xref: /linux/net/ipv4/tcp.c (revision 26db4dbb747813b5946aff31485873f071a10332)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_SYMBOL(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_SYMBOL(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_SYMBOL(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
436 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
437 	icsk->icsk_delack_max = TCP_DELACK_MAX;
438 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
439 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
440 
441 	/* So many TCP implementations out there (incorrectly) count the
442 	 * initial SYN frame in their delayed-ACK and congestion control
443 	 * algorithms that we must have the following bandaid to talk
444 	 * efficiently to them.  -DaveM
445 	 */
446 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
447 
448 	/* There's a bubble in the pipe until at least the first ACK. */
449 	tp->app_limited = ~0U;
450 	tp->rate_app_limited = 1;
451 
452 	/* See draft-stevens-tcpca-spec-01 for discussion of the
453 	 * initialization of these values.
454 	 */
455 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
456 	tp->snd_cwnd_clamp = ~0;
457 	tp->mss_cache = TCP_MSS_DEFAULT;
458 
459 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
460 	tcp_assign_congestion_control(sk);
461 
462 	tp->tsoffset = 0;
463 	tp->rack.reo_wnd_steps = 1;
464 
465 	sk->sk_write_space = sk_stream_write_space;
466 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
467 
468 	icsk->icsk_sync_mss = tcp_sync_mss;
469 
470 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
471 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
472 	tcp_scaling_ratio_init(sk);
473 
474 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
475 	sk_sockets_allocated_inc(sk);
476 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
477 }
478 EXPORT_SYMBOL(tcp_init_sock);
479 
480 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
481 {
482 	struct sk_buff *skb = tcp_write_queue_tail(sk);
483 	u32 tsflags = sockc->tsflags;
484 
485 	if (tsflags && skb) {
486 		struct skb_shared_info *shinfo = skb_shinfo(skb);
487 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
488 
489 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
490 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
491 			tcb->txstamp_ack = 1;
492 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
493 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
494 	}
495 }
496 
497 static bool tcp_stream_is_readable(struct sock *sk, int target)
498 {
499 	if (tcp_epollin_ready(sk, target))
500 		return true;
501 	return sk_is_readable(sk);
502 }
503 
504 /*
505  *	Wait for a TCP event.
506  *
507  *	Note that we don't need to lock the socket, as the upper poll layers
508  *	take care of normal races (between the test and the event) and we don't
509  *	go look at any of the socket buffers directly.
510  */
511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
512 {
513 	__poll_t mask;
514 	struct sock *sk = sock->sk;
515 	const struct tcp_sock *tp = tcp_sk(sk);
516 	u8 shutdown;
517 	int state;
518 
519 	sock_poll_wait(file, sock, wait);
520 
521 	state = inet_sk_state_load(sk);
522 	if (state == TCP_LISTEN)
523 		return inet_csk_listen_poll(sk);
524 
525 	/* Socket is not locked. We are protected from async events
526 	 * by poll logic and correct handling of state changes
527 	 * made by other threads is impossible in any case.
528 	 */
529 
530 	mask = 0;
531 
532 	/*
533 	 * EPOLLHUP is certainly not done right. But poll() doesn't
534 	 * have a notion of HUP in just one direction, and for a
535 	 * socket the read side is more interesting.
536 	 *
537 	 * Some poll() documentation says that EPOLLHUP is incompatible
538 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
539 	 * all. But careful, it tends to be safer to return too many
540 	 * bits than too few, and you can easily break real applications
541 	 * if you don't tell them that something has hung up!
542 	 *
543 	 * Check-me.
544 	 *
545 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
546 	 * our fs/select.c). It means that after we received EOF,
547 	 * poll always returns immediately, making impossible poll() on write()
548 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
549 	 * if and only if shutdown has been made in both directions.
550 	 * Actually, it is interesting to look how Solaris and DUX
551 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
552 	 * then we could set it on SND_SHUTDOWN. BTW examples given
553 	 * in Stevens' books assume exactly this behaviour, it explains
554 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
555 	 *
556 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
557 	 * blocking on fresh not-connected or disconnected socket. --ANK
558 	 */
559 	shutdown = READ_ONCE(sk->sk_shutdown);
560 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
561 		mask |= EPOLLHUP;
562 	if (shutdown & RCV_SHUTDOWN)
563 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
564 
565 	/* Connected or passive Fast Open socket? */
566 	if (state != TCP_SYN_SENT &&
567 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
568 		int target = sock_rcvlowat(sk, 0, INT_MAX);
569 		u16 urg_data = READ_ONCE(tp->urg_data);
570 
571 		if (unlikely(urg_data) &&
572 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
573 		    !sock_flag(sk, SOCK_URGINLINE))
574 			target++;
575 
576 		if (tcp_stream_is_readable(sk, target))
577 			mask |= EPOLLIN | EPOLLRDNORM;
578 
579 		if (!(shutdown & SEND_SHUTDOWN)) {
580 			if (__sk_stream_is_writeable(sk, 1)) {
581 				mask |= EPOLLOUT | EPOLLWRNORM;
582 			} else {  /* send SIGIO later */
583 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
584 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585 
586 				/* Race breaker. If space is freed after
587 				 * wspace test but before the flags are set,
588 				 * IO signal will be lost. Memory barrier
589 				 * pairs with the input side.
590 				 */
591 				smp_mb__after_atomic();
592 				if (__sk_stream_is_writeable(sk, 1))
593 					mask |= EPOLLOUT | EPOLLWRNORM;
594 			}
595 		} else
596 			mask |= EPOLLOUT | EPOLLWRNORM;
597 
598 		if (urg_data & TCP_URG_VALID)
599 			mask |= EPOLLPRI;
600 	} else if (state == TCP_SYN_SENT &&
601 		   inet_test_bit(DEFER_CONNECT, sk)) {
602 		/* Active TCP fastopen socket with defer_connect
603 		 * Return EPOLLOUT so application can call write()
604 		 * in order for kernel to generate SYN+data
605 		 */
606 		mask |= EPOLLOUT | EPOLLWRNORM;
607 	}
608 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
609 	smp_rmb();
610 	if (READ_ONCE(sk->sk_err) ||
611 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
612 		mask |= EPOLLERR;
613 
614 	return mask;
615 }
616 EXPORT_SYMBOL(tcp_poll);
617 
618 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	int answ;
622 	bool slow;
623 
624 	switch (cmd) {
625 	case SIOCINQ:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		slow = lock_sock_fast(sk);
630 		answ = tcp_inq(sk);
631 		unlock_sock_fast(sk, slow);
632 		break;
633 	case SIOCATMARK:
634 		answ = READ_ONCE(tp->urg_data) &&
635 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
636 		break;
637 	case SIOCOUTQ:
638 		if (sk->sk_state == TCP_LISTEN)
639 			return -EINVAL;
640 
641 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
642 			answ = 0;
643 		else
644 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
645 		break;
646 	case SIOCOUTQNSD:
647 		if (sk->sk_state == TCP_LISTEN)
648 			return -EINVAL;
649 
650 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
651 			answ = 0;
652 		else
653 			answ = READ_ONCE(tp->write_seq) -
654 			       READ_ONCE(tp->snd_nxt);
655 		break;
656 	default:
657 		return -ENOIOCTLCMD;
658 	}
659 
660 	*karg = answ;
661 	return 0;
662 }
663 EXPORT_SYMBOL(tcp_ioctl);
664 
665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
666 {
667 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
668 	tp->pushed_seq = tp->write_seq;
669 }
670 
671 static inline bool forced_push(const struct tcp_sock *tp)
672 {
673 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
674 }
675 
676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
680 
681 	tcb->seq     = tcb->end_seq = tp->write_seq;
682 	tcb->tcp_flags = TCPHDR_ACK;
683 	__skb_header_release(skb);
684 	tcp_add_write_queue_tail(sk, skb);
685 	sk_wmem_queued_add(sk, skb->truesize);
686 	sk_mem_charge(sk, skb->truesize);
687 	if (tp->nonagle & TCP_NAGLE_PUSH)
688 		tp->nonagle &= ~TCP_NAGLE_PUSH;
689 
690 	tcp_slow_start_after_idle_check(sk);
691 }
692 
693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
694 {
695 	if (flags & MSG_OOB)
696 		tp->snd_up = tp->write_seq;
697 }
698 
699 /* If a not yet filled skb is pushed, do not send it if
700  * we have data packets in Qdisc or NIC queues :
701  * Because TX completion will happen shortly, it gives a chance
702  * to coalesce future sendmsg() payload into this skb, without
703  * need for a timer, and with no latency trade off.
704  * As packets containing data payload have a bigger truesize
705  * than pure acks (dataless) packets, the last checks prevent
706  * autocorking if we only have an ACK in Qdisc/NIC queues,
707  * or if TX completion was delayed after we processed ACK packet.
708  */
709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
710 				int size_goal)
711 {
712 	return skb->len < size_goal &&
713 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
714 	       !tcp_rtx_queue_empty(sk) &&
715 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
716 	       tcp_skb_can_collapse_to(skb);
717 }
718 
719 void tcp_push(struct sock *sk, int flags, int mss_now,
720 	      int nonagle, int size_goal)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	struct sk_buff *skb;
724 
725 	skb = tcp_write_queue_tail(sk);
726 	if (!skb)
727 		return;
728 	if (!(flags & MSG_MORE) || forced_push(tp))
729 		tcp_mark_push(tp, skb);
730 
731 	tcp_mark_urg(tp, flags);
732 
733 	if (tcp_should_autocork(sk, skb, size_goal)) {
734 
735 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
736 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
737 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
738 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
739 			smp_mb__after_atomic();
740 		}
741 		/* It is possible TX completion already happened
742 		 * before we set TSQ_THROTTLED.
743 		 */
744 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
745 			return;
746 	}
747 
748 	if (flags & MSG_MORE)
749 		nonagle = TCP_NAGLE_CORK;
750 
751 	__tcp_push_pending_frames(sk, mss_now, nonagle);
752 }
753 
754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
755 				unsigned int offset, size_t len)
756 {
757 	struct tcp_splice_state *tss = rd_desc->arg.data;
758 	int ret;
759 
760 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
761 			      min(rd_desc->count, len), tss->flags);
762 	if (ret > 0)
763 		rd_desc->count -= ret;
764 	return ret;
765 }
766 
767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
768 {
769 	/* Store TCP splice context information in read_descriptor_t. */
770 	read_descriptor_t rd_desc = {
771 		.arg.data = tss,
772 		.count	  = tss->len,
773 	};
774 
775 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
776 }
777 
778 /**
779  *  tcp_splice_read - splice data from TCP socket to a pipe
780  * @sock:	socket to splice from
781  * @ppos:	position (not valid)
782  * @pipe:	pipe to splice to
783  * @len:	number of bytes to splice
784  * @flags:	splice modifier flags
785  *
786  * Description:
787  *    Will read pages from given socket and fill them into a pipe.
788  *
789  **/
790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
791 			struct pipe_inode_info *pipe, size_t len,
792 			unsigned int flags)
793 {
794 	struct sock *sk = sock->sk;
795 	struct tcp_splice_state tss = {
796 		.pipe = pipe,
797 		.len = len,
798 		.flags = flags,
799 	};
800 	long timeo;
801 	ssize_t spliced;
802 	int ret;
803 
804 	sock_rps_record_flow(sk);
805 	/*
806 	 * We can't seek on a socket input
807 	 */
808 	if (unlikely(*ppos))
809 		return -ESPIPE;
810 
811 	ret = spliced = 0;
812 
813 	lock_sock(sk);
814 
815 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
816 	while (tss.len) {
817 		ret = __tcp_splice_read(sk, &tss);
818 		if (ret < 0)
819 			break;
820 		else if (!ret) {
821 			if (spliced)
822 				break;
823 			if (sock_flag(sk, SOCK_DONE))
824 				break;
825 			if (sk->sk_err) {
826 				ret = sock_error(sk);
827 				break;
828 			}
829 			if (sk->sk_shutdown & RCV_SHUTDOWN)
830 				break;
831 			if (sk->sk_state == TCP_CLOSE) {
832 				/*
833 				 * This occurs when user tries to read
834 				 * from never connected socket.
835 				 */
836 				ret = -ENOTCONN;
837 				break;
838 			}
839 			if (!timeo) {
840 				ret = -EAGAIN;
841 				break;
842 			}
843 			/* if __tcp_splice_read() got nothing while we have
844 			 * an skb in receive queue, we do not want to loop.
845 			 * This might happen with URG data.
846 			 */
847 			if (!skb_queue_empty(&sk->sk_receive_queue))
848 				break;
849 			ret = sk_wait_data(sk, &timeo, NULL);
850 			if (ret < 0)
851 				break;
852 			if (signal_pending(current)) {
853 				ret = sock_intr_errno(timeo);
854 				break;
855 			}
856 			continue;
857 		}
858 		tss.len -= ret;
859 		spliced += ret;
860 
861 		if (!tss.len || !timeo)
862 			break;
863 		release_sock(sk);
864 		lock_sock(sk);
865 
866 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
867 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
868 		    signal_pending(current))
869 			break;
870 	}
871 
872 	release_sock(sk);
873 
874 	if (spliced)
875 		return spliced;
876 
877 	return ret;
878 }
879 EXPORT_SYMBOL(tcp_splice_read);
880 
881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
882 				     bool force_schedule)
883 {
884 	struct sk_buff *skb;
885 
886 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
887 	if (likely(skb)) {
888 		bool mem_scheduled;
889 
890 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 		if (force_schedule) {
892 			mem_scheduled = true;
893 			sk_forced_mem_schedule(sk, skb->truesize);
894 		} else {
895 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
896 		}
897 		if (likely(mem_scheduled)) {
898 			skb_reserve(skb, MAX_TCP_HEADER);
899 			skb->ip_summed = CHECKSUM_PARTIAL;
900 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
901 			return skb;
902 		}
903 		__kfree_skb(skb);
904 	} else {
905 		sk->sk_prot->enter_memory_pressure(sk);
906 		sk_stream_moderate_sndbuf(sk);
907 	}
908 	return NULL;
909 }
910 
911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
912 				       int large_allowed)
913 {
914 	struct tcp_sock *tp = tcp_sk(sk);
915 	u32 new_size_goal, size_goal;
916 
917 	if (!large_allowed)
918 		return mss_now;
919 
920 	/* Note : tcp_tso_autosize() will eventually split this later */
921 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
922 
923 	/* We try hard to avoid divides here */
924 	size_goal = tp->gso_segs * mss_now;
925 	if (unlikely(new_size_goal < size_goal ||
926 		     new_size_goal >= size_goal + mss_now)) {
927 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
928 				     sk->sk_gso_max_segs);
929 		size_goal = tp->gso_segs * mss_now;
930 	}
931 
932 	return max(size_goal, mss_now);
933 }
934 
935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
936 {
937 	int mss_now;
938 
939 	mss_now = tcp_current_mss(sk);
940 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
941 
942 	return mss_now;
943 }
944 
945 /* In some cases, sendmsg() could have added an skb to the write queue,
946  * but failed adding payload on it. We need to remove it to consume less
947  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
948  * epoll() users. Another reason is that tcp_write_xmit() does not like
949  * finding an empty skb in the write queue.
950  */
951 void tcp_remove_empty_skb(struct sock *sk)
952 {
953 	struct sk_buff *skb = tcp_write_queue_tail(sk);
954 
955 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
956 		tcp_unlink_write_queue(skb, sk);
957 		if (tcp_write_queue_empty(sk))
958 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 		tcp_wmem_free_skb(sk, skb);
960 	}
961 }
962 
963 /* skb changing from pure zc to mixed, must charge zc */
964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
965 {
966 	if (unlikely(skb_zcopy_pure(skb))) {
967 		u32 extra = skb->truesize -
968 			    SKB_TRUESIZE(skb_end_offset(skb));
969 
970 		if (!sk_wmem_schedule(sk, extra))
971 			return -ENOMEM;
972 
973 		sk_mem_charge(sk, extra);
974 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
975 	}
976 	return 0;
977 }
978 
979 
980 int tcp_wmem_schedule(struct sock *sk, int copy)
981 {
982 	int left;
983 
984 	if (likely(sk_wmem_schedule(sk, copy)))
985 		return copy;
986 
987 	/* We could be in trouble if we have nothing queued.
988 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
989 	 * to guarantee some progress.
990 	 */
991 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
992 	if (left > 0)
993 		sk_forced_mem_schedule(sk, min(left, copy));
994 	return min(copy, sk->sk_forward_alloc);
995 }
996 
997 void tcp_free_fastopen_req(struct tcp_sock *tp)
998 {
999 	if (tp->fastopen_req) {
1000 		kfree(tp->fastopen_req);
1001 		tp->fastopen_req = NULL;
1002 	}
1003 }
1004 
1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006 			 size_t size, struct ubuf_info *uarg)
1007 {
1008 	struct tcp_sock *tp = tcp_sk(sk);
1009 	struct inet_sock *inet = inet_sk(sk);
1010 	struct sockaddr *uaddr = msg->msg_name;
1011 	int err, flags;
1012 
1013 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014 	      TFO_CLIENT_ENABLE) ||
1015 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016 	     uaddr->sa_family == AF_UNSPEC))
1017 		return -EOPNOTSUPP;
1018 	if (tp->fastopen_req)
1019 		return -EALREADY; /* Another Fast Open is in progress */
1020 
1021 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022 				   sk->sk_allocation);
1023 	if (unlikely(!tp->fastopen_req))
1024 		return -ENOBUFS;
1025 	tp->fastopen_req->data = msg;
1026 	tp->fastopen_req->size = size;
1027 	tp->fastopen_req->uarg = uarg;
1028 
1029 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1030 		err = tcp_connect(sk);
1031 		/* Same failure procedure as in tcp_v4/6_connect */
1032 		if (err) {
1033 			tcp_set_state(sk, TCP_CLOSE);
1034 			inet->inet_dport = 0;
1035 			sk->sk_route_caps = 0;
1036 		}
1037 	}
1038 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1040 				    msg->msg_namelen, flags, 1);
1041 	/* fastopen_req could already be freed in __inet_stream_connect
1042 	 * if the connection times out or gets rst
1043 	 */
1044 	if (tp->fastopen_req) {
1045 		*copied = tp->fastopen_req->copied;
1046 		tcp_free_fastopen_req(tp);
1047 		inet_clear_bit(DEFER_CONNECT, sk);
1048 	}
1049 	return err;
1050 }
1051 
1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053 {
1054 	struct tcp_sock *tp = tcp_sk(sk);
1055 	struct ubuf_info *uarg = NULL;
1056 	struct sk_buff *skb;
1057 	struct sockcm_cookie sockc;
1058 	int flags, err, copied = 0;
1059 	int mss_now = 0, size_goal, copied_syn = 0;
1060 	int process_backlog = 0;
1061 	int zc = 0;
1062 	long timeo;
1063 
1064 	flags = msg->msg_flags;
1065 
1066 	if ((flags & MSG_ZEROCOPY) && size) {
1067 		if (msg->msg_ubuf) {
1068 			uarg = msg->msg_ubuf;
1069 			if (sk->sk_route_caps & NETIF_F_SG)
1070 				zc = MSG_ZEROCOPY;
1071 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072 			skb = tcp_write_queue_tail(sk);
1073 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074 			if (!uarg) {
1075 				err = -ENOBUFS;
1076 				goto out_err;
1077 			}
1078 			if (sk->sk_route_caps & NETIF_F_SG)
1079 				zc = MSG_ZEROCOPY;
1080 			else
1081 				uarg_to_msgzc(uarg)->zerocopy = 0;
1082 		}
1083 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084 		if (sk->sk_route_caps & NETIF_F_SG)
1085 			zc = MSG_SPLICE_PAGES;
1086 	}
1087 
1088 	if (unlikely(flags & MSG_FASTOPEN ||
1089 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1090 	    !tp->repair) {
1091 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092 		if (err == -EINPROGRESS && copied_syn > 0)
1093 			goto out;
1094 		else if (err)
1095 			goto out_err;
1096 	}
1097 
1098 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099 
1100 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1101 
1102 	/* Wait for a connection to finish. One exception is TCP Fast Open
1103 	 * (passive side) where data is allowed to be sent before a connection
1104 	 * is fully established.
1105 	 */
1106 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107 	    !tcp_passive_fastopen(sk)) {
1108 		err = sk_stream_wait_connect(sk, &timeo);
1109 		if (err != 0)
1110 			goto do_error;
1111 	}
1112 
1113 	if (unlikely(tp->repair)) {
1114 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1115 			copied = tcp_send_rcvq(sk, msg, size);
1116 			goto out_nopush;
1117 		}
1118 
1119 		err = -EINVAL;
1120 		if (tp->repair_queue == TCP_NO_QUEUE)
1121 			goto out_err;
1122 
1123 		/* 'common' sending to sendq */
1124 	}
1125 
1126 	sockcm_init(&sockc, sk);
1127 	if (msg->msg_controllen) {
1128 		err = sock_cmsg_send(sk, msg, &sockc);
1129 		if (unlikely(err)) {
1130 			err = -EINVAL;
1131 			goto out_err;
1132 		}
1133 	}
1134 
1135 	/* This should be in poll */
1136 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137 
1138 	/* Ok commence sending. */
1139 	copied = 0;
1140 
1141 restart:
1142 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1143 
1144 	err = -EPIPE;
1145 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146 		goto do_error;
1147 
1148 	while (msg_data_left(msg)) {
1149 		ssize_t copy = 0;
1150 
1151 		skb = tcp_write_queue_tail(sk);
1152 		if (skb)
1153 			copy = size_goal - skb->len;
1154 
1155 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1156 			bool first_skb;
1157 
1158 new_segment:
1159 			if (!sk_stream_memory_free(sk))
1160 				goto wait_for_space;
1161 
1162 			if (unlikely(process_backlog >= 16)) {
1163 				process_backlog = 0;
1164 				if (sk_flush_backlog(sk))
1165 					goto restart;
1166 			}
1167 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1168 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1169 						   first_skb);
1170 			if (!skb)
1171 				goto wait_for_space;
1172 
1173 			process_backlog++;
1174 
1175 #ifdef CONFIG_SKB_DECRYPTED
1176 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1177 #endif
1178 			tcp_skb_entail(sk, skb);
1179 			copy = size_goal;
1180 
1181 			/* All packets are restored as if they have
1182 			 * already been sent. skb_mstamp_ns isn't set to
1183 			 * avoid wrong rtt estimation.
1184 			 */
1185 			if (tp->repair)
1186 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187 		}
1188 
1189 		/* Try to append data to the end of skb. */
1190 		if (copy > msg_data_left(msg))
1191 			copy = msg_data_left(msg);
1192 
1193 		if (zc == 0) {
1194 			bool merge = true;
1195 			int i = skb_shinfo(skb)->nr_frags;
1196 			struct page_frag *pfrag = sk_page_frag(sk);
1197 
1198 			if (!sk_page_frag_refill(sk, pfrag))
1199 				goto wait_for_space;
1200 
1201 			if (!skb_can_coalesce(skb, i, pfrag->page,
1202 					      pfrag->offset)) {
1203 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1204 					tcp_mark_push(tp, skb);
1205 					goto new_segment;
1206 				}
1207 				merge = false;
1208 			}
1209 
1210 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1211 
1212 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1213 				if (tcp_downgrade_zcopy_pure(sk, skb))
1214 					goto wait_for_space;
1215 				skb_zcopy_downgrade_managed(skb);
1216 			}
1217 
1218 			copy = tcp_wmem_schedule(sk, copy);
1219 			if (!copy)
1220 				goto wait_for_space;
1221 
1222 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223 						       pfrag->page,
1224 						       pfrag->offset,
1225 						       copy);
1226 			if (err)
1227 				goto do_error;
1228 
1229 			/* Update the skb. */
1230 			if (merge) {
1231 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232 			} else {
1233 				skb_fill_page_desc(skb, i, pfrag->page,
1234 						   pfrag->offset, copy);
1235 				page_ref_inc(pfrag->page);
1236 			}
1237 			pfrag->offset += copy;
1238 		} else if (zc == MSG_ZEROCOPY)  {
1239 			/* First append to a fragless skb builds initial
1240 			 * pure zerocopy skb
1241 			 */
1242 			if (!skb->len)
1243 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1244 
1245 			if (!skb_zcopy_pure(skb)) {
1246 				copy = tcp_wmem_schedule(sk, copy);
1247 				if (!copy)
1248 					goto wait_for_space;
1249 			}
1250 
1251 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1252 			if (err == -EMSGSIZE || err == -EEXIST) {
1253 				tcp_mark_push(tp, skb);
1254 				goto new_segment;
1255 			}
1256 			if (err < 0)
1257 				goto do_error;
1258 			copy = err;
1259 		} else if (zc == MSG_SPLICE_PAGES) {
1260 			/* Splice in data if we can; copy if we can't. */
1261 			if (tcp_downgrade_zcopy_pure(sk, skb))
1262 				goto wait_for_space;
1263 			copy = tcp_wmem_schedule(sk, copy);
1264 			if (!copy)
1265 				goto wait_for_space;
1266 
1267 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1268 						   sk->sk_allocation);
1269 			if (err < 0) {
1270 				if (err == -EMSGSIZE) {
1271 					tcp_mark_push(tp, skb);
1272 					goto new_segment;
1273 				}
1274 				goto do_error;
1275 			}
1276 			copy = err;
1277 
1278 			if (!(flags & MSG_NO_SHARED_FRAGS))
1279 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1280 
1281 			sk_wmem_queued_add(sk, copy);
1282 			sk_mem_charge(sk, copy);
1283 		}
1284 
1285 		if (!copied)
1286 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1287 
1288 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1289 		TCP_SKB_CB(skb)->end_seq += copy;
1290 		tcp_skb_pcount_set(skb, 0);
1291 
1292 		copied += copy;
1293 		if (!msg_data_left(msg)) {
1294 			if (unlikely(flags & MSG_EOR))
1295 				TCP_SKB_CB(skb)->eor = 1;
1296 			goto out;
1297 		}
1298 
1299 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1300 			continue;
1301 
1302 		if (forced_push(tp)) {
1303 			tcp_mark_push(tp, skb);
1304 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1305 		} else if (skb == tcp_send_head(sk))
1306 			tcp_push_one(sk, mss_now);
1307 		continue;
1308 
1309 wait_for_space:
1310 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311 		tcp_remove_empty_skb(sk);
1312 		if (copied)
1313 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1314 				 TCP_NAGLE_PUSH, size_goal);
1315 
1316 		err = sk_stream_wait_memory(sk, &timeo);
1317 		if (err != 0)
1318 			goto do_error;
1319 
1320 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1321 	}
1322 
1323 out:
1324 	if (copied) {
1325 		tcp_tx_timestamp(sk, &sockc);
1326 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1327 	}
1328 out_nopush:
1329 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330 	if (uarg && !msg->msg_ubuf)
1331 		net_zcopy_put(uarg);
1332 	return copied + copied_syn;
1333 
1334 do_error:
1335 	tcp_remove_empty_skb(sk);
1336 
1337 	if (copied + copied_syn)
1338 		goto out;
1339 out_err:
1340 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1341 	if (uarg && !msg->msg_ubuf)
1342 		net_zcopy_put_abort(uarg, true);
1343 	err = sk_stream_error(sk, flags, err);
1344 	/* make sure we wake any epoll edge trigger waiter */
1345 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1346 		sk->sk_write_space(sk);
1347 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1348 	}
1349 	return err;
1350 }
1351 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1352 
1353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1354 {
1355 	int ret;
1356 
1357 	lock_sock(sk);
1358 	ret = tcp_sendmsg_locked(sk, msg, size);
1359 	release_sock(sk);
1360 
1361 	return ret;
1362 }
1363 EXPORT_SYMBOL(tcp_sendmsg);
1364 
1365 void tcp_splice_eof(struct socket *sock)
1366 {
1367 	struct sock *sk = sock->sk;
1368 	struct tcp_sock *tp = tcp_sk(sk);
1369 	int mss_now, size_goal;
1370 
1371 	if (!tcp_write_queue_tail(sk))
1372 		return;
1373 
1374 	lock_sock(sk);
1375 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1376 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1377 	release_sock(sk);
1378 }
1379 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1380 
1381 /*
1382  *	Handle reading urgent data. BSD has very simple semantics for
1383  *	this, no blocking and very strange errors 8)
1384  */
1385 
1386 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 
1390 	/* No URG data to read. */
1391 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1392 	    tp->urg_data == TCP_URG_READ)
1393 		return -EINVAL;	/* Yes this is right ! */
1394 
1395 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1396 		return -ENOTCONN;
1397 
1398 	if (tp->urg_data & TCP_URG_VALID) {
1399 		int err = 0;
1400 		char c = tp->urg_data;
1401 
1402 		if (!(flags & MSG_PEEK))
1403 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1404 
1405 		/* Read urgent data. */
1406 		msg->msg_flags |= MSG_OOB;
1407 
1408 		if (len > 0) {
1409 			if (!(flags & MSG_TRUNC))
1410 				err = memcpy_to_msg(msg, &c, 1);
1411 			len = 1;
1412 		} else
1413 			msg->msg_flags |= MSG_TRUNC;
1414 
1415 		return err ? -EFAULT : len;
1416 	}
1417 
1418 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1419 		return 0;
1420 
1421 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1422 	 * the available implementations agree in this case:
1423 	 * this call should never block, independent of the
1424 	 * blocking state of the socket.
1425 	 * Mike <pall@rz.uni-karlsruhe.de>
1426 	 */
1427 	return -EAGAIN;
1428 }
1429 
1430 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1431 {
1432 	struct sk_buff *skb;
1433 	int copied = 0, err = 0;
1434 
1435 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1436 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1437 		if (err)
1438 			return err;
1439 		copied += skb->len;
1440 	}
1441 
1442 	skb_queue_walk(&sk->sk_write_queue, skb) {
1443 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1444 		if (err)
1445 			break;
1446 
1447 		copied += skb->len;
1448 	}
1449 
1450 	return err ?: copied;
1451 }
1452 
1453 /* Clean up the receive buffer for full frames taken by the user,
1454  * then send an ACK if necessary.  COPIED is the number of bytes
1455  * tcp_recvmsg has given to the user so far, it speeds up the
1456  * calculation of whether or not we must ACK for the sake of
1457  * a window update.
1458  */
1459 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 	bool time_to_ack = false;
1463 
1464 	if (inet_csk_ack_scheduled(sk)) {
1465 		const struct inet_connection_sock *icsk = inet_csk(sk);
1466 
1467 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1468 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1469 		    /*
1470 		     * If this read emptied read buffer, we send ACK, if
1471 		     * connection is not bidirectional, user drained
1472 		     * receive buffer and there was a small segment
1473 		     * in queue.
1474 		     */
1475 		    (copied > 0 &&
1476 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1477 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1478 		       !inet_csk_in_pingpong_mode(sk))) &&
1479 		      !atomic_read(&sk->sk_rmem_alloc)))
1480 			time_to_ack = true;
1481 	}
1482 
1483 	/* We send an ACK if we can now advertise a non-zero window
1484 	 * which has been raised "significantly".
1485 	 *
1486 	 * Even if window raised up to infinity, do not send window open ACK
1487 	 * in states, where we will not receive more. It is useless.
1488 	 */
1489 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1490 		__u32 rcv_window_now = tcp_receive_window(tp);
1491 
1492 		/* Optimize, __tcp_select_window() is not cheap. */
1493 		if (2*rcv_window_now <= tp->window_clamp) {
1494 			__u32 new_window = __tcp_select_window(sk);
1495 
1496 			/* Send ACK now, if this read freed lots of space
1497 			 * in our buffer. Certainly, new_window is new window.
1498 			 * We can advertise it now, if it is not less than current one.
1499 			 * "Lots" means "at least twice" here.
1500 			 */
1501 			if (new_window && new_window >= 2 * rcv_window_now)
1502 				time_to_ack = true;
1503 		}
1504 	}
1505 	if (time_to_ack)
1506 		tcp_send_ack(sk);
1507 }
1508 
1509 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1510 {
1511 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 
1514 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1515 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1516 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1517 	__tcp_cleanup_rbuf(sk, copied);
1518 }
1519 
1520 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1521 {
1522 	__skb_unlink(skb, &sk->sk_receive_queue);
1523 	if (likely(skb->destructor == sock_rfree)) {
1524 		sock_rfree(skb);
1525 		skb->destructor = NULL;
1526 		skb->sk = NULL;
1527 		return skb_attempt_defer_free(skb);
1528 	}
1529 	__kfree_skb(skb);
1530 }
1531 
1532 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1533 {
1534 	struct sk_buff *skb;
1535 	u32 offset;
1536 
1537 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1538 		offset = seq - TCP_SKB_CB(skb)->seq;
1539 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1540 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1541 			offset--;
1542 		}
1543 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1544 			*off = offset;
1545 			return skb;
1546 		}
1547 		/* This looks weird, but this can happen if TCP collapsing
1548 		 * splitted a fat GRO packet, while we released socket lock
1549 		 * in skb_splice_bits()
1550 		 */
1551 		tcp_eat_recv_skb(sk, skb);
1552 	}
1553 	return NULL;
1554 }
1555 EXPORT_SYMBOL(tcp_recv_skb);
1556 
1557 /*
1558  * This routine provides an alternative to tcp_recvmsg() for routines
1559  * that would like to handle copying from skbuffs directly in 'sendfile'
1560  * fashion.
1561  * Note:
1562  *	- It is assumed that the socket was locked by the caller.
1563  *	- The routine does not block.
1564  *	- At present, there is no support for reading OOB data
1565  *	  or for 'peeking' the socket using this routine
1566  *	  (although both would be easy to implement).
1567  */
1568 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1569 		  sk_read_actor_t recv_actor)
1570 {
1571 	struct sk_buff *skb;
1572 	struct tcp_sock *tp = tcp_sk(sk);
1573 	u32 seq = tp->copied_seq;
1574 	u32 offset;
1575 	int copied = 0;
1576 
1577 	if (sk->sk_state == TCP_LISTEN)
1578 		return -ENOTCONN;
1579 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1580 		if (offset < skb->len) {
1581 			int used;
1582 			size_t len;
1583 
1584 			len = skb->len - offset;
1585 			/* Stop reading if we hit a patch of urgent data */
1586 			if (unlikely(tp->urg_data)) {
1587 				u32 urg_offset = tp->urg_seq - seq;
1588 				if (urg_offset < len)
1589 					len = urg_offset;
1590 				if (!len)
1591 					break;
1592 			}
1593 			used = recv_actor(desc, skb, offset, len);
1594 			if (used <= 0) {
1595 				if (!copied)
1596 					copied = used;
1597 				break;
1598 			}
1599 			if (WARN_ON_ONCE(used > len))
1600 				used = len;
1601 			seq += used;
1602 			copied += used;
1603 			offset += used;
1604 
1605 			/* If recv_actor drops the lock (e.g. TCP splice
1606 			 * receive) the skb pointer might be invalid when
1607 			 * getting here: tcp_collapse might have deleted it
1608 			 * while aggregating skbs from the socket queue.
1609 			 */
1610 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1611 			if (!skb)
1612 				break;
1613 			/* TCP coalescing might have appended data to the skb.
1614 			 * Try to splice more frags
1615 			 */
1616 			if (offset + 1 != skb->len)
1617 				continue;
1618 		}
1619 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1620 			tcp_eat_recv_skb(sk, skb);
1621 			++seq;
1622 			break;
1623 		}
1624 		tcp_eat_recv_skb(sk, skb);
1625 		if (!desc->count)
1626 			break;
1627 		WRITE_ONCE(tp->copied_seq, seq);
1628 	}
1629 	WRITE_ONCE(tp->copied_seq, seq);
1630 
1631 	tcp_rcv_space_adjust(sk);
1632 
1633 	/* Clean up data we have read: This will do ACK frames. */
1634 	if (copied > 0) {
1635 		tcp_recv_skb(sk, seq, &offset);
1636 		tcp_cleanup_rbuf(sk, copied);
1637 	}
1638 	return copied;
1639 }
1640 EXPORT_SYMBOL(tcp_read_sock);
1641 
1642 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1643 {
1644 	struct sk_buff *skb;
1645 	int copied = 0;
1646 
1647 	if (sk->sk_state == TCP_LISTEN)
1648 		return -ENOTCONN;
1649 
1650 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1651 		u8 tcp_flags;
1652 		int used;
1653 
1654 		__skb_unlink(skb, &sk->sk_receive_queue);
1655 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1656 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1657 		used = recv_actor(sk, skb);
1658 		if (used < 0) {
1659 			if (!copied)
1660 				copied = used;
1661 			break;
1662 		}
1663 		copied += used;
1664 
1665 		if (tcp_flags & TCPHDR_FIN)
1666 			break;
1667 	}
1668 	return copied;
1669 }
1670 EXPORT_SYMBOL(tcp_read_skb);
1671 
1672 void tcp_read_done(struct sock *sk, size_t len)
1673 {
1674 	struct tcp_sock *tp = tcp_sk(sk);
1675 	u32 seq = tp->copied_seq;
1676 	struct sk_buff *skb;
1677 	size_t left;
1678 	u32 offset;
1679 
1680 	if (sk->sk_state == TCP_LISTEN)
1681 		return;
1682 
1683 	left = len;
1684 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1685 		int used;
1686 
1687 		used = min_t(size_t, skb->len - offset, left);
1688 		seq += used;
1689 		left -= used;
1690 
1691 		if (skb->len > offset + used)
1692 			break;
1693 
1694 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1695 			tcp_eat_recv_skb(sk, skb);
1696 			++seq;
1697 			break;
1698 		}
1699 		tcp_eat_recv_skb(sk, skb);
1700 	}
1701 	WRITE_ONCE(tp->copied_seq, seq);
1702 
1703 	tcp_rcv_space_adjust(sk);
1704 
1705 	/* Clean up data we have read: This will do ACK frames. */
1706 	if (left != len)
1707 		tcp_cleanup_rbuf(sk, len - left);
1708 }
1709 EXPORT_SYMBOL(tcp_read_done);
1710 
1711 int tcp_peek_len(struct socket *sock)
1712 {
1713 	return tcp_inq(sock->sk);
1714 }
1715 EXPORT_SYMBOL(tcp_peek_len);
1716 
1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1718 int tcp_set_rcvlowat(struct sock *sk, int val)
1719 {
1720 	int space, cap;
1721 
1722 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723 		cap = sk->sk_rcvbuf >> 1;
1724 	else
1725 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1726 	val = min(val, cap);
1727 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728 
1729 	/* Check if we need to signal EPOLLIN right now */
1730 	tcp_data_ready(sk);
1731 
1732 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 		return 0;
1734 
1735 	space = tcp_space_from_win(sk, val);
1736 	if (space > sk->sk_rcvbuf) {
1737 		WRITE_ONCE(sk->sk_rcvbuf, space);
1738 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1739 	}
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL(tcp_set_rcvlowat);
1743 
1744 void tcp_update_recv_tstamps(struct sk_buff *skb,
1745 			     struct scm_timestamping_internal *tss)
1746 {
1747 	if (skb->tstamp)
1748 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749 	else
1750 		tss->ts[0] = (struct timespec64) {0};
1751 
1752 	if (skb_hwtstamps(skb)->hwtstamp)
1753 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754 	else
1755 		tss->ts[2] = (struct timespec64) {0};
1756 }
1757 
1758 #ifdef CONFIG_MMU
1759 static const struct vm_operations_struct tcp_vm_ops = {
1760 };
1761 
1762 int tcp_mmap(struct file *file, struct socket *sock,
1763 	     struct vm_area_struct *vma)
1764 {
1765 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766 		return -EPERM;
1767 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1768 
1769 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770 	vm_flags_set(vma, VM_MIXEDMAP);
1771 
1772 	vma->vm_ops = &tcp_vm_ops;
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(tcp_mmap);
1776 
1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778 				       u32 *offset_frag)
1779 {
1780 	skb_frag_t *frag;
1781 
1782 	if (unlikely(offset_skb >= skb->len))
1783 		return NULL;
1784 
1785 	offset_skb -= skb_headlen(skb);
1786 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787 		return NULL;
1788 
1789 	frag = skb_shinfo(skb)->frags;
1790 	while (offset_skb) {
1791 		if (skb_frag_size(frag) > offset_skb) {
1792 			*offset_frag = offset_skb;
1793 			return frag;
1794 		}
1795 		offset_skb -= skb_frag_size(frag);
1796 		++frag;
1797 	}
1798 	*offset_frag = 0;
1799 	return frag;
1800 }
1801 
1802 static bool can_map_frag(const skb_frag_t *frag)
1803 {
1804 	struct page *page;
1805 
1806 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1807 		return false;
1808 
1809 	page = skb_frag_page(frag);
1810 
1811 	if (PageCompound(page) || page->mapping)
1812 		return false;
1813 
1814 	return true;
1815 }
1816 
1817 static int find_next_mappable_frag(const skb_frag_t *frag,
1818 				   int remaining_in_skb)
1819 {
1820 	int offset = 0;
1821 
1822 	if (likely(can_map_frag(frag)))
1823 		return 0;
1824 
1825 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1826 		offset += skb_frag_size(frag);
1827 		++frag;
1828 	}
1829 	return offset;
1830 }
1831 
1832 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1833 					  struct tcp_zerocopy_receive *zc,
1834 					  struct sk_buff *skb, u32 offset)
1835 {
1836 	u32 frag_offset, partial_frag_remainder = 0;
1837 	int mappable_offset;
1838 	skb_frag_t *frag;
1839 
1840 	/* worst case: skip to next skb. try to improve on this case below */
1841 	zc->recv_skip_hint = skb->len - offset;
1842 
1843 	/* Find the frag containing this offset (and how far into that frag) */
1844 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1845 	if (!frag)
1846 		return;
1847 
1848 	if (frag_offset) {
1849 		struct skb_shared_info *info = skb_shinfo(skb);
1850 
1851 		/* We read part of the last frag, must recvmsg() rest of skb. */
1852 		if (frag == &info->frags[info->nr_frags - 1])
1853 			return;
1854 
1855 		/* Else, we must at least read the remainder in this frag. */
1856 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1857 		zc->recv_skip_hint -= partial_frag_remainder;
1858 		++frag;
1859 	}
1860 
1861 	/* partial_frag_remainder: If part way through a frag, must read rest.
1862 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1863 	 * in partial_frag_remainder.
1864 	 */
1865 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1866 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1867 }
1868 
1869 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1870 			      int flags, struct scm_timestamping_internal *tss,
1871 			      int *cmsg_flags);
1872 static int receive_fallback_to_copy(struct sock *sk,
1873 				    struct tcp_zerocopy_receive *zc, int inq,
1874 				    struct scm_timestamping_internal *tss)
1875 {
1876 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1877 	struct msghdr msg = {};
1878 	int err;
1879 
1880 	zc->length = 0;
1881 	zc->recv_skip_hint = 0;
1882 
1883 	if (copy_address != zc->copybuf_address)
1884 		return -EINVAL;
1885 
1886 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1887 			  &msg.msg_iter);
1888 	if (err)
1889 		return err;
1890 
1891 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1892 				 tss, &zc->msg_flags);
1893 	if (err < 0)
1894 		return err;
1895 
1896 	zc->copybuf_len = err;
1897 	if (likely(zc->copybuf_len)) {
1898 		struct sk_buff *skb;
1899 		u32 offset;
1900 
1901 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1902 		if (skb)
1903 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1904 	}
1905 	return 0;
1906 }
1907 
1908 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1909 				   struct sk_buff *skb, u32 copylen,
1910 				   u32 *offset, u32 *seq)
1911 {
1912 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1913 	struct msghdr msg = {};
1914 	int err;
1915 
1916 	if (copy_address != zc->copybuf_address)
1917 		return -EINVAL;
1918 
1919 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1920 			  &msg.msg_iter);
1921 	if (err)
1922 		return err;
1923 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1924 	if (err)
1925 		return err;
1926 	zc->recv_skip_hint -= copylen;
1927 	*offset += copylen;
1928 	*seq += copylen;
1929 	return (__s32)copylen;
1930 }
1931 
1932 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1933 				  struct sock *sk,
1934 				  struct sk_buff *skb,
1935 				  u32 *seq,
1936 				  s32 copybuf_len,
1937 				  struct scm_timestamping_internal *tss)
1938 {
1939 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1940 
1941 	if (!copylen)
1942 		return 0;
1943 	/* skb is null if inq < PAGE_SIZE. */
1944 	if (skb) {
1945 		offset = *seq - TCP_SKB_CB(skb)->seq;
1946 	} else {
1947 		skb = tcp_recv_skb(sk, *seq, &offset);
1948 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1949 			tcp_update_recv_tstamps(skb, tss);
1950 			zc->msg_flags |= TCP_CMSG_TS;
1951 		}
1952 	}
1953 
1954 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1955 						  seq);
1956 	return zc->copybuf_len < 0 ? 0 : copylen;
1957 }
1958 
1959 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1960 					      struct page **pending_pages,
1961 					      unsigned long pages_remaining,
1962 					      unsigned long *address,
1963 					      u32 *length,
1964 					      u32 *seq,
1965 					      struct tcp_zerocopy_receive *zc,
1966 					      u32 total_bytes_to_map,
1967 					      int err)
1968 {
1969 	/* At least one page did not map. Try zapping if we skipped earlier. */
1970 	if (err == -EBUSY &&
1971 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1972 		u32 maybe_zap_len;
1973 
1974 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1975 				*length + /* Mapped or pending */
1976 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1977 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1978 		err = 0;
1979 	}
1980 
1981 	if (!err) {
1982 		unsigned long leftover_pages = pages_remaining;
1983 		int bytes_mapped;
1984 
1985 		/* We called zap_page_range_single, try to reinsert. */
1986 		err = vm_insert_pages(vma, *address,
1987 				      pending_pages,
1988 				      &pages_remaining);
1989 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1990 		*seq += bytes_mapped;
1991 		*address += bytes_mapped;
1992 	}
1993 	if (err) {
1994 		/* Either we were unable to zap, OR we zapped, retried an
1995 		 * insert, and still had an issue. Either ways, pages_remaining
1996 		 * is the number of pages we were unable to map, and we unroll
1997 		 * some state we speculatively touched before.
1998 		 */
1999 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2000 
2001 		*length -= bytes_not_mapped;
2002 		zc->recv_skip_hint += bytes_not_mapped;
2003 	}
2004 	return err;
2005 }
2006 
2007 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2008 					struct page **pages,
2009 					unsigned int pages_to_map,
2010 					unsigned long *address,
2011 					u32 *length,
2012 					u32 *seq,
2013 					struct tcp_zerocopy_receive *zc,
2014 					u32 total_bytes_to_map)
2015 {
2016 	unsigned long pages_remaining = pages_to_map;
2017 	unsigned int pages_mapped;
2018 	unsigned int bytes_mapped;
2019 	int err;
2020 
2021 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2022 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2023 	bytes_mapped = PAGE_SIZE * pages_mapped;
2024 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2025 	 * mapping (some but not all of the pages).
2026 	 */
2027 	*seq += bytes_mapped;
2028 	*address += bytes_mapped;
2029 
2030 	if (likely(!err))
2031 		return 0;
2032 
2033 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2034 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2035 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2036 		err);
2037 }
2038 
2039 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2040 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2041 				      struct tcp_zerocopy_receive *zc,
2042 				      struct scm_timestamping_internal *tss)
2043 {
2044 	unsigned long msg_control_addr;
2045 	struct msghdr cmsg_dummy;
2046 
2047 	msg_control_addr = (unsigned long)zc->msg_control;
2048 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2049 	cmsg_dummy.msg_controllen =
2050 		(__kernel_size_t)zc->msg_controllen;
2051 	cmsg_dummy.msg_flags = in_compat_syscall()
2052 		? MSG_CMSG_COMPAT : 0;
2053 	cmsg_dummy.msg_control_is_user = true;
2054 	zc->msg_flags = 0;
2055 	if (zc->msg_control == msg_control_addr &&
2056 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2057 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2058 		zc->msg_control = (__u64)
2059 			((uintptr_t)cmsg_dummy.msg_control_user);
2060 		zc->msg_controllen =
2061 			(__u64)cmsg_dummy.msg_controllen;
2062 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2063 	}
2064 }
2065 
2066 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2067 					   unsigned long address,
2068 					   bool *mmap_locked)
2069 {
2070 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2071 
2072 	if (vma) {
2073 		if (vma->vm_ops != &tcp_vm_ops) {
2074 			vma_end_read(vma);
2075 			return NULL;
2076 		}
2077 		*mmap_locked = false;
2078 		return vma;
2079 	}
2080 
2081 	mmap_read_lock(mm);
2082 	vma = vma_lookup(mm, address);
2083 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2084 		mmap_read_unlock(mm);
2085 		return NULL;
2086 	}
2087 	*mmap_locked = true;
2088 	return vma;
2089 }
2090 
2091 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2092 static int tcp_zerocopy_receive(struct sock *sk,
2093 				struct tcp_zerocopy_receive *zc,
2094 				struct scm_timestamping_internal *tss)
2095 {
2096 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2097 	unsigned long address = (unsigned long)zc->address;
2098 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2099 	s32 copybuf_len = zc->copybuf_len;
2100 	struct tcp_sock *tp = tcp_sk(sk);
2101 	const skb_frag_t *frags = NULL;
2102 	unsigned int pages_to_map = 0;
2103 	struct vm_area_struct *vma;
2104 	struct sk_buff *skb = NULL;
2105 	u32 seq = tp->copied_seq;
2106 	u32 total_bytes_to_map;
2107 	int inq = tcp_inq(sk);
2108 	bool mmap_locked;
2109 	int ret;
2110 
2111 	zc->copybuf_len = 0;
2112 	zc->msg_flags = 0;
2113 
2114 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2115 		return -EINVAL;
2116 
2117 	if (sk->sk_state == TCP_LISTEN)
2118 		return -ENOTCONN;
2119 
2120 	sock_rps_record_flow(sk);
2121 
2122 	if (inq && inq <= copybuf_len)
2123 		return receive_fallback_to_copy(sk, zc, inq, tss);
2124 
2125 	if (inq < PAGE_SIZE) {
2126 		zc->length = 0;
2127 		zc->recv_skip_hint = inq;
2128 		if (!inq && sock_flag(sk, SOCK_DONE))
2129 			return -EIO;
2130 		return 0;
2131 	}
2132 
2133 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2134 	if (!vma)
2135 		return -EINVAL;
2136 
2137 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2138 	avail_len = min_t(u32, vma_len, inq);
2139 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2140 	if (total_bytes_to_map) {
2141 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2142 			zap_page_range_single(vma, address, total_bytes_to_map,
2143 					      NULL);
2144 		zc->length = total_bytes_to_map;
2145 		zc->recv_skip_hint = 0;
2146 	} else {
2147 		zc->length = avail_len;
2148 		zc->recv_skip_hint = avail_len;
2149 	}
2150 	ret = 0;
2151 	while (length + PAGE_SIZE <= zc->length) {
2152 		int mappable_offset;
2153 		struct page *page;
2154 
2155 		if (zc->recv_skip_hint < PAGE_SIZE) {
2156 			u32 offset_frag;
2157 
2158 			if (skb) {
2159 				if (zc->recv_skip_hint > 0)
2160 					break;
2161 				skb = skb->next;
2162 				offset = seq - TCP_SKB_CB(skb)->seq;
2163 			} else {
2164 				skb = tcp_recv_skb(sk, seq, &offset);
2165 			}
2166 
2167 			if (!skb_frags_readable(skb))
2168 				break;
2169 
2170 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2171 				tcp_update_recv_tstamps(skb, tss);
2172 				zc->msg_flags |= TCP_CMSG_TS;
2173 			}
2174 			zc->recv_skip_hint = skb->len - offset;
2175 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2176 			if (!frags || offset_frag)
2177 				break;
2178 		}
2179 
2180 		mappable_offset = find_next_mappable_frag(frags,
2181 							  zc->recv_skip_hint);
2182 		if (mappable_offset) {
2183 			zc->recv_skip_hint = mappable_offset;
2184 			break;
2185 		}
2186 		page = skb_frag_page(frags);
2187 		if (WARN_ON_ONCE(!page))
2188 			break;
2189 
2190 		prefetchw(page);
2191 		pages[pages_to_map++] = page;
2192 		length += PAGE_SIZE;
2193 		zc->recv_skip_hint -= PAGE_SIZE;
2194 		frags++;
2195 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2196 		    zc->recv_skip_hint < PAGE_SIZE) {
2197 			/* Either full batch, or we're about to go to next skb
2198 			 * (and we cannot unroll failed ops across skbs).
2199 			 */
2200 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2201 							   pages_to_map,
2202 							   &address, &length,
2203 							   &seq, zc,
2204 							   total_bytes_to_map);
2205 			if (ret)
2206 				goto out;
2207 			pages_to_map = 0;
2208 		}
2209 	}
2210 	if (pages_to_map) {
2211 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2212 						   &address, &length, &seq,
2213 						   zc, total_bytes_to_map);
2214 	}
2215 out:
2216 	if (mmap_locked)
2217 		mmap_read_unlock(current->mm);
2218 	else
2219 		vma_end_read(vma);
2220 	/* Try to copy straggler data. */
2221 	if (!ret)
2222 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2223 
2224 	if (length + copylen) {
2225 		WRITE_ONCE(tp->copied_seq, seq);
2226 		tcp_rcv_space_adjust(sk);
2227 
2228 		/* Clean up data we have read: This will do ACK frames. */
2229 		tcp_recv_skb(sk, seq, &offset);
2230 		tcp_cleanup_rbuf(sk, length + copylen);
2231 		ret = 0;
2232 		if (length == zc->length)
2233 			zc->recv_skip_hint = 0;
2234 	} else {
2235 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2236 			ret = -EIO;
2237 	}
2238 	zc->length = length;
2239 	return ret;
2240 }
2241 #endif
2242 
2243 /* Similar to __sock_recv_timestamp, but does not require an skb */
2244 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2245 			struct scm_timestamping_internal *tss)
2246 {
2247 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2248 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2249 	bool has_timestamping = false;
2250 
2251 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2252 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2253 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2254 				if (new_tstamp) {
2255 					struct __kernel_timespec kts = {
2256 						.tv_sec = tss->ts[0].tv_sec,
2257 						.tv_nsec = tss->ts[0].tv_nsec,
2258 					};
2259 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2260 						 sizeof(kts), &kts);
2261 				} else {
2262 					struct __kernel_old_timespec ts_old = {
2263 						.tv_sec = tss->ts[0].tv_sec,
2264 						.tv_nsec = tss->ts[0].tv_nsec,
2265 					};
2266 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2267 						 sizeof(ts_old), &ts_old);
2268 				}
2269 			} else {
2270 				if (new_tstamp) {
2271 					struct __kernel_sock_timeval stv = {
2272 						.tv_sec = tss->ts[0].tv_sec,
2273 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2274 					};
2275 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2276 						 sizeof(stv), &stv);
2277 				} else {
2278 					struct __kernel_old_timeval tv = {
2279 						.tv_sec = tss->ts[0].tv_sec,
2280 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2281 					};
2282 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2283 						 sizeof(tv), &tv);
2284 				}
2285 			}
2286 		}
2287 
2288 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2289 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2290 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2291 			has_timestamping = true;
2292 		else
2293 			tss->ts[0] = (struct timespec64) {0};
2294 	}
2295 
2296 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2297 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2298 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2299 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2300 			has_timestamping = true;
2301 		else
2302 			tss->ts[2] = (struct timespec64) {0};
2303 	}
2304 
2305 	if (has_timestamping) {
2306 		tss->ts[1] = (struct timespec64) {0};
2307 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2308 			put_cmsg_scm_timestamping64(msg, tss);
2309 		else
2310 			put_cmsg_scm_timestamping(msg, tss);
2311 	}
2312 }
2313 
2314 static int tcp_inq_hint(struct sock *sk)
2315 {
2316 	const struct tcp_sock *tp = tcp_sk(sk);
2317 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2318 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2319 	int inq;
2320 
2321 	inq = rcv_nxt - copied_seq;
2322 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2323 		lock_sock(sk);
2324 		inq = tp->rcv_nxt - tp->copied_seq;
2325 		release_sock(sk);
2326 	}
2327 	/* After receiving a FIN, tell the user-space to continue reading
2328 	 * by returning a non-zero inq.
2329 	 */
2330 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2331 		inq = 1;
2332 	return inq;
2333 }
2334 
2335 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2336 struct tcp_xa_pool {
2337 	u8		max; /* max <= MAX_SKB_FRAGS */
2338 	u8		idx; /* idx <= max */
2339 	__u32		tokens[MAX_SKB_FRAGS];
2340 	netmem_ref	netmems[MAX_SKB_FRAGS];
2341 };
2342 
2343 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2344 {
2345 	int i;
2346 
2347 	/* Commit part that has been copied to user space. */
2348 	for (i = 0; i < p->idx; i++)
2349 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2350 			     (__force void *)p->netmems[i], GFP_KERNEL);
2351 	/* Rollback what has been pre-allocated and is no longer needed. */
2352 	for (; i < p->max; i++)
2353 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2354 
2355 	p->max = 0;
2356 	p->idx = 0;
2357 }
2358 
2359 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2360 {
2361 	if (!p->max)
2362 		return;
2363 
2364 	xa_lock_bh(&sk->sk_user_frags);
2365 
2366 	tcp_xa_pool_commit_locked(sk, p);
2367 
2368 	xa_unlock_bh(&sk->sk_user_frags);
2369 }
2370 
2371 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2372 			      unsigned int max_frags)
2373 {
2374 	int err, k;
2375 
2376 	if (p->idx < p->max)
2377 		return 0;
2378 
2379 	xa_lock_bh(&sk->sk_user_frags);
2380 
2381 	tcp_xa_pool_commit_locked(sk, p);
2382 
2383 	for (k = 0; k < max_frags; k++) {
2384 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2385 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2386 		if (err)
2387 			break;
2388 	}
2389 
2390 	xa_unlock_bh(&sk->sk_user_frags);
2391 
2392 	p->max = k;
2393 	p->idx = 0;
2394 	return k ? 0 : err;
2395 }
2396 
2397 /* On error, returns the -errno. On success, returns number of bytes sent to the
2398  * user. May not consume all of @remaining_len.
2399  */
2400 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2401 			      unsigned int offset, struct msghdr *msg,
2402 			      int remaining_len)
2403 {
2404 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2405 	struct tcp_xa_pool tcp_xa_pool;
2406 	unsigned int start;
2407 	int i, copy, n;
2408 	int sent = 0;
2409 	int err = 0;
2410 
2411 	tcp_xa_pool.max = 0;
2412 	tcp_xa_pool.idx = 0;
2413 	do {
2414 		start = skb_headlen(skb);
2415 
2416 		if (skb_frags_readable(skb)) {
2417 			err = -ENODEV;
2418 			goto out;
2419 		}
2420 
2421 		/* Copy header. */
2422 		copy = start - offset;
2423 		if (copy > 0) {
2424 			copy = min(copy, remaining_len);
2425 
2426 			n = copy_to_iter(skb->data + offset, copy,
2427 					 &msg->msg_iter);
2428 			if (n != copy) {
2429 				err = -EFAULT;
2430 				goto out;
2431 			}
2432 
2433 			offset += copy;
2434 			remaining_len -= copy;
2435 
2436 			/* First a dmabuf_cmsg for # bytes copied to user
2437 			 * buffer.
2438 			 */
2439 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2440 			dmabuf_cmsg.frag_size = copy;
2441 			err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR,
2442 				       sizeof(dmabuf_cmsg), &dmabuf_cmsg);
2443 			if (err || msg->msg_flags & MSG_CTRUNC) {
2444 				msg->msg_flags &= ~MSG_CTRUNC;
2445 				if (!err)
2446 					err = -ETOOSMALL;
2447 				goto out;
2448 			}
2449 
2450 			sent += copy;
2451 
2452 			if (remaining_len == 0)
2453 				goto out;
2454 		}
2455 
2456 		/* after that, send information of dmabuf pages through a
2457 		 * sequence of cmsg
2458 		 */
2459 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2461 			struct net_iov *niov;
2462 			u64 frag_offset;
2463 			int end;
2464 
2465 			/* !skb_frags_readable() should indicate that ALL the
2466 			 * frags in this skb are dmabuf net_iovs. We're checking
2467 			 * for that flag above, but also check individual frags
2468 			 * here. If the tcp stack is not setting
2469 			 * skb_frags_readable() correctly, we still don't want
2470 			 * to crash here.
2471 			 */
2472 			if (!skb_frag_net_iov(frag)) {
2473 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2474 				err = -ENODEV;
2475 				goto out;
2476 			}
2477 
2478 			niov = skb_frag_net_iov(frag);
2479 			if (!net_is_devmem_iov(niov)) {
2480 				err = -ENODEV;
2481 				goto out;
2482 			}
2483 
2484 			end = start + skb_frag_size(frag);
2485 			copy = end - offset;
2486 
2487 			if (copy > 0) {
2488 				copy = min(copy, remaining_len);
2489 
2490 				frag_offset = net_iov_virtual_addr(niov) +
2491 					      skb_frag_off(frag) + offset -
2492 					      start;
2493 				dmabuf_cmsg.frag_offset = frag_offset;
2494 				dmabuf_cmsg.frag_size = copy;
2495 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2496 							 skb_shinfo(skb)->nr_frags - i);
2497 				if (err)
2498 					goto out;
2499 
2500 				/* Will perform the exchange later */
2501 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2502 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2503 
2504 				offset += copy;
2505 				remaining_len -= copy;
2506 
2507 				err = put_cmsg(msg, SOL_SOCKET,
2508 					       SO_DEVMEM_DMABUF,
2509 					       sizeof(dmabuf_cmsg),
2510 					       &dmabuf_cmsg);
2511 				if (err || msg->msg_flags & MSG_CTRUNC) {
2512 					msg->msg_flags &= ~MSG_CTRUNC;
2513 					if (!err)
2514 						err = -ETOOSMALL;
2515 					goto out;
2516 				}
2517 
2518 				atomic_long_inc(&niov->pp_ref_count);
2519 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2520 
2521 				sent += copy;
2522 
2523 				if (remaining_len == 0)
2524 					goto out;
2525 			}
2526 			start = end;
2527 		}
2528 
2529 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2530 		if (!remaining_len)
2531 			goto out;
2532 
2533 		/* if remaining_len is not satisfied yet, we need to go to the
2534 		 * next frag in the frag_list to satisfy remaining_len.
2535 		 */
2536 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2537 
2538 		offset = offset - start;
2539 	} while (skb);
2540 
2541 	if (remaining_len) {
2542 		err = -EFAULT;
2543 		goto out;
2544 	}
2545 
2546 out:
2547 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2548 	if (!sent)
2549 		sent = err;
2550 
2551 	return sent;
2552 }
2553 
2554 /*
2555  *	This routine copies from a sock struct into the user buffer.
2556  *
2557  *	Technical note: in 2.3 we work on _locked_ socket, so that
2558  *	tricks with *seq access order and skb->users are not required.
2559  *	Probably, code can be easily improved even more.
2560  */
2561 
2562 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2563 			      int flags, struct scm_timestamping_internal *tss,
2564 			      int *cmsg_flags)
2565 {
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 	int last_copied_dmabuf = -1; /* uninitialized */
2568 	int copied = 0;
2569 	u32 peek_seq;
2570 	u32 *seq;
2571 	unsigned long used;
2572 	int err;
2573 	int target;		/* Read at least this many bytes */
2574 	long timeo;
2575 	struct sk_buff *skb, *last;
2576 	u32 peek_offset = 0;
2577 	u32 urg_hole = 0;
2578 
2579 	err = -ENOTCONN;
2580 	if (sk->sk_state == TCP_LISTEN)
2581 		goto out;
2582 
2583 	if (tp->recvmsg_inq) {
2584 		*cmsg_flags = TCP_CMSG_INQ;
2585 		msg->msg_get_inq = 1;
2586 	}
2587 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2588 
2589 	/* Urgent data needs to be handled specially. */
2590 	if (flags & MSG_OOB)
2591 		goto recv_urg;
2592 
2593 	if (unlikely(tp->repair)) {
2594 		err = -EPERM;
2595 		if (!(flags & MSG_PEEK))
2596 			goto out;
2597 
2598 		if (tp->repair_queue == TCP_SEND_QUEUE)
2599 			goto recv_sndq;
2600 
2601 		err = -EINVAL;
2602 		if (tp->repair_queue == TCP_NO_QUEUE)
2603 			goto out;
2604 
2605 		/* 'common' recv queue MSG_PEEK-ing */
2606 	}
2607 
2608 	seq = &tp->copied_seq;
2609 	if (flags & MSG_PEEK) {
2610 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2611 		peek_seq = tp->copied_seq + peek_offset;
2612 		seq = &peek_seq;
2613 	}
2614 
2615 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2616 
2617 	do {
2618 		u32 offset;
2619 
2620 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2621 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2622 			if (copied)
2623 				break;
2624 			if (signal_pending(current)) {
2625 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2626 				break;
2627 			}
2628 		}
2629 
2630 		/* Next get a buffer. */
2631 
2632 		last = skb_peek_tail(&sk->sk_receive_queue);
2633 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2634 			last = skb;
2635 			/* Now that we have two receive queues this
2636 			 * shouldn't happen.
2637 			 */
2638 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2639 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2640 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2641 				 flags))
2642 				break;
2643 
2644 			offset = *seq - TCP_SKB_CB(skb)->seq;
2645 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2646 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2647 				offset--;
2648 			}
2649 			if (offset < skb->len)
2650 				goto found_ok_skb;
2651 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2652 				goto found_fin_ok;
2653 			WARN(!(flags & MSG_PEEK),
2654 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2655 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2656 		}
2657 
2658 		/* Well, if we have backlog, try to process it now yet. */
2659 
2660 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2661 			break;
2662 
2663 		if (copied) {
2664 			if (!timeo ||
2665 			    sk->sk_err ||
2666 			    sk->sk_state == TCP_CLOSE ||
2667 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2668 			    signal_pending(current))
2669 				break;
2670 		} else {
2671 			if (sock_flag(sk, SOCK_DONE))
2672 				break;
2673 
2674 			if (sk->sk_err) {
2675 				copied = sock_error(sk);
2676 				break;
2677 			}
2678 
2679 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2680 				break;
2681 
2682 			if (sk->sk_state == TCP_CLOSE) {
2683 				/* This occurs when user tries to read
2684 				 * from never connected socket.
2685 				 */
2686 				copied = -ENOTCONN;
2687 				break;
2688 			}
2689 
2690 			if (!timeo) {
2691 				copied = -EAGAIN;
2692 				break;
2693 			}
2694 
2695 			if (signal_pending(current)) {
2696 				copied = sock_intr_errno(timeo);
2697 				break;
2698 			}
2699 		}
2700 
2701 		if (copied >= target) {
2702 			/* Do not sleep, just process backlog. */
2703 			__sk_flush_backlog(sk);
2704 		} else {
2705 			tcp_cleanup_rbuf(sk, copied);
2706 			err = sk_wait_data(sk, &timeo, last);
2707 			if (err < 0) {
2708 				err = copied ? : err;
2709 				goto out;
2710 			}
2711 		}
2712 
2713 		if ((flags & MSG_PEEK) &&
2714 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2715 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2716 					    current->comm,
2717 					    task_pid_nr(current));
2718 			peek_seq = tp->copied_seq + peek_offset;
2719 		}
2720 		continue;
2721 
2722 found_ok_skb:
2723 		/* Ok so how much can we use? */
2724 		used = skb->len - offset;
2725 		if (len < used)
2726 			used = len;
2727 
2728 		/* Do we have urgent data here? */
2729 		if (unlikely(tp->urg_data)) {
2730 			u32 urg_offset = tp->urg_seq - *seq;
2731 			if (urg_offset < used) {
2732 				if (!urg_offset) {
2733 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2734 						WRITE_ONCE(*seq, *seq + 1);
2735 						urg_hole++;
2736 						offset++;
2737 						used--;
2738 						if (!used)
2739 							goto skip_copy;
2740 					}
2741 				} else
2742 					used = urg_offset;
2743 			}
2744 		}
2745 
2746 		if (!(flags & MSG_TRUNC)) {
2747 			if (last_copied_dmabuf != -1 &&
2748 			    last_copied_dmabuf != !skb_frags_readable(skb))
2749 				break;
2750 
2751 			if (skb_frags_readable(skb)) {
2752 				err = skb_copy_datagram_msg(skb, offset, msg,
2753 							    used);
2754 				if (err) {
2755 					/* Exception. Bailout! */
2756 					if (!copied)
2757 						copied = -EFAULT;
2758 					break;
2759 				}
2760 			} else {
2761 				if (!(flags & MSG_SOCK_DEVMEM)) {
2762 					/* dmabuf skbs can only be received
2763 					 * with the MSG_SOCK_DEVMEM flag.
2764 					 */
2765 					if (!copied)
2766 						copied = -EFAULT;
2767 
2768 					break;
2769 				}
2770 
2771 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2772 							 used);
2773 				if (err <= 0) {
2774 					if (!copied)
2775 						copied = -EFAULT;
2776 
2777 					break;
2778 				}
2779 				used = err;
2780 			}
2781 		}
2782 
2783 		last_copied_dmabuf = !skb_frags_readable(skb);
2784 
2785 		WRITE_ONCE(*seq, *seq + used);
2786 		copied += used;
2787 		len -= used;
2788 		if (flags & MSG_PEEK)
2789 			sk_peek_offset_fwd(sk, used);
2790 		else
2791 			sk_peek_offset_bwd(sk, used);
2792 		tcp_rcv_space_adjust(sk);
2793 
2794 skip_copy:
2795 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2796 			WRITE_ONCE(tp->urg_data, 0);
2797 			tcp_fast_path_check(sk);
2798 		}
2799 
2800 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2801 			tcp_update_recv_tstamps(skb, tss);
2802 			*cmsg_flags |= TCP_CMSG_TS;
2803 		}
2804 
2805 		if (used + offset < skb->len)
2806 			continue;
2807 
2808 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2809 			goto found_fin_ok;
2810 		if (!(flags & MSG_PEEK))
2811 			tcp_eat_recv_skb(sk, skb);
2812 		continue;
2813 
2814 found_fin_ok:
2815 		/* Process the FIN. */
2816 		WRITE_ONCE(*seq, *seq + 1);
2817 		if (!(flags & MSG_PEEK))
2818 			tcp_eat_recv_skb(sk, skb);
2819 		break;
2820 	} while (len > 0);
2821 
2822 	/* According to UNIX98, msg_name/msg_namelen are ignored
2823 	 * on connected socket. I was just happy when found this 8) --ANK
2824 	 */
2825 
2826 	/* Clean up data we have read: This will do ACK frames. */
2827 	tcp_cleanup_rbuf(sk, copied);
2828 	return copied;
2829 
2830 out:
2831 	return err;
2832 
2833 recv_urg:
2834 	err = tcp_recv_urg(sk, msg, len, flags);
2835 	goto out;
2836 
2837 recv_sndq:
2838 	err = tcp_peek_sndq(sk, msg, len);
2839 	goto out;
2840 }
2841 
2842 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2843 		int *addr_len)
2844 {
2845 	int cmsg_flags = 0, ret;
2846 	struct scm_timestamping_internal tss;
2847 
2848 	if (unlikely(flags & MSG_ERRQUEUE))
2849 		return inet_recv_error(sk, msg, len, addr_len);
2850 
2851 	if (sk_can_busy_loop(sk) &&
2852 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2853 	    sk->sk_state == TCP_ESTABLISHED)
2854 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2855 
2856 	lock_sock(sk);
2857 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2858 	release_sock(sk);
2859 
2860 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2861 		if (cmsg_flags & TCP_CMSG_TS)
2862 			tcp_recv_timestamp(msg, sk, &tss);
2863 		if (msg->msg_get_inq) {
2864 			msg->msg_inq = tcp_inq_hint(sk);
2865 			if (cmsg_flags & TCP_CMSG_INQ)
2866 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2867 					 sizeof(msg->msg_inq), &msg->msg_inq);
2868 		}
2869 	}
2870 	return ret;
2871 }
2872 EXPORT_SYMBOL(tcp_recvmsg);
2873 
2874 void tcp_set_state(struct sock *sk, int state)
2875 {
2876 	int oldstate = sk->sk_state;
2877 
2878 	/* We defined a new enum for TCP states that are exported in BPF
2879 	 * so as not force the internal TCP states to be frozen. The
2880 	 * following checks will detect if an internal state value ever
2881 	 * differs from the BPF value. If this ever happens, then we will
2882 	 * need to remap the internal value to the BPF value before calling
2883 	 * tcp_call_bpf_2arg.
2884 	 */
2885 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2886 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2887 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2888 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2889 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2890 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2891 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2892 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2893 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2894 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2895 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2896 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2897 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2898 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2899 
2900 	/* bpf uapi header bpf.h defines an anonymous enum with values
2901 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2902 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2903 	 * But clang built vmlinux does not have this enum in DWARF
2904 	 * since clang removes the above code before generating IR/debuginfo.
2905 	 * Let us explicitly emit the type debuginfo to ensure the
2906 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2907 	 * regardless of which compiler is used.
2908 	 */
2909 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2910 
2911 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2912 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2913 
2914 	switch (state) {
2915 	case TCP_ESTABLISHED:
2916 		if (oldstate != TCP_ESTABLISHED)
2917 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2918 		break;
2919 	case TCP_CLOSE_WAIT:
2920 		if (oldstate == TCP_SYN_RECV)
2921 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2922 		break;
2923 
2924 	case TCP_CLOSE:
2925 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2926 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2927 
2928 		sk->sk_prot->unhash(sk);
2929 		if (inet_csk(sk)->icsk_bind_hash &&
2930 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2931 			inet_put_port(sk);
2932 		fallthrough;
2933 	default:
2934 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2935 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2936 	}
2937 
2938 	/* Change state AFTER socket is unhashed to avoid closed
2939 	 * socket sitting in hash tables.
2940 	 */
2941 	inet_sk_state_store(sk, state);
2942 }
2943 EXPORT_SYMBOL_GPL(tcp_set_state);
2944 
2945 /*
2946  *	State processing on a close. This implements the state shift for
2947  *	sending our FIN frame. Note that we only send a FIN for some
2948  *	states. A shutdown() may have already sent the FIN, or we may be
2949  *	closed.
2950  */
2951 
2952 static const unsigned char new_state[16] = {
2953   /* current state:        new state:      action:	*/
2954   [0 /* (Invalid) */]	= TCP_CLOSE,
2955   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2956   [TCP_SYN_SENT]	= TCP_CLOSE,
2957   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2958   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2959   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2960   [TCP_TIME_WAIT]	= TCP_CLOSE,
2961   [TCP_CLOSE]		= TCP_CLOSE,
2962   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2963   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2964   [TCP_LISTEN]		= TCP_CLOSE,
2965   [TCP_CLOSING]		= TCP_CLOSING,
2966   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2967 };
2968 
2969 static int tcp_close_state(struct sock *sk)
2970 {
2971 	int next = (int)new_state[sk->sk_state];
2972 	int ns = next & TCP_STATE_MASK;
2973 
2974 	tcp_set_state(sk, ns);
2975 
2976 	return next & TCP_ACTION_FIN;
2977 }
2978 
2979 /*
2980  *	Shutdown the sending side of a connection. Much like close except
2981  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2982  */
2983 
2984 void tcp_shutdown(struct sock *sk, int how)
2985 {
2986 	/*	We need to grab some memory, and put together a FIN,
2987 	 *	and then put it into the queue to be sent.
2988 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2989 	 */
2990 	if (!(how & SEND_SHUTDOWN))
2991 		return;
2992 
2993 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2994 	if ((1 << sk->sk_state) &
2995 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2996 	     TCPF_CLOSE_WAIT)) {
2997 		/* Clear out any half completed packets.  FIN if needed. */
2998 		if (tcp_close_state(sk))
2999 			tcp_send_fin(sk);
3000 	}
3001 }
3002 EXPORT_SYMBOL(tcp_shutdown);
3003 
3004 int tcp_orphan_count_sum(void)
3005 {
3006 	int i, total = 0;
3007 
3008 	for_each_possible_cpu(i)
3009 		total += per_cpu(tcp_orphan_count, i);
3010 
3011 	return max(total, 0);
3012 }
3013 
3014 static int tcp_orphan_cache;
3015 static struct timer_list tcp_orphan_timer;
3016 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3017 
3018 static void tcp_orphan_update(struct timer_list *unused)
3019 {
3020 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3021 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3022 }
3023 
3024 static bool tcp_too_many_orphans(int shift)
3025 {
3026 	return READ_ONCE(tcp_orphan_cache) << shift >
3027 		READ_ONCE(sysctl_tcp_max_orphans);
3028 }
3029 
3030 static bool tcp_out_of_memory(const struct sock *sk)
3031 {
3032 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3033 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3034 		return true;
3035 	return false;
3036 }
3037 
3038 bool tcp_check_oom(const struct sock *sk, int shift)
3039 {
3040 	bool too_many_orphans, out_of_socket_memory;
3041 
3042 	too_many_orphans = tcp_too_many_orphans(shift);
3043 	out_of_socket_memory = tcp_out_of_memory(sk);
3044 
3045 	if (too_many_orphans)
3046 		net_info_ratelimited("too many orphaned sockets\n");
3047 	if (out_of_socket_memory)
3048 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3049 	return too_many_orphans || out_of_socket_memory;
3050 }
3051 
3052 void __tcp_close(struct sock *sk, long timeout)
3053 {
3054 	struct sk_buff *skb;
3055 	int data_was_unread = 0;
3056 	int state;
3057 
3058 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3059 
3060 	if (sk->sk_state == TCP_LISTEN) {
3061 		tcp_set_state(sk, TCP_CLOSE);
3062 
3063 		/* Special case. */
3064 		inet_csk_listen_stop(sk);
3065 
3066 		goto adjudge_to_death;
3067 	}
3068 
3069 	/*  We need to flush the recv. buffs.  We do this only on the
3070 	 *  descriptor close, not protocol-sourced closes, because the
3071 	 *  reader process may not have drained the data yet!
3072 	 */
3073 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3074 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3075 
3076 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3077 			len--;
3078 		data_was_unread += len;
3079 		__kfree_skb(skb);
3080 	}
3081 
3082 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3083 	if (sk->sk_state == TCP_CLOSE)
3084 		goto adjudge_to_death;
3085 
3086 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3087 	 * data was lost. To witness the awful effects of the old behavior of
3088 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3089 	 * GET in an FTP client, suspend the process, wait for the client to
3090 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3091 	 * Note: timeout is always zero in such a case.
3092 	 */
3093 	if (unlikely(tcp_sk(sk)->repair)) {
3094 		sk->sk_prot->disconnect(sk, 0);
3095 	} else if (data_was_unread) {
3096 		/* Unread data was tossed, zap the connection. */
3097 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3098 		tcp_set_state(sk, TCP_CLOSE);
3099 		tcp_send_active_reset(sk, sk->sk_allocation,
3100 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3101 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3102 		/* Check zero linger _after_ checking for unread data. */
3103 		sk->sk_prot->disconnect(sk, 0);
3104 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3105 	} else if (tcp_close_state(sk)) {
3106 		/* We FIN if the application ate all the data before
3107 		 * zapping the connection.
3108 		 */
3109 
3110 		/* RED-PEN. Formally speaking, we have broken TCP state
3111 		 * machine. State transitions:
3112 		 *
3113 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3114 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3115 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3116 		 *
3117 		 * are legal only when FIN has been sent (i.e. in window),
3118 		 * rather than queued out of window. Purists blame.
3119 		 *
3120 		 * F.e. "RFC state" is ESTABLISHED,
3121 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3122 		 *
3123 		 * The visible declinations are that sometimes
3124 		 * we enter time-wait state, when it is not required really
3125 		 * (harmless), do not send active resets, when they are
3126 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3127 		 * they look as CLOSING or LAST_ACK for Linux)
3128 		 * Probably, I missed some more holelets.
3129 		 * 						--ANK
3130 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3131 		 * in a single packet! (May consider it later but will
3132 		 * probably need API support or TCP_CORK SYN-ACK until
3133 		 * data is written and socket is closed.)
3134 		 */
3135 		tcp_send_fin(sk);
3136 	}
3137 
3138 	sk_stream_wait_close(sk, timeout);
3139 
3140 adjudge_to_death:
3141 	state = sk->sk_state;
3142 	sock_hold(sk);
3143 	sock_orphan(sk);
3144 
3145 	local_bh_disable();
3146 	bh_lock_sock(sk);
3147 	/* remove backlog if any, without releasing ownership. */
3148 	__release_sock(sk);
3149 
3150 	this_cpu_inc(tcp_orphan_count);
3151 
3152 	/* Have we already been destroyed by a softirq or backlog? */
3153 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3154 		goto out;
3155 
3156 	/*	This is a (useful) BSD violating of the RFC. There is a
3157 	 *	problem with TCP as specified in that the other end could
3158 	 *	keep a socket open forever with no application left this end.
3159 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3160 	 *	our end. If they send after that then tough - BUT: long enough
3161 	 *	that we won't make the old 4*rto = almost no time - whoops
3162 	 *	reset mistake.
3163 	 *
3164 	 *	Nope, it was not mistake. It is really desired behaviour
3165 	 *	f.e. on http servers, when such sockets are useless, but
3166 	 *	consume significant resources. Let's do it with special
3167 	 *	linger2	option.					--ANK
3168 	 */
3169 
3170 	if (sk->sk_state == TCP_FIN_WAIT2) {
3171 		struct tcp_sock *tp = tcp_sk(sk);
3172 		if (READ_ONCE(tp->linger2) < 0) {
3173 			tcp_set_state(sk, TCP_CLOSE);
3174 			tcp_send_active_reset(sk, GFP_ATOMIC,
3175 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3176 			__NET_INC_STATS(sock_net(sk),
3177 					LINUX_MIB_TCPABORTONLINGER);
3178 		} else {
3179 			const int tmo = tcp_fin_time(sk);
3180 
3181 			if (tmo > TCP_TIMEWAIT_LEN) {
3182 				inet_csk_reset_keepalive_timer(sk,
3183 						tmo - TCP_TIMEWAIT_LEN);
3184 			} else {
3185 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3186 				goto out;
3187 			}
3188 		}
3189 	}
3190 	if (sk->sk_state != TCP_CLOSE) {
3191 		if (tcp_check_oom(sk, 0)) {
3192 			tcp_set_state(sk, TCP_CLOSE);
3193 			tcp_send_active_reset(sk, GFP_ATOMIC,
3194 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3195 			__NET_INC_STATS(sock_net(sk),
3196 					LINUX_MIB_TCPABORTONMEMORY);
3197 		} else if (!check_net(sock_net(sk))) {
3198 			/* Not possible to send reset; just close */
3199 			tcp_set_state(sk, TCP_CLOSE);
3200 		}
3201 	}
3202 
3203 	if (sk->sk_state == TCP_CLOSE) {
3204 		struct request_sock *req;
3205 
3206 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3207 						lockdep_sock_is_held(sk));
3208 		/* We could get here with a non-NULL req if the socket is
3209 		 * aborted (e.g., closed with unread data) before 3WHS
3210 		 * finishes.
3211 		 */
3212 		if (req)
3213 			reqsk_fastopen_remove(sk, req, false);
3214 		inet_csk_destroy_sock(sk);
3215 	}
3216 	/* Otherwise, socket is reprieved until protocol close. */
3217 
3218 out:
3219 	bh_unlock_sock(sk);
3220 	local_bh_enable();
3221 }
3222 
3223 void tcp_close(struct sock *sk, long timeout)
3224 {
3225 	lock_sock(sk);
3226 	__tcp_close(sk, timeout);
3227 	release_sock(sk);
3228 	if (!sk->sk_net_refcnt)
3229 		inet_csk_clear_xmit_timers_sync(sk);
3230 	sock_put(sk);
3231 }
3232 EXPORT_SYMBOL(tcp_close);
3233 
3234 /* These states need RST on ABORT according to RFC793 */
3235 
3236 static inline bool tcp_need_reset(int state)
3237 {
3238 	return (1 << state) &
3239 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3240 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3241 }
3242 
3243 static void tcp_rtx_queue_purge(struct sock *sk)
3244 {
3245 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3246 
3247 	tcp_sk(sk)->highest_sack = NULL;
3248 	while (p) {
3249 		struct sk_buff *skb = rb_to_skb(p);
3250 
3251 		p = rb_next(p);
3252 		/* Since we are deleting whole queue, no need to
3253 		 * list_del(&skb->tcp_tsorted_anchor)
3254 		 */
3255 		tcp_rtx_queue_unlink(skb, sk);
3256 		tcp_wmem_free_skb(sk, skb);
3257 	}
3258 }
3259 
3260 void tcp_write_queue_purge(struct sock *sk)
3261 {
3262 	struct sk_buff *skb;
3263 
3264 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3265 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3266 		tcp_skb_tsorted_anchor_cleanup(skb);
3267 		tcp_wmem_free_skb(sk, skb);
3268 	}
3269 	tcp_rtx_queue_purge(sk);
3270 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3271 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3272 	tcp_sk(sk)->packets_out = 0;
3273 	inet_csk(sk)->icsk_backoff = 0;
3274 }
3275 
3276 int tcp_disconnect(struct sock *sk, int flags)
3277 {
3278 	struct inet_sock *inet = inet_sk(sk);
3279 	struct inet_connection_sock *icsk = inet_csk(sk);
3280 	struct tcp_sock *tp = tcp_sk(sk);
3281 	int old_state = sk->sk_state;
3282 	u32 seq;
3283 
3284 	if (old_state != TCP_CLOSE)
3285 		tcp_set_state(sk, TCP_CLOSE);
3286 
3287 	/* ABORT function of RFC793 */
3288 	if (old_state == TCP_LISTEN) {
3289 		inet_csk_listen_stop(sk);
3290 	} else if (unlikely(tp->repair)) {
3291 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3292 	} else if (tcp_need_reset(old_state)) {
3293 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3294 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3295 	} else if (tp->snd_nxt != tp->write_seq &&
3296 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3297 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3298 		 * states
3299 		 */
3300 		tcp_send_active_reset(sk, gfp_any(),
3301 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3302 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3303 	} else if (old_state == TCP_SYN_SENT)
3304 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3305 
3306 	tcp_clear_xmit_timers(sk);
3307 	__skb_queue_purge(&sk->sk_receive_queue);
3308 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3309 	WRITE_ONCE(tp->urg_data, 0);
3310 	sk_set_peek_off(sk, -1);
3311 	tcp_write_queue_purge(sk);
3312 	tcp_fastopen_active_disable_ofo_check(sk);
3313 	skb_rbtree_purge(&tp->out_of_order_queue);
3314 
3315 	inet->inet_dport = 0;
3316 
3317 	inet_bhash2_reset_saddr(sk);
3318 
3319 	WRITE_ONCE(sk->sk_shutdown, 0);
3320 	sock_reset_flag(sk, SOCK_DONE);
3321 	tp->srtt_us = 0;
3322 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3323 	tp->rcv_rtt_last_tsecr = 0;
3324 
3325 	seq = tp->write_seq + tp->max_window + 2;
3326 	if (!seq)
3327 		seq = 1;
3328 	WRITE_ONCE(tp->write_seq, seq);
3329 
3330 	icsk->icsk_backoff = 0;
3331 	icsk->icsk_probes_out = 0;
3332 	icsk->icsk_probes_tstamp = 0;
3333 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3334 	icsk->icsk_rto_min = TCP_RTO_MIN;
3335 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3336 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3337 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3338 	tp->snd_cwnd_cnt = 0;
3339 	tp->is_cwnd_limited = 0;
3340 	tp->max_packets_out = 0;
3341 	tp->window_clamp = 0;
3342 	tp->delivered = 0;
3343 	tp->delivered_ce = 0;
3344 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3345 		icsk->icsk_ca_ops->release(sk);
3346 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3347 	icsk->icsk_ca_initialized = 0;
3348 	tcp_set_ca_state(sk, TCP_CA_Open);
3349 	tp->is_sack_reneg = 0;
3350 	tcp_clear_retrans(tp);
3351 	tp->total_retrans = 0;
3352 	inet_csk_delack_init(sk);
3353 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3354 	 * issue in __tcp_select_window()
3355 	 */
3356 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3357 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3358 	__sk_dst_reset(sk);
3359 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3360 	tcp_saved_syn_free(tp);
3361 	tp->compressed_ack = 0;
3362 	tp->segs_in = 0;
3363 	tp->segs_out = 0;
3364 	tp->bytes_sent = 0;
3365 	tp->bytes_acked = 0;
3366 	tp->bytes_received = 0;
3367 	tp->bytes_retrans = 0;
3368 	tp->data_segs_in = 0;
3369 	tp->data_segs_out = 0;
3370 	tp->duplicate_sack[0].start_seq = 0;
3371 	tp->duplicate_sack[0].end_seq = 0;
3372 	tp->dsack_dups = 0;
3373 	tp->reord_seen = 0;
3374 	tp->retrans_out = 0;
3375 	tp->sacked_out = 0;
3376 	tp->tlp_high_seq = 0;
3377 	tp->last_oow_ack_time = 0;
3378 	tp->plb_rehash = 0;
3379 	/* There's a bubble in the pipe until at least the first ACK. */
3380 	tp->app_limited = ~0U;
3381 	tp->rate_app_limited = 1;
3382 	tp->rack.mstamp = 0;
3383 	tp->rack.advanced = 0;
3384 	tp->rack.reo_wnd_steps = 1;
3385 	tp->rack.last_delivered = 0;
3386 	tp->rack.reo_wnd_persist = 0;
3387 	tp->rack.dsack_seen = 0;
3388 	tp->syn_data_acked = 0;
3389 	tp->rx_opt.saw_tstamp = 0;
3390 	tp->rx_opt.dsack = 0;
3391 	tp->rx_opt.num_sacks = 0;
3392 	tp->rcv_ooopack = 0;
3393 
3394 
3395 	/* Clean up fastopen related fields */
3396 	tcp_free_fastopen_req(tp);
3397 	inet_clear_bit(DEFER_CONNECT, sk);
3398 	tp->fastopen_client_fail = 0;
3399 
3400 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3401 
3402 	if (sk->sk_frag.page) {
3403 		put_page(sk->sk_frag.page);
3404 		sk->sk_frag.page = NULL;
3405 		sk->sk_frag.offset = 0;
3406 	}
3407 	sk_error_report(sk);
3408 	return 0;
3409 }
3410 EXPORT_SYMBOL(tcp_disconnect);
3411 
3412 static inline bool tcp_can_repair_sock(const struct sock *sk)
3413 {
3414 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3415 		(sk->sk_state != TCP_LISTEN);
3416 }
3417 
3418 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3419 {
3420 	struct tcp_repair_window opt;
3421 
3422 	if (!tp->repair)
3423 		return -EPERM;
3424 
3425 	if (len != sizeof(opt))
3426 		return -EINVAL;
3427 
3428 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3429 		return -EFAULT;
3430 
3431 	if (opt.max_window < opt.snd_wnd)
3432 		return -EINVAL;
3433 
3434 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3435 		return -EINVAL;
3436 
3437 	if (after(opt.rcv_wup, tp->rcv_nxt))
3438 		return -EINVAL;
3439 
3440 	tp->snd_wl1	= opt.snd_wl1;
3441 	tp->snd_wnd	= opt.snd_wnd;
3442 	tp->max_window	= opt.max_window;
3443 
3444 	tp->rcv_wnd	= opt.rcv_wnd;
3445 	tp->rcv_wup	= opt.rcv_wup;
3446 
3447 	return 0;
3448 }
3449 
3450 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3451 		unsigned int len)
3452 {
3453 	struct tcp_sock *tp = tcp_sk(sk);
3454 	struct tcp_repair_opt opt;
3455 	size_t offset = 0;
3456 
3457 	while (len >= sizeof(opt)) {
3458 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3459 			return -EFAULT;
3460 
3461 		offset += sizeof(opt);
3462 		len -= sizeof(opt);
3463 
3464 		switch (opt.opt_code) {
3465 		case TCPOPT_MSS:
3466 			tp->rx_opt.mss_clamp = opt.opt_val;
3467 			tcp_mtup_init(sk);
3468 			break;
3469 		case TCPOPT_WINDOW:
3470 			{
3471 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3472 				u16 rcv_wscale = opt.opt_val >> 16;
3473 
3474 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3475 					return -EFBIG;
3476 
3477 				tp->rx_opt.snd_wscale = snd_wscale;
3478 				tp->rx_opt.rcv_wscale = rcv_wscale;
3479 				tp->rx_opt.wscale_ok = 1;
3480 			}
3481 			break;
3482 		case TCPOPT_SACK_PERM:
3483 			if (opt.opt_val != 0)
3484 				return -EINVAL;
3485 
3486 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3487 			break;
3488 		case TCPOPT_TIMESTAMP:
3489 			if (opt.opt_val != 0)
3490 				return -EINVAL;
3491 
3492 			tp->rx_opt.tstamp_ok = 1;
3493 			break;
3494 		}
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3501 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3502 
3503 static void tcp_enable_tx_delay(void)
3504 {
3505 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3506 		static int __tcp_tx_delay_enabled = 0;
3507 
3508 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3509 			static_branch_enable(&tcp_tx_delay_enabled);
3510 			pr_info("TCP_TX_DELAY enabled\n");
3511 		}
3512 	}
3513 }
3514 
3515 /* When set indicates to always queue non-full frames.  Later the user clears
3516  * this option and we transmit any pending partial frames in the queue.  This is
3517  * meant to be used alongside sendfile() to get properly filled frames when the
3518  * user (for example) must write out headers with a write() call first and then
3519  * use sendfile to send out the data parts.
3520  *
3521  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3522  * TCP_NODELAY.
3523  */
3524 void __tcp_sock_set_cork(struct sock *sk, bool on)
3525 {
3526 	struct tcp_sock *tp = tcp_sk(sk);
3527 
3528 	if (on) {
3529 		tp->nonagle |= TCP_NAGLE_CORK;
3530 	} else {
3531 		tp->nonagle &= ~TCP_NAGLE_CORK;
3532 		if (tp->nonagle & TCP_NAGLE_OFF)
3533 			tp->nonagle |= TCP_NAGLE_PUSH;
3534 		tcp_push_pending_frames(sk);
3535 	}
3536 }
3537 
3538 void tcp_sock_set_cork(struct sock *sk, bool on)
3539 {
3540 	lock_sock(sk);
3541 	__tcp_sock_set_cork(sk, on);
3542 	release_sock(sk);
3543 }
3544 EXPORT_SYMBOL(tcp_sock_set_cork);
3545 
3546 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3547  * remembered, but it is not activated until cork is cleared.
3548  *
3549  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3550  * even TCP_CORK for currently queued segments.
3551  */
3552 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3553 {
3554 	if (on) {
3555 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3556 		tcp_push_pending_frames(sk);
3557 	} else {
3558 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3559 	}
3560 }
3561 
3562 void tcp_sock_set_nodelay(struct sock *sk)
3563 {
3564 	lock_sock(sk);
3565 	__tcp_sock_set_nodelay(sk, true);
3566 	release_sock(sk);
3567 }
3568 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3569 
3570 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3571 {
3572 	if (!val) {
3573 		inet_csk_enter_pingpong_mode(sk);
3574 		return;
3575 	}
3576 
3577 	inet_csk_exit_pingpong_mode(sk);
3578 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3579 	    inet_csk_ack_scheduled(sk)) {
3580 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3581 		tcp_cleanup_rbuf(sk, 1);
3582 		if (!(val & 1))
3583 			inet_csk_enter_pingpong_mode(sk);
3584 	}
3585 }
3586 
3587 void tcp_sock_set_quickack(struct sock *sk, int val)
3588 {
3589 	lock_sock(sk);
3590 	__tcp_sock_set_quickack(sk, val);
3591 	release_sock(sk);
3592 }
3593 EXPORT_SYMBOL(tcp_sock_set_quickack);
3594 
3595 int tcp_sock_set_syncnt(struct sock *sk, int val)
3596 {
3597 	if (val < 1 || val > MAX_TCP_SYNCNT)
3598 		return -EINVAL;
3599 
3600 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3601 	return 0;
3602 }
3603 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3604 
3605 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3606 {
3607 	/* Cap the max time in ms TCP will retry or probe the window
3608 	 * before giving up and aborting (ETIMEDOUT) a connection.
3609 	 */
3610 	if (val < 0)
3611 		return -EINVAL;
3612 
3613 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3614 	return 0;
3615 }
3616 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3617 
3618 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3619 {
3620 	struct tcp_sock *tp = tcp_sk(sk);
3621 
3622 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3623 		return -EINVAL;
3624 
3625 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3626 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3627 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3628 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3629 		u32 elapsed = keepalive_time_elapsed(tp);
3630 
3631 		if (tp->keepalive_time > elapsed)
3632 			elapsed = tp->keepalive_time - elapsed;
3633 		else
3634 			elapsed = 0;
3635 		inet_csk_reset_keepalive_timer(sk, elapsed);
3636 	}
3637 
3638 	return 0;
3639 }
3640 
3641 int tcp_sock_set_keepidle(struct sock *sk, int val)
3642 {
3643 	int err;
3644 
3645 	lock_sock(sk);
3646 	err = tcp_sock_set_keepidle_locked(sk, val);
3647 	release_sock(sk);
3648 	return err;
3649 }
3650 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3651 
3652 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3653 {
3654 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3655 		return -EINVAL;
3656 
3657 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3658 	return 0;
3659 }
3660 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3661 
3662 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3663 {
3664 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3665 		return -EINVAL;
3666 
3667 	/* Paired with READ_ONCE() in keepalive_probes() */
3668 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3669 	return 0;
3670 }
3671 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3672 
3673 int tcp_set_window_clamp(struct sock *sk, int val)
3674 {
3675 	struct tcp_sock *tp = tcp_sk(sk);
3676 
3677 	if (!val) {
3678 		if (sk->sk_state != TCP_CLOSE)
3679 			return -EINVAL;
3680 		WRITE_ONCE(tp->window_clamp, 0);
3681 	} else {
3682 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3683 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3684 						SOCK_MIN_RCVBUF / 2 : val;
3685 
3686 		if (new_window_clamp == old_window_clamp)
3687 			return 0;
3688 
3689 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3690 		if (new_window_clamp < old_window_clamp) {
3691 			/* need to apply the reserved mem provisioning only
3692 			 * when shrinking the window clamp
3693 			 */
3694 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3695 
3696 		} else {
3697 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3698 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3699 					       tp->rcv_ssthresh);
3700 		}
3701 	}
3702 	return 0;
3703 }
3704 
3705 /*
3706  *	Socket option code for TCP.
3707  */
3708 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3709 		      sockptr_t optval, unsigned int optlen)
3710 {
3711 	struct tcp_sock *tp = tcp_sk(sk);
3712 	struct inet_connection_sock *icsk = inet_csk(sk);
3713 	struct net *net = sock_net(sk);
3714 	int val;
3715 	int err = 0;
3716 
3717 	/* These are data/string values, all the others are ints */
3718 	switch (optname) {
3719 	case TCP_CONGESTION: {
3720 		char name[TCP_CA_NAME_MAX];
3721 
3722 		if (optlen < 1)
3723 			return -EINVAL;
3724 
3725 		val = strncpy_from_sockptr(name, optval,
3726 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3727 		if (val < 0)
3728 			return -EFAULT;
3729 		name[val] = 0;
3730 
3731 		sockopt_lock_sock(sk);
3732 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3733 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3734 								    CAP_NET_ADMIN));
3735 		sockopt_release_sock(sk);
3736 		return err;
3737 	}
3738 	case TCP_ULP: {
3739 		char name[TCP_ULP_NAME_MAX];
3740 
3741 		if (optlen < 1)
3742 			return -EINVAL;
3743 
3744 		val = strncpy_from_sockptr(name, optval,
3745 					min_t(long, TCP_ULP_NAME_MAX - 1,
3746 					      optlen));
3747 		if (val < 0)
3748 			return -EFAULT;
3749 		name[val] = 0;
3750 
3751 		sockopt_lock_sock(sk);
3752 		err = tcp_set_ulp(sk, name);
3753 		sockopt_release_sock(sk);
3754 		return err;
3755 	}
3756 	case TCP_FASTOPEN_KEY: {
3757 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3758 		__u8 *backup_key = NULL;
3759 
3760 		/* Allow a backup key as well to facilitate key rotation
3761 		 * First key is the active one.
3762 		 */
3763 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3764 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3765 			return -EINVAL;
3766 
3767 		if (copy_from_sockptr(key, optval, optlen))
3768 			return -EFAULT;
3769 
3770 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3771 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3772 
3773 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3774 	}
3775 	default:
3776 		/* fallthru */
3777 		break;
3778 	}
3779 
3780 	if (optlen < sizeof(int))
3781 		return -EINVAL;
3782 
3783 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3784 		return -EFAULT;
3785 
3786 	/* Handle options that can be set without locking the socket. */
3787 	switch (optname) {
3788 	case TCP_SYNCNT:
3789 		return tcp_sock_set_syncnt(sk, val);
3790 	case TCP_USER_TIMEOUT:
3791 		return tcp_sock_set_user_timeout(sk, val);
3792 	case TCP_KEEPINTVL:
3793 		return tcp_sock_set_keepintvl(sk, val);
3794 	case TCP_KEEPCNT:
3795 		return tcp_sock_set_keepcnt(sk, val);
3796 	case TCP_LINGER2:
3797 		if (val < 0)
3798 			WRITE_ONCE(tp->linger2, -1);
3799 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3800 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3801 		else
3802 			WRITE_ONCE(tp->linger2, val * HZ);
3803 		return 0;
3804 	case TCP_DEFER_ACCEPT:
3805 		/* Translate value in seconds to number of retransmits */
3806 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3807 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3808 					   TCP_RTO_MAX / HZ));
3809 		return 0;
3810 	}
3811 
3812 	sockopt_lock_sock(sk);
3813 
3814 	switch (optname) {
3815 	case TCP_MAXSEG:
3816 		/* Values greater than interface MTU won't take effect. However
3817 		 * at the point when this call is done we typically don't yet
3818 		 * know which interface is going to be used
3819 		 */
3820 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3821 			err = -EINVAL;
3822 			break;
3823 		}
3824 		tp->rx_opt.user_mss = val;
3825 		break;
3826 
3827 	case TCP_NODELAY:
3828 		__tcp_sock_set_nodelay(sk, val);
3829 		break;
3830 
3831 	case TCP_THIN_LINEAR_TIMEOUTS:
3832 		if (val < 0 || val > 1)
3833 			err = -EINVAL;
3834 		else
3835 			tp->thin_lto = val;
3836 		break;
3837 
3838 	case TCP_THIN_DUPACK:
3839 		if (val < 0 || val > 1)
3840 			err = -EINVAL;
3841 		break;
3842 
3843 	case TCP_REPAIR:
3844 		if (!tcp_can_repair_sock(sk))
3845 			err = -EPERM;
3846 		else if (val == TCP_REPAIR_ON) {
3847 			tp->repair = 1;
3848 			sk->sk_reuse = SK_FORCE_REUSE;
3849 			tp->repair_queue = TCP_NO_QUEUE;
3850 		} else if (val == TCP_REPAIR_OFF) {
3851 			tp->repair = 0;
3852 			sk->sk_reuse = SK_NO_REUSE;
3853 			tcp_send_window_probe(sk);
3854 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3855 			tp->repair = 0;
3856 			sk->sk_reuse = SK_NO_REUSE;
3857 		} else
3858 			err = -EINVAL;
3859 
3860 		break;
3861 
3862 	case TCP_REPAIR_QUEUE:
3863 		if (!tp->repair)
3864 			err = -EPERM;
3865 		else if ((unsigned int)val < TCP_QUEUES_NR)
3866 			tp->repair_queue = val;
3867 		else
3868 			err = -EINVAL;
3869 		break;
3870 
3871 	case TCP_QUEUE_SEQ:
3872 		if (sk->sk_state != TCP_CLOSE) {
3873 			err = -EPERM;
3874 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3875 			if (!tcp_rtx_queue_empty(sk))
3876 				err = -EPERM;
3877 			else
3878 				WRITE_ONCE(tp->write_seq, val);
3879 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3880 			if (tp->rcv_nxt != tp->copied_seq) {
3881 				err = -EPERM;
3882 			} else {
3883 				WRITE_ONCE(tp->rcv_nxt, val);
3884 				WRITE_ONCE(tp->copied_seq, val);
3885 			}
3886 		} else {
3887 			err = -EINVAL;
3888 		}
3889 		break;
3890 
3891 	case TCP_REPAIR_OPTIONS:
3892 		if (!tp->repair)
3893 			err = -EINVAL;
3894 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3895 			err = tcp_repair_options_est(sk, optval, optlen);
3896 		else
3897 			err = -EPERM;
3898 		break;
3899 
3900 	case TCP_CORK:
3901 		__tcp_sock_set_cork(sk, val);
3902 		break;
3903 
3904 	case TCP_KEEPIDLE:
3905 		err = tcp_sock_set_keepidle_locked(sk, val);
3906 		break;
3907 	case TCP_SAVE_SYN:
3908 		/* 0: disable, 1: enable, 2: start from ether_header */
3909 		if (val < 0 || val > 2)
3910 			err = -EINVAL;
3911 		else
3912 			tp->save_syn = val;
3913 		break;
3914 
3915 	case TCP_WINDOW_CLAMP:
3916 		err = tcp_set_window_clamp(sk, val);
3917 		break;
3918 
3919 	case TCP_QUICKACK:
3920 		__tcp_sock_set_quickack(sk, val);
3921 		break;
3922 
3923 	case TCP_AO_REPAIR:
3924 		if (!tcp_can_repair_sock(sk)) {
3925 			err = -EPERM;
3926 			break;
3927 		}
3928 		err = tcp_ao_set_repair(sk, optval, optlen);
3929 		break;
3930 #ifdef CONFIG_TCP_AO
3931 	case TCP_AO_ADD_KEY:
3932 	case TCP_AO_DEL_KEY:
3933 	case TCP_AO_INFO: {
3934 		/* If this is the first TCP-AO setsockopt() on the socket,
3935 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3936 		 * in any state.
3937 		 */
3938 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3939 			goto ao_parse;
3940 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3941 					      lockdep_sock_is_held(sk)))
3942 			goto ao_parse;
3943 		if (tp->repair)
3944 			goto ao_parse;
3945 		err = -EISCONN;
3946 		break;
3947 ao_parse:
3948 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3949 		break;
3950 	}
3951 #endif
3952 #ifdef CONFIG_TCP_MD5SIG
3953 	case TCP_MD5SIG:
3954 	case TCP_MD5SIG_EXT:
3955 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3956 		break;
3957 #endif
3958 	case TCP_FASTOPEN:
3959 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3960 		    TCPF_LISTEN))) {
3961 			tcp_fastopen_init_key_once(net);
3962 
3963 			fastopen_queue_tune(sk, val);
3964 		} else {
3965 			err = -EINVAL;
3966 		}
3967 		break;
3968 	case TCP_FASTOPEN_CONNECT:
3969 		if (val > 1 || val < 0) {
3970 			err = -EINVAL;
3971 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3972 			   TFO_CLIENT_ENABLE) {
3973 			if (sk->sk_state == TCP_CLOSE)
3974 				tp->fastopen_connect = val;
3975 			else
3976 				err = -EINVAL;
3977 		} else {
3978 			err = -EOPNOTSUPP;
3979 		}
3980 		break;
3981 	case TCP_FASTOPEN_NO_COOKIE:
3982 		if (val > 1 || val < 0)
3983 			err = -EINVAL;
3984 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3985 			err = -EINVAL;
3986 		else
3987 			tp->fastopen_no_cookie = val;
3988 		break;
3989 	case TCP_TIMESTAMP:
3990 		if (!tp->repair) {
3991 			err = -EPERM;
3992 			break;
3993 		}
3994 		/* val is an opaque field,
3995 		 * and low order bit contains usec_ts enable bit.
3996 		 * Its a best effort, and we do not care if user makes an error.
3997 		 */
3998 		tp->tcp_usec_ts = val & 1;
3999 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4000 		break;
4001 	case TCP_REPAIR_WINDOW:
4002 		err = tcp_repair_set_window(tp, optval, optlen);
4003 		break;
4004 	case TCP_NOTSENT_LOWAT:
4005 		WRITE_ONCE(tp->notsent_lowat, val);
4006 		sk->sk_write_space(sk);
4007 		break;
4008 	case TCP_INQ:
4009 		if (val > 1 || val < 0)
4010 			err = -EINVAL;
4011 		else
4012 			tp->recvmsg_inq = val;
4013 		break;
4014 	case TCP_TX_DELAY:
4015 		if (val)
4016 			tcp_enable_tx_delay();
4017 		WRITE_ONCE(tp->tcp_tx_delay, val);
4018 		break;
4019 	default:
4020 		err = -ENOPROTOOPT;
4021 		break;
4022 	}
4023 
4024 	sockopt_release_sock(sk);
4025 	return err;
4026 }
4027 
4028 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4029 		   unsigned int optlen)
4030 {
4031 	const struct inet_connection_sock *icsk = inet_csk(sk);
4032 
4033 	if (level != SOL_TCP)
4034 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4035 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4036 								optval, optlen);
4037 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4038 }
4039 EXPORT_SYMBOL(tcp_setsockopt);
4040 
4041 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4042 				      struct tcp_info *info)
4043 {
4044 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4045 	enum tcp_chrono i;
4046 
4047 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4048 		stats[i] = tp->chrono_stat[i - 1];
4049 		if (i == tp->chrono_type)
4050 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4051 		stats[i] *= USEC_PER_SEC / HZ;
4052 		total += stats[i];
4053 	}
4054 
4055 	info->tcpi_busy_time = total;
4056 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4057 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4058 }
4059 
4060 /* Return information about state of tcp endpoint in API format. */
4061 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4062 {
4063 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4064 	const struct inet_connection_sock *icsk = inet_csk(sk);
4065 	unsigned long rate;
4066 	u32 now;
4067 	u64 rate64;
4068 	bool slow;
4069 
4070 	memset(info, 0, sizeof(*info));
4071 	if (sk->sk_type != SOCK_STREAM)
4072 		return;
4073 
4074 	info->tcpi_state = inet_sk_state_load(sk);
4075 
4076 	/* Report meaningful fields for all TCP states, including listeners */
4077 	rate = READ_ONCE(sk->sk_pacing_rate);
4078 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4079 	info->tcpi_pacing_rate = rate64;
4080 
4081 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4082 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4083 	info->tcpi_max_pacing_rate = rate64;
4084 
4085 	info->tcpi_reordering = tp->reordering;
4086 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4087 
4088 	if (info->tcpi_state == TCP_LISTEN) {
4089 		/* listeners aliased fields :
4090 		 * tcpi_unacked -> Number of children ready for accept()
4091 		 * tcpi_sacked  -> max backlog
4092 		 */
4093 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4094 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4095 		return;
4096 	}
4097 
4098 	slow = lock_sock_fast(sk);
4099 
4100 	info->tcpi_ca_state = icsk->icsk_ca_state;
4101 	info->tcpi_retransmits = icsk->icsk_retransmits;
4102 	info->tcpi_probes = icsk->icsk_probes_out;
4103 	info->tcpi_backoff = icsk->icsk_backoff;
4104 
4105 	if (tp->rx_opt.tstamp_ok)
4106 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4107 	if (tcp_is_sack(tp))
4108 		info->tcpi_options |= TCPI_OPT_SACK;
4109 	if (tp->rx_opt.wscale_ok) {
4110 		info->tcpi_options |= TCPI_OPT_WSCALE;
4111 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4112 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4113 	}
4114 
4115 	if (tp->ecn_flags & TCP_ECN_OK)
4116 		info->tcpi_options |= TCPI_OPT_ECN;
4117 	if (tp->ecn_flags & TCP_ECN_SEEN)
4118 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4119 	if (tp->syn_data_acked)
4120 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4121 	if (tp->tcp_usec_ts)
4122 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4123 
4124 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4125 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4126 						tcp_delack_max(sk)));
4127 	info->tcpi_snd_mss = tp->mss_cache;
4128 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4129 
4130 	info->tcpi_unacked = tp->packets_out;
4131 	info->tcpi_sacked = tp->sacked_out;
4132 
4133 	info->tcpi_lost = tp->lost_out;
4134 	info->tcpi_retrans = tp->retrans_out;
4135 
4136 	now = tcp_jiffies32;
4137 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4138 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4139 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4140 
4141 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4142 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4143 	info->tcpi_rtt = tp->srtt_us >> 3;
4144 	info->tcpi_rttvar = tp->mdev_us >> 2;
4145 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4146 	info->tcpi_advmss = tp->advmss;
4147 
4148 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4149 	info->tcpi_rcv_space = tp->rcvq_space.space;
4150 
4151 	info->tcpi_total_retrans = tp->total_retrans;
4152 
4153 	info->tcpi_bytes_acked = tp->bytes_acked;
4154 	info->tcpi_bytes_received = tp->bytes_received;
4155 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4156 	tcp_get_info_chrono_stats(tp, info);
4157 
4158 	info->tcpi_segs_out = tp->segs_out;
4159 
4160 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4161 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4162 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4163 
4164 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4165 	info->tcpi_data_segs_out = tp->data_segs_out;
4166 
4167 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4168 	rate64 = tcp_compute_delivery_rate(tp);
4169 	if (rate64)
4170 		info->tcpi_delivery_rate = rate64;
4171 	info->tcpi_delivered = tp->delivered;
4172 	info->tcpi_delivered_ce = tp->delivered_ce;
4173 	info->tcpi_bytes_sent = tp->bytes_sent;
4174 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4175 	info->tcpi_dsack_dups = tp->dsack_dups;
4176 	info->tcpi_reord_seen = tp->reord_seen;
4177 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4178 	info->tcpi_snd_wnd = tp->snd_wnd;
4179 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4180 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4181 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4182 
4183 	info->tcpi_total_rto = tp->total_rto;
4184 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4185 	info->tcpi_total_rto_time = tp->total_rto_time;
4186 	if (tp->rto_stamp)
4187 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4188 
4189 	unlock_sock_fast(sk, slow);
4190 }
4191 EXPORT_SYMBOL_GPL(tcp_get_info);
4192 
4193 static size_t tcp_opt_stats_get_size(void)
4194 {
4195 	return
4196 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4197 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4198 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4199 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4200 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4201 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4202 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4203 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4204 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4205 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4206 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4207 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4208 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4209 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4210 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4211 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4212 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4213 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4214 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4215 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4216 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4217 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4218 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4219 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4220 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4221 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4222 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4223 		0;
4224 }
4225 
4226 /* Returns TTL or hop limit of an incoming packet from skb. */
4227 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4228 {
4229 	if (skb->protocol == htons(ETH_P_IP))
4230 		return ip_hdr(skb)->ttl;
4231 	else if (skb->protocol == htons(ETH_P_IPV6))
4232 		return ipv6_hdr(skb)->hop_limit;
4233 	else
4234 		return 0;
4235 }
4236 
4237 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4238 					       const struct sk_buff *orig_skb,
4239 					       const struct sk_buff *ack_skb)
4240 {
4241 	const struct tcp_sock *tp = tcp_sk(sk);
4242 	struct sk_buff *stats;
4243 	struct tcp_info info;
4244 	unsigned long rate;
4245 	u64 rate64;
4246 
4247 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4248 	if (!stats)
4249 		return NULL;
4250 
4251 	tcp_get_info_chrono_stats(tp, &info);
4252 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4253 			  info.tcpi_busy_time, TCP_NLA_PAD);
4254 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4255 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4256 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4257 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4258 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4259 			  tp->data_segs_out, TCP_NLA_PAD);
4260 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4261 			  tp->total_retrans, TCP_NLA_PAD);
4262 
4263 	rate = READ_ONCE(sk->sk_pacing_rate);
4264 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4265 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4266 
4267 	rate64 = tcp_compute_delivery_rate(tp);
4268 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4269 
4270 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4271 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4272 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4273 
4274 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4275 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4276 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4277 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4278 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4279 
4280 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4281 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4282 
4283 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4284 			  TCP_NLA_PAD);
4285 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4286 			  TCP_NLA_PAD);
4287 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4288 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4289 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4290 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4291 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4292 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4293 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4294 			  TCP_NLA_PAD);
4295 	if (ack_skb)
4296 		nla_put_u8(stats, TCP_NLA_TTL,
4297 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4298 
4299 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4300 	return stats;
4301 }
4302 
4303 int do_tcp_getsockopt(struct sock *sk, int level,
4304 		      int optname, sockptr_t optval, sockptr_t optlen)
4305 {
4306 	struct inet_connection_sock *icsk = inet_csk(sk);
4307 	struct tcp_sock *tp = tcp_sk(sk);
4308 	struct net *net = sock_net(sk);
4309 	int val, len;
4310 
4311 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4312 		return -EFAULT;
4313 
4314 	if (len < 0)
4315 		return -EINVAL;
4316 
4317 	len = min_t(unsigned int, len, sizeof(int));
4318 
4319 	switch (optname) {
4320 	case TCP_MAXSEG:
4321 		val = tp->mss_cache;
4322 		if (tp->rx_opt.user_mss &&
4323 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4324 			val = tp->rx_opt.user_mss;
4325 		if (tp->repair)
4326 			val = tp->rx_opt.mss_clamp;
4327 		break;
4328 	case TCP_NODELAY:
4329 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4330 		break;
4331 	case TCP_CORK:
4332 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4333 		break;
4334 	case TCP_KEEPIDLE:
4335 		val = keepalive_time_when(tp) / HZ;
4336 		break;
4337 	case TCP_KEEPINTVL:
4338 		val = keepalive_intvl_when(tp) / HZ;
4339 		break;
4340 	case TCP_KEEPCNT:
4341 		val = keepalive_probes(tp);
4342 		break;
4343 	case TCP_SYNCNT:
4344 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4345 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4346 		break;
4347 	case TCP_LINGER2:
4348 		val = READ_ONCE(tp->linger2);
4349 		if (val >= 0)
4350 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4351 		break;
4352 	case TCP_DEFER_ACCEPT:
4353 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4354 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4355 				      TCP_RTO_MAX / HZ);
4356 		break;
4357 	case TCP_WINDOW_CLAMP:
4358 		val = READ_ONCE(tp->window_clamp);
4359 		break;
4360 	case TCP_INFO: {
4361 		struct tcp_info info;
4362 
4363 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4364 			return -EFAULT;
4365 
4366 		tcp_get_info(sk, &info);
4367 
4368 		len = min_t(unsigned int, len, sizeof(info));
4369 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4370 			return -EFAULT;
4371 		if (copy_to_sockptr(optval, &info, len))
4372 			return -EFAULT;
4373 		return 0;
4374 	}
4375 	case TCP_CC_INFO: {
4376 		const struct tcp_congestion_ops *ca_ops;
4377 		union tcp_cc_info info;
4378 		size_t sz = 0;
4379 		int attr;
4380 
4381 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4382 			return -EFAULT;
4383 
4384 		ca_ops = icsk->icsk_ca_ops;
4385 		if (ca_ops && ca_ops->get_info)
4386 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4387 
4388 		len = min_t(unsigned int, len, sz);
4389 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4390 			return -EFAULT;
4391 		if (copy_to_sockptr(optval, &info, len))
4392 			return -EFAULT;
4393 		return 0;
4394 	}
4395 	case TCP_QUICKACK:
4396 		val = !inet_csk_in_pingpong_mode(sk);
4397 		break;
4398 
4399 	case TCP_CONGESTION:
4400 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4401 			return -EFAULT;
4402 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4403 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4404 			return -EFAULT;
4405 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4406 			return -EFAULT;
4407 		return 0;
4408 
4409 	case TCP_ULP:
4410 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4411 			return -EFAULT;
4412 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4413 		if (!icsk->icsk_ulp_ops) {
4414 			len = 0;
4415 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4416 				return -EFAULT;
4417 			return 0;
4418 		}
4419 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4420 			return -EFAULT;
4421 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4422 			return -EFAULT;
4423 		return 0;
4424 
4425 	case TCP_FASTOPEN_KEY: {
4426 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4427 		unsigned int key_len;
4428 
4429 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4430 			return -EFAULT;
4431 
4432 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4433 				TCP_FASTOPEN_KEY_LENGTH;
4434 		len = min_t(unsigned int, len, key_len);
4435 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4436 			return -EFAULT;
4437 		if (copy_to_sockptr(optval, key, len))
4438 			return -EFAULT;
4439 		return 0;
4440 	}
4441 	case TCP_THIN_LINEAR_TIMEOUTS:
4442 		val = tp->thin_lto;
4443 		break;
4444 
4445 	case TCP_THIN_DUPACK:
4446 		val = 0;
4447 		break;
4448 
4449 	case TCP_REPAIR:
4450 		val = tp->repair;
4451 		break;
4452 
4453 	case TCP_REPAIR_QUEUE:
4454 		if (tp->repair)
4455 			val = tp->repair_queue;
4456 		else
4457 			return -EINVAL;
4458 		break;
4459 
4460 	case TCP_REPAIR_WINDOW: {
4461 		struct tcp_repair_window opt;
4462 
4463 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4464 			return -EFAULT;
4465 
4466 		if (len != sizeof(opt))
4467 			return -EINVAL;
4468 
4469 		if (!tp->repair)
4470 			return -EPERM;
4471 
4472 		opt.snd_wl1	= tp->snd_wl1;
4473 		opt.snd_wnd	= tp->snd_wnd;
4474 		opt.max_window	= tp->max_window;
4475 		opt.rcv_wnd	= tp->rcv_wnd;
4476 		opt.rcv_wup	= tp->rcv_wup;
4477 
4478 		if (copy_to_sockptr(optval, &opt, len))
4479 			return -EFAULT;
4480 		return 0;
4481 	}
4482 	case TCP_QUEUE_SEQ:
4483 		if (tp->repair_queue == TCP_SEND_QUEUE)
4484 			val = tp->write_seq;
4485 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4486 			val = tp->rcv_nxt;
4487 		else
4488 			return -EINVAL;
4489 		break;
4490 
4491 	case TCP_USER_TIMEOUT:
4492 		val = READ_ONCE(icsk->icsk_user_timeout);
4493 		break;
4494 
4495 	case TCP_FASTOPEN:
4496 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4497 		break;
4498 
4499 	case TCP_FASTOPEN_CONNECT:
4500 		val = tp->fastopen_connect;
4501 		break;
4502 
4503 	case TCP_FASTOPEN_NO_COOKIE:
4504 		val = tp->fastopen_no_cookie;
4505 		break;
4506 
4507 	case TCP_TX_DELAY:
4508 		val = READ_ONCE(tp->tcp_tx_delay);
4509 		break;
4510 
4511 	case TCP_TIMESTAMP:
4512 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4513 		if (tp->tcp_usec_ts)
4514 			val |= 1;
4515 		else
4516 			val &= ~1;
4517 		break;
4518 	case TCP_NOTSENT_LOWAT:
4519 		val = READ_ONCE(tp->notsent_lowat);
4520 		break;
4521 	case TCP_INQ:
4522 		val = tp->recvmsg_inq;
4523 		break;
4524 	case TCP_SAVE_SYN:
4525 		val = tp->save_syn;
4526 		break;
4527 	case TCP_SAVED_SYN: {
4528 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4529 			return -EFAULT;
4530 
4531 		sockopt_lock_sock(sk);
4532 		if (tp->saved_syn) {
4533 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4534 				len = tcp_saved_syn_len(tp->saved_syn);
4535 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4536 					sockopt_release_sock(sk);
4537 					return -EFAULT;
4538 				}
4539 				sockopt_release_sock(sk);
4540 				return -EINVAL;
4541 			}
4542 			len = tcp_saved_syn_len(tp->saved_syn);
4543 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4544 				sockopt_release_sock(sk);
4545 				return -EFAULT;
4546 			}
4547 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4548 				sockopt_release_sock(sk);
4549 				return -EFAULT;
4550 			}
4551 			tcp_saved_syn_free(tp);
4552 			sockopt_release_sock(sk);
4553 		} else {
4554 			sockopt_release_sock(sk);
4555 			len = 0;
4556 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4557 				return -EFAULT;
4558 		}
4559 		return 0;
4560 	}
4561 #ifdef CONFIG_MMU
4562 	case TCP_ZEROCOPY_RECEIVE: {
4563 		struct scm_timestamping_internal tss;
4564 		struct tcp_zerocopy_receive zc = {};
4565 		int err;
4566 
4567 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4568 			return -EFAULT;
4569 		if (len < 0 ||
4570 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4571 			return -EINVAL;
4572 		if (unlikely(len > sizeof(zc))) {
4573 			err = check_zeroed_sockptr(optval, sizeof(zc),
4574 						   len - sizeof(zc));
4575 			if (err < 1)
4576 				return err == 0 ? -EINVAL : err;
4577 			len = sizeof(zc);
4578 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4579 				return -EFAULT;
4580 		}
4581 		if (copy_from_sockptr(&zc, optval, len))
4582 			return -EFAULT;
4583 		if (zc.reserved)
4584 			return -EINVAL;
4585 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4586 			return -EINVAL;
4587 		sockopt_lock_sock(sk);
4588 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4589 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4590 							  &zc, &len, err);
4591 		sockopt_release_sock(sk);
4592 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4593 			goto zerocopy_rcv_cmsg;
4594 		switch (len) {
4595 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4596 			goto zerocopy_rcv_cmsg;
4597 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4598 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4599 		case offsetofend(struct tcp_zerocopy_receive, flags):
4600 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4601 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4602 		case offsetofend(struct tcp_zerocopy_receive, err):
4603 			goto zerocopy_rcv_sk_err;
4604 		case offsetofend(struct tcp_zerocopy_receive, inq):
4605 			goto zerocopy_rcv_inq;
4606 		case offsetofend(struct tcp_zerocopy_receive, length):
4607 		default:
4608 			goto zerocopy_rcv_out;
4609 		}
4610 zerocopy_rcv_cmsg:
4611 		if (zc.msg_flags & TCP_CMSG_TS)
4612 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4613 		else
4614 			zc.msg_flags = 0;
4615 zerocopy_rcv_sk_err:
4616 		if (!err)
4617 			zc.err = sock_error(sk);
4618 zerocopy_rcv_inq:
4619 		zc.inq = tcp_inq_hint(sk);
4620 zerocopy_rcv_out:
4621 		if (!err && copy_to_sockptr(optval, &zc, len))
4622 			err = -EFAULT;
4623 		return err;
4624 	}
4625 #endif
4626 	case TCP_AO_REPAIR:
4627 		if (!tcp_can_repair_sock(sk))
4628 			return -EPERM;
4629 		return tcp_ao_get_repair(sk, optval, optlen);
4630 	case TCP_AO_GET_KEYS:
4631 	case TCP_AO_INFO: {
4632 		int err;
4633 
4634 		sockopt_lock_sock(sk);
4635 		if (optname == TCP_AO_GET_KEYS)
4636 			err = tcp_ao_get_mkts(sk, optval, optlen);
4637 		else
4638 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4639 		sockopt_release_sock(sk);
4640 
4641 		return err;
4642 	}
4643 	case TCP_IS_MPTCP:
4644 		val = 0;
4645 		break;
4646 	default:
4647 		return -ENOPROTOOPT;
4648 	}
4649 
4650 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4651 		return -EFAULT;
4652 	if (copy_to_sockptr(optval, &val, len))
4653 		return -EFAULT;
4654 	return 0;
4655 }
4656 
4657 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4658 {
4659 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4660 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4661 	 */
4662 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4663 		return true;
4664 
4665 	return false;
4666 }
4667 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4668 
4669 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4670 		   int __user *optlen)
4671 {
4672 	struct inet_connection_sock *icsk = inet_csk(sk);
4673 
4674 	if (level != SOL_TCP)
4675 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4676 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4677 								optval, optlen);
4678 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4679 				 USER_SOCKPTR(optlen));
4680 }
4681 EXPORT_SYMBOL(tcp_getsockopt);
4682 
4683 #ifdef CONFIG_TCP_MD5SIG
4684 int tcp_md5_sigpool_id = -1;
4685 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4686 
4687 int tcp_md5_alloc_sigpool(void)
4688 {
4689 	size_t scratch_size;
4690 	int ret;
4691 
4692 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4693 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4694 	if (ret >= 0) {
4695 		/* As long as any md5 sigpool was allocated, the return
4696 		 * id would stay the same. Re-write the id only for the case
4697 		 * when previously all MD5 keys were deleted and this call
4698 		 * allocates the first MD5 key, which may return a different
4699 		 * sigpool id than was used previously.
4700 		 */
4701 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4702 		return 0;
4703 	}
4704 	return ret;
4705 }
4706 
4707 void tcp_md5_release_sigpool(void)
4708 {
4709 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4710 }
4711 
4712 void tcp_md5_add_sigpool(void)
4713 {
4714 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4715 }
4716 
4717 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4718 		     const struct tcp_md5sig_key *key)
4719 {
4720 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4721 	struct scatterlist sg;
4722 
4723 	sg_init_one(&sg, key->key, keylen);
4724 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4725 
4726 	/* We use data_race() because tcp_md5_do_add() might change
4727 	 * key->key under us
4728 	 */
4729 	return data_race(crypto_ahash_update(hp->req));
4730 }
4731 EXPORT_SYMBOL(tcp_md5_hash_key);
4732 
4733 /* Called with rcu_read_lock() */
4734 static enum skb_drop_reason
4735 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4736 		     const void *saddr, const void *daddr,
4737 		     int family, int l3index, const __u8 *hash_location)
4738 {
4739 	/* This gets called for each TCP segment that has TCP-MD5 option.
4740 	 * We have 3 drop cases:
4741 	 * o No MD5 hash and one expected.
4742 	 * o MD5 hash and we're not expecting one.
4743 	 * o MD5 hash and its wrong.
4744 	 */
4745 	const struct tcp_sock *tp = tcp_sk(sk);
4746 	struct tcp_md5sig_key *key;
4747 	u8 newhash[16];
4748 	int genhash;
4749 
4750 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4751 
4752 	if (!key && hash_location) {
4753 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4754 		trace_tcp_hash_md5_unexpected(sk, skb);
4755 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4756 	}
4757 
4758 	/* Check the signature.
4759 	 * To support dual stack listeners, we need to handle
4760 	 * IPv4-mapped case.
4761 	 */
4762 	if (family == AF_INET)
4763 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4764 	else
4765 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4766 							 NULL, skb);
4767 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4768 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4769 		trace_tcp_hash_md5_mismatch(sk, skb);
4770 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4771 	}
4772 	return SKB_NOT_DROPPED_YET;
4773 }
4774 #else
4775 static inline enum skb_drop_reason
4776 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4777 		     const void *saddr, const void *daddr,
4778 		     int family, int l3index, const __u8 *hash_location)
4779 {
4780 	return SKB_NOT_DROPPED_YET;
4781 }
4782 
4783 #endif
4784 
4785 /* Called with rcu_read_lock() */
4786 enum skb_drop_reason
4787 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4788 		 const struct sk_buff *skb,
4789 		 const void *saddr, const void *daddr,
4790 		 int family, int dif, int sdif)
4791 {
4792 	const struct tcphdr *th = tcp_hdr(skb);
4793 	const struct tcp_ao_hdr *aoh;
4794 	const __u8 *md5_location;
4795 	int l3index;
4796 
4797 	/* Invalid option or two times meet any of auth options */
4798 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4799 		trace_tcp_hash_bad_header(sk, skb);
4800 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4801 	}
4802 
4803 	if (req) {
4804 		if (tcp_rsk_used_ao(req) != !!aoh) {
4805 			u8 keyid, rnext, maclen;
4806 
4807 			if (aoh) {
4808 				keyid = aoh->keyid;
4809 				rnext = aoh->rnext_keyid;
4810 				maclen = tcp_ao_hdr_maclen(aoh);
4811 			} else {
4812 				keyid = rnext = maclen = 0;
4813 			}
4814 
4815 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4816 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4817 			return SKB_DROP_REASON_TCP_AOFAILURE;
4818 		}
4819 	}
4820 
4821 	/* sdif set, means packet ingressed via a device
4822 	 * in an L3 domain and dif is set to the l3mdev
4823 	 */
4824 	l3index = sdif ? dif : 0;
4825 
4826 	/* Fast path: unsigned segments */
4827 	if (likely(!md5_location && !aoh)) {
4828 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4829 		 * for the remote peer. On TCP-AO established connection
4830 		 * the last key is impossible to remove, so there's
4831 		 * always at least one current_key.
4832 		 */
4833 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4834 			trace_tcp_hash_ao_required(sk, skb);
4835 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4836 		}
4837 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4838 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4839 			trace_tcp_hash_md5_required(sk, skb);
4840 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4841 		}
4842 		return SKB_NOT_DROPPED_YET;
4843 	}
4844 
4845 	if (aoh)
4846 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4847 
4848 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4849 				    l3index, md5_location);
4850 }
4851 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4852 
4853 void tcp_done(struct sock *sk)
4854 {
4855 	struct request_sock *req;
4856 
4857 	/* We might be called with a new socket, after
4858 	 * inet_csk_prepare_forced_close() has been called
4859 	 * so we can not use lockdep_sock_is_held(sk)
4860 	 */
4861 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4862 
4863 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4864 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4865 
4866 	tcp_set_state(sk, TCP_CLOSE);
4867 	tcp_clear_xmit_timers(sk);
4868 	if (req)
4869 		reqsk_fastopen_remove(sk, req, false);
4870 
4871 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4872 
4873 	if (!sock_flag(sk, SOCK_DEAD))
4874 		sk->sk_state_change(sk);
4875 	else
4876 		inet_csk_destroy_sock(sk);
4877 }
4878 EXPORT_SYMBOL_GPL(tcp_done);
4879 
4880 int tcp_abort(struct sock *sk, int err)
4881 {
4882 	int state = inet_sk_state_load(sk);
4883 
4884 	if (state == TCP_NEW_SYN_RECV) {
4885 		struct request_sock *req = inet_reqsk(sk);
4886 
4887 		local_bh_disable();
4888 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4889 		local_bh_enable();
4890 		return 0;
4891 	}
4892 	if (state == TCP_TIME_WAIT) {
4893 		struct inet_timewait_sock *tw = inet_twsk(sk);
4894 
4895 		refcount_inc(&tw->tw_refcnt);
4896 		local_bh_disable();
4897 		inet_twsk_deschedule_put(tw);
4898 		local_bh_enable();
4899 		return 0;
4900 	}
4901 
4902 	/* BPF context ensures sock locking. */
4903 	if (!has_current_bpf_ctx())
4904 		/* Don't race with userspace socket closes such as tcp_close. */
4905 		lock_sock(sk);
4906 
4907 	/* Avoid closing the same socket twice. */
4908 	if (sk->sk_state == TCP_CLOSE) {
4909 		if (!has_current_bpf_ctx())
4910 			release_sock(sk);
4911 		return -ENOENT;
4912 	}
4913 
4914 	if (sk->sk_state == TCP_LISTEN) {
4915 		tcp_set_state(sk, TCP_CLOSE);
4916 		inet_csk_listen_stop(sk);
4917 	}
4918 
4919 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4920 	local_bh_disable();
4921 	bh_lock_sock(sk);
4922 
4923 	if (tcp_need_reset(sk->sk_state))
4924 		tcp_send_active_reset(sk, GFP_ATOMIC,
4925 				      SK_RST_REASON_TCP_STATE);
4926 	tcp_done_with_error(sk, err);
4927 
4928 	bh_unlock_sock(sk);
4929 	local_bh_enable();
4930 	if (!has_current_bpf_ctx())
4931 		release_sock(sk);
4932 	return 0;
4933 }
4934 EXPORT_SYMBOL_GPL(tcp_abort);
4935 
4936 extern struct tcp_congestion_ops tcp_reno;
4937 
4938 static __initdata unsigned long thash_entries;
4939 static int __init set_thash_entries(char *str)
4940 {
4941 	ssize_t ret;
4942 
4943 	if (!str)
4944 		return 0;
4945 
4946 	ret = kstrtoul(str, 0, &thash_entries);
4947 	if (ret)
4948 		return 0;
4949 
4950 	return 1;
4951 }
4952 __setup("thash_entries=", set_thash_entries);
4953 
4954 static void __init tcp_init_mem(void)
4955 {
4956 	unsigned long limit = nr_free_buffer_pages() / 16;
4957 
4958 	limit = max(limit, 128UL);
4959 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4960 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4961 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4962 }
4963 
4964 static void __init tcp_struct_check(void)
4965 {
4966 	/* TX read-mostly hotpath cache lines */
4967 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4968 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4969 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4970 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4971 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4972 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4973 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4974 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4975 
4976 	/* TXRX read-mostly hotpath cache lines */
4977 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4978 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4979 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4980 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4981 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4982 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4983 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4984 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4985 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4986 
4987 	/* RX read-mostly hotpath cache lines */
4988 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4989 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4990 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4991 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4992 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4993 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4994 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4995 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4996 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4997 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4998 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4999 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5000 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5001 
5002 	/* TX read-write hotpath cache lines */
5003 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5004 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5005 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5006 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5007 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5008 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5009 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5010 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5011 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5012 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5013 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5014 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5015 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5016 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5017 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5018 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5019 
5020 	/* TXRX read-write hotpath cache lines */
5021 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5022 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5023 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5024 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5025 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5026 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5027 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5028 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5029 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5030 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5031 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5032 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5033 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5034 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5035 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5036 
5037 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5038 	 * before tcp_clock_cache.
5039 	 */
5040 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5041 
5042 	/* RX read-write hotpath cache lines */
5043 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5044 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5045 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5046 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5047 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5048 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5049 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5050 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5051 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5052 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5053 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5054 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5055 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5056 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5057 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5058 }
5059 
5060 void __init tcp_init(void)
5061 {
5062 	int max_rshare, max_wshare, cnt;
5063 	unsigned long limit;
5064 	unsigned int i;
5065 
5066 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5067 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5068 		     sizeof_field(struct sk_buff, cb));
5069 
5070 	tcp_struct_check();
5071 
5072 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5073 
5074 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5075 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5076 
5077 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5078 			    thash_entries, 21,  /* one slot per 2 MB*/
5079 			    0, 64 * 1024);
5080 	tcp_hashinfo.bind_bucket_cachep =
5081 		kmem_cache_create("tcp_bind_bucket",
5082 				  sizeof(struct inet_bind_bucket), 0,
5083 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5084 				  SLAB_ACCOUNT,
5085 				  NULL);
5086 	tcp_hashinfo.bind2_bucket_cachep =
5087 		kmem_cache_create("tcp_bind2_bucket",
5088 				  sizeof(struct inet_bind2_bucket), 0,
5089 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5090 				  SLAB_ACCOUNT,
5091 				  NULL);
5092 
5093 	/* Size and allocate the main established and bind bucket
5094 	 * hash tables.
5095 	 *
5096 	 * The methodology is similar to that of the buffer cache.
5097 	 */
5098 	tcp_hashinfo.ehash =
5099 		alloc_large_system_hash("TCP established",
5100 					sizeof(struct inet_ehash_bucket),
5101 					thash_entries,
5102 					17, /* one slot per 128 KB of memory */
5103 					0,
5104 					NULL,
5105 					&tcp_hashinfo.ehash_mask,
5106 					0,
5107 					thash_entries ? 0 : 512 * 1024);
5108 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5109 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5110 
5111 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5112 		panic("TCP: failed to alloc ehash_locks");
5113 	tcp_hashinfo.bhash =
5114 		alloc_large_system_hash("TCP bind",
5115 					2 * sizeof(struct inet_bind_hashbucket),
5116 					tcp_hashinfo.ehash_mask + 1,
5117 					17, /* one slot per 128 KB of memory */
5118 					0,
5119 					&tcp_hashinfo.bhash_size,
5120 					NULL,
5121 					0,
5122 					64 * 1024);
5123 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5124 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5125 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5126 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5127 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5128 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5129 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5130 	}
5131 
5132 	tcp_hashinfo.pernet = false;
5133 
5134 	cnt = tcp_hashinfo.ehash_mask + 1;
5135 	sysctl_tcp_max_orphans = cnt / 2;
5136 
5137 	tcp_init_mem();
5138 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5139 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5140 	max_wshare = min(4UL*1024*1024, limit);
5141 	max_rshare = min(6UL*1024*1024, limit);
5142 
5143 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5144 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5145 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5146 
5147 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5148 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5149 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5150 
5151 	pr_info("Hash tables configured (established %u bind %u)\n",
5152 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5153 
5154 	tcp_v4_init();
5155 	tcp_metrics_init();
5156 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5157 	tcp_tasklet_init();
5158 	mptcp_init();
5159 }
5160