1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 458 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1175 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1176 uaddr->sa_family == AF_UNSPEC)) 1177 return -EOPNOTSUPP; 1178 if (tp->fastopen_req) 1179 return -EALREADY; /* Another Fast Open is in progress */ 1180 1181 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1182 sk->sk_allocation); 1183 if (unlikely(!tp->fastopen_req)) 1184 return -ENOBUFS; 1185 tp->fastopen_req->data = msg; 1186 tp->fastopen_req->size = size; 1187 tp->fastopen_req->uarg = uarg; 1188 1189 if (inet->defer_connect) { 1190 err = tcp_connect(sk); 1191 /* Same failure procedure as in tcp_v4/6_connect */ 1192 if (err) { 1193 tcp_set_state(sk, TCP_CLOSE); 1194 inet->inet_dport = 0; 1195 sk->sk_route_caps = 0; 1196 } 1197 } 1198 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1199 err = __inet_stream_connect(sk->sk_socket, uaddr, 1200 msg->msg_namelen, flags, 1); 1201 /* fastopen_req could already be freed in __inet_stream_connect 1202 * if the connection times out or gets rst 1203 */ 1204 if (tp->fastopen_req) { 1205 *copied = tp->fastopen_req->copied; 1206 tcp_free_fastopen_req(tp); 1207 inet->defer_connect = 0; 1208 } 1209 return err; 1210 } 1211 1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1213 { 1214 struct tcp_sock *tp = tcp_sk(sk); 1215 struct ubuf_info *uarg = NULL; 1216 struct sk_buff *skb; 1217 struct sockcm_cookie sockc; 1218 int flags, err, copied = 0; 1219 int mss_now = 0, size_goal, copied_syn = 0; 1220 int process_backlog = 0; 1221 bool zc = false; 1222 long timeo; 1223 1224 flags = msg->msg_flags; 1225 1226 if ((flags & MSG_ZEROCOPY) && size) { 1227 skb = tcp_write_queue_tail(sk); 1228 1229 if (msg->msg_ubuf) { 1230 uarg = msg->msg_ubuf; 1231 net_zcopy_get(uarg); 1232 zc = sk->sk_route_caps & NETIF_F_SG; 1233 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1234 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1235 if (!uarg) { 1236 err = -ENOBUFS; 1237 goto out_err; 1238 } 1239 zc = sk->sk_route_caps & NETIF_F_SG; 1240 if (!zc) 1241 uarg->zerocopy = 0; 1242 } 1243 } 1244 1245 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1246 !tp->repair) { 1247 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1248 if (err == -EINPROGRESS && copied_syn > 0) 1249 goto out; 1250 else if (err) 1251 goto out_err; 1252 } 1253 1254 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1255 1256 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1257 1258 /* Wait for a connection to finish. One exception is TCP Fast Open 1259 * (passive side) where data is allowed to be sent before a connection 1260 * is fully established. 1261 */ 1262 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1263 !tcp_passive_fastopen(sk)) { 1264 err = sk_stream_wait_connect(sk, &timeo); 1265 if (err != 0) 1266 goto do_error; 1267 } 1268 1269 if (unlikely(tp->repair)) { 1270 if (tp->repair_queue == TCP_RECV_QUEUE) { 1271 copied = tcp_send_rcvq(sk, msg, size); 1272 goto out_nopush; 1273 } 1274 1275 err = -EINVAL; 1276 if (tp->repair_queue == TCP_NO_QUEUE) 1277 goto out_err; 1278 1279 /* 'common' sending to sendq */ 1280 } 1281 1282 sockcm_init(&sockc, sk); 1283 if (msg->msg_controllen) { 1284 err = sock_cmsg_send(sk, msg, &sockc); 1285 if (unlikely(err)) { 1286 err = -EINVAL; 1287 goto out_err; 1288 } 1289 } 1290 1291 /* This should be in poll */ 1292 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1293 1294 /* Ok commence sending. */ 1295 copied = 0; 1296 1297 restart: 1298 mss_now = tcp_send_mss(sk, &size_goal, flags); 1299 1300 err = -EPIPE; 1301 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1302 goto do_error; 1303 1304 while (msg_data_left(msg)) { 1305 int copy = 0; 1306 1307 skb = tcp_write_queue_tail(sk); 1308 if (skb) 1309 copy = size_goal - skb->len; 1310 1311 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1312 bool first_skb; 1313 1314 new_segment: 1315 if (!sk_stream_memory_free(sk)) 1316 goto wait_for_space; 1317 1318 if (unlikely(process_backlog >= 16)) { 1319 process_backlog = 0; 1320 if (sk_flush_backlog(sk)) 1321 goto restart; 1322 } 1323 first_skb = tcp_rtx_and_write_queues_empty(sk); 1324 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1325 first_skb); 1326 if (!skb) 1327 goto wait_for_space; 1328 1329 process_backlog++; 1330 1331 tcp_skb_entail(sk, skb); 1332 copy = size_goal; 1333 1334 /* All packets are restored as if they have 1335 * already been sent. skb_mstamp_ns isn't set to 1336 * avoid wrong rtt estimation. 1337 */ 1338 if (tp->repair) 1339 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1340 } 1341 1342 /* Try to append data to the end of skb. */ 1343 if (copy > msg_data_left(msg)) 1344 copy = msg_data_left(msg); 1345 1346 if (!zc) { 1347 bool merge = true; 1348 int i = skb_shinfo(skb)->nr_frags; 1349 struct page_frag *pfrag = sk_page_frag(sk); 1350 1351 if (!sk_page_frag_refill(sk, pfrag)) 1352 goto wait_for_space; 1353 1354 if (!skb_can_coalesce(skb, i, pfrag->page, 1355 pfrag->offset)) { 1356 if (i >= sysctl_max_skb_frags) { 1357 tcp_mark_push(tp, skb); 1358 goto new_segment; 1359 } 1360 merge = false; 1361 } 1362 1363 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1364 1365 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1366 if (tcp_downgrade_zcopy_pure(sk, skb)) 1367 goto wait_for_space; 1368 skb_zcopy_downgrade_managed(skb); 1369 } 1370 1371 copy = tcp_wmem_schedule(sk, copy); 1372 if (!copy) 1373 goto wait_for_space; 1374 1375 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1376 pfrag->page, 1377 pfrag->offset, 1378 copy); 1379 if (err) 1380 goto do_error; 1381 1382 /* Update the skb. */ 1383 if (merge) { 1384 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1385 } else { 1386 skb_fill_page_desc(skb, i, pfrag->page, 1387 pfrag->offset, copy); 1388 page_ref_inc(pfrag->page); 1389 } 1390 pfrag->offset += copy; 1391 } else { 1392 /* First append to a fragless skb builds initial 1393 * pure zerocopy skb 1394 */ 1395 if (!skb->len) 1396 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1397 1398 if (!skb_zcopy_pure(skb)) { 1399 copy = tcp_wmem_schedule(sk, copy); 1400 if (!copy) 1401 goto wait_for_space; 1402 } 1403 1404 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1405 if (err == -EMSGSIZE || err == -EEXIST) { 1406 tcp_mark_push(tp, skb); 1407 goto new_segment; 1408 } 1409 if (err < 0) 1410 goto do_error; 1411 copy = err; 1412 } 1413 1414 if (!copied) 1415 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1416 1417 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1418 TCP_SKB_CB(skb)->end_seq += copy; 1419 tcp_skb_pcount_set(skb, 0); 1420 1421 copied += copy; 1422 if (!msg_data_left(msg)) { 1423 if (unlikely(flags & MSG_EOR)) 1424 TCP_SKB_CB(skb)->eor = 1; 1425 goto out; 1426 } 1427 1428 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1429 continue; 1430 1431 if (forced_push(tp)) { 1432 tcp_mark_push(tp, skb); 1433 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1434 } else if (skb == tcp_send_head(sk)) 1435 tcp_push_one(sk, mss_now); 1436 continue; 1437 1438 wait_for_space: 1439 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1440 if (copied) 1441 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1442 TCP_NAGLE_PUSH, size_goal); 1443 1444 err = sk_stream_wait_memory(sk, &timeo); 1445 if (err != 0) 1446 goto do_error; 1447 1448 mss_now = tcp_send_mss(sk, &size_goal, flags); 1449 } 1450 1451 out: 1452 if (copied) { 1453 tcp_tx_timestamp(sk, sockc.tsflags); 1454 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1455 } 1456 out_nopush: 1457 net_zcopy_put(uarg); 1458 return copied + copied_syn; 1459 1460 do_error: 1461 tcp_remove_empty_skb(sk); 1462 1463 if (copied + copied_syn) 1464 goto out; 1465 out_err: 1466 net_zcopy_put_abort(uarg, true); 1467 err = sk_stream_error(sk, flags, err); 1468 /* make sure we wake any epoll edge trigger waiter */ 1469 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1470 sk->sk_write_space(sk); 1471 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1472 } 1473 return err; 1474 } 1475 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1476 1477 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1478 { 1479 int ret; 1480 1481 lock_sock(sk); 1482 ret = tcp_sendmsg_locked(sk, msg, size); 1483 release_sock(sk); 1484 1485 return ret; 1486 } 1487 EXPORT_SYMBOL(tcp_sendmsg); 1488 1489 /* 1490 * Handle reading urgent data. BSD has very simple semantics for 1491 * this, no blocking and very strange errors 8) 1492 */ 1493 1494 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1495 { 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 /* No URG data to read. */ 1499 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1500 tp->urg_data == TCP_URG_READ) 1501 return -EINVAL; /* Yes this is right ! */ 1502 1503 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1504 return -ENOTCONN; 1505 1506 if (tp->urg_data & TCP_URG_VALID) { 1507 int err = 0; 1508 char c = tp->urg_data; 1509 1510 if (!(flags & MSG_PEEK)) 1511 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1512 1513 /* Read urgent data. */ 1514 msg->msg_flags |= MSG_OOB; 1515 1516 if (len > 0) { 1517 if (!(flags & MSG_TRUNC)) 1518 err = memcpy_to_msg(msg, &c, 1); 1519 len = 1; 1520 } else 1521 msg->msg_flags |= MSG_TRUNC; 1522 1523 return err ? -EFAULT : len; 1524 } 1525 1526 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1527 return 0; 1528 1529 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1530 * the available implementations agree in this case: 1531 * this call should never block, independent of the 1532 * blocking state of the socket. 1533 * Mike <pall@rz.uni-karlsruhe.de> 1534 */ 1535 return -EAGAIN; 1536 } 1537 1538 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1539 { 1540 struct sk_buff *skb; 1541 int copied = 0, err = 0; 1542 1543 /* XXX -- need to support SO_PEEK_OFF */ 1544 1545 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1546 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1547 if (err) 1548 return err; 1549 copied += skb->len; 1550 } 1551 1552 skb_queue_walk(&sk->sk_write_queue, skb) { 1553 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1554 if (err) 1555 break; 1556 1557 copied += skb->len; 1558 } 1559 1560 return err ?: copied; 1561 } 1562 1563 /* Clean up the receive buffer for full frames taken by the user, 1564 * then send an ACK if necessary. COPIED is the number of bytes 1565 * tcp_recvmsg has given to the user so far, it speeds up the 1566 * calculation of whether or not we must ACK for the sake of 1567 * a window update. 1568 */ 1569 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1570 { 1571 struct tcp_sock *tp = tcp_sk(sk); 1572 bool time_to_ack = false; 1573 1574 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1575 1576 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1577 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1578 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1579 1580 if (inet_csk_ack_scheduled(sk)) { 1581 const struct inet_connection_sock *icsk = inet_csk(sk); 1582 1583 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1584 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1585 /* 1586 * If this read emptied read buffer, we send ACK, if 1587 * connection is not bidirectional, user drained 1588 * receive buffer and there was a small segment 1589 * in queue. 1590 */ 1591 (copied > 0 && 1592 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1593 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1594 !inet_csk_in_pingpong_mode(sk))) && 1595 !atomic_read(&sk->sk_rmem_alloc))) 1596 time_to_ack = true; 1597 } 1598 1599 /* We send an ACK if we can now advertise a non-zero window 1600 * which has been raised "significantly". 1601 * 1602 * Even if window raised up to infinity, do not send window open ACK 1603 * in states, where we will not receive more. It is useless. 1604 */ 1605 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1606 __u32 rcv_window_now = tcp_receive_window(tp); 1607 1608 /* Optimize, __tcp_select_window() is not cheap. */ 1609 if (2*rcv_window_now <= tp->window_clamp) { 1610 __u32 new_window = __tcp_select_window(sk); 1611 1612 /* Send ACK now, if this read freed lots of space 1613 * in our buffer. Certainly, new_window is new window. 1614 * We can advertise it now, if it is not less than current one. 1615 * "Lots" means "at least twice" here. 1616 */ 1617 if (new_window && new_window >= 2 * rcv_window_now) 1618 time_to_ack = true; 1619 } 1620 } 1621 if (time_to_ack) 1622 tcp_send_ack(sk); 1623 } 1624 1625 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1626 { 1627 __skb_unlink(skb, &sk->sk_receive_queue); 1628 if (likely(skb->destructor == sock_rfree)) { 1629 sock_rfree(skb); 1630 skb->destructor = NULL; 1631 skb->sk = NULL; 1632 return skb_attempt_defer_free(skb); 1633 } 1634 __kfree_skb(skb); 1635 } 1636 1637 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1638 { 1639 struct sk_buff *skb; 1640 u32 offset; 1641 1642 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1643 offset = seq - TCP_SKB_CB(skb)->seq; 1644 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1645 pr_err_once("%s: found a SYN, please report !\n", __func__); 1646 offset--; 1647 } 1648 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1649 *off = offset; 1650 return skb; 1651 } 1652 /* This looks weird, but this can happen if TCP collapsing 1653 * splitted a fat GRO packet, while we released socket lock 1654 * in skb_splice_bits() 1655 */ 1656 tcp_eat_recv_skb(sk, skb); 1657 } 1658 return NULL; 1659 } 1660 1661 /* 1662 * This routine provides an alternative to tcp_recvmsg() for routines 1663 * that would like to handle copying from skbuffs directly in 'sendfile' 1664 * fashion. 1665 * Note: 1666 * - It is assumed that the socket was locked by the caller. 1667 * - The routine does not block. 1668 * - At present, there is no support for reading OOB data 1669 * or for 'peeking' the socket using this routine 1670 * (although both would be easy to implement). 1671 */ 1672 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1673 sk_read_actor_t recv_actor) 1674 { 1675 struct sk_buff *skb; 1676 struct tcp_sock *tp = tcp_sk(sk); 1677 u32 seq = tp->copied_seq; 1678 u32 offset; 1679 int copied = 0; 1680 1681 if (sk->sk_state == TCP_LISTEN) 1682 return -ENOTCONN; 1683 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1684 if (offset < skb->len) { 1685 int used; 1686 size_t len; 1687 1688 len = skb->len - offset; 1689 /* Stop reading if we hit a patch of urgent data */ 1690 if (unlikely(tp->urg_data)) { 1691 u32 urg_offset = tp->urg_seq - seq; 1692 if (urg_offset < len) 1693 len = urg_offset; 1694 if (!len) 1695 break; 1696 } 1697 used = recv_actor(desc, skb, offset, len); 1698 if (used <= 0) { 1699 if (!copied) 1700 copied = used; 1701 break; 1702 } 1703 if (WARN_ON_ONCE(used > len)) 1704 used = len; 1705 seq += used; 1706 copied += used; 1707 offset += used; 1708 1709 /* If recv_actor drops the lock (e.g. TCP splice 1710 * receive) the skb pointer might be invalid when 1711 * getting here: tcp_collapse might have deleted it 1712 * while aggregating skbs from the socket queue. 1713 */ 1714 skb = tcp_recv_skb(sk, seq - 1, &offset); 1715 if (!skb) 1716 break; 1717 /* TCP coalescing might have appended data to the skb. 1718 * Try to splice more frags 1719 */ 1720 if (offset + 1 != skb->len) 1721 continue; 1722 } 1723 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1724 tcp_eat_recv_skb(sk, skb); 1725 ++seq; 1726 break; 1727 } 1728 tcp_eat_recv_skb(sk, skb); 1729 if (!desc->count) 1730 break; 1731 WRITE_ONCE(tp->copied_seq, seq); 1732 } 1733 WRITE_ONCE(tp->copied_seq, seq); 1734 1735 tcp_rcv_space_adjust(sk); 1736 1737 /* Clean up data we have read: This will do ACK frames. */ 1738 if (copied > 0) { 1739 tcp_recv_skb(sk, seq, &offset); 1740 tcp_cleanup_rbuf(sk, copied); 1741 } 1742 return copied; 1743 } 1744 EXPORT_SYMBOL(tcp_read_sock); 1745 1746 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1747 { 1748 struct tcp_sock *tp = tcp_sk(sk); 1749 u32 seq = tp->copied_seq; 1750 struct sk_buff *skb; 1751 int copied = 0; 1752 u32 offset; 1753 1754 if (sk->sk_state == TCP_LISTEN) 1755 return -ENOTCONN; 1756 1757 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1758 int used; 1759 1760 __skb_unlink(skb, &sk->sk_receive_queue); 1761 used = recv_actor(sk, skb); 1762 if (used <= 0) { 1763 if (!copied) 1764 copied = used; 1765 break; 1766 } 1767 seq += used; 1768 copied += used; 1769 1770 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1771 consume_skb(skb); 1772 ++seq; 1773 break; 1774 } 1775 consume_skb(skb); 1776 break; 1777 } 1778 WRITE_ONCE(tp->copied_seq, seq); 1779 1780 tcp_rcv_space_adjust(sk); 1781 1782 /* Clean up data we have read: This will do ACK frames. */ 1783 if (copied > 0) 1784 tcp_cleanup_rbuf(sk, copied); 1785 1786 return copied; 1787 } 1788 EXPORT_SYMBOL(tcp_read_skb); 1789 1790 int tcp_peek_len(struct socket *sock) 1791 { 1792 return tcp_inq(sock->sk); 1793 } 1794 EXPORT_SYMBOL(tcp_peek_len); 1795 1796 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1797 int tcp_set_rcvlowat(struct sock *sk, int val) 1798 { 1799 int cap; 1800 1801 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1802 cap = sk->sk_rcvbuf >> 1; 1803 else 1804 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1805 val = min(val, cap); 1806 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1807 1808 /* Check if we need to signal EPOLLIN right now */ 1809 tcp_data_ready(sk); 1810 1811 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1812 return 0; 1813 1814 val <<= 1; 1815 if (val > sk->sk_rcvbuf) { 1816 WRITE_ONCE(sk->sk_rcvbuf, val); 1817 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1818 } 1819 return 0; 1820 } 1821 EXPORT_SYMBOL(tcp_set_rcvlowat); 1822 1823 void tcp_update_recv_tstamps(struct sk_buff *skb, 1824 struct scm_timestamping_internal *tss) 1825 { 1826 if (skb->tstamp) 1827 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1828 else 1829 tss->ts[0] = (struct timespec64) {0}; 1830 1831 if (skb_hwtstamps(skb)->hwtstamp) 1832 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1833 else 1834 tss->ts[2] = (struct timespec64) {0}; 1835 } 1836 1837 #ifdef CONFIG_MMU 1838 static const struct vm_operations_struct tcp_vm_ops = { 1839 }; 1840 1841 int tcp_mmap(struct file *file, struct socket *sock, 1842 struct vm_area_struct *vma) 1843 { 1844 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1845 return -EPERM; 1846 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1847 1848 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1849 vma->vm_flags |= VM_MIXEDMAP; 1850 1851 vma->vm_ops = &tcp_vm_ops; 1852 return 0; 1853 } 1854 EXPORT_SYMBOL(tcp_mmap); 1855 1856 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1857 u32 *offset_frag) 1858 { 1859 skb_frag_t *frag; 1860 1861 if (unlikely(offset_skb >= skb->len)) 1862 return NULL; 1863 1864 offset_skb -= skb_headlen(skb); 1865 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1866 return NULL; 1867 1868 frag = skb_shinfo(skb)->frags; 1869 while (offset_skb) { 1870 if (skb_frag_size(frag) > offset_skb) { 1871 *offset_frag = offset_skb; 1872 return frag; 1873 } 1874 offset_skb -= skb_frag_size(frag); 1875 ++frag; 1876 } 1877 *offset_frag = 0; 1878 return frag; 1879 } 1880 1881 static bool can_map_frag(const skb_frag_t *frag) 1882 { 1883 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1884 } 1885 1886 static int find_next_mappable_frag(const skb_frag_t *frag, 1887 int remaining_in_skb) 1888 { 1889 int offset = 0; 1890 1891 if (likely(can_map_frag(frag))) 1892 return 0; 1893 1894 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1895 offset += skb_frag_size(frag); 1896 ++frag; 1897 } 1898 return offset; 1899 } 1900 1901 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1902 struct tcp_zerocopy_receive *zc, 1903 struct sk_buff *skb, u32 offset) 1904 { 1905 u32 frag_offset, partial_frag_remainder = 0; 1906 int mappable_offset; 1907 skb_frag_t *frag; 1908 1909 /* worst case: skip to next skb. try to improve on this case below */ 1910 zc->recv_skip_hint = skb->len - offset; 1911 1912 /* Find the frag containing this offset (and how far into that frag) */ 1913 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1914 if (!frag) 1915 return; 1916 1917 if (frag_offset) { 1918 struct skb_shared_info *info = skb_shinfo(skb); 1919 1920 /* We read part of the last frag, must recvmsg() rest of skb. */ 1921 if (frag == &info->frags[info->nr_frags - 1]) 1922 return; 1923 1924 /* Else, we must at least read the remainder in this frag. */ 1925 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1926 zc->recv_skip_hint -= partial_frag_remainder; 1927 ++frag; 1928 } 1929 1930 /* partial_frag_remainder: If part way through a frag, must read rest. 1931 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1932 * in partial_frag_remainder. 1933 */ 1934 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1935 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1936 } 1937 1938 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1939 int flags, struct scm_timestamping_internal *tss, 1940 int *cmsg_flags); 1941 static int receive_fallback_to_copy(struct sock *sk, 1942 struct tcp_zerocopy_receive *zc, int inq, 1943 struct scm_timestamping_internal *tss) 1944 { 1945 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1946 struct msghdr msg = {}; 1947 struct iovec iov; 1948 int err; 1949 1950 zc->length = 0; 1951 zc->recv_skip_hint = 0; 1952 1953 if (copy_address != zc->copybuf_address) 1954 return -EINVAL; 1955 1956 err = import_single_range(READ, (void __user *)copy_address, 1957 inq, &iov, &msg.msg_iter); 1958 if (err) 1959 return err; 1960 1961 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1962 tss, &zc->msg_flags); 1963 if (err < 0) 1964 return err; 1965 1966 zc->copybuf_len = err; 1967 if (likely(zc->copybuf_len)) { 1968 struct sk_buff *skb; 1969 u32 offset; 1970 1971 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1972 if (skb) 1973 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1974 } 1975 return 0; 1976 } 1977 1978 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1979 struct sk_buff *skb, u32 copylen, 1980 u32 *offset, u32 *seq) 1981 { 1982 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1983 struct msghdr msg = {}; 1984 struct iovec iov; 1985 int err; 1986 1987 if (copy_address != zc->copybuf_address) 1988 return -EINVAL; 1989 1990 err = import_single_range(READ, (void __user *)copy_address, 1991 copylen, &iov, &msg.msg_iter); 1992 if (err) 1993 return err; 1994 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1995 if (err) 1996 return err; 1997 zc->recv_skip_hint -= copylen; 1998 *offset += copylen; 1999 *seq += copylen; 2000 return (__s32)copylen; 2001 } 2002 2003 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2004 struct sock *sk, 2005 struct sk_buff *skb, 2006 u32 *seq, 2007 s32 copybuf_len, 2008 struct scm_timestamping_internal *tss) 2009 { 2010 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2011 2012 if (!copylen) 2013 return 0; 2014 /* skb is null if inq < PAGE_SIZE. */ 2015 if (skb) { 2016 offset = *seq - TCP_SKB_CB(skb)->seq; 2017 } else { 2018 skb = tcp_recv_skb(sk, *seq, &offset); 2019 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2020 tcp_update_recv_tstamps(skb, tss); 2021 zc->msg_flags |= TCP_CMSG_TS; 2022 } 2023 } 2024 2025 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2026 seq); 2027 return zc->copybuf_len < 0 ? 0 : copylen; 2028 } 2029 2030 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2031 struct page **pending_pages, 2032 unsigned long pages_remaining, 2033 unsigned long *address, 2034 u32 *length, 2035 u32 *seq, 2036 struct tcp_zerocopy_receive *zc, 2037 u32 total_bytes_to_map, 2038 int err) 2039 { 2040 /* At least one page did not map. Try zapping if we skipped earlier. */ 2041 if (err == -EBUSY && 2042 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2043 u32 maybe_zap_len; 2044 2045 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2046 *length + /* Mapped or pending */ 2047 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2048 zap_page_range(vma, *address, maybe_zap_len); 2049 err = 0; 2050 } 2051 2052 if (!err) { 2053 unsigned long leftover_pages = pages_remaining; 2054 int bytes_mapped; 2055 2056 /* We called zap_page_range, try to reinsert. */ 2057 err = vm_insert_pages(vma, *address, 2058 pending_pages, 2059 &pages_remaining); 2060 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2061 *seq += bytes_mapped; 2062 *address += bytes_mapped; 2063 } 2064 if (err) { 2065 /* Either we were unable to zap, OR we zapped, retried an 2066 * insert, and still had an issue. Either ways, pages_remaining 2067 * is the number of pages we were unable to map, and we unroll 2068 * some state we speculatively touched before. 2069 */ 2070 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2071 2072 *length -= bytes_not_mapped; 2073 zc->recv_skip_hint += bytes_not_mapped; 2074 } 2075 return err; 2076 } 2077 2078 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2079 struct page **pages, 2080 unsigned int pages_to_map, 2081 unsigned long *address, 2082 u32 *length, 2083 u32 *seq, 2084 struct tcp_zerocopy_receive *zc, 2085 u32 total_bytes_to_map) 2086 { 2087 unsigned long pages_remaining = pages_to_map; 2088 unsigned int pages_mapped; 2089 unsigned int bytes_mapped; 2090 int err; 2091 2092 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2093 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2094 bytes_mapped = PAGE_SIZE * pages_mapped; 2095 /* Even if vm_insert_pages fails, it may have partially succeeded in 2096 * mapping (some but not all of the pages). 2097 */ 2098 *seq += bytes_mapped; 2099 *address += bytes_mapped; 2100 2101 if (likely(!err)) 2102 return 0; 2103 2104 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2105 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2106 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2107 err); 2108 } 2109 2110 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2111 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2112 struct tcp_zerocopy_receive *zc, 2113 struct scm_timestamping_internal *tss) 2114 { 2115 unsigned long msg_control_addr; 2116 struct msghdr cmsg_dummy; 2117 2118 msg_control_addr = (unsigned long)zc->msg_control; 2119 cmsg_dummy.msg_control = (void *)msg_control_addr; 2120 cmsg_dummy.msg_controllen = 2121 (__kernel_size_t)zc->msg_controllen; 2122 cmsg_dummy.msg_flags = in_compat_syscall() 2123 ? MSG_CMSG_COMPAT : 0; 2124 cmsg_dummy.msg_control_is_user = true; 2125 zc->msg_flags = 0; 2126 if (zc->msg_control == msg_control_addr && 2127 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2128 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2129 zc->msg_control = (__u64) 2130 ((uintptr_t)cmsg_dummy.msg_control); 2131 zc->msg_controllen = 2132 (__u64)cmsg_dummy.msg_controllen; 2133 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2134 } 2135 } 2136 2137 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2138 static int tcp_zerocopy_receive(struct sock *sk, 2139 struct tcp_zerocopy_receive *zc, 2140 struct scm_timestamping_internal *tss) 2141 { 2142 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2143 unsigned long address = (unsigned long)zc->address; 2144 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2145 s32 copybuf_len = zc->copybuf_len; 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 const skb_frag_t *frags = NULL; 2148 unsigned int pages_to_map = 0; 2149 struct vm_area_struct *vma; 2150 struct sk_buff *skb = NULL; 2151 u32 seq = tp->copied_seq; 2152 u32 total_bytes_to_map; 2153 int inq = tcp_inq(sk); 2154 int ret; 2155 2156 zc->copybuf_len = 0; 2157 zc->msg_flags = 0; 2158 2159 if (address & (PAGE_SIZE - 1) || address != zc->address) 2160 return -EINVAL; 2161 2162 if (sk->sk_state == TCP_LISTEN) 2163 return -ENOTCONN; 2164 2165 sock_rps_record_flow(sk); 2166 2167 if (inq && inq <= copybuf_len) 2168 return receive_fallback_to_copy(sk, zc, inq, tss); 2169 2170 if (inq < PAGE_SIZE) { 2171 zc->length = 0; 2172 zc->recv_skip_hint = inq; 2173 if (!inq && sock_flag(sk, SOCK_DONE)) 2174 return -EIO; 2175 return 0; 2176 } 2177 2178 mmap_read_lock(current->mm); 2179 2180 vma = vma_lookup(current->mm, address); 2181 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2182 mmap_read_unlock(current->mm); 2183 return -EINVAL; 2184 } 2185 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2186 avail_len = min_t(u32, vma_len, inq); 2187 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2188 if (total_bytes_to_map) { 2189 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2190 zap_page_range(vma, address, total_bytes_to_map); 2191 zc->length = total_bytes_to_map; 2192 zc->recv_skip_hint = 0; 2193 } else { 2194 zc->length = avail_len; 2195 zc->recv_skip_hint = avail_len; 2196 } 2197 ret = 0; 2198 while (length + PAGE_SIZE <= zc->length) { 2199 int mappable_offset; 2200 struct page *page; 2201 2202 if (zc->recv_skip_hint < PAGE_SIZE) { 2203 u32 offset_frag; 2204 2205 if (skb) { 2206 if (zc->recv_skip_hint > 0) 2207 break; 2208 skb = skb->next; 2209 offset = seq - TCP_SKB_CB(skb)->seq; 2210 } else { 2211 skb = tcp_recv_skb(sk, seq, &offset); 2212 } 2213 2214 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2215 tcp_update_recv_tstamps(skb, tss); 2216 zc->msg_flags |= TCP_CMSG_TS; 2217 } 2218 zc->recv_skip_hint = skb->len - offset; 2219 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2220 if (!frags || offset_frag) 2221 break; 2222 } 2223 2224 mappable_offset = find_next_mappable_frag(frags, 2225 zc->recv_skip_hint); 2226 if (mappable_offset) { 2227 zc->recv_skip_hint = mappable_offset; 2228 break; 2229 } 2230 page = skb_frag_page(frags); 2231 prefetchw(page); 2232 pages[pages_to_map++] = page; 2233 length += PAGE_SIZE; 2234 zc->recv_skip_hint -= PAGE_SIZE; 2235 frags++; 2236 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2237 zc->recv_skip_hint < PAGE_SIZE) { 2238 /* Either full batch, or we're about to go to next skb 2239 * (and we cannot unroll failed ops across skbs). 2240 */ 2241 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2242 pages_to_map, 2243 &address, &length, 2244 &seq, zc, 2245 total_bytes_to_map); 2246 if (ret) 2247 goto out; 2248 pages_to_map = 0; 2249 } 2250 } 2251 if (pages_to_map) { 2252 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2253 &address, &length, &seq, 2254 zc, total_bytes_to_map); 2255 } 2256 out: 2257 mmap_read_unlock(current->mm); 2258 /* Try to copy straggler data. */ 2259 if (!ret) 2260 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2261 2262 if (length + copylen) { 2263 WRITE_ONCE(tp->copied_seq, seq); 2264 tcp_rcv_space_adjust(sk); 2265 2266 /* Clean up data we have read: This will do ACK frames. */ 2267 tcp_recv_skb(sk, seq, &offset); 2268 tcp_cleanup_rbuf(sk, length + copylen); 2269 ret = 0; 2270 if (length == zc->length) 2271 zc->recv_skip_hint = 0; 2272 } else { 2273 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2274 ret = -EIO; 2275 } 2276 zc->length = length; 2277 return ret; 2278 } 2279 #endif 2280 2281 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2282 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2283 struct scm_timestamping_internal *tss) 2284 { 2285 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2286 bool has_timestamping = false; 2287 2288 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2289 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2290 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2291 if (new_tstamp) { 2292 struct __kernel_timespec kts = { 2293 .tv_sec = tss->ts[0].tv_sec, 2294 .tv_nsec = tss->ts[0].tv_nsec, 2295 }; 2296 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2297 sizeof(kts), &kts); 2298 } else { 2299 struct __kernel_old_timespec ts_old = { 2300 .tv_sec = tss->ts[0].tv_sec, 2301 .tv_nsec = tss->ts[0].tv_nsec, 2302 }; 2303 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2304 sizeof(ts_old), &ts_old); 2305 } 2306 } else { 2307 if (new_tstamp) { 2308 struct __kernel_sock_timeval stv = { 2309 .tv_sec = tss->ts[0].tv_sec, 2310 .tv_usec = tss->ts[0].tv_nsec / 1000, 2311 }; 2312 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2313 sizeof(stv), &stv); 2314 } else { 2315 struct __kernel_old_timeval tv = { 2316 .tv_sec = tss->ts[0].tv_sec, 2317 .tv_usec = tss->ts[0].tv_nsec / 1000, 2318 }; 2319 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2320 sizeof(tv), &tv); 2321 } 2322 } 2323 } 2324 2325 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2326 has_timestamping = true; 2327 else 2328 tss->ts[0] = (struct timespec64) {0}; 2329 } 2330 2331 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2332 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2333 has_timestamping = true; 2334 else 2335 tss->ts[2] = (struct timespec64) {0}; 2336 } 2337 2338 if (has_timestamping) { 2339 tss->ts[1] = (struct timespec64) {0}; 2340 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2341 put_cmsg_scm_timestamping64(msg, tss); 2342 else 2343 put_cmsg_scm_timestamping(msg, tss); 2344 } 2345 } 2346 2347 static int tcp_inq_hint(struct sock *sk) 2348 { 2349 const struct tcp_sock *tp = tcp_sk(sk); 2350 u32 copied_seq = READ_ONCE(tp->copied_seq); 2351 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2352 int inq; 2353 2354 inq = rcv_nxt - copied_seq; 2355 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2356 lock_sock(sk); 2357 inq = tp->rcv_nxt - tp->copied_seq; 2358 release_sock(sk); 2359 } 2360 /* After receiving a FIN, tell the user-space to continue reading 2361 * by returning a non-zero inq. 2362 */ 2363 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2364 inq = 1; 2365 return inq; 2366 } 2367 2368 /* 2369 * This routine copies from a sock struct into the user buffer. 2370 * 2371 * Technical note: in 2.3 we work on _locked_ socket, so that 2372 * tricks with *seq access order and skb->users are not required. 2373 * Probably, code can be easily improved even more. 2374 */ 2375 2376 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2377 int flags, struct scm_timestamping_internal *tss, 2378 int *cmsg_flags) 2379 { 2380 struct tcp_sock *tp = tcp_sk(sk); 2381 int copied = 0; 2382 u32 peek_seq; 2383 u32 *seq; 2384 unsigned long used; 2385 int err; 2386 int target; /* Read at least this many bytes */ 2387 long timeo; 2388 struct sk_buff *skb, *last; 2389 u32 urg_hole = 0; 2390 2391 err = -ENOTCONN; 2392 if (sk->sk_state == TCP_LISTEN) 2393 goto out; 2394 2395 if (tp->recvmsg_inq) { 2396 *cmsg_flags = TCP_CMSG_INQ; 2397 msg->msg_get_inq = 1; 2398 } 2399 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2400 2401 /* Urgent data needs to be handled specially. */ 2402 if (flags & MSG_OOB) 2403 goto recv_urg; 2404 2405 if (unlikely(tp->repair)) { 2406 err = -EPERM; 2407 if (!(flags & MSG_PEEK)) 2408 goto out; 2409 2410 if (tp->repair_queue == TCP_SEND_QUEUE) 2411 goto recv_sndq; 2412 2413 err = -EINVAL; 2414 if (tp->repair_queue == TCP_NO_QUEUE) 2415 goto out; 2416 2417 /* 'common' recv queue MSG_PEEK-ing */ 2418 } 2419 2420 seq = &tp->copied_seq; 2421 if (flags & MSG_PEEK) { 2422 peek_seq = tp->copied_seq; 2423 seq = &peek_seq; 2424 } 2425 2426 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2427 2428 do { 2429 u32 offset; 2430 2431 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2432 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2433 if (copied) 2434 break; 2435 if (signal_pending(current)) { 2436 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2437 break; 2438 } 2439 } 2440 2441 /* Next get a buffer. */ 2442 2443 last = skb_peek_tail(&sk->sk_receive_queue); 2444 skb_queue_walk(&sk->sk_receive_queue, skb) { 2445 last = skb; 2446 /* Now that we have two receive queues this 2447 * shouldn't happen. 2448 */ 2449 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2450 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2451 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2452 flags)) 2453 break; 2454 2455 offset = *seq - TCP_SKB_CB(skb)->seq; 2456 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2457 pr_err_once("%s: found a SYN, please report !\n", __func__); 2458 offset--; 2459 } 2460 if (offset < skb->len) 2461 goto found_ok_skb; 2462 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2463 goto found_fin_ok; 2464 WARN(!(flags & MSG_PEEK), 2465 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2466 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2467 } 2468 2469 /* Well, if we have backlog, try to process it now yet. */ 2470 2471 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2472 break; 2473 2474 if (copied) { 2475 if (!timeo || 2476 sk->sk_err || 2477 sk->sk_state == TCP_CLOSE || 2478 (sk->sk_shutdown & RCV_SHUTDOWN) || 2479 signal_pending(current)) 2480 break; 2481 } else { 2482 if (sock_flag(sk, SOCK_DONE)) 2483 break; 2484 2485 if (sk->sk_err) { 2486 copied = sock_error(sk); 2487 break; 2488 } 2489 2490 if (sk->sk_shutdown & RCV_SHUTDOWN) 2491 break; 2492 2493 if (sk->sk_state == TCP_CLOSE) { 2494 /* This occurs when user tries to read 2495 * from never connected socket. 2496 */ 2497 copied = -ENOTCONN; 2498 break; 2499 } 2500 2501 if (!timeo) { 2502 copied = -EAGAIN; 2503 break; 2504 } 2505 2506 if (signal_pending(current)) { 2507 copied = sock_intr_errno(timeo); 2508 break; 2509 } 2510 } 2511 2512 if (copied >= target) { 2513 /* Do not sleep, just process backlog. */ 2514 __sk_flush_backlog(sk); 2515 } else { 2516 tcp_cleanup_rbuf(sk, copied); 2517 sk_wait_data(sk, &timeo, last); 2518 } 2519 2520 if ((flags & MSG_PEEK) && 2521 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2522 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2523 current->comm, 2524 task_pid_nr(current)); 2525 peek_seq = tp->copied_seq; 2526 } 2527 continue; 2528 2529 found_ok_skb: 2530 /* Ok so how much can we use? */ 2531 used = skb->len - offset; 2532 if (len < used) 2533 used = len; 2534 2535 /* Do we have urgent data here? */ 2536 if (unlikely(tp->urg_data)) { 2537 u32 urg_offset = tp->urg_seq - *seq; 2538 if (urg_offset < used) { 2539 if (!urg_offset) { 2540 if (!sock_flag(sk, SOCK_URGINLINE)) { 2541 WRITE_ONCE(*seq, *seq + 1); 2542 urg_hole++; 2543 offset++; 2544 used--; 2545 if (!used) 2546 goto skip_copy; 2547 } 2548 } else 2549 used = urg_offset; 2550 } 2551 } 2552 2553 if (!(flags & MSG_TRUNC)) { 2554 err = skb_copy_datagram_msg(skb, offset, msg, used); 2555 if (err) { 2556 /* Exception. Bailout! */ 2557 if (!copied) 2558 copied = -EFAULT; 2559 break; 2560 } 2561 } 2562 2563 WRITE_ONCE(*seq, *seq + used); 2564 copied += used; 2565 len -= used; 2566 2567 tcp_rcv_space_adjust(sk); 2568 2569 skip_copy: 2570 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2571 WRITE_ONCE(tp->urg_data, 0); 2572 tcp_fast_path_check(sk); 2573 } 2574 2575 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2576 tcp_update_recv_tstamps(skb, tss); 2577 *cmsg_flags |= TCP_CMSG_TS; 2578 } 2579 2580 if (used + offset < skb->len) 2581 continue; 2582 2583 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2584 goto found_fin_ok; 2585 if (!(flags & MSG_PEEK)) 2586 tcp_eat_recv_skb(sk, skb); 2587 continue; 2588 2589 found_fin_ok: 2590 /* Process the FIN. */ 2591 WRITE_ONCE(*seq, *seq + 1); 2592 if (!(flags & MSG_PEEK)) 2593 tcp_eat_recv_skb(sk, skb); 2594 break; 2595 } while (len > 0); 2596 2597 /* According to UNIX98, msg_name/msg_namelen are ignored 2598 * on connected socket. I was just happy when found this 8) --ANK 2599 */ 2600 2601 /* Clean up data we have read: This will do ACK frames. */ 2602 tcp_cleanup_rbuf(sk, copied); 2603 return copied; 2604 2605 out: 2606 return err; 2607 2608 recv_urg: 2609 err = tcp_recv_urg(sk, msg, len, flags); 2610 goto out; 2611 2612 recv_sndq: 2613 err = tcp_peek_sndq(sk, msg, len); 2614 goto out; 2615 } 2616 2617 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2618 int *addr_len) 2619 { 2620 int cmsg_flags = 0, ret; 2621 struct scm_timestamping_internal tss; 2622 2623 if (unlikely(flags & MSG_ERRQUEUE)) 2624 return inet_recv_error(sk, msg, len, addr_len); 2625 2626 if (sk_can_busy_loop(sk) && 2627 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2628 sk->sk_state == TCP_ESTABLISHED) 2629 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2630 2631 lock_sock(sk); 2632 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2633 release_sock(sk); 2634 2635 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2636 if (cmsg_flags & TCP_CMSG_TS) 2637 tcp_recv_timestamp(msg, sk, &tss); 2638 if (msg->msg_get_inq) { 2639 msg->msg_inq = tcp_inq_hint(sk); 2640 if (cmsg_flags & TCP_CMSG_INQ) 2641 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2642 sizeof(msg->msg_inq), &msg->msg_inq); 2643 } 2644 } 2645 return ret; 2646 } 2647 EXPORT_SYMBOL(tcp_recvmsg); 2648 2649 void tcp_set_state(struct sock *sk, int state) 2650 { 2651 int oldstate = sk->sk_state; 2652 2653 /* We defined a new enum for TCP states that are exported in BPF 2654 * so as not force the internal TCP states to be frozen. The 2655 * following checks will detect if an internal state value ever 2656 * differs from the BPF value. If this ever happens, then we will 2657 * need to remap the internal value to the BPF value before calling 2658 * tcp_call_bpf_2arg. 2659 */ 2660 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2661 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2662 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2663 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2664 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2665 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2666 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2667 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2668 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2669 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2670 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2671 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2672 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2673 2674 /* bpf uapi header bpf.h defines an anonymous enum with values 2675 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2676 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2677 * But clang built vmlinux does not have this enum in DWARF 2678 * since clang removes the above code before generating IR/debuginfo. 2679 * Let us explicitly emit the type debuginfo to ensure the 2680 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2681 * regardless of which compiler is used. 2682 */ 2683 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2684 2685 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2686 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2687 2688 switch (state) { 2689 case TCP_ESTABLISHED: 2690 if (oldstate != TCP_ESTABLISHED) 2691 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2692 break; 2693 2694 case TCP_CLOSE: 2695 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2696 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2697 2698 sk->sk_prot->unhash(sk); 2699 if (inet_csk(sk)->icsk_bind_hash && 2700 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2701 inet_put_port(sk); 2702 fallthrough; 2703 default: 2704 if (oldstate == TCP_ESTABLISHED) 2705 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2706 } 2707 2708 /* Change state AFTER socket is unhashed to avoid closed 2709 * socket sitting in hash tables. 2710 */ 2711 inet_sk_state_store(sk, state); 2712 } 2713 EXPORT_SYMBOL_GPL(tcp_set_state); 2714 2715 /* 2716 * State processing on a close. This implements the state shift for 2717 * sending our FIN frame. Note that we only send a FIN for some 2718 * states. A shutdown() may have already sent the FIN, or we may be 2719 * closed. 2720 */ 2721 2722 static const unsigned char new_state[16] = { 2723 /* current state: new state: action: */ 2724 [0 /* (Invalid) */] = TCP_CLOSE, 2725 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2726 [TCP_SYN_SENT] = TCP_CLOSE, 2727 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2728 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2729 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2730 [TCP_TIME_WAIT] = TCP_CLOSE, 2731 [TCP_CLOSE] = TCP_CLOSE, 2732 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2733 [TCP_LAST_ACK] = TCP_LAST_ACK, 2734 [TCP_LISTEN] = TCP_CLOSE, 2735 [TCP_CLOSING] = TCP_CLOSING, 2736 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2737 }; 2738 2739 static int tcp_close_state(struct sock *sk) 2740 { 2741 int next = (int)new_state[sk->sk_state]; 2742 int ns = next & TCP_STATE_MASK; 2743 2744 tcp_set_state(sk, ns); 2745 2746 return next & TCP_ACTION_FIN; 2747 } 2748 2749 /* 2750 * Shutdown the sending side of a connection. Much like close except 2751 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2752 */ 2753 2754 void tcp_shutdown(struct sock *sk, int how) 2755 { 2756 /* We need to grab some memory, and put together a FIN, 2757 * and then put it into the queue to be sent. 2758 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2759 */ 2760 if (!(how & SEND_SHUTDOWN)) 2761 return; 2762 2763 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2764 if ((1 << sk->sk_state) & 2765 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2766 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2767 /* Clear out any half completed packets. FIN if needed. */ 2768 if (tcp_close_state(sk)) 2769 tcp_send_fin(sk); 2770 } 2771 } 2772 EXPORT_SYMBOL(tcp_shutdown); 2773 2774 int tcp_orphan_count_sum(void) 2775 { 2776 int i, total = 0; 2777 2778 for_each_possible_cpu(i) 2779 total += per_cpu(tcp_orphan_count, i); 2780 2781 return max(total, 0); 2782 } 2783 2784 static int tcp_orphan_cache; 2785 static struct timer_list tcp_orphan_timer; 2786 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2787 2788 static void tcp_orphan_update(struct timer_list *unused) 2789 { 2790 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2791 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2792 } 2793 2794 static bool tcp_too_many_orphans(int shift) 2795 { 2796 return READ_ONCE(tcp_orphan_cache) << shift > 2797 READ_ONCE(sysctl_tcp_max_orphans); 2798 } 2799 2800 bool tcp_check_oom(struct sock *sk, int shift) 2801 { 2802 bool too_many_orphans, out_of_socket_memory; 2803 2804 too_many_orphans = tcp_too_many_orphans(shift); 2805 out_of_socket_memory = tcp_out_of_memory(sk); 2806 2807 if (too_many_orphans) 2808 net_info_ratelimited("too many orphaned sockets\n"); 2809 if (out_of_socket_memory) 2810 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2811 return too_many_orphans || out_of_socket_memory; 2812 } 2813 2814 void __tcp_close(struct sock *sk, long timeout) 2815 { 2816 struct sk_buff *skb; 2817 int data_was_unread = 0; 2818 int state; 2819 2820 sk->sk_shutdown = SHUTDOWN_MASK; 2821 2822 if (sk->sk_state == TCP_LISTEN) { 2823 tcp_set_state(sk, TCP_CLOSE); 2824 2825 /* Special case. */ 2826 inet_csk_listen_stop(sk); 2827 2828 goto adjudge_to_death; 2829 } 2830 2831 /* We need to flush the recv. buffs. We do this only on the 2832 * descriptor close, not protocol-sourced closes, because the 2833 * reader process may not have drained the data yet! 2834 */ 2835 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2836 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2837 2838 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2839 len--; 2840 data_was_unread += len; 2841 __kfree_skb(skb); 2842 } 2843 2844 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2845 if (sk->sk_state == TCP_CLOSE) 2846 goto adjudge_to_death; 2847 2848 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2849 * data was lost. To witness the awful effects of the old behavior of 2850 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2851 * GET in an FTP client, suspend the process, wait for the client to 2852 * advertise a zero window, then kill -9 the FTP client, wheee... 2853 * Note: timeout is always zero in such a case. 2854 */ 2855 if (unlikely(tcp_sk(sk)->repair)) { 2856 sk->sk_prot->disconnect(sk, 0); 2857 } else if (data_was_unread) { 2858 /* Unread data was tossed, zap the connection. */ 2859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2860 tcp_set_state(sk, TCP_CLOSE); 2861 tcp_send_active_reset(sk, sk->sk_allocation); 2862 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2863 /* Check zero linger _after_ checking for unread data. */ 2864 sk->sk_prot->disconnect(sk, 0); 2865 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2866 } else if (tcp_close_state(sk)) { 2867 /* We FIN if the application ate all the data before 2868 * zapping the connection. 2869 */ 2870 2871 /* RED-PEN. Formally speaking, we have broken TCP state 2872 * machine. State transitions: 2873 * 2874 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2875 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2876 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2877 * 2878 * are legal only when FIN has been sent (i.e. in window), 2879 * rather than queued out of window. Purists blame. 2880 * 2881 * F.e. "RFC state" is ESTABLISHED, 2882 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2883 * 2884 * The visible declinations are that sometimes 2885 * we enter time-wait state, when it is not required really 2886 * (harmless), do not send active resets, when they are 2887 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2888 * they look as CLOSING or LAST_ACK for Linux) 2889 * Probably, I missed some more holelets. 2890 * --ANK 2891 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2892 * in a single packet! (May consider it later but will 2893 * probably need API support or TCP_CORK SYN-ACK until 2894 * data is written and socket is closed.) 2895 */ 2896 tcp_send_fin(sk); 2897 } 2898 2899 sk_stream_wait_close(sk, timeout); 2900 2901 adjudge_to_death: 2902 state = sk->sk_state; 2903 sock_hold(sk); 2904 sock_orphan(sk); 2905 2906 local_bh_disable(); 2907 bh_lock_sock(sk); 2908 /* remove backlog if any, without releasing ownership. */ 2909 __release_sock(sk); 2910 2911 this_cpu_inc(tcp_orphan_count); 2912 2913 /* Have we already been destroyed by a softirq or backlog? */ 2914 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2915 goto out; 2916 2917 /* This is a (useful) BSD violating of the RFC. There is a 2918 * problem with TCP as specified in that the other end could 2919 * keep a socket open forever with no application left this end. 2920 * We use a 1 minute timeout (about the same as BSD) then kill 2921 * our end. If they send after that then tough - BUT: long enough 2922 * that we won't make the old 4*rto = almost no time - whoops 2923 * reset mistake. 2924 * 2925 * Nope, it was not mistake. It is really desired behaviour 2926 * f.e. on http servers, when such sockets are useless, but 2927 * consume significant resources. Let's do it with special 2928 * linger2 option. --ANK 2929 */ 2930 2931 if (sk->sk_state == TCP_FIN_WAIT2) { 2932 struct tcp_sock *tp = tcp_sk(sk); 2933 if (tp->linger2 < 0) { 2934 tcp_set_state(sk, TCP_CLOSE); 2935 tcp_send_active_reset(sk, GFP_ATOMIC); 2936 __NET_INC_STATS(sock_net(sk), 2937 LINUX_MIB_TCPABORTONLINGER); 2938 } else { 2939 const int tmo = tcp_fin_time(sk); 2940 2941 if (tmo > TCP_TIMEWAIT_LEN) { 2942 inet_csk_reset_keepalive_timer(sk, 2943 tmo - TCP_TIMEWAIT_LEN); 2944 } else { 2945 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2946 goto out; 2947 } 2948 } 2949 } 2950 if (sk->sk_state != TCP_CLOSE) { 2951 if (tcp_check_oom(sk, 0)) { 2952 tcp_set_state(sk, TCP_CLOSE); 2953 tcp_send_active_reset(sk, GFP_ATOMIC); 2954 __NET_INC_STATS(sock_net(sk), 2955 LINUX_MIB_TCPABORTONMEMORY); 2956 } else if (!check_net(sock_net(sk))) { 2957 /* Not possible to send reset; just close */ 2958 tcp_set_state(sk, TCP_CLOSE); 2959 } 2960 } 2961 2962 if (sk->sk_state == TCP_CLOSE) { 2963 struct request_sock *req; 2964 2965 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2966 lockdep_sock_is_held(sk)); 2967 /* We could get here with a non-NULL req if the socket is 2968 * aborted (e.g., closed with unread data) before 3WHS 2969 * finishes. 2970 */ 2971 if (req) 2972 reqsk_fastopen_remove(sk, req, false); 2973 inet_csk_destroy_sock(sk); 2974 } 2975 /* Otherwise, socket is reprieved until protocol close. */ 2976 2977 out: 2978 bh_unlock_sock(sk); 2979 local_bh_enable(); 2980 } 2981 2982 void tcp_close(struct sock *sk, long timeout) 2983 { 2984 lock_sock(sk); 2985 __tcp_close(sk, timeout); 2986 release_sock(sk); 2987 sock_put(sk); 2988 } 2989 EXPORT_SYMBOL(tcp_close); 2990 2991 /* These states need RST on ABORT according to RFC793 */ 2992 2993 static inline bool tcp_need_reset(int state) 2994 { 2995 return (1 << state) & 2996 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2997 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2998 } 2999 3000 static void tcp_rtx_queue_purge(struct sock *sk) 3001 { 3002 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3003 3004 tcp_sk(sk)->highest_sack = NULL; 3005 while (p) { 3006 struct sk_buff *skb = rb_to_skb(p); 3007 3008 p = rb_next(p); 3009 /* Since we are deleting whole queue, no need to 3010 * list_del(&skb->tcp_tsorted_anchor) 3011 */ 3012 tcp_rtx_queue_unlink(skb, sk); 3013 tcp_wmem_free_skb(sk, skb); 3014 } 3015 } 3016 3017 void tcp_write_queue_purge(struct sock *sk) 3018 { 3019 struct sk_buff *skb; 3020 3021 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3022 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3023 tcp_skb_tsorted_anchor_cleanup(skb); 3024 tcp_wmem_free_skb(sk, skb); 3025 } 3026 tcp_rtx_queue_purge(sk); 3027 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3028 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3029 tcp_sk(sk)->packets_out = 0; 3030 inet_csk(sk)->icsk_backoff = 0; 3031 } 3032 3033 int tcp_disconnect(struct sock *sk, int flags) 3034 { 3035 struct inet_sock *inet = inet_sk(sk); 3036 struct inet_connection_sock *icsk = inet_csk(sk); 3037 struct tcp_sock *tp = tcp_sk(sk); 3038 int old_state = sk->sk_state; 3039 u32 seq; 3040 3041 if (old_state != TCP_CLOSE) 3042 tcp_set_state(sk, TCP_CLOSE); 3043 3044 /* ABORT function of RFC793 */ 3045 if (old_state == TCP_LISTEN) { 3046 inet_csk_listen_stop(sk); 3047 } else if (unlikely(tp->repair)) { 3048 sk->sk_err = ECONNABORTED; 3049 } else if (tcp_need_reset(old_state) || 3050 (tp->snd_nxt != tp->write_seq && 3051 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3052 /* The last check adjusts for discrepancy of Linux wrt. RFC 3053 * states 3054 */ 3055 tcp_send_active_reset(sk, gfp_any()); 3056 sk->sk_err = ECONNRESET; 3057 } else if (old_state == TCP_SYN_SENT) 3058 sk->sk_err = ECONNRESET; 3059 3060 tcp_clear_xmit_timers(sk); 3061 __skb_queue_purge(&sk->sk_receive_queue); 3062 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3063 WRITE_ONCE(tp->urg_data, 0); 3064 tcp_write_queue_purge(sk); 3065 tcp_fastopen_active_disable_ofo_check(sk); 3066 skb_rbtree_purge(&tp->out_of_order_queue); 3067 3068 inet->inet_dport = 0; 3069 3070 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3071 inet_reset_saddr(sk); 3072 3073 sk->sk_shutdown = 0; 3074 sock_reset_flag(sk, SOCK_DONE); 3075 tp->srtt_us = 0; 3076 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3077 tp->rcv_rtt_last_tsecr = 0; 3078 3079 seq = tp->write_seq + tp->max_window + 2; 3080 if (!seq) 3081 seq = 1; 3082 WRITE_ONCE(tp->write_seq, seq); 3083 3084 icsk->icsk_backoff = 0; 3085 icsk->icsk_probes_out = 0; 3086 icsk->icsk_probes_tstamp = 0; 3087 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3088 icsk->icsk_rto_min = TCP_RTO_MIN; 3089 icsk->icsk_delack_max = TCP_DELACK_MAX; 3090 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3091 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3092 tp->snd_cwnd_cnt = 0; 3093 tp->window_clamp = 0; 3094 tp->delivered = 0; 3095 tp->delivered_ce = 0; 3096 if (icsk->icsk_ca_ops->release) 3097 icsk->icsk_ca_ops->release(sk); 3098 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3099 icsk->icsk_ca_initialized = 0; 3100 tcp_set_ca_state(sk, TCP_CA_Open); 3101 tp->is_sack_reneg = 0; 3102 tcp_clear_retrans(tp); 3103 tp->total_retrans = 0; 3104 inet_csk_delack_init(sk); 3105 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3106 * issue in __tcp_select_window() 3107 */ 3108 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3109 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3110 __sk_dst_reset(sk); 3111 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3112 tcp_saved_syn_free(tp); 3113 tp->compressed_ack = 0; 3114 tp->segs_in = 0; 3115 tp->segs_out = 0; 3116 tp->bytes_sent = 0; 3117 tp->bytes_acked = 0; 3118 tp->bytes_received = 0; 3119 tp->bytes_retrans = 0; 3120 tp->data_segs_in = 0; 3121 tp->data_segs_out = 0; 3122 tp->duplicate_sack[0].start_seq = 0; 3123 tp->duplicate_sack[0].end_seq = 0; 3124 tp->dsack_dups = 0; 3125 tp->reord_seen = 0; 3126 tp->retrans_out = 0; 3127 tp->sacked_out = 0; 3128 tp->tlp_high_seq = 0; 3129 tp->last_oow_ack_time = 0; 3130 /* There's a bubble in the pipe until at least the first ACK. */ 3131 tp->app_limited = ~0U; 3132 tp->rack.mstamp = 0; 3133 tp->rack.advanced = 0; 3134 tp->rack.reo_wnd_steps = 1; 3135 tp->rack.last_delivered = 0; 3136 tp->rack.reo_wnd_persist = 0; 3137 tp->rack.dsack_seen = 0; 3138 tp->syn_data_acked = 0; 3139 tp->rx_opt.saw_tstamp = 0; 3140 tp->rx_opt.dsack = 0; 3141 tp->rx_opt.num_sacks = 0; 3142 tp->rcv_ooopack = 0; 3143 3144 3145 /* Clean up fastopen related fields */ 3146 tcp_free_fastopen_req(tp); 3147 inet->defer_connect = 0; 3148 tp->fastopen_client_fail = 0; 3149 3150 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3151 3152 if (sk->sk_frag.page) { 3153 put_page(sk->sk_frag.page); 3154 sk->sk_frag.page = NULL; 3155 sk->sk_frag.offset = 0; 3156 } 3157 sk_error_report(sk); 3158 return 0; 3159 } 3160 EXPORT_SYMBOL(tcp_disconnect); 3161 3162 static inline bool tcp_can_repair_sock(const struct sock *sk) 3163 { 3164 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3165 (sk->sk_state != TCP_LISTEN); 3166 } 3167 3168 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3169 { 3170 struct tcp_repair_window opt; 3171 3172 if (!tp->repair) 3173 return -EPERM; 3174 3175 if (len != sizeof(opt)) 3176 return -EINVAL; 3177 3178 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3179 return -EFAULT; 3180 3181 if (opt.max_window < opt.snd_wnd) 3182 return -EINVAL; 3183 3184 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3185 return -EINVAL; 3186 3187 if (after(opt.rcv_wup, tp->rcv_nxt)) 3188 return -EINVAL; 3189 3190 tp->snd_wl1 = opt.snd_wl1; 3191 tp->snd_wnd = opt.snd_wnd; 3192 tp->max_window = opt.max_window; 3193 3194 tp->rcv_wnd = opt.rcv_wnd; 3195 tp->rcv_wup = opt.rcv_wup; 3196 3197 return 0; 3198 } 3199 3200 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3201 unsigned int len) 3202 { 3203 struct tcp_sock *tp = tcp_sk(sk); 3204 struct tcp_repair_opt opt; 3205 size_t offset = 0; 3206 3207 while (len >= sizeof(opt)) { 3208 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3209 return -EFAULT; 3210 3211 offset += sizeof(opt); 3212 len -= sizeof(opt); 3213 3214 switch (opt.opt_code) { 3215 case TCPOPT_MSS: 3216 tp->rx_opt.mss_clamp = opt.opt_val; 3217 tcp_mtup_init(sk); 3218 break; 3219 case TCPOPT_WINDOW: 3220 { 3221 u16 snd_wscale = opt.opt_val & 0xFFFF; 3222 u16 rcv_wscale = opt.opt_val >> 16; 3223 3224 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3225 return -EFBIG; 3226 3227 tp->rx_opt.snd_wscale = snd_wscale; 3228 tp->rx_opt.rcv_wscale = rcv_wscale; 3229 tp->rx_opt.wscale_ok = 1; 3230 } 3231 break; 3232 case TCPOPT_SACK_PERM: 3233 if (opt.opt_val != 0) 3234 return -EINVAL; 3235 3236 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3237 break; 3238 case TCPOPT_TIMESTAMP: 3239 if (opt.opt_val != 0) 3240 return -EINVAL; 3241 3242 tp->rx_opt.tstamp_ok = 1; 3243 break; 3244 } 3245 } 3246 3247 return 0; 3248 } 3249 3250 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3251 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3252 3253 static void tcp_enable_tx_delay(void) 3254 { 3255 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3256 static int __tcp_tx_delay_enabled = 0; 3257 3258 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3259 static_branch_enable(&tcp_tx_delay_enabled); 3260 pr_info("TCP_TX_DELAY enabled\n"); 3261 } 3262 } 3263 } 3264 3265 /* When set indicates to always queue non-full frames. Later the user clears 3266 * this option and we transmit any pending partial frames in the queue. This is 3267 * meant to be used alongside sendfile() to get properly filled frames when the 3268 * user (for example) must write out headers with a write() call first and then 3269 * use sendfile to send out the data parts. 3270 * 3271 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3272 * TCP_NODELAY. 3273 */ 3274 void __tcp_sock_set_cork(struct sock *sk, bool on) 3275 { 3276 struct tcp_sock *tp = tcp_sk(sk); 3277 3278 if (on) { 3279 tp->nonagle |= TCP_NAGLE_CORK; 3280 } else { 3281 tp->nonagle &= ~TCP_NAGLE_CORK; 3282 if (tp->nonagle & TCP_NAGLE_OFF) 3283 tp->nonagle |= TCP_NAGLE_PUSH; 3284 tcp_push_pending_frames(sk); 3285 } 3286 } 3287 3288 void tcp_sock_set_cork(struct sock *sk, bool on) 3289 { 3290 lock_sock(sk); 3291 __tcp_sock_set_cork(sk, on); 3292 release_sock(sk); 3293 } 3294 EXPORT_SYMBOL(tcp_sock_set_cork); 3295 3296 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3297 * remembered, but it is not activated until cork is cleared. 3298 * 3299 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3300 * even TCP_CORK for currently queued segments. 3301 */ 3302 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3303 { 3304 if (on) { 3305 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3306 tcp_push_pending_frames(sk); 3307 } else { 3308 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3309 } 3310 } 3311 3312 void tcp_sock_set_nodelay(struct sock *sk) 3313 { 3314 lock_sock(sk); 3315 __tcp_sock_set_nodelay(sk, true); 3316 release_sock(sk); 3317 } 3318 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3319 3320 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3321 { 3322 if (!val) { 3323 inet_csk_enter_pingpong_mode(sk); 3324 return; 3325 } 3326 3327 inet_csk_exit_pingpong_mode(sk); 3328 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3329 inet_csk_ack_scheduled(sk)) { 3330 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3331 tcp_cleanup_rbuf(sk, 1); 3332 if (!(val & 1)) 3333 inet_csk_enter_pingpong_mode(sk); 3334 } 3335 } 3336 3337 void tcp_sock_set_quickack(struct sock *sk, int val) 3338 { 3339 lock_sock(sk); 3340 __tcp_sock_set_quickack(sk, val); 3341 release_sock(sk); 3342 } 3343 EXPORT_SYMBOL(tcp_sock_set_quickack); 3344 3345 int tcp_sock_set_syncnt(struct sock *sk, int val) 3346 { 3347 if (val < 1 || val > MAX_TCP_SYNCNT) 3348 return -EINVAL; 3349 3350 lock_sock(sk); 3351 inet_csk(sk)->icsk_syn_retries = val; 3352 release_sock(sk); 3353 return 0; 3354 } 3355 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3356 3357 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3358 { 3359 lock_sock(sk); 3360 inet_csk(sk)->icsk_user_timeout = val; 3361 release_sock(sk); 3362 } 3363 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3364 3365 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3366 { 3367 struct tcp_sock *tp = tcp_sk(sk); 3368 3369 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3370 return -EINVAL; 3371 3372 tp->keepalive_time = val * HZ; 3373 if (sock_flag(sk, SOCK_KEEPOPEN) && 3374 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3375 u32 elapsed = keepalive_time_elapsed(tp); 3376 3377 if (tp->keepalive_time > elapsed) 3378 elapsed = tp->keepalive_time - elapsed; 3379 else 3380 elapsed = 0; 3381 inet_csk_reset_keepalive_timer(sk, elapsed); 3382 } 3383 3384 return 0; 3385 } 3386 3387 int tcp_sock_set_keepidle(struct sock *sk, int val) 3388 { 3389 int err; 3390 3391 lock_sock(sk); 3392 err = tcp_sock_set_keepidle_locked(sk, val); 3393 release_sock(sk); 3394 return err; 3395 } 3396 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3397 3398 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3399 { 3400 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3401 return -EINVAL; 3402 3403 lock_sock(sk); 3404 tcp_sk(sk)->keepalive_intvl = val * HZ; 3405 release_sock(sk); 3406 return 0; 3407 } 3408 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3409 3410 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3411 { 3412 if (val < 1 || val > MAX_TCP_KEEPCNT) 3413 return -EINVAL; 3414 3415 lock_sock(sk); 3416 tcp_sk(sk)->keepalive_probes = val; 3417 release_sock(sk); 3418 return 0; 3419 } 3420 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3421 3422 int tcp_set_window_clamp(struct sock *sk, int val) 3423 { 3424 struct tcp_sock *tp = tcp_sk(sk); 3425 3426 if (!val) { 3427 if (sk->sk_state != TCP_CLOSE) 3428 return -EINVAL; 3429 tp->window_clamp = 0; 3430 } else { 3431 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3432 SOCK_MIN_RCVBUF / 2 : val; 3433 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3434 } 3435 return 0; 3436 } 3437 3438 /* 3439 * Socket option code for TCP. 3440 */ 3441 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3442 sockptr_t optval, unsigned int optlen) 3443 { 3444 struct tcp_sock *tp = tcp_sk(sk); 3445 struct inet_connection_sock *icsk = inet_csk(sk); 3446 struct net *net = sock_net(sk); 3447 int val; 3448 int err = 0; 3449 3450 /* These are data/string values, all the others are ints */ 3451 switch (optname) { 3452 case TCP_CONGESTION: { 3453 char name[TCP_CA_NAME_MAX]; 3454 3455 if (optlen < 1) 3456 return -EINVAL; 3457 3458 val = strncpy_from_sockptr(name, optval, 3459 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3460 if (val < 0) 3461 return -EFAULT; 3462 name[val] = 0; 3463 3464 lock_sock(sk); 3465 err = tcp_set_congestion_control(sk, name, true, 3466 ns_capable(sock_net(sk)->user_ns, 3467 CAP_NET_ADMIN)); 3468 release_sock(sk); 3469 return err; 3470 } 3471 case TCP_ULP: { 3472 char name[TCP_ULP_NAME_MAX]; 3473 3474 if (optlen < 1) 3475 return -EINVAL; 3476 3477 val = strncpy_from_sockptr(name, optval, 3478 min_t(long, TCP_ULP_NAME_MAX - 1, 3479 optlen)); 3480 if (val < 0) 3481 return -EFAULT; 3482 name[val] = 0; 3483 3484 lock_sock(sk); 3485 err = tcp_set_ulp(sk, name); 3486 release_sock(sk); 3487 return err; 3488 } 3489 case TCP_FASTOPEN_KEY: { 3490 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3491 __u8 *backup_key = NULL; 3492 3493 /* Allow a backup key as well to facilitate key rotation 3494 * First key is the active one. 3495 */ 3496 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3497 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3498 return -EINVAL; 3499 3500 if (copy_from_sockptr(key, optval, optlen)) 3501 return -EFAULT; 3502 3503 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3504 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3505 3506 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3507 } 3508 default: 3509 /* fallthru */ 3510 break; 3511 } 3512 3513 if (optlen < sizeof(int)) 3514 return -EINVAL; 3515 3516 if (copy_from_sockptr(&val, optval, sizeof(val))) 3517 return -EFAULT; 3518 3519 lock_sock(sk); 3520 3521 switch (optname) { 3522 case TCP_MAXSEG: 3523 /* Values greater than interface MTU won't take effect. However 3524 * at the point when this call is done we typically don't yet 3525 * know which interface is going to be used 3526 */ 3527 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3528 err = -EINVAL; 3529 break; 3530 } 3531 tp->rx_opt.user_mss = val; 3532 break; 3533 3534 case TCP_NODELAY: 3535 __tcp_sock_set_nodelay(sk, val); 3536 break; 3537 3538 case TCP_THIN_LINEAR_TIMEOUTS: 3539 if (val < 0 || val > 1) 3540 err = -EINVAL; 3541 else 3542 tp->thin_lto = val; 3543 break; 3544 3545 case TCP_THIN_DUPACK: 3546 if (val < 0 || val > 1) 3547 err = -EINVAL; 3548 break; 3549 3550 case TCP_REPAIR: 3551 if (!tcp_can_repair_sock(sk)) 3552 err = -EPERM; 3553 else if (val == TCP_REPAIR_ON) { 3554 tp->repair = 1; 3555 sk->sk_reuse = SK_FORCE_REUSE; 3556 tp->repair_queue = TCP_NO_QUEUE; 3557 } else if (val == TCP_REPAIR_OFF) { 3558 tp->repair = 0; 3559 sk->sk_reuse = SK_NO_REUSE; 3560 tcp_send_window_probe(sk); 3561 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3562 tp->repair = 0; 3563 sk->sk_reuse = SK_NO_REUSE; 3564 } else 3565 err = -EINVAL; 3566 3567 break; 3568 3569 case TCP_REPAIR_QUEUE: 3570 if (!tp->repair) 3571 err = -EPERM; 3572 else if ((unsigned int)val < TCP_QUEUES_NR) 3573 tp->repair_queue = val; 3574 else 3575 err = -EINVAL; 3576 break; 3577 3578 case TCP_QUEUE_SEQ: 3579 if (sk->sk_state != TCP_CLOSE) { 3580 err = -EPERM; 3581 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3582 if (!tcp_rtx_queue_empty(sk)) 3583 err = -EPERM; 3584 else 3585 WRITE_ONCE(tp->write_seq, val); 3586 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3587 if (tp->rcv_nxt != tp->copied_seq) { 3588 err = -EPERM; 3589 } else { 3590 WRITE_ONCE(tp->rcv_nxt, val); 3591 WRITE_ONCE(tp->copied_seq, val); 3592 } 3593 } else { 3594 err = -EINVAL; 3595 } 3596 break; 3597 3598 case TCP_REPAIR_OPTIONS: 3599 if (!tp->repair) 3600 err = -EINVAL; 3601 else if (sk->sk_state == TCP_ESTABLISHED) 3602 err = tcp_repair_options_est(sk, optval, optlen); 3603 else 3604 err = -EPERM; 3605 break; 3606 3607 case TCP_CORK: 3608 __tcp_sock_set_cork(sk, val); 3609 break; 3610 3611 case TCP_KEEPIDLE: 3612 err = tcp_sock_set_keepidle_locked(sk, val); 3613 break; 3614 case TCP_KEEPINTVL: 3615 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3616 err = -EINVAL; 3617 else 3618 tp->keepalive_intvl = val * HZ; 3619 break; 3620 case TCP_KEEPCNT: 3621 if (val < 1 || val > MAX_TCP_KEEPCNT) 3622 err = -EINVAL; 3623 else 3624 tp->keepalive_probes = val; 3625 break; 3626 case TCP_SYNCNT: 3627 if (val < 1 || val > MAX_TCP_SYNCNT) 3628 err = -EINVAL; 3629 else 3630 icsk->icsk_syn_retries = val; 3631 break; 3632 3633 case TCP_SAVE_SYN: 3634 /* 0: disable, 1: enable, 2: start from ether_header */ 3635 if (val < 0 || val > 2) 3636 err = -EINVAL; 3637 else 3638 tp->save_syn = val; 3639 break; 3640 3641 case TCP_LINGER2: 3642 if (val < 0) 3643 tp->linger2 = -1; 3644 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3645 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3646 else 3647 tp->linger2 = val * HZ; 3648 break; 3649 3650 case TCP_DEFER_ACCEPT: 3651 /* Translate value in seconds to number of retransmits */ 3652 icsk->icsk_accept_queue.rskq_defer_accept = 3653 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3654 TCP_RTO_MAX / HZ); 3655 break; 3656 3657 case TCP_WINDOW_CLAMP: 3658 err = tcp_set_window_clamp(sk, val); 3659 break; 3660 3661 case TCP_QUICKACK: 3662 __tcp_sock_set_quickack(sk, val); 3663 break; 3664 3665 #ifdef CONFIG_TCP_MD5SIG 3666 case TCP_MD5SIG: 3667 case TCP_MD5SIG_EXT: 3668 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3669 break; 3670 #endif 3671 case TCP_USER_TIMEOUT: 3672 /* Cap the max time in ms TCP will retry or probe the window 3673 * before giving up and aborting (ETIMEDOUT) a connection. 3674 */ 3675 if (val < 0) 3676 err = -EINVAL; 3677 else 3678 icsk->icsk_user_timeout = val; 3679 break; 3680 3681 case TCP_FASTOPEN: 3682 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3683 TCPF_LISTEN))) { 3684 tcp_fastopen_init_key_once(net); 3685 3686 fastopen_queue_tune(sk, val); 3687 } else { 3688 err = -EINVAL; 3689 } 3690 break; 3691 case TCP_FASTOPEN_CONNECT: 3692 if (val > 1 || val < 0) { 3693 err = -EINVAL; 3694 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3695 if (sk->sk_state == TCP_CLOSE) 3696 tp->fastopen_connect = val; 3697 else 3698 err = -EINVAL; 3699 } else { 3700 err = -EOPNOTSUPP; 3701 } 3702 break; 3703 case TCP_FASTOPEN_NO_COOKIE: 3704 if (val > 1 || val < 0) 3705 err = -EINVAL; 3706 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3707 err = -EINVAL; 3708 else 3709 tp->fastopen_no_cookie = val; 3710 break; 3711 case TCP_TIMESTAMP: 3712 if (!tp->repair) 3713 err = -EPERM; 3714 else 3715 tp->tsoffset = val - tcp_time_stamp_raw(); 3716 break; 3717 case TCP_REPAIR_WINDOW: 3718 err = tcp_repair_set_window(tp, optval, optlen); 3719 break; 3720 case TCP_NOTSENT_LOWAT: 3721 tp->notsent_lowat = val; 3722 sk->sk_write_space(sk); 3723 break; 3724 case TCP_INQ: 3725 if (val > 1 || val < 0) 3726 err = -EINVAL; 3727 else 3728 tp->recvmsg_inq = val; 3729 break; 3730 case TCP_TX_DELAY: 3731 if (val) 3732 tcp_enable_tx_delay(); 3733 tp->tcp_tx_delay = val; 3734 break; 3735 default: 3736 err = -ENOPROTOOPT; 3737 break; 3738 } 3739 3740 release_sock(sk); 3741 return err; 3742 } 3743 3744 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3745 unsigned int optlen) 3746 { 3747 const struct inet_connection_sock *icsk = inet_csk(sk); 3748 3749 if (level != SOL_TCP) 3750 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3751 optval, optlen); 3752 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3753 } 3754 EXPORT_SYMBOL(tcp_setsockopt); 3755 3756 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3757 struct tcp_info *info) 3758 { 3759 u64 stats[__TCP_CHRONO_MAX], total = 0; 3760 enum tcp_chrono i; 3761 3762 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3763 stats[i] = tp->chrono_stat[i - 1]; 3764 if (i == tp->chrono_type) 3765 stats[i] += tcp_jiffies32 - tp->chrono_start; 3766 stats[i] *= USEC_PER_SEC / HZ; 3767 total += stats[i]; 3768 } 3769 3770 info->tcpi_busy_time = total; 3771 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3772 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3773 } 3774 3775 /* Return information about state of tcp endpoint in API format. */ 3776 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3777 { 3778 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3779 const struct inet_connection_sock *icsk = inet_csk(sk); 3780 unsigned long rate; 3781 u32 now; 3782 u64 rate64; 3783 bool slow; 3784 3785 memset(info, 0, sizeof(*info)); 3786 if (sk->sk_type != SOCK_STREAM) 3787 return; 3788 3789 info->tcpi_state = inet_sk_state_load(sk); 3790 3791 /* Report meaningful fields for all TCP states, including listeners */ 3792 rate = READ_ONCE(sk->sk_pacing_rate); 3793 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3794 info->tcpi_pacing_rate = rate64; 3795 3796 rate = READ_ONCE(sk->sk_max_pacing_rate); 3797 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3798 info->tcpi_max_pacing_rate = rate64; 3799 3800 info->tcpi_reordering = tp->reordering; 3801 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3802 3803 if (info->tcpi_state == TCP_LISTEN) { 3804 /* listeners aliased fields : 3805 * tcpi_unacked -> Number of children ready for accept() 3806 * tcpi_sacked -> max backlog 3807 */ 3808 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3809 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3810 return; 3811 } 3812 3813 slow = lock_sock_fast(sk); 3814 3815 info->tcpi_ca_state = icsk->icsk_ca_state; 3816 info->tcpi_retransmits = icsk->icsk_retransmits; 3817 info->tcpi_probes = icsk->icsk_probes_out; 3818 info->tcpi_backoff = icsk->icsk_backoff; 3819 3820 if (tp->rx_opt.tstamp_ok) 3821 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3822 if (tcp_is_sack(tp)) 3823 info->tcpi_options |= TCPI_OPT_SACK; 3824 if (tp->rx_opt.wscale_ok) { 3825 info->tcpi_options |= TCPI_OPT_WSCALE; 3826 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3827 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3828 } 3829 3830 if (tp->ecn_flags & TCP_ECN_OK) 3831 info->tcpi_options |= TCPI_OPT_ECN; 3832 if (tp->ecn_flags & TCP_ECN_SEEN) 3833 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3834 if (tp->syn_data_acked) 3835 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3836 3837 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3838 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3839 info->tcpi_snd_mss = tp->mss_cache; 3840 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3841 3842 info->tcpi_unacked = tp->packets_out; 3843 info->tcpi_sacked = tp->sacked_out; 3844 3845 info->tcpi_lost = tp->lost_out; 3846 info->tcpi_retrans = tp->retrans_out; 3847 3848 now = tcp_jiffies32; 3849 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3850 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3851 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3852 3853 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3854 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3855 info->tcpi_rtt = tp->srtt_us >> 3; 3856 info->tcpi_rttvar = tp->mdev_us >> 2; 3857 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3858 info->tcpi_advmss = tp->advmss; 3859 3860 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3861 info->tcpi_rcv_space = tp->rcvq_space.space; 3862 3863 info->tcpi_total_retrans = tp->total_retrans; 3864 3865 info->tcpi_bytes_acked = tp->bytes_acked; 3866 info->tcpi_bytes_received = tp->bytes_received; 3867 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3868 tcp_get_info_chrono_stats(tp, info); 3869 3870 info->tcpi_segs_out = tp->segs_out; 3871 3872 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3873 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3874 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3875 3876 info->tcpi_min_rtt = tcp_min_rtt(tp); 3877 info->tcpi_data_segs_out = tp->data_segs_out; 3878 3879 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3880 rate64 = tcp_compute_delivery_rate(tp); 3881 if (rate64) 3882 info->tcpi_delivery_rate = rate64; 3883 info->tcpi_delivered = tp->delivered; 3884 info->tcpi_delivered_ce = tp->delivered_ce; 3885 info->tcpi_bytes_sent = tp->bytes_sent; 3886 info->tcpi_bytes_retrans = tp->bytes_retrans; 3887 info->tcpi_dsack_dups = tp->dsack_dups; 3888 info->tcpi_reord_seen = tp->reord_seen; 3889 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3890 info->tcpi_snd_wnd = tp->snd_wnd; 3891 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3892 unlock_sock_fast(sk, slow); 3893 } 3894 EXPORT_SYMBOL_GPL(tcp_get_info); 3895 3896 static size_t tcp_opt_stats_get_size(void) 3897 { 3898 return 3899 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3900 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3901 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3902 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3903 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3904 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3905 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3906 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3907 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3908 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3909 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3910 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3911 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3912 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3913 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3914 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3915 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3916 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3917 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3918 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3919 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3920 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3921 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3922 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3923 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3924 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3925 0; 3926 } 3927 3928 /* Returns TTL or hop limit of an incoming packet from skb. */ 3929 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3930 { 3931 if (skb->protocol == htons(ETH_P_IP)) 3932 return ip_hdr(skb)->ttl; 3933 else if (skb->protocol == htons(ETH_P_IPV6)) 3934 return ipv6_hdr(skb)->hop_limit; 3935 else 3936 return 0; 3937 } 3938 3939 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3940 const struct sk_buff *orig_skb, 3941 const struct sk_buff *ack_skb) 3942 { 3943 const struct tcp_sock *tp = tcp_sk(sk); 3944 struct sk_buff *stats; 3945 struct tcp_info info; 3946 unsigned long rate; 3947 u64 rate64; 3948 3949 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3950 if (!stats) 3951 return NULL; 3952 3953 tcp_get_info_chrono_stats(tp, &info); 3954 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3955 info.tcpi_busy_time, TCP_NLA_PAD); 3956 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3957 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3958 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3959 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3960 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3961 tp->data_segs_out, TCP_NLA_PAD); 3962 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3963 tp->total_retrans, TCP_NLA_PAD); 3964 3965 rate = READ_ONCE(sk->sk_pacing_rate); 3966 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3967 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3968 3969 rate64 = tcp_compute_delivery_rate(tp); 3970 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3971 3972 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3973 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3974 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3975 3976 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3977 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3978 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3979 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3980 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3981 3982 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3983 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3984 3985 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3986 TCP_NLA_PAD); 3987 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3988 TCP_NLA_PAD); 3989 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3990 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3991 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3992 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3993 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3994 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3995 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3996 TCP_NLA_PAD); 3997 if (ack_skb) 3998 nla_put_u8(stats, TCP_NLA_TTL, 3999 tcp_skb_ttl_or_hop_limit(ack_skb)); 4000 4001 return stats; 4002 } 4003 4004 static int do_tcp_getsockopt(struct sock *sk, int level, 4005 int optname, char __user *optval, int __user *optlen) 4006 { 4007 struct inet_connection_sock *icsk = inet_csk(sk); 4008 struct tcp_sock *tp = tcp_sk(sk); 4009 struct net *net = sock_net(sk); 4010 int val, len; 4011 4012 if (get_user(len, optlen)) 4013 return -EFAULT; 4014 4015 len = min_t(unsigned int, len, sizeof(int)); 4016 4017 if (len < 0) 4018 return -EINVAL; 4019 4020 switch (optname) { 4021 case TCP_MAXSEG: 4022 val = tp->mss_cache; 4023 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4024 val = tp->rx_opt.user_mss; 4025 if (tp->repair) 4026 val = tp->rx_opt.mss_clamp; 4027 break; 4028 case TCP_NODELAY: 4029 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4030 break; 4031 case TCP_CORK: 4032 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4033 break; 4034 case TCP_KEEPIDLE: 4035 val = keepalive_time_when(tp) / HZ; 4036 break; 4037 case TCP_KEEPINTVL: 4038 val = keepalive_intvl_when(tp) / HZ; 4039 break; 4040 case TCP_KEEPCNT: 4041 val = keepalive_probes(tp); 4042 break; 4043 case TCP_SYNCNT: 4044 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 4045 break; 4046 case TCP_LINGER2: 4047 val = tp->linger2; 4048 if (val >= 0) 4049 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 4050 break; 4051 case TCP_DEFER_ACCEPT: 4052 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4053 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4054 break; 4055 case TCP_WINDOW_CLAMP: 4056 val = tp->window_clamp; 4057 break; 4058 case TCP_INFO: { 4059 struct tcp_info info; 4060 4061 if (get_user(len, optlen)) 4062 return -EFAULT; 4063 4064 tcp_get_info(sk, &info); 4065 4066 len = min_t(unsigned int, len, sizeof(info)); 4067 if (put_user(len, optlen)) 4068 return -EFAULT; 4069 if (copy_to_user(optval, &info, len)) 4070 return -EFAULT; 4071 return 0; 4072 } 4073 case TCP_CC_INFO: { 4074 const struct tcp_congestion_ops *ca_ops; 4075 union tcp_cc_info info; 4076 size_t sz = 0; 4077 int attr; 4078 4079 if (get_user(len, optlen)) 4080 return -EFAULT; 4081 4082 ca_ops = icsk->icsk_ca_ops; 4083 if (ca_ops && ca_ops->get_info) 4084 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4085 4086 len = min_t(unsigned int, len, sz); 4087 if (put_user(len, optlen)) 4088 return -EFAULT; 4089 if (copy_to_user(optval, &info, len)) 4090 return -EFAULT; 4091 return 0; 4092 } 4093 case TCP_QUICKACK: 4094 val = !inet_csk_in_pingpong_mode(sk); 4095 break; 4096 4097 case TCP_CONGESTION: 4098 if (get_user(len, optlen)) 4099 return -EFAULT; 4100 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4101 if (put_user(len, optlen)) 4102 return -EFAULT; 4103 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4104 return -EFAULT; 4105 return 0; 4106 4107 case TCP_ULP: 4108 if (get_user(len, optlen)) 4109 return -EFAULT; 4110 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4111 if (!icsk->icsk_ulp_ops) { 4112 if (put_user(0, optlen)) 4113 return -EFAULT; 4114 return 0; 4115 } 4116 if (put_user(len, optlen)) 4117 return -EFAULT; 4118 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4119 return -EFAULT; 4120 return 0; 4121 4122 case TCP_FASTOPEN_KEY: { 4123 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4124 unsigned int key_len; 4125 4126 if (get_user(len, optlen)) 4127 return -EFAULT; 4128 4129 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4130 TCP_FASTOPEN_KEY_LENGTH; 4131 len = min_t(unsigned int, len, key_len); 4132 if (put_user(len, optlen)) 4133 return -EFAULT; 4134 if (copy_to_user(optval, key, len)) 4135 return -EFAULT; 4136 return 0; 4137 } 4138 case TCP_THIN_LINEAR_TIMEOUTS: 4139 val = tp->thin_lto; 4140 break; 4141 4142 case TCP_THIN_DUPACK: 4143 val = 0; 4144 break; 4145 4146 case TCP_REPAIR: 4147 val = tp->repair; 4148 break; 4149 4150 case TCP_REPAIR_QUEUE: 4151 if (tp->repair) 4152 val = tp->repair_queue; 4153 else 4154 return -EINVAL; 4155 break; 4156 4157 case TCP_REPAIR_WINDOW: { 4158 struct tcp_repair_window opt; 4159 4160 if (get_user(len, optlen)) 4161 return -EFAULT; 4162 4163 if (len != sizeof(opt)) 4164 return -EINVAL; 4165 4166 if (!tp->repair) 4167 return -EPERM; 4168 4169 opt.snd_wl1 = tp->snd_wl1; 4170 opt.snd_wnd = tp->snd_wnd; 4171 opt.max_window = tp->max_window; 4172 opt.rcv_wnd = tp->rcv_wnd; 4173 opt.rcv_wup = tp->rcv_wup; 4174 4175 if (copy_to_user(optval, &opt, len)) 4176 return -EFAULT; 4177 return 0; 4178 } 4179 case TCP_QUEUE_SEQ: 4180 if (tp->repair_queue == TCP_SEND_QUEUE) 4181 val = tp->write_seq; 4182 else if (tp->repair_queue == TCP_RECV_QUEUE) 4183 val = tp->rcv_nxt; 4184 else 4185 return -EINVAL; 4186 break; 4187 4188 case TCP_USER_TIMEOUT: 4189 val = icsk->icsk_user_timeout; 4190 break; 4191 4192 case TCP_FASTOPEN: 4193 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4194 break; 4195 4196 case TCP_FASTOPEN_CONNECT: 4197 val = tp->fastopen_connect; 4198 break; 4199 4200 case TCP_FASTOPEN_NO_COOKIE: 4201 val = tp->fastopen_no_cookie; 4202 break; 4203 4204 case TCP_TX_DELAY: 4205 val = tp->tcp_tx_delay; 4206 break; 4207 4208 case TCP_TIMESTAMP: 4209 val = tcp_time_stamp_raw() + tp->tsoffset; 4210 break; 4211 case TCP_NOTSENT_LOWAT: 4212 val = tp->notsent_lowat; 4213 break; 4214 case TCP_INQ: 4215 val = tp->recvmsg_inq; 4216 break; 4217 case TCP_SAVE_SYN: 4218 val = tp->save_syn; 4219 break; 4220 case TCP_SAVED_SYN: { 4221 if (get_user(len, optlen)) 4222 return -EFAULT; 4223 4224 lock_sock(sk); 4225 if (tp->saved_syn) { 4226 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4227 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4228 optlen)) { 4229 release_sock(sk); 4230 return -EFAULT; 4231 } 4232 release_sock(sk); 4233 return -EINVAL; 4234 } 4235 len = tcp_saved_syn_len(tp->saved_syn); 4236 if (put_user(len, optlen)) { 4237 release_sock(sk); 4238 return -EFAULT; 4239 } 4240 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4241 release_sock(sk); 4242 return -EFAULT; 4243 } 4244 tcp_saved_syn_free(tp); 4245 release_sock(sk); 4246 } else { 4247 release_sock(sk); 4248 len = 0; 4249 if (put_user(len, optlen)) 4250 return -EFAULT; 4251 } 4252 return 0; 4253 } 4254 #ifdef CONFIG_MMU 4255 case TCP_ZEROCOPY_RECEIVE: { 4256 struct scm_timestamping_internal tss; 4257 struct tcp_zerocopy_receive zc = {}; 4258 int err; 4259 4260 if (get_user(len, optlen)) 4261 return -EFAULT; 4262 if (len < 0 || 4263 len < offsetofend(struct tcp_zerocopy_receive, length)) 4264 return -EINVAL; 4265 if (unlikely(len > sizeof(zc))) { 4266 err = check_zeroed_user(optval + sizeof(zc), 4267 len - sizeof(zc)); 4268 if (err < 1) 4269 return err == 0 ? -EINVAL : err; 4270 len = sizeof(zc); 4271 if (put_user(len, optlen)) 4272 return -EFAULT; 4273 } 4274 if (copy_from_user(&zc, optval, len)) 4275 return -EFAULT; 4276 if (zc.reserved) 4277 return -EINVAL; 4278 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4279 return -EINVAL; 4280 lock_sock(sk); 4281 err = tcp_zerocopy_receive(sk, &zc, &tss); 4282 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4283 &zc, &len, err); 4284 release_sock(sk); 4285 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4286 goto zerocopy_rcv_cmsg; 4287 switch (len) { 4288 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4289 goto zerocopy_rcv_cmsg; 4290 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4291 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4292 case offsetofend(struct tcp_zerocopy_receive, flags): 4293 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4294 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4295 case offsetofend(struct tcp_zerocopy_receive, err): 4296 goto zerocopy_rcv_sk_err; 4297 case offsetofend(struct tcp_zerocopy_receive, inq): 4298 goto zerocopy_rcv_inq; 4299 case offsetofend(struct tcp_zerocopy_receive, length): 4300 default: 4301 goto zerocopy_rcv_out; 4302 } 4303 zerocopy_rcv_cmsg: 4304 if (zc.msg_flags & TCP_CMSG_TS) 4305 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4306 else 4307 zc.msg_flags = 0; 4308 zerocopy_rcv_sk_err: 4309 if (!err) 4310 zc.err = sock_error(sk); 4311 zerocopy_rcv_inq: 4312 zc.inq = tcp_inq_hint(sk); 4313 zerocopy_rcv_out: 4314 if (!err && copy_to_user(optval, &zc, len)) 4315 err = -EFAULT; 4316 return err; 4317 } 4318 #endif 4319 default: 4320 return -ENOPROTOOPT; 4321 } 4322 4323 if (put_user(len, optlen)) 4324 return -EFAULT; 4325 if (copy_to_user(optval, &val, len)) 4326 return -EFAULT; 4327 return 0; 4328 } 4329 4330 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4331 { 4332 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4333 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4334 */ 4335 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4336 return true; 4337 4338 return false; 4339 } 4340 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4341 4342 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4343 int __user *optlen) 4344 { 4345 struct inet_connection_sock *icsk = inet_csk(sk); 4346 4347 if (level != SOL_TCP) 4348 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4349 optval, optlen); 4350 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4351 } 4352 EXPORT_SYMBOL(tcp_getsockopt); 4353 4354 #ifdef CONFIG_TCP_MD5SIG 4355 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4356 static DEFINE_MUTEX(tcp_md5sig_mutex); 4357 static bool tcp_md5sig_pool_populated = false; 4358 4359 static void __tcp_alloc_md5sig_pool(void) 4360 { 4361 struct crypto_ahash *hash; 4362 int cpu; 4363 4364 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4365 if (IS_ERR(hash)) 4366 return; 4367 4368 for_each_possible_cpu(cpu) { 4369 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4370 struct ahash_request *req; 4371 4372 if (!scratch) { 4373 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4374 sizeof(struct tcphdr), 4375 GFP_KERNEL, 4376 cpu_to_node(cpu)); 4377 if (!scratch) 4378 return; 4379 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4380 } 4381 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4382 continue; 4383 4384 req = ahash_request_alloc(hash, GFP_KERNEL); 4385 if (!req) 4386 return; 4387 4388 ahash_request_set_callback(req, 0, NULL, NULL); 4389 4390 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4391 } 4392 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4393 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4394 */ 4395 smp_wmb(); 4396 tcp_md5sig_pool_populated = true; 4397 } 4398 4399 bool tcp_alloc_md5sig_pool(void) 4400 { 4401 if (unlikely(!tcp_md5sig_pool_populated)) { 4402 mutex_lock(&tcp_md5sig_mutex); 4403 4404 if (!tcp_md5sig_pool_populated) { 4405 __tcp_alloc_md5sig_pool(); 4406 if (tcp_md5sig_pool_populated) 4407 static_branch_inc(&tcp_md5_needed); 4408 } 4409 4410 mutex_unlock(&tcp_md5sig_mutex); 4411 } 4412 return tcp_md5sig_pool_populated; 4413 } 4414 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4415 4416 4417 /** 4418 * tcp_get_md5sig_pool - get md5sig_pool for this user 4419 * 4420 * We use percpu structure, so if we succeed, we exit with preemption 4421 * and BH disabled, to make sure another thread or softirq handling 4422 * wont try to get same context. 4423 */ 4424 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4425 { 4426 local_bh_disable(); 4427 4428 if (tcp_md5sig_pool_populated) { 4429 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4430 smp_rmb(); 4431 return this_cpu_ptr(&tcp_md5sig_pool); 4432 } 4433 local_bh_enable(); 4434 return NULL; 4435 } 4436 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4437 4438 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4439 const struct sk_buff *skb, unsigned int header_len) 4440 { 4441 struct scatterlist sg; 4442 const struct tcphdr *tp = tcp_hdr(skb); 4443 struct ahash_request *req = hp->md5_req; 4444 unsigned int i; 4445 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4446 skb_headlen(skb) - header_len : 0; 4447 const struct skb_shared_info *shi = skb_shinfo(skb); 4448 struct sk_buff *frag_iter; 4449 4450 sg_init_table(&sg, 1); 4451 4452 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4453 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4454 if (crypto_ahash_update(req)) 4455 return 1; 4456 4457 for (i = 0; i < shi->nr_frags; ++i) { 4458 const skb_frag_t *f = &shi->frags[i]; 4459 unsigned int offset = skb_frag_off(f); 4460 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4461 4462 sg_set_page(&sg, page, skb_frag_size(f), 4463 offset_in_page(offset)); 4464 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4465 if (crypto_ahash_update(req)) 4466 return 1; 4467 } 4468 4469 skb_walk_frags(skb, frag_iter) 4470 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4471 return 1; 4472 4473 return 0; 4474 } 4475 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4476 4477 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4478 { 4479 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4480 struct scatterlist sg; 4481 4482 sg_init_one(&sg, key->key, keylen); 4483 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4484 4485 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4486 return data_race(crypto_ahash_update(hp->md5_req)); 4487 } 4488 EXPORT_SYMBOL(tcp_md5_hash_key); 4489 4490 /* Called with rcu_read_lock() */ 4491 enum skb_drop_reason 4492 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4493 const void *saddr, const void *daddr, 4494 int family, int dif, int sdif) 4495 { 4496 /* 4497 * This gets called for each TCP segment that arrives 4498 * so we want to be efficient. 4499 * We have 3 drop cases: 4500 * o No MD5 hash and one expected. 4501 * o MD5 hash and we're not expecting one. 4502 * o MD5 hash and its wrong. 4503 */ 4504 const __u8 *hash_location = NULL; 4505 struct tcp_md5sig_key *hash_expected; 4506 const struct tcphdr *th = tcp_hdr(skb); 4507 struct tcp_sock *tp = tcp_sk(sk); 4508 int genhash, l3index; 4509 u8 newhash[16]; 4510 4511 /* sdif set, means packet ingressed via a device 4512 * in an L3 domain and dif is set to the l3mdev 4513 */ 4514 l3index = sdif ? dif : 0; 4515 4516 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4517 hash_location = tcp_parse_md5sig_option(th); 4518 4519 /* We've parsed the options - do we have a hash? */ 4520 if (!hash_expected && !hash_location) 4521 return SKB_NOT_DROPPED_YET; 4522 4523 if (hash_expected && !hash_location) { 4524 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4525 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4526 } 4527 4528 if (!hash_expected && hash_location) { 4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4530 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4531 } 4532 4533 /* check the signature */ 4534 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4535 NULL, skb); 4536 4537 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4538 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4539 if (family == AF_INET) { 4540 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4541 saddr, ntohs(th->source), 4542 daddr, ntohs(th->dest), 4543 genhash ? " tcp_v4_calc_md5_hash failed" 4544 : "", l3index); 4545 } else { 4546 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4547 genhash ? "failed" : "mismatch", 4548 saddr, ntohs(th->source), 4549 daddr, ntohs(th->dest), l3index); 4550 } 4551 return SKB_DROP_REASON_TCP_MD5FAILURE; 4552 } 4553 return SKB_NOT_DROPPED_YET; 4554 } 4555 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4556 4557 #endif 4558 4559 void tcp_done(struct sock *sk) 4560 { 4561 struct request_sock *req; 4562 4563 /* We might be called with a new socket, after 4564 * inet_csk_prepare_forced_close() has been called 4565 * so we can not use lockdep_sock_is_held(sk) 4566 */ 4567 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4568 4569 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4570 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4571 4572 tcp_set_state(sk, TCP_CLOSE); 4573 tcp_clear_xmit_timers(sk); 4574 if (req) 4575 reqsk_fastopen_remove(sk, req, false); 4576 4577 sk->sk_shutdown = SHUTDOWN_MASK; 4578 4579 if (!sock_flag(sk, SOCK_DEAD)) 4580 sk->sk_state_change(sk); 4581 else 4582 inet_csk_destroy_sock(sk); 4583 } 4584 EXPORT_SYMBOL_GPL(tcp_done); 4585 4586 int tcp_abort(struct sock *sk, int err) 4587 { 4588 int state = inet_sk_state_load(sk); 4589 4590 if (state == TCP_NEW_SYN_RECV) { 4591 struct request_sock *req = inet_reqsk(sk); 4592 4593 local_bh_disable(); 4594 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4595 local_bh_enable(); 4596 return 0; 4597 } 4598 if (state == TCP_TIME_WAIT) { 4599 struct inet_timewait_sock *tw = inet_twsk(sk); 4600 4601 refcount_inc(&tw->tw_refcnt); 4602 local_bh_disable(); 4603 inet_twsk_deschedule_put(tw); 4604 local_bh_enable(); 4605 return 0; 4606 } 4607 4608 /* Don't race with userspace socket closes such as tcp_close. */ 4609 lock_sock(sk); 4610 4611 if (sk->sk_state == TCP_LISTEN) { 4612 tcp_set_state(sk, TCP_CLOSE); 4613 inet_csk_listen_stop(sk); 4614 } 4615 4616 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4617 local_bh_disable(); 4618 bh_lock_sock(sk); 4619 4620 if (!sock_flag(sk, SOCK_DEAD)) { 4621 sk->sk_err = err; 4622 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4623 smp_wmb(); 4624 sk_error_report(sk); 4625 if (tcp_need_reset(sk->sk_state)) 4626 tcp_send_active_reset(sk, GFP_ATOMIC); 4627 tcp_done(sk); 4628 } 4629 4630 bh_unlock_sock(sk); 4631 local_bh_enable(); 4632 tcp_write_queue_purge(sk); 4633 release_sock(sk); 4634 return 0; 4635 } 4636 EXPORT_SYMBOL_GPL(tcp_abort); 4637 4638 extern struct tcp_congestion_ops tcp_reno; 4639 4640 static __initdata unsigned long thash_entries; 4641 static int __init set_thash_entries(char *str) 4642 { 4643 ssize_t ret; 4644 4645 if (!str) 4646 return 0; 4647 4648 ret = kstrtoul(str, 0, &thash_entries); 4649 if (ret) 4650 return 0; 4651 4652 return 1; 4653 } 4654 __setup("thash_entries=", set_thash_entries); 4655 4656 static void __init tcp_init_mem(void) 4657 { 4658 unsigned long limit = nr_free_buffer_pages() / 16; 4659 4660 limit = max(limit, 128UL); 4661 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4662 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4663 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4664 } 4665 4666 void __init tcp_init(void) 4667 { 4668 int max_rshare, max_wshare, cnt; 4669 unsigned long limit; 4670 unsigned int i; 4671 4672 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4673 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4674 sizeof_field(struct sk_buff, cb)); 4675 4676 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4677 4678 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4679 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4680 4681 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4682 thash_entries, 21, /* one slot per 2 MB*/ 4683 0, 64 * 1024); 4684 tcp_hashinfo.bind_bucket_cachep = 4685 kmem_cache_create("tcp_bind_bucket", 4686 sizeof(struct inet_bind_bucket), 0, 4687 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4688 SLAB_ACCOUNT, 4689 NULL); 4690 4691 /* Size and allocate the main established and bind bucket 4692 * hash tables. 4693 * 4694 * The methodology is similar to that of the buffer cache. 4695 */ 4696 tcp_hashinfo.ehash = 4697 alloc_large_system_hash("TCP established", 4698 sizeof(struct inet_ehash_bucket), 4699 thash_entries, 4700 17, /* one slot per 128 KB of memory */ 4701 0, 4702 NULL, 4703 &tcp_hashinfo.ehash_mask, 4704 0, 4705 thash_entries ? 0 : 512 * 1024); 4706 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4707 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4708 4709 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4710 panic("TCP: failed to alloc ehash_locks"); 4711 tcp_hashinfo.bhash = 4712 alloc_large_system_hash("TCP bind", 4713 sizeof(struct inet_bind_hashbucket), 4714 tcp_hashinfo.ehash_mask + 1, 4715 17, /* one slot per 128 KB of memory */ 4716 0, 4717 &tcp_hashinfo.bhash_size, 4718 NULL, 4719 0, 4720 64 * 1024); 4721 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4722 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4723 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4724 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4725 } 4726 4727 4728 cnt = tcp_hashinfo.ehash_mask + 1; 4729 sysctl_tcp_max_orphans = cnt / 2; 4730 4731 tcp_init_mem(); 4732 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4733 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4734 max_wshare = min(4UL*1024*1024, limit); 4735 max_rshare = min(6UL*1024*1024, limit); 4736 4737 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4738 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4739 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4740 4741 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4742 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4743 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4744 4745 pr_info("Hash tables configured (established %u bind %u)\n", 4746 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4747 4748 tcp_v4_init(); 4749 tcp_metrics_init(); 4750 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4751 tcp_tasklet_init(); 4752 mptcp_init(); 4753 } 4754