xref: /linux/net/ipv4/tcp.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	__skb_queue_head_init(&tp->out_of_order_queue);
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 
391 	/* So many TCP implementations out there (incorrectly) count the
392 	 * initial SYN frame in their delayed-ACK and congestion control
393 	 * algorithms that we must have the following bandaid to talk
394 	 * efficiently to them.  -DaveM
395 	 */
396 	tp->snd_cwnd = TCP_INIT_CWND;
397 
398 	/* See draft-stevens-tcpca-spec-01 for discussion of the
399 	 * initialization of these values.
400 	 */
401 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
402 	tp->snd_cwnd_clamp = ~0;
403 	tp->mss_cache = TCP_MSS_DEFAULT;
404 
405 	tp->reordering = sysctl_tcp_reordering;
406 	tcp_enable_early_retrans(tp);
407 	tcp_assign_congestion_control(sk);
408 
409 	tp->tsoffset = 0;
410 
411 	sk->sk_state = TCP_CLOSE;
412 
413 	sk->sk_write_space = sk_stream_write_space;
414 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
415 
416 	icsk->icsk_sync_mss = tcp_sync_mss;
417 
418 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
419 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
420 
421 	local_bh_disable();
422 	sock_update_memcg(sk);
423 	sk_sockets_allocated_inc(sk);
424 	local_bh_enable();
425 }
426 EXPORT_SYMBOL(tcp_init_sock);
427 
428 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
429 {
430 	if (sk->sk_tsflags) {
431 		struct skb_shared_info *shinfo = skb_shinfo(skb);
432 
433 		sock_tx_timestamp(sk, &shinfo->tx_flags);
434 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
435 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
436 	}
437 }
438 
439 /*
440  *	Wait for a TCP event.
441  *
442  *	Note that we don't need to lock the socket, as the upper poll layers
443  *	take care of normal races (between the test and the event) and we don't
444  *	go look at any of the socket buffers directly.
445  */
446 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
447 {
448 	unsigned int mask;
449 	struct sock *sk = sock->sk;
450 	const struct tcp_sock *tp = tcp_sk(sk);
451 
452 	sock_rps_record_flow(sk);
453 
454 	sock_poll_wait(file, sk_sleep(sk), wait);
455 	if (sk->sk_state == TCP_LISTEN)
456 		return inet_csk_listen_poll(sk);
457 
458 	/* Socket is not locked. We are protected from async events
459 	 * by poll logic and correct handling of state changes
460 	 * made by other threads is impossible in any case.
461 	 */
462 
463 	mask = 0;
464 
465 	/*
466 	 * POLLHUP is certainly not done right. But poll() doesn't
467 	 * have a notion of HUP in just one direction, and for a
468 	 * socket the read side is more interesting.
469 	 *
470 	 * Some poll() documentation says that POLLHUP is incompatible
471 	 * with the POLLOUT/POLLWR flags, so somebody should check this
472 	 * all. But careful, it tends to be safer to return too many
473 	 * bits than too few, and you can easily break real applications
474 	 * if you don't tell them that something has hung up!
475 	 *
476 	 * Check-me.
477 	 *
478 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
479 	 * our fs/select.c). It means that after we received EOF,
480 	 * poll always returns immediately, making impossible poll() on write()
481 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
482 	 * if and only if shutdown has been made in both directions.
483 	 * Actually, it is interesting to look how Solaris and DUX
484 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
485 	 * then we could set it on SND_SHUTDOWN. BTW examples given
486 	 * in Stevens' books assume exactly this behaviour, it explains
487 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
488 	 *
489 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
490 	 * blocking on fresh not-connected or disconnected socket. --ANK
491 	 */
492 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
493 		mask |= POLLHUP;
494 	if (sk->sk_shutdown & RCV_SHUTDOWN)
495 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
496 
497 	/* Connected or passive Fast Open socket? */
498 	if (sk->sk_state != TCP_SYN_SENT &&
499 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
500 		int target = sock_rcvlowat(sk, 0, INT_MAX);
501 
502 		if (tp->urg_seq == tp->copied_seq &&
503 		    !sock_flag(sk, SOCK_URGINLINE) &&
504 		    tp->urg_data)
505 			target++;
506 
507 		/* Potential race condition. If read of tp below will
508 		 * escape above sk->sk_state, we can be illegally awaken
509 		 * in SYN_* states. */
510 		if (tp->rcv_nxt - tp->copied_seq >= target)
511 			mask |= POLLIN | POLLRDNORM;
512 
513 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
514 			if (sk_stream_is_writeable(sk)) {
515 				mask |= POLLOUT | POLLWRNORM;
516 			} else {  /* send SIGIO later */
517 				set_bit(SOCK_ASYNC_NOSPACE,
518 					&sk->sk_socket->flags);
519 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
520 
521 				/* Race breaker. If space is freed after
522 				 * wspace test but before the flags are set,
523 				 * IO signal will be lost.
524 				 */
525 				if (sk_stream_is_writeable(sk))
526 					mask |= POLLOUT | POLLWRNORM;
527 			}
528 		} else
529 			mask |= POLLOUT | POLLWRNORM;
530 
531 		if (tp->urg_data & TCP_URG_VALID)
532 			mask |= POLLPRI;
533 	}
534 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
535 	smp_rmb();
536 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
537 		mask |= POLLERR;
538 
539 	return mask;
540 }
541 EXPORT_SYMBOL(tcp_poll);
542 
543 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
544 {
545 	struct tcp_sock *tp = tcp_sk(sk);
546 	int answ;
547 	bool slow;
548 
549 	switch (cmd) {
550 	case SIOCINQ:
551 		if (sk->sk_state == TCP_LISTEN)
552 			return -EINVAL;
553 
554 		slow = lock_sock_fast(sk);
555 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
556 			answ = 0;
557 		else if (sock_flag(sk, SOCK_URGINLINE) ||
558 			 !tp->urg_data ||
559 			 before(tp->urg_seq, tp->copied_seq) ||
560 			 !before(tp->urg_seq, tp->rcv_nxt)) {
561 
562 			answ = tp->rcv_nxt - tp->copied_seq;
563 
564 			/* Subtract 1, if FIN was received */
565 			if (answ && sock_flag(sk, SOCK_DONE))
566 				answ--;
567 		} else
568 			answ = tp->urg_seq - tp->copied_seq;
569 		unlock_sock_fast(sk, slow);
570 		break;
571 	case SIOCATMARK:
572 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
573 		break;
574 	case SIOCOUTQ:
575 		if (sk->sk_state == TCP_LISTEN)
576 			return -EINVAL;
577 
578 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 			answ = 0;
580 		else
581 			answ = tp->write_seq - tp->snd_una;
582 		break;
583 	case SIOCOUTQNSD:
584 		if (sk->sk_state == TCP_LISTEN)
585 			return -EINVAL;
586 
587 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
588 			answ = 0;
589 		else
590 			answ = tp->write_seq - tp->snd_nxt;
591 		break;
592 	default:
593 		return -ENOIOCTLCMD;
594 	}
595 
596 	return put_user(answ, (int __user *)arg);
597 }
598 EXPORT_SYMBOL(tcp_ioctl);
599 
600 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
601 {
602 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
603 	tp->pushed_seq = tp->write_seq;
604 }
605 
606 static inline bool forced_push(const struct tcp_sock *tp)
607 {
608 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
609 }
610 
611 static void skb_entail(struct sock *sk, struct sk_buff *skb)
612 {
613 	struct tcp_sock *tp = tcp_sk(sk);
614 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
615 
616 	skb->csum    = 0;
617 	tcb->seq     = tcb->end_seq = tp->write_seq;
618 	tcb->tcp_flags = TCPHDR_ACK;
619 	tcb->sacked  = 0;
620 	__skb_header_release(skb);
621 	tcp_add_write_queue_tail(sk, skb);
622 	sk->sk_wmem_queued += skb->truesize;
623 	sk_mem_charge(sk, skb->truesize);
624 	if (tp->nonagle & TCP_NAGLE_PUSH)
625 		tp->nonagle &= ~TCP_NAGLE_PUSH;
626 }
627 
628 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
629 {
630 	if (flags & MSG_OOB)
631 		tp->snd_up = tp->write_seq;
632 }
633 
634 /* If a not yet filled skb is pushed, do not send it if
635  * we have data packets in Qdisc or NIC queues :
636  * Because TX completion will happen shortly, it gives a chance
637  * to coalesce future sendmsg() payload into this skb, without
638  * need for a timer, and with no latency trade off.
639  * As packets containing data payload have a bigger truesize
640  * than pure acks (dataless) packets, the last checks prevent
641  * autocorking if we only have an ACK in Qdisc/NIC queues,
642  * or if TX completion was delayed after we processed ACK packet.
643  */
644 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
645 				int size_goal)
646 {
647 	return skb->len < size_goal &&
648 	       sysctl_tcp_autocorking &&
649 	       skb != tcp_write_queue_head(sk) &&
650 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
651 }
652 
653 static void tcp_push(struct sock *sk, int flags, int mss_now,
654 		     int nonagle, int size_goal)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct sk_buff *skb;
658 
659 	if (!tcp_send_head(sk))
660 		return;
661 
662 	skb = tcp_write_queue_tail(sk);
663 	if (!(flags & MSG_MORE) || forced_push(tp))
664 		tcp_mark_push(tp, skb);
665 
666 	tcp_mark_urg(tp, flags);
667 
668 	if (tcp_should_autocork(sk, skb, size_goal)) {
669 
670 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
671 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
672 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
673 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
674 		}
675 		/* It is possible TX completion already happened
676 		 * before we set TSQ_THROTTLED.
677 		 */
678 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
679 			return;
680 	}
681 
682 	if (flags & MSG_MORE)
683 		nonagle = TCP_NAGLE_CORK;
684 
685 	__tcp_push_pending_frames(sk, mss_now, nonagle);
686 }
687 
688 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
689 				unsigned int offset, size_t len)
690 {
691 	struct tcp_splice_state *tss = rd_desc->arg.data;
692 	int ret;
693 
694 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
695 			      tss->flags);
696 	if (ret > 0)
697 		rd_desc->count -= ret;
698 	return ret;
699 }
700 
701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
702 {
703 	/* Store TCP splice context information in read_descriptor_t. */
704 	read_descriptor_t rd_desc = {
705 		.arg.data = tss,
706 		.count	  = tss->len,
707 	};
708 
709 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
710 }
711 
712 /**
713  *  tcp_splice_read - splice data from TCP socket to a pipe
714  * @sock:	socket to splice from
715  * @ppos:	position (not valid)
716  * @pipe:	pipe to splice to
717  * @len:	number of bytes to splice
718  * @flags:	splice modifier flags
719  *
720  * Description:
721  *    Will read pages from given socket and fill them into a pipe.
722  *
723  **/
724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
725 			struct pipe_inode_info *pipe, size_t len,
726 			unsigned int flags)
727 {
728 	struct sock *sk = sock->sk;
729 	struct tcp_splice_state tss = {
730 		.pipe = pipe,
731 		.len = len,
732 		.flags = flags,
733 	};
734 	long timeo;
735 	ssize_t spliced;
736 	int ret;
737 
738 	sock_rps_record_flow(sk);
739 	/*
740 	 * We can't seek on a socket input
741 	 */
742 	if (unlikely(*ppos))
743 		return -ESPIPE;
744 
745 	ret = spliced = 0;
746 
747 	lock_sock(sk);
748 
749 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
750 	while (tss.len) {
751 		ret = __tcp_splice_read(sk, &tss);
752 		if (ret < 0)
753 			break;
754 		else if (!ret) {
755 			if (spliced)
756 				break;
757 			if (sock_flag(sk, SOCK_DONE))
758 				break;
759 			if (sk->sk_err) {
760 				ret = sock_error(sk);
761 				break;
762 			}
763 			if (sk->sk_shutdown & RCV_SHUTDOWN)
764 				break;
765 			if (sk->sk_state == TCP_CLOSE) {
766 				/*
767 				 * This occurs when user tries to read
768 				 * from never connected socket.
769 				 */
770 				if (!sock_flag(sk, SOCK_DONE))
771 					ret = -ENOTCONN;
772 				break;
773 			}
774 			if (!timeo) {
775 				ret = -EAGAIN;
776 				break;
777 			}
778 			sk_wait_data(sk, &timeo);
779 			if (signal_pending(current)) {
780 				ret = sock_intr_errno(timeo);
781 				break;
782 			}
783 			continue;
784 		}
785 		tss.len -= ret;
786 		spliced += ret;
787 
788 		if (!timeo)
789 			break;
790 		release_sock(sk);
791 		lock_sock(sk);
792 
793 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
794 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
795 		    signal_pending(current))
796 			break;
797 	}
798 
799 	release_sock(sk);
800 
801 	if (spliced)
802 		return spliced;
803 
804 	return ret;
805 }
806 EXPORT_SYMBOL(tcp_splice_read);
807 
808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
809 {
810 	struct sk_buff *skb;
811 
812 	/* The TCP header must be at least 32-bit aligned.  */
813 	size = ALIGN(size, 4);
814 
815 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
816 	if (skb) {
817 		if (sk_wmem_schedule(sk, skb->truesize)) {
818 			skb_reserve(skb, sk->sk_prot->max_header);
819 			/*
820 			 * Make sure that we have exactly size bytes
821 			 * available to the caller, no more, no less.
822 			 */
823 			skb->reserved_tailroom = skb->end - skb->tail - size;
824 			return skb;
825 		}
826 		__kfree_skb(skb);
827 	} else {
828 		sk->sk_prot->enter_memory_pressure(sk);
829 		sk_stream_moderate_sndbuf(sk);
830 	}
831 	return NULL;
832 }
833 
834 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
835 				       int large_allowed)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	u32 new_size_goal, size_goal;
839 
840 	if (!large_allowed || !sk_can_gso(sk))
841 		return mss_now;
842 
843 	/* Note : tcp_tso_autosize() will eventually split this later */
844 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
845 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
846 
847 	/* We try hard to avoid divides here */
848 	size_goal = tp->gso_segs * mss_now;
849 	if (unlikely(new_size_goal < size_goal ||
850 		     new_size_goal >= size_goal + mss_now)) {
851 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
852 				     sk->sk_gso_max_segs);
853 		size_goal = tp->gso_segs * mss_now;
854 	}
855 
856 	return max(size_goal, mss_now);
857 }
858 
859 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
860 {
861 	int mss_now;
862 
863 	mss_now = tcp_current_mss(sk);
864 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
865 
866 	return mss_now;
867 }
868 
869 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
870 				size_t size, int flags)
871 {
872 	struct tcp_sock *tp = tcp_sk(sk);
873 	int mss_now, size_goal;
874 	int err;
875 	ssize_t copied;
876 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
877 
878 	/* Wait for a connection to finish. One exception is TCP Fast Open
879 	 * (passive side) where data is allowed to be sent before a connection
880 	 * is fully established.
881 	 */
882 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
883 	    !tcp_passive_fastopen(sk)) {
884 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
885 			goto out_err;
886 	}
887 
888 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
889 
890 	mss_now = tcp_send_mss(sk, &size_goal, flags);
891 	copied = 0;
892 
893 	err = -EPIPE;
894 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
895 		goto out_err;
896 
897 	while (size > 0) {
898 		struct sk_buff *skb = tcp_write_queue_tail(sk);
899 		int copy, i;
900 		bool can_coalesce;
901 
902 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
903 new_segment:
904 			if (!sk_stream_memory_free(sk))
905 				goto wait_for_sndbuf;
906 
907 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
908 			if (!skb)
909 				goto wait_for_memory;
910 
911 			skb_entail(sk, skb);
912 			copy = size_goal;
913 		}
914 
915 		if (copy > size)
916 			copy = size;
917 
918 		i = skb_shinfo(skb)->nr_frags;
919 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
920 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
921 			tcp_mark_push(tp, skb);
922 			goto new_segment;
923 		}
924 		if (!sk_wmem_schedule(sk, copy))
925 			goto wait_for_memory;
926 
927 		if (can_coalesce) {
928 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
929 		} else {
930 			get_page(page);
931 			skb_fill_page_desc(skb, i, page, offset, copy);
932 		}
933 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
934 
935 		skb->len += copy;
936 		skb->data_len += copy;
937 		skb->truesize += copy;
938 		sk->sk_wmem_queued += copy;
939 		sk_mem_charge(sk, copy);
940 		skb->ip_summed = CHECKSUM_PARTIAL;
941 		tp->write_seq += copy;
942 		TCP_SKB_CB(skb)->end_seq += copy;
943 		tcp_skb_pcount_set(skb, 0);
944 
945 		if (!copied)
946 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
947 
948 		copied += copy;
949 		offset += copy;
950 		if (!(size -= copy)) {
951 			tcp_tx_timestamp(sk, skb);
952 			goto out;
953 		}
954 
955 		if (skb->len < size_goal || (flags & MSG_OOB))
956 			continue;
957 
958 		if (forced_push(tp)) {
959 			tcp_mark_push(tp, skb);
960 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
961 		} else if (skb == tcp_send_head(sk))
962 			tcp_push_one(sk, mss_now);
963 		continue;
964 
965 wait_for_sndbuf:
966 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
967 wait_for_memory:
968 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
969 			 TCP_NAGLE_PUSH, size_goal);
970 
971 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
972 			goto do_error;
973 
974 		mss_now = tcp_send_mss(sk, &size_goal, flags);
975 	}
976 
977 out:
978 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
979 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
980 	return copied;
981 
982 do_error:
983 	if (copied)
984 		goto out;
985 out_err:
986 	return sk_stream_error(sk, flags, err);
987 }
988 
989 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
990 		 size_t size, int flags)
991 {
992 	ssize_t res;
993 
994 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
995 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
996 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
997 					flags);
998 
999 	lock_sock(sk);
1000 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1001 	release_sock(sk);
1002 	return res;
1003 }
1004 EXPORT_SYMBOL(tcp_sendpage);
1005 
1006 static inline int select_size(const struct sock *sk, bool sg)
1007 {
1008 	const struct tcp_sock *tp = tcp_sk(sk);
1009 	int tmp = tp->mss_cache;
1010 
1011 	if (sg) {
1012 		if (sk_can_gso(sk)) {
1013 			/* Small frames wont use a full page:
1014 			 * Payload will immediately follow tcp header.
1015 			 */
1016 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1017 		} else {
1018 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1019 
1020 			if (tmp >= pgbreak &&
1021 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1022 				tmp = pgbreak;
1023 		}
1024 	}
1025 
1026 	return tmp;
1027 }
1028 
1029 void tcp_free_fastopen_req(struct tcp_sock *tp)
1030 {
1031 	if (tp->fastopen_req != NULL) {
1032 		kfree(tp->fastopen_req);
1033 		tp->fastopen_req = NULL;
1034 	}
1035 }
1036 
1037 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1038 				int *copied, size_t size)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	int err, flags;
1042 
1043 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1044 		return -EOPNOTSUPP;
1045 	if (tp->fastopen_req != NULL)
1046 		return -EALREADY; /* Another Fast Open is in progress */
1047 
1048 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1049 				   sk->sk_allocation);
1050 	if (unlikely(tp->fastopen_req == NULL))
1051 		return -ENOBUFS;
1052 	tp->fastopen_req->data = msg;
1053 	tp->fastopen_req->size = size;
1054 
1055 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1056 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1057 				    msg->msg_namelen, flags);
1058 	*copied = tp->fastopen_req->copied;
1059 	tcp_free_fastopen_req(tp);
1060 	return err;
1061 }
1062 
1063 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1064 		size_t size)
1065 {
1066 	struct tcp_sock *tp = tcp_sk(sk);
1067 	struct sk_buff *skb;
1068 	int flags, err, copied = 0;
1069 	int mss_now = 0, size_goal, copied_syn = 0;
1070 	bool sg;
1071 	long timeo;
1072 
1073 	lock_sock(sk);
1074 
1075 	flags = msg->msg_flags;
1076 	if (flags & MSG_FASTOPEN) {
1077 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1078 		if (err == -EINPROGRESS && copied_syn > 0)
1079 			goto out;
1080 		else if (err)
1081 			goto out_err;
1082 	}
1083 
1084 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085 
1086 	/* Wait for a connection to finish. One exception is TCP Fast Open
1087 	 * (passive side) where data is allowed to be sent before a connection
1088 	 * is fully established.
1089 	 */
1090 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1091 	    !tcp_passive_fastopen(sk)) {
1092 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1093 			goto do_error;
1094 	}
1095 
1096 	if (unlikely(tp->repair)) {
1097 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1098 			copied = tcp_send_rcvq(sk, msg, size);
1099 			goto out_nopush;
1100 		}
1101 
1102 		err = -EINVAL;
1103 		if (tp->repair_queue == TCP_NO_QUEUE)
1104 			goto out_err;
1105 
1106 		/* 'common' sending to sendq */
1107 	}
1108 
1109 	/* This should be in poll */
1110 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1111 
1112 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1113 
1114 	/* Ok commence sending. */
1115 	copied = 0;
1116 
1117 	err = -EPIPE;
1118 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1119 		goto out_err;
1120 
1121 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1122 
1123 	while (iov_iter_count(&msg->msg_iter)) {
1124 		int copy = 0;
1125 		int max = size_goal;
1126 
1127 		skb = tcp_write_queue_tail(sk);
1128 		if (tcp_send_head(sk)) {
1129 			if (skb->ip_summed == CHECKSUM_NONE)
1130 				max = mss_now;
1131 			copy = max - skb->len;
1132 		}
1133 
1134 		if (copy <= 0) {
1135 new_segment:
1136 			/* Allocate new segment. If the interface is SG,
1137 			 * allocate skb fitting to single page.
1138 			 */
1139 			if (!sk_stream_memory_free(sk))
1140 				goto wait_for_sndbuf;
1141 
1142 			skb = sk_stream_alloc_skb(sk,
1143 						  select_size(sk, sg),
1144 						  sk->sk_allocation);
1145 			if (!skb)
1146 				goto wait_for_memory;
1147 
1148 			/*
1149 			 * Check whether we can use HW checksum.
1150 			 */
1151 			if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1152 				skb->ip_summed = CHECKSUM_PARTIAL;
1153 
1154 			skb_entail(sk, skb);
1155 			copy = size_goal;
1156 			max = size_goal;
1157 
1158 			/* All packets are restored as if they have
1159 			 * already been sent. skb_mstamp isn't set to
1160 			 * avoid wrong rtt estimation.
1161 			 */
1162 			if (tp->repair)
1163 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1164 		}
1165 
1166 		/* Try to append data to the end of skb. */
1167 		if (copy > iov_iter_count(&msg->msg_iter))
1168 			copy = iov_iter_count(&msg->msg_iter);
1169 
1170 		/* Where to copy to? */
1171 		if (skb_availroom(skb) > 0) {
1172 			/* We have some space in skb head. Superb! */
1173 			copy = min_t(int, copy, skb_availroom(skb));
1174 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1175 			if (err)
1176 				goto do_fault;
1177 		} else {
1178 			bool merge = true;
1179 			int i = skb_shinfo(skb)->nr_frags;
1180 			struct page_frag *pfrag = sk_page_frag(sk);
1181 
1182 			if (!sk_page_frag_refill(sk, pfrag))
1183 				goto wait_for_memory;
1184 
1185 			if (!skb_can_coalesce(skb, i, pfrag->page,
1186 					      pfrag->offset)) {
1187 				if (i == MAX_SKB_FRAGS || !sg) {
1188 					tcp_mark_push(tp, skb);
1189 					goto new_segment;
1190 				}
1191 				merge = false;
1192 			}
1193 
1194 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1195 
1196 			if (!sk_wmem_schedule(sk, copy))
1197 				goto wait_for_memory;
1198 
1199 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1200 						       pfrag->page,
1201 						       pfrag->offset,
1202 						       copy);
1203 			if (err)
1204 				goto do_error;
1205 
1206 			/* Update the skb. */
1207 			if (merge) {
1208 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1209 			} else {
1210 				skb_fill_page_desc(skb, i, pfrag->page,
1211 						   pfrag->offset, copy);
1212 				get_page(pfrag->page);
1213 			}
1214 			pfrag->offset += copy;
1215 		}
1216 
1217 		if (!copied)
1218 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1219 
1220 		tp->write_seq += copy;
1221 		TCP_SKB_CB(skb)->end_seq += copy;
1222 		tcp_skb_pcount_set(skb, 0);
1223 
1224 		copied += copy;
1225 		if (!iov_iter_count(&msg->msg_iter)) {
1226 			tcp_tx_timestamp(sk, skb);
1227 			goto out;
1228 		}
1229 
1230 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1231 			continue;
1232 
1233 		if (forced_push(tp)) {
1234 			tcp_mark_push(tp, skb);
1235 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1236 		} else if (skb == tcp_send_head(sk))
1237 			tcp_push_one(sk, mss_now);
1238 		continue;
1239 
1240 wait_for_sndbuf:
1241 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1242 wait_for_memory:
1243 		if (copied)
1244 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1245 				 TCP_NAGLE_PUSH, size_goal);
1246 
1247 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1248 			goto do_error;
1249 
1250 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1251 	}
1252 
1253 out:
1254 	if (copied)
1255 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1256 out_nopush:
1257 	release_sock(sk);
1258 	return copied + copied_syn;
1259 
1260 do_fault:
1261 	if (!skb->len) {
1262 		tcp_unlink_write_queue(skb, sk);
1263 		/* It is the one place in all of TCP, except connection
1264 		 * reset, where we can be unlinking the send_head.
1265 		 */
1266 		tcp_check_send_head(sk, skb);
1267 		sk_wmem_free_skb(sk, skb);
1268 	}
1269 
1270 do_error:
1271 	if (copied + copied_syn)
1272 		goto out;
1273 out_err:
1274 	err = sk_stream_error(sk, flags, err);
1275 	release_sock(sk);
1276 	return err;
1277 }
1278 EXPORT_SYMBOL(tcp_sendmsg);
1279 
1280 /*
1281  *	Handle reading urgent data. BSD has very simple semantics for
1282  *	this, no blocking and very strange errors 8)
1283  */
1284 
1285 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 
1289 	/* No URG data to read. */
1290 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1291 	    tp->urg_data == TCP_URG_READ)
1292 		return -EINVAL;	/* Yes this is right ! */
1293 
1294 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1295 		return -ENOTCONN;
1296 
1297 	if (tp->urg_data & TCP_URG_VALID) {
1298 		int err = 0;
1299 		char c = tp->urg_data;
1300 
1301 		if (!(flags & MSG_PEEK))
1302 			tp->urg_data = TCP_URG_READ;
1303 
1304 		/* Read urgent data. */
1305 		msg->msg_flags |= MSG_OOB;
1306 
1307 		if (len > 0) {
1308 			if (!(flags & MSG_TRUNC))
1309 				err = memcpy_to_msg(msg, &c, 1);
1310 			len = 1;
1311 		} else
1312 			msg->msg_flags |= MSG_TRUNC;
1313 
1314 		return err ? -EFAULT : len;
1315 	}
1316 
1317 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1318 		return 0;
1319 
1320 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1321 	 * the available implementations agree in this case:
1322 	 * this call should never block, independent of the
1323 	 * blocking state of the socket.
1324 	 * Mike <pall@rz.uni-karlsruhe.de>
1325 	 */
1326 	return -EAGAIN;
1327 }
1328 
1329 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1330 {
1331 	struct sk_buff *skb;
1332 	int copied = 0, err = 0;
1333 
1334 	/* XXX -- need to support SO_PEEK_OFF */
1335 
1336 	skb_queue_walk(&sk->sk_write_queue, skb) {
1337 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1338 		if (err)
1339 			break;
1340 
1341 		copied += skb->len;
1342 	}
1343 
1344 	return err ?: copied;
1345 }
1346 
1347 /* Clean up the receive buffer for full frames taken by the user,
1348  * then send an ACK if necessary.  COPIED is the number of bytes
1349  * tcp_recvmsg has given to the user so far, it speeds up the
1350  * calculation of whether or not we must ACK for the sake of
1351  * a window update.
1352  */
1353 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1354 {
1355 	struct tcp_sock *tp = tcp_sk(sk);
1356 	bool time_to_ack = false;
1357 
1358 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1359 
1360 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1361 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1362 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1363 
1364 	if (inet_csk_ack_scheduled(sk)) {
1365 		const struct inet_connection_sock *icsk = inet_csk(sk);
1366 		   /* Delayed ACKs frequently hit locked sockets during bulk
1367 		    * receive. */
1368 		if (icsk->icsk_ack.blocked ||
1369 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1370 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1371 		    /*
1372 		     * If this read emptied read buffer, we send ACK, if
1373 		     * connection is not bidirectional, user drained
1374 		     * receive buffer and there was a small segment
1375 		     * in queue.
1376 		     */
1377 		    (copied > 0 &&
1378 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1379 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1380 		       !icsk->icsk_ack.pingpong)) &&
1381 		      !atomic_read(&sk->sk_rmem_alloc)))
1382 			time_to_ack = true;
1383 	}
1384 
1385 	/* We send an ACK if we can now advertise a non-zero window
1386 	 * which has been raised "significantly".
1387 	 *
1388 	 * Even if window raised up to infinity, do not send window open ACK
1389 	 * in states, where we will not receive more. It is useless.
1390 	 */
1391 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1392 		__u32 rcv_window_now = tcp_receive_window(tp);
1393 
1394 		/* Optimize, __tcp_select_window() is not cheap. */
1395 		if (2*rcv_window_now <= tp->window_clamp) {
1396 			__u32 new_window = __tcp_select_window(sk);
1397 
1398 			/* Send ACK now, if this read freed lots of space
1399 			 * in our buffer. Certainly, new_window is new window.
1400 			 * We can advertise it now, if it is not less than current one.
1401 			 * "Lots" means "at least twice" here.
1402 			 */
1403 			if (new_window && new_window >= 2 * rcv_window_now)
1404 				time_to_ack = true;
1405 		}
1406 	}
1407 	if (time_to_ack)
1408 		tcp_send_ack(sk);
1409 }
1410 
1411 static void tcp_prequeue_process(struct sock *sk)
1412 {
1413 	struct sk_buff *skb;
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 
1416 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1417 
1418 	/* RX process wants to run with disabled BHs, though it is not
1419 	 * necessary */
1420 	local_bh_disable();
1421 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1422 		sk_backlog_rcv(sk, skb);
1423 	local_bh_enable();
1424 
1425 	/* Clear memory counter. */
1426 	tp->ucopy.memory = 0;
1427 }
1428 
1429 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1430 {
1431 	struct sk_buff *skb;
1432 	u32 offset;
1433 
1434 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1435 		offset = seq - TCP_SKB_CB(skb)->seq;
1436 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1437 			offset--;
1438 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1439 			*off = offset;
1440 			return skb;
1441 		}
1442 		/* This looks weird, but this can happen if TCP collapsing
1443 		 * splitted a fat GRO packet, while we released socket lock
1444 		 * in skb_splice_bits()
1445 		 */
1446 		sk_eat_skb(sk, skb);
1447 	}
1448 	return NULL;
1449 }
1450 
1451 /*
1452  * This routine provides an alternative to tcp_recvmsg() for routines
1453  * that would like to handle copying from skbuffs directly in 'sendfile'
1454  * fashion.
1455  * Note:
1456  *	- It is assumed that the socket was locked by the caller.
1457  *	- The routine does not block.
1458  *	- At present, there is no support for reading OOB data
1459  *	  or for 'peeking' the socket using this routine
1460  *	  (although both would be easy to implement).
1461  */
1462 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1463 		  sk_read_actor_t recv_actor)
1464 {
1465 	struct sk_buff *skb;
1466 	struct tcp_sock *tp = tcp_sk(sk);
1467 	u32 seq = tp->copied_seq;
1468 	u32 offset;
1469 	int copied = 0;
1470 
1471 	if (sk->sk_state == TCP_LISTEN)
1472 		return -ENOTCONN;
1473 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1474 		if (offset < skb->len) {
1475 			int used;
1476 			size_t len;
1477 
1478 			len = skb->len - offset;
1479 			/* Stop reading if we hit a patch of urgent data */
1480 			if (tp->urg_data) {
1481 				u32 urg_offset = tp->urg_seq - seq;
1482 				if (urg_offset < len)
1483 					len = urg_offset;
1484 				if (!len)
1485 					break;
1486 			}
1487 			used = recv_actor(desc, skb, offset, len);
1488 			if (used <= 0) {
1489 				if (!copied)
1490 					copied = used;
1491 				break;
1492 			} else if (used <= len) {
1493 				seq += used;
1494 				copied += used;
1495 				offset += used;
1496 			}
1497 			/* If recv_actor drops the lock (e.g. TCP splice
1498 			 * receive) the skb pointer might be invalid when
1499 			 * getting here: tcp_collapse might have deleted it
1500 			 * while aggregating skbs from the socket queue.
1501 			 */
1502 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1503 			if (!skb)
1504 				break;
1505 			/* TCP coalescing might have appended data to the skb.
1506 			 * Try to splice more frags
1507 			 */
1508 			if (offset + 1 != skb->len)
1509 				continue;
1510 		}
1511 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1512 			sk_eat_skb(sk, skb);
1513 			++seq;
1514 			break;
1515 		}
1516 		sk_eat_skb(sk, skb);
1517 		if (!desc->count)
1518 			break;
1519 		tp->copied_seq = seq;
1520 	}
1521 	tp->copied_seq = seq;
1522 
1523 	tcp_rcv_space_adjust(sk);
1524 
1525 	/* Clean up data we have read: This will do ACK frames. */
1526 	if (copied > 0) {
1527 		tcp_recv_skb(sk, seq, &offset);
1528 		tcp_cleanup_rbuf(sk, copied);
1529 	}
1530 	return copied;
1531 }
1532 EXPORT_SYMBOL(tcp_read_sock);
1533 
1534 /*
1535  *	This routine copies from a sock struct into the user buffer.
1536  *
1537  *	Technical note: in 2.3 we work on _locked_ socket, so that
1538  *	tricks with *seq access order and skb->users are not required.
1539  *	Probably, code can be easily improved even more.
1540  */
1541 
1542 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1543 		size_t len, int nonblock, int flags, int *addr_len)
1544 {
1545 	struct tcp_sock *tp = tcp_sk(sk);
1546 	int copied = 0;
1547 	u32 peek_seq;
1548 	u32 *seq;
1549 	unsigned long used;
1550 	int err;
1551 	int target;		/* Read at least this many bytes */
1552 	long timeo;
1553 	struct task_struct *user_recv = NULL;
1554 	struct sk_buff *skb;
1555 	u32 urg_hole = 0;
1556 
1557 	if (unlikely(flags & MSG_ERRQUEUE))
1558 		return inet_recv_error(sk, msg, len, addr_len);
1559 
1560 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1561 	    (sk->sk_state == TCP_ESTABLISHED))
1562 		sk_busy_loop(sk, nonblock);
1563 
1564 	lock_sock(sk);
1565 
1566 	err = -ENOTCONN;
1567 	if (sk->sk_state == TCP_LISTEN)
1568 		goto out;
1569 
1570 	timeo = sock_rcvtimeo(sk, nonblock);
1571 
1572 	/* Urgent data needs to be handled specially. */
1573 	if (flags & MSG_OOB)
1574 		goto recv_urg;
1575 
1576 	if (unlikely(tp->repair)) {
1577 		err = -EPERM;
1578 		if (!(flags & MSG_PEEK))
1579 			goto out;
1580 
1581 		if (tp->repair_queue == TCP_SEND_QUEUE)
1582 			goto recv_sndq;
1583 
1584 		err = -EINVAL;
1585 		if (tp->repair_queue == TCP_NO_QUEUE)
1586 			goto out;
1587 
1588 		/* 'common' recv queue MSG_PEEK-ing */
1589 	}
1590 
1591 	seq = &tp->copied_seq;
1592 	if (flags & MSG_PEEK) {
1593 		peek_seq = tp->copied_seq;
1594 		seq = &peek_seq;
1595 	}
1596 
1597 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1598 
1599 	do {
1600 		u32 offset;
1601 
1602 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1603 		if (tp->urg_data && tp->urg_seq == *seq) {
1604 			if (copied)
1605 				break;
1606 			if (signal_pending(current)) {
1607 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1608 				break;
1609 			}
1610 		}
1611 
1612 		/* Next get a buffer. */
1613 
1614 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1615 			/* Now that we have two receive queues this
1616 			 * shouldn't happen.
1617 			 */
1618 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1619 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1620 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1621 				 flags))
1622 				break;
1623 
1624 			offset = *seq - TCP_SKB_CB(skb)->seq;
1625 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1626 				offset--;
1627 			if (offset < skb->len)
1628 				goto found_ok_skb;
1629 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1630 				goto found_fin_ok;
1631 			WARN(!(flags & MSG_PEEK),
1632 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1633 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1634 		}
1635 
1636 		/* Well, if we have backlog, try to process it now yet. */
1637 
1638 		if (copied >= target && !sk->sk_backlog.tail)
1639 			break;
1640 
1641 		if (copied) {
1642 			if (sk->sk_err ||
1643 			    sk->sk_state == TCP_CLOSE ||
1644 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1645 			    !timeo ||
1646 			    signal_pending(current))
1647 				break;
1648 		} else {
1649 			if (sock_flag(sk, SOCK_DONE))
1650 				break;
1651 
1652 			if (sk->sk_err) {
1653 				copied = sock_error(sk);
1654 				break;
1655 			}
1656 
1657 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1658 				break;
1659 
1660 			if (sk->sk_state == TCP_CLOSE) {
1661 				if (!sock_flag(sk, SOCK_DONE)) {
1662 					/* This occurs when user tries to read
1663 					 * from never connected socket.
1664 					 */
1665 					copied = -ENOTCONN;
1666 					break;
1667 				}
1668 				break;
1669 			}
1670 
1671 			if (!timeo) {
1672 				copied = -EAGAIN;
1673 				break;
1674 			}
1675 
1676 			if (signal_pending(current)) {
1677 				copied = sock_intr_errno(timeo);
1678 				break;
1679 			}
1680 		}
1681 
1682 		tcp_cleanup_rbuf(sk, copied);
1683 
1684 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1685 			/* Install new reader */
1686 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1687 				user_recv = current;
1688 				tp->ucopy.task = user_recv;
1689 				tp->ucopy.msg = msg;
1690 			}
1691 
1692 			tp->ucopy.len = len;
1693 
1694 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1695 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1696 
1697 			/* Ugly... If prequeue is not empty, we have to
1698 			 * process it before releasing socket, otherwise
1699 			 * order will be broken at second iteration.
1700 			 * More elegant solution is required!!!
1701 			 *
1702 			 * Look: we have the following (pseudo)queues:
1703 			 *
1704 			 * 1. packets in flight
1705 			 * 2. backlog
1706 			 * 3. prequeue
1707 			 * 4. receive_queue
1708 			 *
1709 			 * Each queue can be processed only if the next ones
1710 			 * are empty. At this point we have empty receive_queue.
1711 			 * But prequeue _can_ be not empty after 2nd iteration,
1712 			 * when we jumped to start of loop because backlog
1713 			 * processing added something to receive_queue.
1714 			 * We cannot release_sock(), because backlog contains
1715 			 * packets arrived _after_ prequeued ones.
1716 			 *
1717 			 * Shortly, algorithm is clear --- to process all
1718 			 * the queues in order. We could make it more directly,
1719 			 * requeueing packets from backlog to prequeue, if
1720 			 * is not empty. It is more elegant, but eats cycles,
1721 			 * unfortunately.
1722 			 */
1723 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1724 				goto do_prequeue;
1725 
1726 			/* __ Set realtime policy in scheduler __ */
1727 		}
1728 
1729 		if (copied >= target) {
1730 			/* Do not sleep, just process backlog. */
1731 			release_sock(sk);
1732 			lock_sock(sk);
1733 		} else
1734 			sk_wait_data(sk, &timeo);
1735 
1736 		if (user_recv) {
1737 			int chunk;
1738 
1739 			/* __ Restore normal policy in scheduler __ */
1740 
1741 			if ((chunk = len - tp->ucopy.len) != 0) {
1742 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1743 				len -= chunk;
1744 				copied += chunk;
1745 			}
1746 
1747 			if (tp->rcv_nxt == tp->copied_seq &&
1748 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1749 do_prequeue:
1750 				tcp_prequeue_process(sk);
1751 
1752 				if ((chunk = len - tp->ucopy.len) != 0) {
1753 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1754 					len -= chunk;
1755 					copied += chunk;
1756 				}
1757 			}
1758 		}
1759 		if ((flags & MSG_PEEK) &&
1760 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1761 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1762 					    current->comm,
1763 					    task_pid_nr(current));
1764 			peek_seq = tp->copied_seq;
1765 		}
1766 		continue;
1767 
1768 	found_ok_skb:
1769 		/* Ok so how much can we use? */
1770 		used = skb->len - offset;
1771 		if (len < used)
1772 			used = len;
1773 
1774 		/* Do we have urgent data here? */
1775 		if (tp->urg_data) {
1776 			u32 urg_offset = tp->urg_seq - *seq;
1777 			if (urg_offset < used) {
1778 				if (!urg_offset) {
1779 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1780 						++*seq;
1781 						urg_hole++;
1782 						offset++;
1783 						used--;
1784 						if (!used)
1785 							goto skip_copy;
1786 					}
1787 				} else
1788 					used = urg_offset;
1789 			}
1790 		}
1791 
1792 		if (!(flags & MSG_TRUNC)) {
1793 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1794 			if (err) {
1795 				/* Exception. Bailout! */
1796 				if (!copied)
1797 					copied = -EFAULT;
1798 				break;
1799 			}
1800 		}
1801 
1802 		*seq += used;
1803 		copied += used;
1804 		len -= used;
1805 
1806 		tcp_rcv_space_adjust(sk);
1807 
1808 skip_copy:
1809 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1810 			tp->urg_data = 0;
1811 			tcp_fast_path_check(sk);
1812 		}
1813 		if (used + offset < skb->len)
1814 			continue;
1815 
1816 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1817 			goto found_fin_ok;
1818 		if (!(flags & MSG_PEEK))
1819 			sk_eat_skb(sk, skb);
1820 		continue;
1821 
1822 	found_fin_ok:
1823 		/* Process the FIN. */
1824 		++*seq;
1825 		if (!(flags & MSG_PEEK))
1826 			sk_eat_skb(sk, skb);
1827 		break;
1828 	} while (len > 0);
1829 
1830 	if (user_recv) {
1831 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1832 			int chunk;
1833 
1834 			tp->ucopy.len = copied > 0 ? len : 0;
1835 
1836 			tcp_prequeue_process(sk);
1837 
1838 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1839 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1840 				len -= chunk;
1841 				copied += chunk;
1842 			}
1843 		}
1844 
1845 		tp->ucopy.task = NULL;
1846 		tp->ucopy.len = 0;
1847 	}
1848 
1849 	/* According to UNIX98, msg_name/msg_namelen are ignored
1850 	 * on connected socket. I was just happy when found this 8) --ANK
1851 	 */
1852 
1853 	/* Clean up data we have read: This will do ACK frames. */
1854 	tcp_cleanup_rbuf(sk, copied);
1855 
1856 	release_sock(sk);
1857 	return copied;
1858 
1859 out:
1860 	release_sock(sk);
1861 	return err;
1862 
1863 recv_urg:
1864 	err = tcp_recv_urg(sk, msg, len, flags);
1865 	goto out;
1866 
1867 recv_sndq:
1868 	err = tcp_peek_sndq(sk, msg, len);
1869 	goto out;
1870 }
1871 EXPORT_SYMBOL(tcp_recvmsg);
1872 
1873 void tcp_set_state(struct sock *sk, int state)
1874 {
1875 	int oldstate = sk->sk_state;
1876 
1877 	switch (state) {
1878 	case TCP_ESTABLISHED:
1879 		if (oldstate != TCP_ESTABLISHED)
1880 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1881 		break;
1882 
1883 	case TCP_CLOSE:
1884 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1885 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1886 
1887 		sk->sk_prot->unhash(sk);
1888 		if (inet_csk(sk)->icsk_bind_hash &&
1889 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1890 			inet_put_port(sk);
1891 		/* fall through */
1892 	default:
1893 		if (oldstate == TCP_ESTABLISHED)
1894 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1895 	}
1896 
1897 	/* Change state AFTER socket is unhashed to avoid closed
1898 	 * socket sitting in hash tables.
1899 	 */
1900 	sk->sk_state = state;
1901 
1902 #ifdef STATE_TRACE
1903 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1904 #endif
1905 }
1906 EXPORT_SYMBOL_GPL(tcp_set_state);
1907 
1908 /*
1909  *	State processing on a close. This implements the state shift for
1910  *	sending our FIN frame. Note that we only send a FIN for some
1911  *	states. A shutdown() may have already sent the FIN, or we may be
1912  *	closed.
1913  */
1914 
1915 static const unsigned char new_state[16] = {
1916   /* current state:        new state:      action:	*/
1917   /* (Invalid)		*/ TCP_CLOSE,
1918   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1919   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1920   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1921   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1922   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1923   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1924   /* TCP_CLOSE		*/ TCP_CLOSE,
1925   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1926   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1927   /* TCP_LISTEN		*/ TCP_CLOSE,
1928   /* TCP_CLOSING	*/ TCP_CLOSING,
1929 };
1930 
1931 static int tcp_close_state(struct sock *sk)
1932 {
1933 	int next = (int)new_state[sk->sk_state];
1934 	int ns = next & TCP_STATE_MASK;
1935 
1936 	tcp_set_state(sk, ns);
1937 
1938 	return next & TCP_ACTION_FIN;
1939 }
1940 
1941 /*
1942  *	Shutdown the sending side of a connection. Much like close except
1943  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1944  */
1945 
1946 void tcp_shutdown(struct sock *sk, int how)
1947 {
1948 	/*	We need to grab some memory, and put together a FIN,
1949 	 *	and then put it into the queue to be sent.
1950 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1951 	 */
1952 	if (!(how & SEND_SHUTDOWN))
1953 		return;
1954 
1955 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1956 	if ((1 << sk->sk_state) &
1957 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1958 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1959 		/* Clear out any half completed packets.  FIN if needed. */
1960 		if (tcp_close_state(sk))
1961 			tcp_send_fin(sk);
1962 	}
1963 }
1964 EXPORT_SYMBOL(tcp_shutdown);
1965 
1966 bool tcp_check_oom(struct sock *sk, int shift)
1967 {
1968 	bool too_many_orphans, out_of_socket_memory;
1969 
1970 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1971 	out_of_socket_memory = tcp_out_of_memory(sk);
1972 
1973 	if (too_many_orphans)
1974 		net_info_ratelimited("too many orphaned sockets\n");
1975 	if (out_of_socket_memory)
1976 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
1977 	return too_many_orphans || out_of_socket_memory;
1978 }
1979 
1980 void tcp_close(struct sock *sk, long timeout)
1981 {
1982 	struct sk_buff *skb;
1983 	int data_was_unread = 0;
1984 	int state;
1985 
1986 	lock_sock(sk);
1987 	sk->sk_shutdown = SHUTDOWN_MASK;
1988 
1989 	if (sk->sk_state == TCP_LISTEN) {
1990 		tcp_set_state(sk, TCP_CLOSE);
1991 
1992 		/* Special case. */
1993 		inet_csk_listen_stop(sk);
1994 
1995 		goto adjudge_to_death;
1996 	}
1997 
1998 	/*  We need to flush the recv. buffs.  We do this only on the
1999 	 *  descriptor close, not protocol-sourced closes, because the
2000 	 *  reader process may not have drained the data yet!
2001 	 */
2002 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2003 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2004 
2005 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2006 			len--;
2007 		data_was_unread += len;
2008 		__kfree_skb(skb);
2009 	}
2010 
2011 	sk_mem_reclaim(sk);
2012 
2013 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2014 	if (sk->sk_state == TCP_CLOSE)
2015 		goto adjudge_to_death;
2016 
2017 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2018 	 * data was lost. To witness the awful effects of the old behavior of
2019 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2020 	 * GET in an FTP client, suspend the process, wait for the client to
2021 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2022 	 * Note: timeout is always zero in such a case.
2023 	 */
2024 	if (unlikely(tcp_sk(sk)->repair)) {
2025 		sk->sk_prot->disconnect(sk, 0);
2026 	} else if (data_was_unread) {
2027 		/* Unread data was tossed, zap the connection. */
2028 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2029 		tcp_set_state(sk, TCP_CLOSE);
2030 		tcp_send_active_reset(sk, sk->sk_allocation);
2031 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2032 		/* Check zero linger _after_ checking for unread data. */
2033 		sk->sk_prot->disconnect(sk, 0);
2034 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2035 	} else if (tcp_close_state(sk)) {
2036 		/* We FIN if the application ate all the data before
2037 		 * zapping the connection.
2038 		 */
2039 
2040 		/* RED-PEN. Formally speaking, we have broken TCP state
2041 		 * machine. State transitions:
2042 		 *
2043 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2044 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2045 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2046 		 *
2047 		 * are legal only when FIN has been sent (i.e. in window),
2048 		 * rather than queued out of window. Purists blame.
2049 		 *
2050 		 * F.e. "RFC state" is ESTABLISHED,
2051 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2052 		 *
2053 		 * The visible declinations are that sometimes
2054 		 * we enter time-wait state, when it is not required really
2055 		 * (harmless), do not send active resets, when they are
2056 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2057 		 * they look as CLOSING or LAST_ACK for Linux)
2058 		 * Probably, I missed some more holelets.
2059 		 * 						--ANK
2060 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2061 		 * in a single packet! (May consider it later but will
2062 		 * probably need API support or TCP_CORK SYN-ACK until
2063 		 * data is written and socket is closed.)
2064 		 */
2065 		tcp_send_fin(sk);
2066 	}
2067 
2068 	sk_stream_wait_close(sk, timeout);
2069 
2070 adjudge_to_death:
2071 	state = sk->sk_state;
2072 	sock_hold(sk);
2073 	sock_orphan(sk);
2074 
2075 	/* It is the last release_sock in its life. It will remove backlog. */
2076 	release_sock(sk);
2077 
2078 
2079 	/* Now socket is owned by kernel and we acquire BH lock
2080 	   to finish close. No need to check for user refs.
2081 	 */
2082 	local_bh_disable();
2083 	bh_lock_sock(sk);
2084 	WARN_ON(sock_owned_by_user(sk));
2085 
2086 	percpu_counter_inc(sk->sk_prot->orphan_count);
2087 
2088 	/* Have we already been destroyed by a softirq or backlog? */
2089 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2090 		goto out;
2091 
2092 	/*	This is a (useful) BSD violating of the RFC. There is a
2093 	 *	problem with TCP as specified in that the other end could
2094 	 *	keep a socket open forever with no application left this end.
2095 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2096 	 *	our end. If they send after that then tough - BUT: long enough
2097 	 *	that we won't make the old 4*rto = almost no time - whoops
2098 	 *	reset mistake.
2099 	 *
2100 	 *	Nope, it was not mistake. It is really desired behaviour
2101 	 *	f.e. on http servers, when such sockets are useless, but
2102 	 *	consume significant resources. Let's do it with special
2103 	 *	linger2	option.					--ANK
2104 	 */
2105 
2106 	if (sk->sk_state == TCP_FIN_WAIT2) {
2107 		struct tcp_sock *tp = tcp_sk(sk);
2108 		if (tp->linger2 < 0) {
2109 			tcp_set_state(sk, TCP_CLOSE);
2110 			tcp_send_active_reset(sk, GFP_ATOMIC);
2111 			NET_INC_STATS_BH(sock_net(sk),
2112 					LINUX_MIB_TCPABORTONLINGER);
2113 		} else {
2114 			const int tmo = tcp_fin_time(sk);
2115 
2116 			if (tmo > TCP_TIMEWAIT_LEN) {
2117 				inet_csk_reset_keepalive_timer(sk,
2118 						tmo - TCP_TIMEWAIT_LEN);
2119 			} else {
2120 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2121 				goto out;
2122 			}
2123 		}
2124 	}
2125 	if (sk->sk_state != TCP_CLOSE) {
2126 		sk_mem_reclaim(sk);
2127 		if (tcp_check_oom(sk, 0)) {
2128 			tcp_set_state(sk, TCP_CLOSE);
2129 			tcp_send_active_reset(sk, GFP_ATOMIC);
2130 			NET_INC_STATS_BH(sock_net(sk),
2131 					LINUX_MIB_TCPABORTONMEMORY);
2132 		}
2133 	}
2134 
2135 	if (sk->sk_state == TCP_CLOSE) {
2136 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2137 		/* We could get here with a non-NULL req if the socket is
2138 		 * aborted (e.g., closed with unread data) before 3WHS
2139 		 * finishes.
2140 		 */
2141 		if (req != NULL)
2142 			reqsk_fastopen_remove(sk, req, false);
2143 		inet_csk_destroy_sock(sk);
2144 	}
2145 	/* Otherwise, socket is reprieved until protocol close. */
2146 
2147 out:
2148 	bh_unlock_sock(sk);
2149 	local_bh_enable();
2150 	sock_put(sk);
2151 }
2152 EXPORT_SYMBOL(tcp_close);
2153 
2154 /* These states need RST on ABORT according to RFC793 */
2155 
2156 static inline bool tcp_need_reset(int state)
2157 {
2158 	return (1 << state) &
2159 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2160 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2161 }
2162 
2163 int tcp_disconnect(struct sock *sk, int flags)
2164 {
2165 	struct inet_sock *inet = inet_sk(sk);
2166 	struct inet_connection_sock *icsk = inet_csk(sk);
2167 	struct tcp_sock *tp = tcp_sk(sk);
2168 	int err = 0;
2169 	int old_state = sk->sk_state;
2170 
2171 	if (old_state != TCP_CLOSE)
2172 		tcp_set_state(sk, TCP_CLOSE);
2173 
2174 	/* ABORT function of RFC793 */
2175 	if (old_state == TCP_LISTEN) {
2176 		inet_csk_listen_stop(sk);
2177 	} else if (unlikely(tp->repair)) {
2178 		sk->sk_err = ECONNABORTED;
2179 	} else if (tcp_need_reset(old_state) ||
2180 		   (tp->snd_nxt != tp->write_seq &&
2181 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2182 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2183 		 * states
2184 		 */
2185 		tcp_send_active_reset(sk, gfp_any());
2186 		sk->sk_err = ECONNRESET;
2187 	} else if (old_state == TCP_SYN_SENT)
2188 		sk->sk_err = ECONNRESET;
2189 
2190 	tcp_clear_xmit_timers(sk);
2191 	__skb_queue_purge(&sk->sk_receive_queue);
2192 	tcp_write_queue_purge(sk);
2193 	__skb_queue_purge(&tp->out_of_order_queue);
2194 
2195 	inet->inet_dport = 0;
2196 
2197 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2198 		inet_reset_saddr(sk);
2199 
2200 	sk->sk_shutdown = 0;
2201 	sock_reset_flag(sk, SOCK_DONE);
2202 	tp->srtt_us = 0;
2203 	if ((tp->write_seq += tp->max_window + 2) == 0)
2204 		tp->write_seq = 1;
2205 	icsk->icsk_backoff = 0;
2206 	tp->snd_cwnd = 2;
2207 	icsk->icsk_probes_out = 0;
2208 	tp->packets_out = 0;
2209 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2210 	tp->snd_cwnd_cnt = 0;
2211 	tp->window_clamp = 0;
2212 	tcp_set_ca_state(sk, TCP_CA_Open);
2213 	tcp_clear_retrans(tp);
2214 	inet_csk_delack_init(sk);
2215 	tcp_init_send_head(sk);
2216 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2217 	__sk_dst_reset(sk);
2218 
2219 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2220 
2221 	sk->sk_error_report(sk);
2222 	return err;
2223 }
2224 EXPORT_SYMBOL(tcp_disconnect);
2225 
2226 void tcp_sock_destruct(struct sock *sk)
2227 {
2228 	inet_sock_destruct(sk);
2229 
2230 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2231 }
2232 
2233 static inline bool tcp_can_repair_sock(const struct sock *sk)
2234 {
2235 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2236 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2237 }
2238 
2239 static int tcp_repair_options_est(struct tcp_sock *tp,
2240 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2241 {
2242 	struct tcp_repair_opt opt;
2243 
2244 	while (len >= sizeof(opt)) {
2245 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2246 			return -EFAULT;
2247 
2248 		optbuf++;
2249 		len -= sizeof(opt);
2250 
2251 		switch (opt.opt_code) {
2252 		case TCPOPT_MSS:
2253 			tp->rx_opt.mss_clamp = opt.opt_val;
2254 			break;
2255 		case TCPOPT_WINDOW:
2256 			{
2257 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2258 				u16 rcv_wscale = opt.opt_val >> 16;
2259 
2260 				if (snd_wscale > 14 || rcv_wscale > 14)
2261 					return -EFBIG;
2262 
2263 				tp->rx_opt.snd_wscale = snd_wscale;
2264 				tp->rx_opt.rcv_wscale = rcv_wscale;
2265 				tp->rx_opt.wscale_ok = 1;
2266 			}
2267 			break;
2268 		case TCPOPT_SACK_PERM:
2269 			if (opt.opt_val != 0)
2270 				return -EINVAL;
2271 
2272 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2273 			if (sysctl_tcp_fack)
2274 				tcp_enable_fack(tp);
2275 			break;
2276 		case TCPOPT_TIMESTAMP:
2277 			if (opt.opt_val != 0)
2278 				return -EINVAL;
2279 
2280 			tp->rx_opt.tstamp_ok = 1;
2281 			break;
2282 		}
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 /*
2289  *	Socket option code for TCP.
2290  */
2291 static int do_tcp_setsockopt(struct sock *sk, int level,
2292 		int optname, char __user *optval, unsigned int optlen)
2293 {
2294 	struct tcp_sock *tp = tcp_sk(sk);
2295 	struct inet_connection_sock *icsk = inet_csk(sk);
2296 	int val;
2297 	int err = 0;
2298 
2299 	/* These are data/string values, all the others are ints */
2300 	switch (optname) {
2301 	case TCP_CONGESTION: {
2302 		char name[TCP_CA_NAME_MAX];
2303 
2304 		if (optlen < 1)
2305 			return -EINVAL;
2306 
2307 		val = strncpy_from_user(name, optval,
2308 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2309 		if (val < 0)
2310 			return -EFAULT;
2311 		name[val] = 0;
2312 
2313 		lock_sock(sk);
2314 		err = tcp_set_congestion_control(sk, name);
2315 		release_sock(sk);
2316 		return err;
2317 	}
2318 	default:
2319 		/* fallthru */
2320 		break;
2321 	}
2322 
2323 	if (optlen < sizeof(int))
2324 		return -EINVAL;
2325 
2326 	if (get_user(val, (int __user *)optval))
2327 		return -EFAULT;
2328 
2329 	lock_sock(sk);
2330 
2331 	switch (optname) {
2332 	case TCP_MAXSEG:
2333 		/* Values greater than interface MTU won't take effect. However
2334 		 * at the point when this call is done we typically don't yet
2335 		 * know which interface is going to be used */
2336 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2337 			err = -EINVAL;
2338 			break;
2339 		}
2340 		tp->rx_opt.user_mss = val;
2341 		break;
2342 
2343 	case TCP_NODELAY:
2344 		if (val) {
2345 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2346 			 * this option on corked socket is remembered, but
2347 			 * it is not activated until cork is cleared.
2348 			 *
2349 			 * However, when TCP_NODELAY is set we make
2350 			 * an explicit push, which overrides even TCP_CORK
2351 			 * for currently queued segments.
2352 			 */
2353 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2354 			tcp_push_pending_frames(sk);
2355 		} else {
2356 			tp->nonagle &= ~TCP_NAGLE_OFF;
2357 		}
2358 		break;
2359 
2360 	case TCP_THIN_LINEAR_TIMEOUTS:
2361 		if (val < 0 || val > 1)
2362 			err = -EINVAL;
2363 		else
2364 			tp->thin_lto = val;
2365 		break;
2366 
2367 	case TCP_THIN_DUPACK:
2368 		if (val < 0 || val > 1)
2369 			err = -EINVAL;
2370 		else {
2371 			tp->thin_dupack = val;
2372 			if (tp->thin_dupack)
2373 				tcp_disable_early_retrans(tp);
2374 		}
2375 		break;
2376 
2377 	case TCP_REPAIR:
2378 		if (!tcp_can_repair_sock(sk))
2379 			err = -EPERM;
2380 		else if (val == 1) {
2381 			tp->repair = 1;
2382 			sk->sk_reuse = SK_FORCE_REUSE;
2383 			tp->repair_queue = TCP_NO_QUEUE;
2384 		} else if (val == 0) {
2385 			tp->repair = 0;
2386 			sk->sk_reuse = SK_NO_REUSE;
2387 			tcp_send_window_probe(sk);
2388 		} else
2389 			err = -EINVAL;
2390 
2391 		break;
2392 
2393 	case TCP_REPAIR_QUEUE:
2394 		if (!tp->repair)
2395 			err = -EPERM;
2396 		else if (val < TCP_QUEUES_NR)
2397 			tp->repair_queue = val;
2398 		else
2399 			err = -EINVAL;
2400 		break;
2401 
2402 	case TCP_QUEUE_SEQ:
2403 		if (sk->sk_state != TCP_CLOSE)
2404 			err = -EPERM;
2405 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2406 			tp->write_seq = val;
2407 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2408 			tp->rcv_nxt = val;
2409 		else
2410 			err = -EINVAL;
2411 		break;
2412 
2413 	case TCP_REPAIR_OPTIONS:
2414 		if (!tp->repair)
2415 			err = -EINVAL;
2416 		else if (sk->sk_state == TCP_ESTABLISHED)
2417 			err = tcp_repair_options_est(tp,
2418 					(struct tcp_repair_opt __user *)optval,
2419 					optlen);
2420 		else
2421 			err = -EPERM;
2422 		break;
2423 
2424 	case TCP_CORK:
2425 		/* When set indicates to always queue non-full frames.
2426 		 * Later the user clears this option and we transmit
2427 		 * any pending partial frames in the queue.  This is
2428 		 * meant to be used alongside sendfile() to get properly
2429 		 * filled frames when the user (for example) must write
2430 		 * out headers with a write() call first and then use
2431 		 * sendfile to send out the data parts.
2432 		 *
2433 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2434 		 * stronger than TCP_NODELAY.
2435 		 */
2436 		if (val) {
2437 			tp->nonagle |= TCP_NAGLE_CORK;
2438 		} else {
2439 			tp->nonagle &= ~TCP_NAGLE_CORK;
2440 			if (tp->nonagle&TCP_NAGLE_OFF)
2441 				tp->nonagle |= TCP_NAGLE_PUSH;
2442 			tcp_push_pending_frames(sk);
2443 		}
2444 		break;
2445 
2446 	case TCP_KEEPIDLE:
2447 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2448 			err = -EINVAL;
2449 		else {
2450 			tp->keepalive_time = val * HZ;
2451 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2452 			    !((1 << sk->sk_state) &
2453 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2454 				u32 elapsed = keepalive_time_elapsed(tp);
2455 				if (tp->keepalive_time > elapsed)
2456 					elapsed = tp->keepalive_time - elapsed;
2457 				else
2458 					elapsed = 0;
2459 				inet_csk_reset_keepalive_timer(sk, elapsed);
2460 			}
2461 		}
2462 		break;
2463 	case TCP_KEEPINTVL:
2464 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2465 			err = -EINVAL;
2466 		else
2467 			tp->keepalive_intvl = val * HZ;
2468 		break;
2469 	case TCP_KEEPCNT:
2470 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2471 			err = -EINVAL;
2472 		else
2473 			tp->keepalive_probes = val;
2474 		break;
2475 	case TCP_SYNCNT:
2476 		if (val < 1 || val > MAX_TCP_SYNCNT)
2477 			err = -EINVAL;
2478 		else
2479 			icsk->icsk_syn_retries = val;
2480 		break;
2481 
2482 	case TCP_LINGER2:
2483 		if (val < 0)
2484 			tp->linger2 = -1;
2485 		else if (val > sysctl_tcp_fin_timeout / HZ)
2486 			tp->linger2 = 0;
2487 		else
2488 			tp->linger2 = val * HZ;
2489 		break;
2490 
2491 	case TCP_DEFER_ACCEPT:
2492 		/* Translate value in seconds to number of retransmits */
2493 		icsk->icsk_accept_queue.rskq_defer_accept =
2494 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2495 					TCP_RTO_MAX / HZ);
2496 		break;
2497 
2498 	case TCP_WINDOW_CLAMP:
2499 		if (!val) {
2500 			if (sk->sk_state != TCP_CLOSE) {
2501 				err = -EINVAL;
2502 				break;
2503 			}
2504 			tp->window_clamp = 0;
2505 		} else
2506 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2507 						SOCK_MIN_RCVBUF / 2 : val;
2508 		break;
2509 
2510 	case TCP_QUICKACK:
2511 		if (!val) {
2512 			icsk->icsk_ack.pingpong = 1;
2513 		} else {
2514 			icsk->icsk_ack.pingpong = 0;
2515 			if ((1 << sk->sk_state) &
2516 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2517 			    inet_csk_ack_scheduled(sk)) {
2518 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2519 				tcp_cleanup_rbuf(sk, 1);
2520 				if (!(val & 1))
2521 					icsk->icsk_ack.pingpong = 1;
2522 			}
2523 		}
2524 		break;
2525 
2526 #ifdef CONFIG_TCP_MD5SIG
2527 	case TCP_MD5SIG:
2528 		/* Read the IP->Key mappings from userspace */
2529 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2530 		break;
2531 #endif
2532 	case TCP_USER_TIMEOUT:
2533 		/* Cap the max time in ms TCP will retry or probe the window
2534 		 * before giving up and aborting (ETIMEDOUT) a connection.
2535 		 */
2536 		if (val < 0)
2537 			err = -EINVAL;
2538 		else
2539 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2540 		break;
2541 
2542 	case TCP_FASTOPEN:
2543 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2544 		    TCPF_LISTEN)))
2545 			err = fastopen_init_queue(sk, val);
2546 		else
2547 			err = -EINVAL;
2548 		break;
2549 	case TCP_TIMESTAMP:
2550 		if (!tp->repair)
2551 			err = -EPERM;
2552 		else
2553 			tp->tsoffset = val - tcp_time_stamp;
2554 		break;
2555 	case TCP_NOTSENT_LOWAT:
2556 		tp->notsent_lowat = val;
2557 		sk->sk_write_space(sk);
2558 		break;
2559 	default:
2560 		err = -ENOPROTOOPT;
2561 		break;
2562 	}
2563 
2564 	release_sock(sk);
2565 	return err;
2566 }
2567 
2568 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2569 		   unsigned int optlen)
2570 {
2571 	const struct inet_connection_sock *icsk = inet_csk(sk);
2572 
2573 	if (level != SOL_TCP)
2574 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2575 						     optval, optlen);
2576 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2577 }
2578 EXPORT_SYMBOL(tcp_setsockopt);
2579 
2580 #ifdef CONFIG_COMPAT
2581 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2582 			  char __user *optval, unsigned int optlen)
2583 {
2584 	if (level != SOL_TCP)
2585 		return inet_csk_compat_setsockopt(sk, level, optname,
2586 						  optval, optlen);
2587 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2588 }
2589 EXPORT_SYMBOL(compat_tcp_setsockopt);
2590 #endif
2591 
2592 /* Return information about state of tcp endpoint in API format. */
2593 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2594 {
2595 	const struct tcp_sock *tp = tcp_sk(sk);
2596 	const struct inet_connection_sock *icsk = inet_csk(sk);
2597 	u32 now = tcp_time_stamp;
2598 
2599 	memset(info, 0, sizeof(*info));
2600 
2601 	info->tcpi_state = sk->sk_state;
2602 	info->tcpi_ca_state = icsk->icsk_ca_state;
2603 	info->tcpi_retransmits = icsk->icsk_retransmits;
2604 	info->tcpi_probes = icsk->icsk_probes_out;
2605 	info->tcpi_backoff = icsk->icsk_backoff;
2606 
2607 	if (tp->rx_opt.tstamp_ok)
2608 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2609 	if (tcp_is_sack(tp))
2610 		info->tcpi_options |= TCPI_OPT_SACK;
2611 	if (tp->rx_opt.wscale_ok) {
2612 		info->tcpi_options |= TCPI_OPT_WSCALE;
2613 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2614 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2615 	}
2616 
2617 	if (tp->ecn_flags & TCP_ECN_OK)
2618 		info->tcpi_options |= TCPI_OPT_ECN;
2619 	if (tp->ecn_flags & TCP_ECN_SEEN)
2620 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2621 	if (tp->syn_data_acked)
2622 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2623 
2624 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2625 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2626 	info->tcpi_snd_mss = tp->mss_cache;
2627 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2628 
2629 	if (sk->sk_state == TCP_LISTEN) {
2630 		info->tcpi_unacked = sk->sk_ack_backlog;
2631 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2632 	} else {
2633 		info->tcpi_unacked = tp->packets_out;
2634 		info->tcpi_sacked = tp->sacked_out;
2635 	}
2636 	info->tcpi_lost = tp->lost_out;
2637 	info->tcpi_retrans = tp->retrans_out;
2638 	info->tcpi_fackets = tp->fackets_out;
2639 
2640 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2641 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2642 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2643 
2644 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2645 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2646 	info->tcpi_rtt = tp->srtt_us >> 3;
2647 	info->tcpi_rttvar = tp->mdev_us >> 2;
2648 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2649 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2650 	info->tcpi_advmss = tp->advmss;
2651 	info->tcpi_reordering = tp->reordering;
2652 
2653 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2654 	info->tcpi_rcv_space = tp->rcvq_space.space;
2655 
2656 	info->tcpi_total_retrans = tp->total_retrans;
2657 
2658 	info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2659 					sk->sk_pacing_rate : ~0ULL;
2660 	info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2661 					sk->sk_max_pacing_rate : ~0ULL;
2662 }
2663 EXPORT_SYMBOL_GPL(tcp_get_info);
2664 
2665 static int do_tcp_getsockopt(struct sock *sk, int level,
2666 		int optname, char __user *optval, int __user *optlen)
2667 {
2668 	struct inet_connection_sock *icsk = inet_csk(sk);
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 	int val, len;
2671 
2672 	if (get_user(len, optlen))
2673 		return -EFAULT;
2674 
2675 	len = min_t(unsigned int, len, sizeof(int));
2676 
2677 	if (len < 0)
2678 		return -EINVAL;
2679 
2680 	switch (optname) {
2681 	case TCP_MAXSEG:
2682 		val = tp->mss_cache;
2683 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2684 			val = tp->rx_opt.user_mss;
2685 		if (tp->repair)
2686 			val = tp->rx_opt.mss_clamp;
2687 		break;
2688 	case TCP_NODELAY:
2689 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2690 		break;
2691 	case TCP_CORK:
2692 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2693 		break;
2694 	case TCP_KEEPIDLE:
2695 		val = keepalive_time_when(tp) / HZ;
2696 		break;
2697 	case TCP_KEEPINTVL:
2698 		val = keepalive_intvl_when(tp) / HZ;
2699 		break;
2700 	case TCP_KEEPCNT:
2701 		val = keepalive_probes(tp);
2702 		break;
2703 	case TCP_SYNCNT:
2704 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2705 		break;
2706 	case TCP_LINGER2:
2707 		val = tp->linger2;
2708 		if (val >= 0)
2709 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2710 		break;
2711 	case TCP_DEFER_ACCEPT:
2712 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2713 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2714 		break;
2715 	case TCP_WINDOW_CLAMP:
2716 		val = tp->window_clamp;
2717 		break;
2718 	case TCP_INFO: {
2719 		struct tcp_info info;
2720 
2721 		if (get_user(len, optlen))
2722 			return -EFAULT;
2723 
2724 		tcp_get_info(sk, &info);
2725 
2726 		len = min_t(unsigned int, len, sizeof(info));
2727 		if (put_user(len, optlen))
2728 			return -EFAULT;
2729 		if (copy_to_user(optval, &info, len))
2730 			return -EFAULT;
2731 		return 0;
2732 	}
2733 	case TCP_QUICKACK:
2734 		val = !icsk->icsk_ack.pingpong;
2735 		break;
2736 
2737 	case TCP_CONGESTION:
2738 		if (get_user(len, optlen))
2739 			return -EFAULT;
2740 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2741 		if (put_user(len, optlen))
2742 			return -EFAULT;
2743 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2744 			return -EFAULT;
2745 		return 0;
2746 
2747 	case TCP_THIN_LINEAR_TIMEOUTS:
2748 		val = tp->thin_lto;
2749 		break;
2750 	case TCP_THIN_DUPACK:
2751 		val = tp->thin_dupack;
2752 		break;
2753 
2754 	case TCP_REPAIR:
2755 		val = tp->repair;
2756 		break;
2757 
2758 	case TCP_REPAIR_QUEUE:
2759 		if (tp->repair)
2760 			val = tp->repair_queue;
2761 		else
2762 			return -EINVAL;
2763 		break;
2764 
2765 	case TCP_QUEUE_SEQ:
2766 		if (tp->repair_queue == TCP_SEND_QUEUE)
2767 			val = tp->write_seq;
2768 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2769 			val = tp->rcv_nxt;
2770 		else
2771 			return -EINVAL;
2772 		break;
2773 
2774 	case TCP_USER_TIMEOUT:
2775 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2776 		break;
2777 
2778 	case TCP_FASTOPEN:
2779 		if (icsk->icsk_accept_queue.fastopenq != NULL)
2780 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2781 		else
2782 			val = 0;
2783 		break;
2784 
2785 	case TCP_TIMESTAMP:
2786 		val = tcp_time_stamp + tp->tsoffset;
2787 		break;
2788 	case TCP_NOTSENT_LOWAT:
2789 		val = tp->notsent_lowat;
2790 		break;
2791 	default:
2792 		return -ENOPROTOOPT;
2793 	}
2794 
2795 	if (put_user(len, optlen))
2796 		return -EFAULT;
2797 	if (copy_to_user(optval, &val, len))
2798 		return -EFAULT;
2799 	return 0;
2800 }
2801 
2802 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2803 		   int __user *optlen)
2804 {
2805 	struct inet_connection_sock *icsk = inet_csk(sk);
2806 
2807 	if (level != SOL_TCP)
2808 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2809 						     optval, optlen);
2810 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2811 }
2812 EXPORT_SYMBOL(tcp_getsockopt);
2813 
2814 #ifdef CONFIG_COMPAT
2815 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2816 			  char __user *optval, int __user *optlen)
2817 {
2818 	if (level != SOL_TCP)
2819 		return inet_csk_compat_getsockopt(sk, level, optname,
2820 						  optval, optlen);
2821 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2822 }
2823 EXPORT_SYMBOL(compat_tcp_getsockopt);
2824 #endif
2825 
2826 #ifdef CONFIG_TCP_MD5SIG
2827 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2828 static DEFINE_MUTEX(tcp_md5sig_mutex);
2829 static bool tcp_md5sig_pool_populated = false;
2830 
2831 static void __tcp_alloc_md5sig_pool(void)
2832 {
2833 	int cpu;
2834 
2835 	for_each_possible_cpu(cpu) {
2836 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2837 			struct crypto_hash *hash;
2838 
2839 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2840 			if (IS_ERR_OR_NULL(hash))
2841 				return;
2842 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2843 		}
2844 	}
2845 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2846 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2847 	 */
2848 	smp_wmb();
2849 	tcp_md5sig_pool_populated = true;
2850 }
2851 
2852 bool tcp_alloc_md5sig_pool(void)
2853 {
2854 	if (unlikely(!tcp_md5sig_pool_populated)) {
2855 		mutex_lock(&tcp_md5sig_mutex);
2856 
2857 		if (!tcp_md5sig_pool_populated)
2858 			__tcp_alloc_md5sig_pool();
2859 
2860 		mutex_unlock(&tcp_md5sig_mutex);
2861 	}
2862 	return tcp_md5sig_pool_populated;
2863 }
2864 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2865 
2866 
2867 /**
2868  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2869  *
2870  *	We use percpu structure, so if we succeed, we exit with preemption
2871  *	and BH disabled, to make sure another thread or softirq handling
2872  *	wont try to get same context.
2873  */
2874 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2875 {
2876 	local_bh_disable();
2877 
2878 	if (tcp_md5sig_pool_populated) {
2879 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2880 		smp_rmb();
2881 		return this_cpu_ptr(&tcp_md5sig_pool);
2882 	}
2883 	local_bh_enable();
2884 	return NULL;
2885 }
2886 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2887 
2888 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2889 			const struct tcphdr *th)
2890 {
2891 	struct scatterlist sg;
2892 	struct tcphdr hdr;
2893 	int err;
2894 
2895 	/* We are not allowed to change tcphdr, make a local copy */
2896 	memcpy(&hdr, th, sizeof(hdr));
2897 	hdr.check = 0;
2898 
2899 	/* options aren't included in the hash */
2900 	sg_init_one(&sg, &hdr, sizeof(hdr));
2901 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2902 	return err;
2903 }
2904 EXPORT_SYMBOL(tcp_md5_hash_header);
2905 
2906 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2907 			  const struct sk_buff *skb, unsigned int header_len)
2908 {
2909 	struct scatterlist sg;
2910 	const struct tcphdr *tp = tcp_hdr(skb);
2911 	struct hash_desc *desc = &hp->md5_desc;
2912 	unsigned int i;
2913 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2914 					   skb_headlen(skb) - header_len : 0;
2915 	const struct skb_shared_info *shi = skb_shinfo(skb);
2916 	struct sk_buff *frag_iter;
2917 
2918 	sg_init_table(&sg, 1);
2919 
2920 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2921 	if (crypto_hash_update(desc, &sg, head_data_len))
2922 		return 1;
2923 
2924 	for (i = 0; i < shi->nr_frags; ++i) {
2925 		const struct skb_frag_struct *f = &shi->frags[i];
2926 		unsigned int offset = f->page_offset;
2927 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2928 
2929 		sg_set_page(&sg, page, skb_frag_size(f),
2930 			    offset_in_page(offset));
2931 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2932 			return 1;
2933 	}
2934 
2935 	skb_walk_frags(skb, frag_iter)
2936 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2937 			return 1;
2938 
2939 	return 0;
2940 }
2941 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2942 
2943 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2944 {
2945 	struct scatterlist sg;
2946 
2947 	sg_init_one(&sg, key->key, key->keylen);
2948 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2949 }
2950 EXPORT_SYMBOL(tcp_md5_hash_key);
2951 
2952 #endif
2953 
2954 void tcp_done(struct sock *sk)
2955 {
2956 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2957 
2958 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2959 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2960 
2961 	tcp_set_state(sk, TCP_CLOSE);
2962 	tcp_clear_xmit_timers(sk);
2963 	if (req != NULL)
2964 		reqsk_fastopen_remove(sk, req, false);
2965 
2966 	sk->sk_shutdown = SHUTDOWN_MASK;
2967 
2968 	if (!sock_flag(sk, SOCK_DEAD))
2969 		sk->sk_state_change(sk);
2970 	else
2971 		inet_csk_destroy_sock(sk);
2972 }
2973 EXPORT_SYMBOL_GPL(tcp_done);
2974 
2975 extern struct tcp_congestion_ops tcp_reno;
2976 
2977 static __initdata unsigned long thash_entries;
2978 static int __init set_thash_entries(char *str)
2979 {
2980 	ssize_t ret;
2981 
2982 	if (!str)
2983 		return 0;
2984 
2985 	ret = kstrtoul(str, 0, &thash_entries);
2986 	if (ret)
2987 		return 0;
2988 
2989 	return 1;
2990 }
2991 __setup("thash_entries=", set_thash_entries);
2992 
2993 static void __init tcp_init_mem(void)
2994 {
2995 	unsigned long limit = nr_free_buffer_pages() / 8;
2996 	limit = max(limit, 128UL);
2997 	sysctl_tcp_mem[0] = limit / 4 * 3;
2998 	sysctl_tcp_mem[1] = limit;
2999 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3000 }
3001 
3002 void __init tcp_init(void)
3003 {
3004 	struct sk_buff *skb = NULL;
3005 	unsigned long limit;
3006 	int max_rshare, max_wshare, cnt;
3007 	unsigned int i;
3008 
3009 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3010 
3011 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3012 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3013 	tcp_hashinfo.bind_bucket_cachep =
3014 		kmem_cache_create("tcp_bind_bucket",
3015 				  sizeof(struct inet_bind_bucket), 0,
3016 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3017 
3018 	/* Size and allocate the main established and bind bucket
3019 	 * hash tables.
3020 	 *
3021 	 * The methodology is similar to that of the buffer cache.
3022 	 */
3023 	tcp_hashinfo.ehash =
3024 		alloc_large_system_hash("TCP established",
3025 					sizeof(struct inet_ehash_bucket),
3026 					thash_entries,
3027 					17, /* one slot per 128 KB of memory */
3028 					0,
3029 					NULL,
3030 					&tcp_hashinfo.ehash_mask,
3031 					0,
3032 					thash_entries ? 0 : 512 * 1024);
3033 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3034 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3035 
3036 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3037 		panic("TCP: failed to alloc ehash_locks");
3038 	tcp_hashinfo.bhash =
3039 		alloc_large_system_hash("TCP bind",
3040 					sizeof(struct inet_bind_hashbucket),
3041 					tcp_hashinfo.ehash_mask + 1,
3042 					17, /* one slot per 128 KB of memory */
3043 					0,
3044 					&tcp_hashinfo.bhash_size,
3045 					NULL,
3046 					0,
3047 					64 * 1024);
3048 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3049 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3050 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3051 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3052 	}
3053 
3054 
3055 	cnt = tcp_hashinfo.ehash_mask + 1;
3056 
3057 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3058 	sysctl_tcp_max_orphans = cnt / 2;
3059 	sysctl_max_syn_backlog = max(128, cnt / 256);
3060 
3061 	tcp_init_mem();
3062 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3063 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3064 	max_wshare = min(4UL*1024*1024, limit);
3065 	max_rshare = min(6UL*1024*1024, limit);
3066 
3067 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3068 	sysctl_tcp_wmem[1] = 16*1024;
3069 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3070 
3071 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3072 	sysctl_tcp_rmem[1] = 87380;
3073 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3074 
3075 	pr_info("Hash tables configured (established %u bind %u)\n",
3076 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3077 
3078 	tcp_metrics_init();
3079 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3080 	tcp_tasklet_init();
3081 }
3082