xref: /linux/net/ipv4/tcp.c (revision 29d34a4d785bbf389d57bfdafe2a19dad6ced3a4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us, rto_max_ms;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 
436 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438 
439 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 	icsk->icsk_delack_max = TCP_DELACK_MAX;
442 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444 
445 	/* So many TCP implementations out there (incorrectly) count the
446 	 * initial SYN frame in their delayed-ACK and congestion control
447 	 * algorithms that we must have the following bandaid to talk
448 	 * efficiently to them.  -DaveM
449 	 */
450 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451 
452 	/* There's a bubble in the pipe until at least the first ACK. */
453 	tp->app_limited = ~0U;
454 	tp->rate_app_limited = 1;
455 
456 	/* See draft-stevens-tcpca-spec-01 for discussion of the
457 	 * initialization of these values.
458 	 */
459 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 	tp->snd_cwnd_clamp = ~0;
461 	tp->mss_cache = TCP_MSS_DEFAULT;
462 
463 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 	tcp_assign_congestion_control(sk);
465 
466 	tp->tsoffset = 0;
467 	tp->rack.reo_wnd_steps = 1;
468 
469 	sk->sk_write_space = sk_stream_write_space;
470 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471 
472 	icsk->icsk_sync_mss = tcp_sync_mss;
473 
474 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 	tcp_scaling_ratio_init(sk);
477 
478 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 	sk_sockets_allocated_inc(sk);
480 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483 
484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 	struct sk_buff *skb = tcp_write_queue_tail(sk);
487 	u32 tsflags = sockc->tsflags;
488 
489 	if (tsflags && skb) {
490 		struct skb_shared_info *shinfo = skb_shinfo(skb);
491 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492 
493 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 	}
499 
500 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504 
505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 	if (tcp_epollin_ready(sk, target))
508 		return true;
509 	return sk_is_readable(sk);
510 }
511 
512 /*
513  *	Wait for a TCP event.
514  *
515  *	Note that we don't need to lock the socket, as the upper poll layers
516  *	take care of normal races (between the test and the event) and we don't
517  *	go look at any of the socket buffers directly.
518  */
519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 	__poll_t mask;
522 	struct sock *sk = sock->sk;
523 	const struct tcp_sock *tp = tcp_sk(sk);
524 	u8 shutdown;
525 	int state;
526 
527 	sock_poll_wait(file, sock, wait);
528 
529 	state = inet_sk_state_load(sk);
530 	if (state == TCP_LISTEN)
531 		return inet_csk_listen_poll(sk);
532 
533 	/* Socket is not locked. We are protected from async events
534 	 * by poll logic and correct handling of state changes
535 	 * made by other threads is impossible in any case.
536 	 */
537 
538 	mask = 0;
539 
540 	/*
541 	 * EPOLLHUP is certainly not done right. But poll() doesn't
542 	 * have a notion of HUP in just one direction, and for a
543 	 * socket the read side is more interesting.
544 	 *
545 	 * Some poll() documentation says that EPOLLHUP is incompatible
546 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 	 * all. But careful, it tends to be safer to return too many
548 	 * bits than too few, and you can easily break real applications
549 	 * if you don't tell them that something has hung up!
550 	 *
551 	 * Check-me.
552 	 *
553 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 	 * our fs/select.c). It means that after we received EOF,
555 	 * poll always returns immediately, making impossible poll() on write()
556 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 	 * if and only if shutdown has been made in both directions.
558 	 * Actually, it is interesting to look how Solaris and DUX
559 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 	 * then we could set it on SND_SHUTDOWN. BTW examples given
561 	 * in Stevens' books assume exactly this behaviour, it explains
562 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
563 	 *
564 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 	 * blocking on fresh not-connected or disconnected socket. --ANK
566 	 */
567 	shutdown = READ_ONCE(sk->sk_shutdown);
568 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 		mask |= EPOLLHUP;
570 	if (shutdown & RCV_SHUTDOWN)
571 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572 
573 	/* Connected or passive Fast Open socket? */
574 	if (state != TCP_SYN_SENT &&
575 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 		int target = sock_rcvlowat(sk, 0, INT_MAX);
577 		u16 urg_data = READ_ONCE(tp->urg_data);
578 
579 		if (unlikely(urg_data) &&
580 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 		    !sock_flag(sk, SOCK_URGINLINE))
582 			target++;
583 
584 		if (tcp_stream_is_readable(sk, target))
585 			mask |= EPOLLIN | EPOLLRDNORM;
586 
587 		if (!(shutdown & SEND_SHUTDOWN)) {
588 			if (__sk_stream_is_writeable(sk, 1)) {
589 				mask |= EPOLLOUT | EPOLLWRNORM;
590 			} else {  /* send SIGIO later */
591 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593 
594 				/* Race breaker. If space is freed after
595 				 * wspace test but before the flags are set,
596 				 * IO signal will be lost. Memory barrier
597 				 * pairs with the input side.
598 				 */
599 				smp_mb__after_atomic();
600 				if (__sk_stream_is_writeable(sk, 1))
601 					mask |= EPOLLOUT | EPOLLWRNORM;
602 			}
603 		} else
604 			mask |= EPOLLOUT | EPOLLWRNORM;
605 
606 		if (urg_data & TCP_URG_VALID)
607 			mask |= EPOLLPRI;
608 	} else if (state == TCP_SYN_SENT &&
609 		   inet_test_bit(DEFER_CONNECT, sk)) {
610 		/* Active TCP fastopen socket with defer_connect
611 		 * Return EPOLLOUT so application can call write()
612 		 * in order for kernel to generate SYN+data
613 		 */
614 		mask |= EPOLLOUT | EPOLLWRNORM;
615 	}
616 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 	smp_rmb();
618 	if (READ_ONCE(sk->sk_err) ||
619 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
620 		mask |= EPOLLERR;
621 
622 	return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625 
626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 	struct tcp_sock *tp = tcp_sk(sk);
629 	int answ;
630 	bool slow;
631 
632 	switch (cmd) {
633 	case SIOCINQ:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		slow = lock_sock_fast(sk);
638 		answ = tcp_inq(sk);
639 		unlock_sock_fast(sk, slow);
640 		break;
641 	case SIOCATMARK:
642 		answ = READ_ONCE(tp->urg_data) &&
643 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 		break;
645 	case SIOCOUTQ:
646 		if (sk->sk_state == TCP_LISTEN)
647 			return -EINVAL;
648 
649 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 			answ = 0;
651 		else
652 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 		break;
654 	case SIOCOUTQNSD:
655 		if (sk->sk_state == TCP_LISTEN)
656 			return -EINVAL;
657 
658 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 			answ = 0;
660 		else
661 			answ = READ_ONCE(tp->write_seq) -
662 			       READ_ONCE(tp->snd_nxt);
663 		break;
664 	default:
665 		return -ENOIOCTLCMD;
666 	}
667 
668 	*karg = answ;
669 	return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672 
673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 	tp->pushed_seq = tp->write_seq;
677 }
678 
679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683 
684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 	struct tcp_sock *tp = tcp_sk(sk);
687 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688 
689 	tcb->seq     = tcb->end_seq = tp->write_seq;
690 	tcb->tcp_flags = TCPHDR_ACK;
691 	__skb_header_release(skb);
692 	tcp_add_write_queue_tail(sk, skb);
693 	sk_wmem_queued_add(sk, skb->truesize);
694 	sk_mem_charge(sk, skb->truesize);
695 	if (tp->nonagle & TCP_NAGLE_PUSH)
696 		tp->nonagle &= ~TCP_NAGLE_PUSH;
697 
698 	tcp_slow_start_after_idle_check(sk);
699 }
700 
701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 	if (flags & MSG_OOB)
704 		tp->snd_up = tp->write_seq;
705 }
706 
707 /* If a not yet filled skb is pushed, do not send it if
708  * we have data packets in Qdisc or NIC queues :
709  * Because TX completion will happen shortly, it gives a chance
710  * to coalesce future sendmsg() payload into this skb, without
711  * need for a timer, and with no latency trade off.
712  * As packets containing data payload have a bigger truesize
713  * than pure acks (dataless) packets, the last checks prevent
714  * autocorking if we only have an ACK in Qdisc/NIC queues,
715  * or if TX completion was delayed after we processed ACK packet.
716  */
717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 				int size_goal)
719 {
720 	return skb->len < size_goal &&
721 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 	       !tcp_rtx_queue_empty(sk) &&
723 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 	       tcp_skb_can_collapse_to(skb);
725 }
726 
727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 	      int nonagle, int size_goal)
729 {
730 	struct tcp_sock *tp = tcp_sk(sk);
731 	struct sk_buff *skb;
732 
733 	skb = tcp_write_queue_tail(sk);
734 	if (!skb)
735 		return;
736 	if (!(flags & MSG_MORE) || forced_push(tp))
737 		tcp_mark_push(tp, skb);
738 
739 	tcp_mark_urg(tp, flags);
740 
741 	if (tcp_should_autocork(sk, skb, size_goal)) {
742 
743 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
744 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 			smp_mb__after_atomic();
748 		}
749 		/* It is possible TX completion already happened
750 		 * before we set TSQ_THROTTLED.
751 		 */
752 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 			return;
754 	}
755 
756 	if (flags & MSG_MORE)
757 		nonagle = TCP_NAGLE_CORK;
758 
759 	__tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761 
762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 				unsigned int offset, size_t len)
764 {
765 	struct tcp_splice_state *tss = rd_desc->arg.data;
766 	int ret;
767 
768 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 			      min(rd_desc->count, len), tss->flags);
770 	if (ret > 0)
771 		rd_desc->count -= ret;
772 	return ret;
773 }
774 
775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 	/* Store TCP splice context information in read_descriptor_t. */
778 	read_descriptor_t rd_desc = {
779 		.arg.data = tss,
780 		.count	  = tss->len,
781 	};
782 
783 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785 
786 /**
787  *  tcp_splice_read - splice data from TCP socket to a pipe
788  * @sock:	socket to splice from
789  * @ppos:	position (not valid)
790  * @pipe:	pipe to splice to
791  * @len:	number of bytes to splice
792  * @flags:	splice modifier flags
793  *
794  * Description:
795  *    Will read pages from given socket and fill them into a pipe.
796  *
797  **/
798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 			struct pipe_inode_info *pipe, size_t len,
800 			unsigned int flags)
801 {
802 	struct sock *sk = sock->sk;
803 	struct tcp_splice_state tss = {
804 		.pipe = pipe,
805 		.len = len,
806 		.flags = flags,
807 	};
808 	long timeo;
809 	ssize_t spliced;
810 	int ret;
811 
812 	sock_rps_record_flow(sk);
813 	/*
814 	 * We can't seek on a socket input
815 	 */
816 	if (unlikely(*ppos))
817 		return -ESPIPE;
818 
819 	ret = spliced = 0;
820 
821 	lock_sock(sk);
822 
823 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 	while (tss.len) {
825 		ret = __tcp_splice_read(sk, &tss);
826 		if (ret < 0)
827 			break;
828 		else if (!ret) {
829 			if (spliced)
830 				break;
831 			if (sock_flag(sk, SOCK_DONE))
832 				break;
833 			if (sk->sk_err) {
834 				ret = sock_error(sk);
835 				break;
836 			}
837 			if (sk->sk_shutdown & RCV_SHUTDOWN)
838 				break;
839 			if (sk->sk_state == TCP_CLOSE) {
840 				/*
841 				 * This occurs when user tries to read
842 				 * from never connected socket.
843 				 */
844 				ret = -ENOTCONN;
845 				break;
846 			}
847 			if (!timeo) {
848 				ret = -EAGAIN;
849 				break;
850 			}
851 			/* if __tcp_splice_read() got nothing while we have
852 			 * an skb in receive queue, we do not want to loop.
853 			 * This might happen with URG data.
854 			 */
855 			if (!skb_queue_empty(&sk->sk_receive_queue))
856 				break;
857 			ret = sk_wait_data(sk, &timeo, NULL);
858 			if (ret < 0)
859 				break;
860 			if (signal_pending(current)) {
861 				ret = sock_intr_errno(timeo);
862 				break;
863 			}
864 			continue;
865 		}
866 		tss.len -= ret;
867 		spliced += ret;
868 
869 		if (!tss.len || !timeo)
870 			break;
871 		release_sock(sk);
872 		lock_sock(sk);
873 
874 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 		    signal_pending(current))
877 			break;
878 	}
879 
880 	release_sock(sk);
881 
882 	if (spliced)
883 		return spliced;
884 
885 	return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888 
889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 				     bool force_schedule)
891 {
892 	struct sk_buff *skb;
893 
894 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 	if (likely(skb)) {
896 		bool mem_scheduled;
897 
898 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 		if (force_schedule) {
900 			mem_scheduled = true;
901 			sk_forced_mem_schedule(sk, skb->truesize);
902 		} else {
903 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 		}
905 		if (likely(mem_scheduled)) {
906 			skb_reserve(skb, MAX_TCP_HEADER);
907 			skb->ip_summed = CHECKSUM_PARTIAL;
908 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 			return skb;
910 		}
911 		__kfree_skb(skb);
912 	} else {
913 		sk->sk_prot->enter_memory_pressure(sk);
914 		sk_stream_moderate_sndbuf(sk);
915 	}
916 	return NULL;
917 }
918 
919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 				       int large_allowed)
921 {
922 	struct tcp_sock *tp = tcp_sk(sk);
923 	u32 new_size_goal, size_goal;
924 
925 	if (!large_allowed)
926 		return mss_now;
927 
928 	/* Note : tcp_tso_autosize() will eventually split this later */
929 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930 
931 	/* We try hard to avoid divides here */
932 	size_goal = tp->gso_segs * mss_now;
933 	if (unlikely(new_size_goal < size_goal ||
934 		     new_size_goal >= size_goal + mss_now)) {
935 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 				     sk->sk_gso_max_segs);
937 		size_goal = tp->gso_segs * mss_now;
938 	}
939 
940 	return max(size_goal, mss_now);
941 }
942 
943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 	int mss_now;
946 
947 	mss_now = tcp_current_mss(sk);
948 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949 
950 	return mss_now;
951 }
952 
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954  * but failed adding payload on it. We need to remove it to consume less
955  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956  * epoll() users. Another reason is that tcp_write_xmit() does not like
957  * finding an empty skb in the write queue.
958  */
959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 	struct sk_buff *skb = tcp_write_queue_tail(sk);
962 
963 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 		tcp_unlink_write_queue(skb, sk);
965 		if (tcp_write_queue_empty(sk))
966 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 		tcp_wmem_free_skb(sk, skb);
968 	}
969 }
970 
971 /* skb changing from pure zc to mixed, must charge zc */
972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 	if (unlikely(skb_zcopy_pure(skb))) {
975 		u32 extra = skb->truesize -
976 			    SKB_TRUESIZE(skb_end_offset(skb));
977 
978 		if (!sk_wmem_schedule(sk, extra))
979 			return -ENOMEM;
980 
981 		sk_mem_charge(sk, extra);
982 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 	}
984 	return 0;
985 }
986 
987 
988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 	int left;
991 
992 	if (likely(sk_wmem_schedule(sk, copy)))
993 		return copy;
994 
995 	/* We could be in trouble if we have nothing queued.
996 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 	 * to guarantee some progress.
998 	 */
999 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 	if (left > 0)
1001 		sk_forced_mem_schedule(sk, min(left, copy));
1002 	return min(copy, sk->sk_forward_alloc);
1003 }
1004 
1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 	if (tp->fastopen_req) {
1008 		kfree(tp->fastopen_req);
1009 		tp->fastopen_req = NULL;
1010 	}
1011 }
1012 
1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 			 size_t size, struct ubuf_info *uarg)
1015 {
1016 	struct tcp_sock *tp = tcp_sk(sk);
1017 	struct inet_sock *inet = inet_sk(sk);
1018 	struct sockaddr *uaddr = msg->msg_name;
1019 	int err, flags;
1020 
1021 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 	      TFO_CLIENT_ENABLE) ||
1023 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 	     uaddr->sa_family == AF_UNSPEC))
1025 		return -EOPNOTSUPP;
1026 	if (tp->fastopen_req)
1027 		return -EALREADY; /* Another Fast Open is in progress */
1028 
1029 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 				   sk->sk_allocation);
1031 	if (unlikely(!tp->fastopen_req))
1032 		return -ENOBUFS;
1033 	tp->fastopen_req->data = msg;
1034 	tp->fastopen_req->size = size;
1035 	tp->fastopen_req->uarg = uarg;
1036 
1037 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 		err = tcp_connect(sk);
1039 		/* Same failure procedure as in tcp_v4/6_connect */
1040 		if (err) {
1041 			tcp_set_state(sk, TCP_CLOSE);
1042 			inet->inet_dport = 0;
1043 			sk->sk_route_caps = 0;
1044 		}
1045 	}
1046 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 				    msg->msg_namelen, flags, 1);
1049 	/* fastopen_req could already be freed in __inet_stream_connect
1050 	 * if the connection times out or gets rst
1051 	 */
1052 	if (tp->fastopen_req) {
1053 		*copied = tp->fastopen_req->copied;
1054 		tcp_free_fastopen_req(tp);
1055 		inet_clear_bit(DEFER_CONNECT, sk);
1056 	}
1057 	return err;
1058 }
1059 
1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 	struct tcp_sock *tp = tcp_sk(sk);
1063 	struct ubuf_info *uarg = NULL;
1064 	struct sk_buff *skb;
1065 	struct sockcm_cookie sockc;
1066 	int flags, err, copied = 0;
1067 	int mss_now = 0, size_goal, copied_syn = 0;
1068 	int process_backlog = 0;
1069 	int zc = 0;
1070 	long timeo;
1071 
1072 	flags = msg->msg_flags;
1073 
1074 	if ((flags & MSG_ZEROCOPY) && size) {
1075 		if (msg->msg_ubuf) {
1076 			uarg = msg->msg_ubuf;
1077 			if (sk->sk_route_caps & NETIF_F_SG)
1078 				zc = MSG_ZEROCOPY;
1079 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1080 			skb = tcp_write_queue_tail(sk);
1081 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1082 			if (!uarg) {
1083 				err = -ENOBUFS;
1084 				goto out_err;
1085 			}
1086 			if (sk->sk_route_caps & NETIF_F_SG)
1087 				zc = MSG_ZEROCOPY;
1088 			else
1089 				uarg_to_msgzc(uarg)->zerocopy = 0;
1090 		}
1091 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1092 		if (sk->sk_route_caps & NETIF_F_SG)
1093 			zc = MSG_SPLICE_PAGES;
1094 	}
1095 
1096 	if (unlikely(flags & MSG_FASTOPEN ||
1097 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1098 	    !tp->repair) {
1099 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1100 		if (err == -EINPROGRESS && copied_syn > 0)
1101 			goto out;
1102 		else if (err)
1103 			goto out_err;
1104 	}
1105 
1106 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1107 
1108 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1109 
1110 	/* Wait for a connection to finish. One exception is TCP Fast Open
1111 	 * (passive side) where data is allowed to be sent before a connection
1112 	 * is fully established.
1113 	 */
1114 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1115 	    !tcp_passive_fastopen(sk)) {
1116 		err = sk_stream_wait_connect(sk, &timeo);
1117 		if (err != 0)
1118 			goto do_error;
1119 	}
1120 
1121 	if (unlikely(tp->repair)) {
1122 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1123 			copied = tcp_send_rcvq(sk, msg, size);
1124 			goto out_nopush;
1125 		}
1126 
1127 		err = -EINVAL;
1128 		if (tp->repair_queue == TCP_NO_QUEUE)
1129 			goto out_err;
1130 
1131 		/* 'common' sending to sendq */
1132 	}
1133 
1134 	sockc = (struct sockcm_cookie) { .tsflags = READ_ONCE(sk->sk_tsflags)};
1135 	if (msg->msg_controllen) {
1136 		err = sock_cmsg_send(sk, msg, &sockc);
1137 		if (unlikely(err)) {
1138 			err = -EINVAL;
1139 			goto out_err;
1140 		}
1141 	}
1142 
1143 	/* This should be in poll */
1144 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1145 
1146 	/* Ok commence sending. */
1147 	copied = 0;
1148 
1149 restart:
1150 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1151 
1152 	err = -EPIPE;
1153 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1154 		goto do_error;
1155 
1156 	while (msg_data_left(msg)) {
1157 		ssize_t copy = 0;
1158 
1159 		skb = tcp_write_queue_tail(sk);
1160 		if (skb)
1161 			copy = size_goal - skb->len;
1162 
1163 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1164 
1165 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1166 			bool first_skb;
1167 
1168 new_segment:
1169 			if (!sk_stream_memory_free(sk))
1170 				goto wait_for_space;
1171 
1172 			if (unlikely(process_backlog >= 16)) {
1173 				process_backlog = 0;
1174 				if (sk_flush_backlog(sk))
1175 					goto restart;
1176 			}
1177 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1178 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1179 						   first_skb);
1180 			if (!skb)
1181 				goto wait_for_space;
1182 
1183 			process_backlog++;
1184 
1185 #ifdef CONFIG_SKB_DECRYPTED
1186 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1187 #endif
1188 			tcp_skb_entail(sk, skb);
1189 			copy = size_goal;
1190 
1191 			/* All packets are restored as if they have
1192 			 * already been sent. skb_mstamp_ns isn't set to
1193 			 * avoid wrong rtt estimation.
1194 			 */
1195 			if (tp->repair)
1196 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1197 		}
1198 
1199 		/* Try to append data to the end of skb. */
1200 		if (copy > msg_data_left(msg))
1201 			copy = msg_data_left(msg);
1202 
1203 		if (zc == 0) {
1204 			bool merge = true;
1205 			int i = skb_shinfo(skb)->nr_frags;
1206 			struct page_frag *pfrag = sk_page_frag(sk);
1207 
1208 			if (!sk_page_frag_refill(sk, pfrag))
1209 				goto wait_for_space;
1210 
1211 			if (!skb_can_coalesce(skb, i, pfrag->page,
1212 					      pfrag->offset)) {
1213 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1214 					tcp_mark_push(tp, skb);
1215 					goto new_segment;
1216 				}
1217 				merge = false;
1218 			}
1219 
1220 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1221 
1222 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1223 				if (tcp_downgrade_zcopy_pure(sk, skb))
1224 					goto wait_for_space;
1225 				skb_zcopy_downgrade_managed(skb);
1226 			}
1227 
1228 			copy = tcp_wmem_schedule(sk, copy);
1229 			if (!copy)
1230 				goto wait_for_space;
1231 
1232 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1233 						       pfrag->page,
1234 						       pfrag->offset,
1235 						       copy);
1236 			if (err)
1237 				goto do_error;
1238 
1239 			/* Update the skb. */
1240 			if (merge) {
1241 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1242 			} else {
1243 				skb_fill_page_desc(skb, i, pfrag->page,
1244 						   pfrag->offset, copy);
1245 				page_ref_inc(pfrag->page);
1246 			}
1247 			pfrag->offset += copy;
1248 		} else if (zc == MSG_ZEROCOPY)  {
1249 			/* First append to a fragless skb builds initial
1250 			 * pure zerocopy skb
1251 			 */
1252 			if (!skb->len)
1253 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1254 
1255 			if (!skb_zcopy_pure(skb)) {
1256 				copy = tcp_wmem_schedule(sk, copy);
1257 				if (!copy)
1258 					goto wait_for_space;
1259 			}
1260 
1261 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1262 			if (err == -EMSGSIZE || err == -EEXIST) {
1263 				tcp_mark_push(tp, skb);
1264 				goto new_segment;
1265 			}
1266 			if (err < 0)
1267 				goto do_error;
1268 			copy = err;
1269 		} else if (zc == MSG_SPLICE_PAGES) {
1270 			/* Splice in data if we can; copy if we can't. */
1271 			if (tcp_downgrade_zcopy_pure(sk, skb))
1272 				goto wait_for_space;
1273 			copy = tcp_wmem_schedule(sk, copy);
1274 			if (!copy)
1275 				goto wait_for_space;
1276 
1277 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1278 						   sk->sk_allocation);
1279 			if (err < 0) {
1280 				if (err == -EMSGSIZE) {
1281 					tcp_mark_push(tp, skb);
1282 					goto new_segment;
1283 				}
1284 				goto do_error;
1285 			}
1286 			copy = err;
1287 
1288 			if (!(flags & MSG_NO_SHARED_FRAGS))
1289 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1290 
1291 			sk_wmem_queued_add(sk, copy);
1292 			sk_mem_charge(sk, copy);
1293 		}
1294 
1295 		if (!copied)
1296 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1297 
1298 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1299 		TCP_SKB_CB(skb)->end_seq += copy;
1300 		tcp_skb_pcount_set(skb, 0);
1301 
1302 		copied += copy;
1303 		if (!msg_data_left(msg)) {
1304 			if (unlikely(flags & MSG_EOR))
1305 				TCP_SKB_CB(skb)->eor = 1;
1306 			goto out;
1307 		}
1308 
1309 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1310 			continue;
1311 
1312 		if (forced_push(tp)) {
1313 			tcp_mark_push(tp, skb);
1314 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1315 		} else if (skb == tcp_send_head(sk))
1316 			tcp_push_one(sk, mss_now);
1317 		continue;
1318 
1319 wait_for_space:
1320 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1321 		tcp_remove_empty_skb(sk);
1322 		if (copied)
1323 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1324 				 TCP_NAGLE_PUSH, size_goal);
1325 
1326 		err = sk_stream_wait_memory(sk, &timeo);
1327 		if (err != 0)
1328 			goto do_error;
1329 
1330 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1331 	}
1332 
1333 out:
1334 	if (copied) {
1335 		tcp_tx_timestamp(sk, &sockc);
1336 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1337 	}
1338 out_nopush:
1339 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1340 	if (uarg && !msg->msg_ubuf)
1341 		net_zcopy_put(uarg);
1342 	return copied + copied_syn;
1343 
1344 do_error:
1345 	tcp_remove_empty_skb(sk);
1346 
1347 	if (copied + copied_syn)
1348 		goto out;
1349 out_err:
1350 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1351 	if (uarg && !msg->msg_ubuf)
1352 		net_zcopy_put_abort(uarg, true);
1353 	err = sk_stream_error(sk, flags, err);
1354 	/* make sure we wake any epoll edge trigger waiter */
1355 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1356 		sk->sk_write_space(sk);
1357 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1358 	}
1359 	return err;
1360 }
1361 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1362 
1363 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1364 {
1365 	int ret;
1366 
1367 	lock_sock(sk);
1368 	ret = tcp_sendmsg_locked(sk, msg, size);
1369 	release_sock(sk);
1370 
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL(tcp_sendmsg);
1374 
1375 void tcp_splice_eof(struct socket *sock)
1376 {
1377 	struct sock *sk = sock->sk;
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 	int mss_now, size_goal;
1380 
1381 	if (!tcp_write_queue_tail(sk))
1382 		return;
1383 
1384 	lock_sock(sk);
1385 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1386 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1387 	release_sock(sk);
1388 }
1389 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1390 
1391 /*
1392  *	Handle reading urgent data. BSD has very simple semantics for
1393  *	this, no blocking and very strange errors 8)
1394  */
1395 
1396 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1397 {
1398 	struct tcp_sock *tp = tcp_sk(sk);
1399 
1400 	/* No URG data to read. */
1401 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1402 	    tp->urg_data == TCP_URG_READ)
1403 		return -EINVAL;	/* Yes this is right ! */
1404 
1405 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1406 		return -ENOTCONN;
1407 
1408 	if (tp->urg_data & TCP_URG_VALID) {
1409 		int err = 0;
1410 		char c = tp->urg_data;
1411 
1412 		if (!(flags & MSG_PEEK))
1413 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1414 
1415 		/* Read urgent data. */
1416 		msg->msg_flags |= MSG_OOB;
1417 
1418 		if (len > 0) {
1419 			if (!(flags & MSG_TRUNC))
1420 				err = memcpy_to_msg(msg, &c, 1);
1421 			len = 1;
1422 		} else
1423 			msg->msg_flags |= MSG_TRUNC;
1424 
1425 		return err ? -EFAULT : len;
1426 	}
1427 
1428 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1429 		return 0;
1430 
1431 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1432 	 * the available implementations agree in this case:
1433 	 * this call should never block, independent of the
1434 	 * blocking state of the socket.
1435 	 * Mike <pall@rz.uni-karlsruhe.de>
1436 	 */
1437 	return -EAGAIN;
1438 }
1439 
1440 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1441 {
1442 	struct sk_buff *skb;
1443 	int copied = 0, err = 0;
1444 
1445 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1446 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1447 		if (err)
1448 			return err;
1449 		copied += skb->len;
1450 	}
1451 
1452 	skb_queue_walk(&sk->sk_write_queue, skb) {
1453 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1454 		if (err)
1455 			break;
1456 
1457 		copied += skb->len;
1458 	}
1459 
1460 	return err ?: copied;
1461 }
1462 
1463 /* Clean up the receive buffer for full frames taken by the user,
1464  * then send an ACK if necessary.  COPIED is the number of bytes
1465  * tcp_recvmsg has given to the user so far, it speeds up the
1466  * calculation of whether or not we must ACK for the sake of
1467  * a window update.
1468  */
1469 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	bool time_to_ack = false;
1473 
1474 	if (inet_csk_ack_scheduled(sk)) {
1475 		const struct inet_connection_sock *icsk = inet_csk(sk);
1476 
1477 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1478 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1479 		    /*
1480 		     * If this read emptied read buffer, we send ACK, if
1481 		     * connection is not bidirectional, user drained
1482 		     * receive buffer and there was a small segment
1483 		     * in queue.
1484 		     */
1485 		    (copied > 0 &&
1486 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1487 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1488 		       !inet_csk_in_pingpong_mode(sk))) &&
1489 		      !atomic_read(&sk->sk_rmem_alloc)))
1490 			time_to_ack = true;
1491 	}
1492 
1493 	/* We send an ACK if we can now advertise a non-zero window
1494 	 * which has been raised "significantly".
1495 	 *
1496 	 * Even if window raised up to infinity, do not send window open ACK
1497 	 * in states, where we will not receive more. It is useless.
1498 	 */
1499 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1500 		__u32 rcv_window_now = tcp_receive_window(tp);
1501 
1502 		/* Optimize, __tcp_select_window() is not cheap. */
1503 		if (2*rcv_window_now <= tp->window_clamp) {
1504 			__u32 new_window = __tcp_select_window(sk);
1505 
1506 			/* Send ACK now, if this read freed lots of space
1507 			 * in our buffer. Certainly, new_window is new window.
1508 			 * We can advertise it now, if it is not less than current one.
1509 			 * "Lots" means "at least twice" here.
1510 			 */
1511 			if (new_window && new_window >= 2 * rcv_window_now)
1512 				time_to_ack = true;
1513 		}
1514 	}
1515 	if (time_to_ack)
1516 		tcp_send_ack(sk);
1517 }
1518 
1519 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1520 {
1521 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1522 	struct tcp_sock *tp = tcp_sk(sk);
1523 
1524 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1525 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1526 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1527 	__tcp_cleanup_rbuf(sk, copied);
1528 }
1529 
1530 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1531 {
1532 	__skb_unlink(skb, &sk->sk_receive_queue);
1533 	if (likely(skb->destructor == sock_rfree)) {
1534 		sock_rfree(skb);
1535 		skb->destructor = NULL;
1536 		skb->sk = NULL;
1537 		return skb_attempt_defer_free(skb);
1538 	}
1539 	__kfree_skb(skb);
1540 }
1541 
1542 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1543 {
1544 	struct sk_buff *skb;
1545 	u32 offset;
1546 
1547 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1548 		offset = seq - TCP_SKB_CB(skb)->seq;
1549 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1550 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1551 			offset--;
1552 		}
1553 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1554 			*off = offset;
1555 			return skb;
1556 		}
1557 		/* This looks weird, but this can happen if TCP collapsing
1558 		 * splitted a fat GRO packet, while we released socket lock
1559 		 * in skb_splice_bits()
1560 		 */
1561 		tcp_eat_recv_skb(sk, skb);
1562 	}
1563 	return NULL;
1564 }
1565 EXPORT_SYMBOL(tcp_recv_skb);
1566 
1567 /*
1568  * This routine provides an alternative to tcp_recvmsg() for routines
1569  * that would like to handle copying from skbuffs directly in 'sendfile'
1570  * fashion.
1571  * Note:
1572  *	- It is assumed that the socket was locked by the caller.
1573  *	- The routine does not block.
1574  *	- At present, there is no support for reading OOB data
1575  *	  or for 'peeking' the socket using this routine
1576  *	  (although both would be easy to implement).
1577  */
1578 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1579 			   sk_read_actor_t recv_actor, bool noack,
1580 			   u32 *copied_seq)
1581 {
1582 	struct sk_buff *skb;
1583 	struct tcp_sock *tp = tcp_sk(sk);
1584 	u32 seq = *copied_seq;
1585 	u32 offset;
1586 	int copied = 0;
1587 
1588 	if (sk->sk_state == TCP_LISTEN)
1589 		return -ENOTCONN;
1590 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1591 		if (offset < skb->len) {
1592 			int used;
1593 			size_t len;
1594 
1595 			len = skb->len - offset;
1596 			/* Stop reading if we hit a patch of urgent data */
1597 			if (unlikely(tp->urg_data)) {
1598 				u32 urg_offset = tp->urg_seq - seq;
1599 				if (urg_offset < len)
1600 					len = urg_offset;
1601 				if (!len)
1602 					break;
1603 			}
1604 			used = recv_actor(desc, skb, offset, len);
1605 			if (used <= 0) {
1606 				if (!copied)
1607 					copied = used;
1608 				break;
1609 			}
1610 			if (WARN_ON_ONCE(used > len))
1611 				used = len;
1612 			seq += used;
1613 			copied += used;
1614 			offset += used;
1615 
1616 			/* If recv_actor drops the lock (e.g. TCP splice
1617 			 * receive) the skb pointer might be invalid when
1618 			 * getting here: tcp_collapse might have deleted it
1619 			 * while aggregating skbs from the socket queue.
1620 			 */
1621 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1622 			if (!skb)
1623 				break;
1624 			/* TCP coalescing might have appended data to the skb.
1625 			 * Try to splice more frags
1626 			 */
1627 			if (offset + 1 != skb->len)
1628 				continue;
1629 		}
1630 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1631 			tcp_eat_recv_skb(sk, skb);
1632 			++seq;
1633 			break;
1634 		}
1635 		tcp_eat_recv_skb(sk, skb);
1636 		if (!desc->count)
1637 			break;
1638 		WRITE_ONCE(*copied_seq, seq);
1639 	}
1640 	WRITE_ONCE(*copied_seq, seq);
1641 
1642 	if (noack)
1643 		goto out;
1644 
1645 	tcp_rcv_space_adjust(sk);
1646 
1647 	/* Clean up data we have read: This will do ACK frames. */
1648 	if (copied > 0) {
1649 		tcp_recv_skb(sk, seq, &offset);
1650 		tcp_cleanup_rbuf(sk, copied);
1651 	}
1652 out:
1653 	return copied;
1654 }
1655 
1656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1657 		  sk_read_actor_t recv_actor)
1658 {
1659 	return __tcp_read_sock(sk, desc, recv_actor, false,
1660 			       &tcp_sk(sk)->copied_seq);
1661 }
1662 EXPORT_SYMBOL(tcp_read_sock);
1663 
1664 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1665 			sk_read_actor_t recv_actor, bool noack,
1666 			u32 *copied_seq)
1667 {
1668 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1669 }
1670 
1671 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1672 {
1673 	struct sk_buff *skb;
1674 	int copied = 0;
1675 
1676 	if (sk->sk_state == TCP_LISTEN)
1677 		return -ENOTCONN;
1678 
1679 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1680 		u8 tcp_flags;
1681 		int used;
1682 
1683 		__skb_unlink(skb, &sk->sk_receive_queue);
1684 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1685 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1686 		used = recv_actor(sk, skb);
1687 		if (used < 0) {
1688 			if (!copied)
1689 				copied = used;
1690 			break;
1691 		}
1692 		copied += used;
1693 
1694 		if (tcp_flags & TCPHDR_FIN)
1695 			break;
1696 	}
1697 	return copied;
1698 }
1699 EXPORT_IPV6_MOD(tcp_read_skb);
1700 
1701 void tcp_read_done(struct sock *sk, size_t len)
1702 {
1703 	struct tcp_sock *tp = tcp_sk(sk);
1704 	u32 seq = tp->copied_seq;
1705 	struct sk_buff *skb;
1706 	size_t left;
1707 	u32 offset;
1708 
1709 	if (sk->sk_state == TCP_LISTEN)
1710 		return;
1711 
1712 	left = len;
1713 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1714 		int used;
1715 
1716 		used = min_t(size_t, skb->len - offset, left);
1717 		seq += used;
1718 		left -= used;
1719 
1720 		if (skb->len > offset + used)
1721 			break;
1722 
1723 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1724 			tcp_eat_recv_skb(sk, skb);
1725 			++seq;
1726 			break;
1727 		}
1728 		tcp_eat_recv_skb(sk, skb);
1729 	}
1730 	WRITE_ONCE(tp->copied_seq, seq);
1731 
1732 	tcp_rcv_space_adjust(sk);
1733 
1734 	/* Clean up data we have read: This will do ACK frames. */
1735 	if (left != len)
1736 		tcp_cleanup_rbuf(sk, len - left);
1737 }
1738 EXPORT_SYMBOL(tcp_read_done);
1739 
1740 int tcp_peek_len(struct socket *sock)
1741 {
1742 	return tcp_inq(sock->sk);
1743 }
1744 EXPORT_IPV6_MOD(tcp_peek_len);
1745 
1746 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1747 int tcp_set_rcvlowat(struct sock *sk, int val)
1748 {
1749 	int space, cap;
1750 
1751 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1752 		cap = sk->sk_rcvbuf >> 1;
1753 	else
1754 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1755 	val = min(val, cap);
1756 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1757 
1758 	/* Check if we need to signal EPOLLIN right now */
1759 	tcp_data_ready(sk);
1760 
1761 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1762 		return 0;
1763 
1764 	space = tcp_space_from_win(sk, val);
1765 	if (space > sk->sk_rcvbuf) {
1766 		WRITE_ONCE(sk->sk_rcvbuf, space);
1767 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1768 	}
1769 	return 0;
1770 }
1771 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1772 
1773 void tcp_update_recv_tstamps(struct sk_buff *skb,
1774 			     struct scm_timestamping_internal *tss)
1775 {
1776 	if (skb->tstamp)
1777 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1778 	else
1779 		tss->ts[0] = (struct timespec64) {0};
1780 
1781 	if (skb_hwtstamps(skb)->hwtstamp)
1782 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1783 	else
1784 		tss->ts[2] = (struct timespec64) {0};
1785 }
1786 
1787 #ifdef CONFIG_MMU
1788 static const struct vm_operations_struct tcp_vm_ops = {
1789 };
1790 
1791 int tcp_mmap(struct file *file, struct socket *sock,
1792 	     struct vm_area_struct *vma)
1793 {
1794 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1795 		return -EPERM;
1796 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1797 
1798 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1799 	vm_flags_set(vma, VM_MIXEDMAP);
1800 
1801 	vma->vm_ops = &tcp_vm_ops;
1802 	return 0;
1803 }
1804 EXPORT_IPV6_MOD(tcp_mmap);
1805 
1806 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1807 				       u32 *offset_frag)
1808 {
1809 	skb_frag_t *frag;
1810 
1811 	if (unlikely(offset_skb >= skb->len))
1812 		return NULL;
1813 
1814 	offset_skb -= skb_headlen(skb);
1815 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1816 		return NULL;
1817 
1818 	frag = skb_shinfo(skb)->frags;
1819 	while (offset_skb) {
1820 		if (skb_frag_size(frag) > offset_skb) {
1821 			*offset_frag = offset_skb;
1822 			return frag;
1823 		}
1824 		offset_skb -= skb_frag_size(frag);
1825 		++frag;
1826 	}
1827 	*offset_frag = 0;
1828 	return frag;
1829 }
1830 
1831 static bool can_map_frag(const skb_frag_t *frag)
1832 {
1833 	struct page *page;
1834 
1835 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1836 		return false;
1837 
1838 	page = skb_frag_page(frag);
1839 
1840 	if (PageCompound(page) || page->mapping)
1841 		return false;
1842 
1843 	return true;
1844 }
1845 
1846 static int find_next_mappable_frag(const skb_frag_t *frag,
1847 				   int remaining_in_skb)
1848 {
1849 	int offset = 0;
1850 
1851 	if (likely(can_map_frag(frag)))
1852 		return 0;
1853 
1854 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1855 		offset += skb_frag_size(frag);
1856 		++frag;
1857 	}
1858 	return offset;
1859 }
1860 
1861 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1862 					  struct tcp_zerocopy_receive *zc,
1863 					  struct sk_buff *skb, u32 offset)
1864 {
1865 	u32 frag_offset, partial_frag_remainder = 0;
1866 	int mappable_offset;
1867 	skb_frag_t *frag;
1868 
1869 	/* worst case: skip to next skb. try to improve on this case below */
1870 	zc->recv_skip_hint = skb->len - offset;
1871 
1872 	/* Find the frag containing this offset (and how far into that frag) */
1873 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1874 	if (!frag)
1875 		return;
1876 
1877 	if (frag_offset) {
1878 		struct skb_shared_info *info = skb_shinfo(skb);
1879 
1880 		/* We read part of the last frag, must recvmsg() rest of skb. */
1881 		if (frag == &info->frags[info->nr_frags - 1])
1882 			return;
1883 
1884 		/* Else, we must at least read the remainder in this frag. */
1885 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1886 		zc->recv_skip_hint -= partial_frag_remainder;
1887 		++frag;
1888 	}
1889 
1890 	/* partial_frag_remainder: If part way through a frag, must read rest.
1891 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1892 	 * in partial_frag_remainder.
1893 	 */
1894 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1895 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1896 }
1897 
1898 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1899 			      int flags, struct scm_timestamping_internal *tss,
1900 			      int *cmsg_flags);
1901 static int receive_fallback_to_copy(struct sock *sk,
1902 				    struct tcp_zerocopy_receive *zc, int inq,
1903 				    struct scm_timestamping_internal *tss)
1904 {
1905 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1906 	struct msghdr msg = {};
1907 	int err;
1908 
1909 	zc->length = 0;
1910 	zc->recv_skip_hint = 0;
1911 
1912 	if (copy_address != zc->copybuf_address)
1913 		return -EINVAL;
1914 
1915 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1916 			  &msg.msg_iter);
1917 	if (err)
1918 		return err;
1919 
1920 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1921 				 tss, &zc->msg_flags);
1922 	if (err < 0)
1923 		return err;
1924 
1925 	zc->copybuf_len = err;
1926 	if (likely(zc->copybuf_len)) {
1927 		struct sk_buff *skb;
1928 		u32 offset;
1929 
1930 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1931 		if (skb)
1932 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1933 	}
1934 	return 0;
1935 }
1936 
1937 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1938 				   struct sk_buff *skb, u32 copylen,
1939 				   u32 *offset, u32 *seq)
1940 {
1941 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1942 	struct msghdr msg = {};
1943 	int err;
1944 
1945 	if (copy_address != zc->copybuf_address)
1946 		return -EINVAL;
1947 
1948 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1949 			  &msg.msg_iter);
1950 	if (err)
1951 		return err;
1952 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1953 	if (err)
1954 		return err;
1955 	zc->recv_skip_hint -= copylen;
1956 	*offset += copylen;
1957 	*seq += copylen;
1958 	return (__s32)copylen;
1959 }
1960 
1961 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1962 				  struct sock *sk,
1963 				  struct sk_buff *skb,
1964 				  u32 *seq,
1965 				  s32 copybuf_len,
1966 				  struct scm_timestamping_internal *tss)
1967 {
1968 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1969 
1970 	if (!copylen)
1971 		return 0;
1972 	/* skb is null if inq < PAGE_SIZE. */
1973 	if (skb) {
1974 		offset = *seq - TCP_SKB_CB(skb)->seq;
1975 	} else {
1976 		skb = tcp_recv_skb(sk, *seq, &offset);
1977 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1978 			tcp_update_recv_tstamps(skb, tss);
1979 			zc->msg_flags |= TCP_CMSG_TS;
1980 		}
1981 	}
1982 
1983 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1984 						  seq);
1985 	return zc->copybuf_len < 0 ? 0 : copylen;
1986 }
1987 
1988 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1989 					      struct page **pending_pages,
1990 					      unsigned long pages_remaining,
1991 					      unsigned long *address,
1992 					      u32 *length,
1993 					      u32 *seq,
1994 					      struct tcp_zerocopy_receive *zc,
1995 					      u32 total_bytes_to_map,
1996 					      int err)
1997 {
1998 	/* At least one page did not map. Try zapping if we skipped earlier. */
1999 	if (err == -EBUSY &&
2000 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2001 		u32 maybe_zap_len;
2002 
2003 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2004 				*length + /* Mapped or pending */
2005 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2006 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2007 		err = 0;
2008 	}
2009 
2010 	if (!err) {
2011 		unsigned long leftover_pages = pages_remaining;
2012 		int bytes_mapped;
2013 
2014 		/* We called zap_page_range_single, try to reinsert. */
2015 		err = vm_insert_pages(vma, *address,
2016 				      pending_pages,
2017 				      &pages_remaining);
2018 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2019 		*seq += bytes_mapped;
2020 		*address += bytes_mapped;
2021 	}
2022 	if (err) {
2023 		/* Either we were unable to zap, OR we zapped, retried an
2024 		 * insert, and still had an issue. Either ways, pages_remaining
2025 		 * is the number of pages we were unable to map, and we unroll
2026 		 * some state we speculatively touched before.
2027 		 */
2028 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2029 
2030 		*length -= bytes_not_mapped;
2031 		zc->recv_skip_hint += bytes_not_mapped;
2032 	}
2033 	return err;
2034 }
2035 
2036 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2037 					struct page **pages,
2038 					unsigned int pages_to_map,
2039 					unsigned long *address,
2040 					u32 *length,
2041 					u32 *seq,
2042 					struct tcp_zerocopy_receive *zc,
2043 					u32 total_bytes_to_map)
2044 {
2045 	unsigned long pages_remaining = pages_to_map;
2046 	unsigned int pages_mapped;
2047 	unsigned int bytes_mapped;
2048 	int err;
2049 
2050 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2051 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2052 	bytes_mapped = PAGE_SIZE * pages_mapped;
2053 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2054 	 * mapping (some but not all of the pages).
2055 	 */
2056 	*seq += bytes_mapped;
2057 	*address += bytes_mapped;
2058 
2059 	if (likely(!err))
2060 		return 0;
2061 
2062 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2063 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2064 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2065 		err);
2066 }
2067 
2068 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2069 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2070 				      struct tcp_zerocopy_receive *zc,
2071 				      struct scm_timestamping_internal *tss)
2072 {
2073 	unsigned long msg_control_addr;
2074 	struct msghdr cmsg_dummy;
2075 
2076 	msg_control_addr = (unsigned long)zc->msg_control;
2077 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2078 	cmsg_dummy.msg_controllen =
2079 		(__kernel_size_t)zc->msg_controllen;
2080 	cmsg_dummy.msg_flags = in_compat_syscall()
2081 		? MSG_CMSG_COMPAT : 0;
2082 	cmsg_dummy.msg_control_is_user = true;
2083 	zc->msg_flags = 0;
2084 	if (zc->msg_control == msg_control_addr &&
2085 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2086 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2087 		zc->msg_control = (__u64)
2088 			((uintptr_t)cmsg_dummy.msg_control_user);
2089 		zc->msg_controllen =
2090 			(__u64)cmsg_dummy.msg_controllen;
2091 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2092 	}
2093 }
2094 
2095 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2096 					   unsigned long address,
2097 					   bool *mmap_locked)
2098 {
2099 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2100 
2101 	if (vma) {
2102 		if (vma->vm_ops != &tcp_vm_ops) {
2103 			vma_end_read(vma);
2104 			return NULL;
2105 		}
2106 		*mmap_locked = false;
2107 		return vma;
2108 	}
2109 
2110 	mmap_read_lock(mm);
2111 	vma = vma_lookup(mm, address);
2112 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2113 		mmap_read_unlock(mm);
2114 		return NULL;
2115 	}
2116 	*mmap_locked = true;
2117 	return vma;
2118 }
2119 
2120 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2121 static int tcp_zerocopy_receive(struct sock *sk,
2122 				struct tcp_zerocopy_receive *zc,
2123 				struct scm_timestamping_internal *tss)
2124 {
2125 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2126 	unsigned long address = (unsigned long)zc->address;
2127 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2128 	s32 copybuf_len = zc->copybuf_len;
2129 	struct tcp_sock *tp = tcp_sk(sk);
2130 	const skb_frag_t *frags = NULL;
2131 	unsigned int pages_to_map = 0;
2132 	struct vm_area_struct *vma;
2133 	struct sk_buff *skb = NULL;
2134 	u32 seq = tp->copied_seq;
2135 	u32 total_bytes_to_map;
2136 	int inq = tcp_inq(sk);
2137 	bool mmap_locked;
2138 	int ret;
2139 
2140 	zc->copybuf_len = 0;
2141 	zc->msg_flags = 0;
2142 
2143 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2144 		return -EINVAL;
2145 
2146 	if (sk->sk_state == TCP_LISTEN)
2147 		return -ENOTCONN;
2148 
2149 	sock_rps_record_flow(sk);
2150 
2151 	if (inq && inq <= copybuf_len)
2152 		return receive_fallback_to_copy(sk, zc, inq, tss);
2153 
2154 	if (inq < PAGE_SIZE) {
2155 		zc->length = 0;
2156 		zc->recv_skip_hint = inq;
2157 		if (!inq && sock_flag(sk, SOCK_DONE))
2158 			return -EIO;
2159 		return 0;
2160 	}
2161 
2162 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2163 	if (!vma)
2164 		return -EINVAL;
2165 
2166 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2167 	avail_len = min_t(u32, vma_len, inq);
2168 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2169 	if (total_bytes_to_map) {
2170 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2171 			zap_page_range_single(vma, address, total_bytes_to_map,
2172 					      NULL);
2173 		zc->length = total_bytes_to_map;
2174 		zc->recv_skip_hint = 0;
2175 	} else {
2176 		zc->length = avail_len;
2177 		zc->recv_skip_hint = avail_len;
2178 	}
2179 	ret = 0;
2180 	while (length + PAGE_SIZE <= zc->length) {
2181 		int mappable_offset;
2182 		struct page *page;
2183 
2184 		if (zc->recv_skip_hint < PAGE_SIZE) {
2185 			u32 offset_frag;
2186 
2187 			if (skb) {
2188 				if (zc->recv_skip_hint > 0)
2189 					break;
2190 				skb = skb->next;
2191 				offset = seq - TCP_SKB_CB(skb)->seq;
2192 			} else {
2193 				skb = tcp_recv_skb(sk, seq, &offset);
2194 			}
2195 
2196 			if (!skb_frags_readable(skb))
2197 				break;
2198 
2199 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2200 				tcp_update_recv_tstamps(skb, tss);
2201 				zc->msg_flags |= TCP_CMSG_TS;
2202 			}
2203 			zc->recv_skip_hint = skb->len - offset;
2204 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2205 			if (!frags || offset_frag)
2206 				break;
2207 		}
2208 
2209 		mappable_offset = find_next_mappable_frag(frags,
2210 							  zc->recv_skip_hint);
2211 		if (mappable_offset) {
2212 			zc->recv_skip_hint = mappable_offset;
2213 			break;
2214 		}
2215 		page = skb_frag_page(frags);
2216 		if (WARN_ON_ONCE(!page))
2217 			break;
2218 
2219 		prefetchw(page);
2220 		pages[pages_to_map++] = page;
2221 		length += PAGE_SIZE;
2222 		zc->recv_skip_hint -= PAGE_SIZE;
2223 		frags++;
2224 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2225 		    zc->recv_skip_hint < PAGE_SIZE) {
2226 			/* Either full batch, or we're about to go to next skb
2227 			 * (and we cannot unroll failed ops across skbs).
2228 			 */
2229 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2230 							   pages_to_map,
2231 							   &address, &length,
2232 							   &seq, zc,
2233 							   total_bytes_to_map);
2234 			if (ret)
2235 				goto out;
2236 			pages_to_map = 0;
2237 		}
2238 	}
2239 	if (pages_to_map) {
2240 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2241 						   &address, &length, &seq,
2242 						   zc, total_bytes_to_map);
2243 	}
2244 out:
2245 	if (mmap_locked)
2246 		mmap_read_unlock(current->mm);
2247 	else
2248 		vma_end_read(vma);
2249 	/* Try to copy straggler data. */
2250 	if (!ret)
2251 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2252 
2253 	if (length + copylen) {
2254 		WRITE_ONCE(tp->copied_seq, seq);
2255 		tcp_rcv_space_adjust(sk);
2256 
2257 		/* Clean up data we have read: This will do ACK frames. */
2258 		tcp_recv_skb(sk, seq, &offset);
2259 		tcp_cleanup_rbuf(sk, length + copylen);
2260 		ret = 0;
2261 		if (length == zc->length)
2262 			zc->recv_skip_hint = 0;
2263 	} else {
2264 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2265 			ret = -EIO;
2266 	}
2267 	zc->length = length;
2268 	return ret;
2269 }
2270 #endif
2271 
2272 /* Similar to __sock_recv_timestamp, but does not require an skb */
2273 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2274 			struct scm_timestamping_internal *tss)
2275 {
2276 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2277 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2278 	bool has_timestamping = false;
2279 
2280 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2281 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2282 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2283 				if (new_tstamp) {
2284 					struct __kernel_timespec kts = {
2285 						.tv_sec = tss->ts[0].tv_sec,
2286 						.tv_nsec = tss->ts[0].tv_nsec,
2287 					};
2288 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2289 						 sizeof(kts), &kts);
2290 				} else {
2291 					struct __kernel_old_timespec ts_old = {
2292 						.tv_sec = tss->ts[0].tv_sec,
2293 						.tv_nsec = tss->ts[0].tv_nsec,
2294 					};
2295 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2296 						 sizeof(ts_old), &ts_old);
2297 				}
2298 			} else {
2299 				if (new_tstamp) {
2300 					struct __kernel_sock_timeval stv = {
2301 						.tv_sec = tss->ts[0].tv_sec,
2302 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2303 					};
2304 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2305 						 sizeof(stv), &stv);
2306 				} else {
2307 					struct __kernel_old_timeval tv = {
2308 						.tv_sec = tss->ts[0].tv_sec,
2309 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2310 					};
2311 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2312 						 sizeof(tv), &tv);
2313 				}
2314 			}
2315 		}
2316 
2317 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2318 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2319 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2320 			has_timestamping = true;
2321 		else
2322 			tss->ts[0] = (struct timespec64) {0};
2323 	}
2324 
2325 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2326 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2327 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2328 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2329 			has_timestamping = true;
2330 		else
2331 			tss->ts[2] = (struct timespec64) {0};
2332 	}
2333 
2334 	if (has_timestamping) {
2335 		tss->ts[1] = (struct timespec64) {0};
2336 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2337 			put_cmsg_scm_timestamping64(msg, tss);
2338 		else
2339 			put_cmsg_scm_timestamping(msg, tss);
2340 	}
2341 }
2342 
2343 static int tcp_inq_hint(struct sock *sk)
2344 {
2345 	const struct tcp_sock *tp = tcp_sk(sk);
2346 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2347 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2348 	int inq;
2349 
2350 	inq = rcv_nxt - copied_seq;
2351 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2352 		lock_sock(sk);
2353 		inq = tp->rcv_nxt - tp->copied_seq;
2354 		release_sock(sk);
2355 	}
2356 	/* After receiving a FIN, tell the user-space to continue reading
2357 	 * by returning a non-zero inq.
2358 	 */
2359 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2360 		inq = 1;
2361 	return inq;
2362 }
2363 
2364 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2365 struct tcp_xa_pool {
2366 	u8		max; /* max <= MAX_SKB_FRAGS */
2367 	u8		idx; /* idx <= max */
2368 	__u32		tokens[MAX_SKB_FRAGS];
2369 	netmem_ref	netmems[MAX_SKB_FRAGS];
2370 };
2371 
2372 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2373 {
2374 	int i;
2375 
2376 	/* Commit part that has been copied to user space. */
2377 	for (i = 0; i < p->idx; i++)
2378 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2379 			     (__force void *)p->netmems[i], GFP_KERNEL);
2380 	/* Rollback what has been pre-allocated and is no longer needed. */
2381 	for (; i < p->max; i++)
2382 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2383 
2384 	p->max = 0;
2385 	p->idx = 0;
2386 }
2387 
2388 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2389 {
2390 	if (!p->max)
2391 		return;
2392 
2393 	xa_lock_bh(&sk->sk_user_frags);
2394 
2395 	tcp_xa_pool_commit_locked(sk, p);
2396 
2397 	xa_unlock_bh(&sk->sk_user_frags);
2398 }
2399 
2400 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2401 			      unsigned int max_frags)
2402 {
2403 	int err, k;
2404 
2405 	if (p->idx < p->max)
2406 		return 0;
2407 
2408 	xa_lock_bh(&sk->sk_user_frags);
2409 
2410 	tcp_xa_pool_commit_locked(sk, p);
2411 
2412 	for (k = 0; k < max_frags; k++) {
2413 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2414 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2415 		if (err)
2416 			break;
2417 	}
2418 
2419 	xa_unlock_bh(&sk->sk_user_frags);
2420 
2421 	p->max = k;
2422 	p->idx = 0;
2423 	return k ? 0 : err;
2424 }
2425 
2426 /* On error, returns the -errno. On success, returns number of bytes sent to the
2427  * user. May not consume all of @remaining_len.
2428  */
2429 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2430 			      unsigned int offset, struct msghdr *msg,
2431 			      int remaining_len)
2432 {
2433 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2434 	struct tcp_xa_pool tcp_xa_pool;
2435 	unsigned int start;
2436 	int i, copy, n;
2437 	int sent = 0;
2438 	int err = 0;
2439 
2440 	tcp_xa_pool.max = 0;
2441 	tcp_xa_pool.idx = 0;
2442 	do {
2443 		start = skb_headlen(skb);
2444 
2445 		if (skb_frags_readable(skb)) {
2446 			err = -ENODEV;
2447 			goto out;
2448 		}
2449 
2450 		/* Copy header. */
2451 		copy = start - offset;
2452 		if (copy > 0) {
2453 			copy = min(copy, remaining_len);
2454 
2455 			n = copy_to_iter(skb->data + offset, copy,
2456 					 &msg->msg_iter);
2457 			if (n != copy) {
2458 				err = -EFAULT;
2459 				goto out;
2460 			}
2461 
2462 			offset += copy;
2463 			remaining_len -= copy;
2464 
2465 			/* First a dmabuf_cmsg for # bytes copied to user
2466 			 * buffer.
2467 			 */
2468 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2469 			dmabuf_cmsg.frag_size = copy;
2470 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2471 					       SO_DEVMEM_LINEAR,
2472 					       sizeof(dmabuf_cmsg),
2473 					       &dmabuf_cmsg);
2474 			if (err)
2475 				goto out;
2476 
2477 			sent += copy;
2478 
2479 			if (remaining_len == 0)
2480 				goto out;
2481 		}
2482 
2483 		/* after that, send information of dmabuf pages through a
2484 		 * sequence of cmsg
2485 		 */
2486 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2487 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2488 			struct net_iov *niov;
2489 			u64 frag_offset;
2490 			int end;
2491 
2492 			/* !skb_frags_readable() should indicate that ALL the
2493 			 * frags in this skb are dmabuf net_iovs. We're checking
2494 			 * for that flag above, but also check individual frags
2495 			 * here. If the tcp stack is not setting
2496 			 * skb_frags_readable() correctly, we still don't want
2497 			 * to crash here.
2498 			 */
2499 			if (!skb_frag_net_iov(frag)) {
2500 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2501 				err = -ENODEV;
2502 				goto out;
2503 			}
2504 
2505 			niov = skb_frag_net_iov(frag);
2506 			if (!net_is_devmem_iov(niov)) {
2507 				err = -ENODEV;
2508 				goto out;
2509 			}
2510 
2511 			end = start + skb_frag_size(frag);
2512 			copy = end - offset;
2513 
2514 			if (copy > 0) {
2515 				copy = min(copy, remaining_len);
2516 
2517 				frag_offset = net_iov_virtual_addr(niov) +
2518 					      skb_frag_off(frag) + offset -
2519 					      start;
2520 				dmabuf_cmsg.frag_offset = frag_offset;
2521 				dmabuf_cmsg.frag_size = copy;
2522 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2523 							 skb_shinfo(skb)->nr_frags - i);
2524 				if (err)
2525 					goto out;
2526 
2527 				/* Will perform the exchange later */
2528 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2529 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2530 
2531 				offset += copy;
2532 				remaining_len -= copy;
2533 
2534 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2535 						       SO_DEVMEM_DMABUF,
2536 						       sizeof(dmabuf_cmsg),
2537 						       &dmabuf_cmsg);
2538 				if (err)
2539 					goto out;
2540 
2541 				atomic_long_inc(&niov->pp_ref_count);
2542 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2543 
2544 				sent += copy;
2545 
2546 				if (remaining_len == 0)
2547 					goto out;
2548 			}
2549 			start = end;
2550 		}
2551 
2552 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2553 		if (!remaining_len)
2554 			goto out;
2555 
2556 		/* if remaining_len is not satisfied yet, we need to go to the
2557 		 * next frag in the frag_list to satisfy remaining_len.
2558 		 */
2559 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2560 
2561 		offset = offset - start;
2562 	} while (skb);
2563 
2564 	if (remaining_len) {
2565 		err = -EFAULT;
2566 		goto out;
2567 	}
2568 
2569 out:
2570 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2571 	if (!sent)
2572 		sent = err;
2573 
2574 	return sent;
2575 }
2576 
2577 /*
2578  *	This routine copies from a sock struct into the user buffer.
2579  *
2580  *	Technical note: in 2.3 we work on _locked_ socket, so that
2581  *	tricks with *seq access order and skb->users are not required.
2582  *	Probably, code can be easily improved even more.
2583  */
2584 
2585 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2586 			      int flags, struct scm_timestamping_internal *tss,
2587 			      int *cmsg_flags)
2588 {
2589 	struct tcp_sock *tp = tcp_sk(sk);
2590 	int last_copied_dmabuf = -1; /* uninitialized */
2591 	int copied = 0;
2592 	u32 peek_seq;
2593 	u32 *seq;
2594 	unsigned long used;
2595 	int err;
2596 	int target;		/* Read at least this many bytes */
2597 	long timeo;
2598 	struct sk_buff *skb, *last;
2599 	u32 peek_offset = 0;
2600 	u32 urg_hole = 0;
2601 
2602 	err = -ENOTCONN;
2603 	if (sk->sk_state == TCP_LISTEN)
2604 		goto out;
2605 
2606 	if (tp->recvmsg_inq) {
2607 		*cmsg_flags = TCP_CMSG_INQ;
2608 		msg->msg_get_inq = 1;
2609 	}
2610 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2611 
2612 	/* Urgent data needs to be handled specially. */
2613 	if (flags & MSG_OOB)
2614 		goto recv_urg;
2615 
2616 	if (unlikely(tp->repair)) {
2617 		err = -EPERM;
2618 		if (!(flags & MSG_PEEK))
2619 			goto out;
2620 
2621 		if (tp->repair_queue == TCP_SEND_QUEUE)
2622 			goto recv_sndq;
2623 
2624 		err = -EINVAL;
2625 		if (tp->repair_queue == TCP_NO_QUEUE)
2626 			goto out;
2627 
2628 		/* 'common' recv queue MSG_PEEK-ing */
2629 	}
2630 
2631 	seq = &tp->copied_seq;
2632 	if (flags & MSG_PEEK) {
2633 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2634 		peek_seq = tp->copied_seq + peek_offset;
2635 		seq = &peek_seq;
2636 	}
2637 
2638 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2639 
2640 	do {
2641 		u32 offset;
2642 
2643 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2644 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2645 			if (copied)
2646 				break;
2647 			if (signal_pending(current)) {
2648 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2649 				break;
2650 			}
2651 		}
2652 
2653 		/* Next get a buffer. */
2654 
2655 		last = skb_peek_tail(&sk->sk_receive_queue);
2656 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2657 			last = skb;
2658 			/* Now that we have two receive queues this
2659 			 * shouldn't happen.
2660 			 */
2661 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2662 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2663 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2664 				 flags))
2665 				break;
2666 
2667 			offset = *seq - TCP_SKB_CB(skb)->seq;
2668 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2669 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2670 				offset--;
2671 			}
2672 			if (offset < skb->len)
2673 				goto found_ok_skb;
2674 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2675 				goto found_fin_ok;
2676 			WARN(!(flags & MSG_PEEK),
2677 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2678 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2679 		}
2680 
2681 		/* Well, if we have backlog, try to process it now yet. */
2682 
2683 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2684 			break;
2685 
2686 		if (copied) {
2687 			if (!timeo ||
2688 			    sk->sk_err ||
2689 			    sk->sk_state == TCP_CLOSE ||
2690 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2691 			    signal_pending(current))
2692 				break;
2693 		} else {
2694 			if (sock_flag(sk, SOCK_DONE))
2695 				break;
2696 
2697 			if (sk->sk_err) {
2698 				copied = sock_error(sk);
2699 				break;
2700 			}
2701 
2702 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2703 				break;
2704 
2705 			if (sk->sk_state == TCP_CLOSE) {
2706 				/* This occurs when user tries to read
2707 				 * from never connected socket.
2708 				 */
2709 				copied = -ENOTCONN;
2710 				break;
2711 			}
2712 
2713 			if (!timeo) {
2714 				copied = -EAGAIN;
2715 				break;
2716 			}
2717 
2718 			if (signal_pending(current)) {
2719 				copied = sock_intr_errno(timeo);
2720 				break;
2721 			}
2722 		}
2723 
2724 		if (copied >= target) {
2725 			/* Do not sleep, just process backlog. */
2726 			__sk_flush_backlog(sk);
2727 		} else {
2728 			tcp_cleanup_rbuf(sk, copied);
2729 			err = sk_wait_data(sk, &timeo, last);
2730 			if (err < 0) {
2731 				err = copied ? : err;
2732 				goto out;
2733 			}
2734 		}
2735 
2736 		if ((flags & MSG_PEEK) &&
2737 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2738 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2739 					    current->comm,
2740 					    task_pid_nr(current));
2741 			peek_seq = tp->copied_seq + peek_offset;
2742 		}
2743 		continue;
2744 
2745 found_ok_skb:
2746 		/* Ok so how much can we use? */
2747 		used = skb->len - offset;
2748 		if (len < used)
2749 			used = len;
2750 
2751 		/* Do we have urgent data here? */
2752 		if (unlikely(tp->urg_data)) {
2753 			u32 urg_offset = tp->urg_seq - *seq;
2754 			if (urg_offset < used) {
2755 				if (!urg_offset) {
2756 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2757 						WRITE_ONCE(*seq, *seq + 1);
2758 						urg_hole++;
2759 						offset++;
2760 						used--;
2761 						if (!used)
2762 							goto skip_copy;
2763 					}
2764 				} else
2765 					used = urg_offset;
2766 			}
2767 		}
2768 
2769 		if (!(flags & MSG_TRUNC)) {
2770 			if (last_copied_dmabuf != -1 &&
2771 			    last_copied_dmabuf != !skb_frags_readable(skb))
2772 				break;
2773 
2774 			if (skb_frags_readable(skb)) {
2775 				err = skb_copy_datagram_msg(skb, offset, msg,
2776 							    used);
2777 				if (err) {
2778 					/* Exception. Bailout! */
2779 					if (!copied)
2780 						copied = -EFAULT;
2781 					break;
2782 				}
2783 			} else {
2784 				if (!(flags & MSG_SOCK_DEVMEM)) {
2785 					/* dmabuf skbs can only be received
2786 					 * with the MSG_SOCK_DEVMEM flag.
2787 					 */
2788 					if (!copied)
2789 						copied = -EFAULT;
2790 
2791 					break;
2792 				}
2793 
2794 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2795 							 used);
2796 				if (err <= 0) {
2797 					if (!copied)
2798 						copied = -EFAULT;
2799 
2800 					break;
2801 				}
2802 				used = err;
2803 			}
2804 		}
2805 
2806 		last_copied_dmabuf = !skb_frags_readable(skb);
2807 
2808 		WRITE_ONCE(*seq, *seq + used);
2809 		copied += used;
2810 		len -= used;
2811 		if (flags & MSG_PEEK)
2812 			sk_peek_offset_fwd(sk, used);
2813 		else
2814 			sk_peek_offset_bwd(sk, used);
2815 		tcp_rcv_space_adjust(sk);
2816 
2817 skip_copy:
2818 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2819 			WRITE_ONCE(tp->urg_data, 0);
2820 			tcp_fast_path_check(sk);
2821 		}
2822 
2823 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2824 			tcp_update_recv_tstamps(skb, tss);
2825 			*cmsg_flags |= TCP_CMSG_TS;
2826 		}
2827 
2828 		if (used + offset < skb->len)
2829 			continue;
2830 
2831 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2832 			goto found_fin_ok;
2833 		if (!(flags & MSG_PEEK))
2834 			tcp_eat_recv_skb(sk, skb);
2835 		continue;
2836 
2837 found_fin_ok:
2838 		/* Process the FIN. */
2839 		WRITE_ONCE(*seq, *seq + 1);
2840 		if (!(flags & MSG_PEEK))
2841 			tcp_eat_recv_skb(sk, skb);
2842 		break;
2843 	} while (len > 0);
2844 
2845 	/* According to UNIX98, msg_name/msg_namelen are ignored
2846 	 * on connected socket. I was just happy when found this 8) --ANK
2847 	 */
2848 
2849 	/* Clean up data we have read: This will do ACK frames. */
2850 	tcp_cleanup_rbuf(sk, copied);
2851 	return copied;
2852 
2853 out:
2854 	return err;
2855 
2856 recv_urg:
2857 	err = tcp_recv_urg(sk, msg, len, flags);
2858 	goto out;
2859 
2860 recv_sndq:
2861 	err = tcp_peek_sndq(sk, msg, len);
2862 	goto out;
2863 }
2864 
2865 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2866 		int *addr_len)
2867 {
2868 	int cmsg_flags = 0, ret;
2869 	struct scm_timestamping_internal tss;
2870 
2871 	if (unlikely(flags & MSG_ERRQUEUE))
2872 		return inet_recv_error(sk, msg, len, addr_len);
2873 
2874 	if (sk_can_busy_loop(sk) &&
2875 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2876 	    sk->sk_state == TCP_ESTABLISHED)
2877 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2878 
2879 	lock_sock(sk);
2880 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2881 	release_sock(sk);
2882 
2883 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2884 		if (cmsg_flags & TCP_CMSG_TS)
2885 			tcp_recv_timestamp(msg, sk, &tss);
2886 		if (msg->msg_get_inq) {
2887 			msg->msg_inq = tcp_inq_hint(sk);
2888 			if (cmsg_flags & TCP_CMSG_INQ)
2889 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2890 					 sizeof(msg->msg_inq), &msg->msg_inq);
2891 		}
2892 	}
2893 	return ret;
2894 }
2895 EXPORT_IPV6_MOD(tcp_recvmsg);
2896 
2897 void tcp_set_state(struct sock *sk, int state)
2898 {
2899 	int oldstate = sk->sk_state;
2900 
2901 	/* We defined a new enum for TCP states that are exported in BPF
2902 	 * so as not force the internal TCP states to be frozen. The
2903 	 * following checks will detect if an internal state value ever
2904 	 * differs from the BPF value. If this ever happens, then we will
2905 	 * need to remap the internal value to the BPF value before calling
2906 	 * tcp_call_bpf_2arg.
2907 	 */
2908 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2909 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2910 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2911 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2912 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2913 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2914 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2915 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2916 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2917 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2918 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2919 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2920 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2921 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2922 
2923 	/* bpf uapi header bpf.h defines an anonymous enum with values
2924 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2925 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2926 	 * But clang built vmlinux does not have this enum in DWARF
2927 	 * since clang removes the above code before generating IR/debuginfo.
2928 	 * Let us explicitly emit the type debuginfo to ensure the
2929 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2930 	 * regardless of which compiler is used.
2931 	 */
2932 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2933 
2934 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2935 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2936 
2937 	switch (state) {
2938 	case TCP_ESTABLISHED:
2939 		if (oldstate != TCP_ESTABLISHED)
2940 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2941 		break;
2942 	case TCP_CLOSE_WAIT:
2943 		if (oldstate == TCP_SYN_RECV)
2944 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2945 		break;
2946 
2947 	case TCP_CLOSE:
2948 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2949 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2950 
2951 		sk->sk_prot->unhash(sk);
2952 		if (inet_csk(sk)->icsk_bind_hash &&
2953 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2954 			inet_put_port(sk);
2955 		fallthrough;
2956 	default:
2957 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2958 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2959 	}
2960 
2961 	/* Change state AFTER socket is unhashed to avoid closed
2962 	 * socket sitting in hash tables.
2963 	 */
2964 	inet_sk_state_store(sk, state);
2965 }
2966 EXPORT_SYMBOL_GPL(tcp_set_state);
2967 
2968 /*
2969  *	State processing on a close. This implements the state shift for
2970  *	sending our FIN frame. Note that we only send a FIN for some
2971  *	states. A shutdown() may have already sent the FIN, or we may be
2972  *	closed.
2973  */
2974 
2975 static const unsigned char new_state[16] = {
2976   /* current state:        new state:      action:	*/
2977   [0 /* (Invalid) */]	= TCP_CLOSE,
2978   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2979   [TCP_SYN_SENT]	= TCP_CLOSE,
2980   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2981   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2982   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2983   [TCP_TIME_WAIT]	= TCP_CLOSE,
2984   [TCP_CLOSE]		= TCP_CLOSE,
2985   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2986   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2987   [TCP_LISTEN]		= TCP_CLOSE,
2988   [TCP_CLOSING]		= TCP_CLOSING,
2989   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2990 };
2991 
2992 static int tcp_close_state(struct sock *sk)
2993 {
2994 	int next = (int)new_state[sk->sk_state];
2995 	int ns = next & TCP_STATE_MASK;
2996 
2997 	tcp_set_state(sk, ns);
2998 
2999 	return next & TCP_ACTION_FIN;
3000 }
3001 
3002 /*
3003  *	Shutdown the sending side of a connection. Much like close except
3004  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3005  */
3006 
3007 void tcp_shutdown(struct sock *sk, int how)
3008 {
3009 	/*	We need to grab some memory, and put together a FIN,
3010 	 *	and then put it into the queue to be sent.
3011 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3012 	 */
3013 	if (!(how & SEND_SHUTDOWN))
3014 		return;
3015 
3016 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3017 	if ((1 << sk->sk_state) &
3018 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3019 	     TCPF_CLOSE_WAIT)) {
3020 		/* Clear out any half completed packets.  FIN if needed. */
3021 		if (tcp_close_state(sk))
3022 			tcp_send_fin(sk);
3023 	}
3024 }
3025 EXPORT_IPV6_MOD(tcp_shutdown);
3026 
3027 int tcp_orphan_count_sum(void)
3028 {
3029 	int i, total = 0;
3030 
3031 	for_each_possible_cpu(i)
3032 		total += per_cpu(tcp_orphan_count, i);
3033 
3034 	return max(total, 0);
3035 }
3036 
3037 static int tcp_orphan_cache;
3038 static struct timer_list tcp_orphan_timer;
3039 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3040 
3041 static void tcp_orphan_update(struct timer_list *unused)
3042 {
3043 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3044 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3045 }
3046 
3047 static bool tcp_too_many_orphans(int shift)
3048 {
3049 	return READ_ONCE(tcp_orphan_cache) << shift >
3050 		READ_ONCE(sysctl_tcp_max_orphans);
3051 }
3052 
3053 static bool tcp_out_of_memory(const struct sock *sk)
3054 {
3055 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3056 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3057 		return true;
3058 	return false;
3059 }
3060 
3061 bool tcp_check_oom(const struct sock *sk, int shift)
3062 {
3063 	bool too_many_orphans, out_of_socket_memory;
3064 
3065 	too_many_orphans = tcp_too_many_orphans(shift);
3066 	out_of_socket_memory = tcp_out_of_memory(sk);
3067 
3068 	if (too_many_orphans)
3069 		net_info_ratelimited("too many orphaned sockets\n");
3070 	if (out_of_socket_memory)
3071 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3072 	return too_many_orphans || out_of_socket_memory;
3073 }
3074 
3075 void __tcp_close(struct sock *sk, long timeout)
3076 {
3077 	struct sk_buff *skb;
3078 	int data_was_unread = 0;
3079 	int state;
3080 
3081 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3082 
3083 	if (sk->sk_state == TCP_LISTEN) {
3084 		tcp_set_state(sk, TCP_CLOSE);
3085 
3086 		/* Special case. */
3087 		inet_csk_listen_stop(sk);
3088 
3089 		goto adjudge_to_death;
3090 	}
3091 
3092 	/*  We need to flush the recv. buffs.  We do this only on the
3093 	 *  descriptor close, not protocol-sourced closes, because the
3094 	 *  reader process may not have drained the data yet!
3095 	 */
3096 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3097 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3098 
3099 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3100 			len--;
3101 		data_was_unread += len;
3102 		__kfree_skb(skb);
3103 	}
3104 
3105 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3106 	if (sk->sk_state == TCP_CLOSE)
3107 		goto adjudge_to_death;
3108 
3109 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3110 	 * data was lost. To witness the awful effects of the old behavior of
3111 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3112 	 * GET in an FTP client, suspend the process, wait for the client to
3113 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3114 	 * Note: timeout is always zero in such a case.
3115 	 */
3116 	if (unlikely(tcp_sk(sk)->repair)) {
3117 		sk->sk_prot->disconnect(sk, 0);
3118 	} else if (data_was_unread) {
3119 		/* Unread data was tossed, zap the connection. */
3120 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3121 		tcp_set_state(sk, TCP_CLOSE);
3122 		tcp_send_active_reset(sk, sk->sk_allocation,
3123 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3124 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3125 		/* Check zero linger _after_ checking for unread data. */
3126 		sk->sk_prot->disconnect(sk, 0);
3127 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3128 	} else if (tcp_close_state(sk)) {
3129 		/* We FIN if the application ate all the data before
3130 		 * zapping the connection.
3131 		 */
3132 
3133 		/* RED-PEN. Formally speaking, we have broken TCP state
3134 		 * machine. State transitions:
3135 		 *
3136 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3137 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3138 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3139 		 *
3140 		 * are legal only when FIN has been sent (i.e. in window),
3141 		 * rather than queued out of window. Purists blame.
3142 		 *
3143 		 * F.e. "RFC state" is ESTABLISHED,
3144 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3145 		 *
3146 		 * The visible declinations are that sometimes
3147 		 * we enter time-wait state, when it is not required really
3148 		 * (harmless), do not send active resets, when they are
3149 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3150 		 * they look as CLOSING or LAST_ACK for Linux)
3151 		 * Probably, I missed some more holelets.
3152 		 * 						--ANK
3153 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3154 		 * in a single packet! (May consider it later but will
3155 		 * probably need API support or TCP_CORK SYN-ACK until
3156 		 * data is written and socket is closed.)
3157 		 */
3158 		tcp_send_fin(sk);
3159 	}
3160 
3161 	sk_stream_wait_close(sk, timeout);
3162 
3163 adjudge_to_death:
3164 	state = sk->sk_state;
3165 	sock_hold(sk);
3166 	sock_orphan(sk);
3167 
3168 	local_bh_disable();
3169 	bh_lock_sock(sk);
3170 	/* remove backlog if any, without releasing ownership. */
3171 	__release_sock(sk);
3172 
3173 	this_cpu_inc(tcp_orphan_count);
3174 
3175 	/* Have we already been destroyed by a softirq or backlog? */
3176 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3177 		goto out;
3178 
3179 	/*	This is a (useful) BSD violating of the RFC. There is a
3180 	 *	problem with TCP as specified in that the other end could
3181 	 *	keep a socket open forever with no application left this end.
3182 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3183 	 *	our end. If they send after that then tough - BUT: long enough
3184 	 *	that we won't make the old 4*rto = almost no time - whoops
3185 	 *	reset mistake.
3186 	 *
3187 	 *	Nope, it was not mistake. It is really desired behaviour
3188 	 *	f.e. on http servers, when such sockets are useless, but
3189 	 *	consume significant resources. Let's do it with special
3190 	 *	linger2	option.					--ANK
3191 	 */
3192 
3193 	if (sk->sk_state == TCP_FIN_WAIT2) {
3194 		struct tcp_sock *tp = tcp_sk(sk);
3195 		if (READ_ONCE(tp->linger2) < 0) {
3196 			tcp_set_state(sk, TCP_CLOSE);
3197 			tcp_send_active_reset(sk, GFP_ATOMIC,
3198 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3199 			__NET_INC_STATS(sock_net(sk),
3200 					LINUX_MIB_TCPABORTONLINGER);
3201 		} else {
3202 			const int tmo = tcp_fin_time(sk);
3203 
3204 			if (tmo > TCP_TIMEWAIT_LEN) {
3205 				tcp_reset_keepalive_timer(sk,
3206 						tmo - TCP_TIMEWAIT_LEN);
3207 			} else {
3208 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3209 				goto out;
3210 			}
3211 		}
3212 	}
3213 	if (sk->sk_state != TCP_CLOSE) {
3214 		if (tcp_check_oom(sk, 0)) {
3215 			tcp_set_state(sk, TCP_CLOSE);
3216 			tcp_send_active_reset(sk, GFP_ATOMIC,
3217 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3218 			__NET_INC_STATS(sock_net(sk),
3219 					LINUX_MIB_TCPABORTONMEMORY);
3220 		} else if (!check_net(sock_net(sk))) {
3221 			/* Not possible to send reset; just close */
3222 			tcp_set_state(sk, TCP_CLOSE);
3223 		}
3224 	}
3225 
3226 	if (sk->sk_state == TCP_CLOSE) {
3227 		struct request_sock *req;
3228 
3229 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3230 						lockdep_sock_is_held(sk));
3231 		/* We could get here with a non-NULL req if the socket is
3232 		 * aborted (e.g., closed with unread data) before 3WHS
3233 		 * finishes.
3234 		 */
3235 		if (req)
3236 			reqsk_fastopen_remove(sk, req, false);
3237 		inet_csk_destroy_sock(sk);
3238 	}
3239 	/* Otherwise, socket is reprieved until protocol close. */
3240 
3241 out:
3242 	bh_unlock_sock(sk);
3243 	local_bh_enable();
3244 }
3245 
3246 void tcp_close(struct sock *sk, long timeout)
3247 {
3248 	lock_sock(sk);
3249 	__tcp_close(sk, timeout);
3250 	release_sock(sk);
3251 	if (!sk->sk_net_refcnt)
3252 		inet_csk_clear_xmit_timers_sync(sk);
3253 	sock_put(sk);
3254 }
3255 EXPORT_SYMBOL(tcp_close);
3256 
3257 /* These states need RST on ABORT according to RFC793 */
3258 
3259 static inline bool tcp_need_reset(int state)
3260 {
3261 	return (1 << state) &
3262 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3263 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3264 }
3265 
3266 static void tcp_rtx_queue_purge(struct sock *sk)
3267 {
3268 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3269 
3270 	tcp_sk(sk)->highest_sack = NULL;
3271 	while (p) {
3272 		struct sk_buff *skb = rb_to_skb(p);
3273 
3274 		p = rb_next(p);
3275 		/* Since we are deleting whole queue, no need to
3276 		 * list_del(&skb->tcp_tsorted_anchor)
3277 		 */
3278 		tcp_rtx_queue_unlink(skb, sk);
3279 		tcp_wmem_free_skb(sk, skb);
3280 	}
3281 }
3282 
3283 void tcp_write_queue_purge(struct sock *sk)
3284 {
3285 	struct sk_buff *skb;
3286 
3287 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3288 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3289 		tcp_skb_tsorted_anchor_cleanup(skb);
3290 		tcp_wmem_free_skb(sk, skb);
3291 	}
3292 	tcp_rtx_queue_purge(sk);
3293 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3294 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3295 	tcp_sk(sk)->packets_out = 0;
3296 	inet_csk(sk)->icsk_backoff = 0;
3297 }
3298 
3299 int tcp_disconnect(struct sock *sk, int flags)
3300 {
3301 	struct inet_sock *inet = inet_sk(sk);
3302 	struct inet_connection_sock *icsk = inet_csk(sk);
3303 	struct tcp_sock *tp = tcp_sk(sk);
3304 	int old_state = sk->sk_state;
3305 	u32 seq;
3306 
3307 	if (old_state != TCP_CLOSE)
3308 		tcp_set_state(sk, TCP_CLOSE);
3309 
3310 	/* ABORT function of RFC793 */
3311 	if (old_state == TCP_LISTEN) {
3312 		inet_csk_listen_stop(sk);
3313 	} else if (unlikely(tp->repair)) {
3314 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3315 	} else if (tcp_need_reset(old_state)) {
3316 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3317 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3318 	} else if (tp->snd_nxt != tp->write_seq &&
3319 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3320 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3321 		 * states
3322 		 */
3323 		tcp_send_active_reset(sk, gfp_any(),
3324 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3325 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3326 	} else if (old_state == TCP_SYN_SENT)
3327 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3328 
3329 	tcp_clear_xmit_timers(sk);
3330 	__skb_queue_purge(&sk->sk_receive_queue);
3331 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3332 	WRITE_ONCE(tp->urg_data, 0);
3333 	sk_set_peek_off(sk, -1);
3334 	tcp_write_queue_purge(sk);
3335 	tcp_fastopen_active_disable_ofo_check(sk);
3336 	skb_rbtree_purge(&tp->out_of_order_queue);
3337 
3338 	inet->inet_dport = 0;
3339 
3340 	inet_bhash2_reset_saddr(sk);
3341 
3342 	WRITE_ONCE(sk->sk_shutdown, 0);
3343 	sock_reset_flag(sk, SOCK_DONE);
3344 	tp->srtt_us = 0;
3345 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3346 	tp->rcv_rtt_last_tsecr = 0;
3347 
3348 	seq = tp->write_seq + tp->max_window + 2;
3349 	if (!seq)
3350 		seq = 1;
3351 	WRITE_ONCE(tp->write_seq, seq);
3352 
3353 	icsk->icsk_backoff = 0;
3354 	icsk->icsk_probes_out = 0;
3355 	icsk->icsk_probes_tstamp = 0;
3356 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3357 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3358 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3359 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3360 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3361 	tp->snd_cwnd_cnt = 0;
3362 	tp->is_cwnd_limited = 0;
3363 	tp->max_packets_out = 0;
3364 	tp->window_clamp = 0;
3365 	tp->delivered = 0;
3366 	tp->delivered_ce = 0;
3367 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3368 		icsk->icsk_ca_ops->release(sk);
3369 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3370 	icsk->icsk_ca_initialized = 0;
3371 	tcp_set_ca_state(sk, TCP_CA_Open);
3372 	tp->is_sack_reneg = 0;
3373 	tcp_clear_retrans(tp);
3374 	tp->total_retrans = 0;
3375 	inet_csk_delack_init(sk);
3376 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3377 	 * issue in __tcp_select_window()
3378 	 */
3379 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3380 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3381 	__sk_dst_reset(sk);
3382 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3383 	tcp_saved_syn_free(tp);
3384 	tp->compressed_ack = 0;
3385 	tp->segs_in = 0;
3386 	tp->segs_out = 0;
3387 	tp->bytes_sent = 0;
3388 	tp->bytes_acked = 0;
3389 	tp->bytes_received = 0;
3390 	tp->bytes_retrans = 0;
3391 	tp->data_segs_in = 0;
3392 	tp->data_segs_out = 0;
3393 	tp->duplicate_sack[0].start_seq = 0;
3394 	tp->duplicate_sack[0].end_seq = 0;
3395 	tp->dsack_dups = 0;
3396 	tp->reord_seen = 0;
3397 	tp->retrans_out = 0;
3398 	tp->sacked_out = 0;
3399 	tp->tlp_high_seq = 0;
3400 	tp->last_oow_ack_time = 0;
3401 	tp->plb_rehash = 0;
3402 	/* There's a bubble in the pipe until at least the first ACK. */
3403 	tp->app_limited = ~0U;
3404 	tp->rate_app_limited = 1;
3405 	tp->rack.mstamp = 0;
3406 	tp->rack.advanced = 0;
3407 	tp->rack.reo_wnd_steps = 1;
3408 	tp->rack.last_delivered = 0;
3409 	tp->rack.reo_wnd_persist = 0;
3410 	tp->rack.dsack_seen = 0;
3411 	tp->syn_data_acked = 0;
3412 	tp->rx_opt.saw_tstamp = 0;
3413 	tp->rx_opt.dsack = 0;
3414 	tp->rx_opt.num_sacks = 0;
3415 	tp->rcv_ooopack = 0;
3416 
3417 
3418 	/* Clean up fastopen related fields */
3419 	tcp_free_fastopen_req(tp);
3420 	inet_clear_bit(DEFER_CONNECT, sk);
3421 	tp->fastopen_client_fail = 0;
3422 
3423 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3424 
3425 	if (sk->sk_frag.page) {
3426 		put_page(sk->sk_frag.page);
3427 		sk->sk_frag.page = NULL;
3428 		sk->sk_frag.offset = 0;
3429 	}
3430 	sk_error_report(sk);
3431 	return 0;
3432 }
3433 EXPORT_SYMBOL(tcp_disconnect);
3434 
3435 static inline bool tcp_can_repair_sock(const struct sock *sk)
3436 {
3437 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3438 		(sk->sk_state != TCP_LISTEN);
3439 }
3440 
3441 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3442 {
3443 	struct tcp_repair_window opt;
3444 
3445 	if (!tp->repair)
3446 		return -EPERM;
3447 
3448 	if (len != sizeof(opt))
3449 		return -EINVAL;
3450 
3451 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3452 		return -EFAULT;
3453 
3454 	if (opt.max_window < opt.snd_wnd)
3455 		return -EINVAL;
3456 
3457 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3458 		return -EINVAL;
3459 
3460 	if (after(opt.rcv_wup, tp->rcv_nxt))
3461 		return -EINVAL;
3462 
3463 	tp->snd_wl1	= opt.snd_wl1;
3464 	tp->snd_wnd	= opt.snd_wnd;
3465 	tp->max_window	= opt.max_window;
3466 
3467 	tp->rcv_wnd	= opt.rcv_wnd;
3468 	tp->rcv_wup	= opt.rcv_wup;
3469 
3470 	return 0;
3471 }
3472 
3473 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3474 		unsigned int len)
3475 {
3476 	struct tcp_sock *tp = tcp_sk(sk);
3477 	struct tcp_repair_opt opt;
3478 	size_t offset = 0;
3479 
3480 	while (len >= sizeof(opt)) {
3481 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3482 			return -EFAULT;
3483 
3484 		offset += sizeof(opt);
3485 		len -= sizeof(opt);
3486 
3487 		switch (opt.opt_code) {
3488 		case TCPOPT_MSS:
3489 			tp->rx_opt.mss_clamp = opt.opt_val;
3490 			tcp_mtup_init(sk);
3491 			break;
3492 		case TCPOPT_WINDOW:
3493 			{
3494 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3495 				u16 rcv_wscale = opt.opt_val >> 16;
3496 
3497 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3498 					return -EFBIG;
3499 
3500 				tp->rx_opt.snd_wscale = snd_wscale;
3501 				tp->rx_opt.rcv_wscale = rcv_wscale;
3502 				tp->rx_opt.wscale_ok = 1;
3503 			}
3504 			break;
3505 		case TCPOPT_SACK_PERM:
3506 			if (opt.opt_val != 0)
3507 				return -EINVAL;
3508 
3509 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3510 			break;
3511 		case TCPOPT_TIMESTAMP:
3512 			if (opt.opt_val != 0)
3513 				return -EINVAL;
3514 
3515 			tp->rx_opt.tstamp_ok = 1;
3516 			break;
3517 		}
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3524 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3525 
3526 static void tcp_enable_tx_delay(void)
3527 {
3528 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3529 		static int __tcp_tx_delay_enabled = 0;
3530 
3531 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3532 			static_branch_enable(&tcp_tx_delay_enabled);
3533 			pr_info("TCP_TX_DELAY enabled\n");
3534 		}
3535 	}
3536 }
3537 
3538 /* When set indicates to always queue non-full frames.  Later the user clears
3539  * this option and we transmit any pending partial frames in the queue.  This is
3540  * meant to be used alongside sendfile() to get properly filled frames when the
3541  * user (for example) must write out headers with a write() call first and then
3542  * use sendfile to send out the data parts.
3543  *
3544  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3545  * TCP_NODELAY.
3546  */
3547 void __tcp_sock_set_cork(struct sock *sk, bool on)
3548 {
3549 	struct tcp_sock *tp = tcp_sk(sk);
3550 
3551 	if (on) {
3552 		tp->nonagle |= TCP_NAGLE_CORK;
3553 	} else {
3554 		tp->nonagle &= ~TCP_NAGLE_CORK;
3555 		if (tp->nonagle & TCP_NAGLE_OFF)
3556 			tp->nonagle |= TCP_NAGLE_PUSH;
3557 		tcp_push_pending_frames(sk);
3558 	}
3559 }
3560 
3561 void tcp_sock_set_cork(struct sock *sk, bool on)
3562 {
3563 	lock_sock(sk);
3564 	__tcp_sock_set_cork(sk, on);
3565 	release_sock(sk);
3566 }
3567 EXPORT_SYMBOL(tcp_sock_set_cork);
3568 
3569 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3570  * remembered, but it is not activated until cork is cleared.
3571  *
3572  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3573  * even TCP_CORK for currently queued segments.
3574  */
3575 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3576 {
3577 	if (on) {
3578 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3579 		tcp_push_pending_frames(sk);
3580 	} else {
3581 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3582 	}
3583 }
3584 
3585 void tcp_sock_set_nodelay(struct sock *sk)
3586 {
3587 	lock_sock(sk);
3588 	__tcp_sock_set_nodelay(sk, true);
3589 	release_sock(sk);
3590 }
3591 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3592 
3593 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3594 {
3595 	if (!val) {
3596 		inet_csk_enter_pingpong_mode(sk);
3597 		return;
3598 	}
3599 
3600 	inet_csk_exit_pingpong_mode(sk);
3601 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3602 	    inet_csk_ack_scheduled(sk)) {
3603 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3604 		tcp_cleanup_rbuf(sk, 1);
3605 		if (!(val & 1))
3606 			inet_csk_enter_pingpong_mode(sk);
3607 	}
3608 }
3609 
3610 void tcp_sock_set_quickack(struct sock *sk, int val)
3611 {
3612 	lock_sock(sk);
3613 	__tcp_sock_set_quickack(sk, val);
3614 	release_sock(sk);
3615 }
3616 EXPORT_SYMBOL(tcp_sock_set_quickack);
3617 
3618 int tcp_sock_set_syncnt(struct sock *sk, int val)
3619 {
3620 	if (val < 1 || val > MAX_TCP_SYNCNT)
3621 		return -EINVAL;
3622 
3623 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3624 	return 0;
3625 }
3626 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3627 
3628 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3629 {
3630 	/* Cap the max time in ms TCP will retry or probe the window
3631 	 * before giving up and aborting (ETIMEDOUT) a connection.
3632 	 */
3633 	if (val < 0)
3634 		return -EINVAL;
3635 
3636 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3637 	return 0;
3638 }
3639 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3640 
3641 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3642 {
3643 	struct tcp_sock *tp = tcp_sk(sk);
3644 
3645 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3646 		return -EINVAL;
3647 
3648 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3649 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3650 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3651 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3652 		u32 elapsed = keepalive_time_elapsed(tp);
3653 
3654 		if (tp->keepalive_time > elapsed)
3655 			elapsed = tp->keepalive_time - elapsed;
3656 		else
3657 			elapsed = 0;
3658 		tcp_reset_keepalive_timer(sk, elapsed);
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 int tcp_sock_set_keepidle(struct sock *sk, int val)
3665 {
3666 	int err;
3667 
3668 	lock_sock(sk);
3669 	err = tcp_sock_set_keepidle_locked(sk, val);
3670 	release_sock(sk);
3671 	return err;
3672 }
3673 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3674 
3675 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3676 {
3677 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3678 		return -EINVAL;
3679 
3680 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3681 	return 0;
3682 }
3683 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3684 
3685 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3686 {
3687 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3688 		return -EINVAL;
3689 
3690 	/* Paired with READ_ONCE() in keepalive_probes() */
3691 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3692 	return 0;
3693 }
3694 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3695 
3696 int tcp_set_window_clamp(struct sock *sk, int val)
3697 {
3698 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3699 	struct tcp_sock *tp = tcp_sk(sk);
3700 
3701 	if (!val) {
3702 		if (sk->sk_state != TCP_CLOSE)
3703 			return -EINVAL;
3704 		WRITE_ONCE(tp->window_clamp, 0);
3705 		return 0;
3706 	}
3707 
3708 	old_window_clamp = tp->window_clamp;
3709 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3710 
3711 	if (new_window_clamp == old_window_clamp)
3712 		return 0;
3713 
3714 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3715 
3716 	/* Need to apply the reserved mem provisioning only
3717 	 * when shrinking the window clamp.
3718 	 */
3719 	if (new_window_clamp < old_window_clamp) {
3720 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3721 	} else {
3722 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3723 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3724 	}
3725 	return 0;
3726 }
3727 
3728 /*
3729  *	Socket option code for TCP.
3730  */
3731 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3732 		      sockptr_t optval, unsigned int optlen)
3733 {
3734 	struct tcp_sock *tp = tcp_sk(sk);
3735 	struct inet_connection_sock *icsk = inet_csk(sk);
3736 	struct net *net = sock_net(sk);
3737 	int val;
3738 	int err = 0;
3739 
3740 	/* These are data/string values, all the others are ints */
3741 	switch (optname) {
3742 	case TCP_CONGESTION: {
3743 		char name[TCP_CA_NAME_MAX];
3744 
3745 		if (optlen < 1)
3746 			return -EINVAL;
3747 
3748 		val = strncpy_from_sockptr(name, optval,
3749 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3750 		if (val < 0)
3751 			return -EFAULT;
3752 		name[val] = 0;
3753 
3754 		sockopt_lock_sock(sk);
3755 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3756 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3757 								    CAP_NET_ADMIN));
3758 		sockopt_release_sock(sk);
3759 		return err;
3760 	}
3761 	case TCP_ULP: {
3762 		char name[TCP_ULP_NAME_MAX];
3763 
3764 		if (optlen < 1)
3765 			return -EINVAL;
3766 
3767 		val = strncpy_from_sockptr(name, optval,
3768 					min_t(long, TCP_ULP_NAME_MAX - 1,
3769 					      optlen));
3770 		if (val < 0)
3771 			return -EFAULT;
3772 		name[val] = 0;
3773 
3774 		sockopt_lock_sock(sk);
3775 		err = tcp_set_ulp(sk, name);
3776 		sockopt_release_sock(sk);
3777 		return err;
3778 	}
3779 	case TCP_FASTOPEN_KEY: {
3780 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3781 		__u8 *backup_key = NULL;
3782 
3783 		/* Allow a backup key as well to facilitate key rotation
3784 		 * First key is the active one.
3785 		 */
3786 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3787 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3788 			return -EINVAL;
3789 
3790 		if (copy_from_sockptr(key, optval, optlen))
3791 			return -EFAULT;
3792 
3793 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3794 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3795 
3796 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3797 	}
3798 	default:
3799 		/* fallthru */
3800 		break;
3801 	}
3802 
3803 	if (optlen < sizeof(int))
3804 		return -EINVAL;
3805 
3806 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3807 		return -EFAULT;
3808 
3809 	/* Handle options that can be set without locking the socket. */
3810 	switch (optname) {
3811 	case TCP_SYNCNT:
3812 		return tcp_sock_set_syncnt(sk, val);
3813 	case TCP_USER_TIMEOUT:
3814 		return tcp_sock_set_user_timeout(sk, val);
3815 	case TCP_KEEPINTVL:
3816 		return tcp_sock_set_keepintvl(sk, val);
3817 	case TCP_KEEPCNT:
3818 		return tcp_sock_set_keepcnt(sk, val);
3819 	case TCP_LINGER2:
3820 		if (val < 0)
3821 			WRITE_ONCE(tp->linger2, -1);
3822 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3823 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3824 		else
3825 			WRITE_ONCE(tp->linger2, val * HZ);
3826 		return 0;
3827 	case TCP_DEFER_ACCEPT:
3828 		/* Translate value in seconds to number of retransmits */
3829 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3830 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3831 					   TCP_RTO_MAX / HZ));
3832 		return 0;
3833 	case TCP_RTO_MAX_MS:
3834 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3835 			return -EINVAL;
3836 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3837 		return 0;
3838 	case TCP_RTO_MIN_US: {
3839 		int rto_min = usecs_to_jiffies(val);
3840 
3841 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3842 			return -EINVAL;
3843 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3844 		return 0;
3845 	}
3846 	case TCP_DELACK_MAX_US: {
3847 		int delack_max = usecs_to_jiffies(val);
3848 
3849 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3850 			return -EINVAL;
3851 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3852 		return 0;
3853 	}
3854 	}
3855 
3856 	sockopt_lock_sock(sk);
3857 
3858 	switch (optname) {
3859 	case TCP_MAXSEG:
3860 		/* Values greater than interface MTU won't take effect. However
3861 		 * at the point when this call is done we typically don't yet
3862 		 * know which interface is going to be used
3863 		 */
3864 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3865 			err = -EINVAL;
3866 			break;
3867 		}
3868 		tp->rx_opt.user_mss = val;
3869 		break;
3870 
3871 	case TCP_NODELAY:
3872 		__tcp_sock_set_nodelay(sk, val);
3873 		break;
3874 
3875 	case TCP_THIN_LINEAR_TIMEOUTS:
3876 		if (val < 0 || val > 1)
3877 			err = -EINVAL;
3878 		else
3879 			tp->thin_lto = val;
3880 		break;
3881 
3882 	case TCP_THIN_DUPACK:
3883 		if (val < 0 || val > 1)
3884 			err = -EINVAL;
3885 		break;
3886 
3887 	case TCP_REPAIR:
3888 		if (!tcp_can_repair_sock(sk))
3889 			err = -EPERM;
3890 		else if (val == TCP_REPAIR_ON) {
3891 			tp->repair = 1;
3892 			sk->sk_reuse = SK_FORCE_REUSE;
3893 			tp->repair_queue = TCP_NO_QUEUE;
3894 		} else if (val == TCP_REPAIR_OFF) {
3895 			tp->repair = 0;
3896 			sk->sk_reuse = SK_NO_REUSE;
3897 			tcp_send_window_probe(sk);
3898 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3899 			tp->repair = 0;
3900 			sk->sk_reuse = SK_NO_REUSE;
3901 		} else
3902 			err = -EINVAL;
3903 
3904 		break;
3905 
3906 	case TCP_REPAIR_QUEUE:
3907 		if (!tp->repair)
3908 			err = -EPERM;
3909 		else if ((unsigned int)val < TCP_QUEUES_NR)
3910 			tp->repair_queue = val;
3911 		else
3912 			err = -EINVAL;
3913 		break;
3914 
3915 	case TCP_QUEUE_SEQ:
3916 		if (sk->sk_state != TCP_CLOSE) {
3917 			err = -EPERM;
3918 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3919 			if (!tcp_rtx_queue_empty(sk))
3920 				err = -EPERM;
3921 			else
3922 				WRITE_ONCE(tp->write_seq, val);
3923 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3924 			if (tp->rcv_nxt != tp->copied_seq) {
3925 				err = -EPERM;
3926 			} else {
3927 				WRITE_ONCE(tp->rcv_nxt, val);
3928 				WRITE_ONCE(tp->copied_seq, val);
3929 			}
3930 		} else {
3931 			err = -EINVAL;
3932 		}
3933 		break;
3934 
3935 	case TCP_REPAIR_OPTIONS:
3936 		if (!tp->repair)
3937 			err = -EINVAL;
3938 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3939 			err = tcp_repair_options_est(sk, optval, optlen);
3940 		else
3941 			err = -EPERM;
3942 		break;
3943 
3944 	case TCP_CORK:
3945 		__tcp_sock_set_cork(sk, val);
3946 		break;
3947 
3948 	case TCP_KEEPIDLE:
3949 		err = tcp_sock_set_keepidle_locked(sk, val);
3950 		break;
3951 	case TCP_SAVE_SYN:
3952 		/* 0: disable, 1: enable, 2: start from ether_header */
3953 		if (val < 0 || val > 2)
3954 			err = -EINVAL;
3955 		else
3956 			tp->save_syn = val;
3957 		break;
3958 
3959 	case TCP_WINDOW_CLAMP:
3960 		err = tcp_set_window_clamp(sk, val);
3961 		break;
3962 
3963 	case TCP_QUICKACK:
3964 		__tcp_sock_set_quickack(sk, val);
3965 		break;
3966 
3967 	case TCP_AO_REPAIR:
3968 		if (!tcp_can_repair_sock(sk)) {
3969 			err = -EPERM;
3970 			break;
3971 		}
3972 		err = tcp_ao_set_repair(sk, optval, optlen);
3973 		break;
3974 #ifdef CONFIG_TCP_AO
3975 	case TCP_AO_ADD_KEY:
3976 	case TCP_AO_DEL_KEY:
3977 	case TCP_AO_INFO: {
3978 		/* If this is the first TCP-AO setsockopt() on the socket,
3979 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3980 		 * in any state.
3981 		 */
3982 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3983 			goto ao_parse;
3984 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3985 					      lockdep_sock_is_held(sk)))
3986 			goto ao_parse;
3987 		if (tp->repair)
3988 			goto ao_parse;
3989 		err = -EISCONN;
3990 		break;
3991 ao_parse:
3992 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3993 		break;
3994 	}
3995 #endif
3996 #ifdef CONFIG_TCP_MD5SIG
3997 	case TCP_MD5SIG:
3998 	case TCP_MD5SIG_EXT:
3999 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4000 		break;
4001 #endif
4002 	case TCP_FASTOPEN:
4003 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4004 		    TCPF_LISTEN))) {
4005 			tcp_fastopen_init_key_once(net);
4006 
4007 			fastopen_queue_tune(sk, val);
4008 		} else {
4009 			err = -EINVAL;
4010 		}
4011 		break;
4012 	case TCP_FASTOPEN_CONNECT:
4013 		if (val > 1 || val < 0) {
4014 			err = -EINVAL;
4015 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4016 			   TFO_CLIENT_ENABLE) {
4017 			if (sk->sk_state == TCP_CLOSE)
4018 				tp->fastopen_connect = val;
4019 			else
4020 				err = -EINVAL;
4021 		} else {
4022 			err = -EOPNOTSUPP;
4023 		}
4024 		break;
4025 	case TCP_FASTOPEN_NO_COOKIE:
4026 		if (val > 1 || val < 0)
4027 			err = -EINVAL;
4028 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4029 			err = -EINVAL;
4030 		else
4031 			tp->fastopen_no_cookie = val;
4032 		break;
4033 	case TCP_TIMESTAMP:
4034 		if (!tp->repair) {
4035 			err = -EPERM;
4036 			break;
4037 		}
4038 		/* val is an opaque field,
4039 		 * and low order bit contains usec_ts enable bit.
4040 		 * Its a best effort, and we do not care if user makes an error.
4041 		 */
4042 		tp->tcp_usec_ts = val & 1;
4043 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4044 		break;
4045 	case TCP_REPAIR_WINDOW:
4046 		err = tcp_repair_set_window(tp, optval, optlen);
4047 		break;
4048 	case TCP_NOTSENT_LOWAT:
4049 		WRITE_ONCE(tp->notsent_lowat, val);
4050 		sk->sk_write_space(sk);
4051 		break;
4052 	case TCP_INQ:
4053 		if (val > 1 || val < 0)
4054 			err = -EINVAL;
4055 		else
4056 			tp->recvmsg_inq = val;
4057 		break;
4058 	case TCP_TX_DELAY:
4059 		if (val)
4060 			tcp_enable_tx_delay();
4061 		WRITE_ONCE(tp->tcp_tx_delay, val);
4062 		break;
4063 	default:
4064 		err = -ENOPROTOOPT;
4065 		break;
4066 	}
4067 
4068 	sockopt_release_sock(sk);
4069 	return err;
4070 }
4071 
4072 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4073 		   unsigned int optlen)
4074 {
4075 	const struct inet_connection_sock *icsk = inet_csk(sk);
4076 
4077 	if (level != SOL_TCP)
4078 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4079 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4080 								optval, optlen);
4081 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4082 }
4083 EXPORT_IPV6_MOD(tcp_setsockopt);
4084 
4085 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4086 				      struct tcp_info *info)
4087 {
4088 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4089 	enum tcp_chrono i;
4090 
4091 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4092 		stats[i] = tp->chrono_stat[i - 1];
4093 		if (i == tp->chrono_type)
4094 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4095 		stats[i] *= USEC_PER_SEC / HZ;
4096 		total += stats[i];
4097 	}
4098 
4099 	info->tcpi_busy_time = total;
4100 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4101 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4102 }
4103 
4104 /* Return information about state of tcp endpoint in API format. */
4105 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4106 {
4107 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4108 	const struct inet_connection_sock *icsk = inet_csk(sk);
4109 	unsigned long rate;
4110 	u32 now;
4111 	u64 rate64;
4112 	bool slow;
4113 
4114 	memset(info, 0, sizeof(*info));
4115 	if (sk->sk_type != SOCK_STREAM)
4116 		return;
4117 
4118 	info->tcpi_state = inet_sk_state_load(sk);
4119 
4120 	/* Report meaningful fields for all TCP states, including listeners */
4121 	rate = READ_ONCE(sk->sk_pacing_rate);
4122 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4123 	info->tcpi_pacing_rate = rate64;
4124 
4125 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4126 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4127 	info->tcpi_max_pacing_rate = rate64;
4128 
4129 	info->tcpi_reordering = tp->reordering;
4130 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4131 
4132 	if (info->tcpi_state == TCP_LISTEN) {
4133 		/* listeners aliased fields :
4134 		 * tcpi_unacked -> Number of children ready for accept()
4135 		 * tcpi_sacked  -> max backlog
4136 		 */
4137 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4138 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4139 		return;
4140 	}
4141 
4142 	slow = lock_sock_fast(sk);
4143 
4144 	info->tcpi_ca_state = icsk->icsk_ca_state;
4145 	info->tcpi_retransmits = icsk->icsk_retransmits;
4146 	info->tcpi_probes = icsk->icsk_probes_out;
4147 	info->tcpi_backoff = icsk->icsk_backoff;
4148 
4149 	if (tp->rx_opt.tstamp_ok)
4150 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4151 	if (tcp_is_sack(tp))
4152 		info->tcpi_options |= TCPI_OPT_SACK;
4153 	if (tp->rx_opt.wscale_ok) {
4154 		info->tcpi_options |= TCPI_OPT_WSCALE;
4155 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4156 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4157 	}
4158 
4159 	if (tcp_ecn_mode_any(tp))
4160 		info->tcpi_options |= TCPI_OPT_ECN;
4161 	if (tp->ecn_flags & TCP_ECN_SEEN)
4162 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4163 	if (tp->syn_data_acked)
4164 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4165 	if (tp->tcp_usec_ts)
4166 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4167 
4168 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4169 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4170 						tcp_delack_max(sk)));
4171 	info->tcpi_snd_mss = tp->mss_cache;
4172 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4173 
4174 	info->tcpi_unacked = tp->packets_out;
4175 	info->tcpi_sacked = tp->sacked_out;
4176 
4177 	info->tcpi_lost = tp->lost_out;
4178 	info->tcpi_retrans = tp->retrans_out;
4179 
4180 	now = tcp_jiffies32;
4181 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4182 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4183 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4184 
4185 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4186 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4187 	info->tcpi_rtt = tp->srtt_us >> 3;
4188 	info->tcpi_rttvar = tp->mdev_us >> 2;
4189 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4190 	info->tcpi_advmss = tp->advmss;
4191 
4192 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4193 	info->tcpi_rcv_space = tp->rcvq_space.space;
4194 
4195 	info->tcpi_total_retrans = tp->total_retrans;
4196 
4197 	info->tcpi_bytes_acked = tp->bytes_acked;
4198 	info->tcpi_bytes_received = tp->bytes_received;
4199 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4200 	tcp_get_info_chrono_stats(tp, info);
4201 
4202 	info->tcpi_segs_out = tp->segs_out;
4203 
4204 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4205 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4206 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4207 
4208 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4209 	info->tcpi_data_segs_out = tp->data_segs_out;
4210 
4211 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4212 	rate64 = tcp_compute_delivery_rate(tp);
4213 	if (rate64)
4214 		info->tcpi_delivery_rate = rate64;
4215 	info->tcpi_delivered = tp->delivered;
4216 	info->tcpi_delivered_ce = tp->delivered_ce;
4217 	info->tcpi_bytes_sent = tp->bytes_sent;
4218 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4219 	info->tcpi_dsack_dups = tp->dsack_dups;
4220 	info->tcpi_reord_seen = tp->reord_seen;
4221 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4222 	info->tcpi_snd_wnd = tp->snd_wnd;
4223 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4224 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4225 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4226 
4227 	info->tcpi_total_rto = tp->total_rto;
4228 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4229 	info->tcpi_total_rto_time = tp->total_rto_time;
4230 	if (tp->rto_stamp)
4231 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4232 
4233 	unlock_sock_fast(sk, slow);
4234 }
4235 EXPORT_SYMBOL_GPL(tcp_get_info);
4236 
4237 static size_t tcp_opt_stats_get_size(void)
4238 {
4239 	return
4240 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4241 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4242 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4243 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4244 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4245 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4246 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4247 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4248 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4249 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4250 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4251 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4252 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4253 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4254 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4255 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4256 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4257 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4258 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4259 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4260 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4261 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4262 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4263 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4264 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4265 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4266 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4267 		0;
4268 }
4269 
4270 /* Returns TTL or hop limit of an incoming packet from skb. */
4271 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4272 {
4273 	if (skb->protocol == htons(ETH_P_IP))
4274 		return ip_hdr(skb)->ttl;
4275 	else if (skb->protocol == htons(ETH_P_IPV6))
4276 		return ipv6_hdr(skb)->hop_limit;
4277 	else
4278 		return 0;
4279 }
4280 
4281 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4282 					       const struct sk_buff *orig_skb,
4283 					       const struct sk_buff *ack_skb)
4284 {
4285 	const struct tcp_sock *tp = tcp_sk(sk);
4286 	struct sk_buff *stats;
4287 	struct tcp_info info;
4288 	unsigned long rate;
4289 	u64 rate64;
4290 
4291 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4292 	if (!stats)
4293 		return NULL;
4294 
4295 	tcp_get_info_chrono_stats(tp, &info);
4296 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4297 			  info.tcpi_busy_time, TCP_NLA_PAD);
4298 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4299 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4300 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4301 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4302 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4303 			  tp->data_segs_out, TCP_NLA_PAD);
4304 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4305 			  tp->total_retrans, TCP_NLA_PAD);
4306 
4307 	rate = READ_ONCE(sk->sk_pacing_rate);
4308 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4309 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4310 
4311 	rate64 = tcp_compute_delivery_rate(tp);
4312 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4313 
4314 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4315 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4316 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4317 
4318 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4319 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4320 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4321 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4322 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4323 
4324 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4325 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4326 
4327 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4328 			  TCP_NLA_PAD);
4329 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4330 			  TCP_NLA_PAD);
4331 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4332 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4333 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4334 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4335 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4336 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4337 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4338 			  TCP_NLA_PAD);
4339 	if (ack_skb)
4340 		nla_put_u8(stats, TCP_NLA_TTL,
4341 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4342 
4343 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4344 	return stats;
4345 }
4346 
4347 int do_tcp_getsockopt(struct sock *sk, int level,
4348 		      int optname, sockptr_t optval, sockptr_t optlen)
4349 {
4350 	struct inet_connection_sock *icsk = inet_csk(sk);
4351 	struct tcp_sock *tp = tcp_sk(sk);
4352 	struct net *net = sock_net(sk);
4353 	int val, len;
4354 
4355 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4356 		return -EFAULT;
4357 
4358 	if (len < 0)
4359 		return -EINVAL;
4360 
4361 	len = min_t(unsigned int, len, sizeof(int));
4362 
4363 	switch (optname) {
4364 	case TCP_MAXSEG:
4365 		val = tp->mss_cache;
4366 		if (tp->rx_opt.user_mss &&
4367 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4368 			val = tp->rx_opt.user_mss;
4369 		if (tp->repair)
4370 			val = tp->rx_opt.mss_clamp;
4371 		break;
4372 	case TCP_NODELAY:
4373 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4374 		break;
4375 	case TCP_CORK:
4376 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4377 		break;
4378 	case TCP_KEEPIDLE:
4379 		val = keepalive_time_when(tp) / HZ;
4380 		break;
4381 	case TCP_KEEPINTVL:
4382 		val = keepalive_intvl_when(tp) / HZ;
4383 		break;
4384 	case TCP_KEEPCNT:
4385 		val = keepalive_probes(tp);
4386 		break;
4387 	case TCP_SYNCNT:
4388 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4389 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4390 		break;
4391 	case TCP_LINGER2:
4392 		val = READ_ONCE(tp->linger2);
4393 		if (val >= 0)
4394 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4395 		break;
4396 	case TCP_DEFER_ACCEPT:
4397 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4398 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4399 				      TCP_RTO_MAX / HZ);
4400 		break;
4401 	case TCP_WINDOW_CLAMP:
4402 		val = READ_ONCE(tp->window_clamp);
4403 		break;
4404 	case TCP_INFO: {
4405 		struct tcp_info info;
4406 
4407 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4408 			return -EFAULT;
4409 
4410 		tcp_get_info(sk, &info);
4411 
4412 		len = min_t(unsigned int, len, sizeof(info));
4413 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4414 			return -EFAULT;
4415 		if (copy_to_sockptr(optval, &info, len))
4416 			return -EFAULT;
4417 		return 0;
4418 	}
4419 	case TCP_CC_INFO: {
4420 		const struct tcp_congestion_ops *ca_ops;
4421 		union tcp_cc_info info;
4422 		size_t sz = 0;
4423 		int attr;
4424 
4425 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4426 			return -EFAULT;
4427 
4428 		ca_ops = icsk->icsk_ca_ops;
4429 		if (ca_ops && ca_ops->get_info)
4430 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4431 
4432 		len = min_t(unsigned int, len, sz);
4433 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4434 			return -EFAULT;
4435 		if (copy_to_sockptr(optval, &info, len))
4436 			return -EFAULT;
4437 		return 0;
4438 	}
4439 	case TCP_QUICKACK:
4440 		val = !inet_csk_in_pingpong_mode(sk);
4441 		break;
4442 
4443 	case TCP_CONGESTION:
4444 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4445 			return -EFAULT;
4446 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4447 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4448 			return -EFAULT;
4449 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4450 			return -EFAULT;
4451 		return 0;
4452 
4453 	case TCP_ULP:
4454 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4455 			return -EFAULT;
4456 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4457 		if (!icsk->icsk_ulp_ops) {
4458 			len = 0;
4459 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4460 				return -EFAULT;
4461 			return 0;
4462 		}
4463 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4464 			return -EFAULT;
4465 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4466 			return -EFAULT;
4467 		return 0;
4468 
4469 	case TCP_FASTOPEN_KEY: {
4470 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4471 		unsigned int key_len;
4472 
4473 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4474 			return -EFAULT;
4475 
4476 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4477 				TCP_FASTOPEN_KEY_LENGTH;
4478 		len = min_t(unsigned int, len, key_len);
4479 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4480 			return -EFAULT;
4481 		if (copy_to_sockptr(optval, key, len))
4482 			return -EFAULT;
4483 		return 0;
4484 	}
4485 	case TCP_THIN_LINEAR_TIMEOUTS:
4486 		val = tp->thin_lto;
4487 		break;
4488 
4489 	case TCP_THIN_DUPACK:
4490 		val = 0;
4491 		break;
4492 
4493 	case TCP_REPAIR:
4494 		val = tp->repair;
4495 		break;
4496 
4497 	case TCP_REPAIR_QUEUE:
4498 		if (tp->repair)
4499 			val = tp->repair_queue;
4500 		else
4501 			return -EINVAL;
4502 		break;
4503 
4504 	case TCP_REPAIR_WINDOW: {
4505 		struct tcp_repair_window opt;
4506 
4507 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4508 			return -EFAULT;
4509 
4510 		if (len != sizeof(opt))
4511 			return -EINVAL;
4512 
4513 		if (!tp->repair)
4514 			return -EPERM;
4515 
4516 		opt.snd_wl1	= tp->snd_wl1;
4517 		opt.snd_wnd	= tp->snd_wnd;
4518 		opt.max_window	= tp->max_window;
4519 		opt.rcv_wnd	= tp->rcv_wnd;
4520 		opt.rcv_wup	= tp->rcv_wup;
4521 
4522 		if (copy_to_sockptr(optval, &opt, len))
4523 			return -EFAULT;
4524 		return 0;
4525 	}
4526 	case TCP_QUEUE_SEQ:
4527 		if (tp->repair_queue == TCP_SEND_QUEUE)
4528 			val = tp->write_seq;
4529 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4530 			val = tp->rcv_nxt;
4531 		else
4532 			return -EINVAL;
4533 		break;
4534 
4535 	case TCP_USER_TIMEOUT:
4536 		val = READ_ONCE(icsk->icsk_user_timeout);
4537 		break;
4538 
4539 	case TCP_FASTOPEN:
4540 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4541 		break;
4542 
4543 	case TCP_FASTOPEN_CONNECT:
4544 		val = tp->fastopen_connect;
4545 		break;
4546 
4547 	case TCP_FASTOPEN_NO_COOKIE:
4548 		val = tp->fastopen_no_cookie;
4549 		break;
4550 
4551 	case TCP_TX_DELAY:
4552 		val = READ_ONCE(tp->tcp_tx_delay);
4553 		break;
4554 
4555 	case TCP_TIMESTAMP:
4556 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4557 		if (tp->tcp_usec_ts)
4558 			val |= 1;
4559 		else
4560 			val &= ~1;
4561 		break;
4562 	case TCP_NOTSENT_LOWAT:
4563 		val = READ_ONCE(tp->notsent_lowat);
4564 		break;
4565 	case TCP_INQ:
4566 		val = tp->recvmsg_inq;
4567 		break;
4568 	case TCP_SAVE_SYN:
4569 		val = tp->save_syn;
4570 		break;
4571 	case TCP_SAVED_SYN: {
4572 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4573 			return -EFAULT;
4574 
4575 		sockopt_lock_sock(sk);
4576 		if (tp->saved_syn) {
4577 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4578 				len = tcp_saved_syn_len(tp->saved_syn);
4579 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4580 					sockopt_release_sock(sk);
4581 					return -EFAULT;
4582 				}
4583 				sockopt_release_sock(sk);
4584 				return -EINVAL;
4585 			}
4586 			len = tcp_saved_syn_len(tp->saved_syn);
4587 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4588 				sockopt_release_sock(sk);
4589 				return -EFAULT;
4590 			}
4591 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4592 				sockopt_release_sock(sk);
4593 				return -EFAULT;
4594 			}
4595 			tcp_saved_syn_free(tp);
4596 			sockopt_release_sock(sk);
4597 		} else {
4598 			sockopt_release_sock(sk);
4599 			len = 0;
4600 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4601 				return -EFAULT;
4602 		}
4603 		return 0;
4604 	}
4605 #ifdef CONFIG_MMU
4606 	case TCP_ZEROCOPY_RECEIVE: {
4607 		struct scm_timestamping_internal tss;
4608 		struct tcp_zerocopy_receive zc = {};
4609 		int err;
4610 
4611 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4612 			return -EFAULT;
4613 		if (len < 0 ||
4614 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4615 			return -EINVAL;
4616 		if (unlikely(len > sizeof(zc))) {
4617 			err = check_zeroed_sockptr(optval, sizeof(zc),
4618 						   len - sizeof(zc));
4619 			if (err < 1)
4620 				return err == 0 ? -EINVAL : err;
4621 			len = sizeof(zc);
4622 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4623 				return -EFAULT;
4624 		}
4625 		if (copy_from_sockptr(&zc, optval, len))
4626 			return -EFAULT;
4627 		if (zc.reserved)
4628 			return -EINVAL;
4629 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4630 			return -EINVAL;
4631 		sockopt_lock_sock(sk);
4632 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4633 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4634 							  &zc, &len, err);
4635 		sockopt_release_sock(sk);
4636 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4637 			goto zerocopy_rcv_cmsg;
4638 		switch (len) {
4639 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4640 			goto zerocopy_rcv_cmsg;
4641 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4642 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4643 		case offsetofend(struct tcp_zerocopy_receive, flags):
4644 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4645 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4646 		case offsetofend(struct tcp_zerocopy_receive, err):
4647 			goto zerocopy_rcv_sk_err;
4648 		case offsetofend(struct tcp_zerocopy_receive, inq):
4649 			goto zerocopy_rcv_inq;
4650 		case offsetofend(struct tcp_zerocopy_receive, length):
4651 		default:
4652 			goto zerocopy_rcv_out;
4653 		}
4654 zerocopy_rcv_cmsg:
4655 		if (zc.msg_flags & TCP_CMSG_TS)
4656 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4657 		else
4658 			zc.msg_flags = 0;
4659 zerocopy_rcv_sk_err:
4660 		if (!err)
4661 			zc.err = sock_error(sk);
4662 zerocopy_rcv_inq:
4663 		zc.inq = tcp_inq_hint(sk);
4664 zerocopy_rcv_out:
4665 		if (!err && copy_to_sockptr(optval, &zc, len))
4666 			err = -EFAULT;
4667 		return err;
4668 	}
4669 #endif
4670 	case TCP_AO_REPAIR:
4671 		if (!tcp_can_repair_sock(sk))
4672 			return -EPERM;
4673 		return tcp_ao_get_repair(sk, optval, optlen);
4674 	case TCP_AO_GET_KEYS:
4675 	case TCP_AO_INFO: {
4676 		int err;
4677 
4678 		sockopt_lock_sock(sk);
4679 		if (optname == TCP_AO_GET_KEYS)
4680 			err = tcp_ao_get_mkts(sk, optval, optlen);
4681 		else
4682 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4683 		sockopt_release_sock(sk);
4684 
4685 		return err;
4686 	}
4687 	case TCP_IS_MPTCP:
4688 		val = 0;
4689 		break;
4690 	case TCP_RTO_MAX_MS:
4691 		val = jiffies_to_msecs(tcp_rto_max(sk));
4692 		break;
4693 	case TCP_RTO_MIN_US:
4694 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4695 		break;
4696 	case TCP_DELACK_MAX_US:
4697 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4698 		break;
4699 	default:
4700 		return -ENOPROTOOPT;
4701 	}
4702 
4703 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4704 		return -EFAULT;
4705 	if (copy_to_sockptr(optval, &val, len))
4706 		return -EFAULT;
4707 	return 0;
4708 }
4709 
4710 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4711 {
4712 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4713 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4714 	 */
4715 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4716 		return true;
4717 
4718 	return false;
4719 }
4720 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4721 
4722 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4723 		   int __user *optlen)
4724 {
4725 	struct inet_connection_sock *icsk = inet_csk(sk);
4726 
4727 	if (level != SOL_TCP)
4728 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4729 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4730 								optval, optlen);
4731 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4732 				 USER_SOCKPTR(optlen));
4733 }
4734 EXPORT_IPV6_MOD(tcp_getsockopt);
4735 
4736 #ifdef CONFIG_TCP_MD5SIG
4737 int tcp_md5_sigpool_id = -1;
4738 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4739 
4740 int tcp_md5_alloc_sigpool(void)
4741 {
4742 	size_t scratch_size;
4743 	int ret;
4744 
4745 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4746 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4747 	if (ret >= 0) {
4748 		/* As long as any md5 sigpool was allocated, the return
4749 		 * id would stay the same. Re-write the id only for the case
4750 		 * when previously all MD5 keys were deleted and this call
4751 		 * allocates the first MD5 key, which may return a different
4752 		 * sigpool id than was used previously.
4753 		 */
4754 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4755 		return 0;
4756 	}
4757 	return ret;
4758 }
4759 
4760 void tcp_md5_release_sigpool(void)
4761 {
4762 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4763 }
4764 
4765 void tcp_md5_add_sigpool(void)
4766 {
4767 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4768 }
4769 
4770 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4771 		     const struct tcp_md5sig_key *key)
4772 {
4773 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4774 	struct scatterlist sg;
4775 
4776 	sg_init_one(&sg, key->key, keylen);
4777 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4778 
4779 	/* We use data_race() because tcp_md5_do_add() might change
4780 	 * key->key under us
4781 	 */
4782 	return data_race(crypto_ahash_update(hp->req));
4783 }
4784 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4785 
4786 /* Called with rcu_read_lock() */
4787 static enum skb_drop_reason
4788 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4789 		     const void *saddr, const void *daddr,
4790 		     int family, int l3index, const __u8 *hash_location)
4791 {
4792 	/* This gets called for each TCP segment that has TCP-MD5 option.
4793 	 * We have 3 drop cases:
4794 	 * o No MD5 hash and one expected.
4795 	 * o MD5 hash and we're not expecting one.
4796 	 * o MD5 hash and its wrong.
4797 	 */
4798 	const struct tcp_sock *tp = tcp_sk(sk);
4799 	struct tcp_md5sig_key *key;
4800 	u8 newhash[16];
4801 	int genhash;
4802 
4803 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4804 
4805 	if (!key && hash_location) {
4806 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4807 		trace_tcp_hash_md5_unexpected(sk, skb);
4808 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4809 	}
4810 
4811 	/* Check the signature.
4812 	 * To support dual stack listeners, we need to handle
4813 	 * IPv4-mapped case.
4814 	 */
4815 	if (family == AF_INET)
4816 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4817 	else
4818 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4819 							 NULL, skb);
4820 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4821 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4822 		trace_tcp_hash_md5_mismatch(sk, skb);
4823 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4824 	}
4825 	return SKB_NOT_DROPPED_YET;
4826 }
4827 #else
4828 static inline enum skb_drop_reason
4829 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4830 		     const void *saddr, const void *daddr,
4831 		     int family, int l3index, const __u8 *hash_location)
4832 {
4833 	return SKB_NOT_DROPPED_YET;
4834 }
4835 
4836 #endif
4837 
4838 /* Called with rcu_read_lock() */
4839 enum skb_drop_reason
4840 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4841 		 const struct sk_buff *skb,
4842 		 const void *saddr, const void *daddr,
4843 		 int family, int dif, int sdif)
4844 {
4845 	const struct tcphdr *th = tcp_hdr(skb);
4846 	const struct tcp_ao_hdr *aoh;
4847 	const __u8 *md5_location;
4848 	int l3index;
4849 
4850 	/* Invalid option or two times meet any of auth options */
4851 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4852 		trace_tcp_hash_bad_header(sk, skb);
4853 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4854 	}
4855 
4856 	if (req) {
4857 		if (tcp_rsk_used_ao(req) != !!aoh) {
4858 			u8 keyid, rnext, maclen;
4859 
4860 			if (aoh) {
4861 				keyid = aoh->keyid;
4862 				rnext = aoh->rnext_keyid;
4863 				maclen = tcp_ao_hdr_maclen(aoh);
4864 			} else {
4865 				keyid = rnext = maclen = 0;
4866 			}
4867 
4868 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4869 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4870 			return SKB_DROP_REASON_TCP_AOFAILURE;
4871 		}
4872 	}
4873 
4874 	/* sdif set, means packet ingressed via a device
4875 	 * in an L3 domain and dif is set to the l3mdev
4876 	 */
4877 	l3index = sdif ? dif : 0;
4878 
4879 	/* Fast path: unsigned segments */
4880 	if (likely(!md5_location && !aoh)) {
4881 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4882 		 * for the remote peer. On TCP-AO established connection
4883 		 * the last key is impossible to remove, so there's
4884 		 * always at least one current_key.
4885 		 */
4886 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4887 			trace_tcp_hash_ao_required(sk, skb);
4888 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4889 		}
4890 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4891 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4892 			trace_tcp_hash_md5_required(sk, skb);
4893 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4894 		}
4895 		return SKB_NOT_DROPPED_YET;
4896 	}
4897 
4898 	if (aoh)
4899 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4900 
4901 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4902 				    l3index, md5_location);
4903 }
4904 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4905 
4906 void tcp_done(struct sock *sk)
4907 {
4908 	struct request_sock *req;
4909 
4910 	/* We might be called with a new socket, after
4911 	 * inet_csk_prepare_forced_close() has been called
4912 	 * so we can not use lockdep_sock_is_held(sk)
4913 	 */
4914 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4915 
4916 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4917 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4918 
4919 	tcp_set_state(sk, TCP_CLOSE);
4920 	tcp_clear_xmit_timers(sk);
4921 	if (req)
4922 		reqsk_fastopen_remove(sk, req, false);
4923 
4924 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4925 
4926 	if (!sock_flag(sk, SOCK_DEAD))
4927 		sk->sk_state_change(sk);
4928 	else
4929 		inet_csk_destroy_sock(sk);
4930 }
4931 EXPORT_SYMBOL_GPL(tcp_done);
4932 
4933 int tcp_abort(struct sock *sk, int err)
4934 {
4935 	int state = inet_sk_state_load(sk);
4936 
4937 	if (state == TCP_NEW_SYN_RECV) {
4938 		struct request_sock *req = inet_reqsk(sk);
4939 
4940 		local_bh_disable();
4941 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4942 		local_bh_enable();
4943 		return 0;
4944 	}
4945 	if (state == TCP_TIME_WAIT) {
4946 		struct inet_timewait_sock *tw = inet_twsk(sk);
4947 
4948 		refcount_inc(&tw->tw_refcnt);
4949 		local_bh_disable();
4950 		inet_twsk_deschedule_put(tw);
4951 		local_bh_enable();
4952 		return 0;
4953 	}
4954 
4955 	/* BPF context ensures sock locking. */
4956 	if (!has_current_bpf_ctx())
4957 		/* Don't race with userspace socket closes such as tcp_close. */
4958 		lock_sock(sk);
4959 
4960 	/* Avoid closing the same socket twice. */
4961 	if (sk->sk_state == TCP_CLOSE) {
4962 		if (!has_current_bpf_ctx())
4963 			release_sock(sk);
4964 		return -ENOENT;
4965 	}
4966 
4967 	if (sk->sk_state == TCP_LISTEN) {
4968 		tcp_set_state(sk, TCP_CLOSE);
4969 		inet_csk_listen_stop(sk);
4970 	}
4971 
4972 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4973 	local_bh_disable();
4974 	bh_lock_sock(sk);
4975 
4976 	if (tcp_need_reset(sk->sk_state))
4977 		tcp_send_active_reset(sk, GFP_ATOMIC,
4978 				      SK_RST_REASON_TCP_STATE);
4979 	tcp_done_with_error(sk, err);
4980 
4981 	bh_unlock_sock(sk);
4982 	local_bh_enable();
4983 	if (!has_current_bpf_ctx())
4984 		release_sock(sk);
4985 	return 0;
4986 }
4987 EXPORT_SYMBOL_GPL(tcp_abort);
4988 
4989 extern struct tcp_congestion_ops tcp_reno;
4990 
4991 static __initdata unsigned long thash_entries;
4992 static int __init set_thash_entries(char *str)
4993 {
4994 	ssize_t ret;
4995 
4996 	if (!str)
4997 		return 0;
4998 
4999 	ret = kstrtoul(str, 0, &thash_entries);
5000 	if (ret)
5001 		return 0;
5002 
5003 	return 1;
5004 }
5005 __setup("thash_entries=", set_thash_entries);
5006 
5007 static void __init tcp_init_mem(void)
5008 {
5009 	unsigned long limit = nr_free_buffer_pages() / 16;
5010 
5011 	limit = max(limit, 128UL);
5012 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5013 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5014 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5015 }
5016 
5017 static void __init tcp_struct_check(void)
5018 {
5019 	/* TX read-mostly hotpath cache lines */
5020 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5021 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5022 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5023 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5024 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5025 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5026 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5027 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5028 
5029 	/* TXRX read-mostly hotpath cache lines */
5030 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5031 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5032 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5033 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5034 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5035 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5036 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5037 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5038 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5039 
5040 	/* RX read-mostly hotpath cache lines */
5041 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5042 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5043 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5044 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5045 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5046 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5047 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5048 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5049 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5050 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5051 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5052 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5053 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5054 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5055 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5056 #else
5057 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5058 #endif
5059 
5060 	/* TX read-write hotpath cache lines */
5061 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5062 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5063 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5064 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5065 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5067 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5068 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5069 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5070 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5071 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5072 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5073 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5074 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5075 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5076 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5077 
5078 	/* TXRX read-write hotpath cache lines */
5079 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5080 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5081 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5082 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5083 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5084 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5085 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5086 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5087 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5088 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5089 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5090 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5091 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5092 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5093 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5094 
5095 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5096 	 * before tcp_clock_cache.
5097 	 */
5098 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5099 
5100 	/* RX read-write hotpath cache lines */
5101 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5102 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5103 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5104 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5105 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5106 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5107 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5108 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5109 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5110 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5111 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5112 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5113 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5115 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5116 }
5117 
5118 void __init tcp_init(void)
5119 {
5120 	int max_rshare, max_wshare, cnt;
5121 	unsigned long limit;
5122 	unsigned int i;
5123 
5124 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5125 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5126 		     sizeof_field(struct sk_buff, cb));
5127 
5128 	tcp_struct_check();
5129 
5130 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5131 
5132 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5133 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5134 
5135 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5136 			    thash_entries, 21,  /* one slot per 2 MB*/
5137 			    0, 64 * 1024);
5138 	tcp_hashinfo.bind_bucket_cachep =
5139 		kmem_cache_create("tcp_bind_bucket",
5140 				  sizeof(struct inet_bind_bucket), 0,
5141 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5142 				  SLAB_ACCOUNT,
5143 				  NULL);
5144 	tcp_hashinfo.bind2_bucket_cachep =
5145 		kmem_cache_create("tcp_bind2_bucket",
5146 				  sizeof(struct inet_bind2_bucket), 0,
5147 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5148 				  SLAB_ACCOUNT,
5149 				  NULL);
5150 
5151 	/* Size and allocate the main established and bind bucket
5152 	 * hash tables.
5153 	 *
5154 	 * The methodology is similar to that of the buffer cache.
5155 	 */
5156 	tcp_hashinfo.ehash =
5157 		alloc_large_system_hash("TCP established",
5158 					sizeof(struct inet_ehash_bucket),
5159 					thash_entries,
5160 					17, /* one slot per 128 KB of memory */
5161 					0,
5162 					NULL,
5163 					&tcp_hashinfo.ehash_mask,
5164 					0,
5165 					thash_entries ? 0 : 512 * 1024);
5166 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5167 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5168 
5169 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5170 		panic("TCP: failed to alloc ehash_locks");
5171 	tcp_hashinfo.bhash =
5172 		alloc_large_system_hash("TCP bind",
5173 					2 * sizeof(struct inet_bind_hashbucket),
5174 					tcp_hashinfo.ehash_mask + 1,
5175 					17, /* one slot per 128 KB of memory */
5176 					0,
5177 					&tcp_hashinfo.bhash_size,
5178 					NULL,
5179 					0,
5180 					64 * 1024);
5181 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5182 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5183 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5184 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5185 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5186 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5187 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5188 	}
5189 
5190 	tcp_hashinfo.pernet = false;
5191 
5192 	cnt = tcp_hashinfo.ehash_mask + 1;
5193 	sysctl_tcp_max_orphans = cnt / 2;
5194 
5195 	tcp_init_mem();
5196 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5197 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5198 	max_wshare = min(4UL*1024*1024, limit);
5199 	max_rshare = min(6UL*1024*1024, limit);
5200 
5201 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5202 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5203 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5204 
5205 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5206 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5207 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5208 
5209 	pr_info("Hash tables configured (established %u bind %u)\n",
5210 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5211 
5212 	tcp_v4_init();
5213 	tcp_metrics_init();
5214 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5215 	tcp_tasklet_init();
5216 	mptcp_init();
5217 }
5218