 0) {
1194 			bool merge = true;
1195 			int i = skb_shinfo(skb)->nr_frags;
1196 			struct page_frag *pfrag = sk_page_frag(sk);
1197 
1198 			if (!sk_page_frag_refill(sk, pfrag))
1199 				goto wait_for_space;
1200 
1201 			if (!skb_can_coalesce(skb, i, pfrag->page,
1202 					      pfrag->offset)) {
1203 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1204 					tcp_mark_push(tp, skb);
1205 					goto new_segment;
1206 				}
1207 				merge = false;
1208 			}
1209 
1210 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1211 
1212 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1213 				if (tcp_downgrade_zcopy_pure(sk, skb))
1214 					goto wait_for_space;
1215 				skb_zcopy_downgrade_managed(skb);
1216 			}
1217 
1218 			copy = tcp_wmem_schedule(sk, copy);
1219 			if (!copy)
1220 				goto wait_for_space;
1221 
1222 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223 						       pfrag->page,
1224 						       pfrag->offset,
1225 						       copy);
1226 			if (err)
1227 				goto do_error;
1228 
1229 			/* Update the skb. */
1230 			if (merge) {
1231 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232 			} else {
1233 				skb_fill_page_desc(skb, i, pfrag->page,
1234 						   pfrag->offset, copy);
1235 				page_ref_inc(pfrag->page);
1236 			}
1237 			pfrag->offset += copy;
1238 		} else if (zc == MSG_ZEROCOPY)  {
1239 			/* First append to a fragless skb builds initial
1240 			 * pure zerocopy skb
1241 			 */
1242 			if (!skb->len)
1243 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1244 
1245 			if (!skb_zcopy_pure(skb)) {
1246 				copy = tcp_wmem_schedule(sk, copy);
1247 				if (!copy)
1248 					goto wait_for_space;
1249 			}
1250 
1251 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1252 			if (err == -EMSGSIZE || err == -EEXIST) {
1253 				tcp_mark_push(tp, skb);
1254 				goto new_segment;
1255 			}
1256 			if (err < 0)
1257 				goto do_error;
1258 			copy = err;
1259 		} else if (zc == MSG_SPLICE_PAGES) {
1260 			/* Splice in data if we can; copy if we can't. */
1261 			if (tcp_downgrade_zcopy_pure(sk, skb))
1262 				goto wait_for_space;
1263 			copy = tcp_wmem_schedule(sk, copy);
1264 			if (!copy)
1265 				goto wait_for_space;
1266 
1267 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1268 						   sk->sk_allocation);
1269 			if (err < 0) {
1270 				if (err == -EMSGSIZE) {
1271 					tcp_mark_push(tp, skb);
1272 					goto new_segment;
1273 				}
1274 				goto do_error;
1275 			}
1276 			copy = err;
1277 
1278 			if (!(flags & MSG_NO_SHARED_FRAGS))
1279 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1280 
1281 			sk_wmem_queued_add(sk, copy);
1282 			sk_mem_charge(sk, copy);
1283 		}
1284 
1285 		if (!copied)
1286 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1287 
1288 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1289 		TCP_SKB_CB(skb)->end_seq += copy;
1290 		tcp_skb_pcount_set(skb, 0);
1291 
1292 		copied += copy;
1293 		if (!msg_data_left(msg)) {
1294 			if (unlikely(flags & MSG_EOR))
1295 				TCP_SKB_CB(skb)->eor = 1;
1296 			goto out;
1297 		}
1298 
1299 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1300 			continue;
1301 
1302 		if (forced_push(tp)) {
1303 			tcp_mark_push(tp, skb);
1304 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1305 		} else if (skb == tcp_send_head(sk))
1306 			tcp_push_one(sk, mss_now);
1307 		continue;
1308 
1309 wait_for_space:
1310 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311 		tcp_remove_empty_skb(sk);
1312 		if (copied)
1313 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1314 				 TCP_NAGLE_PUSH, size_goal);
1315 
1316 		err = sk_stream_wait_memory(sk, &timeo);
1317 		if (err != 0)
1318 			goto do_error;
1319 
1320 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1321 	}
1322 
1323 out:
1324 	if (copied) {
1325 		tcp_tx_timestamp(sk, &sockc);
1326 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1327 	}
1328 out_nopush:
1329 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330 	if (uarg && !msg->msg_ubuf)
1331 		net_zcopy_put(uarg);
1332 	return copied + copied_syn;
1333 
1334 do_error:
1335 	tcp_remove_empty_skb(sk);
1336 
1337 	if (copied + copied_syn)
1338 		goto out;
1339 out_err:
1340 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1341 	if (uarg && !msg->msg_ubuf)
1342 		net_zcopy_put_abort(uarg, true);
1343 	err = sk_stream_error(sk, flags, err);
1344 	/* make sure we wake any epoll edge trigger waiter */
1345 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1346 		sk->sk_write_space(sk);
1347 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1348 	}
1349 	return err;
1350 }
1351 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1352 
1353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1354 {
1355 	int ret;
1356 
1357 	lock_sock(sk);
1358 	ret = tcp_sendmsg_locked(sk, msg, size);
1359 	release_sock(sk);
1360 
1361 	return ret;
1362 }
1363 EXPORT_SYMBOL(tcp_sendmsg);
1364 
1365 void tcp_splice_eof(struct socket *sock)
1366 {
1367 	struct sock *sk = sock->sk;
1368 	struct tcp_sock *tp = tcp_sk(sk);
1369 	int mss_now, size_goal;
1370 
1371 	if (!tcp_write_queue_tail(sk))
1372 		return;
1373 
1374 	lock_sock(sk);
1375 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1376 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1377 	release_sock(sk);
1378 }
1379 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1380 
1381 /*
1382  *	Handle reading urgent data. BSD has very simple semantics for
1383  *	this, no blocking and very strange errors 8)
1384  */
1385 
1386 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 
1390 	/* No URG data to read. */
1391 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1392 	    tp->urg_data == TCP_URG_READ)
1393 		return -EINVAL;	/* Yes this is right ! */
1394 
1395 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1396 		return -ENOTCONN;
1397 
1398 	if (tp->urg_data & TCP_URG_VALID) {
1399 		int err = 0;
1400 		char c = tp->urg_data;
1401 
1402 		if (!(flags & MSG_PEEK))
1403 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1404 
1405 		/* Read urgent data. */
1406 		msg->msg_flags |= MSG_OOB;
1407 
1408 		if (len > 0) {
1409 			if (!(flags & MSG_TRUNC))
1410 				err = memcpy_to_msg(msg, &c, 1);
1411 			len = 1;
1412 		} else
1413 			msg->msg_flags |= MSG_TRUNC;
1414 
1415 		return err ? -EFAULT : len;
1416 	}
1417 
1418 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1419 		return 0;
1420 
1421 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1422 	 * the available implementations agree in this case:
1423 	 * this call should never block, independent of the
1424 	 * blocking state of the socket.
1425 	 * Mike <pall@rz.uni-karlsruhe.de>
1426 	 */
1427 	return -EAGAIN;
1428 }
1429 
1430 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1431 {
1432 	struct sk_buff *skb;
1433 	int copied = 0, err = 0;
1434 
1435 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1436 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1437 		if (err)
1438 			return err;
1439 		copied += skb->len;
1440 	}
1441 
1442 	skb_queue_walk(&sk->sk_write_queue, skb) {
1443 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1444 		if (err)
1445 			break;
1446 
1447 		copied += skb->len;
1448 	}
1449 
1450 	return err ?: copied;
1451 }
1452 
1453 /* Clean up the receive buffer for full frames taken by the user,
1454  * then send an ACK if necessary.  COPIED is the number of bytes
1455  * tcp_recvmsg has given to the user so far, it speeds up the
1456  * calculation of whether or not we must ACK for the sake of
1457  * a window update.
1458  */
1459 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 	bool time_to_ack = false;
1463 
1464 	if (inet_csk_ack_scheduled(sk)) {
1465 		const struct inet_connection_sock *icsk = inet_csk(sk);
1466 
1467 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1468 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1469 		    /*
1470 		     * If this read emptied read buffer, we send ACK, if
1471 		     * connection is not bidirectional, user drained
1472 		     * receive buffer and there was a small segment
1473 		     * in queue.
1474 		     */
1475 		    (copied > 0 &&
1476 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1477 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1478 		       !inet_csk_in_pingpong_mode(sk))) &&
1479 		      !atomic_read(&sk->sk_rmem_alloc)))
1480 			time_to_ack = true;
1481 	}
1482 
1483 	/* We send an ACK if we can now advertise a non-zero window
1484 	 * which has been raised "significantly".
1485 	 *
1486 	 * Even if window raised up to infinity, do not send window open ACK
1487 	 * in states, where we will not receive more. It is useless.
1488 	 */
1489 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1490 		__u32 rcv_window_now = tcp_receive_window(tp);
1491 
1492 		/* Optimize, __tcp_select_window() is not cheap. */
1493 		if (2*rcv_window_now <= tp->window_clamp) {
1494 			__u32 new_window = __tcp_select_window(sk);
1495 
1496 			/* Send ACK now, if this read freed lots of space
1497 			 * in our buffer. Certainly, new_window is new window.
1498 			 * We can advertise it now, if it is not less than current one.
1499 			 * "Lots" means "at least twice" here.
1500 			 */
1501 			if (new_window && new_window >= 2 * rcv_window_now)
1502 				time_to_ack = true;
1503 		}
1504 	}
1505 	if (time_to_ack)
1506 		tcp_send_ack(sk);
1507 }
1508 
1509 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1510 {
1511 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 
1514 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1515 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1516 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1517 	__tcp_cleanup_rbuf(sk, copied);
1518 }
1519 
1520 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1521 {
1522 	__skb_unlink(skb, &sk->sk_receive_queue);
1523 	if (likely(skb->destructor == sock_rfree)) {
1524 		sock_rfree(skb);
1525 		skb->destructor = NULL;
1526 		skb->sk = NULL;
1527 		return skb_attempt_defer_free(skb);
1528 	}
1529 	__kfree_skb(skb);
1530 }
1531 
1532 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1533 {
1534 	struct sk_buff *skb;
1535 	u32 offset;
1536 
1537 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1538 		offset = seq - TCP_SKB_CB(skb)->seq;
1539 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1540 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1541 			offset--;
1542 		}
1543 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1544 			*off = offset;
1545 			return skb;
1546 		}
1547 		/* This looks weird, but this can happen if TCP collapsing
1548 		 * splitted a fat GRO packet, while we released socket lock
1549 		 * in skb_splice_bits()
1550 		 */
1551 		tcp_eat_recv_skb(sk, skb);
1552 	}
1553 	return NULL;
1554 }
1555 EXPORT_SYMBOL(tcp_recv_skb);
1556 
1557 /*
1558  * This routine provides an alternative to tcp_recvmsg() for routines
1559  * that would like to handle copying from skbuffs directly in 'sendfile'
1560  * fashion.
1561  * Note:
1562  *	- It is assumed that the socket was locked by the caller.
1563  *	- The routine does not block.
1564  *	- At present, there is no support for reading OOB data
1565  *	  or for 'peeking' the socket using this routine
1566  *	  (although both would be easy to implement).
1567  */
1568 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1569 			   sk_read_actor_t recv_actor, bool noack,
1570 			   u32 *copied_seq)
1571 {
1572 	struct sk_buff *skb;
1573 	struct tcp_sock *tp = tcp_sk(sk);
1574 	u32 seq = *copied_seq;
1575 	u32 offset;
1576 	int copied = 0;
1577 
1578 	if (sk->sk_state == TCP_LISTEN)
1579 		return -ENOTCONN;
1580 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1581 		if (offset < skb->len) {
1582 			int used;
1583 			size_t len;
1584 
1585 			len = skb->len - offset;
1586 			/* Stop reading if we hit a patch of urgent data */
1587 			if (unlikely(tp->urg_data)) {
1588 				u32 urg_offset = tp->urg_seq - seq;
1589 				if (urg_offset < len)
1590 					len = urg_offset;
1591 				if (!len)
1592 					break;
1593 			}
1594 			used = recv_actor(desc, skb, offset, len);
1595 			if (used <= 0) {
1596 				if (!copied)
1597 					copied = used;
1598 				break;
1599 			}
1600 			if (WARN_ON_ONCE(used > len))
1601 				used = len;
1602 			seq += used;
1603 			copied += used;
1604 			offset += used;
1605 
1606 			/* If recv_actor drops the lock (e.g. TCP splice
1607 			 * receive) the skb pointer might be invalid when
1608 			 * getting here: tcp_collapse might have deleted it
1609 			 * while aggregating skbs from the socket queue.
1610 			 */
1611 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1612 			if (!skb)
1613 				break;
1614 			/* TCP coalescing might have appended data to the skb.
1615 			 * Try to splice more frags
1616 			 */
1617 			if (offset + 1 != skb->len)
1618 				continue;
1619 		}
1620 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1621 			tcp_eat_recv_skb(sk, skb);
1622 			++seq;
1623 			break;
1624 		}
1625 		tcp_eat_recv_skb(sk, skb);
1626 		if (!desc->count)
1627 			break;
1628 		WRITE_ONCE(*copied_seq, seq);
1629 	}
1630 	WRITE_ONCE(*copied_seq, seq);
1631 
1632 	if (noack)
1633 		goto out;
1634 
1635 	tcp_rcv_space_adjust(sk);
1636 
1637 	/* Clean up data we have read: This will do ACK frames. */
1638 	if (copied > 0) {
1639 		tcp_recv_skb(sk, seq, &offset);
1640 		tcp_cleanup_rbuf(sk, copied);
1641 	}
1642 out:
1643 	return copied;
1644 }
1645 
1646 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1647 		  sk_read_actor_t recv_actor)
1648 {
1649 	return __tcp_read_sock(sk, desc, recv_actor, false,
1650 			       &tcp_sk(sk)->copied_seq);
1651 }
1652 EXPORT_SYMBOL(tcp_read_sock);
1653 
1654 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1655 			sk_read_actor_t recv_actor, bool noack,
1656 			u32 *copied_seq)
1657 {
1658 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1659 }
1660 
1661 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1662 {
1663 	struct sk_buff *skb;
1664 	int copied = 0;
1665 
1666 	if (sk->sk_state == TCP_LISTEN)
1667 		return -ENOTCONN;
1668 
1669 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1670 		u8 tcp_flags;
1671 		int used;
1672 
1673 		__skb_unlink(skb, &sk->sk_receive_queue);
1674 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1675 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1676 		used = recv_actor(sk, skb);
1677 		if (used < 0) {
1678 			if (!copied)
1679 				copied = used;
1680 			break;
1681 		}
1682 		copied += used;
1683 
1684 		if (tcp_flags & TCPHDR_FIN)
1685 			break;
1686 	}
1687 	return copied;
1688 }
1689 EXPORT_SYMBOL(tcp_read_skb);
1690 
1691 void tcp_read_done(struct sock *sk, size_t len)
1692 {
1693 	struct tcp_sock *tp = tcp_sk(sk);
1694 	u32 seq = tp->copied_seq;
1695 	struct sk_buff *skb;
1696 	size_t left;
1697 	u32 offset;
1698 
1699 	if (sk->sk_state == TCP_LISTEN)
1700 		return;
1701 
1702 	left = len;
1703 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1704 		int used;
1705 
1706 		used = min_t(size_t, skb->len - offset, left);
1707 		seq += used;
1708 		left -= used;
1709 
1710 		if (skb->len > offset + used)
1711 			break;
1712 
1713 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1714 			tcp_eat_recv_skb(sk, skb);
1715 			++seq;
1716 			break;
1717 		}
1718 		tcp_eat_recv_skb(sk, skb);
1719 	}
1720 	WRITE_ONCE(tp->copied_seq, seq);
1721 
1722 	tcp_rcv_space_adjust(sk);
1723 
1724 	/* Clean up data we have read: This will do ACK frames. */
1725 	if (left != len)
1726 		tcp_cleanup_rbuf(sk, len - left);
1727 }
1728 EXPORT_SYMBOL(tcp_read_done);
1729 
1730 int tcp_peek_len(struct socket *sock)
1731 {
1732 	return tcp_inq(sock->sk);
1733 }
1734 EXPORT_SYMBOL(tcp_peek_len);
1735 
1736 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1737 int tcp_set_rcvlowat(struct sock *sk, int val)
1738 {
1739 	int space, cap;
1740 
1741 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1742 		cap = sk->sk_rcvbuf >> 1;
1743 	else
1744 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1745 	val = min(val, cap);
1746 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1747 
1748 	/* Check if we need to signal EPOLLIN right now */
1749 	tcp_data_ready(sk);
1750 
1751 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1752 		return 0;
1753 
1754 	space = tcp_space_from_win(sk, val);
1755 	if (space > sk->sk_rcvbuf) {
1756 		WRITE_ONCE(sk->sk_rcvbuf, space);
1757 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1758 	}
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL(tcp_set_rcvlowat);
1762 
1763 void tcp_update_recv_tstamps(struct sk_buff *skb,
1764 			     struct scm_timestamping_internal *tss)
1765 {
1766 	if (skb->tstamp)
1767 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1768 	else
1769 		tss->ts[0] = (struct timespec64) {0};
1770 
1771 	if (skb_hwtstamps(skb)->hwtstamp)
1772 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1773 	else
1774 		tss->ts[2] = (struct timespec64) {0};
1775 }
1776 
1777 #ifdef CONFIG_MMU
1778 static const struct vm_operations_struct tcp_vm_ops = {
1779 };
1780 
1781 int tcp_mmap(struct file *file, struct socket *sock,
1782 	     struct vm_area_struct *vma)
1783 {
1784 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1785 		return -EPERM;
1786 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1787 
1788 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1789 	vm_flags_set(vma, VM_MIXEDMAP);
1790 
1791 	vma->vm_ops = &tcp_vm_ops;
1792 	return 0;
1793 }
1794 EXPORT_SYMBOL(tcp_mmap);
1795 
1796 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1797 				       u32 *offset_frag)
1798 {
1799 	skb_frag_t *frag;
1800 
1801 	if (unlikely(offset_skb >= skb->len))
1802 		return NULL;
1803 
1804 	offset_skb -= skb_headlen(skb);
1805 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1806 		return NULL;
1807 
1808 	frag = skb_shinfo(skb)->frags;
1809 	while (offset_skb) {
1810 		if (skb_frag_size(frag) > offset_skb) {
1811 			*offset_frag = offset_skb;
1812 			return frag;
1813 		}
1814 		offset_skb -= skb_frag_size(frag);
1815 		++frag;
1816 	}
1817 	*offset_frag = 0;
1818 	return frag;
1819 }
1820 
1821 static bool can_map_frag(const skb_frag_t *frag)
1822 {
1823 	struct page *page;
1824 
1825 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1826 		return false;
1827 
1828 	page = skb_frag_page(frag);
1829 
1830 	if (PageCompound(page) || page->mapping)
1831 		return false;
1832 
1833 	return true;
1834 }
1835 
1836 static int find_next_mappable_frag(const skb_frag_t *frag,
1837 				   int remaining_in_skb)
1838 {
1839 	int offset = 0;
1840 
1841 	if (likely(can_map_frag(frag)))
1842 		return 0;
1843 
1844 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1845 		offset += skb_frag_size(frag);
1846 		++frag;
1847 	}
1848 	return offset;
1849 }
1850 
1851 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1852 					  struct tcp_zerocopy_receive *zc,
1853 					  struct sk_buff *skb, u32 offset)
1854 {
1855 	u32 frag_offset, partial_frag_remainder = 0;
1856 	int mappable_offset;
1857 	skb_frag_t *frag;
1858 
1859 	/* worst case: skip to next skb. try to improve on this case below */
1860 	zc->recv_skip_hint = skb->len - offset;
1861 
1862 	/* Find the frag containing this offset (and how far into that frag) */
1863 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1864 	if (!frag)
1865 		return;
1866 
1867 	if (frag_offset) {
1868 		struct skb_shared_info *info = skb_shinfo(skb);
1869 
1870 		/* We read part of the last frag, must recvmsg() rest of skb. */
1871 		if (frag == &info->frags[info->nr_frags - 1])
1872 			return;
1873 
1874 		/* Else, we must at least read the remainder in this frag. */
1875 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1876 		zc->recv_skip_hint -= partial_frag_remainder;
1877 		++frag;
1878 	}
1879 
1880 	/* partial_frag_remainder: If part way through a frag, must read rest.
1881 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1882 	 * in partial_frag_remainder.
1883 	 */
1884 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1885 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1886 }
1887 
1888 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1889 			      int flags, struct scm_timestamping_internal *tss,
1890 			      int *cmsg_flags);
1891 static int receive_fallback_to_copy(struct sock *sk,
1892 				    struct tcp_zerocopy_receive *zc, int inq,
1893 				    struct scm_timestamping_internal *tss)
1894 {
1895 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1896 	struct msghdr msg = {};
1897 	int err;
1898 
1899 	zc->length = 0;
1900 	zc->recv_skip_hint = 0;
1901 
1902 	if (copy_address != zc->copybuf_address)
1903 		return -EINVAL;
1904 
1905 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1906 			  &msg.msg_iter);
1907 	if (err)
1908 		return err;
1909 
1910 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1911 				 tss, &zc->msg_flags);
1912 	if (err < 0)
1913 		return err;
1914 
1915 	zc->copybuf_len = err;
1916 	if (likely(zc->copybuf_len)) {
1917 		struct sk_buff *skb;
1918 		u32 offset;
1919 
1920 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1921 		if (skb)
1922 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1923 	}
1924 	return 0;
1925 }
1926 
1927 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1928 				   struct sk_buff *skb, u32 copylen,
1929 				   u32 *offset, u32 *seq)
1930 {
1931 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1932 	struct msghdr msg = {};
1933 	int err;
1934 
1935 	if (copy_address != zc->copybuf_address)
1936 		return -EINVAL;
1937 
1938 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1939 			  &msg.msg_iter);
1940 	if (err)
1941 		return err;
1942 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1943 	if (err)
1944 		return err;
1945 	zc->recv_skip_hint -= copylen;
1946 	*offset += copylen;
1947 	*seq += copylen;
1948 	return (__s32)copylen;
1949 }
1950 
1951 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1952 				  struct sock *sk,
1953 				  struct sk_buff *skb,
1954 				  u32 *seq,
1955 				  s32 copybuf_len,
1956 				  struct scm_timestamping_internal *tss)
1957 {
1958 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1959 
1960 	if (!copylen)
1961 		return 0;
1962 	/* skb is null if inq < PAGE_SIZE. */
1963 	if (skb) {
1964 		offset = *seq - TCP_SKB_CB(skb)->seq;
1965 	} else {
1966 		skb = tcp_recv_skb(sk, *seq, &offset);
1967 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1968 			tcp_update_recv_tstamps(skb, tss);
1969 			zc->msg_flags |= TCP_CMSG_TS;
1970 		}
1971 	}
1972 
1973 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1974 						  seq);
1975 	return zc->copybuf_len < 0 ? 0 : copylen;
1976 }
1977 
1978 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1979 					      struct page **pending_pages,
1980 					      unsigned long pages_remaining,
1981 					      unsigned long *address,
1982 					      u32 *length,
1983 					      u32 *seq,
1984 					      struct tcp_zerocopy_receive *zc,
1985 					      u32 total_bytes_to_map,
1986 					      int err)
1987 {
1988 	/* At least one page did not map. Try zapping if we skipped earlier. */
1989 	if (err == -EBUSY &&
1990 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1991 		u32 maybe_zap_len;
1992 
1993 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1994 				*length + /* Mapped or pending */
1995 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1996 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1997 		err = 0;
1998 	}
1999 
2000 	if (!err) {
2001 		unsigned long leftover_pages = pages_remaining;
2002 		int bytes_mapped;
2003 
2004 		/* We called zap_page_range_single, try to reinsert. */
2005 		err = vm_insert_pages(vma, *address,
2006 				      pending_pages,
2007 				      &pages_remaining);
2008 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2009 		*seq += bytes_mapped;
2010 		*address += bytes_mapped;
2011 	}
2012 	if (err) {
2013 		/* Either we were unable to zap, OR we zapped, retried an
2014 		 * insert, and still had an issue. Either ways, pages_remaining
2015 		 * is the number of pages we were unable to map, and we unroll
2016 		 * some state we speculatively touched before.
2017 		 */
2018 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2019 
2020 		*length -= bytes_not_mapped;
2021 		zc->recv_skip_hint += bytes_not_mapped;
2022 	}
2023 	return err;
2024 }
2025 
2026 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2027 					struct page **pages,
2028 					unsigned int pages_to_map,
2029 					unsigned long *address,
2030 					u32 *length,
2031 					u32 *seq,
2032 					struct tcp_zerocopy_receive *zc,
2033 					u32 total_bytes_to_map)
2034 {
2035 	unsigned long pages_remaining = pages_to_map;
2036 	unsigned int pages_mapped;
2037 	unsigned int bytes_mapped;
2038 	int err;
2039 
2040 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2041 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2042 	bytes_mapped = PAGE_SIZE * pages_mapped;
2043 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2044 	 * mapping (some but not all of the pages).
2045 	 */
2046 	*seq += bytes_mapped;
2047 	*address += bytes_mapped;
2048 
2049 	if (likely(!err))
2050 		return 0;
2051 
2052 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2053 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2054 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2055 		err);
2056 }
2057 
2058 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2059 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2060 				      struct tcp_zerocopy_receive *zc,
2061 				      struct scm_timestamping_internal *tss)
2062 {
2063 	unsigned long msg_control_addr;
2064 	struct msghdr cmsg_dummy;
2065 
2066 	msg_control_addr = (unsigned long)zc->msg_control;
2067 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2068 	cmsg_dummy.msg_controllen =
2069 		(__kernel_size_t)zc->msg_controllen;
2070 	cmsg_dummy.msg_flags = in_compat_syscall()
2071 		? MSG_CMSG_COMPAT : 0;
2072 	cmsg_dummy.msg_control_is_user = true;
2073 	zc->msg_flags = 0;
2074 	if (zc->msg_control == msg_control_addr &&
2075 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2076 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2077 		zc->msg_control = (__u64)
2078 			((uintptr_t)cmsg_dummy.msg_control_user);
2079 		zc->msg_controllen =
2080 			(__u64)cmsg_dummy.msg_controllen;
2081 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2082 	}
2083 }
2084 
2085 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2086 					   unsigned long address,
2087 					   bool *mmap_locked)
2088 {
2089 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2090 
2091 	if (vma) {
2092 		if (vma->vm_ops != &tcp_vm_ops) {
2093 			vma_end_read(vma);
2094 			return NULL;
2095 		}
2096 		*mmap_locked = false;
2097 		return vma;
2098 	}
2099 
2100 	mmap_read_lock(mm);
2101 	vma = vma_lookup(mm, address);
2102 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2103 		mmap_read_unlock(mm);
2104 		return NULL;
2105 	}
2106 	*mmap_locked = true;
2107 	return vma;
2108 }
2109 
2110 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2111 static int tcp_zerocopy_receive(struct sock *sk,
2112 				struct tcp_zerocopy_receive *zc,
2113 				struct scm_timestamping_internal *tss)
2114 {
2115 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2116 	unsigned long address = (unsigned long)zc->address;
2117 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2118 	s32 copybuf_len = zc->copybuf_len;
2119 	struct tcp_sock *tp = tcp_sk(sk);
2120 	const skb_frag_t *frags = NULL;
2121 	unsigned int pages_to_map = 0;
2122 	struct vm_area_struct *vma;
2123 	struct sk_buff *skb = NULL;
2124 	u32 seq = tp->copied_seq;
2125 	u32 total_bytes_to_map;
2126 	int inq = tcp_inq(sk);
2127 	bool mmap_locked;
2128 	int ret;
2129 
2130 	zc->copybuf_len = 0;
2131 	zc->msg_flags = 0;
2132 
2133 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2134 		return -EINVAL;
2135 
2136 	if (sk->sk_state == TCP_LISTEN)
2137 		return -ENOTCONN;
2138 
2139 	sock_rps_record_flow(sk);
2140 
2141 	if (inq && inq <= copybuf_len)
2142 		return receive_fallback_to_copy(sk, zc, inq, tss);
2143 
2144 	if (inq < PAGE_SIZE) {
2145 		zc->length = 0;
2146 		zc->recv_skip_hint = inq;
2147 		if (!inq && sock_flag(sk, SOCK_DONE))
2148 			return -EIO;
2149 		return 0;
2150 	}
2151 
2152 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2153 	if (!vma)
2154 		return -EINVAL;
2155 
2156 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2157 	avail_len = min_t(u32, vma_len, inq);
2158 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2159 	if (total_bytes_to_map) {
2160 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2161 			zap_page_range_single(vma, address, total_bytes_to_map,
2162 					      NULL);
2163 		zc->length = total_bytes_to_map;
2164 		zc->recv_skip_hint = 0;
2165 	} else {
2166 		zc->length = avail_len;
2167 		zc->recv_skip_hint = avail_len;
2168 	}
2169 	ret = 0;
2170 	while (length + PAGE_SIZE <= zc->length) {
2171 		int mappable_offset;
2172 		struct page *page;
2173 
2174 		if (zc->recv_skip_hint < PAGE_SIZE) {
2175 			u32 offset_frag;
2176 
2177 			if (skb) {
2178 				if (zc->recv_skip_hint > 0)
2179 					break;
2180 				skb = skb->next;
2181 				offset = seq - TCP_SKB_CB(skb)->seq;
2182 			} else {
2183 				skb = tcp_recv_skb(sk, seq, &offset);
2184 			}
2185 
2186 			if (!skb_frags_readable(skb))
2187 				break;
2188 
2189 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2190 				tcp_update_recv_tstamps(skb, tss);
2191 				zc->msg_flags |= TCP_CMSG_TS;
2192 			}
2193 			zc->recv_skip_hint = skb->len - offset;
2194 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2195 			if (!frags || offset_frag)
2196 				break;
2197 		}
2198 
2199 		mappable_offset = find_next_mappable_frag(frags,
2200 							  zc->recv_skip_hint);
2201 		if (mappable_offset) {
2202 			zc->recv_skip_hint = mappable_offset;
2203 			break;
2204 		}
2205 		page = skb_frag_page(frags);
2206 		if (WARN_ON_ONCE(!page))
2207 			break;
2208 
2209 		prefetchw(page);
2210 		pages[pages_to_map++] = page;
2211 		length += PAGE_SIZE;
2212 		zc->recv_skip_hint -= PAGE_SIZE;
2213 		frags++;
2214 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2215 		    zc->recv_skip_hint < PAGE_SIZE) {
2216 			/* Either full batch, or we're about to go to next skb
2217 			 * (and we cannot unroll failed ops across skbs).
2218 			 */
2219 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2220 							   pages_to_map,
2221 							   &address, &length,
2222 							   &seq, zc,
2223 							   total_bytes_to_map);
2224 			if (ret)
2225 				goto out;
2226 			pages_to_map = 0;
2227 		}
2228 	}
2229 	if (pages_to_map) {
2230 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2231 						   &address, &length, &seq,
2232 						   zc, total_bytes_to_map);
2233 	}
2234 out:
2235 	if (mmap_locked)
2236 		mmap_read_unlock(current->mm);
2237 	else
2238 		vma_end_read(vma);
2239 	/* Try to copy straggler data. */
2240 	if (!ret)
2241 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2242 
2243 	if (length + copylen) {
2244 		WRITE_ONCE(tp->copied_seq, seq);
2245 		tcp_rcv_space_adjust(sk);
2246 
2247 		/* Clean up data we have read: This will do ACK frames. */
2248 		tcp_recv_skb(sk, seq, &offset);
2249 		tcp_cleanup_rbuf(sk, length + copylen);
2250 		ret = 0;
2251 		if (length == zc->length)
2252 			zc->recv_skip_hint = 0;
2253 	} else {
2254 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2255 			ret = -EIO;
2256 	}
2257 	zc->length = length;
2258 	return ret;
2259 }
2260 #endif
2261 
2262 /* Similar to __sock_recv_timestamp, but does not require an skb */
2263 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2264 			struct scm_timestamping_internal *tss)
2265 {
2266 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2267 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2268 	bool has_timestamping = false;
2269 
2270 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2271 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2272 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2273 				if (new_tstamp) {
2274 					struct __kernel_timespec kts = {
2275 						.tv_sec = tss->ts[0].tv_sec,
2276 						.tv_nsec = tss->ts[0].tv_nsec,
2277 					};
2278 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2279 						 sizeof(kts), &kts);
2280 				} else {
2281 					struct __kernel_old_timespec ts_old = {
2282 						.tv_sec = tss->ts[0].tv_sec,
2283 						.tv_nsec = tss->ts[0].tv_nsec,
2284 					};
2285 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2286 						 sizeof(ts_old), &ts_old);
2287 				}
2288 			} else {
2289 				if (new_tstamp) {
2290 					struct __kernel_sock_timeval stv = {
2291 						.tv_sec = tss->ts[0].tv_sec,
2292 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2293 					};
2294 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2295 						 sizeof(stv), &stv);
2296 				} else {
2297 					struct __kernel_old_timeval tv = {
2298 						.tv_sec = tss->ts[0].tv_sec,
2299 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2300 					};
2301 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2302 						 sizeof(tv), &tv);
2303 				}
2304 			}
2305 		}
2306 
2307 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2308 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2309 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2310 			has_timestamping = true;
2311 		else
2312 			tss->ts[0] = (struct timespec64) {0};
2313 	}
2314 
2315 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2316 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2317 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2318 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2319 			has_timestamping = true;
2320 		else
2321 			tss->ts[2] = (struct timespec64) {0};
2322 	}
2323 
2324 	if (has_timestamping) {
2325 		tss->ts[1] = (struct timespec64) {0};
2326 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2327 			put_cmsg_scm_timestamping64(msg, tss);
2328 		else
2329 			put_cmsg_scm_timestamping(msg, tss);
2330 	}
2331 }
2332 
2333 static int tcp_inq_hint(struct sock *sk)
2334 {
2335 	const struct tcp_sock *tp = tcp_sk(sk);
2336 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2337 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2338 	int inq;
2339 
2340 	inq = rcv_nxt - copied_seq;
2341 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2342 		lock_sock(sk);
2343 		inq = tp->rcv_nxt - tp->copied_seq;
2344 		release_sock(sk);
2345 	}
2346 	/* After receiving a FIN, tell the user-space to continue reading
2347 	 * by returning a non-zero inq.
2348 	 */
2349 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2350 		inq = 1;
2351 	return inq;
2352 }
2353 
2354 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2355 struct tcp_xa_pool {
2356 	u8		max; /* max <= MAX_SKB_FRAGS */
2357 	u8		idx; /* idx <= max */
2358 	__u32		tokens[MAX_SKB_FRAGS];
2359 	netmem_ref	netmems[MAX_SKB_FRAGS];
2360 };
2361 
2362 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2363 {
2364 	int i;
2365 
2366 	/* Commit part that has been copied to user space. */
2367 	for (i = 0; i < p->idx; i++)
2368 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2369 			     (__force void *)p->netmems[i], GFP_KERNEL);
2370 	/* Rollback what has been pre-allocated and is no longer needed. */
2371 	for (; i < p->max; i++)
2372 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2373 
2374 	p->max = 0;
2375 	p->idx = 0;
2376 }
2377 
2378 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2379 {
2380 	if (!p->max)
2381 		return;
2382 
2383 	xa_lock_bh(&sk->sk_user_frags);
2384 
2385 	tcp_xa_pool_commit_locked(sk, p);
2386 
2387 	xa_unlock_bh(&sk->sk_user_frags);
2388 }
2389 
2390 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2391 			      unsigned int max_frags)
2392 {
2393 	int err, k;
2394 
2395 	if (p->idx < p->max)
2396 		return 0;
2397 
2398 	xa_lock_bh(&sk->sk_user_frags);
2399 
2400 	tcp_xa_pool_commit_locked(sk, p);
2401 
2402 	for (k = 0; k < max_frags; k++) {
2403 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2404 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2405 		if (err)
2406 			break;
2407 	}
2408 
2409 	xa_unlock_bh(&sk->sk_user_frags);
2410 
2411 	p->max = k;
2412 	p->idx = 0;
2413 	return k ? 0 : err;
2414 }
2415 
2416 /* On error, returns the -errno. On success, returns number of bytes sent to the
2417  * user. May not consume all of @remaining_len.
2418  */
2419 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2420 			      unsigned int offset, struct msghdr *msg,
2421 			      int remaining_len)
2422 {
2423 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2424 	struct tcp_xa_pool tcp_xa_pool;
2425 	unsigned int start;
2426 	int i, copy, n;
2427 	int sent = 0;
2428 	int err = 0;
2429 
2430 	tcp_xa_pool.max = 0;
2431 	tcp_xa_pool.idx = 0;
2432 	do {
2433 		start = skb_headlen(skb);
2434 
2435 		if (skb_frags_readable(skb)) {
2436 			err = -ENODEV;
2437 			goto out;
2438 		}
2439 
2440 		/* Copy header. */
2441 		copy = start - offset;
2442 		if (copy > 0) {
2443 			copy = min(copy, remaining_len);
2444 
2445 			n = copy_to_iter(skb->data + offset, copy,
2446 					 &msg->msg_iter);
2447 			if (n != copy) {
2448 				err = -EFAULT;
2449 				goto out;
2450 			}
2451 
2452 			offset += copy;
2453 			remaining_len -= copy;
2454 
2455 			/* First a dmabuf_cmsg for # bytes copied to user
2456 			 * buffer.
2457 			 */
2458 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2459 			dmabuf_cmsg.frag_size = copy;
2460 			err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR,
2461 				       sizeof(dmabuf_cmsg), &dmabuf_cmsg);
2462 			if (err || msg->msg_flags & MSG_CTRUNC) {
2463 				msg->msg_flags &= ~MSG_CTRUNC;
2464 				if (!err)
2465 					err = -ETOOSMALL;
2466 				goto out;
2467 			}
2468 
2469 			sent += copy;
2470 
2471 			if (remaining_len == 0)
2472 				goto out;
2473 		}
2474 
2475 		/* after that, send information of dmabuf pages through a
2476 		 * sequence of cmsg
2477 		 */
2478 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2479 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2480 			struct net_iov *niov;
2481 			u64 frag_offset;
2482 			int end;
2483 
2484 			/* !skb_frags_readable() should indicate that ALL the
2485 			 * frags in this skb are dmabuf net_iovs. We're checking
2486 			 * for that flag above, but also check individual frags
2487 			 * here. If the tcp stack is not setting
2488 			 * skb_frags_readable() correctly, we still don't want
2489 			 * to crash here.
2490 			 */
2491 			if (!skb_frag_net_iov(frag)) {
2492 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2493 				err = -ENODEV;
2494 				goto out;
2495 			}
2496 
2497 			niov = skb_frag_net_iov(frag);
2498 			end = start + skb_frag_size(frag);
2499 			copy = end - offset;
2500 
2501 			if (copy > 0) {
2502 				copy = min(copy, remaining_len);
2503 
2504 				frag_offset = net_iov_virtual_addr(niov) +
2505 					      skb_frag_off(frag) + offset -
2506 					      start;
2507 				dmabuf_cmsg.frag_offset = frag_offset;
2508 				dmabuf_cmsg.frag_size = copy;
2509 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2510 							 skb_shinfo(skb)->nr_frags - i);
2511 				if (err)
2512 					goto out;
2513 
2514 				/* Will perform the exchange later */
2515 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2516 				dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2517 
2518 				offset += copy;
2519 				remaining_len -= copy;
2520 
2521 				err = put_cmsg(msg, SOL_SOCKET,
2522 					       SO_DEVMEM_DMABUF,
2523 					       sizeof(dmabuf_cmsg),
2524 					       &dmabuf_cmsg);
2525 				if (err || msg->msg_flags & MSG_CTRUNC) {
2526 					msg->msg_flags &= ~MSG_CTRUNC;
2527 					if (!err)
2528 						err = -ETOOSMALL;
2529 					goto out;
2530 				}
2531 
2532 				atomic_long_inc(&niov->pp_ref_count);
2533 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2534 
2535 				sent += copy;
2536 
2537 				if (remaining_len == 0)
2538 					goto out;
2539 			}
2540 			start = end;
2541 		}
2542 
2543 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2544 		if (!remaining_len)
2545 			goto out;
2546 
2547 		/* if remaining_len is not satisfied yet, we need to go to the
2548 		 * next frag in the frag_list to satisfy remaining_len.
2549 		 */
2550 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2551 
2552 		offset = offset - start;
2553 	} while (skb);
2554 
2555 	if (remaining_len) {
2556 		err = -EFAULT;
2557 		goto out;
2558 	}
2559 
2560 out:
2561 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2562 	if (!sent)
2563 		sent = err;
2564 
2565 	return sent;
2566 }
2567 
2568 /*
2569  *	This routine copies from a sock struct into the user buffer.
2570  *
2571  *	Technical note: in 2.3 we work on _locked_ socket, so that
2572  *	tricks with *seq access order and skb->users are not required.
2573  *	Probably, code can be easily improved even more.
2574  */
2575 
2576 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2577 			      int flags, struct scm_timestamping_internal *tss,
2578 			      int *cmsg_flags)
2579 {
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 	int last_copied_dmabuf = -1; /* uninitialized */
2582 	int copied = 0;
2583 	u32 peek_seq;
2584 	u32 *seq;
2585 	unsigned long used;
2586 	int err;
2587 	int target;		/* Read at least this many bytes */
2588 	long timeo;
2589 	struct sk_buff *skb, *last;
2590 	u32 peek_offset = 0;
2591 	u32 urg_hole = 0;
2592 
2593 	err = -ENOTCONN;
2594 	if (sk->sk_state == TCP_LISTEN)
2595 		goto out;
2596 
2597 	if (tp->recvmsg_inq) {
2598 		*cmsg_flags = TCP_CMSG_INQ;
2599 		msg->msg_get_inq = 1;
2600 	}
2601 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2602 
2603 	/* Urgent data needs to be handled specially. */
2604 	if (flags & MSG_OOB)
2605 		goto recv_urg;
2606 
2607 	if (unlikely(tp->repair)) {
2608 		err = -EPERM;
2609 		if (!(flags & MSG_PEEK))
2610 			goto out;
2611 
2612 		if (tp->repair_queue == TCP_SEND_QUEUE)
2613 			goto recv_sndq;
2614 
2615 		err = -EINVAL;
2616 		if (tp->repair_queue == TCP_NO_QUEUE)
2617 			goto out;
2618 
2619 		/* 'common' recv queue MSG_PEEK-ing */
2620 	}
2621 
2622 	seq = &tp->copied_seq;
2623 	if (flags & MSG_PEEK) {
2624 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2625 		peek_seq = tp->copied_seq + peek_offset;
2626 		seq = &peek_seq;
2627 	}
2628 
2629 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2630 
2631 	do {
2632 		u32 offset;
2633 
2634 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2635 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2636 			if (copied)
2637 				break;
2638 			if (signal_pending(current)) {
2639 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2640 				break;
2641 			}
2642 		}
2643 
2644 		/* Next get a buffer. */
2645 
2646 		last = skb_peek_tail(&sk->sk_receive_queue);
2647 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2648 			last = skb;
2649 			/* Now that we have two receive queues this
2650 			 * shouldn't happen.
2651 			 */
2652 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2653 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2654 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2655 				 flags))
2656 				break;
2657 
2658 			offset = *seq - TCP_SKB_CB(skb)->seq;
2659 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2660 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2661 				offset--;
2662 			}
2663 			if (offset < skb->len)
2664 				goto found_ok_skb;
2665 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2666 				goto found_fin_ok;
2667 			WARN(!(flags & MSG_PEEK),
2668 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2669 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2670 		}
2671 
2672 		/* Well, if we have backlog, try to process it now yet. */
2673 
2674 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2675 			break;
2676 
2677 		if (copied) {
2678 			if (!timeo ||
2679 			    sk->sk_err ||
2680 			    sk->sk_state == TCP_CLOSE ||
2681 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2682 			    signal_pending(current))
2683 				break;
2684 		} else {
2685 			if (sock_flag(sk, SOCK_DONE))
2686 				break;
2687 
2688 			if (sk->sk_err) {
2689 				copied = sock_error(sk);
2690 				break;
2691 			}
2692 
2693 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2694 				break;
2695 
2696 			if (sk->sk_state == TCP_CLOSE) {
2697 				/* This occurs when user tries to read
2698 				 * from never connected socket.
2699 				 */
2700 				copied = -ENOTCONN;
2701 				break;
2702 			}
2703 
2704 			if (!timeo) {
2705 				copied = -EAGAIN;
2706 				break;
2707 			}
2708 
2709 			if (signal_pending(current)) {
2710 				copied = sock_intr_errno(timeo);
2711 				break;
2712 			}
2713 		}
2714 
2715 		if (copied >= target) {
2716 			/* Do not sleep, just process backlog. */
2717 			__sk_flush_backlog(sk);
2718 		} else {
2719 			tcp_cleanup_rbuf(sk, copied);
2720 			err = sk_wait_data(sk, &timeo, last);
2721 			if (err < 0) {
2722 				err = copied ? : err;
2723 				goto out;
2724 			}
2725 		}
2726 
2727 		if ((flags & MSG_PEEK) &&
2728 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2729 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2730 					    current->comm,
2731 					    task_pid_nr(current));
2732 			peek_seq = tp->copied_seq + peek_offset;
2733 		}
2734 		continue;
2735 
2736 found_ok_skb:
2737 		/* Ok so how much can we use? */
2738 		used = skb->len - offset;
2739 		if (len < used)
2740 			used = len;
2741 
2742 		/* Do we have urgent data here? */
2743 		if (unlikely(tp->urg_data)) {
2744 			u32 urg_offset = tp->urg_seq - *seq;
2745 			if (urg_offset < used) {
2746 				if (!urg_offset) {
2747 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2748 						WRITE_ONCE(*seq, *seq + 1);
2749 						urg_hole++;
2750 						offset++;
2751 						used--;
2752 						if (!used)
2753 							goto skip_copy;
2754 					}
2755 				} else
2756 					used = urg_offset;
2757 			}
2758 		}
2759 
2760 		if (!(flags & MSG_TRUNC)) {
2761 			if (last_copied_dmabuf != -1 &&
2762 			    last_copied_dmabuf != !skb_frags_readable(skb))
2763 				break;
2764 
2765 			if (skb_frags_readable(skb)) {
2766 				err = skb_copy_datagram_msg(skb, offset, msg,
2767 							    used);
2768 				if (err) {
2769 					/* Exception. Bailout! */
2770 					if (!copied)
2771 						copied = -EFAULT;
2772 					break;
2773 				}
2774 			} else {
2775 				if (!(flags & MSG_SOCK_DEVMEM)) {
2776 					/* dmabuf skbs can only be received
2777 					 * with the MSG_SOCK_DEVMEM flag.
2778 					 */
2779 					if (!copied)
2780 						copied = -EFAULT;
2781 
2782 					break;
2783 				}
2784 
2785 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2786 							 used);
2787 				if (err <= 0) {
2788 					if (!copied)
2789 						copied = -EFAULT;
2790 
2791 					break;
2792 				}
2793 				used = err;
2794 			}
2795 		}
2796 
2797 		last_copied_dmabuf = !skb_frags_readable(skb);
2798 
2799 		WRITE_ONCE(*seq, *seq + used);
2800 		copied += used;
2801 		len -= used;
2802 		if (flags & MSG_PEEK)
2803 			sk_peek_offset_fwd(sk, used);
2804 		else
2805 			sk_peek_offset_bwd(sk, used);
2806 		tcp_rcv_space_adjust(sk);
2807 
2808 skip_copy:
2809 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2810 			WRITE_ONCE(tp->urg_data, 0);
2811 			tcp_fast_path_check(sk);
2812 		}
2813 
2814 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2815 			tcp_update_recv_tstamps(skb, tss);
2816 			*cmsg_flags |= TCP_CMSG_TS;
2817 		}
2818 
2819 		if (used + offset < skb->len)
2820 			continue;
2821 
2822 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2823 			goto found_fin_ok;
2824 		if (!(flags & MSG_PEEK))
2825 			tcp_eat_recv_skb(sk, skb);
2826 		continue;
2827 
2828 found_fin_ok:
2829 		/* Process the FIN. */
2830 		WRITE_ONCE(*seq, *seq + 1);
2831 		if (!(flags & MSG_PEEK))
2832 			tcp_eat_recv_skb(sk, skb);
2833 		break;
2834 	} while (len > 0);
2835 
2836 	/* According to UNIX98, msg_name/msg_namelen are ignored
2837 	 * on connected socket. I was just happy when found this 8) --ANK
2838 	 */
2839 
2840 	/* Clean up data we have read: This will do ACK frames. */
2841 	tcp_cleanup_rbuf(sk, copied);
2842 	return copied;
2843 
2844 out:
2845 	return err;
2846 
2847 recv_urg:
2848 	err = tcp_recv_urg(sk, msg, len, flags);
2849 	goto out;
2850 
2851 recv_sndq:
2852 	err = tcp_peek_sndq(sk, msg, len);
2853 	goto out;
2854 }
2855 
2856 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2857 		int *addr_len)
2858 {
2859 	int cmsg_flags = 0, ret;
2860 	struct scm_timestamping_internal tss;
2861 
2862 	if (unlikely(flags & MSG_ERRQUEUE))
2863 		return inet_recv_error(sk, msg, len, addr_len);
2864 
2865 	if (sk_can_busy_loop(sk) &&
2866 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2867 	    sk->sk_state == TCP_ESTABLISHED)
2868 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2869 
2870 	lock_sock(sk);
2871 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2872 	release_sock(sk);
2873 
2874 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2875 		if (cmsg_flags & TCP_CMSG_TS)
2876 			tcp_recv_timestamp(msg, sk, &tss);
2877 		if (msg->msg_get_inq) {
2878 			msg->msg_inq = tcp_inq_hint(sk);
2879 			if (cmsg_flags & TCP_CMSG_INQ)
2880 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2881 					 sizeof(msg->msg_inq), &msg->msg_inq);
2882 		}
2883 	}
2884 	return ret;
2885 }
2886 EXPORT_SYMBOL(tcp_recvmsg);
2887 
2888 void tcp_set_state(struct sock *sk, int state)
2889 {
2890 	int oldstate = sk->sk_state;
2891 
2892 	/* We defined a new enum for TCP states that are exported in BPF
2893 	 * so as not force the internal TCP states to be frozen. The
2894 	 * following checks will detect if an internal state value ever
2895 	 * differs from the BPF value. If this ever happens, then we will
2896 	 * need to remap the internal value to the BPF value before calling
2897 	 * tcp_call_bpf_2arg.
2898 	 */
2899 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2900 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2901 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2902 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2903 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2904 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2905 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2906 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2907 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2908 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2909 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2910 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2911 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2912 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2913 
2914 	/* bpf uapi header bpf.h defines an anonymous enum with values
2915 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2916 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2917 	 * But clang built vmlinux does not have this enum in DWARF
2918 	 * since clang removes the above code before generating IR/debuginfo.
2919 	 * Let us explicitly emit the type debuginfo to ensure the
2920 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2921 	 * regardless of which compiler is used.
2922 	 */
2923 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2924 
2925 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2926 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2927 
2928 	switch (state) {
2929 	case TCP_ESTABLISHED:
2930 		if (oldstate != TCP_ESTABLISHED)
2931 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2932 		break;
2933 	case TCP_CLOSE_WAIT:
2934 		if (oldstate == TCP_SYN_RECV)
2935 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2936 		break;
2937 
2938 	case TCP_CLOSE:
2939 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2940 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2941 
2942 		sk->sk_prot->unhash(sk);
2943 		if (inet_csk(sk)->icsk_bind_hash &&
2944 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2945 			inet_put_port(sk);
2946 		fallthrough;
2947 	default:
2948 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2949 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2950 	}
2951 
2952 	/* Change state AFTER socket is unhashed to avoid closed
2953 	 * socket sitting in hash tables.
2954 	 */
2955 	inet_sk_state_store(sk, state);
2956 }
2957 EXPORT_SYMBOL_GPL(tcp_set_state);
2958 
2959 /*
2960  *	State processing on a close. This implements the state shift for
2961  *	sending our FIN frame. Note that we only send a FIN for some
2962  *	states. A shutdown() may have already sent the FIN, or we may be
2963  *	closed.
2964  */
2965 
2966 static const unsigned char new_state[16] = {
2967   /* current state:        new state:      action:	*/
2968   [0 /* (Invalid) */]	= TCP_CLOSE,
2969   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2970   [TCP_SYN_SENT]	= TCP_CLOSE,
2971   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2972   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2973   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2974   [TCP_TIME_WAIT]	= TCP_CLOSE,
2975   [TCP_CLOSE]		= TCP_CLOSE,
2976   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2977   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2978   [TCP_LISTEN]		= TCP_CLOSE,
2979   [TCP_CLOSING]		= TCP_CLOSING,
2980   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2981 };
2982 
2983 static int tcp_close_state(struct sock *sk)
2984 {
2985 	int next = (int)new_state[sk->sk_state];
2986 	int ns = next & TCP_STATE_MASK;
2987 
2988 	tcp_set_state(sk, ns);
2989 
2990 	return next & TCP_ACTION_FIN;
2991 }
2992 
2993 /*
2994  *	Shutdown the sending side of a connection. Much like close except
2995  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2996  */
2997 
2998 void tcp_shutdown(struct sock *sk, int how)
2999 {
3000 	/*	We need to grab some memory, and put together a FIN,
3001 	 *	and then put it into the queue to be sent.
3002 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3003 	 */
3004 	if (!(how & SEND_SHUTDOWN))
3005 		return;
3006 
3007 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3008 	if ((1 << sk->sk_state) &
3009 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3010 	     TCPF_CLOSE_WAIT)) {
3011 		/* Clear out any half completed packets.  FIN if needed. */
3012 		if (tcp_close_state(sk))
3013 			tcp_send_fin(sk);
3014 	}
3015 }
3016 EXPORT_SYMBOL(tcp_shutdown);
3017 
3018 int tcp_orphan_count_sum(void)
3019 {
3020 	int i, total = 0;
3021 
3022 	for_each_possible_cpu(i)
3023 		total += per_cpu(tcp_orphan_count, i);
3024 
3025 	return max(total, 0);
3026 }
3027 
3028 static int tcp_orphan_cache;
3029 static struct timer_list tcp_orphan_timer;
3030 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3031 
3032 static void tcp_orphan_update(struct timer_list *unused)
3033 {
3034 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3035 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3036 }
3037 
3038 static bool tcp_too_many_orphans(int shift)
3039 {
3040 	return READ_ONCE(tcp_orphan_cache) << shift >
3041 		READ_ONCE(sysctl_tcp_max_orphans);
3042 }
3043 
3044 static bool tcp_out_of_memory(const struct sock *sk)
3045 {
3046 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3047 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3048 		return true;
3049 	return false;
3050 }
3051 
3052 bool tcp_check_oom(const struct sock *sk, int shift)
3053 {
3054 	bool too_many_orphans, out_of_socket_memory;
3055 
3056 	too_many_orphans = tcp_too_many_orphans(shift);
3057 	out_of_socket_memory = tcp_out_of_memory(sk);
3058 
3059 	if (too_many_orphans)
3060 		net_info_ratelimited("too many orphaned sockets\n");
3061 	if (out_of_socket_memory)
3062 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3063 	return too_many_orphans || out_of_socket_memory;
3064 }
3065 
3066 void __tcp_close(struct sock *sk, long timeout)
3067 {
3068 	struct sk_buff *skb;
3069 	int data_was_unread = 0;
3070 	int state;
3071 
3072 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3073 
3074 	if (sk->sk_state == TCP_LISTEN) {
3075 		tcp_set_state(sk, TCP_CLOSE);
3076 
3077 		/* Special case. */
3078 		inet_csk_listen_stop(sk);
3079 
3080 		goto adjudge_to_death;
3081 	}
3082 
3083 	/*  We need to flush the recv. buffs.  We do this only on the
3084 	 *  descriptor close, not protocol-sourced closes, because the
3085 	 *  reader process may not have drained the data yet!
3086 	 */
3087 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3088 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3089 
3090 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3091 			len--;
3092 		data_was_unread += len;
3093 		__kfree_skb(skb);
3094 	}
3095 
3096 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3097 	if (sk->sk_state == TCP_CLOSE)
3098 		goto adjudge_to_death;
3099 
3100 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3101 	 * data was lost. To witness the awful effects of the old behavior of
3102 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3103 	 * GET in an FTP client, suspend the process, wait for the client to
3104 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3105 	 * Note: timeout is always zero in such a case.
3106 	 */
3107 	if (unlikely(tcp_sk(sk)->repair)) {
3108 		sk->sk_prot->disconnect(sk, 0);
3109 	} else if (data_was_unread) {
3110 		/* Unread data was tossed, zap the connection. */
3111 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3112 		tcp_set_state(sk, TCP_CLOSE);
3113 		tcp_send_active_reset(sk, sk->sk_allocation,
3114 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3115 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3116 		/* Check zero linger _after_ checking for unread data. */
3117 		sk->sk_prot->disconnect(sk, 0);
3118 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3119 	} else if (tcp_close_state(sk)) {
3120 		/* We FIN if the application ate all the data before
3121 		 * zapping the connection.
3122 		 */
3123 
3124 		/* RED-PEN. Formally speaking, we have broken TCP state
3125 		 * machine. State transitions:
3126 		 *
3127 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3128 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3129 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3130 		 *
3131 		 * are legal only when FIN has been sent (i.e. in window),
3132 		 * rather than queued out of window. Purists blame.
3133 		 *
3134 		 * F.e. "RFC state" is ESTABLISHED,
3135 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3136 		 *
3137 		 * The visible declinations are that sometimes
3138 		 * we enter time-wait state, when it is not required really
3139 		 * (harmless), do not send active resets, when they are
3140 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3141 		 * they look as CLOSING or LAST_ACK for Linux)
3142 		 * Probably, I missed some more holelets.
3143 		 * 						--ANK
3144 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3145 		 * in a single packet! (May consider it later but will
3146 		 * probably need API support or TCP_CORK SYN-ACK until
3147 		 * data is written and socket is closed.)
3148 		 */
3149 		tcp_send_fin(sk);
3150 	}
3151 
3152 	sk_stream_wait_close(sk, timeout);
3153 
3154 adjudge_to_death:
3155 	state = sk->sk_state;
3156 	sock_hold(sk);
3157 	sock_orphan(sk);
3158 
3159 	local_bh_disable();
3160 	bh_lock_sock(sk);
3161 	/* remove backlog if any, without releasing ownership. */
3162 	__release_sock(sk);
3163 
3164 	this_cpu_inc(tcp_orphan_count);
3165 
3166 	/* Have we already been destroyed by a softirq or backlog? */
3167 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3168 		goto out;
3169 
3170 	/*	This is a (useful) BSD violating of the RFC. There is a
3171 	 *	problem with TCP as specified in that the other end could
3172 	 *	keep a socket open forever with no application left this end.
3173 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3174 	 *	our end. If they send after that then tough - BUT: long enough
3175 	 *	that we won't make the old 4*rto = almost no time - whoops
3176 	 *	reset mistake.
3177 	 *
3178 	 *	Nope, it was not mistake. It is really desired behaviour
3179 	 *	f.e. on http servers, when such sockets are useless, but
3180 	 *	consume significant resources. Let's do it with special
3181 	 *	linger2	option.					--ANK
3182 	 */
3183 
3184 	if (sk->sk_state == TCP_FIN_WAIT2) {
3185 		struct tcp_sock *tp = tcp_sk(sk);
3186 		if (READ_ONCE(tp->linger2) < 0) {
3187 			tcp_set_state(sk, TCP_CLOSE);
3188 			tcp_send_active_reset(sk, GFP_ATOMIC,
3189 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3190 			__NET_INC_STATS(sock_net(sk),
3191 					LINUX_MIB_TCPABORTONLINGER);
3192 		} else {
3193 			const int tmo = tcp_fin_time(sk);
3194 
3195 			if (tmo > TCP_TIMEWAIT_LEN) {
3196 				inet_csk_reset_keepalive_timer(sk,
3197 						tmo - TCP_TIMEWAIT_LEN);
3198 			} else {
3199 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3200 				goto out;
3201 			}
3202 		}
3203 	}
3204 	if (sk->sk_state != TCP_CLOSE) {
3205 		if (tcp_check_oom(sk, 0)) {
3206 			tcp_set_state(sk, TCP_CLOSE);
3207 			tcp_send_active_reset(sk, GFP_ATOMIC,
3208 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3209 			__NET_INC_STATS(sock_net(sk),
3210 					LINUX_MIB_TCPABORTONMEMORY);
3211 		} else if (!check_net(sock_net(sk))) {
3212 			/* Not possible to send reset; just close */
3213 			tcp_set_state(sk, TCP_CLOSE);
3214 		}
3215 	}
3216 
3217 	if (sk->sk_state == TCP_CLOSE) {
3218 		struct request_sock *req;
3219 
3220 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3221 						lockdep_sock_is_held(sk));
3222 		/* We could get here with a non-NULL req if the socket is
3223 		 * aborted (e.g., closed with unread data) before 3WHS
3224 		 * finishes.
3225 		 */
3226 		if (req)
3227 			reqsk_fastopen_remove(sk, req, false);
3228 		inet_csk_destroy_sock(sk);
3229 	}
3230 	/* Otherwise, socket is reprieved until protocol close. */
3231 
3232 out:
3233 	bh_unlock_sock(sk);
3234 	local_bh_enable();
3235 }
3236 
3237 void tcp_close(struct sock *sk, long timeout)
3238 {
3239 	lock_sock(sk);
3240 	__tcp_close(sk, timeout);
3241 	release_sock(sk);
3242 	if (!sk->sk_net_refcnt)
3243 		inet_csk_clear_xmit_timers_sync(sk);
3244 	sock_put(sk);
3245 }
3246 EXPORT_SYMBOL(tcp_close);
3247 
3248 /* These states need RST on ABORT according to RFC793 */
3249 
3250 static inline bool tcp_need_reset(int state)
3251 {
3252 	return (1 << state) &
3253 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3254 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3255 }
3256 
3257 static void tcp_rtx_queue_purge(struct sock *sk)
3258 {
3259 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3260 
3261 	tcp_sk(sk)->highest_sack = NULL;
3262 	while (p) {
3263 		struct sk_buff *skb = rb_to_skb(p);
3264 
3265 		p = rb_next(p);
3266 		/* Since we are deleting whole queue, no need to
3267 		 * list_del(&skb->tcp_tsorted_anchor)
3268 		 */
3269 		tcp_rtx_queue_unlink(skb, sk);
3270 		tcp_wmem_free_skb(sk, skb);
3271 	}
3272 }
3273 
3274 void tcp_write_queue_purge(struct sock *sk)
3275 {
3276 	struct sk_buff *skb;
3277 
3278 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3279 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3280 		tcp_skb_tsorted_anchor_cleanup(skb);
3281 		tcp_wmem_free_skb(sk, skb);
3282 	}
3283 	tcp_rtx_queue_purge(sk);
3284 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3285 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3286 	tcp_sk(sk)->packets_out = 0;
3287 	inet_csk(sk)->icsk_backoff = 0;
3288 }
3289 
3290 int tcp_disconnect(struct sock *sk, int flags)
3291 {
3292 	struct inet_sock *inet = inet_sk(sk);
3293 	struct inet_connection_sock *icsk = inet_csk(sk);
3294 	struct tcp_sock *tp = tcp_sk(sk);
3295 	int old_state = sk->sk_state;
3296 	u32 seq;
3297 
3298 	if (old_state != TCP_CLOSE)
3299 		tcp_set_state(sk, TCP_CLOSE);
3300 
3301 	/* ABORT function of RFC793 */
3302 	if (old_state == TCP_LISTEN) {
3303 		inet_csk_listen_stop(sk);
3304 	} else if (unlikely(tp->repair)) {
3305 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3306 	} else if (tcp_need_reset(old_state)) {
3307 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3308 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3309 	} else if (tp->snd_nxt != tp->write_seq &&
3310 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3311 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3312 		 * states
3313 		 */
3314 		tcp_send_active_reset(sk, gfp_any(),
3315 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3316 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3317 	} else if (old_state == TCP_SYN_SENT)
3318 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3319 
3320 	tcp_clear_xmit_timers(sk);
3321 	__skb_queue_purge(&sk->sk_receive_queue);
3322 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3323 	WRITE_ONCE(tp->urg_data, 0);
3324 	sk_set_peek_off(sk, -1);
3325 	tcp_write_queue_purge(sk);
3326 	tcp_fastopen_active_disable_ofo_check(sk);
3327 	skb_rbtree_purge(&tp->out_of_order_queue);
3328 
3329 	inet->inet_dport = 0;
3330 
3331 	inet_bhash2_reset_saddr(sk);
3332 
3333 	WRITE_ONCE(sk->sk_shutdown, 0);
3334 	sock_reset_flag(sk, SOCK_DONE);
3335 	tp->srtt_us = 0;
3336 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3337 	tp->rcv_rtt_last_tsecr = 0;
3338 
3339 	seq = tp->write_seq + tp->max_window + 2;
3340 	if (!seq)
3341 		seq = 1;
3342 	WRITE_ONCE(tp->write_seq, seq);
3343 
3344 	icsk->icsk_backoff = 0;
3345 	icsk->icsk_probes_out = 0;
3346 	icsk->icsk_probes_tstamp = 0;
3347 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3348 	icsk->icsk_rto_min = TCP_RTO_MIN;
3349 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3350 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3351 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3352 	tp->snd_cwnd_cnt = 0;
3353 	tp->is_cwnd_limited = 0;
3354 	tp->max_packets_out = 0;
3355 	tp->window_clamp = 0;
3356 	tp->delivered = 0;
3357 	tp->delivered_ce = 0;
3358 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3359 		icsk->icsk_ca_ops->release(sk);
3360 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3361 	icsk->icsk_ca_initialized = 0;
3362 	tcp_set_ca_state(sk, TCP_CA_Open);
3363 	tp->is_sack_reneg = 0;
3364 	tcp_clear_retrans(tp);
3365 	tp->total_retrans = 0;
3366 	inet_csk_delack_init(sk);
3367 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3368 	 * issue in __tcp_select_window()
3369 	 */
3370 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3371 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3372 	__sk_dst_reset(sk);
3373 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3374 	tcp_saved_syn_free(tp);
3375 	tp->compressed_ack = 0;
3376 	tp->segs_in = 0;
3377 	tp->segs_out = 0;
3378 	tp->bytes_sent = 0;
3379 	tp->bytes_acked = 0;
3380 	tp->bytes_received = 0;
3381 	tp->bytes_retrans = 0;
3382 	tp->data_segs_in = 0;
3383 	tp->data_segs_out = 0;
3384 	tp->duplicate_sack[0].start_seq = 0;
3385 	tp->duplicate_sack[0].end_seq = 0;
3386 	tp->dsack_dups = 0;
3387 	tp->reord_seen = 0;
3388 	tp->retrans_out = 0;
3389 	tp->sacked_out = 0;
3390 	tp->tlp_high_seq = 0;
3391 	tp->last_oow_ack_time = 0;
3392 	tp->plb_rehash = 0;
3393 	/* There's a bubble in the pipe until at least the first ACK. */
3394 	tp->app_limited = ~0U;
3395 	tp->rate_app_limited = 1;
3396 	tp->rack.mstamp = 0;
3397 	tp->rack.advanced = 0;
3398 	tp->rack.reo_wnd_steps = 1;
3399 	tp->rack.last_delivered = 0;
3400 	tp->rack.reo_wnd_persist = 0;
3401 	tp->rack.dsack_seen = 0;
3402 	tp->syn_data_acked = 0;
3403 	tp->rx_opt.saw_tstamp = 0;
3404 	tp->rx_opt.dsack = 0;
3405 	tp->rx_opt.num_sacks = 0;
3406 	tp->rcv_ooopack = 0;
3407 
3408 
3409 	/* Clean up fastopen related fields */
3410 	tcp_free_fastopen_req(tp);
3411 	inet_clear_bit(DEFER_CONNECT, sk);
3412 	tp->fastopen_client_fail = 0;
3413 
3414 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3415 
3416 	if (sk->sk_frag.page) {
3417 		put_page(sk->sk_frag.page);
3418 		sk->sk_frag.page = NULL;
3419 		sk->sk_frag.offset = 0;
3420 	}
3421 	sk_error_report(sk);
3422 	return 0;
3423 }
3424 EXPORT_SYMBOL(tcp_disconnect);
3425 
3426 static inline bool tcp_can_repair_sock(const struct sock *sk)
3427 {
3428 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3429 		(sk->sk_state != TCP_LISTEN);
3430 }
3431 
3432 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3433 {
3434 	struct tcp_repair_window opt;
3435 
3436 	if (!tp->repair)
3437 		return -EPERM;
3438 
3439 	if (len != sizeof(opt))
3440 		return -EINVAL;
3441 
3442 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3443 		return -EFAULT;
3444 
3445 	if (opt.max_window < opt.snd_wnd)
3446 		return -EINVAL;
3447 
3448 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3449 		return -EINVAL;
3450 
3451 	if (after(opt.rcv_wup, tp->rcv_nxt))
3452 		return -EINVAL;
3453 
3454 	tp->snd_wl1	= opt.snd_wl1;
3455 	tp->snd_wnd	= opt.snd_wnd;
3456 	tp->max_window	= opt.max_window;
3457 
3458 	tp->rcv_wnd	= opt.rcv_wnd;
3459 	tp->rcv_wup	= opt.rcv_wup;
3460 
3461 	return 0;
3462 }
3463 
3464 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3465 		unsigned int len)
3466 {
3467 	struct tcp_sock *tp = tcp_sk(sk);
3468 	struct tcp_repair_opt opt;
3469 	size_t offset = 0;
3470 
3471 	while (len >= sizeof(opt)) {
3472 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3473 			return -EFAULT;
3474 
3475 		offset += sizeof(opt);
3476 		len -= sizeof(opt);
3477 
3478 		switch (opt.opt_code) {
3479 		case TCPOPT_MSS:
3480 			tp->rx_opt.mss_clamp = opt.opt_val;
3481 			tcp_mtup_init(sk);
3482 			break;
3483 		case TCPOPT_WINDOW:
3484 			{
3485 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3486 				u16 rcv_wscale = opt.opt_val >> 16;
3487 
3488 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3489 					return -EFBIG;
3490 
3491 				tp->rx_opt.snd_wscale = snd_wscale;
3492 				tp->rx_opt.rcv_wscale = rcv_wscale;
3493 				tp->rx_opt.wscale_ok = 1;
3494 			}
3495 			break;
3496 		case TCPOPT_SACK_PERM:
3497 			if (opt.opt_val != 0)
3498 				return -EINVAL;
3499 
3500 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3501 			break;
3502 		case TCPOPT_TIMESTAMP:
3503 			if (opt.opt_val != 0)
3504 				return -EINVAL;
3505 
3506 			tp->rx_opt.tstamp_ok = 1;
3507 			break;
3508 		}
3509 	}
3510 
3511 	return 0;
3512 }
3513 
3514 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3515 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3516 
3517 static void tcp_enable_tx_delay(void)
3518 {
3519 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3520 		static int __tcp_tx_delay_enabled = 0;
3521 
3522 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3523 			static_branch_enable(&tcp_tx_delay_enabled);
3524 			pr_info("TCP_TX_DELAY enabled\n");
3525 		}
3526 	}
3527 }
3528 
3529 /* When set indicates to always queue non-full frames.  Later the user clears
3530  * this option and we transmit any pending partial frames in the queue.  This is
3531  * meant to be used alongside sendfile() to get properly filled frames when the
3532  * user (for example) must write out headers with a write() call first and then
3533  * use sendfile to send out the data parts.
3534  *
3535  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3536  * TCP_NODELAY.
3537  */
3538 void __tcp_sock_set_cork(struct sock *sk, bool on)
3539 {
3540 	struct tcp_sock *tp = tcp_sk(sk);
3541 
3542 	if (on) {
3543 		tp->nonagle |= TCP_NAGLE_CORK;
3544 	} else {
3545 		tp->nonagle &= ~TCP_NAGLE_CORK;
3546 		if (tp->nonagle & TCP_NAGLE_OFF)
3547 			tp->nonagle |= TCP_NAGLE_PUSH;
3548 		tcp_push_pending_frames(sk);
3549 	}
3550 }
3551 
3552 void tcp_sock_set_cork(struct sock *sk, bool on)
3553 {
3554 	lock_sock(sk);
3555 	__tcp_sock_set_cork(sk, on);
3556 	release_sock(sk);
3557 }
3558 EXPORT_SYMBOL(tcp_sock_set_cork);
3559 
3560 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3561  * remembered, but it is not activated until cork is cleared.
3562  *
3563  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3564  * even TCP_CORK for currently queued segments.
3565  */
3566 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3567 {
3568 	if (on) {
3569 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3570 		tcp_push_pending_frames(sk);
3571 	} else {
3572 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3573 	}
3574 }
3575 
3576 void tcp_sock_set_nodelay(struct sock *sk)
3577 {
3578 	lock_sock(sk);
3579 	__tcp_sock_set_nodelay(sk, true);
3580 	release_sock(sk);
3581 }
3582 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3583 
3584 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3585 {
3586 	if (!val) {
3587 		inet_csk_enter_pingpong_mode(sk);
3588 		return;
3589 	}
3590 
3591 	inet_csk_exit_pingpong_mode(sk);
3592 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3593 	    inet_csk_ack_scheduled(sk)) {
3594 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3595 		tcp_cleanup_rbuf(sk, 1);
3596 		if (!(val & 1))
3597 			inet_csk_enter_pingpong_mode(sk);
3598 	}
3599 }
3600 
3601 void tcp_sock_set_quickack(struct sock *sk, int val)
3602 {
3603 	lock_sock(sk);
3604 	__tcp_sock_set_quickack(sk, val);
3605 	release_sock(sk);
3606 }
3607 EXPORT_SYMBOL(tcp_sock_set_quickack);
3608 
3609 int tcp_sock_set_syncnt(struct sock *sk, int val)
3610 {
3611 	if (val < 1 || val > MAX_TCP_SYNCNT)
3612 		return -EINVAL;
3613 
3614 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3615 	return 0;
3616 }
3617 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3618 
3619 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3620 {
3621 	/* Cap the max time in ms TCP will retry or probe the window
3622 	 * before giving up and aborting (ETIMEDOUT) a connection.
3623 	 */
3624 	if (val < 0)
3625 		return -EINVAL;
3626 
3627 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3628 	return 0;
3629 }
3630 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3631 
3632 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3633 {
3634 	struct tcp_sock *tp = tcp_sk(sk);
3635 
3636 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3637 		return -EINVAL;
3638 
3639 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3640 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3641 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3642 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3643 		u32 elapsed = keepalive_time_elapsed(tp);
3644 
3645 		if (tp->keepalive_time > elapsed)
3646 			elapsed = tp->keepalive_time - elapsed;
3647 		else
3648 			elapsed = 0;
3649 		inet_csk_reset_keepalive_timer(sk, elapsed);
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 int tcp_sock_set_keepidle(struct sock *sk, int val)
3656 {
3657 	int err;
3658 
3659 	lock_sock(sk);
3660 	err = tcp_sock_set_keepidle_locked(sk, val);
3661 	release_sock(sk);
3662 	return err;
3663 }
3664 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3665 
3666 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3667 {
3668 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3669 		return -EINVAL;
3670 
3671 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3672 	return 0;
3673 }
3674 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3675 
3676 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3677 {
3678 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3679 		return -EINVAL;
3680 
3681 	/* Paired with READ_ONCE() in keepalive_probes() */
3682 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3683 	return 0;
3684 }
3685 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3686 
3687 int tcp_set_window_clamp(struct sock *sk, int val)
3688 {
3689 	struct tcp_sock *tp = tcp_sk(sk);
3690 
3691 	if (!val) {
3692 		if (sk->sk_state != TCP_CLOSE)
3693 			return -EINVAL;
3694 		WRITE_ONCE(tp->window_clamp, 0);
3695 	} else {
3696 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3697 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3698 						SOCK_MIN_RCVBUF / 2 : val;
3699 
3700 		if (new_window_clamp == old_window_clamp)
3701 			return 0;
3702 
3703 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3704 		if (new_window_clamp < old_window_clamp) {
3705 			/* need to apply the reserved mem provisioning only
3706 			 * when shrinking the window clamp
3707 			 */
3708 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3709 
3710 		} else {
3711 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3712 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3713 					       tp->rcv_ssthresh);
3714 		}
3715 	}
3716 	return 0;
3717 }
3718 
3719 /*
3720  *	Socket option code for TCP.
3721  */
3722 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3723 		      sockptr_t optval, unsigned int optlen)
3724 {
3725 	struct tcp_sock *tp = tcp_sk(sk);
3726 	struct inet_connection_sock *icsk = inet_csk(sk);
3727 	struct net *net = sock_net(sk);
3728 	int val;
3729 	int err = 0;
3730 
3731 	/* These are data/string values, all the others are ints */
3732 	switch (optname) {
3733 	case TCP_CONGESTION: {
3734 		char name[TCP_CA_NAME_MAX];
3735 
3736 		if (optlen < 1)
3737 			return -EINVAL;
3738 
3739 		val = strncpy_from_sockptr(name, optval,
3740 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3741 		if (val < 0)
3742 			return -EFAULT;
3743 		name[val] = 0;
3744 
3745 		sockopt_lock_sock(sk);
3746 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3747 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3748 								    CAP_NET_ADMIN));
3749 		sockopt_release_sock(sk);
3750 		return err;
3751 	}
3752 	case TCP_ULP: {
3753 		char name[TCP_ULP_NAME_MAX];
3754 
3755 		if (optlen < 1)
3756 			return -EINVAL;
3757 
3758 		val = strncpy_from_sockptr(name, optval,
3759 					min_t(long, TCP_ULP_NAME_MAX - 1,
3760 					      optlen));
3761 		if (val < 0)
3762 			return -EFAULT;
3763 		name[val] = 0;
3764 
3765 		sockopt_lock_sock(sk);
3766 		err = tcp_set_ulp(sk, name);
3767 		sockopt_release_sock(sk);
3768 		return err;
3769 	}
3770 	case TCP_FASTOPEN_KEY: {
3771 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3772 		__u8 *backup_key = NULL;
3773 
3774 		/* Allow a backup key as well to facilitate key rotation
3775 		 * First key is the active one.
3776 		 */
3777 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3778 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3779 			return -EINVAL;
3780 
3781 		if (copy_from_sockptr(key, optval, optlen))
3782 			return -EFAULT;
3783 
3784 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3785 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3786 
3787 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3788 	}
3789 	default:
3790 		/* fallthru */
3791 		break;
3792 	}
3793 
3794 	if (optlen < sizeof(int))
3795 		return -EINVAL;
3796 
3797 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3798 		return -EFAULT;
3799 
3800 	/* Handle options that can be set without locking the socket. */
3801 	switch (optname) {
3802 	case TCP_SYNCNT:
3803 		return tcp_sock_set_syncnt(sk, val);
3804 	case TCP_USER_TIMEOUT:
3805 		return tcp_sock_set_user_timeout(sk, val);
3806 	case TCP_KEEPINTVL:
3807 		return tcp_sock_set_keepintvl(sk, val);
3808 	case TCP_KEEPCNT:
3809 		return tcp_sock_set_keepcnt(sk, val);
3810 	case TCP_LINGER2:
3811 		if (val < 0)
3812 			WRITE_ONCE(tp->linger2, -1);
3813 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3814 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3815 		else
3816 			WRITE_ONCE(tp->linger2, val * HZ);
3817 		return 0;
3818 	case TCP_DEFER_ACCEPT:
3819 		/* Translate value in seconds to number of retransmits */
3820 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3821 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3822 					   TCP_RTO_MAX / HZ));
3823 		return 0;
3824 	}
3825 
3826 	sockopt_lock_sock(sk);
3827 
3828 	switch (optname) {
3829 	case TCP_MAXSEG:
3830 		/* Values greater than interface MTU won't take effect. However
3831 		 * at the point when this call is done we typically don't yet
3832 		 * know which interface is going to be used
3833 		 */
3834 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3835 			err = -EINVAL;
3836 			break;
3837 		}
3838 		tp->rx_opt.user_mss = val;
3839 		break;
3840 
3841 	case TCP_NODELAY:
3842 		__tcp_sock_set_nodelay(sk, val);
3843 		break;
3844 
3845 	case TCP_THIN_LINEAR_TIMEOUTS:
3846 		if (val < 0 || val > 1)
3847 			err = -EINVAL;
3848 		else
3849 			tp->thin_lto = val;
3850 		break;
3851 
3852 	case TCP_THIN_DUPACK:
3853 		if (val < 0 || val > 1)
3854 			err = -EINVAL;
3855 		break;
3856 
3857 	case TCP_REPAIR:
3858 		if (!tcp_can_repair_sock(sk))
3859 			err = -EPERM;
3860 		else if (val == TCP_REPAIR_ON) {
3861 			tp->repair = 1;
3862 			sk->sk_reuse = SK_FORCE_REUSE;
3863 			tp->repair_queue = TCP_NO_QUEUE;
3864 		} else if (val == TCP_REPAIR_OFF) {
3865 			tp->repair = 0;
3866 			sk->sk_reuse = SK_NO_REUSE;
3867 			tcp_send_window_probe(sk);
3868 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3869 			tp->repair = 0;
3870 			sk->sk_reuse = SK_NO_REUSE;
3871 		} else
3872 			err = -EINVAL;
3873 
3874 		break;
3875 
3876 	case TCP_REPAIR_QUEUE:
3877 		if (!tp->repair)
3878 			err = -EPERM;
3879 		else if ((unsigned int)val < TCP_QUEUES_NR)
3880 			tp->repair_queue = val;
3881 		else
3882 			err = -EINVAL;
3883 		break;
3884 
3885 	case TCP_QUEUE_SEQ:
3886 		if (sk->sk_state != TCP_CLOSE) {
3887 			err = -EPERM;
3888 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3889 			if (!tcp_rtx_queue_empty(sk))
3890 				err = -EPERM;
3891 			else
3892 				WRITE_ONCE(tp->write_seq, val);
3893 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3894 			if (tp->rcv_nxt != tp->copied_seq) {
3895 				err = -EPERM;
3896 			} else {
3897 				WRITE_ONCE(tp->rcv_nxt, val);
3898 				WRITE_ONCE(tp->copied_seq, val);
3899 			}
3900 		} else {
3901 			err = -EINVAL;
3902 		}
3903 		break;
3904 
3905 	case TCP_REPAIR_OPTIONS:
3906 		if (!tp->repair)
3907 			err = -EINVAL;
3908 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3909 			err = tcp_repair_options_est(sk, optval, optlen);
3910 		else
3911 			err = -EPERM;
3912 		break;
3913 
3914 	case TCP_CORK:
3915 		__tcp_sock_set_cork(sk, val);
3916 		break;
3917 
3918 	case TCP_KEEPIDLE:
3919 		err = tcp_sock_set_keepidle_locked(sk, val);
3920 		break;
3921 	case TCP_SAVE_SYN:
3922 		/* 0: disable, 1: enable, 2: start from ether_header */
3923 		if (val < 0 || val > 2)
3924 			err = -EINVAL;
3925 		else
3926 			tp->save_syn = val;
3927 		break;
3928 
3929 	case TCP_WINDOW_CLAMP:
3930 		err = tcp_set_window_clamp(sk, val);
3931 		break;
3932 
3933 	case TCP_QUICKACK:
3934 		__tcp_sock_set_quickack(sk, val);
3935 		break;
3936 
3937 	case TCP_AO_REPAIR:
3938 		if (!tcp_can_repair_sock(sk)) {
3939 			err = -EPERM;
3940 			break;
3941 		}
3942 		err = tcp_ao_set_repair(sk, optval, optlen);
3943 		break;
3944 #ifdef CONFIG_TCP_AO
3945 	case TCP_AO_ADD_KEY:
3946 	case TCP_AO_DEL_KEY:
3947 	case TCP_AO_INFO: {
3948 		/* If this is the first TCP-AO setsockopt() on the socket,
3949 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3950 		 * in any state.
3951 		 */
3952 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3953 			goto ao_parse;
3954 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3955 					      lockdep_sock_is_held(sk)))
3956 			goto ao_parse;
3957 		if (tp->repair)
3958 			goto ao_parse;
3959 		err = -EISCONN;
3960 		break;
3961 ao_parse:
3962 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3963 		break;
3964 	}
3965 #endif
3966 #ifdef CONFIG_TCP_MD5SIG
3967 	case TCP_MD5SIG:
3968 	case TCP_MD5SIG_EXT:
3969 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3970 		break;
3971 #endif
3972 	case TCP_FASTOPEN:
3973 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3974 		    TCPF_LISTEN))) {
3975 			tcp_fastopen_init_key_once(net);
3976 
3977 			fastopen_queue_tune(sk, val);
3978 		} else {
3979 			err = -EINVAL;
3980 		}
3981 		break;
3982 	case TCP_FASTOPEN_CONNECT:
3983 		if (val > 1 || val < 0) {
3984 			err = -EINVAL;
3985 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3986 			   TFO_CLIENT_ENABLE) {
3987 			if (sk->sk_state == TCP_CLOSE)
3988 				tp->fastopen_connect = val;
3989 			else
3990 				err = -EINVAL;
3991 		} else {
3992 			err = -EOPNOTSUPP;
3993 		}
3994 		break;
3995 	case TCP_FASTOPEN_NO_COOKIE:
3996 		if (val > 1 || val < 0)
3997 			err = -EINVAL;
3998 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3999 			err = -EINVAL;
4000 		else
4001 			tp->fastopen_no_cookie = val;
4002 		break;
4003 	case TCP_TIMESTAMP:
4004 		if (!tp->repair) {
4005 			err = -EPERM;
4006 			break;
4007 		}
4008 		/* val is an opaque field,
4009 		 * and low order bit contains usec_ts enable bit.
4010 		 * Its a best effort, and we do not care if user makes an error.
4011 		 */
4012 		tp->tcp_usec_ts = val & 1;
4013 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4014 		break;
4015 	case TCP_REPAIR_WINDOW:
4016 		err = tcp_repair_set_window(tp, optval, optlen);
4017 		break;
4018 	case TCP_NOTSENT_LOWAT:
4019 		WRITE_ONCE(tp->notsent_lowat, val);
4020 		sk->sk_write_space(sk);
4021 		break;
4022 	case TCP_INQ:
4023 		if (val > 1 || val < 0)
4024 			err = -EINVAL;
4025 		else
4026 			tp->recvmsg_inq = val;
4027 		break;
4028 	case TCP_TX_DELAY:
4029 		if (val)
4030 			tcp_enable_tx_delay();
4031 		WRITE_ONCE(tp->tcp_tx_delay, val);
4032 		break;
4033 	default:
4034 		err = -ENOPROTOOPT;
4035 		break;
4036 	}
4037 
4038 	sockopt_release_sock(sk);
4039 	return err;
4040 }
4041 
4042 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4043 		   unsigned int optlen)
4044 {
4045 	const struct inet_connection_sock *icsk = inet_csk(sk);
4046 
4047 	if (level != SOL_TCP)
4048 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4049 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4050 								optval, optlen);
4051 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4052 }
4053 EXPORT_SYMBOL(tcp_setsockopt);
4054 
4055 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4056 				      struct tcp_info *info)
4057 {
4058 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4059 	enum tcp_chrono i;
4060 
4061 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4062 		stats[i] = tp->chrono_stat[i - 1];
4063 		if (i == tp->chrono_type)
4064 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4065 		stats[i] *= USEC_PER_SEC / HZ;
4066 		total += stats[i];
4067 	}
4068 
4069 	info->tcpi_busy_time = total;
4070 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4071 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4072 }
4073 
4074 /* Return information about state of tcp endpoint in API format. */
4075 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4076 {
4077 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4078 	const struct inet_connection_sock *icsk = inet_csk(sk);
4079 	unsigned long rate;
4080 	u32 now;
4081 	u64 rate64;
4082 	bool slow;
4083 
4084 	memset(info, 0, sizeof(*info));
4085 	if (sk->sk_type != SOCK_STREAM)
4086 		return;
4087 
4088 	info->tcpi_state = inet_sk_state_load(sk);
4089 
4090 	/* Report meaningful fields for all TCP states, including listeners */
4091 	rate = READ_ONCE(sk->sk_pacing_rate);
4092 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4093 	info->tcpi_pacing_rate = rate64;
4094 
4095 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4096 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4097 	info->tcpi_max_pacing_rate = rate64;
4098 
4099 	info->tcpi_reordering = tp->reordering;
4100 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4101 
4102 	if (info->tcpi_state == TCP_LISTEN) {
4103 		/* listeners aliased fields :
4104 		 * tcpi_unacked -> Number of children ready for accept()
4105 		 * tcpi_sacked  -> max backlog
4106 		 */
4107 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4108 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4109 		return;
4110 	}
4111 
4112 	slow = lock_sock_fast(sk);
4113 
4114 	info->tcpi_ca_state = icsk->icsk_ca_state;
4115 	info->tcpi_retransmits = icsk->icsk_retransmits;
4116 	info->tcpi_probes = icsk->icsk_probes_out;
4117 	info->tcpi_backoff = icsk->icsk_backoff;
4118 
4119 	if (tp->rx_opt.tstamp_ok)
4120 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4121 	if (tcp_is_sack(tp))
4122 		info->tcpi_options |= TCPI_OPT_SACK;
4123 	if (tp->rx_opt.wscale_ok) {
4124 		info->tcpi_options |= TCPI_OPT_WSCALE;
4125 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4126 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4127 	}
4128 
4129 	if (tp->ecn_flags & TCP_ECN_OK)
4130 		info->tcpi_options |= TCPI_OPT_ECN;
4131 	if (tp->ecn_flags & TCP_ECN_SEEN)
4132 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4133 	if (tp->syn_data_acked)
4134 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4135 	if (tp->tcp_usec_ts)
4136 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4137 
4138 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4139 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4140 						tcp_delack_max(sk)));
4141 	info->tcpi_snd_mss = tp->mss_cache;
4142 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4143 
4144 	info->tcpi_unacked = tp->packets_out;
4145 	info->tcpi_sacked = tp->sacked_out;
4146 
4147 	info->tcpi_lost = tp->lost_out;
4148 	info->tcpi_retrans = tp->retrans_out;
4149 
4150 	now = tcp_jiffies32;
4151 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4152 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4153 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4154 
4155 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4156 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4157 	info->tcpi_rtt = tp->srtt_us >> 3;
4158 	info->tcpi_rttvar = tp->mdev_us >> 2;
4159 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4160 	info->tcpi_advmss = tp->advmss;
4161 
4162 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4163 	info->tcpi_rcv_space = tp->rcvq_space.space;
4164 
4165 	info->tcpi_total_retrans = tp->total_retrans;
4166 
4167 	info->tcpi_bytes_acked = tp->bytes_acked;
4168 	info->tcpi_bytes_received = tp->bytes_received;
4169 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4170 	tcp_get_info_chrono_stats(tp, info);
4171 
4172 	info->tcpi_segs_out = tp->segs_out;
4173 
4174 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4175 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4176 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4177 
4178 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4179 	info->tcpi_data_segs_out = tp->data_segs_out;
4180 
4181 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4182 	rate64 = tcp_compute_delivery_rate(tp);
4183 	if (rate64)
4184 		info->tcpi_delivery_rate = rate64;
4185 	info->tcpi_delivered = tp->delivered;
4186 	info->tcpi_delivered_ce = tp->delivered_ce;
4187 	info->tcpi_bytes_sent = tp->bytes_sent;
4188 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4189 	info->tcpi_dsack_dups = tp->dsack_dups;
4190 	info->tcpi_reord_seen = tp->reord_seen;
4191 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4192 	info->tcpi_snd_wnd = tp->snd_wnd;
4193 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4194 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4195 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4196 
4197 	info->tcpi_total_rto = tp->total_rto;
4198 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4199 	info->tcpi_total_rto_time = tp->total_rto_time;
4200 	if (tp->rto_stamp)
4201 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4202 
4203 	unlock_sock_fast(sk, slow);
4204 }
4205 EXPORT_SYMBOL_GPL(tcp_get_info);
4206 
4207 static size_t tcp_opt_stats_get_size(void)
4208 {
4209 	return
4210 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4211 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4212 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4213 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4214 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4215 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4216 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4217 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4218 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4219 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4220 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4221 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4222 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4223 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4224 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4225 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4226 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4227 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4228 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4229 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4230 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4231 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4232 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4233 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4234 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4235 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4236 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4237 		0;
4238 }
4239 
4240 /* Returns TTL or hop limit of an incoming packet from skb. */
4241 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4242 {
4243 	if (skb->protocol == htons(ETH_P_IP))
4244 		return ip_hdr(skb)->ttl;
4245 	else if (skb->protocol == htons(ETH_P_IPV6))
4246 		return ipv6_hdr(skb)->hop_limit;
4247 	else
4248 		return 0;
4249 }
4250 
4251 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4252 					       const struct sk_buff *orig_skb,
4253 					       const struct sk_buff *ack_skb)
4254 {
4255 	const struct tcp_sock *tp = tcp_sk(sk);
4256 	struct sk_buff *stats;
4257 	struct tcp_info info;
4258 	unsigned long rate;
4259 	u64 rate64;
4260 
4261 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4262 	if (!stats)
4263 		return NULL;
4264 
4265 	tcp_get_info_chrono_stats(tp, &info);
4266 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4267 			  info.tcpi_busy_time, TCP_NLA_PAD);
4268 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4269 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4270 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4271 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4272 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4273 			  tp->data_segs_out, TCP_NLA_PAD);
4274 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4275 			  tp->total_retrans, TCP_NLA_PAD);
4276 
4277 	rate = READ_ONCE(sk->sk_pacing_rate);
4278 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4279 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4280 
4281 	rate64 = tcp_compute_delivery_rate(tp);
4282 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4283 
4284 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4285 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4286 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4287 
4288 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4289 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4290 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4291 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4292 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4293 
4294 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4295 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4296 
4297 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4298 			  TCP_NLA_PAD);
4299 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4300 			  TCP_NLA_PAD);
4301 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4302 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4303 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4304 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4305 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4306 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4307 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4308 			  TCP_NLA_PAD);
4309 	if (ack_skb)
4310 		nla_put_u8(stats, TCP_NLA_TTL,
4311 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4312 
4313 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4314 	return stats;
4315 }
4316 
4317 int do_tcp_getsockopt(struct sock *sk, int level,
4318 		      int optname, sockptr_t optval, sockptr_t optlen)
4319 {
4320 	struct inet_connection_sock *icsk = inet_csk(sk);
4321 	struct tcp_sock *tp = tcp_sk(sk);
4322 	struct net *net = sock_net(sk);
4323 	int val, len;
4324 
4325 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4326 		return -EFAULT;
4327 
4328 	if (len < 0)
4329 		return -EINVAL;
4330 
4331 	len = min_t(unsigned int, len, sizeof(int));
4332 
4333 	switch (optname) {
4334 	case TCP_MAXSEG:
4335 		val = tp->mss_cache;
4336 		if (tp->rx_opt.user_mss &&
4337 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4338 			val = tp->rx_opt.user_mss;
4339 		if (tp->repair)
4340 			val = tp->rx_opt.mss_clamp;
4341 		break;
4342 	case TCP_NODELAY:
4343 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4344 		break;
4345 	case TCP_CORK:
4346 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4347 		break;
4348 	case TCP_KEEPIDLE:
4349 		val = keepalive_time_when(tp) / HZ;
4350 		break;
4351 	case TCP_KEEPINTVL:
4352 		val = keepalive_intvl_when(tp) / HZ;
4353 		break;
4354 	case TCP_KEEPCNT:
4355 		val = keepalive_probes(tp);
4356 		break;
4357 	case TCP_SYNCNT:
4358 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4359 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4360 		break;
4361 	case TCP_LINGER2:
4362 		val = READ_ONCE(tp->linger2);
4363 		if (val >= 0)
4364 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4365 		break;
4366 	case TCP_DEFER_ACCEPT:
4367 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4368 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4369 				      TCP_RTO_MAX / HZ);
4370 		break;
4371 	case TCP_WINDOW_CLAMP:
4372 		val = READ_ONCE(tp->window_clamp);
4373 		break;
4374 	case TCP_INFO: {
4375 		struct tcp_info info;
4376 
4377 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4378 			return -EFAULT;
4379 
4380 		tcp_get_info(sk, &info);
4381 
4382 		len = min_t(unsigned int, len, sizeof(info));
4383 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4384 			return -EFAULT;
4385 		if (copy_to_sockptr(optval, &info, len))
4386 			return -EFAULT;
4387 		return 0;
4388 	}
4389 	case TCP_CC_INFO: {
4390 		const struct tcp_congestion_ops *ca_ops;
4391 		union tcp_cc_info info;
4392 		size_t sz = 0;
4393 		int attr;
4394 
4395 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4396 			return -EFAULT;
4397 
4398 		ca_ops = icsk->icsk_ca_ops;
4399 		if (ca_ops && ca_ops->get_info)
4400 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4401 
4402 		len = min_t(unsigned int, len, sz);
4403 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4404 			return -EFAULT;
4405 		if (copy_to_sockptr(optval, &info, len))
4406 			return -EFAULT;
4407 		return 0;
4408 	}
4409 	case TCP_QUICKACK:
4410 		val = !inet_csk_in_pingpong_mode(sk);
4411 		break;
4412 
4413 	case TCP_CONGESTION:
4414 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4415 			return -EFAULT;
4416 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4417 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4418 			return -EFAULT;
4419 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4420 			return -EFAULT;
4421 		return 0;
4422 
4423 	case TCP_ULP:
4424 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4425 			return -EFAULT;
4426 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4427 		if (!icsk->icsk_ulp_ops) {
4428 			len = 0;
4429 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4430 				return -EFAULT;
4431 			return 0;
4432 		}
4433 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4434 			return -EFAULT;
4435 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4436 			return -EFAULT;
4437 		return 0;
4438 
4439 	case TCP_FASTOPEN_KEY: {
4440 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4441 		unsigned int key_len;
4442 
4443 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4444 			return -EFAULT;
4445 
4446 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4447 				TCP_FASTOPEN_KEY_LENGTH;
4448 		len = min_t(unsigned int, len, key_len);
4449 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4450 			return -EFAULT;
4451 		if (copy_to_sockptr(optval, key, len))
4452 			return -EFAULT;
4453 		return 0;
4454 	}
4455 	case TCP_THIN_LINEAR_TIMEOUTS:
4456 		val = tp->thin_lto;
4457 		break;
4458 
4459 	case TCP_THIN_DUPACK:
4460 		val = 0;
4461 		break;
4462 
4463 	case TCP_REPAIR:
4464 		val = tp->repair;
4465 		break;
4466 
4467 	case TCP_REPAIR_QUEUE:
4468 		if (tp->repair)
4469 			val = tp->repair_queue;
4470 		else
4471 			return -EINVAL;
4472 		break;
4473 
4474 	case TCP_REPAIR_WINDOW: {
4475 		struct tcp_repair_window opt;
4476 
4477 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4478 			return -EFAULT;
4479 
4480 		if (len != sizeof(opt))
4481 			return -EINVAL;
4482 
4483 		if (!tp->repair)
4484 			return -EPERM;
4485 
4486 		opt.snd_wl1	= tp->snd_wl1;
4487 		opt.snd_wnd	= tp->snd_wnd;
4488 		opt.max_window	= tp->max_window;
4489 		opt.rcv_wnd	= tp->rcv_wnd;
4490 		opt.rcv_wup	= tp->rcv_wup;
4491 
4492 		if (copy_to_sockptr(optval, &opt, len))
4493 			return -EFAULT;
4494 		return 0;
4495 	}
4496 	case TCP_QUEUE_SEQ:
4497 		if (tp->repair_queue == TCP_SEND_QUEUE)
4498 			val = tp->write_seq;
4499 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4500 			val = tp->rcv_nxt;
4501 		else
4502 			return -EINVAL;
4503 		break;
4504 
4505 	case TCP_USER_TIMEOUT:
4506 		val = READ_ONCE(icsk->icsk_user_timeout);
4507 		break;
4508 
4509 	case TCP_FASTOPEN:
4510 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4511 		break;
4512 
4513 	case TCP_FASTOPEN_CONNECT:
4514 		val = tp->fastopen_connect;
4515 		break;
4516 
4517 	case TCP_FASTOPEN_NO_COOKIE:
4518 		val = tp->fastopen_no_cookie;
4519 		break;
4520 
4521 	case TCP_TX_DELAY:
4522 		val = READ_ONCE(tp->tcp_tx_delay);
4523 		break;
4524 
4525 	case TCP_TIMESTAMP:
4526 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4527 		if (tp->tcp_usec_ts)
4528 			val |= 1;
4529 		else
4530 			val &= ~1;
4531 		break;
4532 	case TCP_NOTSENT_LOWAT:
4533 		val = READ_ONCE(tp->notsent_lowat);
4534 		break;
4535 	case TCP_INQ:
4536 		val = tp->recvmsg_inq;
4537 		break;
4538 	case TCP_SAVE_SYN:
4539 		val = tp->save_syn;
4540 		break;
4541 	case TCP_SAVED_SYN: {
4542 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4543 			return -EFAULT;
4544 
4545 		sockopt_lock_sock(sk);
4546 		if (tp->saved_syn) {
4547 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4548 				len = tcp_saved_syn_len(tp->saved_syn);
4549 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4550 					sockopt_release_sock(sk);
4551 					return -EFAULT;
4552 				}
4553 				sockopt_release_sock(sk);
4554 				return -EINVAL;
4555 			}
4556 			len = tcp_saved_syn_len(tp->saved_syn);
4557 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4558 				sockopt_release_sock(sk);
4559 				return -EFAULT;
4560 			}
4561 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4562 				sockopt_release_sock(sk);
4563 				return -EFAULT;
4564 			}
4565 			tcp_saved_syn_free(tp);
4566 			sockopt_release_sock(sk);
4567 		} else {
4568 			sockopt_release_sock(sk);
4569 			len = 0;
4570 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4571 				return -EFAULT;
4572 		}
4573 		return 0;
4574 	}
4575 #ifdef CONFIG_MMU
4576 	case TCP_ZEROCOPY_RECEIVE: {
4577 		struct scm_timestamping_internal tss;
4578 		struct tcp_zerocopy_receive zc = {};
4579 		int err;
4580 
4581 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4582 			return -EFAULT;
4583 		if (len < 0 ||
4584 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4585 			return -EINVAL;
4586 		if (unlikely(len > sizeof(zc))) {
4587 			err = check_zeroed_sockptr(optval, sizeof(zc),
4588 						   len - sizeof(zc));
4589 			if (err < 1)
4590 				return err == 0 ? -EINVAL : err;
4591 			len = sizeof(zc);
4592 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4593 				return -EFAULT;
4594 		}
4595 		if (copy_from_sockptr(&zc, optval, len))
4596 			return -EFAULT;
4597 		if (zc.reserved)
4598 			return -EINVAL;
4599 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4600 			return -EINVAL;
4601 		sockopt_lock_sock(sk);
4602 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4603 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4604 							  &zc, &len, err);
4605 		sockopt_release_sock(sk);
4606 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4607 			goto zerocopy_rcv_cmsg;
4608 		switch (len) {
4609 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4610 			goto zerocopy_rcv_cmsg;
4611 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4612 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4613 		case offsetofend(struct tcp_zerocopy_receive, flags):
4614 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4615 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4616 		case offsetofend(struct tcp_zerocopy_receive, err):
4617 			goto zerocopy_rcv_sk_err;
4618 		case offsetofend(struct tcp_zerocopy_receive, inq):
4619 			goto zerocopy_rcv_inq;
4620 		case offsetofend(struct tcp_zerocopy_receive, length):
4621 		default:
4622 			goto zerocopy_rcv_out;
4623 		}
4624 zerocopy_rcv_cmsg:
4625 		if (zc.msg_flags & TCP_CMSG_TS)
4626 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4627 		else
4628 			zc.msg_flags = 0;
4629 zerocopy_rcv_sk_err:
4630 		if (!err)
4631 			zc.err = sock_error(sk);
4632 zerocopy_rcv_inq:
4633 		zc.inq = tcp_inq_hint(sk);
4634 zerocopy_rcv_out:
4635 		if (!err && copy_to_sockptr(optval, &zc, len))
4636 			err = -EFAULT;
4637 		return err;
4638 	}
4639 #endif
4640 	case TCP_AO_REPAIR:
4641 		if (!tcp_can_repair_sock(sk))
4642 			return -EPERM;
4643 		return tcp_ao_get_repair(sk, optval, optlen);
4644 	case TCP_AO_GET_KEYS:
4645 	case TCP_AO_INFO: {
4646 		int err;
4647 
4648 		sockopt_lock_sock(sk);
4649 		if (optname == TCP_AO_GET_KEYS)
4650 			err = tcp_ao_get_mkts(sk, optval, optlen);
4651 		else
4652 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4653 		sockopt_release_sock(sk);
4654 
4655 		return err;
4656 	}
4657 	case TCP_IS_MPTCP:
4658 		val = 0;
4659 		break;
4660 	default:
4661 		return -ENOPROTOOPT;
4662 	}
4663 
4664 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4665 		return -EFAULT;
4666 	if (copy_to_sockptr(optval, &val, len))
4667 		return -EFAULT;
4668 	return 0;
4669 }
4670 
4671 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4672 {
4673 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4674 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4675 	 */
4676 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4677 		return true;
4678 
4679 	return false;
4680 }
4681 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4682 
4683 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4684 		   int __user *optlen)
4685 {
4686 	struct inet_connection_sock *icsk = inet_csk(sk);
4687 
4688 	if (level != SOL_TCP)
4689 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4690 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4691 								optval, optlen);
4692 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4693 				 USER_SOCKPTR(optlen));
4694 }
4695 EXPORT_SYMBOL(tcp_getsockopt);
4696 
4697 #ifdef CONFIG_TCP_MD5SIG
4698 int tcp_md5_sigpool_id = -1;
4699 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4700 
4701 int tcp_md5_alloc_sigpool(void)
4702 {
4703 	size_t scratch_size;
4704 	int ret;
4705 
4706 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4707 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4708 	if (ret >= 0) {
4709 		/* As long as any md5 sigpool was allocated, the return
4710 		 * id would stay the same. Re-write the id only for the case
4711 		 * when previously all MD5 keys were deleted and this call
4712 		 * allocates the first MD5 key, which may return a different
4713 		 * sigpool id than was used previously.
4714 		 */
4715 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4716 		return 0;
4717 	}
4718 	return ret;
4719 }
4720 
4721 void tcp_md5_release_sigpool(void)
4722 {
4723 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4724 }
4725 
4726 void tcp_md5_add_sigpool(void)
4727 {
4728 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4729 }
4730 
4731 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4732 		     const struct tcp_md5sig_key *key)
4733 {
4734 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4735 	struct scatterlist sg;
4736 
4737 	sg_init_one(&sg, key->key, keylen);
4738 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4739 
4740 	/* We use data_race() because tcp_md5_do_add() might change
4741 	 * key->key under us
4742 	 */
4743 	return data_race(crypto_ahash_update(hp->req));
4744 }
4745 EXPORT_SYMBOL(tcp_md5_hash_key);
4746 
4747 /* Called with rcu_read_lock() */
4748 static enum skb_drop_reason
4749 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4750 		     const void *saddr, const void *daddr,
4751 		     int family, int l3index, const __u8 *hash_location)
4752 {
4753 	/* This gets called for each TCP segment that has TCP-MD5 option.
4754 	 * We have 3 drop cases:
4755 	 * o No MD5 hash and one expected.
4756 	 * o MD5 hash and we're not expecting one.
4757 	 * o MD5 hash and its wrong.
4758 	 */
4759 	const struct tcp_sock *tp = tcp_sk(sk);
4760 	struct tcp_md5sig_key *key;
4761 	u8 newhash[16];
4762 	int genhash;
4763 
4764 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4765 
4766 	if (!key && hash_location) {
4767 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4768 		trace_tcp_hash_md5_unexpected(sk, skb);
4769 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4770 	}
4771 
4772 	/* Check the signature.
4773 	 * To support dual stack listeners, we need to handle
4774 	 * IPv4-mapped case.
4775 	 */
4776 	if (family == AF_INET)
4777 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4778 	else
4779 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4780 							 NULL, skb);
4781 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4782 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4783 		trace_tcp_hash_md5_mismatch(sk, skb);
4784 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4785 	}
4786 	return SKB_NOT_DROPPED_YET;
4787 }
4788 #else
4789 static inline enum skb_drop_reason
4790 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4791 		     const void *saddr, const void *daddr,
4792 		     int family, int l3index, const __u8 *hash_location)
4793 {
4794 	return SKB_NOT_DROPPED_YET;
4795 }
4796 
4797 #endif
4798 
4799 /* Called with rcu_read_lock() */
4800 enum skb_drop_reason
4801 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4802 		 const struct sk_buff *skb,
4803 		 const void *saddr, const void *daddr,
4804 		 int family, int dif, int sdif)
4805 {
4806 	const struct tcphdr *th = tcp_hdr(skb);
4807 	const struct tcp_ao_hdr *aoh;
4808 	const __u8 *md5_location;
4809 	int l3index;
4810 
4811 	/* Invalid option or two times meet any of auth options */
4812 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4813 		trace_tcp_hash_bad_header(sk, skb);
4814 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4815 	}
4816 
4817 	if (req) {
4818 		if (tcp_rsk_used_ao(req) != !!aoh) {
4819 			u8 keyid, rnext, maclen;
4820 
4821 			if (aoh) {
4822 				keyid = aoh->keyid;
4823 				rnext = aoh->rnext_keyid;
4824 				maclen = tcp_ao_hdr_maclen(aoh);
4825 			} else {
4826 				keyid = rnext = maclen = 0;
4827 			}
4828 
4829 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4830 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4831 			return SKB_DROP_REASON_TCP_AOFAILURE;
4832 		}
4833 	}
4834 
4835 	/* sdif set, means packet ingressed via a device
4836 	 * in an L3 domain and dif is set to the l3mdev
4837 	 */
4838 	l3index = sdif ? dif : 0;
4839 
4840 	/* Fast path: unsigned segments */
4841 	if (likely(!md5_location && !aoh)) {
4842 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4843 		 * for the remote peer. On TCP-AO established connection
4844 		 * the last key is impossible to remove, so there's
4845 		 * always at least one current_key.
4846 		 */
4847 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4848 			trace_tcp_hash_ao_required(sk, skb);
4849 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4850 		}
4851 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4852 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4853 			trace_tcp_hash_md5_required(sk, skb);
4854 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4855 		}
4856 		return SKB_NOT_DROPPED_YET;
4857 	}
4858 
4859 	if (aoh)
4860 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4861 
4862 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4863 				    l3index, md5_location);
4864 }
4865 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4866 
4867 void tcp_done(struct sock *sk)
4868 {
4869 	struct request_sock *req;
4870 
4871 	/* We might be called with a new socket, after
4872 	 * inet_csk_prepare_forced_close() has been called
4873 	 * so we can not use lockdep_sock_is_held(sk)
4874 	 */
4875 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4876 
4877 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4878 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4879 
4880 	tcp_set_state(sk, TCP_CLOSE);
4881 	tcp_clear_xmit_timers(sk);
4882 	if (req)
4883 		reqsk_fastopen_remove(sk, req, false);
4884 
4885 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4886 
4887 	if (!sock_flag(sk, SOCK_DEAD))
4888 		sk->sk_state_change(sk);
4889 	else
4890 		inet_csk_destroy_sock(sk);
4891 }
4892 EXPORT_SYMBOL_GPL(tcp_done);
4893 
4894 int tcp_abort(struct sock *sk, int err)
4895 {
4896 	int state = inet_sk_state_load(sk);
4897 
4898 	if (state == TCP_NEW_SYN_RECV) {
4899 		struct request_sock *req = inet_reqsk(sk);
4900 
4901 		local_bh_disable();
4902 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4903 		local_bh_enable();
4904 		return 0;
4905 	}
4906 	if (state == TCP_TIME_WAIT) {
4907 		struct inet_timewait_sock *tw = inet_twsk(sk);
4908 
4909 		refcount_inc(&tw->tw_refcnt);
4910 		local_bh_disable();
4911 		inet_twsk_deschedule_put(tw);
4912 		local_bh_enable();
4913 		return 0;
4914 	}
4915 
4916 	/* BPF context ensures sock locking. */
4917 	if (!has_current_bpf_ctx())
4918 		/* Don't race with userspace socket closes such as tcp_close. */
4919 		lock_sock(sk);
4920 
4921 	/* Avoid closing the same socket twice. */
4922 	if (sk->sk_state == TCP_CLOSE) {
4923 		if (!has_current_bpf_ctx())
4924 			release_sock(sk);
4925 		return -ENOENT;
4926 	}
4927 
4928 	if (sk->sk_state == TCP_LISTEN) {
4929 		tcp_set_state(sk, TCP_CLOSE);
4930 		inet_csk_listen_stop(sk);
4931 	}
4932 
4933 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4934 	local_bh_disable();
4935 	bh_lock_sock(sk);
4936 
4937 	if (tcp_need_reset(sk->sk_state))
4938 		tcp_send_active_reset(sk, GFP_ATOMIC,
4939 				      SK_RST_REASON_TCP_STATE);
4940 	tcp_done_with_error(sk, err);
4941 
4942 	bh_unlock_sock(sk);
4943 	local_bh_enable();
4944 	if (!has_current_bpf_ctx())
4945 		release_sock(sk);
4946 	return 0;
4947 }
4948 EXPORT_SYMBOL_GPL(tcp_abort);
4949 
4950 extern struct tcp_congestion_ops tcp_reno;
4951 
4952 static __initdata unsigned long thash_entries;
4953 static int __init set_thash_entries(char *str)
4954 {
4955 	ssize_t ret;
4956 
4957 	if (!str)
4958 		return 0;
4959 
4960 	ret = kstrtoul(str, 0, &thash_entries);
4961 	if (ret)
4962 		return 0;
4963 
4964 	return 1;
4965 }
4966 __setup("thash_entries=", set_thash_entries);
4967 
4968 static void __init tcp_init_mem(void)
4969 {
4970 	unsigned long limit = nr_free_buffer_pages() / 16;
4971 
4972 	limit = max(limit, 128UL);
4973 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4974 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4975 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4976 }
4977 
4978 static void __init tcp_struct_check(void)
4979 {
4980 	/* TX read-mostly hotpath cache lines */
4981 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4982 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4983 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4984 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4985 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4986 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4987 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4988 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4989 
4990 	/* TXRX read-mostly hotpath cache lines */
4991 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4992 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4993 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4994 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4995 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4996 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4997 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4998 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4999 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5000 
5001 	/* RX read-mostly hotpath cache lines */
5002 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5003 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5004 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5005 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5006 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5007 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5008 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5009 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5010 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5011 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5012 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5013 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5014 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5015 
5016 	/* TX read-write hotpath cache lines */
5017 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5018 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5019 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5020 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5021 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5022 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5023 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5024 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5025 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5026 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5027 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5028 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5029 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5030 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5031 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5032 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5033 
5034 	/* TXRX read-write hotpath cache lines */
5035 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5036 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5037 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5038 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5039 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5040 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5041 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5042 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5043 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5044 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5045 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5046 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5047 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5048 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5049 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5050 
5051 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5052 	 * before tcp_clock_cache.
5053 	 */
5054 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5055 
5056 	/* RX read-write hotpath cache lines */
5057 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5058 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5059 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5060 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5061 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5062 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5063 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5064 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5065 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5067 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5068 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5069 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5070 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5071 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5072 }
5073 
5074 void __init tcp_init(void)
5075 {
5076 	int max_rshare, max_wshare, cnt;
5077 	unsigned long limit;
5078 	unsigned int i;
5079 
5080 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5081 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5082 		     sizeof_field(struct sk_buff, cb));
5083 
5084 	tcp_struct_check();
5085 
5086 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5087 
5088 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5089 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5090 
5091 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5092 			    thash_entries, 21,  /* one slot per 2 MB*/
5093 			    0, 64 * 1024);
5094 	tcp_hashinfo.bind_bucket_cachep =
5095 		kmem_cache_create("tcp_bind_bucket",
5096 				  sizeof(struct inet_bind_bucket), 0,
5097 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5098 				  SLAB_ACCOUNT,
5099 				  NULL);
5100 	tcp_hashinfo.bind2_bucket_cachep =
5101 		kmem_cache_create("tcp_bind2_bucket",
5102 				  sizeof(struct inet_bind2_bucket), 0,
5103 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5104 				  SLAB_ACCOUNT,
5105 				  NULL);
5106 
5107 	/* Size and allocate the main established and bind bucket
5108 	 * hash tables.
5109 	 *
5110 	 * The methodology is similar to that of the buffer cache.
5111 	 */
5112 	tcp_hashinfo.ehash =
5113 		alloc_large_system_hash("TCP established",
5114 					sizeof(struct inet_ehash_bucket),
5115 					thash_entries,
5116 					17, /* one slot per 128 KB of memory */
5117 					0,
5118 					NULL,
5119 					&tcp_hashinfo.ehash_mask,
5120 					0,
5121 					thash_entries ? 0 : 512 * 1024);
5122 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5123 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5124 
5125 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5126 		panic("TCP: failed to alloc ehash_locks");
5127 	tcp_hashinfo.bhash =
5128 		alloc_large_system_hash("TCP bind",
5129 					2 * sizeof(struct inet_bind_hashbucket),
5130 					tcp_hashinfo.ehash_mask + 1,
5131 					17, /* one slot per 128 KB of memory */
5132 					0,
5133 					&tcp_hashinfo.bhash_size,
5134 					NULL,
5135 					0,
5136 					64 * 1024);
5137 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5138 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5139 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5140 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5141 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5142 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5143 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5144 	}
5145 
5146 	tcp_hashinfo.pernet = false;
5147 
5148 	cnt = tcp_hashinfo.ehash_mask + 1;
5149 	sysctl_tcp_max_orphans = cnt / 2;
5150 
5151 	tcp_init_mem();
5152 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5153 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5154 	max_wshare = min(4UL*1024*1024, limit);
5155 	max_rshare = min(6UL*1024*1024, limit);
5156 
5157 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5158 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5159 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5160 
5161 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5162 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5163 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5164 
5165 	pr_info("Hash tables configured (established %u bind %u)\n",
5166 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5167 
5168 	tcp_v4_init();
5169 	tcp_metrics_init();
5170 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5171 	tcp_tasklet_init();
5172 	mptcp_init();
5173 }
5174