1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 458 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1175 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1176 uaddr->sa_family == AF_UNSPEC)) 1177 return -EOPNOTSUPP; 1178 if (tp->fastopen_req) 1179 return -EALREADY; /* Another Fast Open is in progress */ 1180 1181 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1182 sk->sk_allocation); 1183 if (unlikely(!tp->fastopen_req)) 1184 return -ENOBUFS; 1185 tp->fastopen_req->data = msg; 1186 tp->fastopen_req->size = size; 1187 tp->fastopen_req->uarg = uarg; 1188 1189 if (inet->defer_connect) { 1190 err = tcp_connect(sk); 1191 /* Same failure procedure as in tcp_v4/6_connect */ 1192 if (err) { 1193 tcp_set_state(sk, TCP_CLOSE); 1194 inet->inet_dport = 0; 1195 sk->sk_route_caps = 0; 1196 } 1197 } 1198 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1199 err = __inet_stream_connect(sk->sk_socket, uaddr, 1200 msg->msg_namelen, flags, 1); 1201 /* fastopen_req could already be freed in __inet_stream_connect 1202 * if the connection times out or gets rst 1203 */ 1204 if (tp->fastopen_req) { 1205 *copied = tp->fastopen_req->copied; 1206 tcp_free_fastopen_req(tp); 1207 inet->defer_connect = 0; 1208 } 1209 return err; 1210 } 1211 1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1213 { 1214 struct tcp_sock *tp = tcp_sk(sk); 1215 struct ubuf_info *uarg = NULL; 1216 struct sk_buff *skb; 1217 struct sockcm_cookie sockc; 1218 int flags, err, copied = 0; 1219 int mss_now = 0, size_goal, copied_syn = 0; 1220 int process_backlog = 0; 1221 bool zc = false; 1222 long timeo; 1223 1224 flags = msg->msg_flags; 1225 1226 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1227 skb = tcp_write_queue_tail(sk); 1228 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1229 if (!uarg) { 1230 err = -ENOBUFS; 1231 goto out_err; 1232 } 1233 1234 zc = sk->sk_route_caps & NETIF_F_SG; 1235 if (!zc) 1236 uarg->zerocopy = 0; 1237 } 1238 1239 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1240 !tp->repair) { 1241 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1242 if (err == -EINPROGRESS && copied_syn > 0) 1243 goto out; 1244 else if (err) 1245 goto out_err; 1246 } 1247 1248 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1249 1250 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1251 1252 /* Wait for a connection to finish. One exception is TCP Fast Open 1253 * (passive side) where data is allowed to be sent before a connection 1254 * is fully established. 1255 */ 1256 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1257 !tcp_passive_fastopen(sk)) { 1258 err = sk_stream_wait_connect(sk, &timeo); 1259 if (err != 0) 1260 goto do_error; 1261 } 1262 1263 if (unlikely(tp->repair)) { 1264 if (tp->repair_queue == TCP_RECV_QUEUE) { 1265 copied = tcp_send_rcvq(sk, msg, size); 1266 goto out_nopush; 1267 } 1268 1269 err = -EINVAL; 1270 if (tp->repair_queue == TCP_NO_QUEUE) 1271 goto out_err; 1272 1273 /* 'common' sending to sendq */ 1274 } 1275 1276 sockcm_init(&sockc, sk); 1277 if (msg->msg_controllen) { 1278 err = sock_cmsg_send(sk, msg, &sockc); 1279 if (unlikely(err)) { 1280 err = -EINVAL; 1281 goto out_err; 1282 } 1283 } 1284 1285 /* This should be in poll */ 1286 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1287 1288 /* Ok commence sending. */ 1289 copied = 0; 1290 1291 restart: 1292 mss_now = tcp_send_mss(sk, &size_goal, flags); 1293 1294 err = -EPIPE; 1295 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1296 goto do_error; 1297 1298 while (msg_data_left(msg)) { 1299 int copy = 0; 1300 1301 skb = tcp_write_queue_tail(sk); 1302 if (skb) 1303 copy = size_goal - skb->len; 1304 1305 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1306 bool first_skb; 1307 1308 new_segment: 1309 if (!sk_stream_memory_free(sk)) 1310 goto wait_for_space; 1311 1312 if (unlikely(process_backlog >= 16)) { 1313 process_backlog = 0; 1314 if (sk_flush_backlog(sk)) 1315 goto restart; 1316 } 1317 first_skb = tcp_rtx_and_write_queues_empty(sk); 1318 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1319 first_skb); 1320 if (!skb) 1321 goto wait_for_space; 1322 1323 process_backlog++; 1324 1325 tcp_skb_entail(sk, skb); 1326 copy = size_goal; 1327 1328 /* All packets are restored as if they have 1329 * already been sent. skb_mstamp_ns isn't set to 1330 * avoid wrong rtt estimation. 1331 */ 1332 if (tp->repair) 1333 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1334 } 1335 1336 /* Try to append data to the end of skb. */ 1337 if (copy > msg_data_left(msg)) 1338 copy = msg_data_left(msg); 1339 1340 if (!zc) { 1341 bool merge = true; 1342 int i = skb_shinfo(skb)->nr_frags; 1343 struct page_frag *pfrag = sk_page_frag(sk); 1344 1345 if (!sk_page_frag_refill(sk, pfrag)) 1346 goto wait_for_space; 1347 1348 if (!skb_can_coalesce(skb, i, pfrag->page, 1349 pfrag->offset)) { 1350 if (i >= sysctl_max_skb_frags) { 1351 tcp_mark_push(tp, skb); 1352 goto new_segment; 1353 } 1354 merge = false; 1355 } 1356 1357 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1358 1359 if (tcp_downgrade_zcopy_pure(sk, skb)) 1360 goto wait_for_space; 1361 1362 copy = tcp_wmem_schedule(sk, copy); 1363 if (!copy) 1364 goto wait_for_space; 1365 1366 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1367 pfrag->page, 1368 pfrag->offset, 1369 copy); 1370 if (err) 1371 goto do_error; 1372 1373 /* Update the skb. */ 1374 if (merge) { 1375 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1376 } else { 1377 skb_fill_page_desc(skb, i, pfrag->page, 1378 pfrag->offset, copy); 1379 page_ref_inc(pfrag->page); 1380 } 1381 pfrag->offset += copy; 1382 } else { 1383 /* First append to a fragless skb builds initial 1384 * pure zerocopy skb 1385 */ 1386 if (!skb->len) 1387 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1388 1389 if (!skb_zcopy_pure(skb)) { 1390 copy = tcp_wmem_schedule(sk, copy); 1391 if (!copy) 1392 goto wait_for_space; 1393 } 1394 1395 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1396 if (err == -EMSGSIZE || err == -EEXIST) { 1397 tcp_mark_push(tp, skb); 1398 goto new_segment; 1399 } 1400 if (err < 0) 1401 goto do_error; 1402 copy = err; 1403 } 1404 1405 if (!copied) 1406 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1407 1408 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1409 TCP_SKB_CB(skb)->end_seq += copy; 1410 tcp_skb_pcount_set(skb, 0); 1411 1412 copied += copy; 1413 if (!msg_data_left(msg)) { 1414 if (unlikely(flags & MSG_EOR)) 1415 TCP_SKB_CB(skb)->eor = 1; 1416 goto out; 1417 } 1418 1419 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1420 continue; 1421 1422 if (forced_push(tp)) { 1423 tcp_mark_push(tp, skb); 1424 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1425 } else if (skb == tcp_send_head(sk)) 1426 tcp_push_one(sk, mss_now); 1427 continue; 1428 1429 wait_for_space: 1430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1431 if (copied) 1432 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1433 TCP_NAGLE_PUSH, size_goal); 1434 1435 err = sk_stream_wait_memory(sk, &timeo); 1436 if (err != 0) 1437 goto do_error; 1438 1439 mss_now = tcp_send_mss(sk, &size_goal, flags); 1440 } 1441 1442 out: 1443 if (copied) { 1444 tcp_tx_timestamp(sk, sockc.tsflags); 1445 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1446 } 1447 out_nopush: 1448 net_zcopy_put(uarg); 1449 return copied + copied_syn; 1450 1451 do_error: 1452 tcp_remove_empty_skb(sk); 1453 1454 if (copied + copied_syn) 1455 goto out; 1456 out_err: 1457 net_zcopy_put_abort(uarg, true); 1458 err = sk_stream_error(sk, flags, err); 1459 /* make sure we wake any epoll edge trigger waiter */ 1460 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1461 sk->sk_write_space(sk); 1462 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1463 } 1464 return err; 1465 } 1466 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1467 1468 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1469 { 1470 int ret; 1471 1472 lock_sock(sk); 1473 ret = tcp_sendmsg_locked(sk, msg, size); 1474 release_sock(sk); 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL(tcp_sendmsg); 1479 1480 /* 1481 * Handle reading urgent data. BSD has very simple semantics for 1482 * this, no blocking and very strange errors 8) 1483 */ 1484 1485 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1486 { 1487 struct tcp_sock *tp = tcp_sk(sk); 1488 1489 /* No URG data to read. */ 1490 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1491 tp->urg_data == TCP_URG_READ) 1492 return -EINVAL; /* Yes this is right ! */ 1493 1494 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1495 return -ENOTCONN; 1496 1497 if (tp->urg_data & TCP_URG_VALID) { 1498 int err = 0; 1499 char c = tp->urg_data; 1500 1501 if (!(flags & MSG_PEEK)) 1502 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1503 1504 /* Read urgent data. */ 1505 msg->msg_flags |= MSG_OOB; 1506 1507 if (len > 0) { 1508 if (!(flags & MSG_TRUNC)) 1509 err = memcpy_to_msg(msg, &c, 1); 1510 len = 1; 1511 } else 1512 msg->msg_flags |= MSG_TRUNC; 1513 1514 return err ? -EFAULT : len; 1515 } 1516 1517 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1518 return 0; 1519 1520 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1521 * the available implementations agree in this case: 1522 * this call should never block, independent of the 1523 * blocking state of the socket. 1524 * Mike <pall@rz.uni-karlsruhe.de> 1525 */ 1526 return -EAGAIN; 1527 } 1528 1529 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1530 { 1531 struct sk_buff *skb; 1532 int copied = 0, err = 0; 1533 1534 /* XXX -- need to support SO_PEEK_OFF */ 1535 1536 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1537 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1538 if (err) 1539 return err; 1540 copied += skb->len; 1541 } 1542 1543 skb_queue_walk(&sk->sk_write_queue, skb) { 1544 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1545 if (err) 1546 break; 1547 1548 copied += skb->len; 1549 } 1550 1551 return err ?: copied; 1552 } 1553 1554 /* Clean up the receive buffer for full frames taken by the user, 1555 * then send an ACK if necessary. COPIED is the number of bytes 1556 * tcp_recvmsg has given to the user so far, it speeds up the 1557 * calculation of whether or not we must ACK for the sake of 1558 * a window update. 1559 */ 1560 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1561 { 1562 struct tcp_sock *tp = tcp_sk(sk); 1563 bool time_to_ack = false; 1564 1565 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1566 1567 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1568 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1569 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1570 1571 if (inet_csk_ack_scheduled(sk)) { 1572 const struct inet_connection_sock *icsk = inet_csk(sk); 1573 1574 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1575 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1576 /* 1577 * If this read emptied read buffer, we send ACK, if 1578 * connection is not bidirectional, user drained 1579 * receive buffer and there was a small segment 1580 * in queue. 1581 */ 1582 (copied > 0 && 1583 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1584 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1585 !inet_csk_in_pingpong_mode(sk))) && 1586 !atomic_read(&sk->sk_rmem_alloc))) 1587 time_to_ack = true; 1588 } 1589 1590 /* We send an ACK if we can now advertise a non-zero window 1591 * which has been raised "significantly". 1592 * 1593 * Even if window raised up to infinity, do not send window open ACK 1594 * in states, where we will not receive more. It is useless. 1595 */ 1596 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1597 __u32 rcv_window_now = tcp_receive_window(tp); 1598 1599 /* Optimize, __tcp_select_window() is not cheap. */ 1600 if (2*rcv_window_now <= tp->window_clamp) { 1601 __u32 new_window = __tcp_select_window(sk); 1602 1603 /* Send ACK now, if this read freed lots of space 1604 * in our buffer. Certainly, new_window is new window. 1605 * We can advertise it now, if it is not less than current one. 1606 * "Lots" means "at least twice" here. 1607 */ 1608 if (new_window && new_window >= 2 * rcv_window_now) 1609 time_to_ack = true; 1610 } 1611 } 1612 if (time_to_ack) 1613 tcp_send_ack(sk); 1614 } 1615 1616 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1617 { 1618 __skb_unlink(skb, &sk->sk_receive_queue); 1619 if (likely(skb->destructor == sock_rfree)) { 1620 sock_rfree(skb); 1621 skb->destructor = NULL; 1622 skb->sk = NULL; 1623 return skb_attempt_defer_free(skb); 1624 } 1625 __kfree_skb(skb); 1626 } 1627 1628 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1629 { 1630 struct sk_buff *skb; 1631 u32 offset; 1632 1633 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1634 offset = seq - TCP_SKB_CB(skb)->seq; 1635 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1636 pr_err_once("%s: found a SYN, please report !\n", __func__); 1637 offset--; 1638 } 1639 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1640 *off = offset; 1641 return skb; 1642 } 1643 /* This looks weird, but this can happen if TCP collapsing 1644 * splitted a fat GRO packet, while we released socket lock 1645 * in skb_splice_bits() 1646 */ 1647 tcp_eat_recv_skb(sk, skb); 1648 } 1649 return NULL; 1650 } 1651 1652 /* 1653 * This routine provides an alternative to tcp_recvmsg() for routines 1654 * that would like to handle copying from skbuffs directly in 'sendfile' 1655 * fashion. 1656 * Note: 1657 * - It is assumed that the socket was locked by the caller. 1658 * - The routine does not block. 1659 * - At present, there is no support for reading OOB data 1660 * or for 'peeking' the socket using this routine 1661 * (although both would be easy to implement). 1662 */ 1663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1664 sk_read_actor_t recv_actor) 1665 { 1666 struct sk_buff *skb; 1667 struct tcp_sock *tp = tcp_sk(sk); 1668 u32 seq = tp->copied_seq; 1669 u32 offset; 1670 int copied = 0; 1671 1672 if (sk->sk_state == TCP_LISTEN) 1673 return -ENOTCONN; 1674 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1675 if (offset < skb->len) { 1676 int used; 1677 size_t len; 1678 1679 len = skb->len - offset; 1680 /* Stop reading if we hit a patch of urgent data */ 1681 if (unlikely(tp->urg_data)) { 1682 u32 urg_offset = tp->urg_seq - seq; 1683 if (urg_offset < len) 1684 len = urg_offset; 1685 if (!len) 1686 break; 1687 } 1688 used = recv_actor(desc, skb, offset, len); 1689 if (used <= 0) { 1690 if (!copied) 1691 copied = used; 1692 break; 1693 } 1694 if (WARN_ON_ONCE(used > len)) 1695 used = len; 1696 seq += used; 1697 copied += used; 1698 offset += used; 1699 1700 /* If recv_actor drops the lock (e.g. TCP splice 1701 * receive) the skb pointer might be invalid when 1702 * getting here: tcp_collapse might have deleted it 1703 * while aggregating skbs from the socket queue. 1704 */ 1705 skb = tcp_recv_skb(sk, seq - 1, &offset); 1706 if (!skb) 1707 break; 1708 /* TCP coalescing might have appended data to the skb. 1709 * Try to splice more frags 1710 */ 1711 if (offset + 1 != skb->len) 1712 continue; 1713 } 1714 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1715 tcp_eat_recv_skb(sk, skb); 1716 ++seq; 1717 break; 1718 } 1719 tcp_eat_recv_skb(sk, skb); 1720 if (!desc->count) 1721 break; 1722 WRITE_ONCE(tp->copied_seq, seq); 1723 } 1724 WRITE_ONCE(tp->copied_seq, seq); 1725 1726 tcp_rcv_space_adjust(sk); 1727 1728 /* Clean up data we have read: This will do ACK frames. */ 1729 if (copied > 0) { 1730 tcp_recv_skb(sk, seq, &offset); 1731 tcp_cleanup_rbuf(sk, copied); 1732 } 1733 return copied; 1734 } 1735 EXPORT_SYMBOL(tcp_read_sock); 1736 1737 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1738 { 1739 struct tcp_sock *tp = tcp_sk(sk); 1740 u32 seq = tp->copied_seq; 1741 struct sk_buff *skb; 1742 int copied = 0; 1743 u32 offset; 1744 1745 if (sk->sk_state == TCP_LISTEN) 1746 return -ENOTCONN; 1747 1748 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1749 int used; 1750 1751 __skb_unlink(skb, &sk->sk_receive_queue); 1752 used = recv_actor(sk, skb); 1753 if (used <= 0) { 1754 if (!copied) 1755 copied = used; 1756 break; 1757 } 1758 seq += used; 1759 copied += used; 1760 1761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1762 consume_skb(skb); 1763 ++seq; 1764 break; 1765 } 1766 consume_skb(skb); 1767 break; 1768 } 1769 WRITE_ONCE(tp->copied_seq, seq); 1770 1771 tcp_rcv_space_adjust(sk); 1772 1773 /* Clean up data we have read: This will do ACK frames. */ 1774 if (copied > 0) 1775 tcp_cleanup_rbuf(sk, copied); 1776 1777 return copied; 1778 } 1779 EXPORT_SYMBOL(tcp_read_skb); 1780 1781 int tcp_peek_len(struct socket *sock) 1782 { 1783 return tcp_inq(sock->sk); 1784 } 1785 EXPORT_SYMBOL(tcp_peek_len); 1786 1787 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1788 int tcp_set_rcvlowat(struct sock *sk, int val) 1789 { 1790 int cap; 1791 1792 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1793 cap = sk->sk_rcvbuf >> 1; 1794 else 1795 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1796 val = min(val, cap); 1797 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1798 1799 /* Check if we need to signal EPOLLIN right now */ 1800 tcp_data_ready(sk); 1801 1802 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1803 return 0; 1804 1805 val <<= 1; 1806 if (val > sk->sk_rcvbuf) { 1807 WRITE_ONCE(sk->sk_rcvbuf, val); 1808 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1809 } 1810 return 0; 1811 } 1812 EXPORT_SYMBOL(tcp_set_rcvlowat); 1813 1814 void tcp_update_recv_tstamps(struct sk_buff *skb, 1815 struct scm_timestamping_internal *tss) 1816 { 1817 if (skb->tstamp) 1818 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1819 else 1820 tss->ts[0] = (struct timespec64) {0}; 1821 1822 if (skb_hwtstamps(skb)->hwtstamp) 1823 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1824 else 1825 tss->ts[2] = (struct timespec64) {0}; 1826 } 1827 1828 #ifdef CONFIG_MMU 1829 static const struct vm_operations_struct tcp_vm_ops = { 1830 }; 1831 1832 int tcp_mmap(struct file *file, struct socket *sock, 1833 struct vm_area_struct *vma) 1834 { 1835 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1836 return -EPERM; 1837 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1838 1839 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1840 vma->vm_flags |= VM_MIXEDMAP; 1841 1842 vma->vm_ops = &tcp_vm_ops; 1843 return 0; 1844 } 1845 EXPORT_SYMBOL(tcp_mmap); 1846 1847 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1848 u32 *offset_frag) 1849 { 1850 skb_frag_t *frag; 1851 1852 if (unlikely(offset_skb >= skb->len)) 1853 return NULL; 1854 1855 offset_skb -= skb_headlen(skb); 1856 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1857 return NULL; 1858 1859 frag = skb_shinfo(skb)->frags; 1860 while (offset_skb) { 1861 if (skb_frag_size(frag) > offset_skb) { 1862 *offset_frag = offset_skb; 1863 return frag; 1864 } 1865 offset_skb -= skb_frag_size(frag); 1866 ++frag; 1867 } 1868 *offset_frag = 0; 1869 return frag; 1870 } 1871 1872 static bool can_map_frag(const skb_frag_t *frag) 1873 { 1874 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1875 } 1876 1877 static int find_next_mappable_frag(const skb_frag_t *frag, 1878 int remaining_in_skb) 1879 { 1880 int offset = 0; 1881 1882 if (likely(can_map_frag(frag))) 1883 return 0; 1884 1885 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1886 offset += skb_frag_size(frag); 1887 ++frag; 1888 } 1889 return offset; 1890 } 1891 1892 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1893 struct tcp_zerocopy_receive *zc, 1894 struct sk_buff *skb, u32 offset) 1895 { 1896 u32 frag_offset, partial_frag_remainder = 0; 1897 int mappable_offset; 1898 skb_frag_t *frag; 1899 1900 /* worst case: skip to next skb. try to improve on this case below */ 1901 zc->recv_skip_hint = skb->len - offset; 1902 1903 /* Find the frag containing this offset (and how far into that frag) */ 1904 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1905 if (!frag) 1906 return; 1907 1908 if (frag_offset) { 1909 struct skb_shared_info *info = skb_shinfo(skb); 1910 1911 /* We read part of the last frag, must recvmsg() rest of skb. */ 1912 if (frag == &info->frags[info->nr_frags - 1]) 1913 return; 1914 1915 /* Else, we must at least read the remainder in this frag. */ 1916 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1917 zc->recv_skip_hint -= partial_frag_remainder; 1918 ++frag; 1919 } 1920 1921 /* partial_frag_remainder: If part way through a frag, must read rest. 1922 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1923 * in partial_frag_remainder. 1924 */ 1925 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1926 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1927 } 1928 1929 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1930 int flags, struct scm_timestamping_internal *tss, 1931 int *cmsg_flags); 1932 static int receive_fallback_to_copy(struct sock *sk, 1933 struct tcp_zerocopy_receive *zc, int inq, 1934 struct scm_timestamping_internal *tss) 1935 { 1936 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1937 struct msghdr msg = {}; 1938 struct iovec iov; 1939 int err; 1940 1941 zc->length = 0; 1942 zc->recv_skip_hint = 0; 1943 1944 if (copy_address != zc->copybuf_address) 1945 return -EINVAL; 1946 1947 err = import_single_range(READ, (void __user *)copy_address, 1948 inq, &iov, &msg.msg_iter); 1949 if (err) 1950 return err; 1951 1952 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1953 tss, &zc->msg_flags); 1954 if (err < 0) 1955 return err; 1956 1957 zc->copybuf_len = err; 1958 if (likely(zc->copybuf_len)) { 1959 struct sk_buff *skb; 1960 u32 offset; 1961 1962 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1963 if (skb) 1964 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1965 } 1966 return 0; 1967 } 1968 1969 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1970 struct sk_buff *skb, u32 copylen, 1971 u32 *offset, u32 *seq) 1972 { 1973 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1974 struct msghdr msg = {}; 1975 struct iovec iov; 1976 int err; 1977 1978 if (copy_address != zc->copybuf_address) 1979 return -EINVAL; 1980 1981 err = import_single_range(READ, (void __user *)copy_address, 1982 copylen, &iov, &msg.msg_iter); 1983 if (err) 1984 return err; 1985 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1986 if (err) 1987 return err; 1988 zc->recv_skip_hint -= copylen; 1989 *offset += copylen; 1990 *seq += copylen; 1991 return (__s32)copylen; 1992 } 1993 1994 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1995 struct sock *sk, 1996 struct sk_buff *skb, 1997 u32 *seq, 1998 s32 copybuf_len, 1999 struct scm_timestamping_internal *tss) 2000 { 2001 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2002 2003 if (!copylen) 2004 return 0; 2005 /* skb is null if inq < PAGE_SIZE. */ 2006 if (skb) { 2007 offset = *seq - TCP_SKB_CB(skb)->seq; 2008 } else { 2009 skb = tcp_recv_skb(sk, *seq, &offset); 2010 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2011 tcp_update_recv_tstamps(skb, tss); 2012 zc->msg_flags |= TCP_CMSG_TS; 2013 } 2014 } 2015 2016 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2017 seq); 2018 return zc->copybuf_len < 0 ? 0 : copylen; 2019 } 2020 2021 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2022 struct page **pending_pages, 2023 unsigned long pages_remaining, 2024 unsigned long *address, 2025 u32 *length, 2026 u32 *seq, 2027 struct tcp_zerocopy_receive *zc, 2028 u32 total_bytes_to_map, 2029 int err) 2030 { 2031 /* At least one page did not map. Try zapping if we skipped earlier. */ 2032 if (err == -EBUSY && 2033 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2034 u32 maybe_zap_len; 2035 2036 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2037 *length + /* Mapped or pending */ 2038 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2039 zap_page_range(vma, *address, maybe_zap_len); 2040 err = 0; 2041 } 2042 2043 if (!err) { 2044 unsigned long leftover_pages = pages_remaining; 2045 int bytes_mapped; 2046 2047 /* We called zap_page_range, try to reinsert. */ 2048 err = vm_insert_pages(vma, *address, 2049 pending_pages, 2050 &pages_remaining); 2051 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2052 *seq += bytes_mapped; 2053 *address += bytes_mapped; 2054 } 2055 if (err) { 2056 /* Either we were unable to zap, OR we zapped, retried an 2057 * insert, and still had an issue. Either ways, pages_remaining 2058 * is the number of pages we were unable to map, and we unroll 2059 * some state we speculatively touched before. 2060 */ 2061 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2062 2063 *length -= bytes_not_mapped; 2064 zc->recv_skip_hint += bytes_not_mapped; 2065 } 2066 return err; 2067 } 2068 2069 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2070 struct page **pages, 2071 unsigned int pages_to_map, 2072 unsigned long *address, 2073 u32 *length, 2074 u32 *seq, 2075 struct tcp_zerocopy_receive *zc, 2076 u32 total_bytes_to_map) 2077 { 2078 unsigned long pages_remaining = pages_to_map; 2079 unsigned int pages_mapped; 2080 unsigned int bytes_mapped; 2081 int err; 2082 2083 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2084 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2085 bytes_mapped = PAGE_SIZE * pages_mapped; 2086 /* Even if vm_insert_pages fails, it may have partially succeeded in 2087 * mapping (some but not all of the pages). 2088 */ 2089 *seq += bytes_mapped; 2090 *address += bytes_mapped; 2091 2092 if (likely(!err)) 2093 return 0; 2094 2095 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2096 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2097 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2098 err); 2099 } 2100 2101 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2102 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2103 struct tcp_zerocopy_receive *zc, 2104 struct scm_timestamping_internal *tss) 2105 { 2106 unsigned long msg_control_addr; 2107 struct msghdr cmsg_dummy; 2108 2109 msg_control_addr = (unsigned long)zc->msg_control; 2110 cmsg_dummy.msg_control = (void *)msg_control_addr; 2111 cmsg_dummy.msg_controllen = 2112 (__kernel_size_t)zc->msg_controllen; 2113 cmsg_dummy.msg_flags = in_compat_syscall() 2114 ? MSG_CMSG_COMPAT : 0; 2115 cmsg_dummy.msg_control_is_user = true; 2116 zc->msg_flags = 0; 2117 if (zc->msg_control == msg_control_addr && 2118 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2119 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2120 zc->msg_control = (__u64) 2121 ((uintptr_t)cmsg_dummy.msg_control); 2122 zc->msg_controllen = 2123 (__u64)cmsg_dummy.msg_controllen; 2124 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2125 } 2126 } 2127 2128 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2129 static int tcp_zerocopy_receive(struct sock *sk, 2130 struct tcp_zerocopy_receive *zc, 2131 struct scm_timestamping_internal *tss) 2132 { 2133 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2134 unsigned long address = (unsigned long)zc->address; 2135 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2136 s32 copybuf_len = zc->copybuf_len; 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 const skb_frag_t *frags = NULL; 2139 unsigned int pages_to_map = 0; 2140 struct vm_area_struct *vma; 2141 struct sk_buff *skb = NULL; 2142 u32 seq = tp->copied_seq; 2143 u32 total_bytes_to_map; 2144 int inq = tcp_inq(sk); 2145 int ret; 2146 2147 zc->copybuf_len = 0; 2148 zc->msg_flags = 0; 2149 2150 if (address & (PAGE_SIZE - 1) || address != zc->address) 2151 return -EINVAL; 2152 2153 if (sk->sk_state == TCP_LISTEN) 2154 return -ENOTCONN; 2155 2156 sock_rps_record_flow(sk); 2157 2158 if (inq && inq <= copybuf_len) 2159 return receive_fallback_to_copy(sk, zc, inq, tss); 2160 2161 if (inq < PAGE_SIZE) { 2162 zc->length = 0; 2163 zc->recv_skip_hint = inq; 2164 if (!inq && sock_flag(sk, SOCK_DONE)) 2165 return -EIO; 2166 return 0; 2167 } 2168 2169 mmap_read_lock(current->mm); 2170 2171 vma = vma_lookup(current->mm, address); 2172 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2173 mmap_read_unlock(current->mm); 2174 return -EINVAL; 2175 } 2176 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2177 avail_len = min_t(u32, vma_len, inq); 2178 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2179 if (total_bytes_to_map) { 2180 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2181 zap_page_range(vma, address, total_bytes_to_map); 2182 zc->length = total_bytes_to_map; 2183 zc->recv_skip_hint = 0; 2184 } else { 2185 zc->length = avail_len; 2186 zc->recv_skip_hint = avail_len; 2187 } 2188 ret = 0; 2189 while (length + PAGE_SIZE <= zc->length) { 2190 int mappable_offset; 2191 struct page *page; 2192 2193 if (zc->recv_skip_hint < PAGE_SIZE) { 2194 u32 offset_frag; 2195 2196 if (skb) { 2197 if (zc->recv_skip_hint > 0) 2198 break; 2199 skb = skb->next; 2200 offset = seq - TCP_SKB_CB(skb)->seq; 2201 } else { 2202 skb = tcp_recv_skb(sk, seq, &offset); 2203 } 2204 2205 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2206 tcp_update_recv_tstamps(skb, tss); 2207 zc->msg_flags |= TCP_CMSG_TS; 2208 } 2209 zc->recv_skip_hint = skb->len - offset; 2210 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2211 if (!frags || offset_frag) 2212 break; 2213 } 2214 2215 mappable_offset = find_next_mappable_frag(frags, 2216 zc->recv_skip_hint); 2217 if (mappable_offset) { 2218 zc->recv_skip_hint = mappable_offset; 2219 break; 2220 } 2221 page = skb_frag_page(frags); 2222 prefetchw(page); 2223 pages[pages_to_map++] = page; 2224 length += PAGE_SIZE; 2225 zc->recv_skip_hint -= PAGE_SIZE; 2226 frags++; 2227 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2228 zc->recv_skip_hint < PAGE_SIZE) { 2229 /* Either full batch, or we're about to go to next skb 2230 * (and we cannot unroll failed ops across skbs). 2231 */ 2232 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2233 pages_to_map, 2234 &address, &length, 2235 &seq, zc, 2236 total_bytes_to_map); 2237 if (ret) 2238 goto out; 2239 pages_to_map = 0; 2240 } 2241 } 2242 if (pages_to_map) { 2243 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2244 &address, &length, &seq, 2245 zc, total_bytes_to_map); 2246 } 2247 out: 2248 mmap_read_unlock(current->mm); 2249 /* Try to copy straggler data. */ 2250 if (!ret) 2251 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2252 2253 if (length + copylen) { 2254 WRITE_ONCE(tp->copied_seq, seq); 2255 tcp_rcv_space_adjust(sk); 2256 2257 /* Clean up data we have read: This will do ACK frames. */ 2258 tcp_recv_skb(sk, seq, &offset); 2259 tcp_cleanup_rbuf(sk, length + copylen); 2260 ret = 0; 2261 if (length == zc->length) 2262 zc->recv_skip_hint = 0; 2263 } else { 2264 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2265 ret = -EIO; 2266 } 2267 zc->length = length; 2268 return ret; 2269 } 2270 #endif 2271 2272 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2273 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2274 struct scm_timestamping_internal *tss) 2275 { 2276 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2277 bool has_timestamping = false; 2278 2279 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2280 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2281 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2282 if (new_tstamp) { 2283 struct __kernel_timespec kts = { 2284 .tv_sec = tss->ts[0].tv_sec, 2285 .tv_nsec = tss->ts[0].tv_nsec, 2286 }; 2287 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2288 sizeof(kts), &kts); 2289 } else { 2290 struct __kernel_old_timespec ts_old = { 2291 .tv_sec = tss->ts[0].tv_sec, 2292 .tv_nsec = tss->ts[0].tv_nsec, 2293 }; 2294 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2295 sizeof(ts_old), &ts_old); 2296 } 2297 } else { 2298 if (new_tstamp) { 2299 struct __kernel_sock_timeval stv = { 2300 .tv_sec = tss->ts[0].tv_sec, 2301 .tv_usec = tss->ts[0].tv_nsec / 1000, 2302 }; 2303 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2304 sizeof(stv), &stv); 2305 } else { 2306 struct __kernel_old_timeval tv = { 2307 .tv_sec = tss->ts[0].tv_sec, 2308 .tv_usec = tss->ts[0].tv_nsec / 1000, 2309 }; 2310 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2311 sizeof(tv), &tv); 2312 } 2313 } 2314 } 2315 2316 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2317 has_timestamping = true; 2318 else 2319 tss->ts[0] = (struct timespec64) {0}; 2320 } 2321 2322 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2323 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2324 has_timestamping = true; 2325 else 2326 tss->ts[2] = (struct timespec64) {0}; 2327 } 2328 2329 if (has_timestamping) { 2330 tss->ts[1] = (struct timespec64) {0}; 2331 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2332 put_cmsg_scm_timestamping64(msg, tss); 2333 else 2334 put_cmsg_scm_timestamping(msg, tss); 2335 } 2336 } 2337 2338 static int tcp_inq_hint(struct sock *sk) 2339 { 2340 const struct tcp_sock *tp = tcp_sk(sk); 2341 u32 copied_seq = READ_ONCE(tp->copied_seq); 2342 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2343 int inq; 2344 2345 inq = rcv_nxt - copied_seq; 2346 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2347 lock_sock(sk); 2348 inq = tp->rcv_nxt - tp->copied_seq; 2349 release_sock(sk); 2350 } 2351 /* After receiving a FIN, tell the user-space to continue reading 2352 * by returning a non-zero inq. 2353 */ 2354 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2355 inq = 1; 2356 return inq; 2357 } 2358 2359 /* 2360 * This routine copies from a sock struct into the user buffer. 2361 * 2362 * Technical note: in 2.3 we work on _locked_ socket, so that 2363 * tricks with *seq access order and skb->users are not required. 2364 * Probably, code can be easily improved even more. 2365 */ 2366 2367 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2368 int flags, struct scm_timestamping_internal *tss, 2369 int *cmsg_flags) 2370 { 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 int copied = 0; 2373 u32 peek_seq; 2374 u32 *seq; 2375 unsigned long used; 2376 int err; 2377 int target; /* Read at least this many bytes */ 2378 long timeo; 2379 struct sk_buff *skb, *last; 2380 u32 urg_hole = 0; 2381 2382 err = -ENOTCONN; 2383 if (sk->sk_state == TCP_LISTEN) 2384 goto out; 2385 2386 if (tp->recvmsg_inq) { 2387 *cmsg_flags = TCP_CMSG_INQ; 2388 msg->msg_get_inq = 1; 2389 } 2390 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2391 2392 /* Urgent data needs to be handled specially. */ 2393 if (flags & MSG_OOB) 2394 goto recv_urg; 2395 2396 if (unlikely(tp->repair)) { 2397 err = -EPERM; 2398 if (!(flags & MSG_PEEK)) 2399 goto out; 2400 2401 if (tp->repair_queue == TCP_SEND_QUEUE) 2402 goto recv_sndq; 2403 2404 err = -EINVAL; 2405 if (tp->repair_queue == TCP_NO_QUEUE) 2406 goto out; 2407 2408 /* 'common' recv queue MSG_PEEK-ing */ 2409 } 2410 2411 seq = &tp->copied_seq; 2412 if (flags & MSG_PEEK) { 2413 peek_seq = tp->copied_seq; 2414 seq = &peek_seq; 2415 } 2416 2417 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2418 2419 do { 2420 u32 offset; 2421 2422 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2423 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2424 if (copied) 2425 break; 2426 if (signal_pending(current)) { 2427 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2428 break; 2429 } 2430 } 2431 2432 /* Next get a buffer. */ 2433 2434 last = skb_peek_tail(&sk->sk_receive_queue); 2435 skb_queue_walk(&sk->sk_receive_queue, skb) { 2436 last = skb; 2437 /* Now that we have two receive queues this 2438 * shouldn't happen. 2439 */ 2440 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2441 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2442 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2443 flags)) 2444 break; 2445 2446 offset = *seq - TCP_SKB_CB(skb)->seq; 2447 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2448 pr_err_once("%s: found a SYN, please report !\n", __func__); 2449 offset--; 2450 } 2451 if (offset < skb->len) 2452 goto found_ok_skb; 2453 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2454 goto found_fin_ok; 2455 WARN(!(flags & MSG_PEEK), 2456 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2457 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2458 } 2459 2460 /* Well, if we have backlog, try to process it now yet. */ 2461 2462 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2463 break; 2464 2465 if (copied) { 2466 if (!timeo || 2467 sk->sk_err || 2468 sk->sk_state == TCP_CLOSE || 2469 (sk->sk_shutdown & RCV_SHUTDOWN) || 2470 signal_pending(current)) 2471 break; 2472 } else { 2473 if (sock_flag(sk, SOCK_DONE)) 2474 break; 2475 2476 if (sk->sk_err) { 2477 copied = sock_error(sk); 2478 break; 2479 } 2480 2481 if (sk->sk_shutdown & RCV_SHUTDOWN) 2482 break; 2483 2484 if (sk->sk_state == TCP_CLOSE) { 2485 /* This occurs when user tries to read 2486 * from never connected socket. 2487 */ 2488 copied = -ENOTCONN; 2489 break; 2490 } 2491 2492 if (!timeo) { 2493 copied = -EAGAIN; 2494 break; 2495 } 2496 2497 if (signal_pending(current)) { 2498 copied = sock_intr_errno(timeo); 2499 break; 2500 } 2501 } 2502 2503 if (copied >= target) { 2504 /* Do not sleep, just process backlog. */ 2505 __sk_flush_backlog(sk); 2506 } else { 2507 tcp_cleanup_rbuf(sk, copied); 2508 sk_wait_data(sk, &timeo, last); 2509 } 2510 2511 if ((flags & MSG_PEEK) && 2512 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2513 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2514 current->comm, 2515 task_pid_nr(current)); 2516 peek_seq = tp->copied_seq; 2517 } 2518 continue; 2519 2520 found_ok_skb: 2521 /* Ok so how much can we use? */ 2522 used = skb->len - offset; 2523 if (len < used) 2524 used = len; 2525 2526 /* Do we have urgent data here? */ 2527 if (unlikely(tp->urg_data)) { 2528 u32 urg_offset = tp->urg_seq - *seq; 2529 if (urg_offset < used) { 2530 if (!urg_offset) { 2531 if (!sock_flag(sk, SOCK_URGINLINE)) { 2532 WRITE_ONCE(*seq, *seq + 1); 2533 urg_hole++; 2534 offset++; 2535 used--; 2536 if (!used) 2537 goto skip_copy; 2538 } 2539 } else 2540 used = urg_offset; 2541 } 2542 } 2543 2544 if (!(flags & MSG_TRUNC)) { 2545 err = skb_copy_datagram_msg(skb, offset, msg, used); 2546 if (err) { 2547 /* Exception. Bailout! */ 2548 if (!copied) 2549 copied = -EFAULT; 2550 break; 2551 } 2552 } 2553 2554 WRITE_ONCE(*seq, *seq + used); 2555 copied += used; 2556 len -= used; 2557 2558 tcp_rcv_space_adjust(sk); 2559 2560 skip_copy: 2561 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2562 WRITE_ONCE(tp->urg_data, 0); 2563 tcp_fast_path_check(sk); 2564 } 2565 2566 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2567 tcp_update_recv_tstamps(skb, tss); 2568 *cmsg_flags |= TCP_CMSG_TS; 2569 } 2570 2571 if (used + offset < skb->len) 2572 continue; 2573 2574 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2575 goto found_fin_ok; 2576 if (!(flags & MSG_PEEK)) 2577 tcp_eat_recv_skb(sk, skb); 2578 continue; 2579 2580 found_fin_ok: 2581 /* Process the FIN. */ 2582 WRITE_ONCE(*seq, *seq + 1); 2583 if (!(flags & MSG_PEEK)) 2584 tcp_eat_recv_skb(sk, skb); 2585 break; 2586 } while (len > 0); 2587 2588 /* According to UNIX98, msg_name/msg_namelen are ignored 2589 * on connected socket. I was just happy when found this 8) --ANK 2590 */ 2591 2592 /* Clean up data we have read: This will do ACK frames. */ 2593 tcp_cleanup_rbuf(sk, copied); 2594 return copied; 2595 2596 out: 2597 return err; 2598 2599 recv_urg: 2600 err = tcp_recv_urg(sk, msg, len, flags); 2601 goto out; 2602 2603 recv_sndq: 2604 err = tcp_peek_sndq(sk, msg, len); 2605 goto out; 2606 } 2607 2608 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2609 int *addr_len) 2610 { 2611 int cmsg_flags = 0, ret; 2612 struct scm_timestamping_internal tss; 2613 2614 if (unlikely(flags & MSG_ERRQUEUE)) 2615 return inet_recv_error(sk, msg, len, addr_len); 2616 2617 if (sk_can_busy_loop(sk) && 2618 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2619 sk->sk_state == TCP_ESTABLISHED) 2620 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2621 2622 lock_sock(sk); 2623 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2624 release_sock(sk); 2625 2626 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2627 if (cmsg_flags & TCP_CMSG_TS) 2628 tcp_recv_timestamp(msg, sk, &tss); 2629 if (msg->msg_get_inq) { 2630 msg->msg_inq = tcp_inq_hint(sk); 2631 if (cmsg_flags & TCP_CMSG_INQ) 2632 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2633 sizeof(msg->msg_inq), &msg->msg_inq); 2634 } 2635 } 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(tcp_recvmsg); 2639 2640 void tcp_set_state(struct sock *sk, int state) 2641 { 2642 int oldstate = sk->sk_state; 2643 2644 /* We defined a new enum for TCP states that are exported in BPF 2645 * so as not force the internal TCP states to be frozen. The 2646 * following checks will detect if an internal state value ever 2647 * differs from the BPF value. If this ever happens, then we will 2648 * need to remap the internal value to the BPF value before calling 2649 * tcp_call_bpf_2arg. 2650 */ 2651 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2652 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2653 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2654 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2655 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2656 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2657 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2658 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2659 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2660 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2661 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2662 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2663 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2664 2665 /* bpf uapi header bpf.h defines an anonymous enum with values 2666 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2667 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2668 * But clang built vmlinux does not have this enum in DWARF 2669 * since clang removes the above code before generating IR/debuginfo. 2670 * Let us explicitly emit the type debuginfo to ensure the 2671 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2672 * regardless of which compiler is used. 2673 */ 2674 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2675 2676 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2677 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2678 2679 switch (state) { 2680 case TCP_ESTABLISHED: 2681 if (oldstate != TCP_ESTABLISHED) 2682 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2683 break; 2684 2685 case TCP_CLOSE: 2686 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2687 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2688 2689 sk->sk_prot->unhash(sk); 2690 if (inet_csk(sk)->icsk_bind_hash && 2691 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2692 inet_put_port(sk); 2693 fallthrough; 2694 default: 2695 if (oldstate == TCP_ESTABLISHED) 2696 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2697 } 2698 2699 /* Change state AFTER socket is unhashed to avoid closed 2700 * socket sitting in hash tables. 2701 */ 2702 inet_sk_state_store(sk, state); 2703 } 2704 EXPORT_SYMBOL_GPL(tcp_set_state); 2705 2706 /* 2707 * State processing on a close. This implements the state shift for 2708 * sending our FIN frame. Note that we only send a FIN for some 2709 * states. A shutdown() may have already sent the FIN, or we may be 2710 * closed. 2711 */ 2712 2713 static const unsigned char new_state[16] = { 2714 /* current state: new state: action: */ 2715 [0 /* (Invalid) */] = TCP_CLOSE, 2716 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2717 [TCP_SYN_SENT] = TCP_CLOSE, 2718 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2719 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2720 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2721 [TCP_TIME_WAIT] = TCP_CLOSE, 2722 [TCP_CLOSE] = TCP_CLOSE, 2723 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2724 [TCP_LAST_ACK] = TCP_LAST_ACK, 2725 [TCP_LISTEN] = TCP_CLOSE, 2726 [TCP_CLOSING] = TCP_CLOSING, 2727 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2728 }; 2729 2730 static int tcp_close_state(struct sock *sk) 2731 { 2732 int next = (int)new_state[sk->sk_state]; 2733 int ns = next & TCP_STATE_MASK; 2734 2735 tcp_set_state(sk, ns); 2736 2737 return next & TCP_ACTION_FIN; 2738 } 2739 2740 /* 2741 * Shutdown the sending side of a connection. Much like close except 2742 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2743 */ 2744 2745 void tcp_shutdown(struct sock *sk, int how) 2746 { 2747 /* We need to grab some memory, and put together a FIN, 2748 * and then put it into the queue to be sent. 2749 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2750 */ 2751 if (!(how & SEND_SHUTDOWN)) 2752 return; 2753 2754 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2755 if ((1 << sk->sk_state) & 2756 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2757 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2758 /* Clear out any half completed packets. FIN if needed. */ 2759 if (tcp_close_state(sk)) 2760 tcp_send_fin(sk); 2761 } 2762 } 2763 EXPORT_SYMBOL(tcp_shutdown); 2764 2765 int tcp_orphan_count_sum(void) 2766 { 2767 int i, total = 0; 2768 2769 for_each_possible_cpu(i) 2770 total += per_cpu(tcp_orphan_count, i); 2771 2772 return max(total, 0); 2773 } 2774 2775 static int tcp_orphan_cache; 2776 static struct timer_list tcp_orphan_timer; 2777 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2778 2779 static void tcp_orphan_update(struct timer_list *unused) 2780 { 2781 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2782 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2783 } 2784 2785 static bool tcp_too_many_orphans(int shift) 2786 { 2787 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2788 } 2789 2790 bool tcp_check_oom(struct sock *sk, int shift) 2791 { 2792 bool too_many_orphans, out_of_socket_memory; 2793 2794 too_many_orphans = tcp_too_many_orphans(shift); 2795 out_of_socket_memory = tcp_out_of_memory(sk); 2796 2797 if (too_many_orphans) 2798 net_info_ratelimited("too many orphaned sockets\n"); 2799 if (out_of_socket_memory) 2800 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2801 return too_many_orphans || out_of_socket_memory; 2802 } 2803 2804 void __tcp_close(struct sock *sk, long timeout) 2805 { 2806 struct sk_buff *skb; 2807 int data_was_unread = 0; 2808 int state; 2809 2810 sk->sk_shutdown = SHUTDOWN_MASK; 2811 2812 if (sk->sk_state == TCP_LISTEN) { 2813 tcp_set_state(sk, TCP_CLOSE); 2814 2815 /* Special case. */ 2816 inet_csk_listen_stop(sk); 2817 2818 goto adjudge_to_death; 2819 } 2820 2821 /* We need to flush the recv. buffs. We do this only on the 2822 * descriptor close, not protocol-sourced closes, because the 2823 * reader process may not have drained the data yet! 2824 */ 2825 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2826 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2827 2828 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2829 len--; 2830 data_was_unread += len; 2831 __kfree_skb(skb); 2832 } 2833 2834 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2835 if (sk->sk_state == TCP_CLOSE) 2836 goto adjudge_to_death; 2837 2838 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2839 * data was lost. To witness the awful effects of the old behavior of 2840 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2841 * GET in an FTP client, suspend the process, wait for the client to 2842 * advertise a zero window, then kill -9 the FTP client, wheee... 2843 * Note: timeout is always zero in such a case. 2844 */ 2845 if (unlikely(tcp_sk(sk)->repair)) { 2846 sk->sk_prot->disconnect(sk, 0); 2847 } else if (data_was_unread) { 2848 /* Unread data was tossed, zap the connection. */ 2849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2850 tcp_set_state(sk, TCP_CLOSE); 2851 tcp_send_active_reset(sk, sk->sk_allocation); 2852 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2853 /* Check zero linger _after_ checking for unread data. */ 2854 sk->sk_prot->disconnect(sk, 0); 2855 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2856 } else if (tcp_close_state(sk)) { 2857 /* We FIN if the application ate all the data before 2858 * zapping the connection. 2859 */ 2860 2861 /* RED-PEN. Formally speaking, we have broken TCP state 2862 * machine. State transitions: 2863 * 2864 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2865 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2866 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2867 * 2868 * are legal only when FIN has been sent (i.e. in window), 2869 * rather than queued out of window. Purists blame. 2870 * 2871 * F.e. "RFC state" is ESTABLISHED, 2872 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2873 * 2874 * The visible declinations are that sometimes 2875 * we enter time-wait state, when it is not required really 2876 * (harmless), do not send active resets, when they are 2877 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2878 * they look as CLOSING or LAST_ACK for Linux) 2879 * Probably, I missed some more holelets. 2880 * --ANK 2881 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2882 * in a single packet! (May consider it later but will 2883 * probably need API support or TCP_CORK SYN-ACK until 2884 * data is written and socket is closed.) 2885 */ 2886 tcp_send_fin(sk); 2887 } 2888 2889 sk_stream_wait_close(sk, timeout); 2890 2891 adjudge_to_death: 2892 state = sk->sk_state; 2893 sock_hold(sk); 2894 sock_orphan(sk); 2895 2896 local_bh_disable(); 2897 bh_lock_sock(sk); 2898 /* remove backlog if any, without releasing ownership. */ 2899 __release_sock(sk); 2900 2901 this_cpu_inc(tcp_orphan_count); 2902 2903 /* Have we already been destroyed by a softirq or backlog? */ 2904 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2905 goto out; 2906 2907 /* This is a (useful) BSD violating of the RFC. There is a 2908 * problem with TCP as specified in that the other end could 2909 * keep a socket open forever with no application left this end. 2910 * We use a 1 minute timeout (about the same as BSD) then kill 2911 * our end. If they send after that then tough - BUT: long enough 2912 * that we won't make the old 4*rto = almost no time - whoops 2913 * reset mistake. 2914 * 2915 * Nope, it was not mistake. It is really desired behaviour 2916 * f.e. on http servers, when such sockets are useless, but 2917 * consume significant resources. Let's do it with special 2918 * linger2 option. --ANK 2919 */ 2920 2921 if (sk->sk_state == TCP_FIN_WAIT2) { 2922 struct tcp_sock *tp = tcp_sk(sk); 2923 if (tp->linger2 < 0) { 2924 tcp_set_state(sk, TCP_CLOSE); 2925 tcp_send_active_reset(sk, GFP_ATOMIC); 2926 __NET_INC_STATS(sock_net(sk), 2927 LINUX_MIB_TCPABORTONLINGER); 2928 } else { 2929 const int tmo = tcp_fin_time(sk); 2930 2931 if (tmo > TCP_TIMEWAIT_LEN) { 2932 inet_csk_reset_keepalive_timer(sk, 2933 tmo - TCP_TIMEWAIT_LEN); 2934 } else { 2935 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2936 goto out; 2937 } 2938 } 2939 } 2940 if (sk->sk_state != TCP_CLOSE) { 2941 if (tcp_check_oom(sk, 0)) { 2942 tcp_set_state(sk, TCP_CLOSE); 2943 tcp_send_active_reset(sk, GFP_ATOMIC); 2944 __NET_INC_STATS(sock_net(sk), 2945 LINUX_MIB_TCPABORTONMEMORY); 2946 } else if (!check_net(sock_net(sk))) { 2947 /* Not possible to send reset; just close */ 2948 tcp_set_state(sk, TCP_CLOSE); 2949 } 2950 } 2951 2952 if (sk->sk_state == TCP_CLOSE) { 2953 struct request_sock *req; 2954 2955 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2956 lockdep_sock_is_held(sk)); 2957 /* We could get here with a non-NULL req if the socket is 2958 * aborted (e.g., closed with unread data) before 3WHS 2959 * finishes. 2960 */ 2961 if (req) 2962 reqsk_fastopen_remove(sk, req, false); 2963 inet_csk_destroy_sock(sk); 2964 } 2965 /* Otherwise, socket is reprieved until protocol close. */ 2966 2967 out: 2968 bh_unlock_sock(sk); 2969 local_bh_enable(); 2970 } 2971 2972 void tcp_close(struct sock *sk, long timeout) 2973 { 2974 lock_sock(sk); 2975 __tcp_close(sk, timeout); 2976 release_sock(sk); 2977 sock_put(sk); 2978 } 2979 EXPORT_SYMBOL(tcp_close); 2980 2981 /* These states need RST on ABORT according to RFC793 */ 2982 2983 static inline bool tcp_need_reset(int state) 2984 { 2985 return (1 << state) & 2986 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2987 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2988 } 2989 2990 static void tcp_rtx_queue_purge(struct sock *sk) 2991 { 2992 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2993 2994 tcp_sk(sk)->highest_sack = NULL; 2995 while (p) { 2996 struct sk_buff *skb = rb_to_skb(p); 2997 2998 p = rb_next(p); 2999 /* Since we are deleting whole queue, no need to 3000 * list_del(&skb->tcp_tsorted_anchor) 3001 */ 3002 tcp_rtx_queue_unlink(skb, sk); 3003 tcp_wmem_free_skb(sk, skb); 3004 } 3005 } 3006 3007 void tcp_write_queue_purge(struct sock *sk) 3008 { 3009 struct sk_buff *skb; 3010 3011 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3012 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3013 tcp_skb_tsorted_anchor_cleanup(skb); 3014 tcp_wmem_free_skb(sk, skb); 3015 } 3016 tcp_rtx_queue_purge(sk); 3017 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3018 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3019 tcp_sk(sk)->packets_out = 0; 3020 inet_csk(sk)->icsk_backoff = 0; 3021 } 3022 3023 int tcp_disconnect(struct sock *sk, int flags) 3024 { 3025 struct inet_sock *inet = inet_sk(sk); 3026 struct inet_connection_sock *icsk = inet_csk(sk); 3027 struct tcp_sock *tp = tcp_sk(sk); 3028 int old_state = sk->sk_state; 3029 u32 seq; 3030 3031 if (old_state != TCP_CLOSE) 3032 tcp_set_state(sk, TCP_CLOSE); 3033 3034 /* ABORT function of RFC793 */ 3035 if (old_state == TCP_LISTEN) { 3036 inet_csk_listen_stop(sk); 3037 } else if (unlikely(tp->repair)) { 3038 sk->sk_err = ECONNABORTED; 3039 } else if (tcp_need_reset(old_state) || 3040 (tp->snd_nxt != tp->write_seq && 3041 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3042 /* The last check adjusts for discrepancy of Linux wrt. RFC 3043 * states 3044 */ 3045 tcp_send_active_reset(sk, gfp_any()); 3046 sk->sk_err = ECONNRESET; 3047 } else if (old_state == TCP_SYN_SENT) 3048 sk->sk_err = ECONNRESET; 3049 3050 tcp_clear_xmit_timers(sk); 3051 __skb_queue_purge(&sk->sk_receive_queue); 3052 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3053 WRITE_ONCE(tp->urg_data, 0); 3054 tcp_write_queue_purge(sk); 3055 tcp_fastopen_active_disable_ofo_check(sk); 3056 skb_rbtree_purge(&tp->out_of_order_queue); 3057 3058 inet->inet_dport = 0; 3059 3060 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3061 inet_reset_saddr(sk); 3062 3063 sk->sk_shutdown = 0; 3064 sock_reset_flag(sk, SOCK_DONE); 3065 tp->srtt_us = 0; 3066 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3067 tp->rcv_rtt_last_tsecr = 0; 3068 3069 seq = tp->write_seq + tp->max_window + 2; 3070 if (!seq) 3071 seq = 1; 3072 WRITE_ONCE(tp->write_seq, seq); 3073 3074 icsk->icsk_backoff = 0; 3075 icsk->icsk_probes_out = 0; 3076 icsk->icsk_probes_tstamp = 0; 3077 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3078 icsk->icsk_rto_min = TCP_RTO_MIN; 3079 icsk->icsk_delack_max = TCP_DELACK_MAX; 3080 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3081 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3082 tp->snd_cwnd_cnt = 0; 3083 tp->window_clamp = 0; 3084 tp->delivered = 0; 3085 tp->delivered_ce = 0; 3086 if (icsk->icsk_ca_ops->release) 3087 icsk->icsk_ca_ops->release(sk); 3088 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3089 icsk->icsk_ca_initialized = 0; 3090 tcp_set_ca_state(sk, TCP_CA_Open); 3091 tp->is_sack_reneg = 0; 3092 tcp_clear_retrans(tp); 3093 tp->total_retrans = 0; 3094 inet_csk_delack_init(sk); 3095 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3096 * issue in __tcp_select_window() 3097 */ 3098 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3099 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3100 __sk_dst_reset(sk); 3101 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3102 tcp_saved_syn_free(tp); 3103 tp->compressed_ack = 0; 3104 tp->segs_in = 0; 3105 tp->segs_out = 0; 3106 tp->bytes_sent = 0; 3107 tp->bytes_acked = 0; 3108 tp->bytes_received = 0; 3109 tp->bytes_retrans = 0; 3110 tp->data_segs_in = 0; 3111 tp->data_segs_out = 0; 3112 tp->duplicate_sack[0].start_seq = 0; 3113 tp->duplicate_sack[0].end_seq = 0; 3114 tp->dsack_dups = 0; 3115 tp->reord_seen = 0; 3116 tp->retrans_out = 0; 3117 tp->sacked_out = 0; 3118 tp->tlp_high_seq = 0; 3119 tp->last_oow_ack_time = 0; 3120 /* There's a bubble in the pipe until at least the first ACK. */ 3121 tp->app_limited = ~0U; 3122 tp->rack.mstamp = 0; 3123 tp->rack.advanced = 0; 3124 tp->rack.reo_wnd_steps = 1; 3125 tp->rack.last_delivered = 0; 3126 tp->rack.reo_wnd_persist = 0; 3127 tp->rack.dsack_seen = 0; 3128 tp->syn_data_acked = 0; 3129 tp->rx_opt.saw_tstamp = 0; 3130 tp->rx_opt.dsack = 0; 3131 tp->rx_opt.num_sacks = 0; 3132 tp->rcv_ooopack = 0; 3133 3134 3135 /* Clean up fastopen related fields */ 3136 tcp_free_fastopen_req(tp); 3137 inet->defer_connect = 0; 3138 tp->fastopen_client_fail = 0; 3139 3140 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3141 3142 if (sk->sk_frag.page) { 3143 put_page(sk->sk_frag.page); 3144 sk->sk_frag.page = NULL; 3145 sk->sk_frag.offset = 0; 3146 } 3147 sk_error_report(sk); 3148 return 0; 3149 } 3150 EXPORT_SYMBOL(tcp_disconnect); 3151 3152 static inline bool tcp_can_repair_sock(const struct sock *sk) 3153 { 3154 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3155 (sk->sk_state != TCP_LISTEN); 3156 } 3157 3158 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3159 { 3160 struct tcp_repair_window opt; 3161 3162 if (!tp->repair) 3163 return -EPERM; 3164 3165 if (len != sizeof(opt)) 3166 return -EINVAL; 3167 3168 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3169 return -EFAULT; 3170 3171 if (opt.max_window < opt.snd_wnd) 3172 return -EINVAL; 3173 3174 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3175 return -EINVAL; 3176 3177 if (after(opt.rcv_wup, tp->rcv_nxt)) 3178 return -EINVAL; 3179 3180 tp->snd_wl1 = opt.snd_wl1; 3181 tp->snd_wnd = opt.snd_wnd; 3182 tp->max_window = opt.max_window; 3183 3184 tp->rcv_wnd = opt.rcv_wnd; 3185 tp->rcv_wup = opt.rcv_wup; 3186 3187 return 0; 3188 } 3189 3190 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3191 unsigned int len) 3192 { 3193 struct tcp_sock *tp = tcp_sk(sk); 3194 struct tcp_repair_opt opt; 3195 size_t offset = 0; 3196 3197 while (len >= sizeof(opt)) { 3198 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3199 return -EFAULT; 3200 3201 offset += sizeof(opt); 3202 len -= sizeof(opt); 3203 3204 switch (opt.opt_code) { 3205 case TCPOPT_MSS: 3206 tp->rx_opt.mss_clamp = opt.opt_val; 3207 tcp_mtup_init(sk); 3208 break; 3209 case TCPOPT_WINDOW: 3210 { 3211 u16 snd_wscale = opt.opt_val & 0xFFFF; 3212 u16 rcv_wscale = opt.opt_val >> 16; 3213 3214 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3215 return -EFBIG; 3216 3217 tp->rx_opt.snd_wscale = snd_wscale; 3218 tp->rx_opt.rcv_wscale = rcv_wscale; 3219 tp->rx_opt.wscale_ok = 1; 3220 } 3221 break; 3222 case TCPOPT_SACK_PERM: 3223 if (opt.opt_val != 0) 3224 return -EINVAL; 3225 3226 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3227 break; 3228 case TCPOPT_TIMESTAMP: 3229 if (opt.opt_val != 0) 3230 return -EINVAL; 3231 3232 tp->rx_opt.tstamp_ok = 1; 3233 break; 3234 } 3235 } 3236 3237 return 0; 3238 } 3239 3240 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3241 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3242 3243 static void tcp_enable_tx_delay(void) 3244 { 3245 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3246 static int __tcp_tx_delay_enabled = 0; 3247 3248 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3249 static_branch_enable(&tcp_tx_delay_enabled); 3250 pr_info("TCP_TX_DELAY enabled\n"); 3251 } 3252 } 3253 } 3254 3255 /* When set indicates to always queue non-full frames. Later the user clears 3256 * this option and we transmit any pending partial frames in the queue. This is 3257 * meant to be used alongside sendfile() to get properly filled frames when the 3258 * user (for example) must write out headers with a write() call first and then 3259 * use sendfile to send out the data parts. 3260 * 3261 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3262 * TCP_NODELAY. 3263 */ 3264 void __tcp_sock_set_cork(struct sock *sk, bool on) 3265 { 3266 struct tcp_sock *tp = tcp_sk(sk); 3267 3268 if (on) { 3269 tp->nonagle |= TCP_NAGLE_CORK; 3270 } else { 3271 tp->nonagle &= ~TCP_NAGLE_CORK; 3272 if (tp->nonagle & TCP_NAGLE_OFF) 3273 tp->nonagle |= TCP_NAGLE_PUSH; 3274 tcp_push_pending_frames(sk); 3275 } 3276 } 3277 3278 void tcp_sock_set_cork(struct sock *sk, bool on) 3279 { 3280 lock_sock(sk); 3281 __tcp_sock_set_cork(sk, on); 3282 release_sock(sk); 3283 } 3284 EXPORT_SYMBOL(tcp_sock_set_cork); 3285 3286 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3287 * remembered, but it is not activated until cork is cleared. 3288 * 3289 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3290 * even TCP_CORK for currently queued segments. 3291 */ 3292 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3293 { 3294 if (on) { 3295 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3296 tcp_push_pending_frames(sk); 3297 } else { 3298 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3299 } 3300 } 3301 3302 void tcp_sock_set_nodelay(struct sock *sk) 3303 { 3304 lock_sock(sk); 3305 __tcp_sock_set_nodelay(sk, true); 3306 release_sock(sk); 3307 } 3308 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3309 3310 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3311 { 3312 if (!val) { 3313 inet_csk_enter_pingpong_mode(sk); 3314 return; 3315 } 3316 3317 inet_csk_exit_pingpong_mode(sk); 3318 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3319 inet_csk_ack_scheduled(sk)) { 3320 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3321 tcp_cleanup_rbuf(sk, 1); 3322 if (!(val & 1)) 3323 inet_csk_enter_pingpong_mode(sk); 3324 } 3325 } 3326 3327 void tcp_sock_set_quickack(struct sock *sk, int val) 3328 { 3329 lock_sock(sk); 3330 __tcp_sock_set_quickack(sk, val); 3331 release_sock(sk); 3332 } 3333 EXPORT_SYMBOL(tcp_sock_set_quickack); 3334 3335 int tcp_sock_set_syncnt(struct sock *sk, int val) 3336 { 3337 if (val < 1 || val > MAX_TCP_SYNCNT) 3338 return -EINVAL; 3339 3340 lock_sock(sk); 3341 inet_csk(sk)->icsk_syn_retries = val; 3342 release_sock(sk); 3343 return 0; 3344 } 3345 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3346 3347 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3348 { 3349 lock_sock(sk); 3350 inet_csk(sk)->icsk_user_timeout = val; 3351 release_sock(sk); 3352 } 3353 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3354 3355 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3356 { 3357 struct tcp_sock *tp = tcp_sk(sk); 3358 3359 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3360 return -EINVAL; 3361 3362 tp->keepalive_time = val * HZ; 3363 if (sock_flag(sk, SOCK_KEEPOPEN) && 3364 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3365 u32 elapsed = keepalive_time_elapsed(tp); 3366 3367 if (tp->keepalive_time > elapsed) 3368 elapsed = tp->keepalive_time - elapsed; 3369 else 3370 elapsed = 0; 3371 inet_csk_reset_keepalive_timer(sk, elapsed); 3372 } 3373 3374 return 0; 3375 } 3376 3377 int tcp_sock_set_keepidle(struct sock *sk, int val) 3378 { 3379 int err; 3380 3381 lock_sock(sk); 3382 err = tcp_sock_set_keepidle_locked(sk, val); 3383 release_sock(sk); 3384 return err; 3385 } 3386 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3387 3388 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3389 { 3390 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3391 return -EINVAL; 3392 3393 lock_sock(sk); 3394 tcp_sk(sk)->keepalive_intvl = val * HZ; 3395 release_sock(sk); 3396 return 0; 3397 } 3398 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3399 3400 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3401 { 3402 if (val < 1 || val > MAX_TCP_KEEPCNT) 3403 return -EINVAL; 3404 3405 lock_sock(sk); 3406 tcp_sk(sk)->keepalive_probes = val; 3407 release_sock(sk); 3408 return 0; 3409 } 3410 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3411 3412 int tcp_set_window_clamp(struct sock *sk, int val) 3413 { 3414 struct tcp_sock *tp = tcp_sk(sk); 3415 3416 if (!val) { 3417 if (sk->sk_state != TCP_CLOSE) 3418 return -EINVAL; 3419 tp->window_clamp = 0; 3420 } else { 3421 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3422 SOCK_MIN_RCVBUF / 2 : val; 3423 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3424 } 3425 return 0; 3426 } 3427 3428 /* 3429 * Socket option code for TCP. 3430 */ 3431 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3432 sockptr_t optval, unsigned int optlen) 3433 { 3434 struct tcp_sock *tp = tcp_sk(sk); 3435 struct inet_connection_sock *icsk = inet_csk(sk); 3436 struct net *net = sock_net(sk); 3437 int val; 3438 int err = 0; 3439 3440 /* These are data/string values, all the others are ints */ 3441 switch (optname) { 3442 case TCP_CONGESTION: { 3443 char name[TCP_CA_NAME_MAX]; 3444 3445 if (optlen < 1) 3446 return -EINVAL; 3447 3448 val = strncpy_from_sockptr(name, optval, 3449 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3450 if (val < 0) 3451 return -EFAULT; 3452 name[val] = 0; 3453 3454 lock_sock(sk); 3455 err = tcp_set_congestion_control(sk, name, true, 3456 ns_capable(sock_net(sk)->user_ns, 3457 CAP_NET_ADMIN)); 3458 release_sock(sk); 3459 return err; 3460 } 3461 case TCP_ULP: { 3462 char name[TCP_ULP_NAME_MAX]; 3463 3464 if (optlen < 1) 3465 return -EINVAL; 3466 3467 val = strncpy_from_sockptr(name, optval, 3468 min_t(long, TCP_ULP_NAME_MAX - 1, 3469 optlen)); 3470 if (val < 0) 3471 return -EFAULT; 3472 name[val] = 0; 3473 3474 lock_sock(sk); 3475 err = tcp_set_ulp(sk, name); 3476 release_sock(sk); 3477 return err; 3478 } 3479 case TCP_FASTOPEN_KEY: { 3480 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3481 __u8 *backup_key = NULL; 3482 3483 /* Allow a backup key as well to facilitate key rotation 3484 * First key is the active one. 3485 */ 3486 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3487 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3488 return -EINVAL; 3489 3490 if (copy_from_sockptr(key, optval, optlen)) 3491 return -EFAULT; 3492 3493 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3494 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3495 3496 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3497 } 3498 default: 3499 /* fallthru */ 3500 break; 3501 } 3502 3503 if (optlen < sizeof(int)) 3504 return -EINVAL; 3505 3506 if (copy_from_sockptr(&val, optval, sizeof(val))) 3507 return -EFAULT; 3508 3509 lock_sock(sk); 3510 3511 switch (optname) { 3512 case TCP_MAXSEG: 3513 /* Values greater than interface MTU won't take effect. However 3514 * at the point when this call is done we typically don't yet 3515 * know which interface is going to be used 3516 */ 3517 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3518 err = -EINVAL; 3519 break; 3520 } 3521 tp->rx_opt.user_mss = val; 3522 break; 3523 3524 case TCP_NODELAY: 3525 __tcp_sock_set_nodelay(sk, val); 3526 break; 3527 3528 case TCP_THIN_LINEAR_TIMEOUTS: 3529 if (val < 0 || val > 1) 3530 err = -EINVAL; 3531 else 3532 tp->thin_lto = val; 3533 break; 3534 3535 case TCP_THIN_DUPACK: 3536 if (val < 0 || val > 1) 3537 err = -EINVAL; 3538 break; 3539 3540 case TCP_REPAIR: 3541 if (!tcp_can_repair_sock(sk)) 3542 err = -EPERM; 3543 else if (val == TCP_REPAIR_ON) { 3544 tp->repair = 1; 3545 sk->sk_reuse = SK_FORCE_REUSE; 3546 tp->repair_queue = TCP_NO_QUEUE; 3547 } else if (val == TCP_REPAIR_OFF) { 3548 tp->repair = 0; 3549 sk->sk_reuse = SK_NO_REUSE; 3550 tcp_send_window_probe(sk); 3551 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3552 tp->repair = 0; 3553 sk->sk_reuse = SK_NO_REUSE; 3554 } else 3555 err = -EINVAL; 3556 3557 break; 3558 3559 case TCP_REPAIR_QUEUE: 3560 if (!tp->repair) 3561 err = -EPERM; 3562 else if ((unsigned int)val < TCP_QUEUES_NR) 3563 tp->repair_queue = val; 3564 else 3565 err = -EINVAL; 3566 break; 3567 3568 case TCP_QUEUE_SEQ: 3569 if (sk->sk_state != TCP_CLOSE) { 3570 err = -EPERM; 3571 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3572 if (!tcp_rtx_queue_empty(sk)) 3573 err = -EPERM; 3574 else 3575 WRITE_ONCE(tp->write_seq, val); 3576 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3577 if (tp->rcv_nxt != tp->copied_seq) { 3578 err = -EPERM; 3579 } else { 3580 WRITE_ONCE(tp->rcv_nxt, val); 3581 WRITE_ONCE(tp->copied_seq, val); 3582 } 3583 } else { 3584 err = -EINVAL; 3585 } 3586 break; 3587 3588 case TCP_REPAIR_OPTIONS: 3589 if (!tp->repair) 3590 err = -EINVAL; 3591 else if (sk->sk_state == TCP_ESTABLISHED) 3592 err = tcp_repair_options_est(sk, optval, optlen); 3593 else 3594 err = -EPERM; 3595 break; 3596 3597 case TCP_CORK: 3598 __tcp_sock_set_cork(sk, val); 3599 break; 3600 3601 case TCP_KEEPIDLE: 3602 err = tcp_sock_set_keepidle_locked(sk, val); 3603 break; 3604 case TCP_KEEPINTVL: 3605 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3606 err = -EINVAL; 3607 else 3608 tp->keepalive_intvl = val * HZ; 3609 break; 3610 case TCP_KEEPCNT: 3611 if (val < 1 || val > MAX_TCP_KEEPCNT) 3612 err = -EINVAL; 3613 else 3614 tp->keepalive_probes = val; 3615 break; 3616 case TCP_SYNCNT: 3617 if (val < 1 || val > MAX_TCP_SYNCNT) 3618 err = -EINVAL; 3619 else 3620 icsk->icsk_syn_retries = val; 3621 break; 3622 3623 case TCP_SAVE_SYN: 3624 /* 0: disable, 1: enable, 2: start from ether_header */ 3625 if (val < 0 || val > 2) 3626 err = -EINVAL; 3627 else 3628 tp->save_syn = val; 3629 break; 3630 3631 case TCP_LINGER2: 3632 if (val < 0) 3633 tp->linger2 = -1; 3634 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3635 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3636 else 3637 tp->linger2 = val * HZ; 3638 break; 3639 3640 case TCP_DEFER_ACCEPT: 3641 /* Translate value in seconds to number of retransmits */ 3642 icsk->icsk_accept_queue.rskq_defer_accept = 3643 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3644 TCP_RTO_MAX / HZ); 3645 break; 3646 3647 case TCP_WINDOW_CLAMP: 3648 err = tcp_set_window_clamp(sk, val); 3649 break; 3650 3651 case TCP_QUICKACK: 3652 __tcp_sock_set_quickack(sk, val); 3653 break; 3654 3655 #ifdef CONFIG_TCP_MD5SIG 3656 case TCP_MD5SIG: 3657 case TCP_MD5SIG_EXT: 3658 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3659 break; 3660 #endif 3661 case TCP_USER_TIMEOUT: 3662 /* Cap the max time in ms TCP will retry or probe the window 3663 * before giving up and aborting (ETIMEDOUT) a connection. 3664 */ 3665 if (val < 0) 3666 err = -EINVAL; 3667 else 3668 icsk->icsk_user_timeout = val; 3669 break; 3670 3671 case TCP_FASTOPEN: 3672 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3673 TCPF_LISTEN))) { 3674 tcp_fastopen_init_key_once(net); 3675 3676 fastopen_queue_tune(sk, val); 3677 } else { 3678 err = -EINVAL; 3679 } 3680 break; 3681 case TCP_FASTOPEN_CONNECT: 3682 if (val > 1 || val < 0) { 3683 err = -EINVAL; 3684 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3685 if (sk->sk_state == TCP_CLOSE) 3686 tp->fastopen_connect = val; 3687 else 3688 err = -EINVAL; 3689 } else { 3690 err = -EOPNOTSUPP; 3691 } 3692 break; 3693 case TCP_FASTOPEN_NO_COOKIE: 3694 if (val > 1 || val < 0) 3695 err = -EINVAL; 3696 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3697 err = -EINVAL; 3698 else 3699 tp->fastopen_no_cookie = val; 3700 break; 3701 case TCP_TIMESTAMP: 3702 if (!tp->repair) 3703 err = -EPERM; 3704 else 3705 tp->tsoffset = val - tcp_time_stamp_raw(); 3706 break; 3707 case TCP_REPAIR_WINDOW: 3708 err = tcp_repair_set_window(tp, optval, optlen); 3709 break; 3710 case TCP_NOTSENT_LOWAT: 3711 tp->notsent_lowat = val; 3712 sk->sk_write_space(sk); 3713 break; 3714 case TCP_INQ: 3715 if (val > 1 || val < 0) 3716 err = -EINVAL; 3717 else 3718 tp->recvmsg_inq = val; 3719 break; 3720 case TCP_TX_DELAY: 3721 if (val) 3722 tcp_enable_tx_delay(); 3723 tp->tcp_tx_delay = val; 3724 break; 3725 default: 3726 err = -ENOPROTOOPT; 3727 break; 3728 } 3729 3730 release_sock(sk); 3731 return err; 3732 } 3733 3734 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3735 unsigned int optlen) 3736 { 3737 const struct inet_connection_sock *icsk = inet_csk(sk); 3738 3739 if (level != SOL_TCP) 3740 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3741 optval, optlen); 3742 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3743 } 3744 EXPORT_SYMBOL(tcp_setsockopt); 3745 3746 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3747 struct tcp_info *info) 3748 { 3749 u64 stats[__TCP_CHRONO_MAX], total = 0; 3750 enum tcp_chrono i; 3751 3752 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3753 stats[i] = tp->chrono_stat[i - 1]; 3754 if (i == tp->chrono_type) 3755 stats[i] += tcp_jiffies32 - tp->chrono_start; 3756 stats[i] *= USEC_PER_SEC / HZ; 3757 total += stats[i]; 3758 } 3759 3760 info->tcpi_busy_time = total; 3761 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3762 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3763 } 3764 3765 /* Return information about state of tcp endpoint in API format. */ 3766 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3767 { 3768 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3769 const struct inet_connection_sock *icsk = inet_csk(sk); 3770 unsigned long rate; 3771 u32 now; 3772 u64 rate64; 3773 bool slow; 3774 3775 memset(info, 0, sizeof(*info)); 3776 if (sk->sk_type != SOCK_STREAM) 3777 return; 3778 3779 info->tcpi_state = inet_sk_state_load(sk); 3780 3781 /* Report meaningful fields for all TCP states, including listeners */ 3782 rate = READ_ONCE(sk->sk_pacing_rate); 3783 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3784 info->tcpi_pacing_rate = rate64; 3785 3786 rate = READ_ONCE(sk->sk_max_pacing_rate); 3787 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3788 info->tcpi_max_pacing_rate = rate64; 3789 3790 info->tcpi_reordering = tp->reordering; 3791 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3792 3793 if (info->tcpi_state == TCP_LISTEN) { 3794 /* listeners aliased fields : 3795 * tcpi_unacked -> Number of children ready for accept() 3796 * tcpi_sacked -> max backlog 3797 */ 3798 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3799 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3800 return; 3801 } 3802 3803 slow = lock_sock_fast(sk); 3804 3805 info->tcpi_ca_state = icsk->icsk_ca_state; 3806 info->tcpi_retransmits = icsk->icsk_retransmits; 3807 info->tcpi_probes = icsk->icsk_probes_out; 3808 info->tcpi_backoff = icsk->icsk_backoff; 3809 3810 if (tp->rx_opt.tstamp_ok) 3811 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3812 if (tcp_is_sack(tp)) 3813 info->tcpi_options |= TCPI_OPT_SACK; 3814 if (tp->rx_opt.wscale_ok) { 3815 info->tcpi_options |= TCPI_OPT_WSCALE; 3816 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3817 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3818 } 3819 3820 if (tp->ecn_flags & TCP_ECN_OK) 3821 info->tcpi_options |= TCPI_OPT_ECN; 3822 if (tp->ecn_flags & TCP_ECN_SEEN) 3823 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3824 if (tp->syn_data_acked) 3825 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3826 3827 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3828 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3829 info->tcpi_snd_mss = tp->mss_cache; 3830 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3831 3832 info->tcpi_unacked = tp->packets_out; 3833 info->tcpi_sacked = tp->sacked_out; 3834 3835 info->tcpi_lost = tp->lost_out; 3836 info->tcpi_retrans = tp->retrans_out; 3837 3838 now = tcp_jiffies32; 3839 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3840 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3841 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3842 3843 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3844 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3845 info->tcpi_rtt = tp->srtt_us >> 3; 3846 info->tcpi_rttvar = tp->mdev_us >> 2; 3847 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3848 info->tcpi_advmss = tp->advmss; 3849 3850 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3851 info->tcpi_rcv_space = tp->rcvq_space.space; 3852 3853 info->tcpi_total_retrans = tp->total_retrans; 3854 3855 info->tcpi_bytes_acked = tp->bytes_acked; 3856 info->tcpi_bytes_received = tp->bytes_received; 3857 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3858 tcp_get_info_chrono_stats(tp, info); 3859 3860 info->tcpi_segs_out = tp->segs_out; 3861 3862 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3863 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3864 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3865 3866 info->tcpi_min_rtt = tcp_min_rtt(tp); 3867 info->tcpi_data_segs_out = tp->data_segs_out; 3868 3869 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3870 rate64 = tcp_compute_delivery_rate(tp); 3871 if (rate64) 3872 info->tcpi_delivery_rate = rate64; 3873 info->tcpi_delivered = tp->delivered; 3874 info->tcpi_delivered_ce = tp->delivered_ce; 3875 info->tcpi_bytes_sent = tp->bytes_sent; 3876 info->tcpi_bytes_retrans = tp->bytes_retrans; 3877 info->tcpi_dsack_dups = tp->dsack_dups; 3878 info->tcpi_reord_seen = tp->reord_seen; 3879 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3880 info->tcpi_snd_wnd = tp->snd_wnd; 3881 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3882 unlock_sock_fast(sk, slow); 3883 } 3884 EXPORT_SYMBOL_GPL(tcp_get_info); 3885 3886 static size_t tcp_opt_stats_get_size(void) 3887 { 3888 return 3889 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3891 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3892 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3893 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3895 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3897 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3898 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3899 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3900 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3901 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3902 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3903 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3906 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3907 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3908 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3909 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3911 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3912 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3913 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3914 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3915 0; 3916 } 3917 3918 /* Returns TTL or hop limit of an incoming packet from skb. */ 3919 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3920 { 3921 if (skb->protocol == htons(ETH_P_IP)) 3922 return ip_hdr(skb)->ttl; 3923 else if (skb->protocol == htons(ETH_P_IPV6)) 3924 return ipv6_hdr(skb)->hop_limit; 3925 else 3926 return 0; 3927 } 3928 3929 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3930 const struct sk_buff *orig_skb, 3931 const struct sk_buff *ack_skb) 3932 { 3933 const struct tcp_sock *tp = tcp_sk(sk); 3934 struct sk_buff *stats; 3935 struct tcp_info info; 3936 unsigned long rate; 3937 u64 rate64; 3938 3939 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3940 if (!stats) 3941 return NULL; 3942 3943 tcp_get_info_chrono_stats(tp, &info); 3944 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3945 info.tcpi_busy_time, TCP_NLA_PAD); 3946 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3947 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3948 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3949 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3950 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3951 tp->data_segs_out, TCP_NLA_PAD); 3952 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3953 tp->total_retrans, TCP_NLA_PAD); 3954 3955 rate = READ_ONCE(sk->sk_pacing_rate); 3956 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3957 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3958 3959 rate64 = tcp_compute_delivery_rate(tp); 3960 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3961 3962 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3963 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3964 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3965 3966 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3967 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3968 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3969 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3970 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3971 3972 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3973 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3974 3975 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3976 TCP_NLA_PAD); 3977 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3978 TCP_NLA_PAD); 3979 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3980 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3981 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3982 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3983 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3984 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3985 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3986 TCP_NLA_PAD); 3987 if (ack_skb) 3988 nla_put_u8(stats, TCP_NLA_TTL, 3989 tcp_skb_ttl_or_hop_limit(ack_skb)); 3990 3991 return stats; 3992 } 3993 3994 static int do_tcp_getsockopt(struct sock *sk, int level, 3995 int optname, char __user *optval, int __user *optlen) 3996 { 3997 struct inet_connection_sock *icsk = inet_csk(sk); 3998 struct tcp_sock *tp = tcp_sk(sk); 3999 struct net *net = sock_net(sk); 4000 int val, len; 4001 4002 if (get_user(len, optlen)) 4003 return -EFAULT; 4004 4005 len = min_t(unsigned int, len, sizeof(int)); 4006 4007 if (len < 0) 4008 return -EINVAL; 4009 4010 switch (optname) { 4011 case TCP_MAXSEG: 4012 val = tp->mss_cache; 4013 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4014 val = tp->rx_opt.user_mss; 4015 if (tp->repair) 4016 val = tp->rx_opt.mss_clamp; 4017 break; 4018 case TCP_NODELAY: 4019 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4020 break; 4021 case TCP_CORK: 4022 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4023 break; 4024 case TCP_KEEPIDLE: 4025 val = keepalive_time_when(tp) / HZ; 4026 break; 4027 case TCP_KEEPINTVL: 4028 val = keepalive_intvl_when(tp) / HZ; 4029 break; 4030 case TCP_KEEPCNT: 4031 val = keepalive_probes(tp); 4032 break; 4033 case TCP_SYNCNT: 4034 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 4035 break; 4036 case TCP_LINGER2: 4037 val = tp->linger2; 4038 if (val >= 0) 4039 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 4040 break; 4041 case TCP_DEFER_ACCEPT: 4042 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4043 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4044 break; 4045 case TCP_WINDOW_CLAMP: 4046 val = tp->window_clamp; 4047 break; 4048 case TCP_INFO: { 4049 struct tcp_info info; 4050 4051 if (get_user(len, optlen)) 4052 return -EFAULT; 4053 4054 tcp_get_info(sk, &info); 4055 4056 len = min_t(unsigned int, len, sizeof(info)); 4057 if (put_user(len, optlen)) 4058 return -EFAULT; 4059 if (copy_to_user(optval, &info, len)) 4060 return -EFAULT; 4061 return 0; 4062 } 4063 case TCP_CC_INFO: { 4064 const struct tcp_congestion_ops *ca_ops; 4065 union tcp_cc_info info; 4066 size_t sz = 0; 4067 int attr; 4068 4069 if (get_user(len, optlen)) 4070 return -EFAULT; 4071 4072 ca_ops = icsk->icsk_ca_ops; 4073 if (ca_ops && ca_ops->get_info) 4074 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4075 4076 len = min_t(unsigned int, len, sz); 4077 if (put_user(len, optlen)) 4078 return -EFAULT; 4079 if (copy_to_user(optval, &info, len)) 4080 return -EFAULT; 4081 return 0; 4082 } 4083 case TCP_QUICKACK: 4084 val = !inet_csk_in_pingpong_mode(sk); 4085 break; 4086 4087 case TCP_CONGESTION: 4088 if (get_user(len, optlen)) 4089 return -EFAULT; 4090 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4091 if (put_user(len, optlen)) 4092 return -EFAULT; 4093 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4094 return -EFAULT; 4095 return 0; 4096 4097 case TCP_ULP: 4098 if (get_user(len, optlen)) 4099 return -EFAULT; 4100 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4101 if (!icsk->icsk_ulp_ops) { 4102 if (put_user(0, optlen)) 4103 return -EFAULT; 4104 return 0; 4105 } 4106 if (put_user(len, optlen)) 4107 return -EFAULT; 4108 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4109 return -EFAULT; 4110 return 0; 4111 4112 case TCP_FASTOPEN_KEY: { 4113 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4114 unsigned int key_len; 4115 4116 if (get_user(len, optlen)) 4117 return -EFAULT; 4118 4119 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4120 TCP_FASTOPEN_KEY_LENGTH; 4121 len = min_t(unsigned int, len, key_len); 4122 if (put_user(len, optlen)) 4123 return -EFAULT; 4124 if (copy_to_user(optval, key, len)) 4125 return -EFAULT; 4126 return 0; 4127 } 4128 case TCP_THIN_LINEAR_TIMEOUTS: 4129 val = tp->thin_lto; 4130 break; 4131 4132 case TCP_THIN_DUPACK: 4133 val = 0; 4134 break; 4135 4136 case TCP_REPAIR: 4137 val = tp->repair; 4138 break; 4139 4140 case TCP_REPAIR_QUEUE: 4141 if (tp->repair) 4142 val = tp->repair_queue; 4143 else 4144 return -EINVAL; 4145 break; 4146 4147 case TCP_REPAIR_WINDOW: { 4148 struct tcp_repair_window opt; 4149 4150 if (get_user(len, optlen)) 4151 return -EFAULT; 4152 4153 if (len != sizeof(opt)) 4154 return -EINVAL; 4155 4156 if (!tp->repair) 4157 return -EPERM; 4158 4159 opt.snd_wl1 = tp->snd_wl1; 4160 opt.snd_wnd = tp->snd_wnd; 4161 opt.max_window = tp->max_window; 4162 opt.rcv_wnd = tp->rcv_wnd; 4163 opt.rcv_wup = tp->rcv_wup; 4164 4165 if (copy_to_user(optval, &opt, len)) 4166 return -EFAULT; 4167 return 0; 4168 } 4169 case TCP_QUEUE_SEQ: 4170 if (tp->repair_queue == TCP_SEND_QUEUE) 4171 val = tp->write_seq; 4172 else if (tp->repair_queue == TCP_RECV_QUEUE) 4173 val = tp->rcv_nxt; 4174 else 4175 return -EINVAL; 4176 break; 4177 4178 case TCP_USER_TIMEOUT: 4179 val = icsk->icsk_user_timeout; 4180 break; 4181 4182 case TCP_FASTOPEN: 4183 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4184 break; 4185 4186 case TCP_FASTOPEN_CONNECT: 4187 val = tp->fastopen_connect; 4188 break; 4189 4190 case TCP_FASTOPEN_NO_COOKIE: 4191 val = tp->fastopen_no_cookie; 4192 break; 4193 4194 case TCP_TX_DELAY: 4195 val = tp->tcp_tx_delay; 4196 break; 4197 4198 case TCP_TIMESTAMP: 4199 val = tcp_time_stamp_raw() + tp->tsoffset; 4200 break; 4201 case TCP_NOTSENT_LOWAT: 4202 val = tp->notsent_lowat; 4203 break; 4204 case TCP_INQ: 4205 val = tp->recvmsg_inq; 4206 break; 4207 case TCP_SAVE_SYN: 4208 val = tp->save_syn; 4209 break; 4210 case TCP_SAVED_SYN: { 4211 if (get_user(len, optlen)) 4212 return -EFAULT; 4213 4214 lock_sock(sk); 4215 if (tp->saved_syn) { 4216 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4217 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4218 optlen)) { 4219 release_sock(sk); 4220 return -EFAULT; 4221 } 4222 release_sock(sk); 4223 return -EINVAL; 4224 } 4225 len = tcp_saved_syn_len(tp->saved_syn); 4226 if (put_user(len, optlen)) { 4227 release_sock(sk); 4228 return -EFAULT; 4229 } 4230 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4231 release_sock(sk); 4232 return -EFAULT; 4233 } 4234 tcp_saved_syn_free(tp); 4235 release_sock(sk); 4236 } else { 4237 release_sock(sk); 4238 len = 0; 4239 if (put_user(len, optlen)) 4240 return -EFAULT; 4241 } 4242 return 0; 4243 } 4244 #ifdef CONFIG_MMU 4245 case TCP_ZEROCOPY_RECEIVE: { 4246 struct scm_timestamping_internal tss; 4247 struct tcp_zerocopy_receive zc = {}; 4248 int err; 4249 4250 if (get_user(len, optlen)) 4251 return -EFAULT; 4252 if (len < 0 || 4253 len < offsetofend(struct tcp_zerocopy_receive, length)) 4254 return -EINVAL; 4255 if (unlikely(len > sizeof(zc))) { 4256 err = check_zeroed_user(optval + sizeof(zc), 4257 len - sizeof(zc)); 4258 if (err < 1) 4259 return err == 0 ? -EINVAL : err; 4260 len = sizeof(zc); 4261 if (put_user(len, optlen)) 4262 return -EFAULT; 4263 } 4264 if (copy_from_user(&zc, optval, len)) 4265 return -EFAULT; 4266 if (zc.reserved) 4267 return -EINVAL; 4268 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4269 return -EINVAL; 4270 lock_sock(sk); 4271 err = tcp_zerocopy_receive(sk, &zc, &tss); 4272 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4273 &zc, &len, err); 4274 release_sock(sk); 4275 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4276 goto zerocopy_rcv_cmsg; 4277 switch (len) { 4278 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4279 goto zerocopy_rcv_cmsg; 4280 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4281 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4282 case offsetofend(struct tcp_zerocopy_receive, flags): 4283 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4284 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4285 case offsetofend(struct tcp_zerocopy_receive, err): 4286 goto zerocopy_rcv_sk_err; 4287 case offsetofend(struct tcp_zerocopy_receive, inq): 4288 goto zerocopy_rcv_inq; 4289 case offsetofend(struct tcp_zerocopy_receive, length): 4290 default: 4291 goto zerocopy_rcv_out; 4292 } 4293 zerocopy_rcv_cmsg: 4294 if (zc.msg_flags & TCP_CMSG_TS) 4295 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4296 else 4297 zc.msg_flags = 0; 4298 zerocopy_rcv_sk_err: 4299 if (!err) 4300 zc.err = sock_error(sk); 4301 zerocopy_rcv_inq: 4302 zc.inq = tcp_inq_hint(sk); 4303 zerocopy_rcv_out: 4304 if (!err && copy_to_user(optval, &zc, len)) 4305 err = -EFAULT; 4306 return err; 4307 } 4308 #endif 4309 default: 4310 return -ENOPROTOOPT; 4311 } 4312 4313 if (put_user(len, optlen)) 4314 return -EFAULT; 4315 if (copy_to_user(optval, &val, len)) 4316 return -EFAULT; 4317 return 0; 4318 } 4319 4320 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4321 { 4322 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4323 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4324 */ 4325 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4326 return true; 4327 4328 return false; 4329 } 4330 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4331 4332 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4333 int __user *optlen) 4334 { 4335 struct inet_connection_sock *icsk = inet_csk(sk); 4336 4337 if (level != SOL_TCP) 4338 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4339 optval, optlen); 4340 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4341 } 4342 EXPORT_SYMBOL(tcp_getsockopt); 4343 4344 #ifdef CONFIG_TCP_MD5SIG 4345 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4346 static DEFINE_MUTEX(tcp_md5sig_mutex); 4347 static bool tcp_md5sig_pool_populated = false; 4348 4349 static void __tcp_alloc_md5sig_pool(void) 4350 { 4351 struct crypto_ahash *hash; 4352 int cpu; 4353 4354 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4355 if (IS_ERR(hash)) 4356 return; 4357 4358 for_each_possible_cpu(cpu) { 4359 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4360 struct ahash_request *req; 4361 4362 if (!scratch) { 4363 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4364 sizeof(struct tcphdr), 4365 GFP_KERNEL, 4366 cpu_to_node(cpu)); 4367 if (!scratch) 4368 return; 4369 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4370 } 4371 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4372 continue; 4373 4374 req = ahash_request_alloc(hash, GFP_KERNEL); 4375 if (!req) 4376 return; 4377 4378 ahash_request_set_callback(req, 0, NULL, NULL); 4379 4380 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4381 } 4382 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4383 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4384 */ 4385 smp_wmb(); 4386 tcp_md5sig_pool_populated = true; 4387 } 4388 4389 bool tcp_alloc_md5sig_pool(void) 4390 { 4391 if (unlikely(!tcp_md5sig_pool_populated)) { 4392 mutex_lock(&tcp_md5sig_mutex); 4393 4394 if (!tcp_md5sig_pool_populated) { 4395 __tcp_alloc_md5sig_pool(); 4396 if (tcp_md5sig_pool_populated) 4397 static_branch_inc(&tcp_md5_needed); 4398 } 4399 4400 mutex_unlock(&tcp_md5sig_mutex); 4401 } 4402 return tcp_md5sig_pool_populated; 4403 } 4404 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4405 4406 4407 /** 4408 * tcp_get_md5sig_pool - get md5sig_pool for this user 4409 * 4410 * We use percpu structure, so if we succeed, we exit with preemption 4411 * and BH disabled, to make sure another thread or softirq handling 4412 * wont try to get same context. 4413 */ 4414 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4415 { 4416 local_bh_disable(); 4417 4418 if (tcp_md5sig_pool_populated) { 4419 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4420 smp_rmb(); 4421 return this_cpu_ptr(&tcp_md5sig_pool); 4422 } 4423 local_bh_enable(); 4424 return NULL; 4425 } 4426 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4427 4428 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4429 const struct sk_buff *skb, unsigned int header_len) 4430 { 4431 struct scatterlist sg; 4432 const struct tcphdr *tp = tcp_hdr(skb); 4433 struct ahash_request *req = hp->md5_req; 4434 unsigned int i; 4435 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4436 skb_headlen(skb) - header_len : 0; 4437 const struct skb_shared_info *shi = skb_shinfo(skb); 4438 struct sk_buff *frag_iter; 4439 4440 sg_init_table(&sg, 1); 4441 4442 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4443 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4444 if (crypto_ahash_update(req)) 4445 return 1; 4446 4447 for (i = 0; i < shi->nr_frags; ++i) { 4448 const skb_frag_t *f = &shi->frags[i]; 4449 unsigned int offset = skb_frag_off(f); 4450 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4451 4452 sg_set_page(&sg, page, skb_frag_size(f), 4453 offset_in_page(offset)); 4454 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4455 if (crypto_ahash_update(req)) 4456 return 1; 4457 } 4458 4459 skb_walk_frags(skb, frag_iter) 4460 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4461 return 1; 4462 4463 return 0; 4464 } 4465 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4466 4467 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4468 { 4469 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4470 struct scatterlist sg; 4471 4472 sg_init_one(&sg, key->key, keylen); 4473 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4474 4475 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4476 return data_race(crypto_ahash_update(hp->md5_req)); 4477 } 4478 EXPORT_SYMBOL(tcp_md5_hash_key); 4479 4480 /* Called with rcu_read_lock() */ 4481 enum skb_drop_reason 4482 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4483 const void *saddr, const void *daddr, 4484 int family, int dif, int sdif) 4485 { 4486 /* 4487 * This gets called for each TCP segment that arrives 4488 * so we want to be efficient. 4489 * We have 3 drop cases: 4490 * o No MD5 hash and one expected. 4491 * o MD5 hash and we're not expecting one. 4492 * o MD5 hash and its wrong. 4493 */ 4494 const __u8 *hash_location = NULL; 4495 struct tcp_md5sig_key *hash_expected; 4496 const struct tcphdr *th = tcp_hdr(skb); 4497 struct tcp_sock *tp = tcp_sk(sk); 4498 int genhash, l3index; 4499 u8 newhash[16]; 4500 4501 /* sdif set, means packet ingressed via a device 4502 * in an L3 domain and dif is set to the l3mdev 4503 */ 4504 l3index = sdif ? dif : 0; 4505 4506 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4507 hash_location = tcp_parse_md5sig_option(th); 4508 4509 /* We've parsed the options - do we have a hash? */ 4510 if (!hash_expected && !hash_location) 4511 return SKB_NOT_DROPPED_YET; 4512 4513 if (hash_expected && !hash_location) { 4514 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4515 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4516 } 4517 4518 if (!hash_expected && hash_location) { 4519 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4520 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4521 } 4522 4523 /* check the signature */ 4524 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4525 NULL, skb); 4526 4527 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4528 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4529 if (family == AF_INET) { 4530 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4531 saddr, ntohs(th->source), 4532 daddr, ntohs(th->dest), 4533 genhash ? " tcp_v4_calc_md5_hash failed" 4534 : "", l3index); 4535 } else { 4536 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4537 genhash ? "failed" : "mismatch", 4538 saddr, ntohs(th->source), 4539 daddr, ntohs(th->dest), l3index); 4540 } 4541 return SKB_DROP_REASON_TCP_MD5FAILURE; 4542 } 4543 return SKB_NOT_DROPPED_YET; 4544 } 4545 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4546 4547 #endif 4548 4549 void tcp_done(struct sock *sk) 4550 { 4551 struct request_sock *req; 4552 4553 /* We might be called with a new socket, after 4554 * inet_csk_prepare_forced_close() has been called 4555 * so we can not use lockdep_sock_is_held(sk) 4556 */ 4557 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4558 4559 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4560 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4561 4562 tcp_set_state(sk, TCP_CLOSE); 4563 tcp_clear_xmit_timers(sk); 4564 if (req) 4565 reqsk_fastopen_remove(sk, req, false); 4566 4567 sk->sk_shutdown = SHUTDOWN_MASK; 4568 4569 if (!sock_flag(sk, SOCK_DEAD)) 4570 sk->sk_state_change(sk); 4571 else 4572 inet_csk_destroy_sock(sk); 4573 } 4574 EXPORT_SYMBOL_GPL(tcp_done); 4575 4576 int tcp_abort(struct sock *sk, int err) 4577 { 4578 if (!sk_fullsock(sk)) { 4579 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4580 struct request_sock *req = inet_reqsk(sk); 4581 4582 local_bh_disable(); 4583 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4584 local_bh_enable(); 4585 return 0; 4586 } 4587 return -EOPNOTSUPP; 4588 } 4589 4590 /* Don't race with userspace socket closes such as tcp_close. */ 4591 lock_sock(sk); 4592 4593 if (sk->sk_state == TCP_LISTEN) { 4594 tcp_set_state(sk, TCP_CLOSE); 4595 inet_csk_listen_stop(sk); 4596 } 4597 4598 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4599 local_bh_disable(); 4600 bh_lock_sock(sk); 4601 4602 if (!sock_flag(sk, SOCK_DEAD)) { 4603 sk->sk_err = err; 4604 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4605 smp_wmb(); 4606 sk_error_report(sk); 4607 if (tcp_need_reset(sk->sk_state)) 4608 tcp_send_active_reset(sk, GFP_ATOMIC); 4609 tcp_done(sk); 4610 } 4611 4612 bh_unlock_sock(sk); 4613 local_bh_enable(); 4614 tcp_write_queue_purge(sk); 4615 release_sock(sk); 4616 return 0; 4617 } 4618 EXPORT_SYMBOL_GPL(tcp_abort); 4619 4620 extern struct tcp_congestion_ops tcp_reno; 4621 4622 static __initdata unsigned long thash_entries; 4623 static int __init set_thash_entries(char *str) 4624 { 4625 ssize_t ret; 4626 4627 if (!str) 4628 return 0; 4629 4630 ret = kstrtoul(str, 0, &thash_entries); 4631 if (ret) 4632 return 0; 4633 4634 return 1; 4635 } 4636 __setup("thash_entries=", set_thash_entries); 4637 4638 static void __init tcp_init_mem(void) 4639 { 4640 unsigned long limit = nr_free_buffer_pages() / 16; 4641 4642 limit = max(limit, 128UL); 4643 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4644 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4645 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4646 } 4647 4648 void __init tcp_init(void) 4649 { 4650 int max_rshare, max_wshare, cnt; 4651 unsigned long limit; 4652 unsigned int i; 4653 4654 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4655 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4656 sizeof_field(struct sk_buff, cb)); 4657 4658 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4659 4660 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4661 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4662 4663 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4664 thash_entries, 21, /* one slot per 2 MB*/ 4665 0, 64 * 1024); 4666 tcp_hashinfo.bind_bucket_cachep = 4667 kmem_cache_create("tcp_bind_bucket", 4668 sizeof(struct inet_bind_bucket), 0, 4669 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4670 SLAB_ACCOUNT, 4671 NULL); 4672 4673 /* Size and allocate the main established and bind bucket 4674 * hash tables. 4675 * 4676 * The methodology is similar to that of the buffer cache. 4677 */ 4678 tcp_hashinfo.ehash = 4679 alloc_large_system_hash("TCP established", 4680 sizeof(struct inet_ehash_bucket), 4681 thash_entries, 4682 17, /* one slot per 128 KB of memory */ 4683 0, 4684 NULL, 4685 &tcp_hashinfo.ehash_mask, 4686 0, 4687 thash_entries ? 0 : 512 * 1024); 4688 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4689 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4690 4691 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4692 panic("TCP: failed to alloc ehash_locks"); 4693 tcp_hashinfo.bhash = 4694 alloc_large_system_hash("TCP bind", 4695 sizeof(struct inet_bind_hashbucket), 4696 tcp_hashinfo.ehash_mask + 1, 4697 17, /* one slot per 128 KB of memory */ 4698 0, 4699 &tcp_hashinfo.bhash_size, 4700 NULL, 4701 0, 4702 64 * 1024); 4703 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4704 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4705 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4706 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4707 } 4708 4709 4710 cnt = tcp_hashinfo.ehash_mask + 1; 4711 sysctl_tcp_max_orphans = cnt / 2; 4712 4713 tcp_init_mem(); 4714 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4715 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4716 max_wshare = min(4UL*1024*1024, limit); 4717 max_rshare = min(6UL*1024*1024, limit); 4718 4719 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4720 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4721 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4722 4723 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4724 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4725 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4726 4727 pr_info("Hash tables configured (established %u bind %u)\n", 4728 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4729 4730 tcp_v4_init(); 4731 tcp_metrics_init(); 4732 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4733 tcp_tasklet_init(); 4734 mptcp_init(); 4735 } 4736