xref: /linux/net/ipv4/tcp.c (revision 32d00f62db4e982edbee137109407636f71f79b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 
439 	/* See draft-stevens-tcpca-spec-01 for discussion of the
440 	 * initialization of these values.
441 	 */
442 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 	tp->snd_cwnd_clamp = ~0;
444 	tp->mss_cache = TCP_MSS_DEFAULT;
445 
446 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
447 	tcp_assign_congestion_control(sk);
448 
449 	tp->tsoffset = 0;
450 	tp->rack.reo_wnd_steps = 1;
451 
452 	sk->sk_write_space = sk_stream_write_space;
453 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454 
455 	icsk->icsk_sync_mss = tcp_sync_mss;
456 
457 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
458 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
459 
460 	sk_sockets_allocated_inc(sk);
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 	return sk_is_readable(sk);
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sock, wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 		u16 urg_data = READ_ONCE(tp->urg_data);
551 
552 		if (unlikely(urg_data) &&
553 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
554 		    !sock_flag(sk, SOCK_URGINLINE))
555 			target++;
556 
557 		if (tcp_stream_is_readable(sk, target))
558 			mask |= EPOLLIN | EPOLLRDNORM;
559 
560 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
561 			if (__sk_stream_is_writeable(sk, 1)) {
562 				mask |= EPOLLOUT | EPOLLWRNORM;
563 			} else {  /* send SIGIO later */
564 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
565 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
566 
567 				/* Race breaker. If space is freed after
568 				 * wspace test but before the flags are set,
569 				 * IO signal will be lost. Memory barrier
570 				 * pairs with the input side.
571 				 */
572 				smp_mb__after_atomic();
573 				if (__sk_stream_is_writeable(sk, 1))
574 					mask |= EPOLLOUT | EPOLLWRNORM;
575 			}
576 		} else
577 			mask |= EPOLLOUT | EPOLLWRNORM;
578 
579 		if (urg_data & TCP_URG_VALID)
580 			mask |= EPOLLPRI;
581 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
582 		/* Active TCP fastopen socket with defer_connect
583 		 * Return EPOLLOUT so application can call write()
584 		 * in order for kernel to generate SYN+data
585 		 */
586 		mask |= EPOLLOUT | EPOLLWRNORM;
587 	}
588 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
589 	smp_rmb();
590 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
591 		mask |= EPOLLERR;
592 
593 	return mask;
594 }
595 EXPORT_SYMBOL(tcp_poll);
596 
597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
598 {
599 	struct tcp_sock *tp = tcp_sk(sk);
600 	int answ;
601 	bool slow;
602 
603 	switch (cmd) {
604 	case SIOCINQ:
605 		if (sk->sk_state == TCP_LISTEN)
606 			return -EINVAL;
607 
608 		slow = lock_sock_fast(sk);
609 		answ = tcp_inq(sk);
610 		unlock_sock_fast(sk, slow);
611 		break;
612 	case SIOCATMARK:
613 		answ = READ_ONCE(tp->urg_data) &&
614 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
615 		break;
616 	case SIOCOUTQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 			answ = 0;
622 		else
623 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
624 		break;
625 	case SIOCOUTQNSD:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = READ_ONCE(tp->write_seq) -
633 			       READ_ONCE(tp->snd_nxt);
634 		break;
635 	default:
636 		return -ENOIOCTLCMD;
637 	}
638 
639 	return put_user(answ, (int __user *)arg);
640 }
641 EXPORT_SYMBOL(tcp_ioctl);
642 
643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
644 {
645 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
646 	tp->pushed_seq = tp->write_seq;
647 }
648 
649 static inline bool forced_push(const struct tcp_sock *tp)
650 {
651 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
652 }
653 
654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
658 
659 	tcb->seq     = tcb->end_seq = tp->write_seq;
660 	tcb->tcp_flags = TCPHDR_ACK;
661 	__skb_header_release(skb);
662 	tcp_add_write_queue_tail(sk, skb);
663 	sk_wmem_queued_add(sk, skb->truesize);
664 	sk_mem_charge(sk, skb->truesize);
665 	if (tp->nonagle & TCP_NAGLE_PUSH)
666 		tp->nonagle &= ~TCP_NAGLE_PUSH;
667 
668 	tcp_slow_start_after_idle_check(sk);
669 }
670 
671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
672 {
673 	if (flags & MSG_OOB)
674 		tp->snd_up = tp->write_seq;
675 }
676 
677 /* If a not yet filled skb is pushed, do not send it if
678  * we have data packets in Qdisc or NIC queues :
679  * Because TX completion will happen shortly, it gives a chance
680  * to coalesce future sendmsg() payload into this skb, without
681  * need for a timer, and with no latency trade off.
682  * As packets containing data payload have a bigger truesize
683  * than pure acks (dataless) packets, the last checks prevent
684  * autocorking if we only have an ACK in Qdisc/NIC queues,
685  * or if TX completion was delayed after we processed ACK packet.
686  */
687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
688 				int size_goal)
689 {
690 	return skb->len < size_goal &&
691 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
692 	       !tcp_rtx_queue_empty(sk) &&
693 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
694 	       tcp_skb_can_collapse_to(skb);
695 }
696 
697 void tcp_push(struct sock *sk, int flags, int mss_now,
698 	      int nonagle, int size_goal)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 	struct sk_buff *skb;
702 
703 	skb = tcp_write_queue_tail(sk);
704 	if (!skb)
705 		return;
706 	if (!(flags & MSG_MORE) || forced_push(tp))
707 		tcp_mark_push(tp, skb);
708 
709 	tcp_mark_urg(tp, flags);
710 
711 	if (tcp_should_autocork(sk, skb, size_goal)) {
712 
713 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
714 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
716 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 		}
718 		/* It is possible TX completion already happened
719 		 * before we set TSQ_THROTTLED.
720 		 */
721 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
722 			return;
723 	}
724 
725 	if (flags & MSG_MORE)
726 		nonagle = TCP_NAGLE_CORK;
727 
728 	__tcp_push_pending_frames(sk, mss_now, nonagle);
729 }
730 
731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
732 				unsigned int offset, size_t len)
733 {
734 	struct tcp_splice_state *tss = rd_desc->arg.data;
735 	int ret;
736 
737 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
738 			      min(rd_desc->count, len), tss->flags);
739 	if (ret > 0)
740 		rd_desc->count -= ret;
741 	return ret;
742 }
743 
744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 {
746 	/* Store TCP splice context information in read_descriptor_t. */
747 	read_descriptor_t rd_desc = {
748 		.arg.data = tss,
749 		.count	  = tss->len,
750 	};
751 
752 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 }
754 
755 /**
756  *  tcp_splice_read - splice data from TCP socket to a pipe
757  * @sock:	socket to splice from
758  * @ppos:	position (not valid)
759  * @pipe:	pipe to splice to
760  * @len:	number of bytes to splice
761  * @flags:	splice modifier flags
762  *
763  * Description:
764  *    Will read pages from given socket and fill them into a pipe.
765  *
766  **/
767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
768 			struct pipe_inode_info *pipe, size_t len,
769 			unsigned int flags)
770 {
771 	struct sock *sk = sock->sk;
772 	struct tcp_splice_state tss = {
773 		.pipe = pipe,
774 		.len = len,
775 		.flags = flags,
776 	};
777 	long timeo;
778 	ssize_t spliced;
779 	int ret;
780 
781 	sock_rps_record_flow(sk);
782 	/*
783 	 * We can't seek on a socket input
784 	 */
785 	if (unlikely(*ppos))
786 		return -ESPIPE;
787 
788 	ret = spliced = 0;
789 
790 	lock_sock(sk);
791 
792 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 	while (tss.len) {
794 		ret = __tcp_splice_read(sk, &tss);
795 		if (ret < 0)
796 			break;
797 		else if (!ret) {
798 			if (spliced)
799 				break;
800 			if (sock_flag(sk, SOCK_DONE))
801 				break;
802 			if (sk->sk_err) {
803 				ret = sock_error(sk);
804 				break;
805 			}
806 			if (sk->sk_shutdown & RCV_SHUTDOWN)
807 				break;
808 			if (sk->sk_state == TCP_CLOSE) {
809 				/*
810 				 * This occurs when user tries to read
811 				 * from never connected socket.
812 				 */
813 				ret = -ENOTCONN;
814 				break;
815 			}
816 			if (!timeo) {
817 				ret = -EAGAIN;
818 				break;
819 			}
820 			/* if __tcp_splice_read() got nothing while we have
821 			 * an skb in receive queue, we do not want to loop.
822 			 * This might happen with URG data.
823 			 */
824 			if (!skb_queue_empty(&sk->sk_receive_queue))
825 				break;
826 			sk_wait_data(sk, &timeo, NULL);
827 			if (signal_pending(current)) {
828 				ret = sock_intr_errno(timeo);
829 				break;
830 			}
831 			continue;
832 		}
833 		tss.len -= ret;
834 		spliced += ret;
835 
836 		if (!timeo)
837 			break;
838 		release_sock(sk);
839 		lock_sock(sk);
840 
841 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
842 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
843 		    signal_pending(current))
844 			break;
845 	}
846 
847 	release_sock(sk);
848 
849 	if (spliced)
850 		return spliced;
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL(tcp_splice_read);
855 
856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
857 				     bool force_schedule)
858 {
859 	struct sk_buff *skb;
860 
861 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 	if (likely(skb)) {
863 		bool mem_scheduled;
864 
865 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
897 
898 	/* We try hard to avoid divides here */
899 	size_goal = tp->gso_segs * mss_now;
900 	if (unlikely(new_size_goal < size_goal ||
901 		     new_size_goal >= size_goal + mss_now)) {
902 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
903 				     sk->sk_gso_max_segs);
904 		size_goal = tp->gso_segs * mss_now;
905 	}
906 
907 	return max(size_goal, mss_now);
908 }
909 
910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
911 {
912 	int mss_now;
913 
914 	mss_now = tcp_current_mss(sk);
915 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
916 
917 	return mss_now;
918 }
919 
920 /* In some cases, both sendpage() and sendmsg() could have added
921  * an skb to the write queue, but failed adding payload on it.
922  * We need to remove it to consume less memory, but more
923  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
924  * users.
925  */
926 void tcp_remove_empty_skb(struct sock *sk)
927 {
928 	struct sk_buff *skb = tcp_write_queue_tail(sk);
929 
930 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
931 		tcp_unlink_write_queue(skb, sk);
932 		if (tcp_write_queue_empty(sk))
933 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
934 		tcp_wmem_free_skb(sk, skb);
935 	}
936 }
937 
938 /* skb changing from pure zc to mixed, must charge zc */
939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
940 {
941 	if (unlikely(skb_zcopy_pure(skb))) {
942 		u32 extra = skb->truesize -
943 			    SKB_TRUESIZE(skb_end_offset(skb));
944 
945 		if (!sk_wmem_schedule(sk, extra))
946 			return -ENOMEM;
947 
948 		sk_mem_charge(sk, extra);
949 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
950 	}
951 	return 0;
952 }
953 
954 
955 static int tcp_wmem_schedule(struct sock *sk, int copy)
956 {
957 	int left;
958 
959 	if (likely(sk_wmem_schedule(sk, copy)))
960 		return copy;
961 
962 	/* We could be in trouble if we have nothing queued.
963 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
964 	 * to guarantee some progress.
965 	 */
966 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
967 	if (left > 0)
968 		sk_forced_mem_schedule(sk, min(left, copy));
969 	return min(copy, sk->sk_forward_alloc);
970 }
971 
972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
973 				      struct page *page, int offset, size_t *size)
974 {
975 	struct sk_buff *skb = tcp_write_queue_tail(sk);
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	bool can_coalesce;
978 	int copy, i;
979 
980 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
981 	    !tcp_skb_can_collapse_to(skb)) {
982 new_segment:
983 		if (!sk_stream_memory_free(sk))
984 			return NULL;
985 
986 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
987 					   tcp_rtx_and_write_queues_empty(sk));
988 		if (!skb)
989 			return NULL;
990 
991 #ifdef CONFIG_TLS_DEVICE
992 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
993 #endif
994 		tcp_skb_entail(sk, skb);
995 		copy = size_goal;
996 	}
997 
998 	if (copy > *size)
999 		copy = *size;
1000 
1001 	i = skb_shinfo(skb)->nr_frags;
1002 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
1004 		tcp_mark_push(tp, skb);
1005 		goto new_segment;
1006 	}
1007 	if (tcp_downgrade_zcopy_pure(sk, skb))
1008 		return NULL;
1009 
1010 	copy = tcp_wmem_schedule(sk, copy);
1011 	if (!copy)
1012 		return NULL;
1013 
1014 	if (can_coalesce) {
1015 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 	} else {
1017 		get_page(page);
1018 		skb_fill_page_desc(skb, i, page, offset, copy);
1019 	}
1020 
1021 	if (!(flags & MSG_NO_SHARED_FRAGS))
1022 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1023 
1024 	skb->len += copy;
1025 	skb->data_len += copy;
1026 	skb->truesize += copy;
1027 	sk_wmem_queued_add(sk, copy);
1028 	sk_mem_charge(sk, copy);
1029 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1030 	TCP_SKB_CB(skb)->end_seq += copy;
1031 	tcp_skb_pcount_set(skb, 0);
1032 
1033 	*size = copy;
1034 	return skb;
1035 }
1036 
1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1038 			 size_t size, int flags)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	int mss_now, size_goal;
1042 	int err;
1043 	ssize_t copied;
1044 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 
1046 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1047 	    WARN_ONCE(!sendpage_ok(page),
1048 		      "page must not be a Slab one and have page_count > 0"))
1049 		return -EINVAL;
1050 
1051 	/* Wait for a connection to finish. One exception is TCP Fast Open
1052 	 * (passive side) where data is allowed to be sent before a connection
1053 	 * is fully established.
1054 	 */
1055 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 	    !tcp_passive_fastopen(sk)) {
1057 		err = sk_stream_wait_connect(sk, &timeo);
1058 		if (err != 0)
1059 			goto out_err;
1060 	}
1061 
1062 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1063 
1064 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 	copied = 0;
1066 
1067 	err = -EPIPE;
1068 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1069 		goto out_err;
1070 
1071 	while (size > 0) {
1072 		struct sk_buff *skb;
1073 		size_t copy = size;
1074 
1075 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1076 		if (!skb)
1077 			goto wait_for_space;
1078 
1079 		if (!copied)
1080 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081 
1082 		copied += copy;
1083 		offset += copy;
1084 		size -= copy;
1085 		if (!size)
1086 			goto out;
1087 
1088 		if (skb->len < size_goal || (flags & MSG_OOB))
1089 			continue;
1090 
1091 		if (forced_push(tp)) {
1092 			tcp_mark_push(tp, skb);
1093 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 		} else if (skb == tcp_send_head(sk))
1095 			tcp_push_one(sk, mss_now);
1096 		continue;
1097 
1098 wait_for_space:
1099 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1101 			 TCP_NAGLE_PUSH, size_goal);
1102 
1103 		err = sk_stream_wait_memory(sk, &timeo);
1104 		if (err != 0)
1105 			goto do_error;
1106 
1107 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 	}
1109 
1110 out:
1111 	if (copied) {
1112 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1113 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1114 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1115 	}
1116 	return copied;
1117 
1118 do_error:
1119 	tcp_remove_empty_skb(sk);
1120 	if (copied)
1121 		goto out;
1122 out_err:
1123 	/* make sure we wake any epoll edge trigger waiter */
1124 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1125 		sk->sk_write_space(sk);
1126 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1127 	}
1128 	return sk_stream_error(sk, flags, err);
1129 }
1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1131 
1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1133 			size_t size, int flags)
1134 {
1135 	if (!(sk->sk_route_caps & NETIF_F_SG))
1136 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1137 
1138 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1139 
1140 	return do_tcp_sendpages(sk, page, offset, size, flags);
1141 }
1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1143 
1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1145 		 size_t size, int flags)
1146 {
1147 	int ret;
1148 
1149 	lock_sock(sk);
1150 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1151 	release_sock(sk);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(tcp_sendpage);
1156 
1157 void tcp_free_fastopen_req(struct tcp_sock *tp)
1158 {
1159 	if (tp->fastopen_req) {
1160 		kfree(tp->fastopen_req);
1161 		tp->fastopen_req = NULL;
1162 	}
1163 }
1164 
1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1166 				int *copied, size_t size,
1167 				struct ubuf_info *uarg)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 	struct inet_sock *inet = inet_sk(sk);
1171 	struct sockaddr *uaddr = msg->msg_name;
1172 	int err, flags;
1173 
1174 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1175 	      TFO_CLIENT_ENABLE) ||
1176 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1177 	     uaddr->sa_family == AF_UNSPEC))
1178 		return -EOPNOTSUPP;
1179 	if (tp->fastopen_req)
1180 		return -EALREADY; /* Another Fast Open is in progress */
1181 
1182 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1183 				   sk->sk_allocation);
1184 	if (unlikely(!tp->fastopen_req))
1185 		return -ENOBUFS;
1186 	tp->fastopen_req->data = msg;
1187 	tp->fastopen_req->size = size;
1188 	tp->fastopen_req->uarg = uarg;
1189 
1190 	if (inet->defer_connect) {
1191 		err = tcp_connect(sk);
1192 		/* Same failure procedure as in tcp_v4/6_connect */
1193 		if (err) {
1194 			tcp_set_state(sk, TCP_CLOSE);
1195 			inet->inet_dport = 0;
1196 			sk->sk_route_caps = 0;
1197 		}
1198 	}
1199 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1200 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1201 				    msg->msg_namelen, flags, 1);
1202 	/* fastopen_req could already be freed in __inet_stream_connect
1203 	 * if the connection times out or gets rst
1204 	 */
1205 	if (tp->fastopen_req) {
1206 		*copied = tp->fastopen_req->copied;
1207 		tcp_free_fastopen_req(tp);
1208 		inet->defer_connect = 0;
1209 	}
1210 	return err;
1211 }
1212 
1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 	struct ubuf_info *uarg = NULL;
1217 	struct sk_buff *skb;
1218 	struct sockcm_cookie sockc;
1219 	int flags, err, copied = 0;
1220 	int mss_now = 0, size_goal, copied_syn = 0;
1221 	int process_backlog = 0;
1222 	bool zc = false;
1223 	long timeo;
1224 
1225 	flags = msg->msg_flags;
1226 
1227 	if ((flags & MSG_ZEROCOPY) && size) {
1228 		skb = tcp_write_queue_tail(sk);
1229 
1230 		if (msg->msg_ubuf) {
1231 			uarg = msg->msg_ubuf;
1232 			net_zcopy_get(uarg);
1233 			zc = sk->sk_route_caps & NETIF_F_SG;
1234 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1235 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1236 			if (!uarg) {
1237 				err = -ENOBUFS;
1238 				goto out_err;
1239 			}
1240 			zc = sk->sk_route_caps & NETIF_F_SG;
1241 			if (!zc)
1242 				uarg->zerocopy = 0;
1243 		}
1244 	}
1245 
1246 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1247 	    !tp->repair) {
1248 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1249 		if (err == -EINPROGRESS && copied_syn > 0)
1250 			goto out;
1251 		else if (err)
1252 			goto out_err;
1253 	}
1254 
1255 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1256 
1257 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1258 
1259 	/* Wait for a connection to finish. One exception is TCP Fast Open
1260 	 * (passive side) where data is allowed to be sent before a connection
1261 	 * is fully established.
1262 	 */
1263 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1264 	    !tcp_passive_fastopen(sk)) {
1265 		err = sk_stream_wait_connect(sk, &timeo);
1266 		if (err != 0)
1267 			goto do_error;
1268 	}
1269 
1270 	if (unlikely(tp->repair)) {
1271 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1272 			copied = tcp_send_rcvq(sk, msg, size);
1273 			goto out_nopush;
1274 		}
1275 
1276 		err = -EINVAL;
1277 		if (tp->repair_queue == TCP_NO_QUEUE)
1278 			goto out_err;
1279 
1280 		/* 'common' sending to sendq */
1281 	}
1282 
1283 	sockcm_init(&sockc, sk);
1284 	if (msg->msg_controllen) {
1285 		err = sock_cmsg_send(sk, msg, &sockc);
1286 		if (unlikely(err)) {
1287 			err = -EINVAL;
1288 			goto out_err;
1289 		}
1290 	}
1291 
1292 	/* This should be in poll */
1293 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1294 
1295 	/* Ok commence sending. */
1296 	copied = 0;
1297 
1298 restart:
1299 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1300 
1301 	err = -EPIPE;
1302 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1303 		goto do_error;
1304 
1305 	while (msg_data_left(msg)) {
1306 		int copy = 0;
1307 
1308 		skb = tcp_write_queue_tail(sk);
1309 		if (skb)
1310 			copy = size_goal - skb->len;
1311 
1312 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1313 			bool first_skb;
1314 
1315 new_segment:
1316 			if (!sk_stream_memory_free(sk))
1317 				goto wait_for_space;
1318 
1319 			if (unlikely(process_backlog >= 16)) {
1320 				process_backlog = 0;
1321 				if (sk_flush_backlog(sk))
1322 					goto restart;
1323 			}
1324 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1325 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1326 						   first_skb);
1327 			if (!skb)
1328 				goto wait_for_space;
1329 
1330 			process_backlog++;
1331 
1332 			tcp_skb_entail(sk, skb);
1333 			copy = size_goal;
1334 
1335 			/* All packets are restored as if they have
1336 			 * already been sent. skb_mstamp_ns isn't set to
1337 			 * avoid wrong rtt estimation.
1338 			 */
1339 			if (tp->repair)
1340 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1341 		}
1342 
1343 		/* Try to append data to the end of skb. */
1344 		if (copy > msg_data_left(msg))
1345 			copy = msg_data_left(msg);
1346 
1347 		if (!zc) {
1348 			bool merge = true;
1349 			int i = skb_shinfo(skb)->nr_frags;
1350 			struct page_frag *pfrag = sk_page_frag(sk);
1351 
1352 			if (!sk_page_frag_refill(sk, pfrag))
1353 				goto wait_for_space;
1354 
1355 			if (!skb_can_coalesce(skb, i, pfrag->page,
1356 					      pfrag->offset)) {
1357 				if (i >= sysctl_max_skb_frags) {
1358 					tcp_mark_push(tp, skb);
1359 					goto new_segment;
1360 				}
1361 				merge = false;
1362 			}
1363 
1364 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1365 
1366 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1367 				if (tcp_downgrade_zcopy_pure(sk, skb))
1368 					goto wait_for_space;
1369 				skb_zcopy_downgrade_managed(skb);
1370 			}
1371 
1372 			copy = tcp_wmem_schedule(sk, copy);
1373 			if (!copy)
1374 				goto wait_for_space;
1375 
1376 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1377 						       pfrag->page,
1378 						       pfrag->offset,
1379 						       copy);
1380 			if (err)
1381 				goto do_error;
1382 
1383 			/* Update the skb. */
1384 			if (merge) {
1385 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1386 			} else {
1387 				skb_fill_page_desc(skb, i, pfrag->page,
1388 						   pfrag->offset, copy);
1389 				page_ref_inc(pfrag->page);
1390 			}
1391 			pfrag->offset += copy;
1392 		} else {
1393 			/* First append to a fragless skb builds initial
1394 			 * pure zerocopy skb
1395 			 */
1396 			if (!skb->len)
1397 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1398 
1399 			if (!skb_zcopy_pure(skb)) {
1400 				copy = tcp_wmem_schedule(sk, copy);
1401 				if (!copy)
1402 					goto wait_for_space;
1403 			}
1404 
1405 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1406 			if (err == -EMSGSIZE || err == -EEXIST) {
1407 				tcp_mark_push(tp, skb);
1408 				goto new_segment;
1409 			}
1410 			if (err < 0)
1411 				goto do_error;
1412 			copy = err;
1413 		}
1414 
1415 		if (!copied)
1416 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1417 
1418 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1419 		TCP_SKB_CB(skb)->end_seq += copy;
1420 		tcp_skb_pcount_set(skb, 0);
1421 
1422 		copied += copy;
1423 		if (!msg_data_left(msg)) {
1424 			if (unlikely(flags & MSG_EOR))
1425 				TCP_SKB_CB(skb)->eor = 1;
1426 			goto out;
1427 		}
1428 
1429 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1430 			continue;
1431 
1432 		if (forced_push(tp)) {
1433 			tcp_mark_push(tp, skb);
1434 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1435 		} else if (skb == tcp_send_head(sk))
1436 			tcp_push_one(sk, mss_now);
1437 		continue;
1438 
1439 wait_for_space:
1440 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1441 		if (copied)
1442 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1443 				 TCP_NAGLE_PUSH, size_goal);
1444 
1445 		err = sk_stream_wait_memory(sk, &timeo);
1446 		if (err != 0)
1447 			goto do_error;
1448 
1449 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1450 	}
1451 
1452 out:
1453 	if (copied) {
1454 		tcp_tx_timestamp(sk, sockc.tsflags);
1455 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1456 	}
1457 out_nopush:
1458 	net_zcopy_put(uarg);
1459 	return copied + copied_syn;
1460 
1461 do_error:
1462 	tcp_remove_empty_skb(sk);
1463 
1464 	if (copied + copied_syn)
1465 		goto out;
1466 out_err:
1467 	net_zcopy_put_abort(uarg, true);
1468 	err = sk_stream_error(sk, flags, err);
1469 	/* make sure we wake any epoll edge trigger waiter */
1470 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1471 		sk->sk_write_space(sk);
1472 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1473 	}
1474 	return err;
1475 }
1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1477 
1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1479 {
1480 	int ret;
1481 
1482 	lock_sock(sk);
1483 	ret = tcp_sendmsg_locked(sk, msg, size);
1484 	release_sock(sk);
1485 
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(tcp_sendmsg);
1489 
1490 /*
1491  *	Handle reading urgent data. BSD has very simple semantics for
1492  *	this, no blocking and very strange errors 8)
1493  */
1494 
1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1496 {
1497 	struct tcp_sock *tp = tcp_sk(sk);
1498 
1499 	/* No URG data to read. */
1500 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1501 	    tp->urg_data == TCP_URG_READ)
1502 		return -EINVAL;	/* Yes this is right ! */
1503 
1504 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1505 		return -ENOTCONN;
1506 
1507 	if (tp->urg_data & TCP_URG_VALID) {
1508 		int err = 0;
1509 		char c = tp->urg_data;
1510 
1511 		if (!(flags & MSG_PEEK))
1512 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1513 
1514 		/* Read urgent data. */
1515 		msg->msg_flags |= MSG_OOB;
1516 
1517 		if (len > 0) {
1518 			if (!(flags & MSG_TRUNC))
1519 				err = memcpy_to_msg(msg, &c, 1);
1520 			len = 1;
1521 		} else
1522 			msg->msg_flags |= MSG_TRUNC;
1523 
1524 		return err ? -EFAULT : len;
1525 	}
1526 
1527 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1528 		return 0;
1529 
1530 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1531 	 * the available implementations agree in this case:
1532 	 * this call should never block, independent of the
1533 	 * blocking state of the socket.
1534 	 * Mike <pall@rz.uni-karlsruhe.de>
1535 	 */
1536 	return -EAGAIN;
1537 }
1538 
1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1540 {
1541 	struct sk_buff *skb;
1542 	int copied = 0, err = 0;
1543 
1544 	/* XXX -- need to support SO_PEEK_OFF */
1545 
1546 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1547 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1548 		if (err)
1549 			return err;
1550 		copied += skb->len;
1551 	}
1552 
1553 	skb_queue_walk(&sk->sk_write_queue, skb) {
1554 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1555 		if (err)
1556 			break;
1557 
1558 		copied += skb->len;
1559 	}
1560 
1561 	return err ?: copied;
1562 }
1563 
1564 /* Clean up the receive buffer for full frames taken by the user,
1565  * then send an ACK if necessary.  COPIED is the number of bytes
1566  * tcp_recvmsg has given to the user so far, it speeds up the
1567  * calculation of whether or not we must ACK for the sake of
1568  * a window update.
1569  */
1570 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1571 {
1572 	struct tcp_sock *tp = tcp_sk(sk);
1573 	bool time_to_ack = false;
1574 
1575 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1576 
1577 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1578 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1579 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1580 
1581 	if (inet_csk_ack_scheduled(sk)) {
1582 		const struct inet_connection_sock *icsk = inet_csk(sk);
1583 
1584 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1585 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1586 		    /*
1587 		     * If this read emptied read buffer, we send ACK, if
1588 		     * connection is not bidirectional, user drained
1589 		     * receive buffer and there was a small segment
1590 		     * in queue.
1591 		     */
1592 		    (copied > 0 &&
1593 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1594 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1595 		       !inet_csk_in_pingpong_mode(sk))) &&
1596 		      !atomic_read(&sk->sk_rmem_alloc)))
1597 			time_to_ack = true;
1598 	}
1599 
1600 	/* We send an ACK if we can now advertise a non-zero window
1601 	 * which has been raised "significantly".
1602 	 *
1603 	 * Even if window raised up to infinity, do not send window open ACK
1604 	 * in states, where we will not receive more. It is useless.
1605 	 */
1606 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1607 		__u32 rcv_window_now = tcp_receive_window(tp);
1608 
1609 		/* Optimize, __tcp_select_window() is not cheap. */
1610 		if (2*rcv_window_now <= tp->window_clamp) {
1611 			__u32 new_window = __tcp_select_window(sk);
1612 
1613 			/* Send ACK now, if this read freed lots of space
1614 			 * in our buffer. Certainly, new_window is new window.
1615 			 * We can advertise it now, if it is not less than current one.
1616 			 * "Lots" means "at least twice" here.
1617 			 */
1618 			if (new_window && new_window >= 2 * rcv_window_now)
1619 				time_to_ack = true;
1620 		}
1621 	}
1622 	if (time_to_ack)
1623 		tcp_send_ack(sk);
1624 }
1625 
1626 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1627 {
1628 	__skb_unlink(skb, &sk->sk_receive_queue);
1629 	if (likely(skb->destructor == sock_rfree)) {
1630 		sock_rfree(skb);
1631 		skb->destructor = NULL;
1632 		skb->sk = NULL;
1633 		return skb_attempt_defer_free(skb);
1634 	}
1635 	__kfree_skb(skb);
1636 }
1637 
1638 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1639 {
1640 	struct sk_buff *skb;
1641 	u32 offset;
1642 
1643 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1644 		offset = seq - TCP_SKB_CB(skb)->seq;
1645 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1646 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1647 			offset--;
1648 		}
1649 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1650 			*off = offset;
1651 			return skb;
1652 		}
1653 		/* This looks weird, but this can happen if TCP collapsing
1654 		 * splitted a fat GRO packet, while we released socket lock
1655 		 * in skb_splice_bits()
1656 		 */
1657 		tcp_eat_recv_skb(sk, skb);
1658 	}
1659 	return NULL;
1660 }
1661 
1662 /*
1663  * This routine provides an alternative to tcp_recvmsg() for routines
1664  * that would like to handle copying from skbuffs directly in 'sendfile'
1665  * fashion.
1666  * Note:
1667  *	- It is assumed that the socket was locked by the caller.
1668  *	- The routine does not block.
1669  *	- At present, there is no support for reading OOB data
1670  *	  or for 'peeking' the socket using this routine
1671  *	  (although both would be easy to implement).
1672  */
1673 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1674 		  sk_read_actor_t recv_actor)
1675 {
1676 	struct sk_buff *skb;
1677 	struct tcp_sock *tp = tcp_sk(sk);
1678 	u32 seq = tp->copied_seq;
1679 	u32 offset;
1680 	int copied = 0;
1681 
1682 	if (sk->sk_state == TCP_LISTEN)
1683 		return -ENOTCONN;
1684 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1685 		if (offset < skb->len) {
1686 			int used;
1687 			size_t len;
1688 
1689 			len = skb->len - offset;
1690 			/* Stop reading if we hit a patch of urgent data */
1691 			if (unlikely(tp->urg_data)) {
1692 				u32 urg_offset = tp->urg_seq - seq;
1693 				if (urg_offset < len)
1694 					len = urg_offset;
1695 				if (!len)
1696 					break;
1697 			}
1698 			used = recv_actor(desc, skb, offset, len);
1699 			if (used <= 0) {
1700 				if (!copied)
1701 					copied = used;
1702 				break;
1703 			}
1704 			if (WARN_ON_ONCE(used > len))
1705 				used = len;
1706 			seq += used;
1707 			copied += used;
1708 			offset += used;
1709 
1710 			/* If recv_actor drops the lock (e.g. TCP splice
1711 			 * receive) the skb pointer might be invalid when
1712 			 * getting here: tcp_collapse might have deleted it
1713 			 * while aggregating skbs from the socket queue.
1714 			 */
1715 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1716 			if (!skb)
1717 				break;
1718 			/* TCP coalescing might have appended data to the skb.
1719 			 * Try to splice more frags
1720 			 */
1721 			if (offset + 1 != skb->len)
1722 				continue;
1723 		}
1724 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1725 			tcp_eat_recv_skb(sk, skb);
1726 			++seq;
1727 			break;
1728 		}
1729 		tcp_eat_recv_skb(sk, skb);
1730 		if (!desc->count)
1731 			break;
1732 		WRITE_ONCE(tp->copied_seq, seq);
1733 	}
1734 	WRITE_ONCE(tp->copied_seq, seq);
1735 
1736 	tcp_rcv_space_adjust(sk);
1737 
1738 	/* Clean up data we have read: This will do ACK frames. */
1739 	if (copied > 0) {
1740 		tcp_recv_skb(sk, seq, &offset);
1741 		tcp_cleanup_rbuf(sk, copied);
1742 	}
1743 	return copied;
1744 }
1745 EXPORT_SYMBOL(tcp_read_sock);
1746 
1747 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1748 {
1749 	struct tcp_sock *tp = tcp_sk(sk);
1750 	u32 seq = tp->copied_seq;
1751 	struct sk_buff *skb;
1752 	int copied = 0;
1753 	u32 offset;
1754 
1755 	if (sk->sk_state == TCP_LISTEN)
1756 		return -ENOTCONN;
1757 
1758 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1759 		int used;
1760 
1761 		__skb_unlink(skb, &sk->sk_receive_queue);
1762 		used = recv_actor(sk, skb);
1763 		if (used <= 0) {
1764 			if (!copied)
1765 				copied = used;
1766 			break;
1767 		}
1768 		seq += used;
1769 		copied += used;
1770 
1771 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1772 			consume_skb(skb);
1773 			++seq;
1774 			break;
1775 		}
1776 		consume_skb(skb);
1777 		break;
1778 	}
1779 	WRITE_ONCE(tp->copied_seq, seq);
1780 
1781 	tcp_rcv_space_adjust(sk);
1782 
1783 	/* Clean up data we have read: This will do ACK frames. */
1784 	if (copied > 0)
1785 		tcp_cleanup_rbuf(sk, copied);
1786 
1787 	return copied;
1788 }
1789 EXPORT_SYMBOL(tcp_read_skb);
1790 
1791 int tcp_peek_len(struct socket *sock)
1792 {
1793 	return tcp_inq(sock->sk);
1794 }
1795 EXPORT_SYMBOL(tcp_peek_len);
1796 
1797 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1798 int tcp_set_rcvlowat(struct sock *sk, int val)
1799 {
1800 	int cap;
1801 
1802 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1803 		cap = sk->sk_rcvbuf >> 1;
1804 	else
1805 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1806 	val = min(val, cap);
1807 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1808 
1809 	/* Check if we need to signal EPOLLIN right now */
1810 	tcp_data_ready(sk);
1811 
1812 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1813 		return 0;
1814 
1815 	val <<= 1;
1816 	if (val > sk->sk_rcvbuf) {
1817 		WRITE_ONCE(sk->sk_rcvbuf, val);
1818 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1819 	}
1820 	return 0;
1821 }
1822 EXPORT_SYMBOL(tcp_set_rcvlowat);
1823 
1824 void tcp_update_recv_tstamps(struct sk_buff *skb,
1825 			     struct scm_timestamping_internal *tss)
1826 {
1827 	if (skb->tstamp)
1828 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1829 	else
1830 		tss->ts[0] = (struct timespec64) {0};
1831 
1832 	if (skb_hwtstamps(skb)->hwtstamp)
1833 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1834 	else
1835 		tss->ts[2] = (struct timespec64) {0};
1836 }
1837 
1838 #ifdef CONFIG_MMU
1839 static const struct vm_operations_struct tcp_vm_ops = {
1840 };
1841 
1842 int tcp_mmap(struct file *file, struct socket *sock,
1843 	     struct vm_area_struct *vma)
1844 {
1845 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1846 		return -EPERM;
1847 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1848 
1849 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1850 	vma->vm_flags |= VM_MIXEDMAP;
1851 
1852 	vma->vm_ops = &tcp_vm_ops;
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(tcp_mmap);
1856 
1857 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1858 				       u32 *offset_frag)
1859 {
1860 	skb_frag_t *frag;
1861 
1862 	if (unlikely(offset_skb >= skb->len))
1863 		return NULL;
1864 
1865 	offset_skb -= skb_headlen(skb);
1866 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1867 		return NULL;
1868 
1869 	frag = skb_shinfo(skb)->frags;
1870 	while (offset_skb) {
1871 		if (skb_frag_size(frag) > offset_skb) {
1872 			*offset_frag = offset_skb;
1873 			return frag;
1874 		}
1875 		offset_skb -= skb_frag_size(frag);
1876 		++frag;
1877 	}
1878 	*offset_frag = 0;
1879 	return frag;
1880 }
1881 
1882 static bool can_map_frag(const skb_frag_t *frag)
1883 {
1884 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1885 }
1886 
1887 static int find_next_mappable_frag(const skb_frag_t *frag,
1888 				   int remaining_in_skb)
1889 {
1890 	int offset = 0;
1891 
1892 	if (likely(can_map_frag(frag)))
1893 		return 0;
1894 
1895 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1896 		offset += skb_frag_size(frag);
1897 		++frag;
1898 	}
1899 	return offset;
1900 }
1901 
1902 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1903 					  struct tcp_zerocopy_receive *zc,
1904 					  struct sk_buff *skb, u32 offset)
1905 {
1906 	u32 frag_offset, partial_frag_remainder = 0;
1907 	int mappable_offset;
1908 	skb_frag_t *frag;
1909 
1910 	/* worst case: skip to next skb. try to improve on this case below */
1911 	zc->recv_skip_hint = skb->len - offset;
1912 
1913 	/* Find the frag containing this offset (and how far into that frag) */
1914 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1915 	if (!frag)
1916 		return;
1917 
1918 	if (frag_offset) {
1919 		struct skb_shared_info *info = skb_shinfo(skb);
1920 
1921 		/* We read part of the last frag, must recvmsg() rest of skb. */
1922 		if (frag == &info->frags[info->nr_frags - 1])
1923 			return;
1924 
1925 		/* Else, we must at least read the remainder in this frag. */
1926 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1927 		zc->recv_skip_hint -= partial_frag_remainder;
1928 		++frag;
1929 	}
1930 
1931 	/* partial_frag_remainder: If part way through a frag, must read rest.
1932 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1933 	 * in partial_frag_remainder.
1934 	 */
1935 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1936 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1937 }
1938 
1939 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1940 			      int flags, struct scm_timestamping_internal *tss,
1941 			      int *cmsg_flags);
1942 static int receive_fallback_to_copy(struct sock *sk,
1943 				    struct tcp_zerocopy_receive *zc, int inq,
1944 				    struct scm_timestamping_internal *tss)
1945 {
1946 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1947 	struct msghdr msg = {};
1948 	struct iovec iov;
1949 	int err;
1950 
1951 	zc->length = 0;
1952 	zc->recv_skip_hint = 0;
1953 
1954 	if (copy_address != zc->copybuf_address)
1955 		return -EINVAL;
1956 
1957 	err = import_single_range(READ, (void __user *)copy_address,
1958 				  inq, &iov, &msg.msg_iter);
1959 	if (err)
1960 		return err;
1961 
1962 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1963 				 tss, &zc->msg_flags);
1964 	if (err < 0)
1965 		return err;
1966 
1967 	zc->copybuf_len = err;
1968 	if (likely(zc->copybuf_len)) {
1969 		struct sk_buff *skb;
1970 		u32 offset;
1971 
1972 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1973 		if (skb)
1974 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1975 	}
1976 	return 0;
1977 }
1978 
1979 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1980 				   struct sk_buff *skb, u32 copylen,
1981 				   u32 *offset, u32 *seq)
1982 {
1983 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1984 	struct msghdr msg = {};
1985 	struct iovec iov;
1986 	int err;
1987 
1988 	if (copy_address != zc->copybuf_address)
1989 		return -EINVAL;
1990 
1991 	err = import_single_range(READ, (void __user *)copy_address,
1992 				  copylen, &iov, &msg.msg_iter);
1993 	if (err)
1994 		return err;
1995 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1996 	if (err)
1997 		return err;
1998 	zc->recv_skip_hint -= copylen;
1999 	*offset += copylen;
2000 	*seq += copylen;
2001 	return (__s32)copylen;
2002 }
2003 
2004 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2005 				  struct sock *sk,
2006 				  struct sk_buff *skb,
2007 				  u32 *seq,
2008 				  s32 copybuf_len,
2009 				  struct scm_timestamping_internal *tss)
2010 {
2011 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2012 
2013 	if (!copylen)
2014 		return 0;
2015 	/* skb is null if inq < PAGE_SIZE. */
2016 	if (skb) {
2017 		offset = *seq - TCP_SKB_CB(skb)->seq;
2018 	} else {
2019 		skb = tcp_recv_skb(sk, *seq, &offset);
2020 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2021 			tcp_update_recv_tstamps(skb, tss);
2022 			zc->msg_flags |= TCP_CMSG_TS;
2023 		}
2024 	}
2025 
2026 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2027 						  seq);
2028 	return zc->copybuf_len < 0 ? 0 : copylen;
2029 }
2030 
2031 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2032 					      struct page **pending_pages,
2033 					      unsigned long pages_remaining,
2034 					      unsigned long *address,
2035 					      u32 *length,
2036 					      u32 *seq,
2037 					      struct tcp_zerocopy_receive *zc,
2038 					      u32 total_bytes_to_map,
2039 					      int err)
2040 {
2041 	/* At least one page did not map. Try zapping if we skipped earlier. */
2042 	if (err == -EBUSY &&
2043 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2044 		u32 maybe_zap_len;
2045 
2046 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2047 				*length + /* Mapped or pending */
2048 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2049 		zap_page_range(vma, *address, maybe_zap_len);
2050 		err = 0;
2051 	}
2052 
2053 	if (!err) {
2054 		unsigned long leftover_pages = pages_remaining;
2055 		int bytes_mapped;
2056 
2057 		/* We called zap_page_range, try to reinsert. */
2058 		err = vm_insert_pages(vma, *address,
2059 				      pending_pages,
2060 				      &pages_remaining);
2061 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2062 		*seq += bytes_mapped;
2063 		*address += bytes_mapped;
2064 	}
2065 	if (err) {
2066 		/* Either we were unable to zap, OR we zapped, retried an
2067 		 * insert, and still had an issue. Either ways, pages_remaining
2068 		 * is the number of pages we were unable to map, and we unroll
2069 		 * some state we speculatively touched before.
2070 		 */
2071 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2072 
2073 		*length -= bytes_not_mapped;
2074 		zc->recv_skip_hint += bytes_not_mapped;
2075 	}
2076 	return err;
2077 }
2078 
2079 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2080 					struct page **pages,
2081 					unsigned int pages_to_map,
2082 					unsigned long *address,
2083 					u32 *length,
2084 					u32 *seq,
2085 					struct tcp_zerocopy_receive *zc,
2086 					u32 total_bytes_to_map)
2087 {
2088 	unsigned long pages_remaining = pages_to_map;
2089 	unsigned int pages_mapped;
2090 	unsigned int bytes_mapped;
2091 	int err;
2092 
2093 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2094 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2095 	bytes_mapped = PAGE_SIZE * pages_mapped;
2096 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2097 	 * mapping (some but not all of the pages).
2098 	 */
2099 	*seq += bytes_mapped;
2100 	*address += bytes_mapped;
2101 
2102 	if (likely(!err))
2103 		return 0;
2104 
2105 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2106 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2107 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2108 		err);
2109 }
2110 
2111 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2112 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2113 				      struct tcp_zerocopy_receive *zc,
2114 				      struct scm_timestamping_internal *tss)
2115 {
2116 	unsigned long msg_control_addr;
2117 	struct msghdr cmsg_dummy;
2118 
2119 	msg_control_addr = (unsigned long)zc->msg_control;
2120 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2121 	cmsg_dummy.msg_controllen =
2122 		(__kernel_size_t)zc->msg_controllen;
2123 	cmsg_dummy.msg_flags = in_compat_syscall()
2124 		? MSG_CMSG_COMPAT : 0;
2125 	cmsg_dummy.msg_control_is_user = true;
2126 	zc->msg_flags = 0;
2127 	if (zc->msg_control == msg_control_addr &&
2128 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2129 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2130 		zc->msg_control = (__u64)
2131 			((uintptr_t)cmsg_dummy.msg_control);
2132 		zc->msg_controllen =
2133 			(__u64)cmsg_dummy.msg_controllen;
2134 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2135 	}
2136 }
2137 
2138 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2139 static int tcp_zerocopy_receive(struct sock *sk,
2140 				struct tcp_zerocopy_receive *zc,
2141 				struct scm_timestamping_internal *tss)
2142 {
2143 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2144 	unsigned long address = (unsigned long)zc->address;
2145 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2146 	s32 copybuf_len = zc->copybuf_len;
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 	const skb_frag_t *frags = NULL;
2149 	unsigned int pages_to_map = 0;
2150 	struct vm_area_struct *vma;
2151 	struct sk_buff *skb = NULL;
2152 	u32 seq = tp->copied_seq;
2153 	u32 total_bytes_to_map;
2154 	int inq = tcp_inq(sk);
2155 	int ret;
2156 
2157 	zc->copybuf_len = 0;
2158 	zc->msg_flags = 0;
2159 
2160 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2161 		return -EINVAL;
2162 
2163 	if (sk->sk_state == TCP_LISTEN)
2164 		return -ENOTCONN;
2165 
2166 	sock_rps_record_flow(sk);
2167 
2168 	if (inq && inq <= copybuf_len)
2169 		return receive_fallback_to_copy(sk, zc, inq, tss);
2170 
2171 	if (inq < PAGE_SIZE) {
2172 		zc->length = 0;
2173 		zc->recv_skip_hint = inq;
2174 		if (!inq && sock_flag(sk, SOCK_DONE))
2175 			return -EIO;
2176 		return 0;
2177 	}
2178 
2179 	mmap_read_lock(current->mm);
2180 
2181 	vma = vma_lookup(current->mm, address);
2182 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2183 		mmap_read_unlock(current->mm);
2184 		return -EINVAL;
2185 	}
2186 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2187 	avail_len = min_t(u32, vma_len, inq);
2188 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2189 	if (total_bytes_to_map) {
2190 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2191 			zap_page_range(vma, address, total_bytes_to_map);
2192 		zc->length = total_bytes_to_map;
2193 		zc->recv_skip_hint = 0;
2194 	} else {
2195 		zc->length = avail_len;
2196 		zc->recv_skip_hint = avail_len;
2197 	}
2198 	ret = 0;
2199 	while (length + PAGE_SIZE <= zc->length) {
2200 		int mappable_offset;
2201 		struct page *page;
2202 
2203 		if (zc->recv_skip_hint < PAGE_SIZE) {
2204 			u32 offset_frag;
2205 
2206 			if (skb) {
2207 				if (zc->recv_skip_hint > 0)
2208 					break;
2209 				skb = skb->next;
2210 				offset = seq - TCP_SKB_CB(skb)->seq;
2211 			} else {
2212 				skb = tcp_recv_skb(sk, seq, &offset);
2213 			}
2214 
2215 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2216 				tcp_update_recv_tstamps(skb, tss);
2217 				zc->msg_flags |= TCP_CMSG_TS;
2218 			}
2219 			zc->recv_skip_hint = skb->len - offset;
2220 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2221 			if (!frags || offset_frag)
2222 				break;
2223 		}
2224 
2225 		mappable_offset = find_next_mappable_frag(frags,
2226 							  zc->recv_skip_hint);
2227 		if (mappable_offset) {
2228 			zc->recv_skip_hint = mappable_offset;
2229 			break;
2230 		}
2231 		page = skb_frag_page(frags);
2232 		prefetchw(page);
2233 		pages[pages_to_map++] = page;
2234 		length += PAGE_SIZE;
2235 		zc->recv_skip_hint -= PAGE_SIZE;
2236 		frags++;
2237 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2238 		    zc->recv_skip_hint < PAGE_SIZE) {
2239 			/* Either full batch, or we're about to go to next skb
2240 			 * (and we cannot unroll failed ops across skbs).
2241 			 */
2242 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2243 							   pages_to_map,
2244 							   &address, &length,
2245 							   &seq, zc,
2246 							   total_bytes_to_map);
2247 			if (ret)
2248 				goto out;
2249 			pages_to_map = 0;
2250 		}
2251 	}
2252 	if (pages_to_map) {
2253 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2254 						   &address, &length, &seq,
2255 						   zc, total_bytes_to_map);
2256 	}
2257 out:
2258 	mmap_read_unlock(current->mm);
2259 	/* Try to copy straggler data. */
2260 	if (!ret)
2261 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2262 
2263 	if (length + copylen) {
2264 		WRITE_ONCE(tp->copied_seq, seq);
2265 		tcp_rcv_space_adjust(sk);
2266 
2267 		/* Clean up data we have read: This will do ACK frames. */
2268 		tcp_recv_skb(sk, seq, &offset);
2269 		tcp_cleanup_rbuf(sk, length + copylen);
2270 		ret = 0;
2271 		if (length == zc->length)
2272 			zc->recv_skip_hint = 0;
2273 	} else {
2274 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2275 			ret = -EIO;
2276 	}
2277 	zc->length = length;
2278 	return ret;
2279 }
2280 #endif
2281 
2282 /* Similar to __sock_recv_timestamp, but does not require an skb */
2283 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2284 			struct scm_timestamping_internal *tss)
2285 {
2286 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2287 	bool has_timestamping = false;
2288 
2289 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2290 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2291 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2292 				if (new_tstamp) {
2293 					struct __kernel_timespec kts = {
2294 						.tv_sec = tss->ts[0].tv_sec,
2295 						.tv_nsec = tss->ts[0].tv_nsec,
2296 					};
2297 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2298 						 sizeof(kts), &kts);
2299 				} else {
2300 					struct __kernel_old_timespec ts_old = {
2301 						.tv_sec = tss->ts[0].tv_sec,
2302 						.tv_nsec = tss->ts[0].tv_nsec,
2303 					};
2304 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2305 						 sizeof(ts_old), &ts_old);
2306 				}
2307 			} else {
2308 				if (new_tstamp) {
2309 					struct __kernel_sock_timeval stv = {
2310 						.tv_sec = tss->ts[0].tv_sec,
2311 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2312 					};
2313 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2314 						 sizeof(stv), &stv);
2315 				} else {
2316 					struct __kernel_old_timeval tv = {
2317 						.tv_sec = tss->ts[0].tv_sec,
2318 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2319 					};
2320 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2321 						 sizeof(tv), &tv);
2322 				}
2323 			}
2324 		}
2325 
2326 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2327 			has_timestamping = true;
2328 		else
2329 			tss->ts[0] = (struct timespec64) {0};
2330 	}
2331 
2332 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2333 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2334 			has_timestamping = true;
2335 		else
2336 			tss->ts[2] = (struct timespec64) {0};
2337 	}
2338 
2339 	if (has_timestamping) {
2340 		tss->ts[1] = (struct timespec64) {0};
2341 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2342 			put_cmsg_scm_timestamping64(msg, tss);
2343 		else
2344 			put_cmsg_scm_timestamping(msg, tss);
2345 	}
2346 }
2347 
2348 static int tcp_inq_hint(struct sock *sk)
2349 {
2350 	const struct tcp_sock *tp = tcp_sk(sk);
2351 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2352 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2353 	int inq;
2354 
2355 	inq = rcv_nxt - copied_seq;
2356 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2357 		lock_sock(sk);
2358 		inq = tp->rcv_nxt - tp->copied_seq;
2359 		release_sock(sk);
2360 	}
2361 	/* After receiving a FIN, tell the user-space to continue reading
2362 	 * by returning a non-zero inq.
2363 	 */
2364 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2365 		inq = 1;
2366 	return inq;
2367 }
2368 
2369 /*
2370  *	This routine copies from a sock struct into the user buffer.
2371  *
2372  *	Technical note: in 2.3 we work on _locked_ socket, so that
2373  *	tricks with *seq access order and skb->users are not required.
2374  *	Probably, code can be easily improved even more.
2375  */
2376 
2377 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2378 			      int flags, struct scm_timestamping_internal *tss,
2379 			      int *cmsg_flags)
2380 {
2381 	struct tcp_sock *tp = tcp_sk(sk);
2382 	int copied = 0;
2383 	u32 peek_seq;
2384 	u32 *seq;
2385 	unsigned long used;
2386 	int err;
2387 	int target;		/* Read at least this many bytes */
2388 	long timeo;
2389 	struct sk_buff *skb, *last;
2390 	u32 urg_hole = 0;
2391 
2392 	err = -ENOTCONN;
2393 	if (sk->sk_state == TCP_LISTEN)
2394 		goto out;
2395 
2396 	if (tp->recvmsg_inq) {
2397 		*cmsg_flags = TCP_CMSG_INQ;
2398 		msg->msg_get_inq = 1;
2399 	}
2400 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2401 
2402 	/* Urgent data needs to be handled specially. */
2403 	if (flags & MSG_OOB)
2404 		goto recv_urg;
2405 
2406 	if (unlikely(tp->repair)) {
2407 		err = -EPERM;
2408 		if (!(flags & MSG_PEEK))
2409 			goto out;
2410 
2411 		if (tp->repair_queue == TCP_SEND_QUEUE)
2412 			goto recv_sndq;
2413 
2414 		err = -EINVAL;
2415 		if (tp->repair_queue == TCP_NO_QUEUE)
2416 			goto out;
2417 
2418 		/* 'common' recv queue MSG_PEEK-ing */
2419 	}
2420 
2421 	seq = &tp->copied_seq;
2422 	if (flags & MSG_PEEK) {
2423 		peek_seq = tp->copied_seq;
2424 		seq = &peek_seq;
2425 	}
2426 
2427 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2428 
2429 	do {
2430 		u32 offset;
2431 
2432 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2433 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2434 			if (copied)
2435 				break;
2436 			if (signal_pending(current)) {
2437 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2438 				break;
2439 			}
2440 		}
2441 
2442 		/* Next get a buffer. */
2443 
2444 		last = skb_peek_tail(&sk->sk_receive_queue);
2445 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2446 			last = skb;
2447 			/* Now that we have two receive queues this
2448 			 * shouldn't happen.
2449 			 */
2450 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2451 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2452 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2453 				 flags))
2454 				break;
2455 
2456 			offset = *seq - TCP_SKB_CB(skb)->seq;
2457 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2458 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2459 				offset--;
2460 			}
2461 			if (offset < skb->len)
2462 				goto found_ok_skb;
2463 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2464 				goto found_fin_ok;
2465 			WARN(!(flags & MSG_PEEK),
2466 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2467 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2468 		}
2469 
2470 		/* Well, if we have backlog, try to process it now yet. */
2471 
2472 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2473 			break;
2474 
2475 		if (copied) {
2476 			if (!timeo ||
2477 			    sk->sk_err ||
2478 			    sk->sk_state == TCP_CLOSE ||
2479 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2480 			    signal_pending(current))
2481 				break;
2482 		} else {
2483 			if (sock_flag(sk, SOCK_DONE))
2484 				break;
2485 
2486 			if (sk->sk_err) {
2487 				copied = sock_error(sk);
2488 				break;
2489 			}
2490 
2491 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2492 				break;
2493 
2494 			if (sk->sk_state == TCP_CLOSE) {
2495 				/* This occurs when user tries to read
2496 				 * from never connected socket.
2497 				 */
2498 				copied = -ENOTCONN;
2499 				break;
2500 			}
2501 
2502 			if (!timeo) {
2503 				copied = -EAGAIN;
2504 				break;
2505 			}
2506 
2507 			if (signal_pending(current)) {
2508 				copied = sock_intr_errno(timeo);
2509 				break;
2510 			}
2511 		}
2512 
2513 		if (copied >= target) {
2514 			/* Do not sleep, just process backlog. */
2515 			__sk_flush_backlog(sk);
2516 		} else {
2517 			tcp_cleanup_rbuf(sk, copied);
2518 			sk_wait_data(sk, &timeo, last);
2519 		}
2520 
2521 		if ((flags & MSG_PEEK) &&
2522 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2523 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2524 					    current->comm,
2525 					    task_pid_nr(current));
2526 			peek_seq = tp->copied_seq;
2527 		}
2528 		continue;
2529 
2530 found_ok_skb:
2531 		/* Ok so how much can we use? */
2532 		used = skb->len - offset;
2533 		if (len < used)
2534 			used = len;
2535 
2536 		/* Do we have urgent data here? */
2537 		if (unlikely(tp->urg_data)) {
2538 			u32 urg_offset = tp->urg_seq - *seq;
2539 			if (urg_offset < used) {
2540 				if (!urg_offset) {
2541 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2542 						WRITE_ONCE(*seq, *seq + 1);
2543 						urg_hole++;
2544 						offset++;
2545 						used--;
2546 						if (!used)
2547 							goto skip_copy;
2548 					}
2549 				} else
2550 					used = urg_offset;
2551 			}
2552 		}
2553 
2554 		if (!(flags & MSG_TRUNC)) {
2555 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2556 			if (err) {
2557 				/* Exception. Bailout! */
2558 				if (!copied)
2559 					copied = -EFAULT;
2560 				break;
2561 			}
2562 		}
2563 
2564 		WRITE_ONCE(*seq, *seq + used);
2565 		copied += used;
2566 		len -= used;
2567 
2568 		tcp_rcv_space_adjust(sk);
2569 
2570 skip_copy:
2571 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2572 			WRITE_ONCE(tp->urg_data, 0);
2573 			tcp_fast_path_check(sk);
2574 		}
2575 
2576 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2577 			tcp_update_recv_tstamps(skb, tss);
2578 			*cmsg_flags |= TCP_CMSG_TS;
2579 		}
2580 
2581 		if (used + offset < skb->len)
2582 			continue;
2583 
2584 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2585 			goto found_fin_ok;
2586 		if (!(flags & MSG_PEEK))
2587 			tcp_eat_recv_skb(sk, skb);
2588 		continue;
2589 
2590 found_fin_ok:
2591 		/* Process the FIN. */
2592 		WRITE_ONCE(*seq, *seq + 1);
2593 		if (!(flags & MSG_PEEK))
2594 			tcp_eat_recv_skb(sk, skb);
2595 		break;
2596 	} while (len > 0);
2597 
2598 	/* According to UNIX98, msg_name/msg_namelen are ignored
2599 	 * on connected socket. I was just happy when found this 8) --ANK
2600 	 */
2601 
2602 	/* Clean up data we have read: This will do ACK frames. */
2603 	tcp_cleanup_rbuf(sk, copied);
2604 	return copied;
2605 
2606 out:
2607 	return err;
2608 
2609 recv_urg:
2610 	err = tcp_recv_urg(sk, msg, len, flags);
2611 	goto out;
2612 
2613 recv_sndq:
2614 	err = tcp_peek_sndq(sk, msg, len);
2615 	goto out;
2616 }
2617 
2618 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2619 		int *addr_len)
2620 {
2621 	int cmsg_flags = 0, ret;
2622 	struct scm_timestamping_internal tss;
2623 
2624 	if (unlikely(flags & MSG_ERRQUEUE))
2625 		return inet_recv_error(sk, msg, len, addr_len);
2626 
2627 	if (sk_can_busy_loop(sk) &&
2628 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2629 	    sk->sk_state == TCP_ESTABLISHED)
2630 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2631 
2632 	lock_sock(sk);
2633 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2634 	release_sock(sk);
2635 
2636 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2637 		if (cmsg_flags & TCP_CMSG_TS)
2638 			tcp_recv_timestamp(msg, sk, &tss);
2639 		if (msg->msg_get_inq) {
2640 			msg->msg_inq = tcp_inq_hint(sk);
2641 			if (cmsg_flags & TCP_CMSG_INQ)
2642 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2643 					 sizeof(msg->msg_inq), &msg->msg_inq);
2644 		}
2645 	}
2646 	return ret;
2647 }
2648 EXPORT_SYMBOL(tcp_recvmsg);
2649 
2650 void tcp_set_state(struct sock *sk, int state)
2651 {
2652 	int oldstate = sk->sk_state;
2653 
2654 	/* We defined a new enum for TCP states that are exported in BPF
2655 	 * so as not force the internal TCP states to be frozen. The
2656 	 * following checks will detect if an internal state value ever
2657 	 * differs from the BPF value. If this ever happens, then we will
2658 	 * need to remap the internal value to the BPF value before calling
2659 	 * tcp_call_bpf_2arg.
2660 	 */
2661 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2662 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2663 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2664 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2665 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2666 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2667 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2668 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2669 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2670 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2671 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2672 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2673 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2674 
2675 	/* bpf uapi header bpf.h defines an anonymous enum with values
2676 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2677 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2678 	 * But clang built vmlinux does not have this enum in DWARF
2679 	 * since clang removes the above code before generating IR/debuginfo.
2680 	 * Let us explicitly emit the type debuginfo to ensure the
2681 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2682 	 * regardless of which compiler is used.
2683 	 */
2684 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2685 
2686 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2687 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2688 
2689 	switch (state) {
2690 	case TCP_ESTABLISHED:
2691 		if (oldstate != TCP_ESTABLISHED)
2692 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2693 		break;
2694 
2695 	case TCP_CLOSE:
2696 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2697 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2698 
2699 		sk->sk_prot->unhash(sk);
2700 		if (inet_csk(sk)->icsk_bind_hash &&
2701 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2702 			inet_put_port(sk);
2703 		fallthrough;
2704 	default:
2705 		if (oldstate == TCP_ESTABLISHED)
2706 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2707 	}
2708 
2709 	/* Change state AFTER socket is unhashed to avoid closed
2710 	 * socket sitting in hash tables.
2711 	 */
2712 	inet_sk_state_store(sk, state);
2713 }
2714 EXPORT_SYMBOL_GPL(tcp_set_state);
2715 
2716 /*
2717  *	State processing on a close. This implements the state shift for
2718  *	sending our FIN frame. Note that we only send a FIN for some
2719  *	states. A shutdown() may have already sent the FIN, or we may be
2720  *	closed.
2721  */
2722 
2723 static const unsigned char new_state[16] = {
2724   /* current state:        new state:      action:	*/
2725   [0 /* (Invalid) */]	= TCP_CLOSE,
2726   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2727   [TCP_SYN_SENT]	= TCP_CLOSE,
2728   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2729   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2730   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2731   [TCP_TIME_WAIT]	= TCP_CLOSE,
2732   [TCP_CLOSE]		= TCP_CLOSE,
2733   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2734   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2735   [TCP_LISTEN]		= TCP_CLOSE,
2736   [TCP_CLOSING]		= TCP_CLOSING,
2737   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2738 };
2739 
2740 static int tcp_close_state(struct sock *sk)
2741 {
2742 	int next = (int)new_state[sk->sk_state];
2743 	int ns = next & TCP_STATE_MASK;
2744 
2745 	tcp_set_state(sk, ns);
2746 
2747 	return next & TCP_ACTION_FIN;
2748 }
2749 
2750 /*
2751  *	Shutdown the sending side of a connection. Much like close except
2752  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2753  */
2754 
2755 void tcp_shutdown(struct sock *sk, int how)
2756 {
2757 	/*	We need to grab some memory, and put together a FIN,
2758 	 *	and then put it into the queue to be sent.
2759 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2760 	 */
2761 	if (!(how & SEND_SHUTDOWN))
2762 		return;
2763 
2764 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2765 	if ((1 << sk->sk_state) &
2766 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2767 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2768 		/* Clear out any half completed packets.  FIN if needed. */
2769 		if (tcp_close_state(sk))
2770 			tcp_send_fin(sk);
2771 	}
2772 }
2773 EXPORT_SYMBOL(tcp_shutdown);
2774 
2775 int tcp_orphan_count_sum(void)
2776 {
2777 	int i, total = 0;
2778 
2779 	for_each_possible_cpu(i)
2780 		total += per_cpu(tcp_orphan_count, i);
2781 
2782 	return max(total, 0);
2783 }
2784 
2785 static int tcp_orphan_cache;
2786 static struct timer_list tcp_orphan_timer;
2787 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2788 
2789 static void tcp_orphan_update(struct timer_list *unused)
2790 {
2791 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2792 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2793 }
2794 
2795 static bool tcp_too_many_orphans(int shift)
2796 {
2797 	return READ_ONCE(tcp_orphan_cache) << shift >
2798 		READ_ONCE(sysctl_tcp_max_orphans);
2799 }
2800 
2801 bool tcp_check_oom(struct sock *sk, int shift)
2802 {
2803 	bool too_many_orphans, out_of_socket_memory;
2804 
2805 	too_many_orphans = tcp_too_many_orphans(shift);
2806 	out_of_socket_memory = tcp_out_of_memory(sk);
2807 
2808 	if (too_many_orphans)
2809 		net_info_ratelimited("too many orphaned sockets\n");
2810 	if (out_of_socket_memory)
2811 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2812 	return too_many_orphans || out_of_socket_memory;
2813 }
2814 
2815 void __tcp_close(struct sock *sk, long timeout)
2816 {
2817 	struct sk_buff *skb;
2818 	int data_was_unread = 0;
2819 	int state;
2820 
2821 	sk->sk_shutdown = SHUTDOWN_MASK;
2822 
2823 	if (sk->sk_state == TCP_LISTEN) {
2824 		tcp_set_state(sk, TCP_CLOSE);
2825 
2826 		/* Special case. */
2827 		inet_csk_listen_stop(sk);
2828 
2829 		goto adjudge_to_death;
2830 	}
2831 
2832 	/*  We need to flush the recv. buffs.  We do this only on the
2833 	 *  descriptor close, not protocol-sourced closes, because the
2834 	 *  reader process may not have drained the data yet!
2835 	 */
2836 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2837 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2838 
2839 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2840 			len--;
2841 		data_was_unread += len;
2842 		__kfree_skb(skb);
2843 	}
2844 
2845 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2846 	if (sk->sk_state == TCP_CLOSE)
2847 		goto adjudge_to_death;
2848 
2849 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2850 	 * data was lost. To witness the awful effects of the old behavior of
2851 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2852 	 * GET in an FTP client, suspend the process, wait for the client to
2853 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2854 	 * Note: timeout is always zero in such a case.
2855 	 */
2856 	if (unlikely(tcp_sk(sk)->repair)) {
2857 		sk->sk_prot->disconnect(sk, 0);
2858 	} else if (data_was_unread) {
2859 		/* Unread data was tossed, zap the connection. */
2860 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2861 		tcp_set_state(sk, TCP_CLOSE);
2862 		tcp_send_active_reset(sk, sk->sk_allocation);
2863 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2864 		/* Check zero linger _after_ checking for unread data. */
2865 		sk->sk_prot->disconnect(sk, 0);
2866 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2867 	} else if (tcp_close_state(sk)) {
2868 		/* We FIN if the application ate all the data before
2869 		 * zapping the connection.
2870 		 */
2871 
2872 		/* RED-PEN. Formally speaking, we have broken TCP state
2873 		 * machine. State transitions:
2874 		 *
2875 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2876 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2877 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2878 		 *
2879 		 * are legal only when FIN has been sent (i.e. in window),
2880 		 * rather than queued out of window. Purists blame.
2881 		 *
2882 		 * F.e. "RFC state" is ESTABLISHED,
2883 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2884 		 *
2885 		 * The visible declinations are that sometimes
2886 		 * we enter time-wait state, when it is not required really
2887 		 * (harmless), do not send active resets, when they are
2888 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2889 		 * they look as CLOSING or LAST_ACK for Linux)
2890 		 * Probably, I missed some more holelets.
2891 		 * 						--ANK
2892 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2893 		 * in a single packet! (May consider it later but will
2894 		 * probably need API support or TCP_CORK SYN-ACK until
2895 		 * data is written and socket is closed.)
2896 		 */
2897 		tcp_send_fin(sk);
2898 	}
2899 
2900 	sk_stream_wait_close(sk, timeout);
2901 
2902 adjudge_to_death:
2903 	state = sk->sk_state;
2904 	sock_hold(sk);
2905 	sock_orphan(sk);
2906 
2907 	local_bh_disable();
2908 	bh_lock_sock(sk);
2909 	/* remove backlog if any, without releasing ownership. */
2910 	__release_sock(sk);
2911 
2912 	this_cpu_inc(tcp_orphan_count);
2913 
2914 	/* Have we already been destroyed by a softirq or backlog? */
2915 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2916 		goto out;
2917 
2918 	/*	This is a (useful) BSD violating of the RFC. There is a
2919 	 *	problem with TCP as specified in that the other end could
2920 	 *	keep a socket open forever with no application left this end.
2921 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2922 	 *	our end. If they send after that then tough - BUT: long enough
2923 	 *	that we won't make the old 4*rto = almost no time - whoops
2924 	 *	reset mistake.
2925 	 *
2926 	 *	Nope, it was not mistake. It is really desired behaviour
2927 	 *	f.e. on http servers, when such sockets are useless, but
2928 	 *	consume significant resources. Let's do it with special
2929 	 *	linger2	option.					--ANK
2930 	 */
2931 
2932 	if (sk->sk_state == TCP_FIN_WAIT2) {
2933 		struct tcp_sock *tp = tcp_sk(sk);
2934 		if (tp->linger2 < 0) {
2935 			tcp_set_state(sk, TCP_CLOSE);
2936 			tcp_send_active_reset(sk, GFP_ATOMIC);
2937 			__NET_INC_STATS(sock_net(sk),
2938 					LINUX_MIB_TCPABORTONLINGER);
2939 		} else {
2940 			const int tmo = tcp_fin_time(sk);
2941 
2942 			if (tmo > TCP_TIMEWAIT_LEN) {
2943 				inet_csk_reset_keepalive_timer(sk,
2944 						tmo - TCP_TIMEWAIT_LEN);
2945 			} else {
2946 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2947 				goto out;
2948 			}
2949 		}
2950 	}
2951 	if (sk->sk_state != TCP_CLOSE) {
2952 		if (tcp_check_oom(sk, 0)) {
2953 			tcp_set_state(sk, TCP_CLOSE);
2954 			tcp_send_active_reset(sk, GFP_ATOMIC);
2955 			__NET_INC_STATS(sock_net(sk),
2956 					LINUX_MIB_TCPABORTONMEMORY);
2957 		} else if (!check_net(sock_net(sk))) {
2958 			/* Not possible to send reset; just close */
2959 			tcp_set_state(sk, TCP_CLOSE);
2960 		}
2961 	}
2962 
2963 	if (sk->sk_state == TCP_CLOSE) {
2964 		struct request_sock *req;
2965 
2966 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2967 						lockdep_sock_is_held(sk));
2968 		/* We could get here with a non-NULL req if the socket is
2969 		 * aborted (e.g., closed with unread data) before 3WHS
2970 		 * finishes.
2971 		 */
2972 		if (req)
2973 			reqsk_fastopen_remove(sk, req, false);
2974 		inet_csk_destroy_sock(sk);
2975 	}
2976 	/* Otherwise, socket is reprieved until protocol close. */
2977 
2978 out:
2979 	bh_unlock_sock(sk);
2980 	local_bh_enable();
2981 }
2982 
2983 void tcp_close(struct sock *sk, long timeout)
2984 {
2985 	lock_sock(sk);
2986 	__tcp_close(sk, timeout);
2987 	release_sock(sk);
2988 	sock_put(sk);
2989 }
2990 EXPORT_SYMBOL(tcp_close);
2991 
2992 /* These states need RST on ABORT according to RFC793 */
2993 
2994 static inline bool tcp_need_reset(int state)
2995 {
2996 	return (1 << state) &
2997 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2998 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2999 }
3000 
3001 static void tcp_rtx_queue_purge(struct sock *sk)
3002 {
3003 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3004 
3005 	tcp_sk(sk)->highest_sack = NULL;
3006 	while (p) {
3007 		struct sk_buff *skb = rb_to_skb(p);
3008 
3009 		p = rb_next(p);
3010 		/* Since we are deleting whole queue, no need to
3011 		 * list_del(&skb->tcp_tsorted_anchor)
3012 		 */
3013 		tcp_rtx_queue_unlink(skb, sk);
3014 		tcp_wmem_free_skb(sk, skb);
3015 	}
3016 }
3017 
3018 void tcp_write_queue_purge(struct sock *sk)
3019 {
3020 	struct sk_buff *skb;
3021 
3022 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3023 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3024 		tcp_skb_tsorted_anchor_cleanup(skb);
3025 		tcp_wmem_free_skb(sk, skb);
3026 	}
3027 	tcp_rtx_queue_purge(sk);
3028 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3029 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3030 	tcp_sk(sk)->packets_out = 0;
3031 	inet_csk(sk)->icsk_backoff = 0;
3032 }
3033 
3034 int tcp_disconnect(struct sock *sk, int flags)
3035 {
3036 	struct inet_sock *inet = inet_sk(sk);
3037 	struct inet_connection_sock *icsk = inet_csk(sk);
3038 	struct tcp_sock *tp = tcp_sk(sk);
3039 	int old_state = sk->sk_state;
3040 	u32 seq;
3041 
3042 	if (old_state != TCP_CLOSE)
3043 		tcp_set_state(sk, TCP_CLOSE);
3044 
3045 	/* ABORT function of RFC793 */
3046 	if (old_state == TCP_LISTEN) {
3047 		inet_csk_listen_stop(sk);
3048 	} else if (unlikely(tp->repair)) {
3049 		sk->sk_err = ECONNABORTED;
3050 	} else if (tcp_need_reset(old_state) ||
3051 		   (tp->snd_nxt != tp->write_seq &&
3052 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3053 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3054 		 * states
3055 		 */
3056 		tcp_send_active_reset(sk, gfp_any());
3057 		sk->sk_err = ECONNRESET;
3058 	} else if (old_state == TCP_SYN_SENT)
3059 		sk->sk_err = ECONNRESET;
3060 
3061 	tcp_clear_xmit_timers(sk);
3062 	__skb_queue_purge(&sk->sk_receive_queue);
3063 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3064 	WRITE_ONCE(tp->urg_data, 0);
3065 	tcp_write_queue_purge(sk);
3066 	tcp_fastopen_active_disable_ofo_check(sk);
3067 	skb_rbtree_purge(&tp->out_of_order_queue);
3068 
3069 	inet->inet_dport = 0;
3070 
3071 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3072 		inet_reset_saddr(sk);
3073 
3074 	sk->sk_shutdown = 0;
3075 	sock_reset_flag(sk, SOCK_DONE);
3076 	tp->srtt_us = 0;
3077 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3078 	tp->rcv_rtt_last_tsecr = 0;
3079 
3080 	seq = tp->write_seq + tp->max_window + 2;
3081 	if (!seq)
3082 		seq = 1;
3083 	WRITE_ONCE(tp->write_seq, seq);
3084 
3085 	icsk->icsk_backoff = 0;
3086 	icsk->icsk_probes_out = 0;
3087 	icsk->icsk_probes_tstamp = 0;
3088 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3089 	icsk->icsk_rto_min = TCP_RTO_MIN;
3090 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3091 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3092 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3093 	tp->snd_cwnd_cnt = 0;
3094 	tp->window_clamp = 0;
3095 	tp->delivered = 0;
3096 	tp->delivered_ce = 0;
3097 	if (icsk->icsk_ca_ops->release)
3098 		icsk->icsk_ca_ops->release(sk);
3099 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3100 	icsk->icsk_ca_initialized = 0;
3101 	tcp_set_ca_state(sk, TCP_CA_Open);
3102 	tp->is_sack_reneg = 0;
3103 	tcp_clear_retrans(tp);
3104 	tp->total_retrans = 0;
3105 	inet_csk_delack_init(sk);
3106 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3107 	 * issue in __tcp_select_window()
3108 	 */
3109 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3110 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3111 	__sk_dst_reset(sk);
3112 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3113 	tcp_saved_syn_free(tp);
3114 	tp->compressed_ack = 0;
3115 	tp->segs_in = 0;
3116 	tp->segs_out = 0;
3117 	tp->bytes_sent = 0;
3118 	tp->bytes_acked = 0;
3119 	tp->bytes_received = 0;
3120 	tp->bytes_retrans = 0;
3121 	tp->data_segs_in = 0;
3122 	tp->data_segs_out = 0;
3123 	tp->duplicate_sack[0].start_seq = 0;
3124 	tp->duplicate_sack[0].end_seq = 0;
3125 	tp->dsack_dups = 0;
3126 	tp->reord_seen = 0;
3127 	tp->retrans_out = 0;
3128 	tp->sacked_out = 0;
3129 	tp->tlp_high_seq = 0;
3130 	tp->last_oow_ack_time = 0;
3131 	/* There's a bubble in the pipe until at least the first ACK. */
3132 	tp->app_limited = ~0U;
3133 	tp->rack.mstamp = 0;
3134 	tp->rack.advanced = 0;
3135 	tp->rack.reo_wnd_steps = 1;
3136 	tp->rack.last_delivered = 0;
3137 	tp->rack.reo_wnd_persist = 0;
3138 	tp->rack.dsack_seen = 0;
3139 	tp->syn_data_acked = 0;
3140 	tp->rx_opt.saw_tstamp = 0;
3141 	tp->rx_opt.dsack = 0;
3142 	tp->rx_opt.num_sacks = 0;
3143 	tp->rcv_ooopack = 0;
3144 
3145 
3146 	/* Clean up fastopen related fields */
3147 	tcp_free_fastopen_req(tp);
3148 	inet->defer_connect = 0;
3149 	tp->fastopen_client_fail = 0;
3150 
3151 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3152 
3153 	if (sk->sk_frag.page) {
3154 		put_page(sk->sk_frag.page);
3155 		sk->sk_frag.page = NULL;
3156 		sk->sk_frag.offset = 0;
3157 	}
3158 	sk_error_report(sk);
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL(tcp_disconnect);
3162 
3163 static inline bool tcp_can_repair_sock(const struct sock *sk)
3164 {
3165 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3166 		(sk->sk_state != TCP_LISTEN);
3167 }
3168 
3169 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3170 {
3171 	struct tcp_repair_window opt;
3172 
3173 	if (!tp->repair)
3174 		return -EPERM;
3175 
3176 	if (len != sizeof(opt))
3177 		return -EINVAL;
3178 
3179 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3180 		return -EFAULT;
3181 
3182 	if (opt.max_window < opt.snd_wnd)
3183 		return -EINVAL;
3184 
3185 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3186 		return -EINVAL;
3187 
3188 	if (after(opt.rcv_wup, tp->rcv_nxt))
3189 		return -EINVAL;
3190 
3191 	tp->snd_wl1	= opt.snd_wl1;
3192 	tp->snd_wnd	= opt.snd_wnd;
3193 	tp->max_window	= opt.max_window;
3194 
3195 	tp->rcv_wnd	= opt.rcv_wnd;
3196 	tp->rcv_wup	= opt.rcv_wup;
3197 
3198 	return 0;
3199 }
3200 
3201 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3202 		unsigned int len)
3203 {
3204 	struct tcp_sock *tp = tcp_sk(sk);
3205 	struct tcp_repair_opt opt;
3206 	size_t offset = 0;
3207 
3208 	while (len >= sizeof(opt)) {
3209 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3210 			return -EFAULT;
3211 
3212 		offset += sizeof(opt);
3213 		len -= sizeof(opt);
3214 
3215 		switch (opt.opt_code) {
3216 		case TCPOPT_MSS:
3217 			tp->rx_opt.mss_clamp = opt.opt_val;
3218 			tcp_mtup_init(sk);
3219 			break;
3220 		case TCPOPT_WINDOW:
3221 			{
3222 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3223 				u16 rcv_wscale = opt.opt_val >> 16;
3224 
3225 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3226 					return -EFBIG;
3227 
3228 				tp->rx_opt.snd_wscale = snd_wscale;
3229 				tp->rx_opt.rcv_wscale = rcv_wscale;
3230 				tp->rx_opt.wscale_ok = 1;
3231 			}
3232 			break;
3233 		case TCPOPT_SACK_PERM:
3234 			if (opt.opt_val != 0)
3235 				return -EINVAL;
3236 
3237 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3238 			break;
3239 		case TCPOPT_TIMESTAMP:
3240 			if (opt.opt_val != 0)
3241 				return -EINVAL;
3242 
3243 			tp->rx_opt.tstamp_ok = 1;
3244 			break;
3245 		}
3246 	}
3247 
3248 	return 0;
3249 }
3250 
3251 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3252 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3253 
3254 static void tcp_enable_tx_delay(void)
3255 {
3256 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3257 		static int __tcp_tx_delay_enabled = 0;
3258 
3259 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3260 			static_branch_enable(&tcp_tx_delay_enabled);
3261 			pr_info("TCP_TX_DELAY enabled\n");
3262 		}
3263 	}
3264 }
3265 
3266 /* When set indicates to always queue non-full frames.  Later the user clears
3267  * this option and we transmit any pending partial frames in the queue.  This is
3268  * meant to be used alongside sendfile() to get properly filled frames when the
3269  * user (for example) must write out headers with a write() call first and then
3270  * use sendfile to send out the data parts.
3271  *
3272  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3273  * TCP_NODELAY.
3274  */
3275 void __tcp_sock_set_cork(struct sock *sk, bool on)
3276 {
3277 	struct tcp_sock *tp = tcp_sk(sk);
3278 
3279 	if (on) {
3280 		tp->nonagle |= TCP_NAGLE_CORK;
3281 	} else {
3282 		tp->nonagle &= ~TCP_NAGLE_CORK;
3283 		if (tp->nonagle & TCP_NAGLE_OFF)
3284 			tp->nonagle |= TCP_NAGLE_PUSH;
3285 		tcp_push_pending_frames(sk);
3286 	}
3287 }
3288 
3289 void tcp_sock_set_cork(struct sock *sk, bool on)
3290 {
3291 	lock_sock(sk);
3292 	__tcp_sock_set_cork(sk, on);
3293 	release_sock(sk);
3294 }
3295 EXPORT_SYMBOL(tcp_sock_set_cork);
3296 
3297 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3298  * remembered, but it is not activated until cork is cleared.
3299  *
3300  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3301  * even TCP_CORK for currently queued segments.
3302  */
3303 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3304 {
3305 	if (on) {
3306 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3307 		tcp_push_pending_frames(sk);
3308 	} else {
3309 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3310 	}
3311 }
3312 
3313 void tcp_sock_set_nodelay(struct sock *sk)
3314 {
3315 	lock_sock(sk);
3316 	__tcp_sock_set_nodelay(sk, true);
3317 	release_sock(sk);
3318 }
3319 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3320 
3321 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3322 {
3323 	if (!val) {
3324 		inet_csk_enter_pingpong_mode(sk);
3325 		return;
3326 	}
3327 
3328 	inet_csk_exit_pingpong_mode(sk);
3329 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3330 	    inet_csk_ack_scheduled(sk)) {
3331 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3332 		tcp_cleanup_rbuf(sk, 1);
3333 		if (!(val & 1))
3334 			inet_csk_enter_pingpong_mode(sk);
3335 	}
3336 }
3337 
3338 void tcp_sock_set_quickack(struct sock *sk, int val)
3339 {
3340 	lock_sock(sk);
3341 	__tcp_sock_set_quickack(sk, val);
3342 	release_sock(sk);
3343 }
3344 EXPORT_SYMBOL(tcp_sock_set_quickack);
3345 
3346 int tcp_sock_set_syncnt(struct sock *sk, int val)
3347 {
3348 	if (val < 1 || val > MAX_TCP_SYNCNT)
3349 		return -EINVAL;
3350 
3351 	lock_sock(sk);
3352 	inet_csk(sk)->icsk_syn_retries = val;
3353 	release_sock(sk);
3354 	return 0;
3355 }
3356 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3357 
3358 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3359 {
3360 	lock_sock(sk);
3361 	inet_csk(sk)->icsk_user_timeout = val;
3362 	release_sock(sk);
3363 }
3364 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3365 
3366 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3367 {
3368 	struct tcp_sock *tp = tcp_sk(sk);
3369 
3370 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3371 		return -EINVAL;
3372 
3373 	tp->keepalive_time = val * HZ;
3374 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3375 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3376 		u32 elapsed = keepalive_time_elapsed(tp);
3377 
3378 		if (tp->keepalive_time > elapsed)
3379 			elapsed = tp->keepalive_time - elapsed;
3380 		else
3381 			elapsed = 0;
3382 		inet_csk_reset_keepalive_timer(sk, elapsed);
3383 	}
3384 
3385 	return 0;
3386 }
3387 
3388 int tcp_sock_set_keepidle(struct sock *sk, int val)
3389 {
3390 	int err;
3391 
3392 	lock_sock(sk);
3393 	err = tcp_sock_set_keepidle_locked(sk, val);
3394 	release_sock(sk);
3395 	return err;
3396 }
3397 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3398 
3399 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3400 {
3401 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3402 		return -EINVAL;
3403 
3404 	lock_sock(sk);
3405 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3406 	release_sock(sk);
3407 	return 0;
3408 }
3409 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3410 
3411 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3412 {
3413 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3414 		return -EINVAL;
3415 
3416 	lock_sock(sk);
3417 	tcp_sk(sk)->keepalive_probes = val;
3418 	release_sock(sk);
3419 	return 0;
3420 }
3421 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3422 
3423 int tcp_set_window_clamp(struct sock *sk, int val)
3424 {
3425 	struct tcp_sock *tp = tcp_sk(sk);
3426 
3427 	if (!val) {
3428 		if (sk->sk_state != TCP_CLOSE)
3429 			return -EINVAL;
3430 		tp->window_clamp = 0;
3431 	} else {
3432 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3433 			SOCK_MIN_RCVBUF / 2 : val;
3434 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3435 	}
3436 	return 0;
3437 }
3438 
3439 /*
3440  *	Socket option code for TCP.
3441  */
3442 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3443 		sockptr_t optval, unsigned int optlen)
3444 {
3445 	struct tcp_sock *tp = tcp_sk(sk);
3446 	struct inet_connection_sock *icsk = inet_csk(sk);
3447 	struct net *net = sock_net(sk);
3448 	int val;
3449 	int err = 0;
3450 
3451 	/* These are data/string values, all the others are ints */
3452 	switch (optname) {
3453 	case TCP_CONGESTION: {
3454 		char name[TCP_CA_NAME_MAX];
3455 
3456 		if (optlen < 1)
3457 			return -EINVAL;
3458 
3459 		val = strncpy_from_sockptr(name, optval,
3460 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3461 		if (val < 0)
3462 			return -EFAULT;
3463 		name[val] = 0;
3464 
3465 		lock_sock(sk);
3466 		err = tcp_set_congestion_control(sk, name, true,
3467 						 ns_capable(sock_net(sk)->user_ns,
3468 							    CAP_NET_ADMIN));
3469 		release_sock(sk);
3470 		return err;
3471 	}
3472 	case TCP_ULP: {
3473 		char name[TCP_ULP_NAME_MAX];
3474 
3475 		if (optlen < 1)
3476 			return -EINVAL;
3477 
3478 		val = strncpy_from_sockptr(name, optval,
3479 					min_t(long, TCP_ULP_NAME_MAX - 1,
3480 					      optlen));
3481 		if (val < 0)
3482 			return -EFAULT;
3483 		name[val] = 0;
3484 
3485 		lock_sock(sk);
3486 		err = tcp_set_ulp(sk, name);
3487 		release_sock(sk);
3488 		return err;
3489 	}
3490 	case TCP_FASTOPEN_KEY: {
3491 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3492 		__u8 *backup_key = NULL;
3493 
3494 		/* Allow a backup key as well to facilitate key rotation
3495 		 * First key is the active one.
3496 		 */
3497 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3498 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3499 			return -EINVAL;
3500 
3501 		if (copy_from_sockptr(key, optval, optlen))
3502 			return -EFAULT;
3503 
3504 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3505 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3506 
3507 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3508 	}
3509 	default:
3510 		/* fallthru */
3511 		break;
3512 	}
3513 
3514 	if (optlen < sizeof(int))
3515 		return -EINVAL;
3516 
3517 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3518 		return -EFAULT;
3519 
3520 	lock_sock(sk);
3521 
3522 	switch (optname) {
3523 	case TCP_MAXSEG:
3524 		/* Values greater than interface MTU won't take effect. However
3525 		 * at the point when this call is done we typically don't yet
3526 		 * know which interface is going to be used
3527 		 */
3528 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3529 			err = -EINVAL;
3530 			break;
3531 		}
3532 		tp->rx_opt.user_mss = val;
3533 		break;
3534 
3535 	case TCP_NODELAY:
3536 		__tcp_sock_set_nodelay(sk, val);
3537 		break;
3538 
3539 	case TCP_THIN_LINEAR_TIMEOUTS:
3540 		if (val < 0 || val > 1)
3541 			err = -EINVAL;
3542 		else
3543 			tp->thin_lto = val;
3544 		break;
3545 
3546 	case TCP_THIN_DUPACK:
3547 		if (val < 0 || val > 1)
3548 			err = -EINVAL;
3549 		break;
3550 
3551 	case TCP_REPAIR:
3552 		if (!tcp_can_repair_sock(sk))
3553 			err = -EPERM;
3554 		else if (val == TCP_REPAIR_ON) {
3555 			tp->repair = 1;
3556 			sk->sk_reuse = SK_FORCE_REUSE;
3557 			tp->repair_queue = TCP_NO_QUEUE;
3558 		} else if (val == TCP_REPAIR_OFF) {
3559 			tp->repair = 0;
3560 			sk->sk_reuse = SK_NO_REUSE;
3561 			tcp_send_window_probe(sk);
3562 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3563 			tp->repair = 0;
3564 			sk->sk_reuse = SK_NO_REUSE;
3565 		} else
3566 			err = -EINVAL;
3567 
3568 		break;
3569 
3570 	case TCP_REPAIR_QUEUE:
3571 		if (!tp->repair)
3572 			err = -EPERM;
3573 		else if ((unsigned int)val < TCP_QUEUES_NR)
3574 			tp->repair_queue = val;
3575 		else
3576 			err = -EINVAL;
3577 		break;
3578 
3579 	case TCP_QUEUE_SEQ:
3580 		if (sk->sk_state != TCP_CLOSE) {
3581 			err = -EPERM;
3582 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3583 			if (!tcp_rtx_queue_empty(sk))
3584 				err = -EPERM;
3585 			else
3586 				WRITE_ONCE(tp->write_seq, val);
3587 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3588 			if (tp->rcv_nxt != tp->copied_seq) {
3589 				err = -EPERM;
3590 			} else {
3591 				WRITE_ONCE(tp->rcv_nxt, val);
3592 				WRITE_ONCE(tp->copied_seq, val);
3593 			}
3594 		} else {
3595 			err = -EINVAL;
3596 		}
3597 		break;
3598 
3599 	case TCP_REPAIR_OPTIONS:
3600 		if (!tp->repair)
3601 			err = -EINVAL;
3602 		else if (sk->sk_state == TCP_ESTABLISHED)
3603 			err = tcp_repair_options_est(sk, optval, optlen);
3604 		else
3605 			err = -EPERM;
3606 		break;
3607 
3608 	case TCP_CORK:
3609 		__tcp_sock_set_cork(sk, val);
3610 		break;
3611 
3612 	case TCP_KEEPIDLE:
3613 		err = tcp_sock_set_keepidle_locked(sk, val);
3614 		break;
3615 	case TCP_KEEPINTVL:
3616 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3617 			err = -EINVAL;
3618 		else
3619 			tp->keepalive_intvl = val * HZ;
3620 		break;
3621 	case TCP_KEEPCNT:
3622 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3623 			err = -EINVAL;
3624 		else
3625 			tp->keepalive_probes = val;
3626 		break;
3627 	case TCP_SYNCNT:
3628 		if (val < 1 || val > MAX_TCP_SYNCNT)
3629 			err = -EINVAL;
3630 		else
3631 			icsk->icsk_syn_retries = val;
3632 		break;
3633 
3634 	case TCP_SAVE_SYN:
3635 		/* 0: disable, 1: enable, 2: start from ether_header */
3636 		if (val < 0 || val > 2)
3637 			err = -EINVAL;
3638 		else
3639 			tp->save_syn = val;
3640 		break;
3641 
3642 	case TCP_LINGER2:
3643 		if (val < 0)
3644 			tp->linger2 = -1;
3645 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3646 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3647 		else
3648 			tp->linger2 = val * HZ;
3649 		break;
3650 
3651 	case TCP_DEFER_ACCEPT:
3652 		/* Translate value in seconds to number of retransmits */
3653 		icsk->icsk_accept_queue.rskq_defer_accept =
3654 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3655 					TCP_RTO_MAX / HZ);
3656 		break;
3657 
3658 	case TCP_WINDOW_CLAMP:
3659 		err = tcp_set_window_clamp(sk, val);
3660 		break;
3661 
3662 	case TCP_QUICKACK:
3663 		__tcp_sock_set_quickack(sk, val);
3664 		break;
3665 
3666 #ifdef CONFIG_TCP_MD5SIG
3667 	case TCP_MD5SIG:
3668 	case TCP_MD5SIG_EXT:
3669 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3670 		break;
3671 #endif
3672 	case TCP_USER_TIMEOUT:
3673 		/* Cap the max time in ms TCP will retry or probe the window
3674 		 * before giving up and aborting (ETIMEDOUT) a connection.
3675 		 */
3676 		if (val < 0)
3677 			err = -EINVAL;
3678 		else
3679 			icsk->icsk_user_timeout = val;
3680 		break;
3681 
3682 	case TCP_FASTOPEN:
3683 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3684 		    TCPF_LISTEN))) {
3685 			tcp_fastopen_init_key_once(net);
3686 
3687 			fastopen_queue_tune(sk, val);
3688 		} else {
3689 			err = -EINVAL;
3690 		}
3691 		break;
3692 	case TCP_FASTOPEN_CONNECT:
3693 		if (val > 1 || val < 0) {
3694 			err = -EINVAL;
3695 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3696 			   TFO_CLIENT_ENABLE) {
3697 			if (sk->sk_state == TCP_CLOSE)
3698 				tp->fastopen_connect = val;
3699 			else
3700 				err = -EINVAL;
3701 		} else {
3702 			err = -EOPNOTSUPP;
3703 		}
3704 		break;
3705 	case TCP_FASTOPEN_NO_COOKIE:
3706 		if (val > 1 || val < 0)
3707 			err = -EINVAL;
3708 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3709 			err = -EINVAL;
3710 		else
3711 			tp->fastopen_no_cookie = val;
3712 		break;
3713 	case TCP_TIMESTAMP:
3714 		if (!tp->repair)
3715 			err = -EPERM;
3716 		else
3717 			tp->tsoffset = val - tcp_time_stamp_raw();
3718 		break;
3719 	case TCP_REPAIR_WINDOW:
3720 		err = tcp_repair_set_window(tp, optval, optlen);
3721 		break;
3722 	case TCP_NOTSENT_LOWAT:
3723 		tp->notsent_lowat = val;
3724 		sk->sk_write_space(sk);
3725 		break;
3726 	case TCP_INQ:
3727 		if (val > 1 || val < 0)
3728 			err = -EINVAL;
3729 		else
3730 			tp->recvmsg_inq = val;
3731 		break;
3732 	case TCP_TX_DELAY:
3733 		if (val)
3734 			tcp_enable_tx_delay();
3735 		tp->tcp_tx_delay = val;
3736 		break;
3737 	default:
3738 		err = -ENOPROTOOPT;
3739 		break;
3740 	}
3741 
3742 	release_sock(sk);
3743 	return err;
3744 }
3745 
3746 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3747 		   unsigned int optlen)
3748 {
3749 	const struct inet_connection_sock *icsk = inet_csk(sk);
3750 
3751 	if (level != SOL_TCP)
3752 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3753 						     optval, optlen);
3754 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3755 }
3756 EXPORT_SYMBOL(tcp_setsockopt);
3757 
3758 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3759 				      struct tcp_info *info)
3760 {
3761 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3762 	enum tcp_chrono i;
3763 
3764 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3765 		stats[i] = tp->chrono_stat[i - 1];
3766 		if (i == tp->chrono_type)
3767 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3768 		stats[i] *= USEC_PER_SEC / HZ;
3769 		total += stats[i];
3770 	}
3771 
3772 	info->tcpi_busy_time = total;
3773 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3774 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3775 }
3776 
3777 /* Return information about state of tcp endpoint in API format. */
3778 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3779 {
3780 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3781 	const struct inet_connection_sock *icsk = inet_csk(sk);
3782 	unsigned long rate;
3783 	u32 now;
3784 	u64 rate64;
3785 	bool slow;
3786 
3787 	memset(info, 0, sizeof(*info));
3788 	if (sk->sk_type != SOCK_STREAM)
3789 		return;
3790 
3791 	info->tcpi_state = inet_sk_state_load(sk);
3792 
3793 	/* Report meaningful fields for all TCP states, including listeners */
3794 	rate = READ_ONCE(sk->sk_pacing_rate);
3795 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3796 	info->tcpi_pacing_rate = rate64;
3797 
3798 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3799 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3800 	info->tcpi_max_pacing_rate = rate64;
3801 
3802 	info->tcpi_reordering = tp->reordering;
3803 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3804 
3805 	if (info->tcpi_state == TCP_LISTEN) {
3806 		/* listeners aliased fields :
3807 		 * tcpi_unacked -> Number of children ready for accept()
3808 		 * tcpi_sacked  -> max backlog
3809 		 */
3810 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3811 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3812 		return;
3813 	}
3814 
3815 	slow = lock_sock_fast(sk);
3816 
3817 	info->tcpi_ca_state = icsk->icsk_ca_state;
3818 	info->tcpi_retransmits = icsk->icsk_retransmits;
3819 	info->tcpi_probes = icsk->icsk_probes_out;
3820 	info->tcpi_backoff = icsk->icsk_backoff;
3821 
3822 	if (tp->rx_opt.tstamp_ok)
3823 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3824 	if (tcp_is_sack(tp))
3825 		info->tcpi_options |= TCPI_OPT_SACK;
3826 	if (tp->rx_opt.wscale_ok) {
3827 		info->tcpi_options |= TCPI_OPT_WSCALE;
3828 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3829 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3830 	}
3831 
3832 	if (tp->ecn_flags & TCP_ECN_OK)
3833 		info->tcpi_options |= TCPI_OPT_ECN;
3834 	if (tp->ecn_flags & TCP_ECN_SEEN)
3835 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3836 	if (tp->syn_data_acked)
3837 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3838 
3839 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3840 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3841 	info->tcpi_snd_mss = tp->mss_cache;
3842 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3843 
3844 	info->tcpi_unacked = tp->packets_out;
3845 	info->tcpi_sacked = tp->sacked_out;
3846 
3847 	info->tcpi_lost = tp->lost_out;
3848 	info->tcpi_retrans = tp->retrans_out;
3849 
3850 	now = tcp_jiffies32;
3851 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3852 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3853 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3854 
3855 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3856 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3857 	info->tcpi_rtt = tp->srtt_us >> 3;
3858 	info->tcpi_rttvar = tp->mdev_us >> 2;
3859 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3860 	info->tcpi_advmss = tp->advmss;
3861 
3862 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3863 	info->tcpi_rcv_space = tp->rcvq_space.space;
3864 
3865 	info->tcpi_total_retrans = tp->total_retrans;
3866 
3867 	info->tcpi_bytes_acked = tp->bytes_acked;
3868 	info->tcpi_bytes_received = tp->bytes_received;
3869 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3870 	tcp_get_info_chrono_stats(tp, info);
3871 
3872 	info->tcpi_segs_out = tp->segs_out;
3873 
3874 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3875 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3876 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3877 
3878 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3879 	info->tcpi_data_segs_out = tp->data_segs_out;
3880 
3881 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3882 	rate64 = tcp_compute_delivery_rate(tp);
3883 	if (rate64)
3884 		info->tcpi_delivery_rate = rate64;
3885 	info->tcpi_delivered = tp->delivered;
3886 	info->tcpi_delivered_ce = tp->delivered_ce;
3887 	info->tcpi_bytes_sent = tp->bytes_sent;
3888 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3889 	info->tcpi_dsack_dups = tp->dsack_dups;
3890 	info->tcpi_reord_seen = tp->reord_seen;
3891 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3892 	info->tcpi_snd_wnd = tp->snd_wnd;
3893 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3894 	unlock_sock_fast(sk, slow);
3895 }
3896 EXPORT_SYMBOL_GPL(tcp_get_info);
3897 
3898 static size_t tcp_opt_stats_get_size(void)
3899 {
3900 	return
3901 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3902 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3903 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3904 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3905 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3906 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3907 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3908 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3909 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3910 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3911 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3912 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3913 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3914 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3915 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3916 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3917 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3918 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3919 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3920 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3921 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3922 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3923 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3924 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3925 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3926 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3927 		0;
3928 }
3929 
3930 /* Returns TTL or hop limit of an incoming packet from skb. */
3931 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3932 {
3933 	if (skb->protocol == htons(ETH_P_IP))
3934 		return ip_hdr(skb)->ttl;
3935 	else if (skb->protocol == htons(ETH_P_IPV6))
3936 		return ipv6_hdr(skb)->hop_limit;
3937 	else
3938 		return 0;
3939 }
3940 
3941 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3942 					       const struct sk_buff *orig_skb,
3943 					       const struct sk_buff *ack_skb)
3944 {
3945 	const struct tcp_sock *tp = tcp_sk(sk);
3946 	struct sk_buff *stats;
3947 	struct tcp_info info;
3948 	unsigned long rate;
3949 	u64 rate64;
3950 
3951 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3952 	if (!stats)
3953 		return NULL;
3954 
3955 	tcp_get_info_chrono_stats(tp, &info);
3956 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3957 			  info.tcpi_busy_time, TCP_NLA_PAD);
3958 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3959 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3960 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3961 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3962 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3963 			  tp->data_segs_out, TCP_NLA_PAD);
3964 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3965 			  tp->total_retrans, TCP_NLA_PAD);
3966 
3967 	rate = READ_ONCE(sk->sk_pacing_rate);
3968 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3969 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3970 
3971 	rate64 = tcp_compute_delivery_rate(tp);
3972 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3973 
3974 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3975 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3976 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3977 
3978 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3979 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3980 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3981 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3982 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3983 
3984 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3985 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3986 
3987 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3988 			  TCP_NLA_PAD);
3989 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3990 			  TCP_NLA_PAD);
3991 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3992 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3993 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3994 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3995 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3996 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3997 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3998 			  TCP_NLA_PAD);
3999 	if (ack_skb)
4000 		nla_put_u8(stats, TCP_NLA_TTL,
4001 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4002 
4003 	return stats;
4004 }
4005 
4006 static int do_tcp_getsockopt(struct sock *sk, int level,
4007 		int optname, char __user *optval, int __user *optlen)
4008 {
4009 	struct inet_connection_sock *icsk = inet_csk(sk);
4010 	struct tcp_sock *tp = tcp_sk(sk);
4011 	struct net *net = sock_net(sk);
4012 	int val, len;
4013 
4014 	if (get_user(len, optlen))
4015 		return -EFAULT;
4016 
4017 	len = min_t(unsigned int, len, sizeof(int));
4018 
4019 	if (len < 0)
4020 		return -EINVAL;
4021 
4022 	switch (optname) {
4023 	case TCP_MAXSEG:
4024 		val = tp->mss_cache;
4025 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4026 			val = tp->rx_opt.user_mss;
4027 		if (tp->repair)
4028 			val = tp->rx_opt.mss_clamp;
4029 		break;
4030 	case TCP_NODELAY:
4031 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4032 		break;
4033 	case TCP_CORK:
4034 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4035 		break;
4036 	case TCP_KEEPIDLE:
4037 		val = keepalive_time_when(tp) / HZ;
4038 		break;
4039 	case TCP_KEEPINTVL:
4040 		val = keepalive_intvl_when(tp) / HZ;
4041 		break;
4042 	case TCP_KEEPCNT:
4043 		val = keepalive_probes(tp);
4044 		break;
4045 	case TCP_SYNCNT:
4046 		val = icsk->icsk_syn_retries ? :
4047 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4048 		break;
4049 	case TCP_LINGER2:
4050 		val = tp->linger2;
4051 		if (val >= 0)
4052 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4053 		break;
4054 	case TCP_DEFER_ACCEPT:
4055 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4056 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4057 		break;
4058 	case TCP_WINDOW_CLAMP:
4059 		val = tp->window_clamp;
4060 		break;
4061 	case TCP_INFO: {
4062 		struct tcp_info info;
4063 
4064 		if (get_user(len, optlen))
4065 			return -EFAULT;
4066 
4067 		tcp_get_info(sk, &info);
4068 
4069 		len = min_t(unsigned int, len, sizeof(info));
4070 		if (put_user(len, optlen))
4071 			return -EFAULT;
4072 		if (copy_to_user(optval, &info, len))
4073 			return -EFAULT;
4074 		return 0;
4075 	}
4076 	case TCP_CC_INFO: {
4077 		const struct tcp_congestion_ops *ca_ops;
4078 		union tcp_cc_info info;
4079 		size_t sz = 0;
4080 		int attr;
4081 
4082 		if (get_user(len, optlen))
4083 			return -EFAULT;
4084 
4085 		ca_ops = icsk->icsk_ca_ops;
4086 		if (ca_ops && ca_ops->get_info)
4087 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4088 
4089 		len = min_t(unsigned int, len, sz);
4090 		if (put_user(len, optlen))
4091 			return -EFAULT;
4092 		if (copy_to_user(optval, &info, len))
4093 			return -EFAULT;
4094 		return 0;
4095 	}
4096 	case TCP_QUICKACK:
4097 		val = !inet_csk_in_pingpong_mode(sk);
4098 		break;
4099 
4100 	case TCP_CONGESTION:
4101 		if (get_user(len, optlen))
4102 			return -EFAULT;
4103 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4104 		if (put_user(len, optlen))
4105 			return -EFAULT;
4106 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4107 			return -EFAULT;
4108 		return 0;
4109 
4110 	case TCP_ULP:
4111 		if (get_user(len, optlen))
4112 			return -EFAULT;
4113 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4114 		if (!icsk->icsk_ulp_ops) {
4115 			if (put_user(0, optlen))
4116 				return -EFAULT;
4117 			return 0;
4118 		}
4119 		if (put_user(len, optlen))
4120 			return -EFAULT;
4121 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4122 			return -EFAULT;
4123 		return 0;
4124 
4125 	case TCP_FASTOPEN_KEY: {
4126 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4127 		unsigned int key_len;
4128 
4129 		if (get_user(len, optlen))
4130 			return -EFAULT;
4131 
4132 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4133 				TCP_FASTOPEN_KEY_LENGTH;
4134 		len = min_t(unsigned int, len, key_len);
4135 		if (put_user(len, optlen))
4136 			return -EFAULT;
4137 		if (copy_to_user(optval, key, len))
4138 			return -EFAULT;
4139 		return 0;
4140 	}
4141 	case TCP_THIN_LINEAR_TIMEOUTS:
4142 		val = tp->thin_lto;
4143 		break;
4144 
4145 	case TCP_THIN_DUPACK:
4146 		val = 0;
4147 		break;
4148 
4149 	case TCP_REPAIR:
4150 		val = tp->repair;
4151 		break;
4152 
4153 	case TCP_REPAIR_QUEUE:
4154 		if (tp->repair)
4155 			val = tp->repair_queue;
4156 		else
4157 			return -EINVAL;
4158 		break;
4159 
4160 	case TCP_REPAIR_WINDOW: {
4161 		struct tcp_repair_window opt;
4162 
4163 		if (get_user(len, optlen))
4164 			return -EFAULT;
4165 
4166 		if (len != sizeof(opt))
4167 			return -EINVAL;
4168 
4169 		if (!tp->repair)
4170 			return -EPERM;
4171 
4172 		opt.snd_wl1	= tp->snd_wl1;
4173 		opt.snd_wnd	= tp->snd_wnd;
4174 		opt.max_window	= tp->max_window;
4175 		opt.rcv_wnd	= tp->rcv_wnd;
4176 		opt.rcv_wup	= tp->rcv_wup;
4177 
4178 		if (copy_to_user(optval, &opt, len))
4179 			return -EFAULT;
4180 		return 0;
4181 	}
4182 	case TCP_QUEUE_SEQ:
4183 		if (tp->repair_queue == TCP_SEND_QUEUE)
4184 			val = tp->write_seq;
4185 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4186 			val = tp->rcv_nxt;
4187 		else
4188 			return -EINVAL;
4189 		break;
4190 
4191 	case TCP_USER_TIMEOUT:
4192 		val = icsk->icsk_user_timeout;
4193 		break;
4194 
4195 	case TCP_FASTOPEN:
4196 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4197 		break;
4198 
4199 	case TCP_FASTOPEN_CONNECT:
4200 		val = tp->fastopen_connect;
4201 		break;
4202 
4203 	case TCP_FASTOPEN_NO_COOKIE:
4204 		val = tp->fastopen_no_cookie;
4205 		break;
4206 
4207 	case TCP_TX_DELAY:
4208 		val = tp->tcp_tx_delay;
4209 		break;
4210 
4211 	case TCP_TIMESTAMP:
4212 		val = tcp_time_stamp_raw() + tp->tsoffset;
4213 		break;
4214 	case TCP_NOTSENT_LOWAT:
4215 		val = tp->notsent_lowat;
4216 		break;
4217 	case TCP_INQ:
4218 		val = tp->recvmsg_inq;
4219 		break;
4220 	case TCP_SAVE_SYN:
4221 		val = tp->save_syn;
4222 		break;
4223 	case TCP_SAVED_SYN: {
4224 		if (get_user(len, optlen))
4225 			return -EFAULT;
4226 
4227 		lock_sock(sk);
4228 		if (tp->saved_syn) {
4229 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4230 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4231 					     optlen)) {
4232 					release_sock(sk);
4233 					return -EFAULT;
4234 				}
4235 				release_sock(sk);
4236 				return -EINVAL;
4237 			}
4238 			len = tcp_saved_syn_len(tp->saved_syn);
4239 			if (put_user(len, optlen)) {
4240 				release_sock(sk);
4241 				return -EFAULT;
4242 			}
4243 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4244 				release_sock(sk);
4245 				return -EFAULT;
4246 			}
4247 			tcp_saved_syn_free(tp);
4248 			release_sock(sk);
4249 		} else {
4250 			release_sock(sk);
4251 			len = 0;
4252 			if (put_user(len, optlen))
4253 				return -EFAULT;
4254 		}
4255 		return 0;
4256 	}
4257 #ifdef CONFIG_MMU
4258 	case TCP_ZEROCOPY_RECEIVE: {
4259 		struct scm_timestamping_internal tss;
4260 		struct tcp_zerocopy_receive zc = {};
4261 		int err;
4262 
4263 		if (get_user(len, optlen))
4264 			return -EFAULT;
4265 		if (len < 0 ||
4266 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4267 			return -EINVAL;
4268 		if (unlikely(len > sizeof(zc))) {
4269 			err = check_zeroed_user(optval + sizeof(zc),
4270 						len - sizeof(zc));
4271 			if (err < 1)
4272 				return err == 0 ? -EINVAL : err;
4273 			len = sizeof(zc);
4274 			if (put_user(len, optlen))
4275 				return -EFAULT;
4276 		}
4277 		if (copy_from_user(&zc, optval, len))
4278 			return -EFAULT;
4279 		if (zc.reserved)
4280 			return -EINVAL;
4281 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4282 			return -EINVAL;
4283 		lock_sock(sk);
4284 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4285 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4286 							  &zc, &len, err);
4287 		release_sock(sk);
4288 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4289 			goto zerocopy_rcv_cmsg;
4290 		switch (len) {
4291 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4292 			goto zerocopy_rcv_cmsg;
4293 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4294 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4295 		case offsetofend(struct tcp_zerocopy_receive, flags):
4296 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4297 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4298 		case offsetofend(struct tcp_zerocopy_receive, err):
4299 			goto zerocopy_rcv_sk_err;
4300 		case offsetofend(struct tcp_zerocopy_receive, inq):
4301 			goto zerocopy_rcv_inq;
4302 		case offsetofend(struct tcp_zerocopy_receive, length):
4303 		default:
4304 			goto zerocopy_rcv_out;
4305 		}
4306 zerocopy_rcv_cmsg:
4307 		if (zc.msg_flags & TCP_CMSG_TS)
4308 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4309 		else
4310 			zc.msg_flags = 0;
4311 zerocopy_rcv_sk_err:
4312 		if (!err)
4313 			zc.err = sock_error(sk);
4314 zerocopy_rcv_inq:
4315 		zc.inq = tcp_inq_hint(sk);
4316 zerocopy_rcv_out:
4317 		if (!err && copy_to_user(optval, &zc, len))
4318 			err = -EFAULT;
4319 		return err;
4320 	}
4321 #endif
4322 	default:
4323 		return -ENOPROTOOPT;
4324 	}
4325 
4326 	if (put_user(len, optlen))
4327 		return -EFAULT;
4328 	if (copy_to_user(optval, &val, len))
4329 		return -EFAULT;
4330 	return 0;
4331 }
4332 
4333 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4334 {
4335 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4336 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4337 	 */
4338 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4339 		return true;
4340 
4341 	return false;
4342 }
4343 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4344 
4345 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4346 		   int __user *optlen)
4347 {
4348 	struct inet_connection_sock *icsk = inet_csk(sk);
4349 
4350 	if (level != SOL_TCP)
4351 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4352 						     optval, optlen);
4353 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4354 }
4355 EXPORT_SYMBOL(tcp_getsockopt);
4356 
4357 #ifdef CONFIG_TCP_MD5SIG
4358 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4359 static DEFINE_MUTEX(tcp_md5sig_mutex);
4360 static bool tcp_md5sig_pool_populated = false;
4361 
4362 static void __tcp_alloc_md5sig_pool(void)
4363 {
4364 	struct crypto_ahash *hash;
4365 	int cpu;
4366 
4367 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4368 	if (IS_ERR(hash))
4369 		return;
4370 
4371 	for_each_possible_cpu(cpu) {
4372 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4373 		struct ahash_request *req;
4374 
4375 		if (!scratch) {
4376 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4377 					       sizeof(struct tcphdr),
4378 					       GFP_KERNEL,
4379 					       cpu_to_node(cpu));
4380 			if (!scratch)
4381 				return;
4382 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4383 		}
4384 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4385 			continue;
4386 
4387 		req = ahash_request_alloc(hash, GFP_KERNEL);
4388 		if (!req)
4389 			return;
4390 
4391 		ahash_request_set_callback(req, 0, NULL, NULL);
4392 
4393 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4394 	}
4395 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4396 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4397 	 */
4398 	smp_wmb();
4399 	tcp_md5sig_pool_populated = true;
4400 }
4401 
4402 bool tcp_alloc_md5sig_pool(void)
4403 {
4404 	if (unlikely(!tcp_md5sig_pool_populated)) {
4405 		mutex_lock(&tcp_md5sig_mutex);
4406 
4407 		if (!tcp_md5sig_pool_populated) {
4408 			__tcp_alloc_md5sig_pool();
4409 			if (tcp_md5sig_pool_populated)
4410 				static_branch_inc(&tcp_md5_needed);
4411 		}
4412 
4413 		mutex_unlock(&tcp_md5sig_mutex);
4414 	}
4415 	return tcp_md5sig_pool_populated;
4416 }
4417 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4418 
4419 
4420 /**
4421  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4422  *
4423  *	We use percpu structure, so if we succeed, we exit with preemption
4424  *	and BH disabled, to make sure another thread or softirq handling
4425  *	wont try to get same context.
4426  */
4427 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4428 {
4429 	local_bh_disable();
4430 
4431 	if (tcp_md5sig_pool_populated) {
4432 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4433 		smp_rmb();
4434 		return this_cpu_ptr(&tcp_md5sig_pool);
4435 	}
4436 	local_bh_enable();
4437 	return NULL;
4438 }
4439 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4440 
4441 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4442 			  const struct sk_buff *skb, unsigned int header_len)
4443 {
4444 	struct scatterlist sg;
4445 	const struct tcphdr *tp = tcp_hdr(skb);
4446 	struct ahash_request *req = hp->md5_req;
4447 	unsigned int i;
4448 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4449 					   skb_headlen(skb) - header_len : 0;
4450 	const struct skb_shared_info *shi = skb_shinfo(skb);
4451 	struct sk_buff *frag_iter;
4452 
4453 	sg_init_table(&sg, 1);
4454 
4455 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4456 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4457 	if (crypto_ahash_update(req))
4458 		return 1;
4459 
4460 	for (i = 0; i < shi->nr_frags; ++i) {
4461 		const skb_frag_t *f = &shi->frags[i];
4462 		unsigned int offset = skb_frag_off(f);
4463 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4464 
4465 		sg_set_page(&sg, page, skb_frag_size(f),
4466 			    offset_in_page(offset));
4467 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4468 		if (crypto_ahash_update(req))
4469 			return 1;
4470 	}
4471 
4472 	skb_walk_frags(skb, frag_iter)
4473 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4474 			return 1;
4475 
4476 	return 0;
4477 }
4478 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4479 
4480 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4481 {
4482 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4483 	struct scatterlist sg;
4484 
4485 	sg_init_one(&sg, key->key, keylen);
4486 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4487 
4488 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4489 	return data_race(crypto_ahash_update(hp->md5_req));
4490 }
4491 EXPORT_SYMBOL(tcp_md5_hash_key);
4492 
4493 /* Called with rcu_read_lock() */
4494 enum skb_drop_reason
4495 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4496 		     const void *saddr, const void *daddr,
4497 		     int family, int dif, int sdif)
4498 {
4499 	/*
4500 	 * This gets called for each TCP segment that arrives
4501 	 * so we want to be efficient.
4502 	 * We have 3 drop cases:
4503 	 * o No MD5 hash and one expected.
4504 	 * o MD5 hash and we're not expecting one.
4505 	 * o MD5 hash and its wrong.
4506 	 */
4507 	const __u8 *hash_location = NULL;
4508 	struct tcp_md5sig_key *hash_expected;
4509 	const struct tcphdr *th = tcp_hdr(skb);
4510 	struct tcp_sock *tp = tcp_sk(sk);
4511 	int genhash, l3index;
4512 	u8 newhash[16];
4513 
4514 	/* sdif set, means packet ingressed via a device
4515 	 * in an L3 domain and dif is set to the l3mdev
4516 	 */
4517 	l3index = sdif ? dif : 0;
4518 
4519 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4520 	hash_location = tcp_parse_md5sig_option(th);
4521 
4522 	/* We've parsed the options - do we have a hash? */
4523 	if (!hash_expected && !hash_location)
4524 		return SKB_NOT_DROPPED_YET;
4525 
4526 	if (hash_expected && !hash_location) {
4527 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4528 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4529 	}
4530 
4531 	if (!hash_expected && hash_location) {
4532 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4533 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4534 	}
4535 
4536 	/* check the signature */
4537 	genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected,
4538 						 NULL, skb);
4539 
4540 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4541 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4542 		if (family == AF_INET) {
4543 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4544 					saddr, ntohs(th->source),
4545 					daddr, ntohs(th->dest),
4546 					genhash ? " tcp_v4_calc_md5_hash failed"
4547 					: "", l3index);
4548 		} else {
4549 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4550 					genhash ? "failed" : "mismatch",
4551 					saddr, ntohs(th->source),
4552 					daddr, ntohs(th->dest), l3index);
4553 		}
4554 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4555 	}
4556 	return SKB_NOT_DROPPED_YET;
4557 }
4558 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4559 
4560 #endif
4561 
4562 void tcp_done(struct sock *sk)
4563 {
4564 	struct request_sock *req;
4565 
4566 	/* We might be called with a new socket, after
4567 	 * inet_csk_prepare_forced_close() has been called
4568 	 * so we can not use lockdep_sock_is_held(sk)
4569 	 */
4570 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4571 
4572 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4573 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4574 
4575 	tcp_set_state(sk, TCP_CLOSE);
4576 	tcp_clear_xmit_timers(sk);
4577 	if (req)
4578 		reqsk_fastopen_remove(sk, req, false);
4579 
4580 	sk->sk_shutdown = SHUTDOWN_MASK;
4581 
4582 	if (!sock_flag(sk, SOCK_DEAD))
4583 		sk->sk_state_change(sk);
4584 	else
4585 		inet_csk_destroy_sock(sk);
4586 }
4587 EXPORT_SYMBOL_GPL(tcp_done);
4588 
4589 int tcp_abort(struct sock *sk, int err)
4590 {
4591 	int state = inet_sk_state_load(sk);
4592 
4593 	if (state == TCP_NEW_SYN_RECV) {
4594 		struct request_sock *req = inet_reqsk(sk);
4595 
4596 		local_bh_disable();
4597 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4598 		local_bh_enable();
4599 		return 0;
4600 	}
4601 	if (state == TCP_TIME_WAIT) {
4602 		struct inet_timewait_sock *tw = inet_twsk(sk);
4603 
4604 		refcount_inc(&tw->tw_refcnt);
4605 		local_bh_disable();
4606 		inet_twsk_deschedule_put(tw);
4607 		local_bh_enable();
4608 		return 0;
4609 	}
4610 
4611 	/* Don't race with userspace socket closes such as tcp_close. */
4612 	lock_sock(sk);
4613 
4614 	if (sk->sk_state == TCP_LISTEN) {
4615 		tcp_set_state(sk, TCP_CLOSE);
4616 		inet_csk_listen_stop(sk);
4617 	}
4618 
4619 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4620 	local_bh_disable();
4621 	bh_lock_sock(sk);
4622 
4623 	if (!sock_flag(sk, SOCK_DEAD)) {
4624 		sk->sk_err = err;
4625 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4626 		smp_wmb();
4627 		sk_error_report(sk);
4628 		if (tcp_need_reset(sk->sk_state))
4629 			tcp_send_active_reset(sk, GFP_ATOMIC);
4630 		tcp_done(sk);
4631 	}
4632 
4633 	bh_unlock_sock(sk);
4634 	local_bh_enable();
4635 	tcp_write_queue_purge(sk);
4636 	release_sock(sk);
4637 	return 0;
4638 }
4639 EXPORT_SYMBOL_GPL(tcp_abort);
4640 
4641 extern struct tcp_congestion_ops tcp_reno;
4642 
4643 static __initdata unsigned long thash_entries;
4644 static int __init set_thash_entries(char *str)
4645 {
4646 	ssize_t ret;
4647 
4648 	if (!str)
4649 		return 0;
4650 
4651 	ret = kstrtoul(str, 0, &thash_entries);
4652 	if (ret)
4653 		return 0;
4654 
4655 	return 1;
4656 }
4657 __setup("thash_entries=", set_thash_entries);
4658 
4659 static void __init tcp_init_mem(void)
4660 {
4661 	unsigned long limit = nr_free_buffer_pages() / 16;
4662 
4663 	limit = max(limit, 128UL);
4664 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4665 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4666 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4667 }
4668 
4669 void __init tcp_init(void)
4670 {
4671 	int max_rshare, max_wshare, cnt;
4672 	unsigned long limit;
4673 	unsigned int i;
4674 
4675 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4676 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4677 		     sizeof_field(struct sk_buff, cb));
4678 
4679 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4680 
4681 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4682 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4683 
4684 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4685 			    thash_entries, 21,  /* one slot per 2 MB*/
4686 			    0, 64 * 1024);
4687 	tcp_hashinfo.bind_bucket_cachep =
4688 		kmem_cache_create("tcp_bind_bucket",
4689 				  sizeof(struct inet_bind_bucket), 0,
4690 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4691 				  SLAB_ACCOUNT,
4692 				  NULL);
4693 
4694 	/* Size and allocate the main established and bind bucket
4695 	 * hash tables.
4696 	 *
4697 	 * The methodology is similar to that of the buffer cache.
4698 	 */
4699 	tcp_hashinfo.ehash =
4700 		alloc_large_system_hash("TCP established",
4701 					sizeof(struct inet_ehash_bucket),
4702 					thash_entries,
4703 					17, /* one slot per 128 KB of memory */
4704 					0,
4705 					NULL,
4706 					&tcp_hashinfo.ehash_mask,
4707 					0,
4708 					thash_entries ? 0 : 512 * 1024);
4709 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4710 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4711 
4712 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4713 		panic("TCP: failed to alloc ehash_locks");
4714 	tcp_hashinfo.bhash =
4715 		alloc_large_system_hash("TCP bind",
4716 					sizeof(struct inet_bind_hashbucket),
4717 					tcp_hashinfo.ehash_mask + 1,
4718 					17, /* one slot per 128 KB of memory */
4719 					0,
4720 					&tcp_hashinfo.bhash_size,
4721 					NULL,
4722 					0,
4723 					64 * 1024);
4724 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4725 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4726 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4727 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4728 	}
4729 
4730 
4731 	cnt = tcp_hashinfo.ehash_mask + 1;
4732 	sysctl_tcp_max_orphans = cnt / 2;
4733 
4734 	tcp_init_mem();
4735 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4736 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4737 	max_wshare = min(4UL*1024*1024, limit);
4738 	max_rshare = min(6UL*1024*1024, limit);
4739 
4740 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4741 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4742 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4743 
4744 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4745 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4746 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4747 
4748 	pr_info("Hash tables configured (established %u bind %u)\n",
4749 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4750 
4751 	tcp_v4_init();
4752 	tcp_metrics_init();
4753 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4754 	tcp_tasklet_init();
4755 	mptcp_init();
4756 }
4757