1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_IPV6_MOD(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_IPV6_MOD(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_IPV6_MOD(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us, rto_max_ms; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 438 439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 441 icsk->icsk_delack_max = TCP_DELACK_MAX; 442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 444 445 /* So many TCP implementations out there (incorrectly) count the 446 * initial SYN frame in their delayed-ACK and congestion control 447 * algorithms that we must have the following bandaid to talk 448 * efficiently to them. -DaveM 449 */ 450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 451 452 /* There's a bubble in the pipe until at least the first ACK. */ 453 tp->app_limited = ~0U; 454 tp->rate_app_limited = 1; 455 456 /* See draft-stevens-tcpca-spec-01 for discussion of the 457 * initialization of these values. 458 */ 459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 460 tp->snd_cwnd_clamp = ~0; 461 tp->mss_cache = TCP_MSS_DEFAULT; 462 463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 464 tcp_assign_congestion_control(sk); 465 466 tp->tsoffset = 0; 467 tp->rack.reo_wnd_steps = 1; 468 469 sk->sk_write_space = sk_stream_write_space; 470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 471 472 icsk->icsk_sync_mss = tcp_sync_mss; 473 474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 476 tcp_scaling_ratio_init(sk); 477 478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 479 sk_sockets_allocated_inc(sk); 480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 481 } 482 EXPORT_IPV6_MOD(tcp_init_sock); 483 484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 485 { 486 struct sk_buff *skb = tcp_write_queue_tail(sk); 487 u32 tsflags = sockc->tsflags; 488 489 if (tsflags && skb) { 490 struct skb_shared_info *shinfo = skb_shinfo(skb); 491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 492 493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 494 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 495 tcb->txstamp_ack |= TSTAMP_ACK_SK; 496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 498 } 499 500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 503 } 504 505 static bool tcp_stream_is_readable(struct sock *sk, int target) 506 { 507 if (tcp_epollin_ready(sk, target)) 508 return true; 509 return sk_is_readable(sk); 510 } 511 512 /* 513 * Wait for a TCP event. 514 * 515 * Note that we don't need to lock the socket, as the upper poll layers 516 * take care of normal races (between the test and the event) and we don't 517 * go look at any of the socket buffers directly. 518 */ 519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 520 { 521 __poll_t mask; 522 struct sock *sk = sock->sk; 523 const struct tcp_sock *tp = tcp_sk(sk); 524 u8 shutdown; 525 int state; 526 527 sock_poll_wait(file, sock, wait); 528 529 state = inet_sk_state_load(sk); 530 if (state == TCP_LISTEN) 531 return inet_csk_listen_poll(sk); 532 533 /* Socket is not locked. We are protected from async events 534 * by poll logic and correct handling of state changes 535 * made by other threads is impossible in any case. 536 */ 537 538 mask = 0; 539 540 /* 541 * EPOLLHUP is certainly not done right. But poll() doesn't 542 * have a notion of HUP in just one direction, and for a 543 * socket the read side is more interesting. 544 * 545 * Some poll() documentation says that EPOLLHUP is incompatible 546 * with the EPOLLOUT/POLLWR flags, so somebody should check this 547 * all. But careful, it tends to be safer to return too many 548 * bits than too few, and you can easily break real applications 549 * if you don't tell them that something has hung up! 550 * 551 * Check-me. 552 * 553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 554 * our fs/select.c). It means that after we received EOF, 555 * poll always returns immediately, making impossible poll() on write() 556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 557 * if and only if shutdown has been made in both directions. 558 * Actually, it is interesting to look how Solaris and DUX 559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 560 * then we could set it on SND_SHUTDOWN. BTW examples given 561 * in Stevens' books assume exactly this behaviour, it explains 562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 563 * 564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 565 * blocking on fresh not-connected or disconnected socket. --ANK 566 */ 567 shutdown = READ_ONCE(sk->sk_shutdown); 568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 569 mask |= EPOLLHUP; 570 if (shutdown & RCV_SHUTDOWN) 571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 572 573 /* Connected or passive Fast Open socket? */ 574 if (state != TCP_SYN_SENT && 575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 576 int target = sock_rcvlowat(sk, 0, INT_MAX); 577 u16 urg_data = READ_ONCE(tp->urg_data); 578 579 if (unlikely(urg_data) && 580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 581 !sock_flag(sk, SOCK_URGINLINE)) 582 target++; 583 584 if (tcp_stream_is_readable(sk, target)) 585 mask |= EPOLLIN | EPOLLRDNORM; 586 587 if (!(shutdown & SEND_SHUTDOWN)) { 588 if (__sk_stream_is_writeable(sk, 1)) { 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 } else { /* send SIGIO later */ 591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 593 594 /* Race breaker. If space is freed after 595 * wspace test but before the flags are set, 596 * IO signal will be lost. Memory barrier 597 * pairs with the input side. 598 */ 599 smp_mb__after_atomic(); 600 if (__sk_stream_is_writeable(sk, 1)) 601 mask |= EPOLLOUT | EPOLLWRNORM; 602 } 603 } else 604 mask |= EPOLLOUT | EPOLLWRNORM; 605 606 if (urg_data & TCP_URG_VALID) 607 mask |= EPOLLPRI; 608 } else if (state == TCP_SYN_SENT && 609 inet_test_bit(DEFER_CONNECT, sk)) { 610 /* Active TCP fastopen socket with defer_connect 611 * Return EPOLLOUT so application can call write() 612 * in order for kernel to generate SYN+data 613 */ 614 mask |= EPOLLOUT | EPOLLWRNORM; 615 } 616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 617 smp_rmb(); 618 if (READ_ONCE(sk->sk_err) || 619 !skb_queue_empty_lockless(&sk->sk_error_queue)) 620 mask |= EPOLLERR; 621 622 return mask; 623 } 624 EXPORT_SYMBOL(tcp_poll); 625 626 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 627 { 628 struct tcp_sock *tp = tcp_sk(sk); 629 int answ; 630 bool slow; 631 632 switch (cmd) { 633 case SIOCINQ: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 slow = lock_sock_fast(sk); 638 answ = tcp_inq(sk); 639 unlock_sock_fast(sk, slow); 640 break; 641 case SIOCATMARK: 642 answ = READ_ONCE(tp->urg_data) && 643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 644 break; 645 case SIOCOUTQ: 646 if (sk->sk_state == TCP_LISTEN) 647 return -EINVAL; 648 649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 650 answ = 0; 651 else 652 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 653 break; 654 case SIOCOUTQNSD: 655 if (sk->sk_state == TCP_LISTEN) 656 return -EINVAL; 657 658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 659 answ = 0; 660 else 661 answ = READ_ONCE(tp->write_seq) - 662 READ_ONCE(tp->snd_nxt); 663 break; 664 default: 665 return -ENOIOCTLCMD; 666 } 667 668 *karg = answ; 669 return 0; 670 } 671 EXPORT_IPV6_MOD(tcp_ioctl); 672 673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 674 { 675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 676 tp->pushed_seq = tp->write_seq; 677 } 678 679 static inline bool forced_push(const struct tcp_sock *tp) 680 { 681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 682 } 683 684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 688 689 tcb->seq = tcb->end_seq = tp->write_seq; 690 tcb->tcp_flags = TCPHDR_ACK; 691 __skb_header_release(skb); 692 tcp_add_write_queue_tail(sk, skb); 693 sk_wmem_queued_add(sk, skb->truesize); 694 sk_mem_charge(sk, skb->truesize); 695 if (tp->nonagle & TCP_NAGLE_PUSH) 696 tp->nonagle &= ~TCP_NAGLE_PUSH; 697 698 tcp_slow_start_after_idle_check(sk); 699 } 700 701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 702 { 703 if (flags & MSG_OOB) 704 tp->snd_up = tp->write_seq; 705 } 706 707 /* If a not yet filled skb is pushed, do not send it if 708 * we have data packets in Qdisc or NIC queues : 709 * Because TX completion will happen shortly, it gives a chance 710 * to coalesce future sendmsg() payload into this skb, without 711 * need for a timer, and with no latency trade off. 712 * As packets containing data payload have a bigger truesize 713 * than pure acks (dataless) packets, the last checks prevent 714 * autocorking if we only have an ACK in Qdisc/NIC queues, 715 * or if TX completion was delayed after we processed ACK packet. 716 */ 717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 718 int size_goal) 719 { 720 return skb->len < size_goal && 721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 722 !tcp_rtx_queue_empty(sk) && 723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 724 tcp_skb_can_collapse_to(skb); 725 } 726 727 void tcp_push(struct sock *sk, int flags, int mss_now, 728 int nonagle, int size_goal) 729 { 730 struct tcp_sock *tp = tcp_sk(sk); 731 struct sk_buff *skb; 732 733 skb = tcp_write_queue_tail(sk); 734 if (!skb) 735 return; 736 if (!(flags & MSG_MORE) || forced_push(tp)) 737 tcp_mark_push(tp, skb); 738 739 tcp_mark_urg(tp, flags); 740 741 if (tcp_should_autocork(sk, skb, size_goal)) { 742 743 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 747 smp_mb__after_atomic(); 748 } 749 /* It is possible TX completion already happened 750 * before we set TSQ_THROTTLED. 751 */ 752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 753 return; 754 } 755 756 if (flags & MSG_MORE) 757 nonagle = TCP_NAGLE_CORK; 758 759 __tcp_push_pending_frames(sk, mss_now, nonagle); 760 } 761 762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 763 unsigned int offset, size_t len) 764 { 765 struct tcp_splice_state *tss = rd_desc->arg.data; 766 int ret; 767 768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 769 min(rd_desc->count, len), tss->flags); 770 if (ret > 0) 771 rd_desc->count -= ret; 772 return ret; 773 } 774 775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 776 { 777 /* Store TCP splice context information in read_descriptor_t. */ 778 read_descriptor_t rd_desc = { 779 .arg.data = tss, 780 .count = tss->len, 781 }; 782 783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 784 } 785 786 /** 787 * tcp_splice_read - splice data from TCP socket to a pipe 788 * @sock: socket to splice from 789 * @ppos: position (not valid) 790 * @pipe: pipe to splice to 791 * @len: number of bytes to splice 792 * @flags: splice modifier flags 793 * 794 * Description: 795 * Will read pages from given socket and fill them into a pipe. 796 * 797 **/ 798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 799 struct pipe_inode_info *pipe, size_t len, 800 unsigned int flags) 801 { 802 struct sock *sk = sock->sk; 803 struct tcp_splice_state tss = { 804 .pipe = pipe, 805 .len = len, 806 .flags = flags, 807 }; 808 long timeo; 809 ssize_t spliced; 810 int ret; 811 812 sock_rps_record_flow(sk); 813 /* 814 * We can't seek on a socket input 815 */ 816 if (unlikely(*ppos)) 817 return -ESPIPE; 818 819 ret = spliced = 0; 820 821 lock_sock(sk); 822 823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 824 while (tss.len) { 825 ret = __tcp_splice_read(sk, &tss); 826 if (ret < 0) 827 break; 828 else if (!ret) { 829 if (spliced) 830 break; 831 if (sock_flag(sk, SOCK_DONE)) 832 break; 833 if (sk->sk_err) { 834 ret = sock_error(sk); 835 break; 836 } 837 if (sk->sk_shutdown & RCV_SHUTDOWN) 838 break; 839 if (sk->sk_state == TCP_CLOSE) { 840 /* 841 * This occurs when user tries to read 842 * from never connected socket. 843 */ 844 ret = -ENOTCONN; 845 break; 846 } 847 if (!timeo) { 848 ret = -EAGAIN; 849 break; 850 } 851 /* if __tcp_splice_read() got nothing while we have 852 * an skb in receive queue, we do not want to loop. 853 * This might happen with URG data. 854 */ 855 if (!skb_queue_empty(&sk->sk_receive_queue)) 856 break; 857 ret = sk_wait_data(sk, &timeo, NULL); 858 if (ret < 0) 859 break; 860 if (signal_pending(current)) { 861 ret = sock_intr_errno(timeo); 862 break; 863 } 864 continue; 865 } 866 tss.len -= ret; 867 spliced += ret; 868 869 if (!tss.len || !timeo) 870 break; 871 release_sock(sk); 872 lock_sock(sk); 873 874 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 875 (sk->sk_shutdown & RCV_SHUTDOWN) || 876 signal_pending(current)) 877 break; 878 } 879 880 release_sock(sk); 881 882 if (spliced) 883 return spliced; 884 885 return ret; 886 } 887 EXPORT_IPV6_MOD(tcp_splice_read); 888 889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 890 bool force_schedule) 891 { 892 struct sk_buff *skb; 893 894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 895 if (likely(skb)) { 896 bool mem_scheduled; 897 898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 899 if (force_schedule) { 900 mem_scheduled = true; 901 sk_forced_mem_schedule(sk, skb->truesize); 902 } else { 903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 904 } 905 if (likely(mem_scheduled)) { 906 skb_reserve(skb, MAX_TCP_HEADER); 907 skb->ip_summed = CHECKSUM_PARTIAL; 908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 909 return skb; 910 } 911 __kfree_skb(skb); 912 } else { 913 sk->sk_prot->enter_memory_pressure(sk); 914 sk_stream_moderate_sndbuf(sk); 915 } 916 return NULL; 917 } 918 919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 920 int large_allowed) 921 { 922 struct tcp_sock *tp = tcp_sk(sk); 923 u32 new_size_goal, size_goal; 924 925 if (!large_allowed) 926 return mss_now; 927 928 /* Note : tcp_tso_autosize() will eventually split this later */ 929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 930 931 /* We try hard to avoid divides here */ 932 size_goal = tp->gso_segs * mss_now; 933 if (unlikely(new_size_goal < size_goal || 934 new_size_goal >= size_goal + mss_now)) { 935 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 936 sk->sk_gso_max_segs); 937 size_goal = tp->gso_segs * mss_now; 938 } 939 940 return max(size_goal, mss_now); 941 } 942 943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 944 { 945 int mss_now; 946 947 mss_now = tcp_current_mss(sk); 948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 949 950 return mss_now; 951 } 952 953 /* In some cases, sendmsg() could have added an skb to the write queue, 954 * but failed adding payload on it. We need to remove it to consume less 955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 956 * epoll() users. Another reason is that tcp_write_xmit() does not like 957 * finding an empty skb in the write queue. 958 */ 959 void tcp_remove_empty_skb(struct sock *sk) 960 { 961 struct sk_buff *skb = tcp_write_queue_tail(sk); 962 963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 964 tcp_unlink_write_queue(skb, sk); 965 if (tcp_write_queue_empty(sk)) 966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 967 tcp_wmem_free_skb(sk, skb); 968 } 969 } 970 971 /* skb changing from pure zc to mixed, must charge zc */ 972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 973 { 974 if (unlikely(skb_zcopy_pure(skb))) { 975 u32 extra = skb->truesize - 976 SKB_TRUESIZE(skb_end_offset(skb)); 977 978 if (!sk_wmem_schedule(sk, extra)) 979 return -ENOMEM; 980 981 sk_mem_charge(sk, extra); 982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 983 } 984 return 0; 985 } 986 987 988 int tcp_wmem_schedule(struct sock *sk, int copy) 989 { 990 int left; 991 992 if (likely(sk_wmem_schedule(sk, copy))) 993 return copy; 994 995 /* We could be in trouble if we have nothing queued. 996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 997 * to guarantee some progress. 998 */ 999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 1000 if (left > 0) 1001 sk_forced_mem_schedule(sk, min(left, copy)); 1002 return min(copy, sk->sk_forward_alloc); 1003 } 1004 1005 void tcp_free_fastopen_req(struct tcp_sock *tp) 1006 { 1007 if (tp->fastopen_req) { 1008 kfree(tp->fastopen_req); 1009 tp->fastopen_req = NULL; 1010 } 1011 } 1012 1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1014 size_t size, struct ubuf_info *uarg) 1015 { 1016 struct tcp_sock *tp = tcp_sk(sk); 1017 struct inet_sock *inet = inet_sk(sk); 1018 struct sockaddr *uaddr = msg->msg_name; 1019 int err, flags; 1020 1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1022 TFO_CLIENT_ENABLE) || 1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1024 uaddr->sa_family == AF_UNSPEC)) 1025 return -EOPNOTSUPP; 1026 if (tp->fastopen_req) 1027 return -EALREADY; /* Another Fast Open is in progress */ 1028 1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1030 sk->sk_allocation); 1031 if (unlikely(!tp->fastopen_req)) 1032 return -ENOBUFS; 1033 tp->fastopen_req->data = msg; 1034 tp->fastopen_req->size = size; 1035 tp->fastopen_req->uarg = uarg; 1036 1037 if (inet_test_bit(DEFER_CONNECT, sk)) { 1038 err = tcp_connect(sk); 1039 /* Same failure procedure as in tcp_v4/6_connect */ 1040 if (err) { 1041 tcp_set_state(sk, TCP_CLOSE); 1042 inet->inet_dport = 0; 1043 sk->sk_route_caps = 0; 1044 } 1045 } 1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1047 err = __inet_stream_connect(sk->sk_socket, uaddr, 1048 msg->msg_namelen, flags, 1); 1049 /* fastopen_req could already be freed in __inet_stream_connect 1050 * if the connection times out or gets rst 1051 */ 1052 if (tp->fastopen_req) { 1053 *copied = tp->fastopen_req->copied; 1054 tcp_free_fastopen_req(tp); 1055 inet_clear_bit(DEFER_CONNECT, sk); 1056 } 1057 return err; 1058 } 1059 1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1061 { 1062 struct tcp_sock *tp = tcp_sk(sk); 1063 struct ubuf_info *uarg = NULL; 1064 struct sk_buff *skb; 1065 struct sockcm_cookie sockc; 1066 int flags, err, copied = 0; 1067 int mss_now = 0, size_goal, copied_syn = 0; 1068 int process_backlog = 0; 1069 int zc = 0; 1070 long timeo; 1071 1072 flags = msg->msg_flags; 1073 1074 if ((flags & MSG_ZEROCOPY) && size) { 1075 if (msg->msg_ubuf) { 1076 uarg = msg->msg_ubuf; 1077 if (sk->sk_route_caps & NETIF_F_SG) 1078 zc = MSG_ZEROCOPY; 1079 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1080 skb = tcp_write_queue_tail(sk); 1081 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1082 if (!uarg) { 1083 err = -ENOBUFS; 1084 goto out_err; 1085 } 1086 if (sk->sk_route_caps & NETIF_F_SG) 1087 zc = MSG_ZEROCOPY; 1088 else 1089 uarg_to_msgzc(uarg)->zerocopy = 0; 1090 } 1091 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1092 if (sk->sk_route_caps & NETIF_F_SG) 1093 zc = MSG_SPLICE_PAGES; 1094 } 1095 1096 if (unlikely(flags & MSG_FASTOPEN || 1097 inet_test_bit(DEFER_CONNECT, sk)) && 1098 !tp->repair) { 1099 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1100 if (err == -EINPROGRESS && copied_syn > 0) 1101 goto out; 1102 else if (err) 1103 goto out_err; 1104 } 1105 1106 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1107 1108 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1109 1110 /* Wait for a connection to finish. One exception is TCP Fast Open 1111 * (passive side) where data is allowed to be sent before a connection 1112 * is fully established. 1113 */ 1114 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1115 !tcp_passive_fastopen(sk)) { 1116 err = sk_stream_wait_connect(sk, &timeo); 1117 if (err != 0) 1118 goto do_error; 1119 } 1120 1121 if (unlikely(tp->repair)) { 1122 if (tp->repair_queue == TCP_RECV_QUEUE) { 1123 copied = tcp_send_rcvq(sk, msg, size); 1124 goto out_nopush; 1125 } 1126 1127 err = -EINVAL; 1128 if (tp->repair_queue == TCP_NO_QUEUE) 1129 goto out_err; 1130 1131 /* 'common' sending to sendq */ 1132 } 1133 1134 sockc = (struct sockcm_cookie) { .tsflags = READ_ONCE(sk->sk_tsflags)}; 1135 if (msg->msg_controllen) { 1136 err = sock_cmsg_send(sk, msg, &sockc); 1137 if (unlikely(err)) { 1138 err = -EINVAL; 1139 goto out_err; 1140 } 1141 } 1142 1143 /* This should be in poll */ 1144 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1145 1146 /* Ok commence sending. */ 1147 copied = 0; 1148 1149 restart: 1150 mss_now = tcp_send_mss(sk, &size_goal, flags); 1151 1152 err = -EPIPE; 1153 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1154 goto do_error; 1155 1156 while (msg_data_left(msg)) { 1157 ssize_t copy = 0; 1158 1159 skb = tcp_write_queue_tail(sk); 1160 if (skb) 1161 copy = size_goal - skb->len; 1162 1163 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); 1164 1165 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1166 bool first_skb; 1167 1168 new_segment: 1169 if (!sk_stream_memory_free(sk)) 1170 goto wait_for_space; 1171 1172 if (unlikely(process_backlog >= 16)) { 1173 process_backlog = 0; 1174 if (sk_flush_backlog(sk)) 1175 goto restart; 1176 } 1177 first_skb = tcp_rtx_and_write_queues_empty(sk); 1178 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1179 first_skb); 1180 if (!skb) 1181 goto wait_for_space; 1182 1183 process_backlog++; 1184 1185 #ifdef CONFIG_SKB_DECRYPTED 1186 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1187 #endif 1188 tcp_skb_entail(sk, skb); 1189 copy = size_goal; 1190 1191 /* All packets are restored as if they have 1192 * already been sent. skb_mstamp_ns isn't set to 1193 * avoid wrong rtt estimation. 1194 */ 1195 if (tp->repair) 1196 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1197 } 1198 1199 /* Try to append data to the end of skb. */ 1200 if (copy > msg_data_left(msg)) 1201 copy = msg_data_left(msg); 1202 1203 if (zc == 0) { 1204 bool merge = true; 1205 int i = skb_shinfo(skb)->nr_frags; 1206 struct page_frag *pfrag = sk_page_frag(sk); 1207 1208 if (!sk_page_frag_refill(sk, pfrag)) 1209 goto wait_for_space; 1210 1211 if (!skb_can_coalesce(skb, i, pfrag->page, 1212 pfrag->offset)) { 1213 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1214 tcp_mark_push(tp, skb); 1215 goto new_segment; 1216 } 1217 merge = false; 1218 } 1219 1220 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1221 1222 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1223 if (tcp_downgrade_zcopy_pure(sk, skb)) 1224 goto wait_for_space; 1225 skb_zcopy_downgrade_managed(skb); 1226 } 1227 1228 copy = tcp_wmem_schedule(sk, copy); 1229 if (!copy) 1230 goto wait_for_space; 1231 1232 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1233 pfrag->page, 1234 pfrag->offset, 1235 copy); 1236 if (err) 1237 goto do_error; 1238 1239 /* Update the skb. */ 1240 if (merge) { 1241 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1242 } else { 1243 skb_fill_page_desc(skb, i, pfrag->page, 1244 pfrag->offset, copy); 1245 page_ref_inc(pfrag->page); 1246 } 1247 pfrag->offset += copy; 1248 } else if (zc == MSG_ZEROCOPY) { 1249 /* First append to a fragless skb builds initial 1250 * pure zerocopy skb 1251 */ 1252 if (!skb->len) 1253 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1254 1255 if (!skb_zcopy_pure(skb)) { 1256 copy = tcp_wmem_schedule(sk, copy); 1257 if (!copy) 1258 goto wait_for_space; 1259 } 1260 1261 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1262 if (err == -EMSGSIZE || err == -EEXIST) { 1263 tcp_mark_push(tp, skb); 1264 goto new_segment; 1265 } 1266 if (err < 0) 1267 goto do_error; 1268 copy = err; 1269 } else if (zc == MSG_SPLICE_PAGES) { 1270 /* Splice in data if we can; copy if we can't. */ 1271 if (tcp_downgrade_zcopy_pure(sk, skb)) 1272 goto wait_for_space; 1273 copy = tcp_wmem_schedule(sk, copy); 1274 if (!copy) 1275 goto wait_for_space; 1276 1277 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1278 sk->sk_allocation); 1279 if (err < 0) { 1280 if (err == -EMSGSIZE) { 1281 tcp_mark_push(tp, skb); 1282 goto new_segment; 1283 } 1284 goto do_error; 1285 } 1286 copy = err; 1287 1288 if (!(flags & MSG_NO_SHARED_FRAGS)) 1289 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1290 1291 sk_wmem_queued_add(sk, copy); 1292 sk_mem_charge(sk, copy); 1293 } 1294 1295 if (!copied) 1296 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1297 1298 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1299 TCP_SKB_CB(skb)->end_seq += copy; 1300 tcp_skb_pcount_set(skb, 0); 1301 1302 copied += copy; 1303 if (!msg_data_left(msg)) { 1304 if (unlikely(flags & MSG_EOR)) 1305 TCP_SKB_CB(skb)->eor = 1; 1306 goto out; 1307 } 1308 1309 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1310 continue; 1311 1312 if (forced_push(tp)) { 1313 tcp_mark_push(tp, skb); 1314 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1315 } else if (skb == tcp_send_head(sk)) 1316 tcp_push_one(sk, mss_now); 1317 continue; 1318 1319 wait_for_space: 1320 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1321 tcp_remove_empty_skb(sk); 1322 if (copied) 1323 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1324 TCP_NAGLE_PUSH, size_goal); 1325 1326 err = sk_stream_wait_memory(sk, &timeo); 1327 if (err != 0) 1328 goto do_error; 1329 1330 mss_now = tcp_send_mss(sk, &size_goal, flags); 1331 } 1332 1333 out: 1334 if (copied) { 1335 tcp_tx_timestamp(sk, &sockc); 1336 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1337 } 1338 out_nopush: 1339 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1340 if (uarg && !msg->msg_ubuf) 1341 net_zcopy_put(uarg); 1342 return copied + copied_syn; 1343 1344 do_error: 1345 tcp_remove_empty_skb(sk); 1346 1347 if (copied + copied_syn) 1348 goto out; 1349 out_err: 1350 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1351 if (uarg && !msg->msg_ubuf) 1352 net_zcopy_put_abort(uarg, true); 1353 err = sk_stream_error(sk, flags, err); 1354 /* make sure we wake any epoll edge trigger waiter */ 1355 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1356 sk->sk_write_space(sk); 1357 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1358 } 1359 return err; 1360 } 1361 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1362 1363 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1364 { 1365 int ret; 1366 1367 lock_sock(sk); 1368 ret = tcp_sendmsg_locked(sk, msg, size); 1369 release_sock(sk); 1370 1371 return ret; 1372 } 1373 EXPORT_SYMBOL(tcp_sendmsg); 1374 1375 void tcp_splice_eof(struct socket *sock) 1376 { 1377 struct sock *sk = sock->sk; 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 int mss_now, size_goal; 1380 1381 if (!tcp_write_queue_tail(sk)) 1382 return; 1383 1384 lock_sock(sk); 1385 mss_now = tcp_send_mss(sk, &size_goal, 0); 1386 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1387 release_sock(sk); 1388 } 1389 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1390 1391 /* 1392 * Handle reading urgent data. BSD has very simple semantics for 1393 * this, no blocking and very strange errors 8) 1394 */ 1395 1396 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1397 { 1398 struct tcp_sock *tp = tcp_sk(sk); 1399 1400 /* No URG data to read. */ 1401 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1402 tp->urg_data == TCP_URG_READ) 1403 return -EINVAL; /* Yes this is right ! */ 1404 1405 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1406 return -ENOTCONN; 1407 1408 if (tp->urg_data & TCP_URG_VALID) { 1409 int err = 0; 1410 char c = tp->urg_data; 1411 1412 if (!(flags & MSG_PEEK)) 1413 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1414 1415 /* Read urgent data. */ 1416 msg->msg_flags |= MSG_OOB; 1417 1418 if (len > 0) { 1419 if (!(flags & MSG_TRUNC)) 1420 err = memcpy_to_msg(msg, &c, 1); 1421 len = 1; 1422 } else 1423 msg->msg_flags |= MSG_TRUNC; 1424 1425 return err ? -EFAULT : len; 1426 } 1427 1428 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1429 return 0; 1430 1431 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1432 * the available implementations agree in this case: 1433 * this call should never block, independent of the 1434 * blocking state of the socket. 1435 * Mike <pall@rz.uni-karlsruhe.de> 1436 */ 1437 return -EAGAIN; 1438 } 1439 1440 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1441 { 1442 struct sk_buff *skb; 1443 int copied = 0, err = 0; 1444 1445 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1446 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1447 if (err) 1448 return err; 1449 copied += skb->len; 1450 } 1451 1452 skb_queue_walk(&sk->sk_write_queue, skb) { 1453 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1454 if (err) 1455 break; 1456 1457 copied += skb->len; 1458 } 1459 1460 return err ?: copied; 1461 } 1462 1463 /* Clean up the receive buffer for full frames taken by the user, 1464 * then send an ACK if necessary. COPIED is the number of bytes 1465 * tcp_recvmsg has given to the user so far, it speeds up the 1466 * calculation of whether or not we must ACK for the sake of 1467 * a window update. 1468 */ 1469 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1470 { 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 bool time_to_ack = false; 1473 1474 if (inet_csk_ack_scheduled(sk)) { 1475 const struct inet_connection_sock *icsk = inet_csk(sk); 1476 1477 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1478 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1479 /* 1480 * If this read emptied read buffer, we send ACK, if 1481 * connection is not bidirectional, user drained 1482 * receive buffer and there was a small segment 1483 * in queue. 1484 */ 1485 (copied > 0 && 1486 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1487 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1488 !inet_csk_in_pingpong_mode(sk))) && 1489 !atomic_read(&sk->sk_rmem_alloc))) 1490 time_to_ack = true; 1491 } 1492 1493 /* We send an ACK if we can now advertise a non-zero window 1494 * which has been raised "significantly". 1495 * 1496 * Even if window raised up to infinity, do not send window open ACK 1497 * in states, where we will not receive more. It is useless. 1498 */ 1499 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1500 __u32 rcv_window_now = tcp_receive_window(tp); 1501 1502 /* Optimize, __tcp_select_window() is not cheap. */ 1503 if (2*rcv_window_now <= tp->window_clamp) { 1504 __u32 new_window = __tcp_select_window(sk); 1505 1506 /* Send ACK now, if this read freed lots of space 1507 * in our buffer. Certainly, new_window is new window. 1508 * We can advertise it now, if it is not less than current one. 1509 * "Lots" means "at least twice" here. 1510 */ 1511 if (new_window && new_window >= 2 * rcv_window_now) 1512 time_to_ack = true; 1513 } 1514 } 1515 if (time_to_ack) 1516 tcp_send_ack(sk); 1517 } 1518 1519 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1520 { 1521 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1522 struct tcp_sock *tp = tcp_sk(sk); 1523 1524 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1525 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1526 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1527 __tcp_cleanup_rbuf(sk, copied); 1528 } 1529 1530 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1531 { 1532 __skb_unlink(skb, &sk->sk_receive_queue); 1533 if (likely(skb->destructor == sock_rfree)) { 1534 sock_rfree(skb); 1535 skb->destructor = NULL; 1536 skb->sk = NULL; 1537 return skb_attempt_defer_free(skb); 1538 } 1539 __kfree_skb(skb); 1540 } 1541 1542 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1543 { 1544 struct sk_buff *skb; 1545 u32 offset; 1546 1547 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1548 offset = seq - TCP_SKB_CB(skb)->seq; 1549 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1550 pr_err_once("%s: found a SYN, please report !\n", __func__); 1551 offset--; 1552 } 1553 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1554 *off = offset; 1555 return skb; 1556 } 1557 /* This looks weird, but this can happen if TCP collapsing 1558 * splitted a fat GRO packet, while we released socket lock 1559 * in skb_splice_bits() 1560 */ 1561 tcp_eat_recv_skb(sk, skb); 1562 } 1563 return NULL; 1564 } 1565 EXPORT_SYMBOL(tcp_recv_skb); 1566 1567 /* 1568 * This routine provides an alternative to tcp_recvmsg() for routines 1569 * that would like to handle copying from skbuffs directly in 'sendfile' 1570 * fashion. 1571 * Note: 1572 * - It is assumed that the socket was locked by the caller. 1573 * - The routine does not block. 1574 * - At present, there is no support for reading OOB data 1575 * or for 'peeking' the socket using this routine 1576 * (although both would be easy to implement). 1577 */ 1578 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1579 sk_read_actor_t recv_actor, bool noack, 1580 u32 *copied_seq) 1581 { 1582 struct sk_buff *skb; 1583 struct tcp_sock *tp = tcp_sk(sk); 1584 u32 seq = *copied_seq; 1585 u32 offset; 1586 int copied = 0; 1587 1588 if (sk->sk_state == TCP_LISTEN) 1589 return -ENOTCONN; 1590 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1591 if (offset < skb->len) { 1592 int used; 1593 size_t len; 1594 1595 len = skb->len - offset; 1596 /* Stop reading if we hit a patch of urgent data */ 1597 if (unlikely(tp->urg_data)) { 1598 u32 urg_offset = tp->urg_seq - seq; 1599 if (urg_offset < len) 1600 len = urg_offset; 1601 if (!len) 1602 break; 1603 } 1604 used = recv_actor(desc, skb, offset, len); 1605 if (used <= 0) { 1606 if (!copied) 1607 copied = used; 1608 break; 1609 } 1610 if (WARN_ON_ONCE(used > len)) 1611 used = len; 1612 seq += used; 1613 copied += used; 1614 offset += used; 1615 1616 /* If recv_actor drops the lock (e.g. TCP splice 1617 * receive) the skb pointer might be invalid when 1618 * getting here: tcp_collapse might have deleted it 1619 * while aggregating skbs from the socket queue. 1620 */ 1621 skb = tcp_recv_skb(sk, seq - 1, &offset); 1622 if (!skb) 1623 break; 1624 /* TCP coalescing might have appended data to the skb. 1625 * Try to splice more frags 1626 */ 1627 if (offset + 1 != skb->len) 1628 continue; 1629 } 1630 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1631 tcp_eat_recv_skb(sk, skb); 1632 ++seq; 1633 break; 1634 } 1635 tcp_eat_recv_skb(sk, skb); 1636 if (!desc->count) 1637 break; 1638 WRITE_ONCE(*copied_seq, seq); 1639 } 1640 WRITE_ONCE(*copied_seq, seq); 1641 1642 if (noack) 1643 goto out; 1644 1645 tcp_rcv_space_adjust(sk); 1646 1647 /* Clean up data we have read: This will do ACK frames. */ 1648 if (copied > 0) { 1649 tcp_recv_skb(sk, seq, &offset); 1650 tcp_cleanup_rbuf(sk, copied); 1651 } 1652 out: 1653 return copied; 1654 } 1655 1656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1657 sk_read_actor_t recv_actor) 1658 { 1659 return __tcp_read_sock(sk, desc, recv_actor, false, 1660 &tcp_sk(sk)->copied_seq); 1661 } 1662 EXPORT_SYMBOL(tcp_read_sock); 1663 1664 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1665 sk_read_actor_t recv_actor, bool noack, 1666 u32 *copied_seq) 1667 { 1668 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1669 } 1670 1671 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1672 { 1673 struct sk_buff *skb; 1674 int copied = 0; 1675 1676 if (sk->sk_state == TCP_LISTEN) 1677 return -ENOTCONN; 1678 1679 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1680 u8 tcp_flags; 1681 int used; 1682 1683 __skb_unlink(skb, &sk->sk_receive_queue); 1684 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1685 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1686 used = recv_actor(sk, skb); 1687 if (used < 0) { 1688 if (!copied) 1689 copied = used; 1690 break; 1691 } 1692 copied += used; 1693 1694 if (tcp_flags & TCPHDR_FIN) 1695 break; 1696 } 1697 return copied; 1698 } 1699 EXPORT_IPV6_MOD(tcp_read_skb); 1700 1701 void tcp_read_done(struct sock *sk, size_t len) 1702 { 1703 struct tcp_sock *tp = tcp_sk(sk); 1704 u32 seq = tp->copied_seq; 1705 struct sk_buff *skb; 1706 size_t left; 1707 u32 offset; 1708 1709 if (sk->sk_state == TCP_LISTEN) 1710 return; 1711 1712 left = len; 1713 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1714 int used; 1715 1716 used = min_t(size_t, skb->len - offset, left); 1717 seq += used; 1718 left -= used; 1719 1720 if (skb->len > offset + used) 1721 break; 1722 1723 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1724 tcp_eat_recv_skb(sk, skb); 1725 ++seq; 1726 break; 1727 } 1728 tcp_eat_recv_skb(sk, skb); 1729 } 1730 WRITE_ONCE(tp->copied_seq, seq); 1731 1732 tcp_rcv_space_adjust(sk); 1733 1734 /* Clean up data we have read: This will do ACK frames. */ 1735 if (left != len) 1736 tcp_cleanup_rbuf(sk, len - left); 1737 } 1738 EXPORT_SYMBOL(tcp_read_done); 1739 1740 int tcp_peek_len(struct socket *sock) 1741 { 1742 return tcp_inq(sock->sk); 1743 } 1744 EXPORT_IPV6_MOD(tcp_peek_len); 1745 1746 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1747 int tcp_set_rcvlowat(struct sock *sk, int val) 1748 { 1749 int space, cap; 1750 1751 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1752 cap = sk->sk_rcvbuf >> 1; 1753 else 1754 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1755 val = min(val, cap); 1756 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1757 1758 /* Check if we need to signal EPOLLIN right now */ 1759 tcp_data_ready(sk); 1760 1761 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1762 return 0; 1763 1764 space = tcp_space_from_win(sk, val); 1765 if (space > sk->sk_rcvbuf) { 1766 WRITE_ONCE(sk->sk_rcvbuf, space); 1767 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1768 } 1769 return 0; 1770 } 1771 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1772 1773 void tcp_update_recv_tstamps(struct sk_buff *skb, 1774 struct scm_timestamping_internal *tss) 1775 { 1776 if (skb->tstamp) 1777 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1778 else 1779 tss->ts[0] = (struct timespec64) {0}; 1780 1781 if (skb_hwtstamps(skb)->hwtstamp) 1782 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1783 else 1784 tss->ts[2] = (struct timespec64) {0}; 1785 } 1786 1787 #ifdef CONFIG_MMU 1788 static const struct vm_operations_struct tcp_vm_ops = { 1789 }; 1790 1791 int tcp_mmap(struct file *file, struct socket *sock, 1792 struct vm_area_struct *vma) 1793 { 1794 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1795 return -EPERM; 1796 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1797 1798 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1799 vm_flags_set(vma, VM_MIXEDMAP); 1800 1801 vma->vm_ops = &tcp_vm_ops; 1802 return 0; 1803 } 1804 EXPORT_IPV6_MOD(tcp_mmap); 1805 1806 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1807 u32 *offset_frag) 1808 { 1809 skb_frag_t *frag; 1810 1811 if (unlikely(offset_skb >= skb->len)) 1812 return NULL; 1813 1814 offset_skb -= skb_headlen(skb); 1815 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1816 return NULL; 1817 1818 frag = skb_shinfo(skb)->frags; 1819 while (offset_skb) { 1820 if (skb_frag_size(frag) > offset_skb) { 1821 *offset_frag = offset_skb; 1822 return frag; 1823 } 1824 offset_skb -= skb_frag_size(frag); 1825 ++frag; 1826 } 1827 *offset_frag = 0; 1828 return frag; 1829 } 1830 1831 static bool can_map_frag(const skb_frag_t *frag) 1832 { 1833 struct page *page; 1834 1835 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1836 return false; 1837 1838 page = skb_frag_page(frag); 1839 1840 if (PageCompound(page) || page->mapping) 1841 return false; 1842 1843 return true; 1844 } 1845 1846 static int find_next_mappable_frag(const skb_frag_t *frag, 1847 int remaining_in_skb) 1848 { 1849 int offset = 0; 1850 1851 if (likely(can_map_frag(frag))) 1852 return 0; 1853 1854 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1855 offset += skb_frag_size(frag); 1856 ++frag; 1857 } 1858 return offset; 1859 } 1860 1861 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1862 struct tcp_zerocopy_receive *zc, 1863 struct sk_buff *skb, u32 offset) 1864 { 1865 u32 frag_offset, partial_frag_remainder = 0; 1866 int mappable_offset; 1867 skb_frag_t *frag; 1868 1869 /* worst case: skip to next skb. try to improve on this case below */ 1870 zc->recv_skip_hint = skb->len - offset; 1871 1872 /* Find the frag containing this offset (and how far into that frag) */ 1873 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1874 if (!frag) 1875 return; 1876 1877 if (frag_offset) { 1878 struct skb_shared_info *info = skb_shinfo(skb); 1879 1880 /* We read part of the last frag, must recvmsg() rest of skb. */ 1881 if (frag == &info->frags[info->nr_frags - 1]) 1882 return; 1883 1884 /* Else, we must at least read the remainder in this frag. */ 1885 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1886 zc->recv_skip_hint -= partial_frag_remainder; 1887 ++frag; 1888 } 1889 1890 /* partial_frag_remainder: If part way through a frag, must read rest. 1891 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1892 * in partial_frag_remainder. 1893 */ 1894 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1895 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1896 } 1897 1898 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1899 int flags, struct scm_timestamping_internal *tss, 1900 int *cmsg_flags); 1901 static int receive_fallback_to_copy(struct sock *sk, 1902 struct tcp_zerocopy_receive *zc, int inq, 1903 struct scm_timestamping_internal *tss) 1904 { 1905 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1906 struct msghdr msg = {}; 1907 int err; 1908 1909 zc->length = 0; 1910 zc->recv_skip_hint = 0; 1911 1912 if (copy_address != zc->copybuf_address) 1913 return -EINVAL; 1914 1915 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1916 &msg.msg_iter); 1917 if (err) 1918 return err; 1919 1920 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1921 tss, &zc->msg_flags); 1922 if (err < 0) 1923 return err; 1924 1925 zc->copybuf_len = err; 1926 if (likely(zc->copybuf_len)) { 1927 struct sk_buff *skb; 1928 u32 offset; 1929 1930 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1931 if (skb) 1932 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1933 } 1934 return 0; 1935 } 1936 1937 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1938 struct sk_buff *skb, u32 copylen, 1939 u32 *offset, u32 *seq) 1940 { 1941 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1942 struct msghdr msg = {}; 1943 int err; 1944 1945 if (copy_address != zc->copybuf_address) 1946 return -EINVAL; 1947 1948 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1949 &msg.msg_iter); 1950 if (err) 1951 return err; 1952 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1953 if (err) 1954 return err; 1955 zc->recv_skip_hint -= copylen; 1956 *offset += copylen; 1957 *seq += copylen; 1958 return (__s32)copylen; 1959 } 1960 1961 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1962 struct sock *sk, 1963 struct sk_buff *skb, 1964 u32 *seq, 1965 s32 copybuf_len, 1966 struct scm_timestamping_internal *tss) 1967 { 1968 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1969 1970 if (!copylen) 1971 return 0; 1972 /* skb is null if inq < PAGE_SIZE. */ 1973 if (skb) { 1974 offset = *seq - TCP_SKB_CB(skb)->seq; 1975 } else { 1976 skb = tcp_recv_skb(sk, *seq, &offset); 1977 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1978 tcp_update_recv_tstamps(skb, tss); 1979 zc->msg_flags |= TCP_CMSG_TS; 1980 } 1981 } 1982 1983 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1984 seq); 1985 return zc->copybuf_len < 0 ? 0 : copylen; 1986 } 1987 1988 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1989 struct page **pending_pages, 1990 unsigned long pages_remaining, 1991 unsigned long *address, 1992 u32 *length, 1993 u32 *seq, 1994 struct tcp_zerocopy_receive *zc, 1995 u32 total_bytes_to_map, 1996 int err) 1997 { 1998 /* At least one page did not map. Try zapping if we skipped earlier. */ 1999 if (err == -EBUSY && 2000 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2001 u32 maybe_zap_len; 2002 2003 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2004 *length + /* Mapped or pending */ 2005 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2006 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2007 err = 0; 2008 } 2009 2010 if (!err) { 2011 unsigned long leftover_pages = pages_remaining; 2012 int bytes_mapped; 2013 2014 /* We called zap_page_range_single, try to reinsert. */ 2015 err = vm_insert_pages(vma, *address, 2016 pending_pages, 2017 &pages_remaining); 2018 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2019 *seq += bytes_mapped; 2020 *address += bytes_mapped; 2021 } 2022 if (err) { 2023 /* Either we were unable to zap, OR we zapped, retried an 2024 * insert, and still had an issue. Either ways, pages_remaining 2025 * is the number of pages we were unable to map, and we unroll 2026 * some state we speculatively touched before. 2027 */ 2028 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2029 2030 *length -= bytes_not_mapped; 2031 zc->recv_skip_hint += bytes_not_mapped; 2032 } 2033 return err; 2034 } 2035 2036 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2037 struct page **pages, 2038 unsigned int pages_to_map, 2039 unsigned long *address, 2040 u32 *length, 2041 u32 *seq, 2042 struct tcp_zerocopy_receive *zc, 2043 u32 total_bytes_to_map) 2044 { 2045 unsigned long pages_remaining = pages_to_map; 2046 unsigned int pages_mapped; 2047 unsigned int bytes_mapped; 2048 int err; 2049 2050 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2051 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2052 bytes_mapped = PAGE_SIZE * pages_mapped; 2053 /* Even if vm_insert_pages fails, it may have partially succeeded in 2054 * mapping (some but not all of the pages). 2055 */ 2056 *seq += bytes_mapped; 2057 *address += bytes_mapped; 2058 2059 if (likely(!err)) 2060 return 0; 2061 2062 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2063 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2064 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2065 err); 2066 } 2067 2068 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2069 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2070 struct tcp_zerocopy_receive *zc, 2071 struct scm_timestamping_internal *tss) 2072 { 2073 unsigned long msg_control_addr; 2074 struct msghdr cmsg_dummy; 2075 2076 msg_control_addr = (unsigned long)zc->msg_control; 2077 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2078 cmsg_dummy.msg_controllen = 2079 (__kernel_size_t)zc->msg_controllen; 2080 cmsg_dummy.msg_flags = in_compat_syscall() 2081 ? MSG_CMSG_COMPAT : 0; 2082 cmsg_dummy.msg_control_is_user = true; 2083 zc->msg_flags = 0; 2084 if (zc->msg_control == msg_control_addr && 2085 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2086 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2087 zc->msg_control = (__u64) 2088 ((uintptr_t)cmsg_dummy.msg_control_user); 2089 zc->msg_controllen = 2090 (__u64)cmsg_dummy.msg_controllen; 2091 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2092 } 2093 } 2094 2095 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2096 unsigned long address, 2097 bool *mmap_locked) 2098 { 2099 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2100 2101 if (vma) { 2102 if (vma->vm_ops != &tcp_vm_ops) { 2103 vma_end_read(vma); 2104 return NULL; 2105 } 2106 *mmap_locked = false; 2107 return vma; 2108 } 2109 2110 mmap_read_lock(mm); 2111 vma = vma_lookup(mm, address); 2112 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2113 mmap_read_unlock(mm); 2114 return NULL; 2115 } 2116 *mmap_locked = true; 2117 return vma; 2118 } 2119 2120 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2121 static int tcp_zerocopy_receive(struct sock *sk, 2122 struct tcp_zerocopy_receive *zc, 2123 struct scm_timestamping_internal *tss) 2124 { 2125 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2126 unsigned long address = (unsigned long)zc->address; 2127 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2128 s32 copybuf_len = zc->copybuf_len; 2129 struct tcp_sock *tp = tcp_sk(sk); 2130 const skb_frag_t *frags = NULL; 2131 unsigned int pages_to_map = 0; 2132 struct vm_area_struct *vma; 2133 struct sk_buff *skb = NULL; 2134 u32 seq = tp->copied_seq; 2135 u32 total_bytes_to_map; 2136 int inq = tcp_inq(sk); 2137 bool mmap_locked; 2138 int ret; 2139 2140 zc->copybuf_len = 0; 2141 zc->msg_flags = 0; 2142 2143 if (address & (PAGE_SIZE - 1) || address != zc->address) 2144 return -EINVAL; 2145 2146 if (sk->sk_state == TCP_LISTEN) 2147 return -ENOTCONN; 2148 2149 sock_rps_record_flow(sk); 2150 2151 if (inq && inq <= copybuf_len) 2152 return receive_fallback_to_copy(sk, zc, inq, tss); 2153 2154 if (inq < PAGE_SIZE) { 2155 zc->length = 0; 2156 zc->recv_skip_hint = inq; 2157 if (!inq && sock_flag(sk, SOCK_DONE)) 2158 return -EIO; 2159 return 0; 2160 } 2161 2162 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2163 if (!vma) 2164 return -EINVAL; 2165 2166 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2167 avail_len = min_t(u32, vma_len, inq); 2168 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2169 if (total_bytes_to_map) { 2170 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2171 zap_page_range_single(vma, address, total_bytes_to_map, 2172 NULL); 2173 zc->length = total_bytes_to_map; 2174 zc->recv_skip_hint = 0; 2175 } else { 2176 zc->length = avail_len; 2177 zc->recv_skip_hint = avail_len; 2178 } 2179 ret = 0; 2180 while (length + PAGE_SIZE <= zc->length) { 2181 int mappable_offset; 2182 struct page *page; 2183 2184 if (zc->recv_skip_hint < PAGE_SIZE) { 2185 u32 offset_frag; 2186 2187 if (skb) { 2188 if (zc->recv_skip_hint > 0) 2189 break; 2190 skb = skb->next; 2191 offset = seq - TCP_SKB_CB(skb)->seq; 2192 } else { 2193 skb = tcp_recv_skb(sk, seq, &offset); 2194 } 2195 2196 if (!skb_frags_readable(skb)) 2197 break; 2198 2199 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2200 tcp_update_recv_tstamps(skb, tss); 2201 zc->msg_flags |= TCP_CMSG_TS; 2202 } 2203 zc->recv_skip_hint = skb->len - offset; 2204 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2205 if (!frags || offset_frag) 2206 break; 2207 } 2208 2209 mappable_offset = find_next_mappable_frag(frags, 2210 zc->recv_skip_hint); 2211 if (mappable_offset) { 2212 zc->recv_skip_hint = mappable_offset; 2213 break; 2214 } 2215 page = skb_frag_page(frags); 2216 if (WARN_ON_ONCE(!page)) 2217 break; 2218 2219 prefetchw(page); 2220 pages[pages_to_map++] = page; 2221 length += PAGE_SIZE; 2222 zc->recv_skip_hint -= PAGE_SIZE; 2223 frags++; 2224 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2225 zc->recv_skip_hint < PAGE_SIZE) { 2226 /* Either full batch, or we're about to go to next skb 2227 * (and we cannot unroll failed ops across skbs). 2228 */ 2229 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2230 pages_to_map, 2231 &address, &length, 2232 &seq, zc, 2233 total_bytes_to_map); 2234 if (ret) 2235 goto out; 2236 pages_to_map = 0; 2237 } 2238 } 2239 if (pages_to_map) { 2240 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2241 &address, &length, &seq, 2242 zc, total_bytes_to_map); 2243 } 2244 out: 2245 if (mmap_locked) 2246 mmap_read_unlock(current->mm); 2247 else 2248 vma_end_read(vma); 2249 /* Try to copy straggler data. */ 2250 if (!ret) 2251 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2252 2253 if (length + copylen) { 2254 WRITE_ONCE(tp->copied_seq, seq); 2255 tcp_rcv_space_adjust(sk); 2256 2257 /* Clean up data we have read: This will do ACK frames. */ 2258 tcp_recv_skb(sk, seq, &offset); 2259 tcp_cleanup_rbuf(sk, length + copylen); 2260 ret = 0; 2261 if (length == zc->length) 2262 zc->recv_skip_hint = 0; 2263 } else { 2264 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2265 ret = -EIO; 2266 } 2267 zc->length = length; 2268 return ret; 2269 } 2270 #endif 2271 2272 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2273 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2274 struct scm_timestamping_internal *tss) 2275 { 2276 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2277 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2278 bool has_timestamping = false; 2279 2280 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2281 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2282 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2283 if (new_tstamp) { 2284 struct __kernel_timespec kts = { 2285 .tv_sec = tss->ts[0].tv_sec, 2286 .tv_nsec = tss->ts[0].tv_nsec, 2287 }; 2288 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2289 sizeof(kts), &kts); 2290 } else { 2291 struct __kernel_old_timespec ts_old = { 2292 .tv_sec = tss->ts[0].tv_sec, 2293 .tv_nsec = tss->ts[0].tv_nsec, 2294 }; 2295 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2296 sizeof(ts_old), &ts_old); 2297 } 2298 } else { 2299 if (new_tstamp) { 2300 struct __kernel_sock_timeval stv = { 2301 .tv_sec = tss->ts[0].tv_sec, 2302 .tv_usec = tss->ts[0].tv_nsec / 1000, 2303 }; 2304 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2305 sizeof(stv), &stv); 2306 } else { 2307 struct __kernel_old_timeval tv = { 2308 .tv_sec = tss->ts[0].tv_sec, 2309 .tv_usec = tss->ts[0].tv_nsec / 1000, 2310 }; 2311 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2312 sizeof(tv), &tv); 2313 } 2314 } 2315 } 2316 2317 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2318 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2319 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2320 has_timestamping = true; 2321 else 2322 tss->ts[0] = (struct timespec64) {0}; 2323 } 2324 2325 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2326 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2327 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2328 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2329 has_timestamping = true; 2330 else 2331 tss->ts[2] = (struct timespec64) {0}; 2332 } 2333 2334 if (has_timestamping) { 2335 tss->ts[1] = (struct timespec64) {0}; 2336 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2337 put_cmsg_scm_timestamping64(msg, tss); 2338 else 2339 put_cmsg_scm_timestamping(msg, tss); 2340 } 2341 } 2342 2343 static int tcp_inq_hint(struct sock *sk) 2344 { 2345 const struct tcp_sock *tp = tcp_sk(sk); 2346 u32 copied_seq = READ_ONCE(tp->copied_seq); 2347 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2348 int inq; 2349 2350 inq = rcv_nxt - copied_seq; 2351 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2352 lock_sock(sk); 2353 inq = tp->rcv_nxt - tp->copied_seq; 2354 release_sock(sk); 2355 } 2356 /* After receiving a FIN, tell the user-space to continue reading 2357 * by returning a non-zero inq. 2358 */ 2359 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2360 inq = 1; 2361 return inq; 2362 } 2363 2364 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2365 struct tcp_xa_pool { 2366 u8 max; /* max <= MAX_SKB_FRAGS */ 2367 u8 idx; /* idx <= max */ 2368 __u32 tokens[MAX_SKB_FRAGS]; 2369 netmem_ref netmems[MAX_SKB_FRAGS]; 2370 }; 2371 2372 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2373 { 2374 int i; 2375 2376 /* Commit part that has been copied to user space. */ 2377 for (i = 0; i < p->idx; i++) 2378 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2379 (__force void *)p->netmems[i], GFP_KERNEL); 2380 /* Rollback what has been pre-allocated and is no longer needed. */ 2381 for (; i < p->max; i++) 2382 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2383 2384 p->max = 0; 2385 p->idx = 0; 2386 } 2387 2388 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2389 { 2390 if (!p->max) 2391 return; 2392 2393 xa_lock_bh(&sk->sk_user_frags); 2394 2395 tcp_xa_pool_commit_locked(sk, p); 2396 2397 xa_unlock_bh(&sk->sk_user_frags); 2398 } 2399 2400 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2401 unsigned int max_frags) 2402 { 2403 int err, k; 2404 2405 if (p->idx < p->max) 2406 return 0; 2407 2408 xa_lock_bh(&sk->sk_user_frags); 2409 2410 tcp_xa_pool_commit_locked(sk, p); 2411 2412 for (k = 0; k < max_frags; k++) { 2413 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2414 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2415 if (err) 2416 break; 2417 } 2418 2419 xa_unlock_bh(&sk->sk_user_frags); 2420 2421 p->max = k; 2422 p->idx = 0; 2423 return k ? 0 : err; 2424 } 2425 2426 /* On error, returns the -errno. On success, returns number of bytes sent to the 2427 * user. May not consume all of @remaining_len. 2428 */ 2429 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2430 unsigned int offset, struct msghdr *msg, 2431 int remaining_len) 2432 { 2433 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2434 struct tcp_xa_pool tcp_xa_pool; 2435 unsigned int start; 2436 int i, copy, n; 2437 int sent = 0; 2438 int err = 0; 2439 2440 tcp_xa_pool.max = 0; 2441 tcp_xa_pool.idx = 0; 2442 do { 2443 start = skb_headlen(skb); 2444 2445 if (skb_frags_readable(skb)) { 2446 err = -ENODEV; 2447 goto out; 2448 } 2449 2450 /* Copy header. */ 2451 copy = start - offset; 2452 if (copy > 0) { 2453 copy = min(copy, remaining_len); 2454 2455 n = copy_to_iter(skb->data + offset, copy, 2456 &msg->msg_iter); 2457 if (n != copy) { 2458 err = -EFAULT; 2459 goto out; 2460 } 2461 2462 offset += copy; 2463 remaining_len -= copy; 2464 2465 /* First a dmabuf_cmsg for # bytes copied to user 2466 * buffer. 2467 */ 2468 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2469 dmabuf_cmsg.frag_size = copy; 2470 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2471 SO_DEVMEM_LINEAR, 2472 sizeof(dmabuf_cmsg), 2473 &dmabuf_cmsg); 2474 if (err) 2475 goto out; 2476 2477 sent += copy; 2478 2479 if (remaining_len == 0) 2480 goto out; 2481 } 2482 2483 /* after that, send information of dmabuf pages through a 2484 * sequence of cmsg 2485 */ 2486 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2487 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2488 struct net_iov *niov; 2489 u64 frag_offset; 2490 int end; 2491 2492 /* !skb_frags_readable() should indicate that ALL the 2493 * frags in this skb are dmabuf net_iovs. We're checking 2494 * for that flag above, but also check individual frags 2495 * here. If the tcp stack is not setting 2496 * skb_frags_readable() correctly, we still don't want 2497 * to crash here. 2498 */ 2499 if (!skb_frag_net_iov(frag)) { 2500 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2501 err = -ENODEV; 2502 goto out; 2503 } 2504 2505 niov = skb_frag_net_iov(frag); 2506 if (!net_is_devmem_iov(niov)) { 2507 err = -ENODEV; 2508 goto out; 2509 } 2510 2511 end = start + skb_frag_size(frag); 2512 copy = end - offset; 2513 2514 if (copy > 0) { 2515 copy = min(copy, remaining_len); 2516 2517 frag_offset = net_iov_virtual_addr(niov) + 2518 skb_frag_off(frag) + offset - 2519 start; 2520 dmabuf_cmsg.frag_offset = frag_offset; 2521 dmabuf_cmsg.frag_size = copy; 2522 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2523 skb_shinfo(skb)->nr_frags - i); 2524 if (err) 2525 goto out; 2526 2527 /* Will perform the exchange later */ 2528 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2529 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2530 2531 offset += copy; 2532 remaining_len -= copy; 2533 2534 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2535 SO_DEVMEM_DMABUF, 2536 sizeof(dmabuf_cmsg), 2537 &dmabuf_cmsg); 2538 if (err) 2539 goto out; 2540 2541 atomic_long_inc(&niov->pp_ref_count); 2542 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2543 2544 sent += copy; 2545 2546 if (remaining_len == 0) 2547 goto out; 2548 } 2549 start = end; 2550 } 2551 2552 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2553 if (!remaining_len) 2554 goto out; 2555 2556 /* if remaining_len is not satisfied yet, we need to go to the 2557 * next frag in the frag_list to satisfy remaining_len. 2558 */ 2559 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2560 2561 offset = offset - start; 2562 } while (skb); 2563 2564 if (remaining_len) { 2565 err = -EFAULT; 2566 goto out; 2567 } 2568 2569 out: 2570 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2571 if (!sent) 2572 sent = err; 2573 2574 return sent; 2575 } 2576 2577 /* 2578 * This routine copies from a sock struct into the user buffer. 2579 * 2580 * Technical note: in 2.3 we work on _locked_ socket, so that 2581 * tricks with *seq access order and skb->users are not required. 2582 * Probably, code can be easily improved even more. 2583 */ 2584 2585 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2586 int flags, struct scm_timestamping_internal *tss, 2587 int *cmsg_flags) 2588 { 2589 struct tcp_sock *tp = tcp_sk(sk); 2590 int last_copied_dmabuf = -1; /* uninitialized */ 2591 int copied = 0; 2592 u32 peek_seq; 2593 u32 *seq; 2594 unsigned long used; 2595 int err; 2596 int target; /* Read at least this many bytes */ 2597 long timeo; 2598 struct sk_buff *skb, *last; 2599 u32 peek_offset = 0; 2600 u32 urg_hole = 0; 2601 2602 err = -ENOTCONN; 2603 if (sk->sk_state == TCP_LISTEN) 2604 goto out; 2605 2606 if (tp->recvmsg_inq) { 2607 *cmsg_flags = TCP_CMSG_INQ; 2608 msg->msg_get_inq = 1; 2609 } 2610 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2611 2612 /* Urgent data needs to be handled specially. */ 2613 if (flags & MSG_OOB) 2614 goto recv_urg; 2615 2616 if (unlikely(tp->repair)) { 2617 err = -EPERM; 2618 if (!(flags & MSG_PEEK)) 2619 goto out; 2620 2621 if (tp->repair_queue == TCP_SEND_QUEUE) 2622 goto recv_sndq; 2623 2624 err = -EINVAL; 2625 if (tp->repair_queue == TCP_NO_QUEUE) 2626 goto out; 2627 2628 /* 'common' recv queue MSG_PEEK-ing */ 2629 } 2630 2631 seq = &tp->copied_seq; 2632 if (flags & MSG_PEEK) { 2633 peek_offset = max(sk_peek_offset(sk, flags), 0); 2634 peek_seq = tp->copied_seq + peek_offset; 2635 seq = &peek_seq; 2636 } 2637 2638 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2639 2640 do { 2641 u32 offset; 2642 2643 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2644 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2645 if (copied) 2646 break; 2647 if (signal_pending(current)) { 2648 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2649 break; 2650 } 2651 } 2652 2653 /* Next get a buffer. */ 2654 2655 last = skb_peek_tail(&sk->sk_receive_queue); 2656 skb_queue_walk(&sk->sk_receive_queue, skb) { 2657 last = skb; 2658 /* Now that we have two receive queues this 2659 * shouldn't happen. 2660 */ 2661 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2662 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2663 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2664 flags)) 2665 break; 2666 2667 offset = *seq - TCP_SKB_CB(skb)->seq; 2668 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2669 pr_err_once("%s: found a SYN, please report !\n", __func__); 2670 offset--; 2671 } 2672 if (offset < skb->len) 2673 goto found_ok_skb; 2674 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2675 goto found_fin_ok; 2676 WARN(!(flags & MSG_PEEK), 2677 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2678 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2679 } 2680 2681 /* Well, if we have backlog, try to process it now yet. */ 2682 2683 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2684 break; 2685 2686 if (copied) { 2687 if (!timeo || 2688 sk->sk_err || 2689 sk->sk_state == TCP_CLOSE || 2690 (sk->sk_shutdown & RCV_SHUTDOWN) || 2691 signal_pending(current)) 2692 break; 2693 } else { 2694 if (sock_flag(sk, SOCK_DONE)) 2695 break; 2696 2697 if (sk->sk_err) { 2698 copied = sock_error(sk); 2699 break; 2700 } 2701 2702 if (sk->sk_shutdown & RCV_SHUTDOWN) 2703 break; 2704 2705 if (sk->sk_state == TCP_CLOSE) { 2706 /* This occurs when user tries to read 2707 * from never connected socket. 2708 */ 2709 copied = -ENOTCONN; 2710 break; 2711 } 2712 2713 if (!timeo) { 2714 copied = -EAGAIN; 2715 break; 2716 } 2717 2718 if (signal_pending(current)) { 2719 copied = sock_intr_errno(timeo); 2720 break; 2721 } 2722 } 2723 2724 if (copied >= target) { 2725 /* Do not sleep, just process backlog. */ 2726 __sk_flush_backlog(sk); 2727 } else { 2728 tcp_cleanup_rbuf(sk, copied); 2729 err = sk_wait_data(sk, &timeo, last); 2730 if (err < 0) { 2731 err = copied ? : err; 2732 goto out; 2733 } 2734 } 2735 2736 if ((flags & MSG_PEEK) && 2737 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2738 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2739 current->comm, 2740 task_pid_nr(current)); 2741 peek_seq = tp->copied_seq + peek_offset; 2742 } 2743 continue; 2744 2745 found_ok_skb: 2746 /* Ok so how much can we use? */ 2747 used = skb->len - offset; 2748 if (len < used) 2749 used = len; 2750 2751 /* Do we have urgent data here? */ 2752 if (unlikely(tp->urg_data)) { 2753 u32 urg_offset = tp->urg_seq - *seq; 2754 if (urg_offset < used) { 2755 if (!urg_offset) { 2756 if (!sock_flag(sk, SOCK_URGINLINE)) { 2757 WRITE_ONCE(*seq, *seq + 1); 2758 urg_hole++; 2759 offset++; 2760 used--; 2761 if (!used) 2762 goto skip_copy; 2763 } 2764 } else 2765 used = urg_offset; 2766 } 2767 } 2768 2769 if (!(flags & MSG_TRUNC)) { 2770 if (last_copied_dmabuf != -1 && 2771 last_copied_dmabuf != !skb_frags_readable(skb)) 2772 break; 2773 2774 if (skb_frags_readable(skb)) { 2775 err = skb_copy_datagram_msg(skb, offset, msg, 2776 used); 2777 if (err) { 2778 /* Exception. Bailout! */ 2779 if (!copied) 2780 copied = -EFAULT; 2781 break; 2782 } 2783 } else { 2784 if (!(flags & MSG_SOCK_DEVMEM)) { 2785 /* dmabuf skbs can only be received 2786 * with the MSG_SOCK_DEVMEM flag. 2787 */ 2788 if (!copied) 2789 copied = -EFAULT; 2790 2791 break; 2792 } 2793 2794 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2795 used); 2796 if (err <= 0) { 2797 if (!copied) 2798 copied = -EFAULT; 2799 2800 break; 2801 } 2802 used = err; 2803 } 2804 } 2805 2806 last_copied_dmabuf = !skb_frags_readable(skb); 2807 2808 WRITE_ONCE(*seq, *seq + used); 2809 copied += used; 2810 len -= used; 2811 if (flags & MSG_PEEK) 2812 sk_peek_offset_fwd(sk, used); 2813 else 2814 sk_peek_offset_bwd(sk, used); 2815 tcp_rcv_space_adjust(sk); 2816 2817 skip_copy: 2818 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2819 WRITE_ONCE(tp->urg_data, 0); 2820 tcp_fast_path_check(sk); 2821 } 2822 2823 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2824 tcp_update_recv_tstamps(skb, tss); 2825 *cmsg_flags |= TCP_CMSG_TS; 2826 } 2827 2828 if (used + offset < skb->len) 2829 continue; 2830 2831 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2832 goto found_fin_ok; 2833 if (!(flags & MSG_PEEK)) 2834 tcp_eat_recv_skb(sk, skb); 2835 continue; 2836 2837 found_fin_ok: 2838 /* Process the FIN. */ 2839 WRITE_ONCE(*seq, *seq + 1); 2840 if (!(flags & MSG_PEEK)) 2841 tcp_eat_recv_skb(sk, skb); 2842 break; 2843 } while (len > 0); 2844 2845 /* According to UNIX98, msg_name/msg_namelen are ignored 2846 * on connected socket. I was just happy when found this 8) --ANK 2847 */ 2848 2849 /* Clean up data we have read: This will do ACK frames. */ 2850 tcp_cleanup_rbuf(sk, copied); 2851 return copied; 2852 2853 out: 2854 return err; 2855 2856 recv_urg: 2857 err = tcp_recv_urg(sk, msg, len, flags); 2858 goto out; 2859 2860 recv_sndq: 2861 err = tcp_peek_sndq(sk, msg, len); 2862 goto out; 2863 } 2864 2865 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2866 int *addr_len) 2867 { 2868 int cmsg_flags = 0, ret; 2869 struct scm_timestamping_internal tss; 2870 2871 if (unlikely(flags & MSG_ERRQUEUE)) 2872 return inet_recv_error(sk, msg, len, addr_len); 2873 2874 if (sk_can_busy_loop(sk) && 2875 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2876 sk->sk_state == TCP_ESTABLISHED) 2877 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2878 2879 lock_sock(sk); 2880 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2881 release_sock(sk); 2882 2883 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2884 if (cmsg_flags & TCP_CMSG_TS) 2885 tcp_recv_timestamp(msg, sk, &tss); 2886 if (msg->msg_get_inq) { 2887 msg->msg_inq = tcp_inq_hint(sk); 2888 if (cmsg_flags & TCP_CMSG_INQ) 2889 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2890 sizeof(msg->msg_inq), &msg->msg_inq); 2891 } 2892 } 2893 return ret; 2894 } 2895 EXPORT_IPV6_MOD(tcp_recvmsg); 2896 2897 void tcp_set_state(struct sock *sk, int state) 2898 { 2899 int oldstate = sk->sk_state; 2900 2901 /* We defined a new enum for TCP states that are exported in BPF 2902 * so as not force the internal TCP states to be frozen. The 2903 * following checks will detect if an internal state value ever 2904 * differs from the BPF value. If this ever happens, then we will 2905 * need to remap the internal value to the BPF value before calling 2906 * tcp_call_bpf_2arg. 2907 */ 2908 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2909 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2910 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2911 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2912 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2913 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2914 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2915 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2916 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2917 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2918 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2919 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2920 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2921 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2922 2923 /* bpf uapi header bpf.h defines an anonymous enum with values 2924 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2925 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2926 * But clang built vmlinux does not have this enum in DWARF 2927 * since clang removes the above code before generating IR/debuginfo. 2928 * Let us explicitly emit the type debuginfo to ensure the 2929 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2930 * regardless of which compiler is used. 2931 */ 2932 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2933 2934 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2935 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2936 2937 switch (state) { 2938 case TCP_ESTABLISHED: 2939 if (oldstate != TCP_ESTABLISHED) 2940 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2941 break; 2942 case TCP_CLOSE_WAIT: 2943 if (oldstate == TCP_SYN_RECV) 2944 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2945 break; 2946 2947 case TCP_CLOSE: 2948 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2949 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2950 2951 sk->sk_prot->unhash(sk); 2952 if (inet_csk(sk)->icsk_bind_hash && 2953 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2954 inet_put_port(sk); 2955 fallthrough; 2956 default: 2957 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2958 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2959 } 2960 2961 /* Change state AFTER socket is unhashed to avoid closed 2962 * socket sitting in hash tables. 2963 */ 2964 inet_sk_state_store(sk, state); 2965 } 2966 EXPORT_SYMBOL_GPL(tcp_set_state); 2967 2968 /* 2969 * State processing on a close. This implements the state shift for 2970 * sending our FIN frame. Note that we only send a FIN for some 2971 * states. A shutdown() may have already sent the FIN, or we may be 2972 * closed. 2973 */ 2974 2975 static const unsigned char new_state[16] = { 2976 /* current state: new state: action: */ 2977 [0 /* (Invalid) */] = TCP_CLOSE, 2978 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2979 [TCP_SYN_SENT] = TCP_CLOSE, 2980 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2981 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2982 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2983 [TCP_TIME_WAIT] = TCP_CLOSE, 2984 [TCP_CLOSE] = TCP_CLOSE, 2985 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2986 [TCP_LAST_ACK] = TCP_LAST_ACK, 2987 [TCP_LISTEN] = TCP_CLOSE, 2988 [TCP_CLOSING] = TCP_CLOSING, 2989 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2990 }; 2991 2992 static int tcp_close_state(struct sock *sk) 2993 { 2994 int next = (int)new_state[sk->sk_state]; 2995 int ns = next & TCP_STATE_MASK; 2996 2997 tcp_set_state(sk, ns); 2998 2999 return next & TCP_ACTION_FIN; 3000 } 3001 3002 /* 3003 * Shutdown the sending side of a connection. Much like close except 3004 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3005 */ 3006 3007 void tcp_shutdown(struct sock *sk, int how) 3008 { 3009 /* We need to grab some memory, and put together a FIN, 3010 * and then put it into the queue to be sent. 3011 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3012 */ 3013 if (!(how & SEND_SHUTDOWN)) 3014 return; 3015 3016 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3017 if ((1 << sk->sk_state) & 3018 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3019 TCPF_CLOSE_WAIT)) { 3020 /* Clear out any half completed packets. FIN if needed. */ 3021 if (tcp_close_state(sk)) 3022 tcp_send_fin(sk); 3023 } 3024 } 3025 EXPORT_IPV6_MOD(tcp_shutdown); 3026 3027 int tcp_orphan_count_sum(void) 3028 { 3029 int i, total = 0; 3030 3031 for_each_possible_cpu(i) 3032 total += per_cpu(tcp_orphan_count, i); 3033 3034 return max(total, 0); 3035 } 3036 3037 static int tcp_orphan_cache; 3038 static struct timer_list tcp_orphan_timer; 3039 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3040 3041 static void tcp_orphan_update(struct timer_list *unused) 3042 { 3043 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3044 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3045 } 3046 3047 static bool tcp_too_many_orphans(int shift) 3048 { 3049 return READ_ONCE(tcp_orphan_cache) << shift > 3050 READ_ONCE(sysctl_tcp_max_orphans); 3051 } 3052 3053 static bool tcp_out_of_memory(const struct sock *sk) 3054 { 3055 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3056 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3057 return true; 3058 return false; 3059 } 3060 3061 bool tcp_check_oom(const struct sock *sk, int shift) 3062 { 3063 bool too_many_orphans, out_of_socket_memory; 3064 3065 too_many_orphans = tcp_too_many_orphans(shift); 3066 out_of_socket_memory = tcp_out_of_memory(sk); 3067 3068 if (too_many_orphans) 3069 net_info_ratelimited("too many orphaned sockets\n"); 3070 if (out_of_socket_memory) 3071 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3072 return too_many_orphans || out_of_socket_memory; 3073 } 3074 3075 void __tcp_close(struct sock *sk, long timeout) 3076 { 3077 struct sk_buff *skb; 3078 int data_was_unread = 0; 3079 int state; 3080 3081 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3082 3083 if (sk->sk_state == TCP_LISTEN) { 3084 tcp_set_state(sk, TCP_CLOSE); 3085 3086 /* Special case. */ 3087 inet_csk_listen_stop(sk); 3088 3089 goto adjudge_to_death; 3090 } 3091 3092 /* We need to flush the recv. buffs. We do this only on the 3093 * descriptor close, not protocol-sourced closes, because the 3094 * reader process may not have drained the data yet! 3095 */ 3096 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3097 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3098 3099 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3100 len--; 3101 data_was_unread += len; 3102 __kfree_skb(skb); 3103 } 3104 3105 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3106 if (sk->sk_state == TCP_CLOSE) 3107 goto adjudge_to_death; 3108 3109 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3110 * data was lost. To witness the awful effects of the old behavior of 3111 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3112 * GET in an FTP client, suspend the process, wait for the client to 3113 * advertise a zero window, then kill -9 the FTP client, wheee... 3114 * Note: timeout is always zero in such a case. 3115 */ 3116 if (unlikely(tcp_sk(sk)->repair)) { 3117 sk->sk_prot->disconnect(sk, 0); 3118 } else if (data_was_unread) { 3119 /* Unread data was tossed, zap the connection. */ 3120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3121 tcp_set_state(sk, TCP_CLOSE); 3122 tcp_send_active_reset(sk, sk->sk_allocation, 3123 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3124 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3125 /* Check zero linger _after_ checking for unread data. */ 3126 sk->sk_prot->disconnect(sk, 0); 3127 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3128 } else if (tcp_close_state(sk)) { 3129 /* We FIN if the application ate all the data before 3130 * zapping the connection. 3131 */ 3132 3133 /* RED-PEN. Formally speaking, we have broken TCP state 3134 * machine. State transitions: 3135 * 3136 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3137 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3138 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3139 * 3140 * are legal only when FIN has been sent (i.e. in window), 3141 * rather than queued out of window. Purists blame. 3142 * 3143 * F.e. "RFC state" is ESTABLISHED, 3144 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3145 * 3146 * The visible declinations are that sometimes 3147 * we enter time-wait state, when it is not required really 3148 * (harmless), do not send active resets, when they are 3149 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3150 * they look as CLOSING or LAST_ACK for Linux) 3151 * Probably, I missed some more holelets. 3152 * --ANK 3153 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3154 * in a single packet! (May consider it later but will 3155 * probably need API support or TCP_CORK SYN-ACK until 3156 * data is written and socket is closed.) 3157 */ 3158 tcp_send_fin(sk); 3159 } 3160 3161 sk_stream_wait_close(sk, timeout); 3162 3163 adjudge_to_death: 3164 state = sk->sk_state; 3165 sock_hold(sk); 3166 sock_orphan(sk); 3167 3168 local_bh_disable(); 3169 bh_lock_sock(sk); 3170 /* remove backlog if any, without releasing ownership. */ 3171 __release_sock(sk); 3172 3173 this_cpu_inc(tcp_orphan_count); 3174 3175 /* Have we already been destroyed by a softirq or backlog? */ 3176 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3177 goto out; 3178 3179 /* This is a (useful) BSD violating of the RFC. There is a 3180 * problem with TCP as specified in that the other end could 3181 * keep a socket open forever with no application left this end. 3182 * We use a 1 minute timeout (about the same as BSD) then kill 3183 * our end. If they send after that then tough - BUT: long enough 3184 * that we won't make the old 4*rto = almost no time - whoops 3185 * reset mistake. 3186 * 3187 * Nope, it was not mistake. It is really desired behaviour 3188 * f.e. on http servers, when such sockets are useless, but 3189 * consume significant resources. Let's do it with special 3190 * linger2 option. --ANK 3191 */ 3192 3193 if (sk->sk_state == TCP_FIN_WAIT2) { 3194 struct tcp_sock *tp = tcp_sk(sk); 3195 if (READ_ONCE(tp->linger2) < 0) { 3196 tcp_set_state(sk, TCP_CLOSE); 3197 tcp_send_active_reset(sk, GFP_ATOMIC, 3198 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3199 __NET_INC_STATS(sock_net(sk), 3200 LINUX_MIB_TCPABORTONLINGER); 3201 } else { 3202 const int tmo = tcp_fin_time(sk); 3203 3204 if (tmo > TCP_TIMEWAIT_LEN) { 3205 tcp_reset_keepalive_timer(sk, 3206 tmo - TCP_TIMEWAIT_LEN); 3207 } else { 3208 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3209 goto out; 3210 } 3211 } 3212 } 3213 if (sk->sk_state != TCP_CLOSE) { 3214 if (tcp_check_oom(sk, 0)) { 3215 tcp_set_state(sk, TCP_CLOSE); 3216 tcp_send_active_reset(sk, GFP_ATOMIC, 3217 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3218 __NET_INC_STATS(sock_net(sk), 3219 LINUX_MIB_TCPABORTONMEMORY); 3220 } else if (!check_net(sock_net(sk))) { 3221 /* Not possible to send reset; just close */ 3222 tcp_set_state(sk, TCP_CLOSE); 3223 } 3224 } 3225 3226 if (sk->sk_state == TCP_CLOSE) { 3227 struct request_sock *req; 3228 3229 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3230 lockdep_sock_is_held(sk)); 3231 /* We could get here with a non-NULL req if the socket is 3232 * aborted (e.g., closed with unread data) before 3WHS 3233 * finishes. 3234 */ 3235 if (req) 3236 reqsk_fastopen_remove(sk, req, false); 3237 inet_csk_destroy_sock(sk); 3238 } 3239 /* Otherwise, socket is reprieved until protocol close. */ 3240 3241 out: 3242 bh_unlock_sock(sk); 3243 local_bh_enable(); 3244 } 3245 3246 void tcp_close(struct sock *sk, long timeout) 3247 { 3248 lock_sock(sk); 3249 __tcp_close(sk, timeout); 3250 release_sock(sk); 3251 if (!sk->sk_net_refcnt) 3252 inet_csk_clear_xmit_timers_sync(sk); 3253 sock_put(sk); 3254 } 3255 EXPORT_SYMBOL(tcp_close); 3256 3257 /* These states need RST on ABORT according to RFC793 */ 3258 3259 static inline bool tcp_need_reset(int state) 3260 { 3261 return (1 << state) & 3262 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3263 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3264 } 3265 3266 static void tcp_rtx_queue_purge(struct sock *sk) 3267 { 3268 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3269 3270 tcp_sk(sk)->highest_sack = NULL; 3271 while (p) { 3272 struct sk_buff *skb = rb_to_skb(p); 3273 3274 p = rb_next(p); 3275 /* Since we are deleting whole queue, no need to 3276 * list_del(&skb->tcp_tsorted_anchor) 3277 */ 3278 tcp_rtx_queue_unlink(skb, sk); 3279 tcp_wmem_free_skb(sk, skb); 3280 } 3281 } 3282 3283 void tcp_write_queue_purge(struct sock *sk) 3284 { 3285 struct sk_buff *skb; 3286 3287 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3288 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3289 tcp_skb_tsorted_anchor_cleanup(skb); 3290 tcp_wmem_free_skb(sk, skb); 3291 } 3292 tcp_rtx_queue_purge(sk); 3293 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3294 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3295 tcp_sk(sk)->packets_out = 0; 3296 inet_csk(sk)->icsk_backoff = 0; 3297 } 3298 3299 int tcp_disconnect(struct sock *sk, int flags) 3300 { 3301 struct inet_sock *inet = inet_sk(sk); 3302 struct inet_connection_sock *icsk = inet_csk(sk); 3303 struct tcp_sock *tp = tcp_sk(sk); 3304 int old_state = sk->sk_state; 3305 u32 seq; 3306 3307 if (old_state != TCP_CLOSE) 3308 tcp_set_state(sk, TCP_CLOSE); 3309 3310 /* ABORT function of RFC793 */ 3311 if (old_state == TCP_LISTEN) { 3312 inet_csk_listen_stop(sk); 3313 } else if (unlikely(tp->repair)) { 3314 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3315 } else if (tcp_need_reset(old_state)) { 3316 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3317 WRITE_ONCE(sk->sk_err, ECONNRESET); 3318 } else if (tp->snd_nxt != tp->write_seq && 3319 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3320 /* The last check adjusts for discrepancy of Linux wrt. RFC 3321 * states 3322 */ 3323 tcp_send_active_reset(sk, gfp_any(), 3324 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3325 WRITE_ONCE(sk->sk_err, ECONNRESET); 3326 } else if (old_state == TCP_SYN_SENT) 3327 WRITE_ONCE(sk->sk_err, ECONNRESET); 3328 3329 tcp_clear_xmit_timers(sk); 3330 __skb_queue_purge(&sk->sk_receive_queue); 3331 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3332 WRITE_ONCE(tp->urg_data, 0); 3333 sk_set_peek_off(sk, -1); 3334 tcp_write_queue_purge(sk); 3335 tcp_fastopen_active_disable_ofo_check(sk); 3336 skb_rbtree_purge(&tp->out_of_order_queue); 3337 3338 inet->inet_dport = 0; 3339 3340 inet_bhash2_reset_saddr(sk); 3341 3342 WRITE_ONCE(sk->sk_shutdown, 0); 3343 sock_reset_flag(sk, SOCK_DONE); 3344 tp->srtt_us = 0; 3345 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3346 tp->rcv_rtt_last_tsecr = 0; 3347 3348 seq = tp->write_seq + tp->max_window + 2; 3349 if (!seq) 3350 seq = 1; 3351 WRITE_ONCE(tp->write_seq, seq); 3352 3353 icsk->icsk_backoff = 0; 3354 icsk->icsk_probes_out = 0; 3355 icsk->icsk_probes_tstamp = 0; 3356 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3357 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3358 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3359 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3360 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3361 tp->snd_cwnd_cnt = 0; 3362 tp->is_cwnd_limited = 0; 3363 tp->max_packets_out = 0; 3364 tp->window_clamp = 0; 3365 tp->delivered = 0; 3366 tp->delivered_ce = 0; 3367 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3368 icsk->icsk_ca_ops->release(sk); 3369 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3370 icsk->icsk_ca_initialized = 0; 3371 tcp_set_ca_state(sk, TCP_CA_Open); 3372 tp->is_sack_reneg = 0; 3373 tcp_clear_retrans(tp); 3374 tp->total_retrans = 0; 3375 inet_csk_delack_init(sk); 3376 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3377 * issue in __tcp_select_window() 3378 */ 3379 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3380 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3381 __sk_dst_reset(sk); 3382 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3383 tcp_saved_syn_free(tp); 3384 tp->compressed_ack = 0; 3385 tp->segs_in = 0; 3386 tp->segs_out = 0; 3387 tp->bytes_sent = 0; 3388 tp->bytes_acked = 0; 3389 tp->bytes_received = 0; 3390 tp->bytes_retrans = 0; 3391 tp->data_segs_in = 0; 3392 tp->data_segs_out = 0; 3393 tp->duplicate_sack[0].start_seq = 0; 3394 tp->duplicate_sack[0].end_seq = 0; 3395 tp->dsack_dups = 0; 3396 tp->reord_seen = 0; 3397 tp->retrans_out = 0; 3398 tp->sacked_out = 0; 3399 tp->tlp_high_seq = 0; 3400 tp->last_oow_ack_time = 0; 3401 tp->plb_rehash = 0; 3402 /* There's a bubble in the pipe until at least the first ACK. */ 3403 tp->app_limited = ~0U; 3404 tp->rate_app_limited = 1; 3405 tp->rack.mstamp = 0; 3406 tp->rack.advanced = 0; 3407 tp->rack.reo_wnd_steps = 1; 3408 tp->rack.last_delivered = 0; 3409 tp->rack.reo_wnd_persist = 0; 3410 tp->rack.dsack_seen = 0; 3411 tp->syn_data_acked = 0; 3412 tp->rx_opt.saw_tstamp = 0; 3413 tp->rx_opt.dsack = 0; 3414 tp->rx_opt.num_sacks = 0; 3415 tp->rcv_ooopack = 0; 3416 3417 3418 /* Clean up fastopen related fields */ 3419 tcp_free_fastopen_req(tp); 3420 inet_clear_bit(DEFER_CONNECT, sk); 3421 tp->fastopen_client_fail = 0; 3422 3423 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3424 3425 if (sk->sk_frag.page) { 3426 put_page(sk->sk_frag.page); 3427 sk->sk_frag.page = NULL; 3428 sk->sk_frag.offset = 0; 3429 } 3430 sk_error_report(sk); 3431 return 0; 3432 } 3433 EXPORT_SYMBOL(tcp_disconnect); 3434 3435 static inline bool tcp_can_repair_sock(const struct sock *sk) 3436 { 3437 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3438 (sk->sk_state != TCP_LISTEN); 3439 } 3440 3441 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3442 { 3443 struct tcp_repair_window opt; 3444 3445 if (!tp->repair) 3446 return -EPERM; 3447 3448 if (len != sizeof(opt)) 3449 return -EINVAL; 3450 3451 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3452 return -EFAULT; 3453 3454 if (opt.max_window < opt.snd_wnd) 3455 return -EINVAL; 3456 3457 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3458 return -EINVAL; 3459 3460 if (after(opt.rcv_wup, tp->rcv_nxt)) 3461 return -EINVAL; 3462 3463 tp->snd_wl1 = opt.snd_wl1; 3464 tp->snd_wnd = opt.snd_wnd; 3465 tp->max_window = opt.max_window; 3466 3467 tp->rcv_wnd = opt.rcv_wnd; 3468 tp->rcv_wup = opt.rcv_wup; 3469 3470 return 0; 3471 } 3472 3473 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3474 unsigned int len) 3475 { 3476 struct tcp_sock *tp = tcp_sk(sk); 3477 struct tcp_repair_opt opt; 3478 size_t offset = 0; 3479 3480 while (len >= sizeof(opt)) { 3481 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3482 return -EFAULT; 3483 3484 offset += sizeof(opt); 3485 len -= sizeof(opt); 3486 3487 switch (opt.opt_code) { 3488 case TCPOPT_MSS: 3489 tp->rx_opt.mss_clamp = opt.opt_val; 3490 tcp_mtup_init(sk); 3491 break; 3492 case TCPOPT_WINDOW: 3493 { 3494 u16 snd_wscale = opt.opt_val & 0xFFFF; 3495 u16 rcv_wscale = opt.opt_val >> 16; 3496 3497 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3498 return -EFBIG; 3499 3500 tp->rx_opt.snd_wscale = snd_wscale; 3501 tp->rx_opt.rcv_wscale = rcv_wscale; 3502 tp->rx_opt.wscale_ok = 1; 3503 } 3504 break; 3505 case TCPOPT_SACK_PERM: 3506 if (opt.opt_val != 0) 3507 return -EINVAL; 3508 3509 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3510 break; 3511 case TCPOPT_TIMESTAMP: 3512 if (opt.opt_val != 0) 3513 return -EINVAL; 3514 3515 tp->rx_opt.tstamp_ok = 1; 3516 break; 3517 } 3518 } 3519 3520 return 0; 3521 } 3522 3523 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3524 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3525 3526 static void tcp_enable_tx_delay(void) 3527 { 3528 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3529 static int __tcp_tx_delay_enabled = 0; 3530 3531 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3532 static_branch_enable(&tcp_tx_delay_enabled); 3533 pr_info("TCP_TX_DELAY enabled\n"); 3534 } 3535 } 3536 } 3537 3538 /* When set indicates to always queue non-full frames. Later the user clears 3539 * this option and we transmit any pending partial frames in the queue. This is 3540 * meant to be used alongside sendfile() to get properly filled frames when the 3541 * user (for example) must write out headers with a write() call first and then 3542 * use sendfile to send out the data parts. 3543 * 3544 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3545 * TCP_NODELAY. 3546 */ 3547 void __tcp_sock_set_cork(struct sock *sk, bool on) 3548 { 3549 struct tcp_sock *tp = tcp_sk(sk); 3550 3551 if (on) { 3552 tp->nonagle |= TCP_NAGLE_CORK; 3553 } else { 3554 tp->nonagle &= ~TCP_NAGLE_CORK; 3555 if (tp->nonagle & TCP_NAGLE_OFF) 3556 tp->nonagle |= TCP_NAGLE_PUSH; 3557 tcp_push_pending_frames(sk); 3558 } 3559 } 3560 3561 void tcp_sock_set_cork(struct sock *sk, bool on) 3562 { 3563 lock_sock(sk); 3564 __tcp_sock_set_cork(sk, on); 3565 release_sock(sk); 3566 } 3567 EXPORT_SYMBOL(tcp_sock_set_cork); 3568 3569 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3570 * remembered, but it is not activated until cork is cleared. 3571 * 3572 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3573 * even TCP_CORK for currently queued segments. 3574 */ 3575 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3576 { 3577 if (on) { 3578 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3579 tcp_push_pending_frames(sk); 3580 } else { 3581 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3582 } 3583 } 3584 3585 void tcp_sock_set_nodelay(struct sock *sk) 3586 { 3587 lock_sock(sk); 3588 __tcp_sock_set_nodelay(sk, true); 3589 release_sock(sk); 3590 } 3591 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3592 3593 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3594 { 3595 if (!val) { 3596 inet_csk_enter_pingpong_mode(sk); 3597 return; 3598 } 3599 3600 inet_csk_exit_pingpong_mode(sk); 3601 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3602 inet_csk_ack_scheduled(sk)) { 3603 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3604 tcp_cleanup_rbuf(sk, 1); 3605 if (!(val & 1)) 3606 inet_csk_enter_pingpong_mode(sk); 3607 } 3608 } 3609 3610 void tcp_sock_set_quickack(struct sock *sk, int val) 3611 { 3612 lock_sock(sk); 3613 __tcp_sock_set_quickack(sk, val); 3614 release_sock(sk); 3615 } 3616 EXPORT_SYMBOL(tcp_sock_set_quickack); 3617 3618 int tcp_sock_set_syncnt(struct sock *sk, int val) 3619 { 3620 if (val < 1 || val > MAX_TCP_SYNCNT) 3621 return -EINVAL; 3622 3623 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3624 return 0; 3625 } 3626 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3627 3628 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3629 { 3630 /* Cap the max time in ms TCP will retry or probe the window 3631 * before giving up and aborting (ETIMEDOUT) a connection. 3632 */ 3633 if (val < 0) 3634 return -EINVAL; 3635 3636 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3637 return 0; 3638 } 3639 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3640 3641 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3642 { 3643 struct tcp_sock *tp = tcp_sk(sk); 3644 3645 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3646 return -EINVAL; 3647 3648 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3649 WRITE_ONCE(tp->keepalive_time, val * HZ); 3650 if (sock_flag(sk, SOCK_KEEPOPEN) && 3651 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3652 u32 elapsed = keepalive_time_elapsed(tp); 3653 3654 if (tp->keepalive_time > elapsed) 3655 elapsed = tp->keepalive_time - elapsed; 3656 else 3657 elapsed = 0; 3658 tcp_reset_keepalive_timer(sk, elapsed); 3659 } 3660 3661 return 0; 3662 } 3663 3664 int tcp_sock_set_keepidle(struct sock *sk, int val) 3665 { 3666 int err; 3667 3668 lock_sock(sk); 3669 err = tcp_sock_set_keepidle_locked(sk, val); 3670 release_sock(sk); 3671 return err; 3672 } 3673 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3674 3675 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3676 { 3677 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3678 return -EINVAL; 3679 3680 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3681 return 0; 3682 } 3683 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3684 3685 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3686 { 3687 if (val < 1 || val > MAX_TCP_KEEPCNT) 3688 return -EINVAL; 3689 3690 /* Paired with READ_ONCE() in keepalive_probes() */ 3691 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3692 return 0; 3693 } 3694 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3695 3696 int tcp_set_window_clamp(struct sock *sk, int val) 3697 { 3698 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3699 struct tcp_sock *tp = tcp_sk(sk); 3700 3701 if (!val) { 3702 if (sk->sk_state != TCP_CLOSE) 3703 return -EINVAL; 3704 WRITE_ONCE(tp->window_clamp, 0); 3705 return 0; 3706 } 3707 3708 old_window_clamp = tp->window_clamp; 3709 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3710 3711 if (new_window_clamp == old_window_clamp) 3712 return 0; 3713 3714 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3715 3716 /* Need to apply the reserved mem provisioning only 3717 * when shrinking the window clamp. 3718 */ 3719 if (new_window_clamp < old_window_clamp) { 3720 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3721 } else { 3722 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3723 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3724 } 3725 return 0; 3726 } 3727 3728 /* 3729 * Socket option code for TCP. 3730 */ 3731 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3732 sockptr_t optval, unsigned int optlen) 3733 { 3734 struct tcp_sock *tp = tcp_sk(sk); 3735 struct inet_connection_sock *icsk = inet_csk(sk); 3736 struct net *net = sock_net(sk); 3737 int val; 3738 int err = 0; 3739 3740 /* These are data/string values, all the others are ints */ 3741 switch (optname) { 3742 case TCP_CONGESTION: { 3743 char name[TCP_CA_NAME_MAX]; 3744 3745 if (optlen < 1) 3746 return -EINVAL; 3747 3748 val = strncpy_from_sockptr(name, optval, 3749 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3750 if (val < 0) 3751 return -EFAULT; 3752 name[val] = 0; 3753 3754 sockopt_lock_sock(sk); 3755 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3756 sockopt_ns_capable(sock_net(sk)->user_ns, 3757 CAP_NET_ADMIN)); 3758 sockopt_release_sock(sk); 3759 return err; 3760 } 3761 case TCP_ULP: { 3762 char name[TCP_ULP_NAME_MAX]; 3763 3764 if (optlen < 1) 3765 return -EINVAL; 3766 3767 val = strncpy_from_sockptr(name, optval, 3768 min_t(long, TCP_ULP_NAME_MAX - 1, 3769 optlen)); 3770 if (val < 0) 3771 return -EFAULT; 3772 name[val] = 0; 3773 3774 sockopt_lock_sock(sk); 3775 err = tcp_set_ulp(sk, name); 3776 sockopt_release_sock(sk); 3777 return err; 3778 } 3779 case TCP_FASTOPEN_KEY: { 3780 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3781 __u8 *backup_key = NULL; 3782 3783 /* Allow a backup key as well to facilitate key rotation 3784 * First key is the active one. 3785 */ 3786 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3787 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3788 return -EINVAL; 3789 3790 if (copy_from_sockptr(key, optval, optlen)) 3791 return -EFAULT; 3792 3793 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3794 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3795 3796 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3797 } 3798 default: 3799 /* fallthru */ 3800 break; 3801 } 3802 3803 if (optlen < sizeof(int)) 3804 return -EINVAL; 3805 3806 if (copy_from_sockptr(&val, optval, sizeof(val))) 3807 return -EFAULT; 3808 3809 /* Handle options that can be set without locking the socket. */ 3810 switch (optname) { 3811 case TCP_SYNCNT: 3812 return tcp_sock_set_syncnt(sk, val); 3813 case TCP_USER_TIMEOUT: 3814 return tcp_sock_set_user_timeout(sk, val); 3815 case TCP_KEEPINTVL: 3816 return tcp_sock_set_keepintvl(sk, val); 3817 case TCP_KEEPCNT: 3818 return tcp_sock_set_keepcnt(sk, val); 3819 case TCP_LINGER2: 3820 if (val < 0) 3821 WRITE_ONCE(tp->linger2, -1); 3822 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3823 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3824 else 3825 WRITE_ONCE(tp->linger2, val * HZ); 3826 return 0; 3827 case TCP_DEFER_ACCEPT: 3828 /* Translate value in seconds to number of retransmits */ 3829 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3830 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3831 TCP_RTO_MAX / HZ)); 3832 return 0; 3833 case TCP_RTO_MAX_MS: 3834 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3835 return -EINVAL; 3836 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3837 return 0; 3838 case TCP_RTO_MIN_US: { 3839 int rto_min = usecs_to_jiffies(val); 3840 3841 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3842 return -EINVAL; 3843 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3844 return 0; 3845 } 3846 case TCP_DELACK_MAX_US: { 3847 int delack_max = usecs_to_jiffies(val); 3848 3849 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3850 return -EINVAL; 3851 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3852 return 0; 3853 } 3854 } 3855 3856 sockopt_lock_sock(sk); 3857 3858 switch (optname) { 3859 case TCP_MAXSEG: 3860 /* Values greater than interface MTU won't take effect. However 3861 * at the point when this call is done we typically don't yet 3862 * know which interface is going to be used 3863 */ 3864 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3865 err = -EINVAL; 3866 break; 3867 } 3868 tp->rx_opt.user_mss = val; 3869 break; 3870 3871 case TCP_NODELAY: 3872 __tcp_sock_set_nodelay(sk, val); 3873 break; 3874 3875 case TCP_THIN_LINEAR_TIMEOUTS: 3876 if (val < 0 || val > 1) 3877 err = -EINVAL; 3878 else 3879 tp->thin_lto = val; 3880 break; 3881 3882 case TCP_THIN_DUPACK: 3883 if (val < 0 || val > 1) 3884 err = -EINVAL; 3885 break; 3886 3887 case TCP_REPAIR: 3888 if (!tcp_can_repair_sock(sk)) 3889 err = -EPERM; 3890 else if (val == TCP_REPAIR_ON) { 3891 tp->repair = 1; 3892 sk->sk_reuse = SK_FORCE_REUSE; 3893 tp->repair_queue = TCP_NO_QUEUE; 3894 } else if (val == TCP_REPAIR_OFF) { 3895 tp->repair = 0; 3896 sk->sk_reuse = SK_NO_REUSE; 3897 tcp_send_window_probe(sk); 3898 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3899 tp->repair = 0; 3900 sk->sk_reuse = SK_NO_REUSE; 3901 } else 3902 err = -EINVAL; 3903 3904 break; 3905 3906 case TCP_REPAIR_QUEUE: 3907 if (!tp->repair) 3908 err = -EPERM; 3909 else if ((unsigned int)val < TCP_QUEUES_NR) 3910 tp->repair_queue = val; 3911 else 3912 err = -EINVAL; 3913 break; 3914 3915 case TCP_QUEUE_SEQ: 3916 if (sk->sk_state != TCP_CLOSE) { 3917 err = -EPERM; 3918 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3919 if (!tcp_rtx_queue_empty(sk)) 3920 err = -EPERM; 3921 else 3922 WRITE_ONCE(tp->write_seq, val); 3923 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3924 if (tp->rcv_nxt != tp->copied_seq) { 3925 err = -EPERM; 3926 } else { 3927 WRITE_ONCE(tp->rcv_nxt, val); 3928 WRITE_ONCE(tp->copied_seq, val); 3929 } 3930 } else { 3931 err = -EINVAL; 3932 } 3933 break; 3934 3935 case TCP_REPAIR_OPTIONS: 3936 if (!tp->repair) 3937 err = -EINVAL; 3938 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3939 err = tcp_repair_options_est(sk, optval, optlen); 3940 else 3941 err = -EPERM; 3942 break; 3943 3944 case TCP_CORK: 3945 __tcp_sock_set_cork(sk, val); 3946 break; 3947 3948 case TCP_KEEPIDLE: 3949 err = tcp_sock_set_keepidle_locked(sk, val); 3950 break; 3951 case TCP_SAVE_SYN: 3952 /* 0: disable, 1: enable, 2: start from ether_header */ 3953 if (val < 0 || val > 2) 3954 err = -EINVAL; 3955 else 3956 tp->save_syn = val; 3957 break; 3958 3959 case TCP_WINDOW_CLAMP: 3960 err = tcp_set_window_clamp(sk, val); 3961 break; 3962 3963 case TCP_QUICKACK: 3964 __tcp_sock_set_quickack(sk, val); 3965 break; 3966 3967 case TCP_AO_REPAIR: 3968 if (!tcp_can_repair_sock(sk)) { 3969 err = -EPERM; 3970 break; 3971 } 3972 err = tcp_ao_set_repair(sk, optval, optlen); 3973 break; 3974 #ifdef CONFIG_TCP_AO 3975 case TCP_AO_ADD_KEY: 3976 case TCP_AO_DEL_KEY: 3977 case TCP_AO_INFO: { 3978 /* If this is the first TCP-AO setsockopt() on the socket, 3979 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3980 * in any state. 3981 */ 3982 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3983 goto ao_parse; 3984 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3985 lockdep_sock_is_held(sk))) 3986 goto ao_parse; 3987 if (tp->repair) 3988 goto ao_parse; 3989 err = -EISCONN; 3990 break; 3991 ao_parse: 3992 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3993 break; 3994 } 3995 #endif 3996 #ifdef CONFIG_TCP_MD5SIG 3997 case TCP_MD5SIG: 3998 case TCP_MD5SIG_EXT: 3999 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4000 break; 4001 #endif 4002 case TCP_FASTOPEN: 4003 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4004 TCPF_LISTEN))) { 4005 tcp_fastopen_init_key_once(net); 4006 4007 fastopen_queue_tune(sk, val); 4008 } else { 4009 err = -EINVAL; 4010 } 4011 break; 4012 case TCP_FASTOPEN_CONNECT: 4013 if (val > 1 || val < 0) { 4014 err = -EINVAL; 4015 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4016 TFO_CLIENT_ENABLE) { 4017 if (sk->sk_state == TCP_CLOSE) 4018 tp->fastopen_connect = val; 4019 else 4020 err = -EINVAL; 4021 } else { 4022 err = -EOPNOTSUPP; 4023 } 4024 break; 4025 case TCP_FASTOPEN_NO_COOKIE: 4026 if (val > 1 || val < 0) 4027 err = -EINVAL; 4028 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4029 err = -EINVAL; 4030 else 4031 tp->fastopen_no_cookie = val; 4032 break; 4033 case TCP_TIMESTAMP: 4034 if (!tp->repair) { 4035 err = -EPERM; 4036 break; 4037 } 4038 /* val is an opaque field, 4039 * and low order bit contains usec_ts enable bit. 4040 * Its a best effort, and we do not care if user makes an error. 4041 */ 4042 tp->tcp_usec_ts = val & 1; 4043 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4044 break; 4045 case TCP_REPAIR_WINDOW: 4046 err = tcp_repair_set_window(tp, optval, optlen); 4047 break; 4048 case TCP_NOTSENT_LOWAT: 4049 WRITE_ONCE(tp->notsent_lowat, val); 4050 sk->sk_write_space(sk); 4051 break; 4052 case TCP_INQ: 4053 if (val > 1 || val < 0) 4054 err = -EINVAL; 4055 else 4056 tp->recvmsg_inq = val; 4057 break; 4058 case TCP_TX_DELAY: 4059 if (val) 4060 tcp_enable_tx_delay(); 4061 WRITE_ONCE(tp->tcp_tx_delay, val); 4062 break; 4063 default: 4064 err = -ENOPROTOOPT; 4065 break; 4066 } 4067 4068 sockopt_release_sock(sk); 4069 return err; 4070 } 4071 4072 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4073 unsigned int optlen) 4074 { 4075 const struct inet_connection_sock *icsk = inet_csk(sk); 4076 4077 if (level != SOL_TCP) 4078 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4079 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4080 optval, optlen); 4081 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4082 } 4083 EXPORT_IPV6_MOD(tcp_setsockopt); 4084 4085 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4086 struct tcp_info *info) 4087 { 4088 u64 stats[__TCP_CHRONO_MAX], total = 0; 4089 enum tcp_chrono i; 4090 4091 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4092 stats[i] = tp->chrono_stat[i - 1]; 4093 if (i == tp->chrono_type) 4094 stats[i] += tcp_jiffies32 - tp->chrono_start; 4095 stats[i] *= USEC_PER_SEC / HZ; 4096 total += stats[i]; 4097 } 4098 4099 info->tcpi_busy_time = total; 4100 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4101 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4102 } 4103 4104 /* Return information about state of tcp endpoint in API format. */ 4105 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4106 { 4107 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4108 const struct inet_connection_sock *icsk = inet_csk(sk); 4109 unsigned long rate; 4110 u32 now; 4111 u64 rate64; 4112 bool slow; 4113 4114 memset(info, 0, sizeof(*info)); 4115 if (sk->sk_type != SOCK_STREAM) 4116 return; 4117 4118 info->tcpi_state = inet_sk_state_load(sk); 4119 4120 /* Report meaningful fields for all TCP states, including listeners */ 4121 rate = READ_ONCE(sk->sk_pacing_rate); 4122 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4123 info->tcpi_pacing_rate = rate64; 4124 4125 rate = READ_ONCE(sk->sk_max_pacing_rate); 4126 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4127 info->tcpi_max_pacing_rate = rate64; 4128 4129 info->tcpi_reordering = tp->reordering; 4130 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4131 4132 if (info->tcpi_state == TCP_LISTEN) { 4133 /* listeners aliased fields : 4134 * tcpi_unacked -> Number of children ready for accept() 4135 * tcpi_sacked -> max backlog 4136 */ 4137 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4138 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4139 return; 4140 } 4141 4142 slow = lock_sock_fast(sk); 4143 4144 info->tcpi_ca_state = icsk->icsk_ca_state; 4145 info->tcpi_retransmits = icsk->icsk_retransmits; 4146 info->tcpi_probes = icsk->icsk_probes_out; 4147 info->tcpi_backoff = icsk->icsk_backoff; 4148 4149 if (tp->rx_opt.tstamp_ok) 4150 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4151 if (tcp_is_sack(tp)) 4152 info->tcpi_options |= TCPI_OPT_SACK; 4153 if (tp->rx_opt.wscale_ok) { 4154 info->tcpi_options |= TCPI_OPT_WSCALE; 4155 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4156 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4157 } 4158 4159 if (tcp_ecn_mode_any(tp)) 4160 info->tcpi_options |= TCPI_OPT_ECN; 4161 if (tp->ecn_flags & TCP_ECN_SEEN) 4162 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4163 if (tp->syn_data_acked) 4164 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4165 if (tp->tcp_usec_ts) 4166 info->tcpi_options |= TCPI_OPT_USEC_TS; 4167 4168 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4169 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4170 tcp_delack_max(sk))); 4171 info->tcpi_snd_mss = tp->mss_cache; 4172 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4173 4174 info->tcpi_unacked = tp->packets_out; 4175 info->tcpi_sacked = tp->sacked_out; 4176 4177 info->tcpi_lost = tp->lost_out; 4178 info->tcpi_retrans = tp->retrans_out; 4179 4180 now = tcp_jiffies32; 4181 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4182 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4183 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4184 4185 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4186 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4187 info->tcpi_rtt = tp->srtt_us >> 3; 4188 info->tcpi_rttvar = tp->mdev_us >> 2; 4189 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4190 info->tcpi_advmss = tp->advmss; 4191 4192 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4193 info->tcpi_rcv_space = tp->rcvq_space.space; 4194 4195 info->tcpi_total_retrans = tp->total_retrans; 4196 4197 info->tcpi_bytes_acked = tp->bytes_acked; 4198 info->tcpi_bytes_received = tp->bytes_received; 4199 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4200 tcp_get_info_chrono_stats(tp, info); 4201 4202 info->tcpi_segs_out = tp->segs_out; 4203 4204 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4205 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4206 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4207 4208 info->tcpi_min_rtt = tcp_min_rtt(tp); 4209 info->tcpi_data_segs_out = tp->data_segs_out; 4210 4211 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4212 rate64 = tcp_compute_delivery_rate(tp); 4213 if (rate64) 4214 info->tcpi_delivery_rate = rate64; 4215 info->tcpi_delivered = tp->delivered; 4216 info->tcpi_delivered_ce = tp->delivered_ce; 4217 info->tcpi_bytes_sent = tp->bytes_sent; 4218 info->tcpi_bytes_retrans = tp->bytes_retrans; 4219 info->tcpi_dsack_dups = tp->dsack_dups; 4220 info->tcpi_reord_seen = tp->reord_seen; 4221 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4222 info->tcpi_snd_wnd = tp->snd_wnd; 4223 info->tcpi_rcv_wnd = tp->rcv_wnd; 4224 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4225 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4226 4227 info->tcpi_total_rto = tp->total_rto; 4228 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4229 info->tcpi_total_rto_time = tp->total_rto_time; 4230 if (tp->rto_stamp) 4231 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4232 4233 unlock_sock_fast(sk, slow); 4234 } 4235 EXPORT_SYMBOL_GPL(tcp_get_info); 4236 4237 static size_t tcp_opt_stats_get_size(void) 4238 { 4239 return 4240 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4241 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4242 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4243 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4244 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4245 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4246 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4247 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4248 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4249 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4250 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4251 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4252 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4253 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4254 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4255 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4256 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4257 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4258 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4259 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4260 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4261 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4262 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4263 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4264 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4265 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4266 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4267 0; 4268 } 4269 4270 /* Returns TTL or hop limit of an incoming packet from skb. */ 4271 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4272 { 4273 if (skb->protocol == htons(ETH_P_IP)) 4274 return ip_hdr(skb)->ttl; 4275 else if (skb->protocol == htons(ETH_P_IPV6)) 4276 return ipv6_hdr(skb)->hop_limit; 4277 else 4278 return 0; 4279 } 4280 4281 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4282 const struct sk_buff *orig_skb, 4283 const struct sk_buff *ack_skb) 4284 { 4285 const struct tcp_sock *tp = tcp_sk(sk); 4286 struct sk_buff *stats; 4287 struct tcp_info info; 4288 unsigned long rate; 4289 u64 rate64; 4290 4291 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4292 if (!stats) 4293 return NULL; 4294 4295 tcp_get_info_chrono_stats(tp, &info); 4296 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4297 info.tcpi_busy_time, TCP_NLA_PAD); 4298 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4299 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4300 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4301 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4302 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4303 tp->data_segs_out, TCP_NLA_PAD); 4304 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4305 tp->total_retrans, TCP_NLA_PAD); 4306 4307 rate = READ_ONCE(sk->sk_pacing_rate); 4308 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4309 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4310 4311 rate64 = tcp_compute_delivery_rate(tp); 4312 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4313 4314 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4315 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4316 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4317 4318 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4319 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4320 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4321 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4322 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4323 4324 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4325 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4326 4327 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4328 TCP_NLA_PAD); 4329 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4330 TCP_NLA_PAD); 4331 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4332 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4333 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4334 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4335 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4336 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4337 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4338 TCP_NLA_PAD); 4339 if (ack_skb) 4340 nla_put_u8(stats, TCP_NLA_TTL, 4341 tcp_skb_ttl_or_hop_limit(ack_skb)); 4342 4343 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4344 return stats; 4345 } 4346 4347 int do_tcp_getsockopt(struct sock *sk, int level, 4348 int optname, sockptr_t optval, sockptr_t optlen) 4349 { 4350 struct inet_connection_sock *icsk = inet_csk(sk); 4351 struct tcp_sock *tp = tcp_sk(sk); 4352 struct net *net = sock_net(sk); 4353 int val, len; 4354 4355 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4356 return -EFAULT; 4357 4358 if (len < 0) 4359 return -EINVAL; 4360 4361 len = min_t(unsigned int, len, sizeof(int)); 4362 4363 switch (optname) { 4364 case TCP_MAXSEG: 4365 val = tp->mss_cache; 4366 if (tp->rx_opt.user_mss && 4367 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4368 val = tp->rx_opt.user_mss; 4369 if (tp->repair) 4370 val = tp->rx_opt.mss_clamp; 4371 break; 4372 case TCP_NODELAY: 4373 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4374 break; 4375 case TCP_CORK: 4376 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4377 break; 4378 case TCP_KEEPIDLE: 4379 val = keepalive_time_when(tp) / HZ; 4380 break; 4381 case TCP_KEEPINTVL: 4382 val = keepalive_intvl_when(tp) / HZ; 4383 break; 4384 case TCP_KEEPCNT: 4385 val = keepalive_probes(tp); 4386 break; 4387 case TCP_SYNCNT: 4388 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4389 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4390 break; 4391 case TCP_LINGER2: 4392 val = READ_ONCE(tp->linger2); 4393 if (val >= 0) 4394 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4395 break; 4396 case TCP_DEFER_ACCEPT: 4397 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4398 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4399 TCP_RTO_MAX / HZ); 4400 break; 4401 case TCP_WINDOW_CLAMP: 4402 val = READ_ONCE(tp->window_clamp); 4403 break; 4404 case TCP_INFO: { 4405 struct tcp_info info; 4406 4407 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4408 return -EFAULT; 4409 4410 tcp_get_info(sk, &info); 4411 4412 len = min_t(unsigned int, len, sizeof(info)); 4413 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4414 return -EFAULT; 4415 if (copy_to_sockptr(optval, &info, len)) 4416 return -EFAULT; 4417 return 0; 4418 } 4419 case TCP_CC_INFO: { 4420 const struct tcp_congestion_ops *ca_ops; 4421 union tcp_cc_info info; 4422 size_t sz = 0; 4423 int attr; 4424 4425 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4426 return -EFAULT; 4427 4428 ca_ops = icsk->icsk_ca_ops; 4429 if (ca_ops && ca_ops->get_info) 4430 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4431 4432 len = min_t(unsigned int, len, sz); 4433 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4434 return -EFAULT; 4435 if (copy_to_sockptr(optval, &info, len)) 4436 return -EFAULT; 4437 return 0; 4438 } 4439 case TCP_QUICKACK: 4440 val = !inet_csk_in_pingpong_mode(sk); 4441 break; 4442 4443 case TCP_CONGESTION: 4444 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4445 return -EFAULT; 4446 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4447 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4448 return -EFAULT; 4449 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4450 return -EFAULT; 4451 return 0; 4452 4453 case TCP_ULP: 4454 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4455 return -EFAULT; 4456 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4457 if (!icsk->icsk_ulp_ops) { 4458 len = 0; 4459 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4460 return -EFAULT; 4461 return 0; 4462 } 4463 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4464 return -EFAULT; 4465 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4466 return -EFAULT; 4467 return 0; 4468 4469 case TCP_FASTOPEN_KEY: { 4470 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4471 unsigned int key_len; 4472 4473 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4474 return -EFAULT; 4475 4476 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4477 TCP_FASTOPEN_KEY_LENGTH; 4478 len = min_t(unsigned int, len, key_len); 4479 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4480 return -EFAULT; 4481 if (copy_to_sockptr(optval, key, len)) 4482 return -EFAULT; 4483 return 0; 4484 } 4485 case TCP_THIN_LINEAR_TIMEOUTS: 4486 val = tp->thin_lto; 4487 break; 4488 4489 case TCP_THIN_DUPACK: 4490 val = 0; 4491 break; 4492 4493 case TCP_REPAIR: 4494 val = tp->repair; 4495 break; 4496 4497 case TCP_REPAIR_QUEUE: 4498 if (tp->repair) 4499 val = tp->repair_queue; 4500 else 4501 return -EINVAL; 4502 break; 4503 4504 case TCP_REPAIR_WINDOW: { 4505 struct tcp_repair_window opt; 4506 4507 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4508 return -EFAULT; 4509 4510 if (len != sizeof(opt)) 4511 return -EINVAL; 4512 4513 if (!tp->repair) 4514 return -EPERM; 4515 4516 opt.snd_wl1 = tp->snd_wl1; 4517 opt.snd_wnd = tp->snd_wnd; 4518 opt.max_window = tp->max_window; 4519 opt.rcv_wnd = tp->rcv_wnd; 4520 opt.rcv_wup = tp->rcv_wup; 4521 4522 if (copy_to_sockptr(optval, &opt, len)) 4523 return -EFAULT; 4524 return 0; 4525 } 4526 case TCP_QUEUE_SEQ: 4527 if (tp->repair_queue == TCP_SEND_QUEUE) 4528 val = tp->write_seq; 4529 else if (tp->repair_queue == TCP_RECV_QUEUE) 4530 val = tp->rcv_nxt; 4531 else 4532 return -EINVAL; 4533 break; 4534 4535 case TCP_USER_TIMEOUT: 4536 val = READ_ONCE(icsk->icsk_user_timeout); 4537 break; 4538 4539 case TCP_FASTOPEN: 4540 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4541 break; 4542 4543 case TCP_FASTOPEN_CONNECT: 4544 val = tp->fastopen_connect; 4545 break; 4546 4547 case TCP_FASTOPEN_NO_COOKIE: 4548 val = tp->fastopen_no_cookie; 4549 break; 4550 4551 case TCP_TX_DELAY: 4552 val = READ_ONCE(tp->tcp_tx_delay); 4553 break; 4554 4555 case TCP_TIMESTAMP: 4556 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4557 if (tp->tcp_usec_ts) 4558 val |= 1; 4559 else 4560 val &= ~1; 4561 break; 4562 case TCP_NOTSENT_LOWAT: 4563 val = READ_ONCE(tp->notsent_lowat); 4564 break; 4565 case TCP_INQ: 4566 val = tp->recvmsg_inq; 4567 break; 4568 case TCP_SAVE_SYN: 4569 val = tp->save_syn; 4570 break; 4571 case TCP_SAVED_SYN: { 4572 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4573 return -EFAULT; 4574 4575 sockopt_lock_sock(sk); 4576 if (tp->saved_syn) { 4577 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4578 len = tcp_saved_syn_len(tp->saved_syn); 4579 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4580 sockopt_release_sock(sk); 4581 return -EFAULT; 4582 } 4583 sockopt_release_sock(sk); 4584 return -EINVAL; 4585 } 4586 len = tcp_saved_syn_len(tp->saved_syn); 4587 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4588 sockopt_release_sock(sk); 4589 return -EFAULT; 4590 } 4591 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4592 sockopt_release_sock(sk); 4593 return -EFAULT; 4594 } 4595 tcp_saved_syn_free(tp); 4596 sockopt_release_sock(sk); 4597 } else { 4598 sockopt_release_sock(sk); 4599 len = 0; 4600 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4601 return -EFAULT; 4602 } 4603 return 0; 4604 } 4605 #ifdef CONFIG_MMU 4606 case TCP_ZEROCOPY_RECEIVE: { 4607 struct scm_timestamping_internal tss; 4608 struct tcp_zerocopy_receive zc = {}; 4609 int err; 4610 4611 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4612 return -EFAULT; 4613 if (len < 0 || 4614 len < offsetofend(struct tcp_zerocopy_receive, length)) 4615 return -EINVAL; 4616 if (unlikely(len > sizeof(zc))) { 4617 err = check_zeroed_sockptr(optval, sizeof(zc), 4618 len - sizeof(zc)); 4619 if (err < 1) 4620 return err == 0 ? -EINVAL : err; 4621 len = sizeof(zc); 4622 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4623 return -EFAULT; 4624 } 4625 if (copy_from_sockptr(&zc, optval, len)) 4626 return -EFAULT; 4627 if (zc.reserved) 4628 return -EINVAL; 4629 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4630 return -EINVAL; 4631 sockopt_lock_sock(sk); 4632 err = tcp_zerocopy_receive(sk, &zc, &tss); 4633 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4634 &zc, &len, err); 4635 sockopt_release_sock(sk); 4636 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4637 goto zerocopy_rcv_cmsg; 4638 switch (len) { 4639 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4640 goto zerocopy_rcv_cmsg; 4641 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4642 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4643 case offsetofend(struct tcp_zerocopy_receive, flags): 4644 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4645 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4646 case offsetofend(struct tcp_zerocopy_receive, err): 4647 goto zerocopy_rcv_sk_err; 4648 case offsetofend(struct tcp_zerocopy_receive, inq): 4649 goto zerocopy_rcv_inq; 4650 case offsetofend(struct tcp_zerocopy_receive, length): 4651 default: 4652 goto zerocopy_rcv_out; 4653 } 4654 zerocopy_rcv_cmsg: 4655 if (zc.msg_flags & TCP_CMSG_TS) 4656 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4657 else 4658 zc.msg_flags = 0; 4659 zerocopy_rcv_sk_err: 4660 if (!err) 4661 zc.err = sock_error(sk); 4662 zerocopy_rcv_inq: 4663 zc.inq = tcp_inq_hint(sk); 4664 zerocopy_rcv_out: 4665 if (!err && copy_to_sockptr(optval, &zc, len)) 4666 err = -EFAULT; 4667 return err; 4668 } 4669 #endif 4670 case TCP_AO_REPAIR: 4671 if (!tcp_can_repair_sock(sk)) 4672 return -EPERM; 4673 return tcp_ao_get_repair(sk, optval, optlen); 4674 case TCP_AO_GET_KEYS: 4675 case TCP_AO_INFO: { 4676 int err; 4677 4678 sockopt_lock_sock(sk); 4679 if (optname == TCP_AO_GET_KEYS) 4680 err = tcp_ao_get_mkts(sk, optval, optlen); 4681 else 4682 err = tcp_ao_get_sock_info(sk, optval, optlen); 4683 sockopt_release_sock(sk); 4684 4685 return err; 4686 } 4687 case TCP_IS_MPTCP: 4688 val = 0; 4689 break; 4690 case TCP_RTO_MAX_MS: 4691 val = jiffies_to_msecs(tcp_rto_max(sk)); 4692 break; 4693 case TCP_RTO_MIN_US: 4694 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4695 break; 4696 case TCP_DELACK_MAX_US: 4697 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4698 break; 4699 default: 4700 return -ENOPROTOOPT; 4701 } 4702 4703 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4704 return -EFAULT; 4705 if (copy_to_sockptr(optval, &val, len)) 4706 return -EFAULT; 4707 return 0; 4708 } 4709 4710 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4711 { 4712 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4713 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4714 */ 4715 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4716 return true; 4717 4718 return false; 4719 } 4720 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4721 4722 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4723 int __user *optlen) 4724 { 4725 struct inet_connection_sock *icsk = inet_csk(sk); 4726 4727 if (level != SOL_TCP) 4728 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4729 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4730 optval, optlen); 4731 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4732 USER_SOCKPTR(optlen)); 4733 } 4734 EXPORT_IPV6_MOD(tcp_getsockopt); 4735 4736 #ifdef CONFIG_TCP_MD5SIG 4737 int tcp_md5_sigpool_id = -1; 4738 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); 4739 4740 int tcp_md5_alloc_sigpool(void) 4741 { 4742 size_t scratch_size; 4743 int ret; 4744 4745 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4746 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4747 if (ret >= 0) { 4748 /* As long as any md5 sigpool was allocated, the return 4749 * id would stay the same. Re-write the id only for the case 4750 * when previously all MD5 keys were deleted and this call 4751 * allocates the first MD5 key, which may return a different 4752 * sigpool id than was used previously. 4753 */ 4754 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4755 return 0; 4756 } 4757 return ret; 4758 } 4759 4760 void tcp_md5_release_sigpool(void) 4761 { 4762 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4763 } 4764 4765 void tcp_md5_add_sigpool(void) 4766 { 4767 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4768 } 4769 4770 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4771 const struct tcp_md5sig_key *key) 4772 { 4773 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4774 struct scatterlist sg; 4775 4776 sg_init_one(&sg, key->key, keylen); 4777 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4778 4779 /* We use data_race() because tcp_md5_do_add() might change 4780 * key->key under us 4781 */ 4782 return data_race(crypto_ahash_update(hp->req)); 4783 } 4784 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4785 4786 /* Called with rcu_read_lock() */ 4787 static enum skb_drop_reason 4788 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4789 const void *saddr, const void *daddr, 4790 int family, int l3index, const __u8 *hash_location) 4791 { 4792 /* This gets called for each TCP segment that has TCP-MD5 option. 4793 * We have 3 drop cases: 4794 * o No MD5 hash and one expected. 4795 * o MD5 hash and we're not expecting one. 4796 * o MD5 hash and its wrong. 4797 */ 4798 const struct tcp_sock *tp = tcp_sk(sk); 4799 struct tcp_md5sig_key *key; 4800 u8 newhash[16]; 4801 int genhash; 4802 4803 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4804 4805 if (!key && hash_location) { 4806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4807 trace_tcp_hash_md5_unexpected(sk, skb); 4808 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4809 } 4810 4811 /* Check the signature. 4812 * To support dual stack listeners, we need to handle 4813 * IPv4-mapped case. 4814 */ 4815 if (family == AF_INET) 4816 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4817 else 4818 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4819 NULL, skb); 4820 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4821 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4822 trace_tcp_hash_md5_mismatch(sk, skb); 4823 return SKB_DROP_REASON_TCP_MD5FAILURE; 4824 } 4825 return SKB_NOT_DROPPED_YET; 4826 } 4827 #else 4828 static inline enum skb_drop_reason 4829 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4830 const void *saddr, const void *daddr, 4831 int family, int l3index, const __u8 *hash_location) 4832 { 4833 return SKB_NOT_DROPPED_YET; 4834 } 4835 4836 #endif 4837 4838 /* Called with rcu_read_lock() */ 4839 enum skb_drop_reason 4840 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4841 const struct sk_buff *skb, 4842 const void *saddr, const void *daddr, 4843 int family, int dif, int sdif) 4844 { 4845 const struct tcphdr *th = tcp_hdr(skb); 4846 const struct tcp_ao_hdr *aoh; 4847 const __u8 *md5_location; 4848 int l3index; 4849 4850 /* Invalid option or two times meet any of auth options */ 4851 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4852 trace_tcp_hash_bad_header(sk, skb); 4853 return SKB_DROP_REASON_TCP_AUTH_HDR; 4854 } 4855 4856 if (req) { 4857 if (tcp_rsk_used_ao(req) != !!aoh) { 4858 u8 keyid, rnext, maclen; 4859 4860 if (aoh) { 4861 keyid = aoh->keyid; 4862 rnext = aoh->rnext_keyid; 4863 maclen = tcp_ao_hdr_maclen(aoh); 4864 } else { 4865 keyid = rnext = maclen = 0; 4866 } 4867 4868 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4869 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4870 return SKB_DROP_REASON_TCP_AOFAILURE; 4871 } 4872 } 4873 4874 /* sdif set, means packet ingressed via a device 4875 * in an L3 domain and dif is set to the l3mdev 4876 */ 4877 l3index = sdif ? dif : 0; 4878 4879 /* Fast path: unsigned segments */ 4880 if (likely(!md5_location && !aoh)) { 4881 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4882 * for the remote peer. On TCP-AO established connection 4883 * the last key is impossible to remove, so there's 4884 * always at least one current_key. 4885 */ 4886 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4887 trace_tcp_hash_ao_required(sk, skb); 4888 return SKB_DROP_REASON_TCP_AONOTFOUND; 4889 } 4890 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4891 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4892 trace_tcp_hash_md5_required(sk, skb); 4893 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4894 } 4895 return SKB_NOT_DROPPED_YET; 4896 } 4897 4898 if (aoh) 4899 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4900 4901 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4902 l3index, md5_location); 4903 } 4904 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 4905 4906 void tcp_done(struct sock *sk) 4907 { 4908 struct request_sock *req; 4909 4910 /* We might be called with a new socket, after 4911 * inet_csk_prepare_forced_close() has been called 4912 * so we can not use lockdep_sock_is_held(sk) 4913 */ 4914 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4915 4916 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4917 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4918 4919 tcp_set_state(sk, TCP_CLOSE); 4920 tcp_clear_xmit_timers(sk); 4921 if (req) 4922 reqsk_fastopen_remove(sk, req, false); 4923 4924 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4925 4926 if (!sock_flag(sk, SOCK_DEAD)) 4927 sk->sk_state_change(sk); 4928 else 4929 inet_csk_destroy_sock(sk); 4930 } 4931 EXPORT_SYMBOL_GPL(tcp_done); 4932 4933 int tcp_abort(struct sock *sk, int err) 4934 { 4935 int state = inet_sk_state_load(sk); 4936 4937 if (state == TCP_NEW_SYN_RECV) { 4938 struct request_sock *req = inet_reqsk(sk); 4939 4940 local_bh_disable(); 4941 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4942 local_bh_enable(); 4943 return 0; 4944 } 4945 if (state == TCP_TIME_WAIT) { 4946 struct inet_timewait_sock *tw = inet_twsk(sk); 4947 4948 refcount_inc(&tw->tw_refcnt); 4949 local_bh_disable(); 4950 inet_twsk_deschedule_put(tw); 4951 local_bh_enable(); 4952 return 0; 4953 } 4954 4955 /* BPF context ensures sock locking. */ 4956 if (!has_current_bpf_ctx()) 4957 /* Don't race with userspace socket closes such as tcp_close. */ 4958 lock_sock(sk); 4959 4960 /* Avoid closing the same socket twice. */ 4961 if (sk->sk_state == TCP_CLOSE) { 4962 if (!has_current_bpf_ctx()) 4963 release_sock(sk); 4964 return -ENOENT; 4965 } 4966 4967 if (sk->sk_state == TCP_LISTEN) { 4968 tcp_set_state(sk, TCP_CLOSE); 4969 inet_csk_listen_stop(sk); 4970 } 4971 4972 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4973 local_bh_disable(); 4974 bh_lock_sock(sk); 4975 4976 if (tcp_need_reset(sk->sk_state)) 4977 tcp_send_active_reset(sk, GFP_ATOMIC, 4978 SK_RST_REASON_TCP_STATE); 4979 tcp_done_with_error(sk, err); 4980 4981 bh_unlock_sock(sk); 4982 local_bh_enable(); 4983 if (!has_current_bpf_ctx()) 4984 release_sock(sk); 4985 return 0; 4986 } 4987 EXPORT_SYMBOL_GPL(tcp_abort); 4988 4989 extern struct tcp_congestion_ops tcp_reno; 4990 4991 static __initdata unsigned long thash_entries; 4992 static int __init set_thash_entries(char *str) 4993 { 4994 ssize_t ret; 4995 4996 if (!str) 4997 return 0; 4998 4999 ret = kstrtoul(str, 0, &thash_entries); 5000 if (ret) 5001 return 0; 5002 5003 return 1; 5004 } 5005 __setup("thash_entries=", set_thash_entries); 5006 5007 static void __init tcp_init_mem(void) 5008 { 5009 unsigned long limit = nr_free_buffer_pages() / 16; 5010 5011 limit = max(limit, 128UL); 5012 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5013 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5014 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5015 } 5016 5017 static void __init tcp_struct_check(void) 5018 { 5019 /* TX read-mostly hotpath cache lines */ 5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5027 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 5028 5029 /* TXRX read-mostly hotpath cache lines */ 5030 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5031 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5032 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5033 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5034 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5036 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5038 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5039 5040 /* RX read-mostly hotpath cache lines */ 5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5053 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); 5055 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); 5056 #else 5057 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5058 #endif 5059 5060 /* TX read-write hotpath cache lines */ 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5070 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5071 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5076 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5077 5078 /* TXRX read-write hotpath cache lines */ 5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5087 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5088 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5089 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5090 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5091 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5094 5095 /* 32bit arches with 8byte alignment on u64 fields might need padding 5096 * before tcp_clock_cache. 5097 */ 5098 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5099 5100 /* RX read-write hotpath cache lines */ 5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5107 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5108 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5109 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5115 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5116 } 5117 5118 void __init tcp_init(void) 5119 { 5120 int max_rshare, max_wshare, cnt; 5121 unsigned long limit; 5122 unsigned int i; 5123 5124 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5125 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5126 sizeof_field(struct sk_buff, cb)); 5127 5128 tcp_struct_check(); 5129 5130 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5131 5132 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5133 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5134 5135 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5136 thash_entries, 21, /* one slot per 2 MB*/ 5137 0, 64 * 1024); 5138 tcp_hashinfo.bind_bucket_cachep = 5139 kmem_cache_create("tcp_bind_bucket", 5140 sizeof(struct inet_bind_bucket), 0, 5141 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5142 SLAB_ACCOUNT, 5143 NULL); 5144 tcp_hashinfo.bind2_bucket_cachep = 5145 kmem_cache_create("tcp_bind2_bucket", 5146 sizeof(struct inet_bind2_bucket), 0, 5147 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5148 SLAB_ACCOUNT, 5149 NULL); 5150 5151 /* Size and allocate the main established and bind bucket 5152 * hash tables. 5153 * 5154 * The methodology is similar to that of the buffer cache. 5155 */ 5156 tcp_hashinfo.ehash = 5157 alloc_large_system_hash("TCP established", 5158 sizeof(struct inet_ehash_bucket), 5159 thash_entries, 5160 17, /* one slot per 128 KB of memory */ 5161 0, 5162 NULL, 5163 &tcp_hashinfo.ehash_mask, 5164 0, 5165 thash_entries ? 0 : 512 * 1024); 5166 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5167 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5168 5169 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5170 panic("TCP: failed to alloc ehash_locks"); 5171 tcp_hashinfo.bhash = 5172 alloc_large_system_hash("TCP bind", 5173 2 * sizeof(struct inet_bind_hashbucket), 5174 tcp_hashinfo.ehash_mask + 1, 5175 17, /* one slot per 128 KB of memory */ 5176 0, 5177 &tcp_hashinfo.bhash_size, 5178 NULL, 5179 0, 5180 64 * 1024); 5181 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5182 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5183 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5184 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5185 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5186 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5187 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5188 } 5189 5190 tcp_hashinfo.pernet = false; 5191 5192 cnt = tcp_hashinfo.ehash_mask + 1; 5193 sysctl_tcp_max_orphans = cnt / 2; 5194 5195 tcp_init_mem(); 5196 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5197 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5198 max_wshare = min(4UL*1024*1024, limit); 5199 max_rshare = min(6UL*1024*1024, limit); 5200 5201 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5202 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5203 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5204 5205 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5206 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5207 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5208 5209 pr_info("Hash tables configured (established %u bind %u)\n", 5210 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5211 5212 tcp_v4_init(); 5213 tcp_metrics_init(); 5214 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5215 tcp_tasklet_init(); 5216 mptcp_init(); 5217 } 5218