1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 458 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1175 TFO_CLIENT_ENABLE) || 1176 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1177 uaddr->sa_family == AF_UNSPEC)) 1178 return -EOPNOTSUPP; 1179 if (tp->fastopen_req) 1180 return -EALREADY; /* Another Fast Open is in progress */ 1181 1182 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1183 sk->sk_allocation); 1184 if (unlikely(!tp->fastopen_req)) 1185 return -ENOBUFS; 1186 tp->fastopen_req->data = msg; 1187 tp->fastopen_req->size = size; 1188 tp->fastopen_req->uarg = uarg; 1189 1190 if (inet->defer_connect) { 1191 err = tcp_connect(sk); 1192 /* Same failure procedure as in tcp_v4/6_connect */ 1193 if (err) { 1194 tcp_set_state(sk, TCP_CLOSE); 1195 inet->inet_dport = 0; 1196 sk->sk_route_caps = 0; 1197 } 1198 } 1199 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1200 err = __inet_stream_connect(sk->sk_socket, uaddr, 1201 msg->msg_namelen, flags, 1); 1202 /* fastopen_req could already be freed in __inet_stream_connect 1203 * if the connection times out or gets rst 1204 */ 1205 if (tp->fastopen_req) { 1206 *copied = tp->fastopen_req->copied; 1207 tcp_free_fastopen_req(tp); 1208 inet->defer_connect = 0; 1209 } 1210 return err; 1211 } 1212 1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 struct ubuf_info *uarg = NULL; 1217 struct sk_buff *skb; 1218 struct sockcm_cookie sockc; 1219 int flags, err, copied = 0; 1220 int mss_now = 0, size_goal, copied_syn = 0; 1221 int process_backlog = 0; 1222 bool zc = false; 1223 long timeo; 1224 1225 flags = msg->msg_flags; 1226 1227 if ((flags & MSG_ZEROCOPY) && size) { 1228 skb = tcp_write_queue_tail(sk); 1229 1230 if (msg->msg_ubuf) { 1231 uarg = msg->msg_ubuf; 1232 net_zcopy_get(uarg); 1233 zc = sk->sk_route_caps & NETIF_F_SG; 1234 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1235 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1236 if (!uarg) { 1237 err = -ENOBUFS; 1238 goto out_err; 1239 } 1240 zc = sk->sk_route_caps & NETIF_F_SG; 1241 if (!zc) 1242 uarg->zerocopy = 0; 1243 } 1244 } 1245 1246 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1247 !tp->repair) { 1248 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1249 if (err == -EINPROGRESS && copied_syn > 0) 1250 goto out; 1251 else if (err) 1252 goto out_err; 1253 } 1254 1255 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1256 1257 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1258 1259 /* Wait for a connection to finish. One exception is TCP Fast Open 1260 * (passive side) where data is allowed to be sent before a connection 1261 * is fully established. 1262 */ 1263 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1264 !tcp_passive_fastopen(sk)) { 1265 err = sk_stream_wait_connect(sk, &timeo); 1266 if (err != 0) 1267 goto do_error; 1268 } 1269 1270 if (unlikely(tp->repair)) { 1271 if (tp->repair_queue == TCP_RECV_QUEUE) { 1272 copied = tcp_send_rcvq(sk, msg, size); 1273 goto out_nopush; 1274 } 1275 1276 err = -EINVAL; 1277 if (tp->repair_queue == TCP_NO_QUEUE) 1278 goto out_err; 1279 1280 /* 'common' sending to sendq */ 1281 } 1282 1283 sockcm_init(&sockc, sk); 1284 if (msg->msg_controllen) { 1285 err = sock_cmsg_send(sk, msg, &sockc); 1286 if (unlikely(err)) { 1287 err = -EINVAL; 1288 goto out_err; 1289 } 1290 } 1291 1292 /* This should be in poll */ 1293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1294 1295 /* Ok commence sending. */ 1296 copied = 0; 1297 1298 restart: 1299 mss_now = tcp_send_mss(sk, &size_goal, flags); 1300 1301 err = -EPIPE; 1302 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1303 goto do_error; 1304 1305 while (msg_data_left(msg)) { 1306 int copy = 0; 1307 1308 skb = tcp_write_queue_tail(sk); 1309 if (skb) 1310 copy = size_goal - skb->len; 1311 1312 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1313 bool first_skb; 1314 1315 new_segment: 1316 if (!sk_stream_memory_free(sk)) 1317 goto wait_for_space; 1318 1319 if (unlikely(process_backlog >= 16)) { 1320 process_backlog = 0; 1321 if (sk_flush_backlog(sk)) 1322 goto restart; 1323 } 1324 first_skb = tcp_rtx_and_write_queues_empty(sk); 1325 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1326 first_skb); 1327 if (!skb) 1328 goto wait_for_space; 1329 1330 process_backlog++; 1331 1332 tcp_skb_entail(sk, skb); 1333 copy = size_goal; 1334 1335 /* All packets are restored as if they have 1336 * already been sent. skb_mstamp_ns isn't set to 1337 * avoid wrong rtt estimation. 1338 */ 1339 if (tp->repair) 1340 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1341 } 1342 1343 /* Try to append data to the end of skb. */ 1344 if (copy > msg_data_left(msg)) 1345 copy = msg_data_left(msg); 1346 1347 if (!zc) { 1348 bool merge = true; 1349 int i = skb_shinfo(skb)->nr_frags; 1350 struct page_frag *pfrag = sk_page_frag(sk); 1351 1352 if (!sk_page_frag_refill(sk, pfrag)) 1353 goto wait_for_space; 1354 1355 if (!skb_can_coalesce(skb, i, pfrag->page, 1356 pfrag->offset)) { 1357 if (i >= sysctl_max_skb_frags) { 1358 tcp_mark_push(tp, skb); 1359 goto new_segment; 1360 } 1361 merge = false; 1362 } 1363 1364 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1365 1366 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1367 if (tcp_downgrade_zcopy_pure(sk, skb)) 1368 goto wait_for_space; 1369 skb_zcopy_downgrade_managed(skb); 1370 } 1371 1372 copy = tcp_wmem_schedule(sk, copy); 1373 if (!copy) 1374 goto wait_for_space; 1375 1376 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1377 pfrag->page, 1378 pfrag->offset, 1379 copy); 1380 if (err) 1381 goto do_error; 1382 1383 /* Update the skb. */ 1384 if (merge) { 1385 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1386 } else { 1387 skb_fill_page_desc(skb, i, pfrag->page, 1388 pfrag->offset, copy); 1389 page_ref_inc(pfrag->page); 1390 } 1391 pfrag->offset += copy; 1392 } else { 1393 /* First append to a fragless skb builds initial 1394 * pure zerocopy skb 1395 */ 1396 if (!skb->len) 1397 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1398 1399 if (!skb_zcopy_pure(skb)) { 1400 copy = tcp_wmem_schedule(sk, copy); 1401 if (!copy) 1402 goto wait_for_space; 1403 } 1404 1405 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1406 if (err == -EMSGSIZE || err == -EEXIST) { 1407 tcp_mark_push(tp, skb); 1408 goto new_segment; 1409 } 1410 if (err < 0) 1411 goto do_error; 1412 copy = err; 1413 } 1414 1415 if (!copied) 1416 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1417 1418 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1419 TCP_SKB_CB(skb)->end_seq += copy; 1420 tcp_skb_pcount_set(skb, 0); 1421 1422 copied += copy; 1423 if (!msg_data_left(msg)) { 1424 if (unlikely(flags & MSG_EOR)) 1425 TCP_SKB_CB(skb)->eor = 1; 1426 goto out; 1427 } 1428 1429 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1430 continue; 1431 1432 if (forced_push(tp)) { 1433 tcp_mark_push(tp, skb); 1434 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1435 } else if (skb == tcp_send_head(sk)) 1436 tcp_push_one(sk, mss_now); 1437 continue; 1438 1439 wait_for_space: 1440 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1441 if (copied) 1442 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1443 TCP_NAGLE_PUSH, size_goal); 1444 1445 err = sk_stream_wait_memory(sk, &timeo); 1446 if (err != 0) 1447 goto do_error; 1448 1449 mss_now = tcp_send_mss(sk, &size_goal, flags); 1450 } 1451 1452 out: 1453 if (copied) { 1454 tcp_tx_timestamp(sk, sockc.tsflags); 1455 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1456 } 1457 out_nopush: 1458 net_zcopy_put(uarg); 1459 return copied + copied_syn; 1460 1461 do_error: 1462 tcp_remove_empty_skb(sk); 1463 1464 if (copied + copied_syn) 1465 goto out; 1466 out_err: 1467 net_zcopy_put_abort(uarg, true); 1468 err = sk_stream_error(sk, flags, err); 1469 /* make sure we wake any epoll edge trigger waiter */ 1470 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1471 sk->sk_write_space(sk); 1472 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1473 } 1474 return err; 1475 } 1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1477 1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1479 { 1480 int ret; 1481 1482 lock_sock(sk); 1483 ret = tcp_sendmsg_locked(sk, msg, size); 1484 release_sock(sk); 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(tcp_sendmsg); 1489 1490 /* 1491 * Handle reading urgent data. BSD has very simple semantics for 1492 * this, no blocking and very strange errors 8) 1493 */ 1494 1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1496 { 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 /* No URG data to read. */ 1500 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1501 tp->urg_data == TCP_URG_READ) 1502 return -EINVAL; /* Yes this is right ! */ 1503 1504 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1505 return -ENOTCONN; 1506 1507 if (tp->urg_data & TCP_URG_VALID) { 1508 int err = 0; 1509 char c = tp->urg_data; 1510 1511 if (!(flags & MSG_PEEK)) 1512 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1513 1514 /* Read urgent data. */ 1515 msg->msg_flags |= MSG_OOB; 1516 1517 if (len > 0) { 1518 if (!(flags & MSG_TRUNC)) 1519 err = memcpy_to_msg(msg, &c, 1); 1520 len = 1; 1521 } else 1522 msg->msg_flags |= MSG_TRUNC; 1523 1524 return err ? -EFAULT : len; 1525 } 1526 1527 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1528 return 0; 1529 1530 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1531 * the available implementations agree in this case: 1532 * this call should never block, independent of the 1533 * blocking state of the socket. 1534 * Mike <pall@rz.uni-karlsruhe.de> 1535 */ 1536 return -EAGAIN; 1537 } 1538 1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1540 { 1541 struct sk_buff *skb; 1542 int copied = 0, err = 0; 1543 1544 /* XXX -- need to support SO_PEEK_OFF */ 1545 1546 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1547 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1548 if (err) 1549 return err; 1550 copied += skb->len; 1551 } 1552 1553 skb_queue_walk(&sk->sk_write_queue, skb) { 1554 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1555 if (err) 1556 break; 1557 1558 copied += skb->len; 1559 } 1560 1561 return err ?: copied; 1562 } 1563 1564 /* Clean up the receive buffer for full frames taken by the user, 1565 * then send an ACK if necessary. COPIED is the number of bytes 1566 * tcp_recvmsg has given to the user so far, it speeds up the 1567 * calculation of whether or not we must ACK for the sake of 1568 * a window update. 1569 */ 1570 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1571 { 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 bool time_to_ack = false; 1574 1575 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1576 1577 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1578 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1579 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1580 1581 if (inet_csk_ack_scheduled(sk)) { 1582 const struct inet_connection_sock *icsk = inet_csk(sk); 1583 1584 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1585 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1586 /* 1587 * If this read emptied read buffer, we send ACK, if 1588 * connection is not bidirectional, user drained 1589 * receive buffer and there was a small segment 1590 * in queue. 1591 */ 1592 (copied > 0 && 1593 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1594 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1595 !inet_csk_in_pingpong_mode(sk))) && 1596 !atomic_read(&sk->sk_rmem_alloc))) 1597 time_to_ack = true; 1598 } 1599 1600 /* We send an ACK if we can now advertise a non-zero window 1601 * which has been raised "significantly". 1602 * 1603 * Even if window raised up to infinity, do not send window open ACK 1604 * in states, where we will not receive more. It is useless. 1605 */ 1606 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1607 __u32 rcv_window_now = tcp_receive_window(tp); 1608 1609 /* Optimize, __tcp_select_window() is not cheap. */ 1610 if (2*rcv_window_now <= tp->window_clamp) { 1611 __u32 new_window = __tcp_select_window(sk); 1612 1613 /* Send ACK now, if this read freed lots of space 1614 * in our buffer. Certainly, new_window is new window. 1615 * We can advertise it now, if it is not less than current one. 1616 * "Lots" means "at least twice" here. 1617 */ 1618 if (new_window && new_window >= 2 * rcv_window_now) 1619 time_to_ack = true; 1620 } 1621 } 1622 if (time_to_ack) 1623 tcp_send_ack(sk); 1624 } 1625 1626 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1627 { 1628 __skb_unlink(skb, &sk->sk_receive_queue); 1629 if (likely(skb->destructor == sock_rfree)) { 1630 sock_rfree(skb); 1631 skb->destructor = NULL; 1632 skb->sk = NULL; 1633 return skb_attempt_defer_free(skb); 1634 } 1635 __kfree_skb(skb); 1636 } 1637 1638 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1639 { 1640 struct sk_buff *skb; 1641 u32 offset; 1642 1643 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1644 offset = seq - TCP_SKB_CB(skb)->seq; 1645 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1646 pr_err_once("%s: found a SYN, please report !\n", __func__); 1647 offset--; 1648 } 1649 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1650 *off = offset; 1651 return skb; 1652 } 1653 /* This looks weird, but this can happen if TCP collapsing 1654 * splitted a fat GRO packet, while we released socket lock 1655 * in skb_splice_bits() 1656 */ 1657 tcp_eat_recv_skb(sk, skb); 1658 } 1659 return NULL; 1660 } 1661 1662 /* 1663 * This routine provides an alternative to tcp_recvmsg() for routines 1664 * that would like to handle copying from skbuffs directly in 'sendfile' 1665 * fashion. 1666 * Note: 1667 * - It is assumed that the socket was locked by the caller. 1668 * - The routine does not block. 1669 * - At present, there is no support for reading OOB data 1670 * or for 'peeking' the socket using this routine 1671 * (although both would be easy to implement). 1672 */ 1673 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1674 sk_read_actor_t recv_actor) 1675 { 1676 struct sk_buff *skb; 1677 struct tcp_sock *tp = tcp_sk(sk); 1678 u32 seq = tp->copied_seq; 1679 u32 offset; 1680 int copied = 0; 1681 1682 if (sk->sk_state == TCP_LISTEN) 1683 return -ENOTCONN; 1684 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1685 if (offset < skb->len) { 1686 int used; 1687 size_t len; 1688 1689 len = skb->len - offset; 1690 /* Stop reading if we hit a patch of urgent data */ 1691 if (unlikely(tp->urg_data)) { 1692 u32 urg_offset = tp->urg_seq - seq; 1693 if (urg_offset < len) 1694 len = urg_offset; 1695 if (!len) 1696 break; 1697 } 1698 used = recv_actor(desc, skb, offset, len); 1699 if (used <= 0) { 1700 if (!copied) 1701 copied = used; 1702 break; 1703 } 1704 if (WARN_ON_ONCE(used > len)) 1705 used = len; 1706 seq += used; 1707 copied += used; 1708 offset += used; 1709 1710 /* If recv_actor drops the lock (e.g. TCP splice 1711 * receive) the skb pointer might be invalid when 1712 * getting here: tcp_collapse might have deleted it 1713 * while aggregating skbs from the socket queue. 1714 */ 1715 skb = tcp_recv_skb(sk, seq - 1, &offset); 1716 if (!skb) 1717 break; 1718 /* TCP coalescing might have appended data to the skb. 1719 * Try to splice more frags 1720 */ 1721 if (offset + 1 != skb->len) 1722 continue; 1723 } 1724 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1725 tcp_eat_recv_skb(sk, skb); 1726 ++seq; 1727 break; 1728 } 1729 tcp_eat_recv_skb(sk, skb); 1730 if (!desc->count) 1731 break; 1732 WRITE_ONCE(tp->copied_seq, seq); 1733 } 1734 WRITE_ONCE(tp->copied_seq, seq); 1735 1736 tcp_rcv_space_adjust(sk); 1737 1738 /* Clean up data we have read: This will do ACK frames. */ 1739 if (copied > 0) { 1740 tcp_recv_skb(sk, seq, &offset); 1741 tcp_cleanup_rbuf(sk, copied); 1742 } 1743 return copied; 1744 } 1745 EXPORT_SYMBOL(tcp_read_sock); 1746 1747 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1748 { 1749 struct tcp_sock *tp = tcp_sk(sk); 1750 u32 seq = tp->copied_seq; 1751 struct sk_buff *skb; 1752 int copied = 0; 1753 u32 offset; 1754 1755 if (sk->sk_state == TCP_LISTEN) 1756 return -ENOTCONN; 1757 1758 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1759 int used; 1760 1761 __skb_unlink(skb, &sk->sk_receive_queue); 1762 used = recv_actor(sk, skb); 1763 if (used <= 0) { 1764 if (!copied) 1765 copied = used; 1766 break; 1767 } 1768 seq += used; 1769 copied += used; 1770 1771 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1772 consume_skb(skb); 1773 ++seq; 1774 break; 1775 } 1776 consume_skb(skb); 1777 break; 1778 } 1779 WRITE_ONCE(tp->copied_seq, seq); 1780 1781 tcp_rcv_space_adjust(sk); 1782 1783 /* Clean up data we have read: This will do ACK frames. */ 1784 if (copied > 0) 1785 tcp_cleanup_rbuf(sk, copied); 1786 1787 return copied; 1788 } 1789 EXPORT_SYMBOL(tcp_read_skb); 1790 1791 int tcp_peek_len(struct socket *sock) 1792 { 1793 return tcp_inq(sock->sk); 1794 } 1795 EXPORT_SYMBOL(tcp_peek_len); 1796 1797 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1798 int tcp_set_rcvlowat(struct sock *sk, int val) 1799 { 1800 int cap; 1801 1802 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1803 cap = sk->sk_rcvbuf >> 1; 1804 else 1805 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1806 val = min(val, cap); 1807 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1808 1809 /* Check if we need to signal EPOLLIN right now */ 1810 tcp_data_ready(sk); 1811 1812 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1813 return 0; 1814 1815 val <<= 1; 1816 if (val > sk->sk_rcvbuf) { 1817 WRITE_ONCE(sk->sk_rcvbuf, val); 1818 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1819 } 1820 return 0; 1821 } 1822 EXPORT_SYMBOL(tcp_set_rcvlowat); 1823 1824 void tcp_update_recv_tstamps(struct sk_buff *skb, 1825 struct scm_timestamping_internal *tss) 1826 { 1827 if (skb->tstamp) 1828 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1829 else 1830 tss->ts[0] = (struct timespec64) {0}; 1831 1832 if (skb_hwtstamps(skb)->hwtstamp) 1833 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1834 else 1835 tss->ts[2] = (struct timespec64) {0}; 1836 } 1837 1838 #ifdef CONFIG_MMU 1839 static const struct vm_operations_struct tcp_vm_ops = { 1840 }; 1841 1842 int tcp_mmap(struct file *file, struct socket *sock, 1843 struct vm_area_struct *vma) 1844 { 1845 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1846 return -EPERM; 1847 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1848 1849 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1850 vma->vm_flags |= VM_MIXEDMAP; 1851 1852 vma->vm_ops = &tcp_vm_ops; 1853 return 0; 1854 } 1855 EXPORT_SYMBOL(tcp_mmap); 1856 1857 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1858 u32 *offset_frag) 1859 { 1860 skb_frag_t *frag; 1861 1862 if (unlikely(offset_skb >= skb->len)) 1863 return NULL; 1864 1865 offset_skb -= skb_headlen(skb); 1866 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1867 return NULL; 1868 1869 frag = skb_shinfo(skb)->frags; 1870 while (offset_skb) { 1871 if (skb_frag_size(frag) > offset_skb) { 1872 *offset_frag = offset_skb; 1873 return frag; 1874 } 1875 offset_skb -= skb_frag_size(frag); 1876 ++frag; 1877 } 1878 *offset_frag = 0; 1879 return frag; 1880 } 1881 1882 static bool can_map_frag(const skb_frag_t *frag) 1883 { 1884 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1885 } 1886 1887 static int find_next_mappable_frag(const skb_frag_t *frag, 1888 int remaining_in_skb) 1889 { 1890 int offset = 0; 1891 1892 if (likely(can_map_frag(frag))) 1893 return 0; 1894 1895 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1896 offset += skb_frag_size(frag); 1897 ++frag; 1898 } 1899 return offset; 1900 } 1901 1902 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1903 struct tcp_zerocopy_receive *zc, 1904 struct sk_buff *skb, u32 offset) 1905 { 1906 u32 frag_offset, partial_frag_remainder = 0; 1907 int mappable_offset; 1908 skb_frag_t *frag; 1909 1910 /* worst case: skip to next skb. try to improve on this case below */ 1911 zc->recv_skip_hint = skb->len - offset; 1912 1913 /* Find the frag containing this offset (and how far into that frag) */ 1914 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1915 if (!frag) 1916 return; 1917 1918 if (frag_offset) { 1919 struct skb_shared_info *info = skb_shinfo(skb); 1920 1921 /* We read part of the last frag, must recvmsg() rest of skb. */ 1922 if (frag == &info->frags[info->nr_frags - 1]) 1923 return; 1924 1925 /* Else, we must at least read the remainder in this frag. */ 1926 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1927 zc->recv_skip_hint -= partial_frag_remainder; 1928 ++frag; 1929 } 1930 1931 /* partial_frag_remainder: If part way through a frag, must read rest. 1932 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1933 * in partial_frag_remainder. 1934 */ 1935 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1936 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1937 } 1938 1939 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1940 int flags, struct scm_timestamping_internal *tss, 1941 int *cmsg_flags); 1942 static int receive_fallback_to_copy(struct sock *sk, 1943 struct tcp_zerocopy_receive *zc, int inq, 1944 struct scm_timestamping_internal *tss) 1945 { 1946 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1947 struct msghdr msg = {}; 1948 struct iovec iov; 1949 int err; 1950 1951 zc->length = 0; 1952 zc->recv_skip_hint = 0; 1953 1954 if (copy_address != zc->copybuf_address) 1955 return -EINVAL; 1956 1957 err = import_single_range(READ, (void __user *)copy_address, 1958 inq, &iov, &msg.msg_iter); 1959 if (err) 1960 return err; 1961 1962 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1963 tss, &zc->msg_flags); 1964 if (err < 0) 1965 return err; 1966 1967 zc->copybuf_len = err; 1968 if (likely(zc->copybuf_len)) { 1969 struct sk_buff *skb; 1970 u32 offset; 1971 1972 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1973 if (skb) 1974 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1975 } 1976 return 0; 1977 } 1978 1979 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1980 struct sk_buff *skb, u32 copylen, 1981 u32 *offset, u32 *seq) 1982 { 1983 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1984 struct msghdr msg = {}; 1985 struct iovec iov; 1986 int err; 1987 1988 if (copy_address != zc->copybuf_address) 1989 return -EINVAL; 1990 1991 err = import_single_range(READ, (void __user *)copy_address, 1992 copylen, &iov, &msg.msg_iter); 1993 if (err) 1994 return err; 1995 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1996 if (err) 1997 return err; 1998 zc->recv_skip_hint -= copylen; 1999 *offset += copylen; 2000 *seq += copylen; 2001 return (__s32)copylen; 2002 } 2003 2004 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2005 struct sock *sk, 2006 struct sk_buff *skb, 2007 u32 *seq, 2008 s32 copybuf_len, 2009 struct scm_timestamping_internal *tss) 2010 { 2011 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2012 2013 if (!copylen) 2014 return 0; 2015 /* skb is null if inq < PAGE_SIZE. */ 2016 if (skb) { 2017 offset = *seq - TCP_SKB_CB(skb)->seq; 2018 } else { 2019 skb = tcp_recv_skb(sk, *seq, &offset); 2020 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2021 tcp_update_recv_tstamps(skb, tss); 2022 zc->msg_flags |= TCP_CMSG_TS; 2023 } 2024 } 2025 2026 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2027 seq); 2028 return zc->copybuf_len < 0 ? 0 : copylen; 2029 } 2030 2031 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2032 struct page **pending_pages, 2033 unsigned long pages_remaining, 2034 unsigned long *address, 2035 u32 *length, 2036 u32 *seq, 2037 struct tcp_zerocopy_receive *zc, 2038 u32 total_bytes_to_map, 2039 int err) 2040 { 2041 /* At least one page did not map. Try zapping if we skipped earlier. */ 2042 if (err == -EBUSY && 2043 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2044 u32 maybe_zap_len; 2045 2046 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2047 *length + /* Mapped or pending */ 2048 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2049 zap_page_range(vma, *address, maybe_zap_len); 2050 err = 0; 2051 } 2052 2053 if (!err) { 2054 unsigned long leftover_pages = pages_remaining; 2055 int bytes_mapped; 2056 2057 /* We called zap_page_range, try to reinsert. */ 2058 err = vm_insert_pages(vma, *address, 2059 pending_pages, 2060 &pages_remaining); 2061 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2062 *seq += bytes_mapped; 2063 *address += bytes_mapped; 2064 } 2065 if (err) { 2066 /* Either we were unable to zap, OR we zapped, retried an 2067 * insert, and still had an issue. Either ways, pages_remaining 2068 * is the number of pages we were unable to map, and we unroll 2069 * some state we speculatively touched before. 2070 */ 2071 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2072 2073 *length -= bytes_not_mapped; 2074 zc->recv_skip_hint += bytes_not_mapped; 2075 } 2076 return err; 2077 } 2078 2079 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2080 struct page **pages, 2081 unsigned int pages_to_map, 2082 unsigned long *address, 2083 u32 *length, 2084 u32 *seq, 2085 struct tcp_zerocopy_receive *zc, 2086 u32 total_bytes_to_map) 2087 { 2088 unsigned long pages_remaining = pages_to_map; 2089 unsigned int pages_mapped; 2090 unsigned int bytes_mapped; 2091 int err; 2092 2093 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2094 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2095 bytes_mapped = PAGE_SIZE * pages_mapped; 2096 /* Even if vm_insert_pages fails, it may have partially succeeded in 2097 * mapping (some but not all of the pages). 2098 */ 2099 *seq += bytes_mapped; 2100 *address += bytes_mapped; 2101 2102 if (likely(!err)) 2103 return 0; 2104 2105 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2106 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2107 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2108 err); 2109 } 2110 2111 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2112 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2113 struct tcp_zerocopy_receive *zc, 2114 struct scm_timestamping_internal *tss) 2115 { 2116 unsigned long msg_control_addr; 2117 struct msghdr cmsg_dummy; 2118 2119 msg_control_addr = (unsigned long)zc->msg_control; 2120 cmsg_dummy.msg_control = (void *)msg_control_addr; 2121 cmsg_dummy.msg_controllen = 2122 (__kernel_size_t)zc->msg_controllen; 2123 cmsg_dummy.msg_flags = in_compat_syscall() 2124 ? MSG_CMSG_COMPAT : 0; 2125 cmsg_dummy.msg_control_is_user = true; 2126 zc->msg_flags = 0; 2127 if (zc->msg_control == msg_control_addr && 2128 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2129 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2130 zc->msg_control = (__u64) 2131 ((uintptr_t)cmsg_dummy.msg_control); 2132 zc->msg_controllen = 2133 (__u64)cmsg_dummy.msg_controllen; 2134 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2135 } 2136 } 2137 2138 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2139 static int tcp_zerocopy_receive(struct sock *sk, 2140 struct tcp_zerocopy_receive *zc, 2141 struct scm_timestamping_internal *tss) 2142 { 2143 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2144 unsigned long address = (unsigned long)zc->address; 2145 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2146 s32 copybuf_len = zc->copybuf_len; 2147 struct tcp_sock *tp = tcp_sk(sk); 2148 const skb_frag_t *frags = NULL; 2149 unsigned int pages_to_map = 0; 2150 struct vm_area_struct *vma; 2151 struct sk_buff *skb = NULL; 2152 u32 seq = tp->copied_seq; 2153 u32 total_bytes_to_map; 2154 int inq = tcp_inq(sk); 2155 int ret; 2156 2157 zc->copybuf_len = 0; 2158 zc->msg_flags = 0; 2159 2160 if (address & (PAGE_SIZE - 1) || address != zc->address) 2161 return -EINVAL; 2162 2163 if (sk->sk_state == TCP_LISTEN) 2164 return -ENOTCONN; 2165 2166 sock_rps_record_flow(sk); 2167 2168 if (inq && inq <= copybuf_len) 2169 return receive_fallback_to_copy(sk, zc, inq, tss); 2170 2171 if (inq < PAGE_SIZE) { 2172 zc->length = 0; 2173 zc->recv_skip_hint = inq; 2174 if (!inq && sock_flag(sk, SOCK_DONE)) 2175 return -EIO; 2176 return 0; 2177 } 2178 2179 mmap_read_lock(current->mm); 2180 2181 vma = vma_lookup(current->mm, address); 2182 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2183 mmap_read_unlock(current->mm); 2184 return -EINVAL; 2185 } 2186 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2187 avail_len = min_t(u32, vma_len, inq); 2188 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2189 if (total_bytes_to_map) { 2190 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2191 zap_page_range(vma, address, total_bytes_to_map); 2192 zc->length = total_bytes_to_map; 2193 zc->recv_skip_hint = 0; 2194 } else { 2195 zc->length = avail_len; 2196 zc->recv_skip_hint = avail_len; 2197 } 2198 ret = 0; 2199 while (length + PAGE_SIZE <= zc->length) { 2200 int mappable_offset; 2201 struct page *page; 2202 2203 if (zc->recv_skip_hint < PAGE_SIZE) { 2204 u32 offset_frag; 2205 2206 if (skb) { 2207 if (zc->recv_skip_hint > 0) 2208 break; 2209 skb = skb->next; 2210 offset = seq - TCP_SKB_CB(skb)->seq; 2211 } else { 2212 skb = tcp_recv_skb(sk, seq, &offset); 2213 } 2214 2215 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2216 tcp_update_recv_tstamps(skb, tss); 2217 zc->msg_flags |= TCP_CMSG_TS; 2218 } 2219 zc->recv_skip_hint = skb->len - offset; 2220 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2221 if (!frags || offset_frag) 2222 break; 2223 } 2224 2225 mappable_offset = find_next_mappable_frag(frags, 2226 zc->recv_skip_hint); 2227 if (mappable_offset) { 2228 zc->recv_skip_hint = mappable_offset; 2229 break; 2230 } 2231 page = skb_frag_page(frags); 2232 prefetchw(page); 2233 pages[pages_to_map++] = page; 2234 length += PAGE_SIZE; 2235 zc->recv_skip_hint -= PAGE_SIZE; 2236 frags++; 2237 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2238 zc->recv_skip_hint < PAGE_SIZE) { 2239 /* Either full batch, or we're about to go to next skb 2240 * (and we cannot unroll failed ops across skbs). 2241 */ 2242 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2243 pages_to_map, 2244 &address, &length, 2245 &seq, zc, 2246 total_bytes_to_map); 2247 if (ret) 2248 goto out; 2249 pages_to_map = 0; 2250 } 2251 } 2252 if (pages_to_map) { 2253 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2254 &address, &length, &seq, 2255 zc, total_bytes_to_map); 2256 } 2257 out: 2258 mmap_read_unlock(current->mm); 2259 /* Try to copy straggler data. */ 2260 if (!ret) 2261 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2262 2263 if (length + copylen) { 2264 WRITE_ONCE(tp->copied_seq, seq); 2265 tcp_rcv_space_adjust(sk); 2266 2267 /* Clean up data we have read: This will do ACK frames. */ 2268 tcp_recv_skb(sk, seq, &offset); 2269 tcp_cleanup_rbuf(sk, length + copylen); 2270 ret = 0; 2271 if (length == zc->length) 2272 zc->recv_skip_hint = 0; 2273 } else { 2274 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2275 ret = -EIO; 2276 } 2277 zc->length = length; 2278 return ret; 2279 } 2280 #endif 2281 2282 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2283 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2284 struct scm_timestamping_internal *tss) 2285 { 2286 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2287 bool has_timestamping = false; 2288 2289 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2290 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2291 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2292 if (new_tstamp) { 2293 struct __kernel_timespec kts = { 2294 .tv_sec = tss->ts[0].tv_sec, 2295 .tv_nsec = tss->ts[0].tv_nsec, 2296 }; 2297 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2298 sizeof(kts), &kts); 2299 } else { 2300 struct __kernel_old_timespec ts_old = { 2301 .tv_sec = tss->ts[0].tv_sec, 2302 .tv_nsec = tss->ts[0].tv_nsec, 2303 }; 2304 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2305 sizeof(ts_old), &ts_old); 2306 } 2307 } else { 2308 if (new_tstamp) { 2309 struct __kernel_sock_timeval stv = { 2310 .tv_sec = tss->ts[0].tv_sec, 2311 .tv_usec = tss->ts[0].tv_nsec / 1000, 2312 }; 2313 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2314 sizeof(stv), &stv); 2315 } else { 2316 struct __kernel_old_timeval tv = { 2317 .tv_sec = tss->ts[0].tv_sec, 2318 .tv_usec = tss->ts[0].tv_nsec / 1000, 2319 }; 2320 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2321 sizeof(tv), &tv); 2322 } 2323 } 2324 } 2325 2326 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2327 has_timestamping = true; 2328 else 2329 tss->ts[0] = (struct timespec64) {0}; 2330 } 2331 2332 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2333 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2334 has_timestamping = true; 2335 else 2336 tss->ts[2] = (struct timespec64) {0}; 2337 } 2338 2339 if (has_timestamping) { 2340 tss->ts[1] = (struct timespec64) {0}; 2341 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2342 put_cmsg_scm_timestamping64(msg, tss); 2343 else 2344 put_cmsg_scm_timestamping(msg, tss); 2345 } 2346 } 2347 2348 static int tcp_inq_hint(struct sock *sk) 2349 { 2350 const struct tcp_sock *tp = tcp_sk(sk); 2351 u32 copied_seq = READ_ONCE(tp->copied_seq); 2352 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2353 int inq; 2354 2355 inq = rcv_nxt - copied_seq; 2356 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2357 lock_sock(sk); 2358 inq = tp->rcv_nxt - tp->copied_seq; 2359 release_sock(sk); 2360 } 2361 /* After receiving a FIN, tell the user-space to continue reading 2362 * by returning a non-zero inq. 2363 */ 2364 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2365 inq = 1; 2366 return inq; 2367 } 2368 2369 /* 2370 * This routine copies from a sock struct into the user buffer. 2371 * 2372 * Technical note: in 2.3 we work on _locked_ socket, so that 2373 * tricks with *seq access order and skb->users are not required. 2374 * Probably, code can be easily improved even more. 2375 */ 2376 2377 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2378 int flags, struct scm_timestamping_internal *tss, 2379 int *cmsg_flags) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 int copied = 0; 2383 u32 peek_seq; 2384 u32 *seq; 2385 unsigned long used; 2386 int err; 2387 int target; /* Read at least this many bytes */ 2388 long timeo; 2389 struct sk_buff *skb, *last; 2390 u32 urg_hole = 0; 2391 2392 err = -ENOTCONN; 2393 if (sk->sk_state == TCP_LISTEN) 2394 goto out; 2395 2396 if (tp->recvmsg_inq) { 2397 *cmsg_flags = TCP_CMSG_INQ; 2398 msg->msg_get_inq = 1; 2399 } 2400 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2401 2402 /* Urgent data needs to be handled specially. */ 2403 if (flags & MSG_OOB) 2404 goto recv_urg; 2405 2406 if (unlikely(tp->repair)) { 2407 err = -EPERM; 2408 if (!(flags & MSG_PEEK)) 2409 goto out; 2410 2411 if (tp->repair_queue == TCP_SEND_QUEUE) 2412 goto recv_sndq; 2413 2414 err = -EINVAL; 2415 if (tp->repair_queue == TCP_NO_QUEUE) 2416 goto out; 2417 2418 /* 'common' recv queue MSG_PEEK-ing */ 2419 } 2420 2421 seq = &tp->copied_seq; 2422 if (flags & MSG_PEEK) { 2423 peek_seq = tp->copied_seq; 2424 seq = &peek_seq; 2425 } 2426 2427 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2428 2429 do { 2430 u32 offset; 2431 2432 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2433 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2434 if (copied) 2435 break; 2436 if (signal_pending(current)) { 2437 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2438 break; 2439 } 2440 } 2441 2442 /* Next get a buffer. */ 2443 2444 last = skb_peek_tail(&sk->sk_receive_queue); 2445 skb_queue_walk(&sk->sk_receive_queue, skb) { 2446 last = skb; 2447 /* Now that we have two receive queues this 2448 * shouldn't happen. 2449 */ 2450 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2451 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2452 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2453 flags)) 2454 break; 2455 2456 offset = *seq - TCP_SKB_CB(skb)->seq; 2457 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2458 pr_err_once("%s: found a SYN, please report !\n", __func__); 2459 offset--; 2460 } 2461 if (offset < skb->len) 2462 goto found_ok_skb; 2463 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2464 goto found_fin_ok; 2465 WARN(!(flags & MSG_PEEK), 2466 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2467 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2468 } 2469 2470 /* Well, if we have backlog, try to process it now yet. */ 2471 2472 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2473 break; 2474 2475 if (copied) { 2476 if (!timeo || 2477 sk->sk_err || 2478 sk->sk_state == TCP_CLOSE || 2479 (sk->sk_shutdown & RCV_SHUTDOWN) || 2480 signal_pending(current)) 2481 break; 2482 } else { 2483 if (sock_flag(sk, SOCK_DONE)) 2484 break; 2485 2486 if (sk->sk_err) { 2487 copied = sock_error(sk); 2488 break; 2489 } 2490 2491 if (sk->sk_shutdown & RCV_SHUTDOWN) 2492 break; 2493 2494 if (sk->sk_state == TCP_CLOSE) { 2495 /* This occurs when user tries to read 2496 * from never connected socket. 2497 */ 2498 copied = -ENOTCONN; 2499 break; 2500 } 2501 2502 if (!timeo) { 2503 copied = -EAGAIN; 2504 break; 2505 } 2506 2507 if (signal_pending(current)) { 2508 copied = sock_intr_errno(timeo); 2509 break; 2510 } 2511 } 2512 2513 if (copied >= target) { 2514 /* Do not sleep, just process backlog. */ 2515 __sk_flush_backlog(sk); 2516 } else { 2517 tcp_cleanup_rbuf(sk, copied); 2518 sk_wait_data(sk, &timeo, last); 2519 } 2520 2521 if ((flags & MSG_PEEK) && 2522 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2523 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2524 current->comm, 2525 task_pid_nr(current)); 2526 peek_seq = tp->copied_seq; 2527 } 2528 continue; 2529 2530 found_ok_skb: 2531 /* Ok so how much can we use? */ 2532 used = skb->len - offset; 2533 if (len < used) 2534 used = len; 2535 2536 /* Do we have urgent data here? */ 2537 if (unlikely(tp->urg_data)) { 2538 u32 urg_offset = tp->urg_seq - *seq; 2539 if (urg_offset < used) { 2540 if (!urg_offset) { 2541 if (!sock_flag(sk, SOCK_URGINLINE)) { 2542 WRITE_ONCE(*seq, *seq + 1); 2543 urg_hole++; 2544 offset++; 2545 used--; 2546 if (!used) 2547 goto skip_copy; 2548 } 2549 } else 2550 used = urg_offset; 2551 } 2552 } 2553 2554 if (!(flags & MSG_TRUNC)) { 2555 err = skb_copy_datagram_msg(skb, offset, msg, used); 2556 if (err) { 2557 /* Exception. Bailout! */ 2558 if (!copied) 2559 copied = -EFAULT; 2560 break; 2561 } 2562 } 2563 2564 WRITE_ONCE(*seq, *seq + used); 2565 copied += used; 2566 len -= used; 2567 2568 tcp_rcv_space_adjust(sk); 2569 2570 skip_copy: 2571 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2572 WRITE_ONCE(tp->urg_data, 0); 2573 tcp_fast_path_check(sk); 2574 } 2575 2576 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2577 tcp_update_recv_tstamps(skb, tss); 2578 *cmsg_flags |= TCP_CMSG_TS; 2579 } 2580 2581 if (used + offset < skb->len) 2582 continue; 2583 2584 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2585 goto found_fin_ok; 2586 if (!(flags & MSG_PEEK)) 2587 tcp_eat_recv_skb(sk, skb); 2588 continue; 2589 2590 found_fin_ok: 2591 /* Process the FIN. */ 2592 WRITE_ONCE(*seq, *seq + 1); 2593 if (!(flags & MSG_PEEK)) 2594 tcp_eat_recv_skb(sk, skb); 2595 break; 2596 } while (len > 0); 2597 2598 /* According to UNIX98, msg_name/msg_namelen are ignored 2599 * on connected socket. I was just happy when found this 8) --ANK 2600 */ 2601 2602 /* Clean up data we have read: This will do ACK frames. */ 2603 tcp_cleanup_rbuf(sk, copied); 2604 return copied; 2605 2606 out: 2607 return err; 2608 2609 recv_urg: 2610 err = tcp_recv_urg(sk, msg, len, flags); 2611 goto out; 2612 2613 recv_sndq: 2614 err = tcp_peek_sndq(sk, msg, len); 2615 goto out; 2616 } 2617 2618 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2619 int *addr_len) 2620 { 2621 int cmsg_flags = 0, ret; 2622 struct scm_timestamping_internal tss; 2623 2624 if (unlikely(flags & MSG_ERRQUEUE)) 2625 return inet_recv_error(sk, msg, len, addr_len); 2626 2627 if (sk_can_busy_loop(sk) && 2628 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2629 sk->sk_state == TCP_ESTABLISHED) 2630 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2631 2632 lock_sock(sk); 2633 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2634 release_sock(sk); 2635 2636 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2637 if (cmsg_flags & TCP_CMSG_TS) 2638 tcp_recv_timestamp(msg, sk, &tss); 2639 if (msg->msg_get_inq) { 2640 msg->msg_inq = tcp_inq_hint(sk); 2641 if (cmsg_flags & TCP_CMSG_INQ) 2642 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2643 sizeof(msg->msg_inq), &msg->msg_inq); 2644 } 2645 } 2646 return ret; 2647 } 2648 EXPORT_SYMBOL(tcp_recvmsg); 2649 2650 void tcp_set_state(struct sock *sk, int state) 2651 { 2652 int oldstate = sk->sk_state; 2653 2654 /* We defined a new enum for TCP states that are exported in BPF 2655 * so as not force the internal TCP states to be frozen. The 2656 * following checks will detect if an internal state value ever 2657 * differs from the BPF value. If this ever happens, then we will 2658 * need to remap the internal value to the BPF value before calling 2659 * tcp_call_bpf_2arg. 2660 */ 2661 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2662 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2663 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2664 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2665 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2666 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2667 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2668 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2669 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2670 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2671 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2672 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2673 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2674 2675 /* bpf uapi header bpf.h defines an anonymous enum with values 2676 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2677 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2678 * But clang built vmlinux does not have this enum in DWARF 2679 * since clang removes the above code before generating IR/debuginfo. 2680 * Let us explicitly emit the type debuginfo to ensure the 2681 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2682 * regardless of which compiler is used. 2683 */ 2684 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2685 2686 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2687 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2688 2689 switch (state) { 2690 case TCP_ESTABLISHED: 2691 if (oldstate != TCP_ESTABLISHED) 2692 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2693 break; 2694 2695 case TCP_CLOSE: 2696 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2697 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2698 2699 sk->sk_prot->unhash(sk); 2700 if (inet_csk(sk)->icsk_bind_hash && 2701 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2702 inet_put_port(sk); 2703 fallthrough; 2704 default: 2705 if (oldstate == TCP_ESTABLISHED) 2706 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2707 } 2708 2709 /* Change state AFTER socket is unhashed to avoid closed 2710 * socket sitting in hash tables. 2711 */ 2712 inet_sk_state_store(sk, state); 2713 } 2714 EXPORT_SYMBOL_GPL(tcp_set_state); 2715 2716 /* 2717 * State processing on a close. This implements the state shift for 2718 * sending our FIN frame. Note that we only send a FIN for some 2719 * states. A shutdown() may have already sent the FIN, or we may be 2720 * closed. 2721 */ 2722 2723 static const unsigned char new_state[16] = { 2724 /* current state: new state: action: */ 2725 [0 /* (Invalid) */] = TCP_CLOSE, 2726 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2727 [TCP_SYN_SENT] = TCP_CLOSE, 2728 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2729 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2730 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2731 [TCP_TIME_WAIT] = TCP_CLOSE, 2732 [TCP_CLOSE] = TCP_CLOSE, 2733 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2734 [TCP_LAST_ACK] = TCP_LAST_ACK, 2735 [TCP_LISTEN] = TCP_CLOSE, 2736 [TCP_CLOSING] = TCP_CLOSING, 2737 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2738 }; 2739 2740 static int tcp_close_state(struct sock *sk) 2741 { 2742 int next = (int)new_state[sk->sk_state]; 2743 int ns = next & TCP_STATE_MASK; 2744 2745 tcp_set_state(sk, ns); 2746 2747 return next & TCP_ACTION_FIN; 2748 } 2749 2750 /* 2751 * Shutdown the sending side of a connection. Much like close except 2752 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2753 */ 2754 2755 void tcp_shutdown(struct sock *sk, int how) 2756 { 2757 /* We need to grab some memory, and put together a FIN, 2758 * and then put it into the queue to be sent. 2759 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2760 */ 2761 if (!(how & SEND_SHUTDOWN)) 2762 return; 2763 2764 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2765 if ((1 << sk->sk_state) & 2766 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2767 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2768 /* Clear out any half completed packets. FIN if needed. */ 2769 if (tcp_close_state(sk)) 2770 tcp_send_fin(sk); 2771 } 2772 } 2773 EXPORT_SYMBOL(tcp_shutdown); 2774 2775 int tcp_orphan_count_sum(void) 2776 { 2777 int i, total = 0; 2778 2779 for_each_possible_cpu(i) 2780 total += per_cpu(tcp_orphan_count, i); 2781 2782 return max(total, 0); 2783 } 2784 2785 static int tcp_orphan_cache; 2786 static struct timer_list tcp_orphan_timer; 2787 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2788 2789 static void tcp_orphan_update(struct timer_list *unused) 2790 { 2791 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2792 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2793 } 2794 2795 static bool tcp_too_many_orphans(int shift) 2796 { 2797 return READ_ONCE(tcp_orphan_cache) << shift > 2798 READ_ONCE(sysctl_tcp_max_orphans); 2799 } 2800 2801 bool tcp_check_oom(struct sock *sk, int shift) 2802 { 2803 bool too_many_orphans, out_of_socket_memory; 2804 2805 too_many_orphans = tcp_too_many_orphans(shift); 2806 out_of_socket_memory = tcp_out_of_memory(sk); 2807 2808 if (too_many_orphans) 2809 net_info_ratelimited("too many orphaned sockets\n"); 2810 if (out_of_socket_memory) 2811 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2812 return too_many_orphans || out_of_socket_memory; 2813 } 2814 2815 void __tcp_close(struct sock *sk, long timeout) 2816 { 2817 struct sk_buff *skb; 2818 int data_was_unread = 0; 2819 int state; 2820 2821 sk->sk_shutdown = SHUTDOWN_MASK; 2822 2823 if (sk->sk_state == TCP_LISTEN) { 2824 tcp_set_state(sk, TCP_CLOSE); 2825 2826 /* Special case. */ 2827 inet_csk_listen_stop(sk); 2828 2829 goto adjudge_to_death; 2830 } 2831 2832 /* We need to flush the recv. buffs. We do this only on the 2833 * descriptor close, not protocol-sourced closes, because the 2834 * reader process may not have drained the data yet! 2835 */ 2836 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2837 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2838 2839 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2840 len--; 2841 data_was_unread += len; 2842 __kfree_skb(skb); 2843 } 2844 2845 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2846 if (sk->sk_state == TCP_CLOSE) 2847 goto adjudge_to_death; 2848 2849 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2850 * data was lost. To witness the awful effects of the old behavior of 2851 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2852 * GET in an FTP client, suspend the process, wait for the client to 2853 * advertise a zero window, then kill -9 the FTP client, wheee... 2854 * Note: timeout is always zero in such a case. 2855 */ 2856 if (unlikely(tcp_sk(sk)->repair)) { 2857 sk->sk_prot->disconnect(sk, 0); 2858 } else if (data_was_unread) { 2859 /* Unread data was tossed, zap the connection. */ 2860 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2861 tcp_set_state(sk, TCP_CLOSE); 2862 tcp_send_active_reset(sk, sk->sk_allocation); 2863 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2864 /* Check zero linger _after_ checking for unread data. */ 2865 sk->sk_prot->disconnect(sk, 0); 2866 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2867 } else if (tcp_close_state(sk)) { 2868 /* We FIN if the application ate all the data before 2869 * zapping the connection. 2870 */ 2871 2872 /* RED-PEN. Formally speaking, we have broken TCP state 2873 * machine. State transitions: 2874 * 2875 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2876 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2877 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2878 * 2879 * are legal only when FIN has been sent (i.e. in window), 2880 * rather than queued out of window. Purists blame. 2881 * 2882 * F.e. "RFC state" is ESTABLISHED, 2883 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2884 * 2885 * The visible declinations are that sometimes 2886 * we enter time-wait state, when it is not required really 2887 * (harmless), do not send active resets, when they are 2888 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2889 * they look as CLOSING or LAST_ACK for Linux) 2890 * Probably, I missed some more holelets. 2891 * --ANK 2892 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2893 * in a single packet! (May consider it later but will 2894 * probably need API support or TCP_CORK SYN-ACK until 2895 * data is written and socket is closed.) 2896 */ 2897 tcp_send_fin(sk); 2898 } 2899 2900 sk_stream_wait_close(sk, timeout); 2901 2902 adjudge_to_death: 2903 state = sk->sk_state; 2904 sock_hold(sk); 2905 sock_orphan(sk); 2906 2907 local_bh_disable(); 2908 bh_lock_sock(sk); 2909 /* remove backlog if any, without releasing ownership. */ 2910 __release_sock(sk); 2911 2912 this_cpu_inc(tcp_orphan_count); 2913 2914 /* Have we already been destroyed by a softirq or backlog? */ 2915 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2916 goto out; 2917 2918 /* This is a (useful) BSD violating of the RFC. There is a 2919 * problem with TCP as specified in that the other end could 2920 * keep a socket open forever with no application left this end. 2921 * We use a 1 minute timeout (about the same as BSD) then kill 2922 * our end. If they send after that then tough - BUT: long enough 2923 * that we won't make the old 4*rto = almost no time - whoops 2924 * reset mistake. 2925 * 2926 * Nope, it was not mistake. It is really desired behaviour 2927 * f.e. on http servers, when such sockets are useless, but 2928 * consume significant resources. Let's do it with special 2929 * linger2 option. --ANK 2930 */ 2931 2932 if (sk->sk_state == TCP_FIN_WAIT2) { 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 if (tp->linger2 < 0) { 2935 tcp_set_state(sk, TCP_CLOSE); 2936 tcp_send_active_reset(sk, GFP_ATOMIC); 2937 __NET_INC_STATS(sock_net(sk), 2938 LINUX_MIB_TCPABORTONLINGER); 2939 } else { 2940 const int tmo = tcp_fin_time(sk); 2941 2942 if (tmo > TCP_TIMEWAIT_LEN) { 2943 inet_csk_reset_keepalive_timer(sk, 2944 tmo - TCP_TIMEWAIT_LEN); 2945 } else { 2946 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2947 goto out; 2948 } 2949 } 2950 } 2951 if (sk->sk_state != TCP_CLOSE) { 2952 if (tcp_check_oom(sk, 0)) { 2953 tcp_set_state(sk, TCP_CLOSE); 2954 tcp_send_active_reset(sk, GFP_ATOMIC); 2955 __NET_INC_STATS(sock_net(sk), 2956 LINUX_MIB_TCPABORTONMEMORY); 2957 } else if (!check_net(sock_net(sk))) { 2958 /* Not possible to send reset; just close */ 2959 tcp_set_state(sk, TCP_CLOSE); 2960 } 2961 } 2962 2963 if (sk->sk_state == TCP_CLOSE) { 2964 struct request_sock *req; 2965 2966 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2967 lockdep_sock_is_held(sk)); 2968 /* We could get here with a non-NULL req if the socket is 2969 * aborted (e.g., closed with unread data) before 3WHS 2970 * finishes. 2971 */ 2972 if (req) 2973 reqsk_fastopen_remove(sk, req, false); 2974 inet_csk_destroy_sock(sk); 2975 } 2976 /* Otherwise, socket is reprieved until protocol close. */ 2977 2978 out: 2979 bh_unlock_sock(sk); 2980 local_bh_enable(); 2981 } 2982 2983 void tcp_close(struct sock *sk, long timeout) 2984 { 2985 lock_sock(sk); 2986 __tcp_close(sk, timeout); 2987 release_sock(sk); 2988 sock_put(sk); 2989 } 2990 EXPORT_SYMBOL(tcp_close); 2991 2992 /* These states need RST on ABORT according to RFC793 */ 2993 2994 static inline bool tcp_need_reset(int state) 2995 { 2996 return (1 << state) & 2997 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2998 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2999 } 3000 3001 static void tcp_rtx_queue_purge(struct sock *sk) 3002 { 3003 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3004 3005 tcp_sk(sk)->highest_sack = NULL; 3006 while (p) { 3007 struct sk_buff *skb = rb_to_skb(p); 3008 3009 p = rb_next(p); 3010 /* Since we are deleting whole queue, no need to 3011 * list_del(&skb->tcp_tsorted_anchor) 3012 */ 3013 tcp_rtx_queue_unlink(skb, sk); 3014 tcp_wmem_free_skb(sk, skb); 3015 } 3016 } 3017 3018 void tcp_write_queue_purge(struct sock *sk) 3019 { 3020 struct sk_buff *skb; 3021 3022 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3023 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3024 tcp_skb_tsorted_anchor_cleanup(skb); 3025 tcp_wmem_free_skb(sk, skb); 3026 } 3027 tcp_rtx_queue_purge(sk); 3028 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3029 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3030 tcp_sk(sk)->packets_out = 0; 3031 inet_csk(sk)->icsk_backoff = 0; 3032 } 3033 3034 int tcp_disconnect(struct sock *sk, int flags) 3035 { 3036 struct inet_sock *inet = inet_sk(sk); 3037 struct inet_connection_sock *icsk = inet_csk(sk); 3038 struct tcp_sock *tp = tcp_sk(sk); 3039 int old_state = sk->sk_state; 3040 u32 seq; 3041 3042 if (old_state != TCP_CLOSE) 3043 tcp_set_state(sk, TCP_CLOSE); 3044 3045 /* ABORT function of RFC793 */ 3046 if (old_state == TCP_LISTEN) { 3047 inet_csk_listen_stop(sk); 3048 } else if (unlikely(tp->repair)) { 3049 sk->sk_err = ECONNABORTED; 3050 } else if (tcp_need_reset(old_state) || 3051 (tp->snd_nxt != tp->write_seq && 3052 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3053 /* The last check adjusts for discrepancy of Linux wrt. RFC 3054 * states 3055 */ 3056 tcp_send_active_reset(sk, gfp_any()); 3057 sk->sk_err = ECONNRESET; 3058 } else if (old_state == TCP_SYN_SENT) 3059 sk->sk_err = ECONNRESET; 3060 3061 tcp_clear_xmit_timers(sk); 3062 __skb_queue_purge(&sk->sk_receive_queue); 3063 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3064 WRITE_ONCE(tp->urg_data, 0); 3065 tcp_write_queue_purge(sk); 3066 tcp_fastopen_active_disable_ofo_check(sk); 3067 skb_rbtree_purge(&tp->out_of_order_queue); 3068 3069 inet->inet_dport = 0; 3070 3071 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3072 inet_reset_saddr(sk); 3073 3074 sk->sk_shutdown = 0; 3075 sock_reset_flag(sk, SOCK_DONE); 3076 tp->srtt_us = 0; 3077 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3078 tp->rcv_rtt_last_tsecr = 0; 3079 3080 seq = tp->write_seq + tp->max_window + 2; 3081 if (!seq) 3082 seq = 1; 3083 WRITE_ONCE(tp->write_seq, seq); 3084 3085 icsk->icsk_backoff = 0; 3086 icsk->icsk_probes_out = 0; 3087 icsk->icsk_probes_tstamp = 0; 3088 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3089 icsk->icsk_rto_min = TCP_RTO_MIN; 3090 icsk->icsk_delack_max = TCP_DELACK_MAX; 3091 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3092 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3093 tp->snd_cwnd_cnt = 0; 3094 tp->window_clamp = 0; 3095 tp->delivered = 0; 3096 tp->delivered_ce = 0; 3097 if (icsk->icsk_ca_ops->release) 3098 icsk->icsk_ca_ops->release(sk); 3099 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3100 icsk->icsk_ca_initialized = 0; 3101 tcp_set_ca_state(sk, TCP_CA_Open); 3102 tp->is_sack_reneg = 0; 3103 tcp_clear_retrans(tp); 3104 tp->total_retrans = 0; 3105 inet_csk_delack_init(sk); 3106 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3107 * issue in __tcp_select_window() 3108 */ 3109 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3110 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3111 __sk_dst_reset(sk); 3112 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3113 tcp_saved_syn_free(tp); 3114 tp->compressed_ack = 0; 3115 tp->segs_in = 0; 3116 tp->segs_out = 0; 3117 tp->bytes_sent = 0; 3118 tp->bytes_acked = 0; 3119 tp->bytes_received = 0; 3120 tp->bytes_retrans = 0; 3121 tp->data_segs_in = 0; 3122 tp->data_segs_out = 0; 3123 tp->duplicate_sack[0].start_seq = 0; 3124 tp->duplicate_sack[0].end_seq = 0; 3125 tp->dsack_dups = 0; 3126 tp->reord_seen = 0; 3127 tp->retrans_out = 0; 3128 tp->sacked_out = 0; 3129 tp->tlp_high_seq = 0; 3130 tp->last_oow_ack_time = 0; 3131 /* There's a bubble in the pipe until at least the first ACK. */ 3132 tp->app_limited = ~0U; 3133 tp->rack.mstamp = 0; 3134 tp->rack.advanced = 0; 3135 tp->rack.reo_wnd_steps = 1; 3136 tp->rack.last_delivered = 0; 3137 tp->rack.reo_wnd_persist = 0; 3138 tp->rack.dsack_seen = 0; 3139 tp->syn_data_acked = 0; 3140 tp->rx_opt.saw_tstamp = 0; 3141 tp->rx_opt.dsack = 0; 3142 tp->rx_opt.num_sacks = 0; 3143 tp->rcv_ooopack = 0; 3144 3145 3146 /* Clean up fastopen related fields */ 3147 tcp_free_fastopen_req(tp); 3148 inet->defer_connect = 0; 3149 tp->fastopen_client_fail = 0; 3150 3151 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3152 3153 if (sk->sk_frag.page) { 3154 put_page(sk->sk_frag.page); 3155 sk->sk_frag.page = NULL; 3156 sk->sk_frag.offset = 0; 3157 } 3158 sk_error_report(sk); 3159 return 0; 3160 } 3161 EXPORT_SYMBOL(tcp_disconnect); 3162 3163 static inline bool tcp_can_repair_sock(const struct sock *sk) 3164 { 3165 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3166 (sk->sk_state != TCP_LISTEN); 3167 } 3168 3169 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3170 { 3171 struct tcp_repair_window opt; 3172 3173 if (!tp->repair) 3174 return -EPERM; 3175 3176 if (len != sizeof(opt)) 3177 return -EINVAL; 3178 3179 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3180 return -EFAULT; 3181 3182 if (opt.max_window < opt.snd_wnd) 3183 return -EINVAL; 3184 3185 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3186 return -EINVAL; 3187 3188 if (after(opt.rcv_wup, tp->rcv_nxt)) 3189 return -EINVAL; 3190 3191 tp->snd_wl1 = opt.snd_wl1; 3192 tp->snd_wnd = opt.snd_wnd; 3193 tp->max_window = opt.max_window; 3194 3195 tp->rcv_wnd = opt.rcv_wnd; 3196 tp->rcv_wup = opt.rcv_wup; 3197 3198 return 0; 3199 } 3200 3201 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3202 unsigned int len) 3203 { 3204 struct tcp_sock *tp = tcp_sk(sk); 3205 struct tcp_repair_opt opt; 3206 size_t offset = 0; 3207 3208 while (len >= sizeof(opt)) { 3209 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3210 return -EFAULT; 3211 3212 offset += sizeof(opt); 3213 len -= sizeof(opt); 3214 3215 switch (opt.opt_code) { 3216 case TCPOPT_MSS: 3217 tp->rx_opt.mss_clamp = opt.opt_val; 3218 tcp_mtup_init(sk); 3219 break; 3220 case TCPOPT_WINDOW: 3221 { 3222 u16 snd_wscale = opt.opt_val & 0xFFFF; 3223 u16 rcv_wscale = opt.opt_val >> 16; 3224 3225 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3226 return -EFBIG; 3227 3228 tp->rx_opt.snd_wscale = snd_wscale; 3229 tp->rx_opt.rcv_wscale = rcv_wscale; 3230 tp->rx_opt.wscale_ok = 1; 3231 } 3232 break; 3233 case TCPOPT_SACK_PERM: 3234 if (opt.opt_val != 0) 3235 return -EINVAL; 3236 3237 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3238 break; 3239 case TCPOPT_TIMESTAMP: 3240 if (opt.opt_val != 0) 3241 return -EINVAL; 3242 3243 tp->rx_opt.tstamp_ok = 1; 3244 break; 3245 } 3246 } 3247 3248 return 0; 3249 } 3250 3251 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3252 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3253 3254 static void tcp_enable_tx_delay(void) 3255 { 3256 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3257 static int __tcp_tx_delay_enabled = 0; 3258 3259 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3260 static_branch_enable(&tcp_tx_delay_enabled); 3261 pr_info("TCP_TX_DELAY enabled\n"); 3262 } 3263 } 3264 } 3265 3266 /* When set indicates to always queue non-full frames. Later the user clears 3267 * this option and we transmit any pending partial frames in the queue. This is 3268 * meant to be used alongside sendfile() to get properly filled frames when the 3269 * user (for example) must write out headers with a write() call first and then 3270 * use sendfile to send out the data parts. 3271 * 3272 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3273 * TCP_NODELAY. 3274 */ 3275 void __tcp_sock_set_cork(struct sock *sk, bool on) 3276 { 3277 struct tcp_sock *tp = tcp_sk(sk); 3278 3279 if (on) { 3280 tp->nonagle |= TCP_NAGLE_CORK; 3281 } else { 3282 tp->nonagle &= ~TCP_NAGLE_CORK; 3283 if (tp->nonagle & TCP_NAGLE_OFF) 3284 tp->nonagle |= TCP_NAGLE_PUSH; 3285 tcp_push_pending_frames(sk); 3286 } 3287 } 3288 3289 void tcp_sock_set_cork(struct sock *sk, bool on) 3290 { 3291 lock_sock(sk); 3292 __tcp_sock_set_cork(sk, on); 3293 release_sock(sk); 3294 } 3295 EXPORT_SYMBOL(tcp_sock_set_cork); 3296 3297 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3298 * remembered, but it is not activated until cork is cleared. 3299 * 3300 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3301 * even TCP_CORK for currently queued segments. 3302 */ 3303 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3304 { 3305 if (on) { 3306 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3307 tcp_push_pending_frames(sk); 3308 } else { 3309 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3310 } 3311 } 3312 3313 void tcp_sock_set_nodelay(struct sock *sk) 3314 { 3315 lock_sock(sk); 3316 __tcp_sock_set_nodelay(sk, true); 3317 release_sock(sk); 3318 } 3319 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3320 3321 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3322 { 3323 if (!val) { 3324 inet_csk_enter_pingpong_mode(sk); 3325 return; 3326 } 3327 3328 inet_csk_exit_pingpong_mode(sk); 3329 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3330 inet_csk_ack_scheduled(sk)) { 3331 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3332 tcp_cleanup_rbuf(sk, 1); 3333 if (!(val & 1)) 3334 inet_csk_enter_pingpong_mode(sk); 3335 } 3336 } 3337 3338 void tcp_sock_set_quickack(struct sock *sk, int val) 3339 { 3340 lock_sock(sk); 3341 __tcp_sock_set_quickack(sk, val); 3342 release_sock(sk); 3343 } 3344 EXPORT_SYMBOL(tcp_sock_set_quickack); 3345 3346 int tcp_sock_set_syncnt(struct sock *sk, int val) 3347 { 3348 if (val < 1 || val > MAX_TCP_SYNCNT) 3349 return -EINVAL; 3350 3351 lock_sock(sk); 3352 inet_csk(sk)->icsk_syn_retries = val; 3353 release_sock(sk); 3354 return 0; 3355 } 3356 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3357 3358 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3359 { 3360 lock_sock(sk); 3361 inet_csk(sk)->icsk_user_timeout = val; 3362 release_sock(sk); 3363 } 3364 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3365 3366 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3367 { 3368 struct tcp_sock *tp = tcp_sk(sk); 3369 3370 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3371 return -EINVAL; 3372 3373 tp->keepalive_time = val * HZ; 3374 if (sock_flag(sk, SOCK_KEEPOPEN) && 3375 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3376 u32 elapsed = keepalive_time_elapsed(tp); 3377 3378 if (tp->keepalive_time > elapsed) 3379 elapsed = tp->keepalive_time - elapsed; 3380 else 3381 elapsed = 0; 3382 inet_csk_reset_keepalive_timer(sk, elapsed); 3383 } 3384 3385 return 0; 3386 } 3387 3388 int tcp_sock_set_keepidle(struct sock *sk, int val) 3389 { 3390 int err; 3391 3392 lock_sock(sk); 3393 err = tcp_sock_set_keepidle_locked(sk, val); 3394 release_sock(sk); 3395 return err; 3396 } 3397 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3398 3399 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3400 { 3401 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3402 return -EINVAL; 3403 3404 lock_sock(sk); 3405 tcp_sk(sk)->keepalive_intvl = val * HZ; 3406 release_sock(sk); 3407 return 0; 3408 } 3409 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3410 3411 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3412 { 3413 if (val < 1 || val > MAX_TCP_KEEPCNT) 3414 return -EINVAL; 3415 3416 lock_sock(sk); 3417 tcp_sk(sk)->keepalive_probes = val; 3418 release_sock(sk); 3419 return 0; 3420 } 3421 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3422 3423 int tcp_set_window_clamp(struct sock *sk, int val) 3424 { 3425 struct tcp_sock *tp = tcp_sk(sk); 3426 3427 if (!val) { 3428 if (sk->sk_state != TCP_CLOSE) 3429 return -EINVAL; 3430 tp->window_clamp = 0; 3431 } else { 3432 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3433 SOCK_MIN_RCVBUF / 2 : val; 3434 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3435 } 3436 return 0; 3437 } 3438 3439 /* 3440 * Socket option code for TCP. 3441 */ 3442 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3443 sockptr_t optval, unsigned int optlen) 3444 { 3445 struct tcp_sock *tp = tcp_sk(sk); 3446 struct inet_connection_sock *icsk = inet_csk(sk); 3447 struct net *net = sock_net(sk); 3448 int val; 3449 int err = 0; 3450 3451 /* These are data/string values, all the others are ints */ 3452 switch (optname) { 3453 case TCP_CONGESTION: { 3454 char name[TCP_CA_NAME_MAX]; 3455 3456 if (optlen < 1) 3457 return -EINVAL; 3458 3459 val = strncpy_from_sockptr(name, optval, 3460 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3461 if (val < 0) 3462 return -EFAULT; 3463 name[val] = 0; 3464 3465 lock_sock(sk); 3466 err = tcp_set_congestion_control(sk, name, true, 3467 ns_capable(sock_net(sk)->user_ns, 3468 CAP_NET_ADMIN)); 3469 release_sock(sk); 3470 return err; 3471 } 3472 case TCP_ULP: { 3473 char name[TCP_ULP_NAME_MAX]; 3474 3475 if (optlen < 1) 3476 return -EINVAL; 3477 3478 val = strncpy_from_sockptr(name, optval, 3479 min_t(long, TCP_ULP_NAME_MAX - 1, 3480 optlen)); 3481 if (val < 0) 3482 return -EFAULT; 3483 name[val] = 0; 3484 3485 lock_sock(sk); 3486 err = tcp_set_ulp(sk, name); 3487 release_sock(sk); 3488 return err; 3489 } 3490 case TCP_FASTOPEN_KEY: { 3491 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3492 __u8 *backup_key = NULL; 3493 3494 /* Allow a backup key as well to facilitate key rotation 3495 * First key is the active one. 3496 */ 3497 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3498 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3499 return -EINVAL; 3500 3501 if (copy_from_sockptr(key, optval, optlen)) 3502 return -EFAULT; 3503 3504 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3505 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3506 3507 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3508 } 3509 default: 3510 /* fallthru */ 3511 break; 3512 } 3513 3514 if (optlen < sizeof(int)) 3515 return -EINVAL; 3516 3517 if (copy_from_sockptr(&val, optval, sizeof(val))) 3518 return -EFAULT; 3519 3520 lock_sock(sk); 3521 3522 switch (optname) { 3523 case TCP_MAXSEG: 3524 /* Values greater than interface MTU won't take effect. However 3525 * at the point when this call is done we typically don't yet 3526 * know which interface is going to be used 3527 */ 3528 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3529 err = -EINVAL; 3530 break; 3531 } 3532 tp->rx_opt.user_mss = val; 3533 break; 3534 3535 case TCP_NODELAY: 3536 __tcp_sock_set_nodelay(sk, val); 3537 break; 3538 3539 case TCP_THIN_LINEAR_TIMEOUTS: 3540 if (val < 0 || val > 1) 3541 err = -EINVAL; 3542 else 3543 tp->thin_lto = val; 3544 break; 3545 3546 case TCP_THIN_DUPACK: 3547 if (val < 0 || val > 1) 3548 err = -EINVAL; 3549 break; 3550 3551 case TCP_REPAIR: 3552 if (!tcp_can_repair_sock(sk)) 3553 err = -EPERM; 3554 else if (val == TCP_REPAIR_ON) { 3555 tp->repair = 1; 3556 sk->sk_reuse = SK_FORCE_REUSE; 3557 tp->repair_queue = TCP_NO_QUEUE; 3558 } else if (val == TCP_REPAIR_OFF) { 3559 tp->repair = 0; 3560 sk->sk_reuse = SK_NO_REUSE; 3561 tcp_send_window_probe(sk); 3562 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3563 tp->repair = 0; 3564 sk->sk_reuse = SK_NO_REUSE; 3565 } else 3566 err = -EINVAL; 3567 3568 break; 3569 3570 case TCP_REPAIR_QUEUE: 3571 if (!tp->repair) 3572 err = -EPERM; 3573 else if ((unsigned int)val < TCP_QUEUES_NR) 3574 tp->repair_queue = val; 3575 else 3576 err = -EINVAL; 3577 break; 3578 3579 case TCP_QUEUE_SEQ: 3580 if (sk->sk_state != TCP_CLOSE) { 3581 err = -EPERM; 3582 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3583 if (!tcp_rtx_queue_empty(sk)) 3584 err = -EPERM; 3585 else 3586 WRITE_ONCE(tp->write_seq, val); 3587 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3588 if (tp->rcv_nxt != tp->copied_seq) { 3589 err = -EPERM; 3590 } else { 3591 WRITE_ONCE(tp->rcv_nxt, val); 3592 WRITE_ONCE(tp->copied_seq, val); 3593 } 3594 } else { 3595 err = -EINVAL; 3596 } 3597 break; 3598 3599 case TCP_REPAIR_OPTIONS: 3600 if (!tp->repair) 3601 err = -EINVAL; 3602 else if (sk->sk_state == TCP_ESTABLISHED) 3603 err = tcp_repair_options_est(sk, optval, optlen); 3604 else 3605 err = -EPERM; 3606 break; 3607 3608 case TCP_CORK: 3609 __tcp_sock_set_cork(sk, val); 3610 break; 3611 3612 case TCP_KEEPIDLE: 3613 err = tcp_sock_set_keepidle_locked(sk, val); 3614 break; 3615 case TCP_KEEPINTVL: 3616 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3617 err = -EINVAL; 3618 else 3619 tp->keepalive_intvl = val * HZ; 3620 break; 3621 case TCP_KEEPCNT: 3622 if (val < 1 || val > MAX_TCP_KEEPCNT) 3623 err = -EINVAL; 3624 else 3625 tp->keepalive_probes = val; 3626 break; 3627 case TCP_SYNCNT: 3628 if (val < 1 || val > MAX_TCP_SYNCNT) 3629 err = -EINVAL; 3630 else 3631 icsk->icsk_syn_retries = val; 3632 break; 3633 3634 case TCP_SAVE_SYN: 3635 /* 0: disable, 1: enable, 2: start from ether_header */ 3636 if (val < 0 || val > 2) 3637 err = -EINVAL; 3638 else 3639 tp->save_syn = val; 3640 break; 3641 3642 case TCP_LINGER2: 3643 if (val < 0) 3644 tp->linger2 = -1; 3645 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3646 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3647 else 3648 tp->linger2 = val * HZ; 3649 break; 3650 3651 case TCP_DEFER_ACCEPT: 3652 /* Translate value in seconds to number of retransmits */ 3653 icsk->icsk_accept_queue.rskq_defer_accept = 3654 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3655 TCP_RTO_MAX / HZ); 3656 break; 3657 3658 case TCP_WINDOW_CLAMP: 3659 err = tcp_set_window_clamp(sk, val); 3660 break; 3661 3662 case TCP_QUICKACK: 3663 __tcp_sock_set_quickack(sk, val); 3664 break; 3665 3666 #ifdef CONFIG_TCP_MD5SIG 3667 case TCP_MD5SIG: 3668 case TCP_MD5SIG_EXT: 3669 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3670 break; 3671 #endif 3672 case TCP_USER_TIMEOUT: 3673 /* Cap the max time in ms TCP will retry or probe the window 3674 * before giving up and aborting (ETIMEDOUT) a connection. 3675 */ 3676 if (val < 0) 3677 err = -EINVAL; 3678 else 3679 icsk->icsk_user_timeout = val; 3680 break; 3681 3682 case TCP_FASTOPEN: 3683 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3684 TCPF_LISTEN))) { 3685 tcp_fastopen_init_key_once(net); 3686 3687 fastopen_queue_tune(sk, val); 3688 } else { 3689 err = -EINVAL; 3690 } 3691 break; 3692 case TCP_FASTOPEN_CONNECT: 3693 if (val > 1 || val < 0) { 3694 err = -EINVAL; 3695 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3696 TFO_CLIENT_ENABLE) { 3697 if (sk->sk_state == TCP_CLOSE) 3698 tp->fastopen_connect = val; 3699 else 3700 err = -EINVAL; 3701 } else { 3702 err = -EOPNOTSUPP; 3703 } 3704 break; 3705 case TCP_FASTOPEN_NO_COOKIE: 3706 if (val > 1 || val < 0) 3707 err = -EINVAL; 3708 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3709 err = -EINVAL; 3710 else 3711 tp->fastopen_no_cookie = val; 3712 break; 3713 case TCP_TIMESTAMP: 3714 if (!tp->repair) 3715 err = -EPERM; 3716 else 3717 tp->tsoffset = val - tcp_time_stamp_raw(); 3718 break; 3719 case TCP_REPAIR_WINDOW: 3720 err = tcp_repair_set_window(tp, optval, optlen); 3721 break; 3722 case TCP_NOTSENT_LOWAT: 3723 tp->notsent_lowat = val; 3724 sk->sk_write_space(sk); 3725 break; 3726 case TCP_INQ: 3727 if (val > 1 || val < 0) 3728 err = -EINVAL; 3729 else 3730 tp->recvmsg_inq = val; 3731 break; 3732 case TCP_TX_DELAY: 3733 if (val) 3734 tcp_enable_tx_delay(); 3735 tp->tcp_tx_delay = val; 3736 break; 3737 default: 3738 err = -ENOPROTOOPT; 3739 break; 3740 } 3741 3742 release_sock(sk); 3743 return err; 3744 } 3745 3746 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3747 unsigned int optlen) 3748 { 3749 const struct inet_connection_sock *icsk = inet_csk(sk); 3750 3751 if (level != SOL_TCP) 3752 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3753 optval, optlen); 3754 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3755 } 3756 EXPORT_SYMBOL(tcp_setsockopt); 3757 3758 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3759 struct tcp_info *info) 3760 { 3761 u64 stats[__TCP_CHRONO_MAX], total = 0; 3762 enum tcp_chrono i; 3763 3764 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3765 stats[i] = tp->chrono_stat[i - 1]; 3766 if (i == tp->chrono_type) 3767 stats[i] += tcp_jiffies32 - tp->chrono_start; 3768 stats[i] *= USEC_PER_SEC / HZ; 3769 total += stats[i]; 3770 } 3771 3772 info->tcpi_busy_time = total; 3773 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3774 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3775 } 3776 3777 /* Return information about state of tcp endpoint in API format. */ 3778 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3779 { 3780 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3781 const struct inet_connection_sock *icsk = inet_csk(sk); 3782 unsigned long rate; 3783 u32 now; 3784 u64 rate64; 3785 bool slow; 3786 3787 memset(info, 0, sizeof(*info)); 3788 if (sk->sk_type != SOCK_STREAM) 3789 return; 3790 3791 info->tcpi_state = inet_sk_state_load(sk); 3792 3793 /* Report meaningful fields for all TCP states, including listeners */ 3794 rate = READ_ONCE(sk->sk_pacing_rate); 3795 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3796 info->tcpi_pacing_rate = rate64; 3797 3798 rate = READ_ONCE(sk->sk_max_pacing_rate); 3799 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3800 info->tcpi_max_pacing_rate = rate64; 3801 3802 info->tcpi_reordering = tp->reordering; 3803 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3804 3805 if (info->tcpi_state == TCP_LISTEN) { 3806 /* listeners aliased fields : 3807 * tcpi_unacked -> Number of children ready for accept() 3808 * tcpi_sacked -> max backlog 3809 */ 3810 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3811 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3812 return; 3813 } 3814 3815 slow = lock_sock_fast(sk); 3816 3817 info->tcpi_ca_state = icsk->icsk_ca_state; 3818 info->tcpi_retransmits = icsk->icsk_retransmits; 3819 info->tcpi_probes = icsk->icsk_probes_out; 3820 info->tcpi_backoff = icsk->icsk_backoff; 3821 3822 if (tp->rx_opt.tstamp_ok) 3823 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3824 if (tcp_is_sack(tp)) 3825 info->tcpi_options |= TCPI_OPT_SACK; 3826 if (tp->rx_opt.wscale_ok) { 3827 info->tcpi_options |= TCPI_OPT_WSCALE; 3828 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3829 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3830 } 3831 3832 if (tp->ecn_flags & TCP_ECN_OK) 3833 info->tcpi_options |= TCPI_OPT_ECN; 3834 if (tp->ecn_flags & TCP_ECN_SEEN) 3835 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3836 if (tp->syn_data_acked) 3837 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3838 3839 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3840 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3841 info->tcpi_snd_mss = tp->mss_cache; 3842 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3843 3844 info->tcpi_unacked = tp->packets_out; 3845 info->tcpi_sacked = tp->sacked_out; 3846 3847 info->tcpi_lost = tp->lost_out; 3848 info->tcpi_retrans = tp->retrans_out; 3849 3850 now = tcp_jiffies32; 3851 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3852 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3853 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3854 3855 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3856 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3857 info->tcpi_rtt = tp->srtt_us >> 3; 3858 info->tcpi_rttvar = tp->mdev_us >> 2; 3859 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3860 info->tcpi_advmss = tp->advmss; 3861 3862 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3863 info->tcpi_rcv_space = tp->rcvq_space.space; 3864 3865 info->tcpi_total_retrans = tp->total_retrans; 3866 3867 info->tcpi_bytes_acked = tp->bytes_acked; 3868 info->tcpi_bytes_received = tp->bytes_received; 3869 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3870 tcp_get_info_chrono_stats(tp, info); 3871 3872 info->tcpi_segs_out = tp->segs_out; 3873 3874 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3875 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3876 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3877 3878 info->tcpi_min_rtt = tcp_min_rtt(tp); 3879 info->tcpi_data_segs_out = tp->data_segs_out; 3880 3881 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3882 rate64 = tcp_compute_delivery_rate(tp); 3883 if (rate64) 3884 info->tcpi_delivery_rate = rate64; 3885 info->tcpi_delivered = tp->delivered; 3886 info->tcpi_delivered_ce = tp->delivered_ce; 3887 info->tcpi_bytes_sent = tp->bytes_sent; 3888 info->tcpi_bytes_retrans = tp->bytes_retrans; 3889 info->tcpi_dsack_dups = tp->dsack_dups; 3890 info->tcpi_reord_seen = tp->reord_seen; 3891 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3892 info->tcpi_snd_wnd = tp->snd_wnd; 3893 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3894 unlock_sock_fast(sk, slow); 3895 } 3896 EXPORT_SYMBOL_GPL(tcp_get_info); 3897 3898 static size_t tcp_opt_stats_get_size(void) 3899 { 3900 return 3901 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3902 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3903 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3904 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3905 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3906 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3907 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3908 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3909 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3911 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3912 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3913 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3914 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3915 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3916 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3917 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3918 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3919 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3920 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3921 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3922 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3923 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3924 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3925 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3926 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3927 0; 3928 } 3929 3930 /* Returns TTL or hop limit of an incoming packet from skb. */ 3931 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3932 { 3933 if (skb->protocol == htons(ETH_P_IP)) 3934 return ip_hdr(skb)->ttl; 3935 else if (skb->protocol == htons(ETH_P_IPV6)) 3936 return ipv6_hdr(skb)->hop_limit; 3937 else 3938 return 0; 3939 } 3940 3941 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3942 const struct sk_buff *orig_skb, 3943 const struct sk_buff *ack_skb) 3944 { 3945 const struct tcp_sock *tp = tcp_sk(sk); 3946 struct sk_buff *stats; 3947 struct tcp_info info; 3948 unsigned long rate; 3949 u64 rate64; 3950 3951 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3952 if (!stats) 3953 return NULL; 3954 3955 tcp_get_info_chrono_stats(tp, &info); 3956 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3957 info.tcpi_busy_time, TCP_NLA_PAD); 3958 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3959 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3960 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3961 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3962 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3963 tp->data_segs_out, TCP_NLA_PAD); 3964 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3965 tp->total_retrans, TCP_NLA_PAD); 3966 3967 rate = READ_ONCE(sk->sk_pacing_rate); 3968 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3969 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3970 3971 rate64 = tcp_compute_delivery_rate(tp); 3972 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3973 3974 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3975 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3976 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3977 3978 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3979 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3980 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3981 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3982 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3983 3984 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3985 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3986 3987 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3988 TCP_NLA_PAD); 3989 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3990 TCP_NLA_PAD); 3991 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3992 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3993 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3994 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3995 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3996 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3997 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3998 TCP_NLA_PAD); 3999 if (ack_skb) 4000 nla_put_u8(stats, TCP_NLA_TTL, 4001 tcp_skb_ttl_or_hop_limit(ack_skb)); 4002 4003 return stats; 4004 } 4005 4006 static int do_tcp_getsockopt(struct sock *sk, int level, 4007 int optname, char __user *optval, int __user *optlen) 4008 { 4009 struct inet_connection_sock *icsk = inet_csk(sk); 4010 struct tcp_sock *tp = tcp_sk(sk); 4011 struct net *net = sock_net(sk); 4012 int val, len; 4013 4014 if (get_user(len, optlen)) 4015 return -EFAULT; 4016 4017 len = min_t(unsigned int, len, sizeof(int)); 4018 4019 if (len < 0) 4020 return -EINVAL; 4021 4022 switch (optname) { 4023 case TCP_MAXSEG: 4024 val = tp->mss_cache; 4025 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4026 val = tp->rx_opt.user_mss; 4027 if (tp->repair) 4028 val = tp->rx_opt.mss_clamp; 4029 break; 4030 case TCP_NODELAY: 4031 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4032 break; 4033 case TCP_CORK: 4034 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4035 break; 4036 case TCP_KEEPIDLE: 4037 val = keepalive_time_when(tp) / HZ; 4038 break; 4039 case TCP_KEEPINTVL: 4040 val = keepalive_intvl_when(tp) / HZ; 4041 break; 4042 case TCP_KEEPCNT: 4043 val = keepalive_probes(tp); 4044 break; 4045 case TCP_SYNCNT: 4046 val = icsk->icsk_syn_retries ? : 4047 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4048 break; 4049 case TCP_LINGER2: 4050 val = tp->linger2; 4051 if (val >= 0) 4052 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4053 break; 4054 case TCP_DEFER_ACCEPT: 4055 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4056 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4057 break; 4058 case TCP_WINDOW_CLAMP: 4059 val = tp->window_clamp; 4060 break; 4061 case TCP_INFO: { 4062 struct tcp_info info; 4063 4064 if (get_user(len, optlen)) 4065 return -EFAULT; 4066 4067 tcp_get_info(sk, &info); 4068 4069 len = min_t(unsigned int, len, sizeof(info)); 4070 if (put_user(len, optlen)) 4071 return -EFAULT; 4072 if (copy_to_user(optval, &info, len)) 4073 return -EFAULT; 4074 return 0; 4075 } 4076 case TCP_CC_INFO: { 4077 const struct tcp_congestion_ops *ca_ops; 4078 union tcp_cc_info info; 4079 size_t sz = 0; 4080 int attr; 4081 4082 if (get_user(len, optlen)) 4083 return -EFAULT; 4084 4085 ca_ops = icsk->icsk_ca_ops; 4086 if (ca_ops && ca_ops->get_info) 4087 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4088 4089 len = min_t(unsigned int, len, sz); 4090 if (put_user(len, optlen)) 4091 return -EFAULT; 4092 if (copy_to_user(optval, &info, len)) 4093 return -EFAULT; 4094 return 0; 4095 } 4096 case TCP_QUICKACK: 4097 val = !inet_csk_in_pingpong_mode(sk); 4098 break; 4099 4100 case TCP_CONGESTION: 4101 if (get_user(len, optlen)) 4102 return -EFAULT; 4103 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4104 if (put_user(len, optlen)) 4105 return -EFAULT; 4106 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4107 return -EFAULT; 4108 return 0; 4109 4110 case TCP_ULP: 4111 if (get_user(len, optlen)) 4112 return -EFAULT; 4113 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4114 if (!icsk->icsk_ulp_ops) { 4115 if (put_user(0, optlen)) 4116 return -EFAULT; 4117 return 0; 4118 } 4119 if (put_user(len, optlen)) 4120 return -EFAULT; 4121 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4122 return -EFAULT; 4123 return 0; 4124 4125 case TCP_FASTOPEN_KEY: { 4126 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4127 unsigned int key_len; 4128 4129 if (get_user(len, optlen)) 4130 return -EFAULT; 4131 4132 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4133 TCP_FASTOPEN_KEY_LENGTH; 4134 len = min_t(unsigned int, len, key_len); 4135 if (put_user(len, optlen)) 4136 return -EFAULT; 4137 if (copy_to_user(optval, key, len)) 4138 return -EFAULT; 4139 return 0; 4140 } 4141 case TCP_THIN_LINEAR_TIMEOUTS: 4142 val = tp->thin_lto; 4143 break; 4144 4145 case TCP_THIN_DUPACK: 4146 val = 0; 4147 break; 4148 4149 case TCP_REPAIR: 4150 val = tp->repair; 4151 break; 4152 4153 case TCP_REPAIR_QUEUE: 4154 if (tp->repair) 4155 val = tp->repair_queue; 4156 else 4157 return -EINVAL; 4158 break; 4159 4160 case TCP_REPAIR_WINDOW: { 4161 struct tcp_repair_window opt; 4162 4163 if (get_user(len, optlen)) 4164 return -EFAULT; 4165 4166 if (len != sizeof(opt)) 4167 return -EINVAL; 4168 4169 if (!tp->repair) 4170 return -EPERM; 4171 4172 opt.snd_wl1 = tp->snd_wl1; 4173 opt.snd_wnd = tp->snd_wnd; 4174 opt.max_window = tp->max_window; 4175 opt.rcv_wnd = tp->rcv_wnd; 4176 opt.rcv_wup = tp->rcv_wup; 4177 4178 if (copy_to_user(optval, &opt, len)) 4179 return -EFAULT; 4180 return 0; 4181 } 4182 case TCP_QUEUE_SEQ: 4183 if (tp->repair_queue == TCP_SEND_QUEUE) 4184 val = tp->write_seq; 4185 else if (tp->repair_queue == TCP_RECV_QUEUE) 4186 val = tp->rcv_nxt; 4187 else 4188 return -EINVAL; 4189 break; 4190 4191 case TCP_USER_TIMEOUT: 4192 val = icsk->icsk_user_timeout; 4193 break; 4194 4195 case TCP_FASTOPEN: 4196 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4197 break; 4198 4199 case TCP_FASTOPEN_CONNECT: 4200 val = tp->fastopen_connect; 4201 break; 4202 4203 case TCP_FASTOPEN_NO_COOKIE: 4204 val = tp->fastopen_no_cookie; 4205 break; 4206 4207 case TCP_TX_DELAY: 4208 val = tp->tcp_tx_delay; 4209 break; 4210 4211 case TCP_TIMESTAMP: 4212 val = tcp_time_stamp_raw() + tp->tsoffset; 4213 break; 4214 case TCP_NOTSENT_LOWAT: 4215 val = tp->notsent_lowat; 4216 break; 4217 case TCP_INQ: 4218 val = tp->recvmsg_inq; 4219 break; 4220 case TCP_SAVE_SYN: 4221 val = tp->save_syn; 4222 break; 4223 case TCP_SAVED_SYN: { 4224 if (get_user(len, optlen)) 4225 return -EFAULT; 4226 4227 lock_sock(sk); 4228 if (tp->saved_syn) { 4229 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4230 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4231 optlen)) { 4232 release_sock(sk); 4233 return -EFAULT; 4234 } 4235 release_sock(sk); 4236 return -EINVAL; 4237 } 4238 len = tcp_saved_syn_len(tp->saved_syn); 4239 if (put_user(len, optlen)) { 4240 release_sock(sk); 4241 return -EFAULT; 4242 } 4243 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4244 release_sock(sk); 4245 return -EFAULT; 4246 } 4247 tcp_saved_syn_free(tp); 4248 release_sock(sk); 4249 } else { 4250 release_sock(sk); 4251 len = 0; 4252 if (put_user(len, optlen)) 4253 return -EFAULT; 4254 } 4255 return 0; 4256 } 4257 #ifdef CONFIG_MMU 4258 case TCP_ZEROCOPY_RECEIVE: { 4259 struct scm_timestamping_internal tss; 4260 struct tcp_zerocopy_receive zc = {}; 4261 int err; 4262 4263 if (get_user(len, optlen)) 4264 return -EFAULT; 4265 if (len < 0 || 4266 len < offsetofend(struct tcp_zerocopy_receive, length)) 4267 return -EINVAL; 4268 if (unlikely(len > sizeof(zc))) { 4269 err = check_zeroed_user(optval + sizeof(zc), 4270 len - sizeof(zc)); 4271 if (err < 1) 4272 return err == 0 ? -EINVAL : err; 4273 len = sizeof(zc); 4274 if (put_user(len, optlen)) 4275 return -EFAULT; 4276 } 4277 if (copy_from_user(&zc, optval, len)) 4278 return -EFAULT; 4279 if (zc.reserved) 4280 return -EINVAL; 4281 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4282 return -EINVAL; 4283 lock_sock(sk); 4284 err = tcp_zerocopy_receive(sk, &zc, &tss); 4285 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4286 &zc, &len, err); 4287 release_sock(sk); 4288 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4289 goto zerocopy_rcv_cmsg; 4290 switch (len) { 4291 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4292 goto zerocopy_rcv_cmsg; 4293 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4294 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4295 case offsetofend(struct tcp_zerocopy_receive, flags): 4296 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4297 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4298 case offsetofend(struct tcp_zerocopy_receive, err): 4299 goto zerocopy_rcv_sk_err; 4300 case offsetofend(struct tcp_zerocopy_receive, inq): 4301 goto zerocopy_rcv_inq; 4302 case offsetofend(struct tcp_zerocopy_receive, length): 4303 default: 4304 goto zerocopy_rcv_out; 4305 } 4306 zerocopy_rcv_cmsg: 4307 if (zc.msg_flags & TCP_CMSG_TS) 4308 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4309 else 4310 zc.msg_flags = 0; 4311 zerocopy_rcv_sk_err: 4312 if (!err) 4313 zc.err = sock_error(sk); 4314 zerocopy_rcv_inq: 4315 zc.inq = tcp_inq_hint(sk); 4316 zerocopy_rcv_out: 4317 if (!err && copy_to_user(optval, &zc, len)) 4318 err = -EFAULT; 4319 return err; 4320 } 4321 #endif 4322 default: 4323 return -ENOPROTOOPT; 4324 } 4325 4326 if (put_user(len, optlen)) 4327 return -EFAULT; 4328 if (copy_to_user(optval, &val, len)) 4329 return -EFAULT; 4330 return 0; 4331 } 4332 4333 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4334 { 4335 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4336 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4337 */ 4338 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4339 return true; 4340 4341 return false; 4342 } 4343 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4344 4345 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4346 int __user *optlen) 4347 { 4348 struct inet_connection_sock *icsk = inet_csk(sk); 4349 4350 if (level != SOL_TCP) 4351 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4352 optval, optlen); 4353 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4354 } 4355 EXPORT_SYMBOL(tcp_getsockopt); 4356 4357 #ifdef CONFIG_TCP_MD5SIG 4358 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4359 static DEFINE_MUTEX(tcp_md5sig_mutex); 4360 static bool tcp_md5sig_pool_populated = false; 4361 4362 static void __tcp_alloc_md5sig_pool(void) 4363 { 4364 struct crypto_ahash *hash; 4365 int cpu; 4366 4367 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4368 if (IS_ERR(hash)) 4369 return; 4370 4371 for_each_possible_cpu(cpu) { 4372 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4373 struct ahash_request *req; 4374 4375 if (!scratch) { 4376 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4377 sizeof(struct tcphdr), 4378 GFP_KERNEL, 4379 cpu_to_node(cpu)); 4380 if (!scratch) 4381 return; 4382 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4383 } 4384 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4385 continue; 4386 4387 req = ahash_request_alloc(hash, GFP_KERNEL); 4388 if (!req) 4389 return; 4390 4391 ahash_request_set_callback(req, 0, NULL, NULL); 4392 4393 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4394 } 4395 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4396 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4397 */ 4398 smp_wmb(); 4399 tcp_md5sig_pool_populated = true; 4400 } 4401 4402 bool tcp_alloc_md5sig_pool(void) 4403 { 4404 if (unlikely(!tcp_md5sig_pool_populated)) { 4405 mutex_lock(&tcp_md5sig_mutex); 4406 4407 if (!tcp_md5sig_pool_populated) { 4408 __tcp_alloc_md5sig_pool(); 4409 if (tcp_md5sig_pool_populated) 4410 static_branch_inc(&tcp_md5_needed); 4411 } 4412 4413 mutex_unlock(&tcp_md5sig_mutex); 4414 } 4415 return tcp_md5sig_pool_populated; 4416 } 4417 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4418 4419 4420 /** 4421 * tcp_get_md5sig_pool - get md5sig_pool for this user 4422 * 4423 * We use percpu structure, so if we succeed, we exit with preemption 4424 * and BH disabled, to make sure another thread or softirq handling 4425 * wont try to get same context. 4426 */ 4427 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4428 { 4429 local_bh_disable(); 4430 4431 if (tcp_md5sig_pool_populated) { 4432 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4433 smp_rmb(); 4434 return this_cpu_ptr(&tcp_md5sig_pool); 4435 } 4436 local_bh_enable(); 4437 return NULL; 4438 } 4439 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4440 4441 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4442 const struct sk_buff *skb, unsigned int header_len) 4443 { 4444 struct scatterlist sg; 4445 const struct tcphdr *tp = tcp_hdr(skb); 4446 struct ahash_request *req = hp->md5_req; 4447 unsigned int i; 4448 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4449 skb_headlen(skb) - header_len : 0; 4450 const struct skb_shared_info *shi = skb_shinfo(skb); 4451 struct sk_buff *frag_iter; 4452 4453 sg_init_table(&sg, 1); 4454 4455 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4456 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4457 if (crypto_ahash_update(req)) 4458 return 1; 4459 4460 for (i = 0; i < shi->nr_frags; ++i) { 4461 const skb_frag_t *f = &shi->frags[i]; 4462 unsigned int offset = skb_frag_off(f); 4463 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4464 4465 sg_set_page(&sg, page, skb_frag_size(f), 4466 offset_in_page(offset)); 4467 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4468 if (crypto_ahash_update(req)) 4469 return 1; 4470 } 4471 4472 skb_walk_frags(skb, frag_iter) 4473 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4474 return 1; 4475 4476 return 0; 4477 } 4478 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4479 4480 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4481 { 4482 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4483 struct scatterlist sg; 4484 4485 sg_init_one(&sg, key->key, keylen); 4486 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4487 4488 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4489 return data_race(crypto_ahash_update(hp->md5_req)); 4490 } 4491 EXPORT_SYMBOL(tcp_md5_hash_key); 4492 4493 /* Called with rcu_read_lock() */ 4494 enum skb_drop_reason 4495 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4496 const void *saddr, const void *daddr, 4497 int family, int dif, int sdif) 4498 { 4499 /* 4500 * This gets called for each TCP segment that arrives 4501 * so we want to be efficient. 4502 * We have 3 drop cases: 4503 * o No MD5 hash and one expected. 4504 * o MD5 hash and we're not expecting one. 4505 * o MD5 hash and its wrong. 4506 */ 4507 const __u8 *hash_location = NULL; 4508 struct tcp_md5sig_key *hash_expected; 4509 const struct tcphdr *th = tcp_hdr(skb); 4510 struct tcp_sock *tp = tcp_sk(sk); 4511 int genhash, l3index; 4512 u8 newhash[16]; 4513 4514 /* sdif set, means packet ingressed via a device 4515 * in an L3 domain and dif is set to the l3mdev 4516 */ 4517 l3index = sdif ? dif : 0; 4518 4519 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4520 hash_location = tcp_parse_md5sig_option(th); 4521 4522 /* We've parsed the options - do we have a hash? */ 4523 if (!hash_expected && !hash_location) 4524 return SKB_NOT_DROPPED_YET; 4525 4526 if (hash_expected && !hash_location) { 4527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4528 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4529 } 4530 4531 if (!hash_expected && hash_location) { 4532 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4533 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4534 } 4535 4536 /* check the signature */ 4537 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4538 NULL, skb); 4539 4540 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4541 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4542 if (family == AF_INET) { 4543 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4544 saddr, ntohs(th->source), 4545 daddr, ntohs(th->dest), 4546 genhash ? " tcp_v4_calc_md5_hash failed" 4547 : "", l3index); 4548 } else { 4549 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4550 genhash ? "failed" : "mismatch", 4551 saddr, ntohs(th->source), 4552 daddr, ntohs(th->dest), l3index); 4553 } 4554 return SKB_DROP_REASON_TCP_MD5FAILURE; 4555 } 4556 return SKB_NOT_DROPPED_YET; 4557 } 4558 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4559 4560 #endif 4561 4562 void tcp_done(struct sock *sk) 4563 { 4564 struct request_sock *req; 4565 4566 /* We might be called with a new socket, after 4567 * inet_csk_prepare_forced_close() has been called 4568 * so we can not use lockdep_sock_is_held(sk) 4569 */ 4570 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4571 4572 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4573 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4574 4575 tcp_set_state(sk, TCP_CLOSE); 4576 tcp_clear_xmit_timers(sk); 4577 if (req) 4578 reqsk_fastopen_remove(sk, req, false); 4579 4580 sk->sk_shutdown = SHUTDOWN_MASK; 4581 4582 if (!sock_flag(sk, SOCK_DEAD)) 4583 sk->sk_state_change(sk); 4584 else 4585 inet_csk_destroy_sock(sk); 4586 } 4587 EXPORT_SYMBOL_GPL(tcp_done); 4588 4589 int tcp_abort(struct sock *sk, int err) 4590 { 4591 int state = inet_sk_state_load(sk); 4592 4593 if (state == TCP_NEW_SYN_RECV) { 4594 struct request_sock *req = inet_reqsk(sk); 4595 4596 local_bh_disable(); 4597 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4598 local_bh_enable(); 4599 return 0; 4600 } 4601 if (state == TCP_TIME_WAIT) { 4602 struct inet_timewait_sock *tw = inet_twsk(sk); 4603 4604 refcount_inc(&tw->tw_refcnt); 4605 local_bh_disable(); 4606 inet_twsk_deschedule_put(tw); 4607 local_bh_enable(); 4608 return 0; 4609 } 4610 4611 /* Don't race with userspace socket closes such as tcp_close. */ 4612 lock_sock(sk); 4613 4614 if (sk->sk_state == TCP_LISTEN) { 4615 tcp_set_state(sk, TCP_CLOSE); 4616 inet_csk_listen_stop(sk); 4617 } 4618 4619 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4620 local_bh_disable(); 4621 bh_lock_sock(sk); 4622 4623 if (!sock_flag(sk, SOCK_DEAD)) { 4624 sk->sk_err = err; 4625 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4626 smp_wmb(); 4627 sk_error_report(sk); 4628 if (tcp_need_reset(sk->sk_state)) 4629 tcp_send_active_reset(sk, GFP_ATOMIC); 4630 tcp_done(sk); 4631 } 4632 4633 bh_unlock_sock(sk); 4634 local_bh_enable(); 4635 tcp_write_queue_purge(sk); 4636 release_sock(sk); 4637 return 0; 4638 } 4639 EXPORT_SYMBOL_GPL(tcp_abort); 4640 4641 extern struct tcp_congestion_ops tcp_reno; 4642 4643 static __initdata unsigned long thash_entries; 4644 static int __init set_thash_entries(char *str) 4645 { 4646 ssize_t ret; 4647 4648 if (!str) 4649 return 0; 4650 4651 ret = kstrtoul(str, 0, &thash_entries); 4652 if (ret) 4653 return 0; 4654 4655 return 1; 4656 } 4657 __setup("thash_entries=", set_thash_entries); 4658 4659 static void __init tcp_init_mem(void) 4660 { 4661 unsigned long limit = nr_free_buffer_pages() / 16; 4662 4663 limit = max(limit, 128UL); 4664 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4665 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4666 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4667 } 4668 4669 void __init tcp_init(void) 4670 { 4671 int max_rshare, max_wshare, cnt; 4672 unsigned long limit; 4673 unsigned int i; 4674 4675 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4676 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4677 sizeof_field(struct sk_buff, cb)); 4678 4679 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4680 4681 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4682 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4683 4684 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4685 thash_entries, 21, /* one slot per 2 MB*/ 4686 0, 64 * 1024); 4687 tcp_hashinfo.bind_bucket_cachep = 4688 kmem_cache_create("tcp_bind_bucket", 4689 sizeof(struct inet_bind_bucket), 0, 4690 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4691 SLAB_ACCOUNT, 4692 NULL); 4693 4694 /* Size and allocate the main established and bind bucket 4695 * hash tables. 4696 * 4697 * The methodology is similar to that of the buffer cache. 4698 */ 4699 tcp_hashinfo.ehash = 4700 alloc_large_system_hash("TCP established", 4701 sizeof(struct inet_ehash_bucket), 4702 thash_entries, 4703 17, /* one slot per 128 KB of memory */ 4704 0, 4705 NULL, 4706 &tcp_hashinfo.ehash_mask, 4707 0, 4708 thash_entries ? 0 : 512 * 1024); 4709 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4710 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4711 4712 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4713 panic("TCP: failed to alloc ehash_locks"); 4714 tcp_hashinfo.bhash = 4715 alloc_large_system_hash("TCP bind", 4716 sizeof(struct inet_bind_hashbucket), 4717 tcp_hashinfo.ehash_mask + 1, 4718 17, /* one slot per 128 KB of memory */ 4719 0, 4720 &tcp_hashinfo.bhash_size, 4721 NULL, 4722 0, 4723 64 * 1024); 4724 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4725 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4726 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4727 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4728 } 4729 4730 4731 cnt = tcp_hashinfo.ehash_mask + 1; 4732 sysctl_tcp_max_orphans = cnt / 2; 4733 4734 tcp_init_mem(); 4735 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4736 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4737 max_wshare = min(4UL*1024*1024, limit); 4738 max_rshare = min(6UL*1024*1024, limit); 4739 4740 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4741 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4742 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4743 4744 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4745 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4746 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4747 4748 pr_info("Hash tables configured (established %u bind %u)\n", 4749 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4750 4751 tcp_v4_init(); 4752 tcp_metrics_init(); 4753 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4754 tcp_tasklet_init(); 4755 mptcp_init(); 4756 } 4757