xref: /linux/net/ipv4/tcp.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278 
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283 
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286 
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289 
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /* Address-family independent initialization for a tcp_sock.
367  *
368  * NOTE: A lot of things set to zero explicitly by call to
369  *       sk_alloc() so need not be done here.
370  */
371 void tcp_init_sock(struct sock *sk)
372 {
373 	struct inet_connection_sock *icsk = inet_csk(sk);
374 	struct tcp_sock *tp = tcp_sk(sk);
375 
376 	skb_queue_head_init(&tp->out_of_order_queue);
377 	tcp_init_xmit_timers(sk);
378 	tcp_prequeue_init(tp);
379 
380 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
381 	tp->mdev = TCP_TIMEOUT_INIT;
382 
383 	/* So many TCP implementations out there (incorrectly) count the
384 	 * initial SYN frame in their delayed-ACK and congestion control
385 	 * algorithms that we must have the following bandaid to talk
386 	 * efficiently to them.  -DaveM
387 	 */
388 	tp->snd_cwnd = TCP_INIT_CWND;
389 
390 	/* See draft-stevens-tcpca-spec-01 for discussion of the
391 	 * initialization of these values.
392 	 */
393 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
394 	tp->snd_cwnd_clamp = ~0;
395 	tp->mss_cache = TCP_MSS_DEFAULT;
396 
397 	tp->reordering = sysctl_tcp_reordering;
398 	tcp_enable_early_retrans(tp);
399 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
400 
401 	sk->sk_state = TCP_CLOSE;
402 
403 	sk->sk_write_space = sk_stream_write_space;
404 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
405 
406 	icsk->icsk_sync_mss = tcp_sync_mss;
407 
408 	/* TCP Cookie Transactions */
409 	if (sysctl_tcp_cookie_size > 0) {
410 		/* Default, cookies without s_data_payload. */
411 		tp->cookie_values =
412 			kzalloc(sizeof(*tp->cookie_values),
413 				sk->sk_allocation);
414 		if (tp->cookie_values != NULL)
415 			kref_init(&tp->cookie_values->kref);
416 	}
417 	/* Presumed zeroed, in order of appearance:
418 	 *	cookie_in_always, cookie_out_never,
419 	 *	s_data_constant, s_data_in, s_data_out
420 	 */
421 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 
424 	local_bh_disable();
425 	sock_update_memcg(sk);
426 	sk_sockets_allocated_inc(sk);
427 	local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430 
431 /*
432  *	Wait for a TCP event.
433  *
434  *	Note that we don't need to lock the socket, as the upper poll layers
435  *	take care of normal races (between the test and the event) and we don't
436  *	go look at any of the socket buffers directly.
437  */
438 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
439 {
440 	unsigned int mask;
441 	struct sock *sk = sock->sk;
442 	const struct tcp_sock *tp = tcp_sk(sk);
443 
444 	sock_poll_wait(file, sk_sleep(sk), wait);
445 	if (sk->sk_state == TCP_LISTEN)
446 		return inet_csk_listen_poll(sk);
447 
448 	/* Socket is not locked. We are protected from async events
449 	 * by poll logic and correct handling of state changes
450 	 * made by other threads is impossible in any case.
451 	 */
452 
453 	mask = 0;
454 
455 	/*
456 	 * POLLHUP is certainly not done right. But poll() doesn't
457 	 * have a notion of HUP in just one direction, and for a
458 	 * socket the read side is more interesting.
459 	 *
460 	 * Some poll() documentation says that POLLHUP is incompatible
461 	 * with the POLLOUT/POLLWR flags, so somebody should check this
462 	 * all. But careful, it tends to be safer to return too many
463 	 * bits than too few, and you can easily break real applications
464 	 * if you don't tell them that something has hung up!
465 	 *
466 	 * Check-me.
467 	 *
468 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469 	 * our fs/select.c). It means that after we received EOF,
470 	 * poll always returns immediately, making impossible poll() on write()
471 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472 	 * if and only if shutdown has been made in both directions.
473 	 * Actually, it is interesting to look how Solaris and DUX
474 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475 	 * then we could set it on SND_SHUTDOWN. BTW examples given
476 	 * in Stevens' books assume exactly this behaviour, it explains
477 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
478 	 *
479 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480 	 * blocking on fresh not-connected or disconnected socket. --ANK
481 	 */
482 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
483 		mask |= POLLHUP;
484 	if (sk->sk_shutdown & RCV_SHUTDOWN)
485 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
486 
487 	/* Connected? */
488 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
489 		int target = sock_rcvlowat(sk, 0, INT_MAX);
490 
491 		if (tp->urg_seq == tp->copied_seq &&
492 		    !sock_flag(sk, SOCK_URGINLINE) &&
493 		    tp->urg_data)
494 			target++;
495 
496 		/* Potential race condition. If read of tp below will
497 		 * escape above sk->sk_state, we can be illegally awaken
498 		 * in SYN_* states. */
499 		if (tp->rcv_nxt - tp->copied_seq >= target)
500 			mask |= POLLIN | POLLRDNORM;
501 
502 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
503 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
504 				mask |= POLLOUT | POLLWRNORM;
505 			} else {  /* send SIGIO later */
506 				set_bit(SOCK_ASYNC_NOSPACE,
507 					&sk->sk_socket->flags);
508 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
509 
510 				/* Race breaker. If space is freed after
511 				 * wspace test but before the flags are set,
512 				 * IO signal will be lost.
513 				 */
514 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
515 					mask |= POLLOUT | POLLWRNORM;
516 			}
517 		} else
518 			mask |= POLLOUT | POLLWRNORM;
519 
520 		if (tp->urg_data & TCP_URG_VALID)
521 			mask |= POLLPRI;
522 	}
523 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
524 	smp_rmb();
525 	if (sk->sk_err)
526 		mask |= POLLERR;
527 
528 	return mask;
529 }
530 EXPORT_SYMBOL(tcp_poll);
531 
532 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
533 {
534 	struct tcp_sock *tp = tcp_sk(sk);
535 	int answ;
536 
537 	switch (cmd) {
538 	case SIOCINQ:
539 		if (sk->sk_state == TCP_LISTEN)
540 			return -EINVAL;
541 
542 		lock_sock(sk);
543 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544 			answ = 0;
545 		else if (sock_flag(sk, SOCK_URGINLINE) ||
546 			 !tp->urg_data ||
547 			 before(tp->urg_seq, tp->copied_seq) ||
548 			 !before(tp->urg_seq, tp->rcv_nxt)) {
549 			struct sk_buff *skb;
550 
551 			answ = tp->rcv_nxt - tp->copied_seq;
552 
553 			/* Subtract 1, if FIN is in queue. */
554 			skb = skb_peek_tail(&sk->sk_receive_queue);
555 			if (answ && skb)
556 				answ -= tcp_hdr(skb)->fin;
557 		} else
558 			answ = tp->urg_seq - tp->copied_seq;
559 		release_sock(sk);
560 		break;
561 	case SIOCATMARK:
562 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
563 		break;
564 	case SIOCOUTQ:
565 		if (sk->sk_state == TCP_LISTEN)
566 			return -EINVAL;
567 
568 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
569 			answ = 0;
570 		else
571 			answ = tp->write_seq - tp->snd_una;
572 		break;
573 	case SIOCOUTQNSD:
574 		if (sk->sk_state == TCP_LISTEN)
575 			return -EINVAL;
576 
577 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
578 			answ = 0;
579 		else
580 			answ = tp->write_seq - tp->snd_nxt;
581 		break;
582 	default:
583 		return -ENOIOCTLCMD;
584 	}
585 
586 	return put_user(answ, (int __user *)arg);
587 }
588 EXPORT_SYMBOL(tcp_ioctl);
589 
590 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
591 {
592 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
593 	tp->pushed_seq = tp->write_seq;
594 }
595 
596 static inline bool forced_push(const struct tcp_sock *tp)
597 {
598 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
599 }
600 
601 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
605 
606 	skb->csum    = 0;
607 	tcb->seq     = tcb->end_seq = tp->write_seq;
608 	tcb->tcp_flags = TCPHDR_ACK;
609 	tcb->sacked  = 0;
610 	skb_header_release(skb);
611 	tcp_add_write_queue_tail(sk, skb);
612 	sk->sk_wmem_queued += skb->truesize;
613 	sk_mem_charge(sk, skb->truesize);
614 	if (tp->nonagle & TCP_NAGLE_PUSH)
615 		tp->nonagle &= ~TCP_NAGLE_PUSH;
616 }
617 
618 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
619 {
620 	if (flags & MSG_OOB)
621 		tp->snd_up = tp->write_seq;
622 }
623 
624 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
625 			    int nonagle)
626 {
627 	if (tcp_send_head(sk)) {
628 		struct tcp_sock *tp = tcp_sk(sk);
629 
630 		if (!(flags & MSG_MORE) || forced_push(tp))
631 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
632 
633 		tcp_mark_urg(tp, flags);
634 		__tcp_push_pending_frames(sk, mss_now,
635 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
636 	}
637 }
638 
639 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
640 				unsigned int offset, size_t len)
641 {
642 	struct tcp_splice_state *tss = rd_desc->arg.data;
643 	int ret;
644 
645 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
646 			      tss->flags);
647 	if (ret > 0)
648 		rd_desc->count -= ret;
649 	return ret;
650 }
651 
652 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
653 {
654 	/* Store TCP splice context information in read_descriptor_t. */
655 	read_descriptor_t rd_desc = {
656 		.arg.data = tss,
657 		.count	  = tss->len,
658 	};
659 
660 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
661 }
662 
663 /**
664  *  tcp_splice_read - splice data from TCP socket to a pipe
665  * @sock:	socket to splice from
666  * @ppos:	position (not valid)
667  * @pipe:	pipe to splice to
668  * @len:	number of bytes to splice
669  * @flags:	splice modifier flags
670  *
671  * Description:
672  *    Will read pages from given socket and fill them into a pipe.
673  *
674  **/
675 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
676 			struct pipe_inode_info *pipe, size_t len,
677 			unsigned int flags)
678 {
679 	struct sock *sk = sock->sk;
680 	struct tcp_splice_state tss = {
681 		.pipe = pipe,
682 		.len = len,
683 		.flags = flags,
684 	};
685 	long timeo;
686 	ssize_t spliced;
687 	int ret;
688 
689 	sock_rps_record_flow(sk);
690 	/*
691 	 * We can't seek on a socket input
692 	 */
693 	if (unlikely(*ppos))
694 		return -ESPIPE;
695 
696 	ret = spliced = 0;
697 
698 	lock_sock(sk);
699 
700 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
701 	while (tss.len) {
702 		ret = __tcp_splice_read(sk, &tss);
703 		if (ret < 0)
704 			break;
705 		else if (!ret) {
706 			if (spliced)
707 				break;
708 			if (sock_flag(sk, SOCK_DONE))
709 				break;
710 			if (sk->sk_err) {
711 				ret = sock_error(sk);
712 				break;
713 			}
714 			if (sk->sk_shutdown & RCV_SHUTDOWN)
715 				break;
716 			if (sk->sk_state == TCP_CLOSE) {
717 				/*
718 				 * This occurs when user tries to read
719 				 * from never connected socket.
720 				 */
721 				if (!sock_flag(sk, SOCK_DONE))
722 					ret = -ENOTCONN;
723 				break;
724 			}
725 			if (!timeo) {
726 				ret = -EAGAIN;
727 				break;
728 			}
729 			sk_wait_data(sk, &timeo);
730 			if (signal_pending(current)) {
731 				ret = sock_intr_errno(timeo);
732 				break;
733 			}
734 			continue;
735 		}
736 		tss.len -= ret;
737 		spliced += ret;
738 
739 		if (!timeo)
740 			break;
741 		release_sock(sk);
742 		lock_sock(sk);
743 
744 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
745 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
746 		    signal_pending(current))
747 			break;
748 	}
749 
750 	release_sock(sk);
751 
752 	if (spliced)
753 		return spliced;
754 
755 	return ret;
756 }
757 EXPORT_SYMBOL(tcp_splice_read);
758 
759 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
760 {
761 	struct sk_buff *skb;
762 
763 	/* The TCP header must be at least 32-bit aligned.  */
764 	size = ALIGN(size, 4);
765 
766 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
767 	if (skb) {
768 		if (sk_wmem_schedule(sk, skb->truesize)) {
769 			skb_reserve(skb, sk->sk_prot->max_header);
770 			/*
771 			 * Make sure that we have exactly size bytes
772 			 * available to the caller, no more, no less.
773 			 */
774 			skb->avail_size = size;
775 			return skb;
776 		}
777 		__kfree_skb(skb);
778 	} else {
779 		sk->sk_prot->enter_memory_pressure(sk);
780 		sk_stream_moderate_sndbuf(sk);
781 	}
782 	return NULL;
783 }
784 
785 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
786 				       int large_allowed)
787 {
788 	struct tcp_sock *tp = tcp_sk(sk);
789 	u32 xmit_size_goal, old_size_goal;
790 
791 	xmit_size_goal = mss_now;
792 
793 	if (large_allowed && sk_can_gso(sk)) {
794 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
795 				  inet_csk(sk)->icsk_af_ops->net_header_len -
796 				  inet_csk(sk)->icsk_ext_hdr_len -
797 				  tp->tcp_header_len);
798 
799 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
800 
801 		/* We try hard to avoid divides here */
802 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
803 
804 		if (likely(old_size_goal <= xmit_size_goal &&
805 			   old_size_goal + mss_now > xmit_size_goal)) {
806 			xmit_size_goal = old_size_goal;
807 		} else {
808 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
809 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
810 		}
811 	}
812 
813 	return max(xmit_size_goal, mss_now);
814 }
815 
816 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
817 {
818 	int mss_now;
819 
820 	mss_now = tcp_current_mss(sk);
821 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
822 
823 	return mss_now;
824 }
825 
826 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
827 			 size_t psize, int flags)
828 {
829 	struct tcp_sock *tp = tcp_sk(sk);
830 	int mss_now, size_goal;
831 	int err;
832 	ssize_t copied;
833 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
834 
835 	/* Wait for a connection to finish. */
836 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838 			goto out_err;
839 
840 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
841 
842 	mss_now = tcp_send_mss(sk, &size_goal, flags);
843 	copied = 0;
844 
845 	err = -EPIPE;
846 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
847 		goto out_err;
848 
849 	while (psize > 0) {
850 		struct sk_buff *skb = tcp_write_queue_tail(sk);
851 		struct page *page = pages[poffset / PAGE_SIZE];
852 		int copy, i;
853 		int offset = poffset % PAGE_SIZE;
854 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
855 		bool can_coalesce;
856 
857 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
858 new_segment:
859 			if (!sk_stream_memory_free(sk))
860 				goto wait_for_sndbuf;
861 
862 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
863 			if (!skb)
864 				goto wait_for_memory;
865 
866 			skb_entail(sk, skb);
867 			copy = size_goal;
868 		}
869 
870 		if (copy > size)
871 			copy = size;
872 
873 		i = skb_shinfo(skb)->nr_frags;
874 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
875 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
876 			tcp_mark_push(tp, skb);
877 			goto new_segment;
878 		}
879 		if (!sk_wmem_schedule(sk, copy))
880 			goto wait_for_memory;
881 
882 		if (can_coalesce) {
883 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
884 		} else {
885 			get_page(page);
886 			skb_fill_page_desc(skb, i, page, offset, copy);
887 		}
888 
889 		skb->len += copy;
890 		skb->data_len += copy;
891 		skb->truesize += copy;
892 		sk->sk_wmem_queued += copy;
893 		sk_mem_charge(sk, copy);
894 		skb->ip_summed = CHECKSUM_PARTIAL;
895 		tp->write_seq += copy;
896 		TCP_SKB_CB(skb)->end_seq += copy;
897 		skb_shinfo(skb)->gso_segs = 0;
898 
899 		if (!copied)
900 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
901 
902 		copied += copy;
903 		poffset += copy;
904 		if (!(psize -= copy))
905 			goto out;
906 
907 		if (skb->len < size_goal || (flags & MSG_OOB))
908 			continue;
909 
910 		if (forced_push(tp)) {
911 			tcp_mark_push(tp, skb);
912 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
913 		} else if (skb == tcp_send_head(sk))
914 			tcp_push_one(sk, mss_now);
915 		continue;
916 
917 wait_for_sndbuf:
918 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
919 wait_for_memory:
920 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
921 
922 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
923 			goto do_error;
924 
925 		mss_now = tcp_send_mss(sk, &size_goal, flags);
926 	}
927 
928 out:
929 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
930 		tcp_push(sk, flags, mss_now, tp->nonagle);
931 	return copied;
932 
933 do_error:
934 	if (copied)
935 		goto out;
936 out_err:
937 	return sk_stream_error(sk, flags, err);
938 }
939 
940 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
941 		 size_t size, int flags)
942 {
943 	ssize_t res;
944 
945 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
946 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
947 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
948 					flags);
949 
950 	lock_sock(sk);
951 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
952 	release_sock(sk);
953 	return res;
954 }
955 EXPORT_SYMBOL(tcp_sendpage);
956 
957 static inline int select_size(const struct sock *sk, bool sg)
958 {
959 	const struct tcp_sock *tp = tcp_sk(sk);
960 	int tmp = tp->mss_cache;
961 
962 	if (sg) {
963 		if (sk_can_gso(sk)) {
964 			/* Small frames wont use a full page:
965 			 * Payload will immediately follow tcp header.
966 			 */
967 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
968 		} else {
969 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
970 
971 			if (tmp >= pgbreak &&
972 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
973 				tmp = pgbreak;
974 		}
975 	}
976 
977 	return tmp;
978 }
979 
980 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
981 		size_t size)
982 {
983 	struct iovec *iov;
984 	struct tcp_sock *tp = tcp_sk(sk);
985 	struct sk_buff *skb;
986 	int iovlen, flags, err, copied;
987 	int mss_now = 0, size_goal;
988 	bool sg;
989 	long timeo;
990 
991 	lock_sock(sk);
992 
993 	flags = msg->msg_flags;
994 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
995 
996 	/* Wait for a connection to finish. */
997 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
998 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
999 			goto out_err;
1000 
1001 	if (unlikely(tp->repair)) {
1002 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1003 			copied = tcp_send_rcvq(sk, msg, size);
1004 			goto out;
1005 		}
1006 
1007 		err = -EINVAL;
1008 		if (tp->repair_queue == TCP_NO_QUEUE)
1009 			goto out_err;
1010 
1011 		/* 'common' sending to sendq */
1012 	}
1013 
1014 	/* This should be in poll */
1015 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1016 
1017 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1018 
1019 	/* Ok commence sending. */
1020 	iovlen = msg->msg_iovlen;
1021 	iov = msg->msg_iov;
1022 	copied = 0;
1023 
1024 	err = -EPIPE;
1025 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1026 		goto out_err;
1027 
1028 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1029 
1030 	while (--iovlen >= 0) {
1031 		size_t seglen = iov->iov_len;
1032 		unsigned char __user *from = iov->iov_base;
1033 
1034 		iov++;
1035 
1036 		while (seglen > 0) {
1037 			int copy = 0;
1038 			int max = size_goal;
1039 
1040 			skb = tcp_write_queue_tail(sk);
1041 			if (tcp_send_head(sk)) {
1042 				if (skb->ip_summed == CHECKSUM_NONE)
1043 					max = mss_now;
1044 				copy = max - skb->len;
1045 			}
1046 
1047 			if (copy <= 0) {
1048 new_segment:
1049 				/* Allocate new segment. If the interface is SG,
1050 				 * allocate skb fitting to single page.
1051 				 */
1052 				if (!sk_stream_memory_free(sk))
1053 					goto wait_for_sndbuf;
1054 
1055 				skb = sk_stream_alloc_skb(sk,
1056 							  select_size(sk, sg),
1057 							  sk->sk_allocation);
1058 				if (!skb)
1059 					goto wait_for_memory;
1060 
1061 				/*
1062 				 * Check whether we can use HW checksum.
1063 				 */
1064 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1065 					skb->ip_summed = CHECKSUM_PARTIAL;
1066 
1067 				skb_entail(sk, skb);
1068 				copy = size_goal;
1069 				max = size_goal;
1070 			}
1071 
1072 			/* Try to append data to the end of skb. */
1073 			if (copy > seglen)
1074 				copy = seglen;
1075 
1076 			/* Where to copy to? */
1077 			if (skb_availroom(skb) > 0) {
1078 				/* We have some space in skb head. Superb! */
1079 				copy = min_t(int, copy, skb_availroom(skb));
1080 				err = skb_add_data_nocache(sk, skb, from, copy);
1081 				if (err)
1082 					goto do_fault;
1083 			} else {
1084 				bool merge = false;
1085 				int i = skb_shinfo(skb)->nr_frags;
1086 				struct page *page = sk->sk_sndmsg_page;
1087 				int off;
1088 
1089 				if (page && page_count(page) == 1)
1090 					sk->sk_sndmsg_off = 0;
1091 
1092 				off = sk->sk_sndmsg_off;
1093 
1094 				if (skb_can_coalesce(skb, i, page, off) &&
1095 				    off != PAGE_SIZE) {
1096 					/* We can extend the last page
1097 					 * fragment. */
1098 					merge = true;
1099 				} else if (i == MAX_SKB_FRAGS || !sg) {
1100 					/* Need to add new fragment and cannot
1101 					 * do this because interface is non-SG,
1102 					 * or because all the page slots are
1103 					 * busy. */
1104 					tcp_mark_push(tp, skb);
1105 					goto new_segment;
1106 				} else if (page) {
1107 					if (off == PAGE_SIZE) {
1108 						put_page(page);
1109 						sk->sk_sndmsg_page = page = NULL;
1110 						off = 0;
1111 					}
1112 				} else
1113 					off = 0;
1114 
1115 				if (copy > PAGE_SIZE - off)
1116 					copy = PAGE_SIZE - off;
1117 
1118 				if (!sk_wmem_schedule(sk, copy))
1119 					goto wait_for_memory;
1120 
1121 				if (!page) {
1122 					/* Allocate new cache page. */
1123 					if (!(page = sk_stream_alloc_page(sk)))
1124 						goto wait_for_memory;
1125 				}
1126 
1127 				/* Time to copy data. We are close to
1128 				 * the end! */
1129 				err = skb_copy_to_page_nocache(sk, from, skb,
1130 							       page, off, copy);
1131 				if (err) {
1132 					/* If this page was new, give it to the
1133 					 * socket so it does not get leaked.
1134 					 */
1135 					if (!sk->sk_sndmsg_page) {
1136 						sk->sk_sndmsg_page = page;
1137 						sk->sk_sndmsg_off = 0;
1138 					}
1139 					goto do_error;
1140 				}
1141 
1142 				/* Update the skb. */
1143 				if (merge) {
1144 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1145 				} else {
1146 					skb_fill_page_desc(skb, i, page, off, copy);
1147 					if (sk->sk_sndmsg_page) {
1148 						get_page(page);
1149 					} else if (off + copy < PAGE_SIZE) {
1150 						get_page(page);
1151 						sk->sk_sndmsg_page = page;
1152 					}
1153 				}
1154 
1155 				sk->sk_sndmsg_off = off + copy;
1156 			}
1157 
1158 			if (!copied)
1159 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1160 
1161 			tp->write_seq += copy;
1162 			TCP_SKB_CB(skb)->end_seq += copy;
1163 			skb_shinfo(skb)->gso_segs = 0;
1164 
1165 			from += copy;
1166 			copied += copy;
1167 			if ((seglen -= copy) == 0 && iovlen == 0)
1168 				goto out;
1169 
1170 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1171 				continue;
1172 
1173 			if (forced_push(tp)) {
1174 				tcp_mark_push(tp, skb);
1175 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1176 			} else if (skb == tcp_send_head(sk))
1177 				tcp_push_one(sk, mss_now);
1178 			continue;
1179 
1180 wait_for_sndbuf:
1181 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1182 wait_for_memory:
1183 			if (copied && likely(!tp->repair))
1184 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1185 
1186 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1187 				goto do_error;
1188 
1189 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1190 		}
1191 	}
1192 
1193 out:
1194 	if (copied && likely(!tp->repair))
1195 		tcp_push(sk, flags, mss_now, tp->nonagle);
1196 	release_sock(sk);
1197 	return copied;
1198 
1199 do_fault:
1200 	if (!skb->len) {
1201 		tcp_unlink_write_queue(skb, sk);
1202 		/* It is the one place in all of TCP, except connection
1203 		 * reset, where we can be unlinking the send_head.
1204 		 */
1205 		tcp_check_send_head(sk, skb);
1206 		sk_wmem_free_skb(sk, skb);
1207 	}
1208 
1209 do_error:
1210 	if (copied)
1211 		goto out;
1212 out_err:
1213 	err = sk_stream_error(sk, flags, err);
1214 	release_sock(sk);
1215 	return err;
1216 }
1217 EXPORT_SYMBOL(tcp_sendmsg);
1218 
1219 /*
1220  *	Handle reading urgent data. BSD has very simple semantics for
1221  *	this, no blocking and very strange errors 8)
1222  */
1223 
1224 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1225 {
1226 	struct tcp_sock *tp = tcp_sk(sk);
1227 
1228 	/* No URG data to read. */
1229 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1230 	    tp->urg_data == TCP_URG_READ)
1231 		return -EINVAL;	/* Yes this is right ! */
1232 
1233 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1234 		return -ENOTCONN;
1235 
1236 	if (tp->urg_data & TCP_URG_VALID) {
1237 		int err = 0;
1238 		char c = tp->urg_data;
1239 
1240 		if (!(flags & MSG_PEEK))
1241 			tp->urg_data = TCP_URG_READ;
1242 
1243 		/* Read urgent data. */
1244 		msg->msg_flags |= MSG_OOB;
1245 
1246 		if (len > 0) {
1247 			if (!(flags & MSG_TRUNC))
1248 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1249 			len = 1;
1250 		} else
1251 			msg->msg_flags |= MSG_TRUNC;
1252 
1253 		return err ? -EFAULT : len;
1254 	}
1255 
1256 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1257 		return 0;
1258 
1259 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1260 	 * the available implementations agree in this case:
1261 	 * this call should never block, independent of the
1262 	 * blocking state of the socket.
1263 	 * Mike <pall@rz.uni-karlsruhe.de>
1264 	 */
1265 	return -EAGAIN;
1266 }
1267 
1268 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1269 {
1270 	struct sk_buff *skb;
1271 	int copied = 0, err = 0;
1272 
1273 	/* XXX -- need to support SO_PEEK_OFF */
1274 
1275 	skb_queue_walk(&sk->sk_write_queue, skb) {
1276 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1277 		if (err)
1278 			break;
1279 
1280 		copied += skb->len;
1281 	}
1282 
1283 	return err ?: copied;
1284 }
1285 
1286 /* Clean up the receive buffer for full frames taken by the user,
1287  * then send an ACK if necessary.  COPIED is the number of bytes
1288  * tcp_recvmsg has given to the user so far, it speeds up the
1289  * calculation of whether or not we must ACK for the sake of
1290  * a window update.
1291  */
1292 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1293 {
1294 	struct tcp_sock *tp = tcp_sk(sk);
1295 	bool time_to_ack = false;
1296 
1297 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1298 
1299 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1300 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1301 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1302 
1303 	if (inet_csk_ack_scheduled(sk)) {
1304 		const struct inet_connection_sock *icsk = inet_csk(sk);
1305 		   /* Delayed ACKs frequently hit locked sockets during bulk
1306 		    * receive. */
1307 		if (icsk->icsk_ack.blocked ||
1308 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1309 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1310 		    /*
1311 		     * If this read emptied read buffer, we send ACK, if
1312 		     * connection is not bidirectional, user drained
1313 		     * receive buffer and there was a small segment
1314 		     * in queue.
1315 		     */
1316 		    (copied > 0 &&
1317 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1318 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1319 		       !icsk->icsk_ack.pingpong)) &&
1320 		      !atomic_read(&sk->sk_rmem_alloc)))
1321 			time_to_ack = true;
1322 	}
1323 
1324 	/* We send an ACK if we can now advertise a non-zero window
1325 	 * which has been raised "significantly".
1326 	 *
1327 	 * Even if window raised up to infinity, do not send window open ACK
1328 	 * in states, where we will not receive more. It is useless.
1329 	 */
1330 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1331 		__u32 rcv_window_now = tcp_receive_window(tp);
1332 
1333 		/* Optimize, __tcp_select_window() is not cheap. */
1334 		if (2*rcv_window_now <= tp->window_clamp) {
1335 			__u32 new_window = __tcp_select_window(sk);
1336 
1337 			/* Send ACK now, if this read freed lots of space
1338 			 * in our buffer. Certainly, new_window is new window.
1339 			 * We can advertise it now, if it is not less than current one.
1340 			 * "Lots" means "at least twice" here.
1341 			 */
1342 			if (new_window && new_window >= 2 * rcv_window_now)
1343 				time_to_ack = true;
1344 		}
1345 	}
1346 	if (time_to_ack)
1347 		tcp_send_ack(sk);
1348 }
1349 
1350 static void tcp_prequeue_process(struct sock *sk)
1351 {
1352 	struct sk_buff *skb;
1353 	struct tcp_sock *tp = tcp_sk(sk);
1354 
1355 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1356 
1357 	/* RX process wants to run with disabled BHs, though it is not
1358 	 * necessary */
1359 	local_bh_disable();
1360 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1361 		sk_backlog_rcv(sk, skb);
1362 	local_bh_enable();
1363 
1364 	/* Clear memory counter. */
1365 	tp->ucopy.memory = 0;
1366 }
1367 
1368 #ifdef CONFIG_NET_DMA
1369 static void tcp_service_net_dma(struct sock *sk, bool wait)
1370 {
1371 	dma_cookie_t done, used;
1372 	dma_cookie_t last_issued;
1373 	struct tcp_sock *tp = tcp_sk(sk);
1374 
1375 	if (!tp->ucopy.dma_chan)
1376 		return;
1377 
1378 	last_issued = tp->ucopy.dma_cookie;
1379 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1380 
1381 	do {
1382 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1383 					      last_issued, &done,
1384 					      &used) == DMA_SUCCESS) {
1385 			/* Safe to free early-copied skbs now */
1386 			__skb_queue_purge(&sk->sk_async_wait_queue);
1387 			break;
1388 		} else {
1389 			struct sk_buff *skb;
1390 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1391 			       (dma_async_is_complete(skb->dma_cookie, done,
1392 						      used) == DMA_SUCCESS)) {
1393 				__skb_dequeue(&sk->sk_async_wait_queue);
1394 				kfree_skb(skb);
1395 			}
1396 		}
1397 	} while (wait);
1398 }
1399 #endif
1400 
1401 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1402 {
1403 	struct sk_buff *skb;
1404 	u32 offset;
1405 
1406 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1407 		offset = seq - TCP_SKB_CB(skb)->seq;
1408 		if (tcp_hdr(skb)->syn)
1409 			offset--;
1410 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1411 			*off = offset;
1412 			return skb;
1413 		}
1414 	}
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * This routine provides an alternative to tcp_recvmsg() for routines
1420  * that would like to handle copying from skbuffs directly in 'sendfile'
1421  * fashion.
1422  * Note:
1423  *	- It is assumed that the socket was locked by the caller.
1424  *	- The routine does not block.
1425  *	- At present, there is no support for reading OOB data
1426  *	  or for 'peeking' the socket using this routine
1427  *	  (although both would be easy to implement).
1428  */
1429 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1430 		  sk_read_actor_t recv_actor)
1431 {
1432 	struct sk_buff *skb;
1433 	struct tcp_sock *tp = tcp_sk(sk);
1434 	u32 seq = tp->copied_seq;
1435 	u32 offset;
1436 	int copied = 0;
1437 
1438 	if (sk->sk_state == TCP_LISTEN)
1439 		return -ENOTCONN;
1440 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1441 		if (offset < skb->len) {
1442 			int used;
1443 			size_t len;
1444 
1445 			len = skb->len - offset;
1446 			/* Stop reading if we hit a patch of urgent data */
1447 			if (tp->urg_data) {
1448 				u32 urg_offset = tp->urg_seq - seq;
1449 				if (urg_offset < len)
1450 					len = urg_offset;
1451 				if (!len)
1452 					break;
1453 			}
1454 			used = recv_actor(desc, skb, offset, len);
1455 			if (used < 0) {
1456 				if (!copied)
1457 					copied = used;
1458 				break;
1459 			} else if (used <= len) {
1460 				seq += used;
1461 				copied += used;
1462 				offset += used;
1463 			}
1464 			/*
1465 			 * If recv_actor drops the lock (e.g. TCP splice
1466 			 * receive) the skb pointer might be invalid when
1467 			 * getting here: tcp_collapse might have deleted it
1468 			 * while aggregating skbs from the socket queue.
1469 			 */
1470 			skb = tcp_recv_skb(sk, seq-1, &offset);
1471 			if (!skb || (offset+1 != skb->len))
1472 				break;
1473 		}
1474 		if (tcp_hdr(skb)->fin) {
1475 			sk_eat_skb(sk, skb, false);
1476 			++seq;
1477 			break;
1478 		}
1479 		sk_eat_skb(sk, skb, false);
1480 		if (!desc->count)
1481 			break;
1482 		tp->copied_seq = seq;
1483 	}
1484 	tp->copied_seq = seq;
1485 
1486 	tcp_rcv_space_adjust(sk);
1487 
1488 	/* Clean up data we have read: This will do ACK frames. */
1489 	if (copied > 0)
1490 		tcp_cleanup_rbuf(sk, copied);
1491 	return copied;
1492 }
1493 EXPORT_SYMBOL(tcp_read_sock);
1494 
1495 /*
1496  *	This routine copies from a sock struct into the user buffer.
1497  *
1498  *	Technical note: in 2.3 we work on _locked_ socket, so that
1499  *	tricks with *seq access order and skb->users are not required.
1500  *	Probably, code can be easily improved even more.
1501  */
1502 
1503 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1504 		size_t len, int nonblock, int flags, int *addr_len)
1505 {
1506 	struct tcp_sock *tp = tcp_sk(sk);
1507 	int copied = 0;
1508 	u32 peek_seq;
1509 	u32 *seq;
1510 	unsigned long used;
1511 	int err;
1512 	int target;		/* Read at least this many bytes */
1513 	long timeo;
1514 	struct task_struct *user_recv = NULL;
1515 	bool copied_early = false;
1516 	struct sk_buff *skb;
1517 	u32 urg_hole = 0;
1518 
1519 	lock_sock(sk);
1520 
1521 	err = -ENOTCONN;
1522 	if (sk->sk_state == TCP_LISTEN)
1523 		goto out;
1524 
1525 	timeo = sock_rcvtimeo(sk, nonblock);
1526 
1527 	/* Urgent data needs to be handled specially. */
1528 	if (flags & MSG_OOB)
1529 		goto recv_urg;
1530 
1531 	if (unlikely(tp->repair)) {
1532 		err = -EPERM;
1533 		if (!(flags & MSG_PEEK))
1534 			goto out;
1535 
1536 		if (tp->repair_queue == TCP_SEND_QUEUE)
1537 			goto recv_sndq;
1538 
1539 		err = -EINVAL;
1540 		if (tp->repair_queue == TCP_NO_QUEUE)
1541 			goto out;
1542 
1543 		/* 'common' recv queue MSG_PEEK-ing */
1544 	}
1545 
1546 	seq = &tp->copied_seq;
1547 	if (flags & MSG_PEEK) {
1548 		peek_seq = tp->copied_seq;
1549 		seq = &peek_seq;
1550 	}
1551 
1552 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1553 
1554 #ifdef CONFIG_NET_DMA
1555 	tp->ucopy.dma_chan = NULL;
1556 	preempt_disable();
1557 	skb = skb_peek_tail(&sk->sk_receive_queue);
1558 	{
1559 		int available = 0;
1560 
1561 		if (skb)
1562 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1563 		if ((available < target) &&
1564 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1565 		    !sysctl_tcp_low_latency &&
1566 		    net_dma_find_channel()) {
1567 			preempt_enable_no_resched();
1568 			tp->ucopy.pinned_list =
1569 					dma_pin_iovec_pages(msg->msg_iov, len);
1570 		} else {
1571 			preempt_enable_no_resched();
1572 		}
1573 	}
1574 #endif
1575 
1576 	do {
1577 		u32 offset;
1578 
1579 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1580 		if (tp->urg_data && tp->urg_seq == *seq) {
1581 			if (copied)
1582 				break;
1583 			if (signal_pending(current)) {
1584 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1585 				break;
1586 			}
1587 		}
1588 
1589 		/* Next get a buffer. */
1590 
1591 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1592 			/* Now that we have two receive queues this
1593 			 * shouldn't happen.
1594 			 */
1595 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1596 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1597 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1598 				 flags))
1599 				break;
1600 
1601 			offset = *seq - TCP_SKB_CB(skb)->seq;
1602 			if (tcp_hdr(skb)->syn)
1603 				offset--;
1604 			if (offset < skb->len)
1605 				goto found_ok_skb;
1606 			if (tcp_hdr(skb)->fin)
1607 				goto found_fin_ok;
1608 			WARN(!(flags & MSG_PEEK),
1609 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1610 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1611 		}
1612 
1613 		/* Well, if we have backlog, try to process it now yet. */
1614 
1615 		if (copied >= target && !sk->sk_backlog.tail)
1616 			break;
1617 
1618 		if (copied) {
1619 			if (sk->sk_err ||
1620 			    sk->sk_state == TCP_CLOSE ||
1621 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1622 			    !timeo ||
1623 			    signal_pending(current))
1624 				break;
1625 		} else {
1626 			if (sock_flag(sk, SOCK_DONE))
1627 				break;
1628 
1629 			if (sk->sk_err) {
1630 				copied = sock_error(sk);
1631 				break;
1632 			}
1633 
1634 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1635 				break;
1636 
1637 			if (sk->sk_state == TCP_CLOSE) {
1638 				if (!sock_flag(sk, SOCK_DONE)) {
1639 					/* This occurs when user tries to read
1640 					 * from never connected socket.
1641 					 */
1642 					copied = -ENOTCONN;
1643 					break;
1644 				}
1645 				break;
1646 			}
1647 
1648 			if (!timeo) {
1649 				copied = -EAGAIN;
1650 				break;
1651 			}
1652 
1653 			if (signal_pending(current)) {
1654 				copied = sock_intr_errno(timeo);
1655 				break;
1656 			}
1657 		}
1658 
1659 		tcp_cleanup_rbuf(sk, copied);
1660 
1661 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1662 			/* Install new reader */
1663 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1664 				user_recv = current;
1665 				tp->ucopy.task = user_recv;
1666 				tp->ucopy.iov = msg->msg_iov;
1667 			}
1668 
1669 			tp->ucopy.len = len;
1670 
1671 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1672 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1673 
1674 			/* Ugly... If prequeue is not empty, we have to
1675 			 * process it before releasing socket, otherwise
1676 			 * order will be broken at second iteration.
1677 			 * More elegant solution is required!!!
1678 			 *
1679 			 * Look: we have the following (pseudo)queues:
1680 			 *
1681 			 * 1. packets in flight
1682 			 * 2. backlog
1683 			 * 3. prequeue
1684 			 * 4. receive_queue
1685 			 *
1686 			 * Each queue can be processed only if the next ones
1687 			 * are empty. At this point we have empty receive_queue.
1688 			 * But prequeue _can_ be not empty after 2nd iteration,
1689 			 * when we jumped to start of loop because backlog
1690 			 * processing added something to receive_queue.
1691 			 * We cannot release_sock(), because backlog contains
1692 			 * packets arrived _after_ prequeued ones.
1693 			 *
1694 			 * Shortly, algorithm is clear --- to process all
1695 			 * the queues in order. We could make it more directly,
1696 			 * requeueing packets from backlog to prequeue, if
1697 			 * is not empty. It is more elegant, but eats cycles,
1698 			 * unfortunately.
1699 			 */
1700 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1701 				goto do_prequeue;
1702 
1703 			/* __ Set realtime policy in scheduler __ */
1704 		}
1705 
1706 #ifdef CONFIG_NET_DMA
1707 		if (tp->ucopy.dma_chan)
1708 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1709 #endif
1710 		if (copied >= target) {
1711 			/* Do not sleep, just process backlog. */
1712 			release_sock(sk);
1713 			lock_sock(sk);
1714 		} else
1715 			sk_wait_data(sk, &timeo);
1716 
1717 #ifdef CONFIG_NET_DMA
1718 		tcp_service_net_dma(sk, false);  /* Don't block */
1719 		tp->ucopy.wakeup = 0;
1720 #endif
1721 
1722 		if (user_recv) {
1723 			int chunk;
1724 
1725 			/* __ Restore normal policy in scheduler __ */
1726 
1727 			if ((chunk = len - tp->ucopy.len) != 0) {
1728 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1729 				len -= chunk;
1730 				copied += chunk;
1731 			}
1732 
1733 			if (tp->rcv_nxt == tp->copied_seq &&
1734 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1735 do_prequeue:
1736 				tcp_prequeue_process(sk);
1737 
1738 				if ((chunk = len - tp->ucopy.len) != 0) {
1739 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1740 					len -= chunk;
1741 					copied += chunk;
1742 				}
1743 			}
1744 		}
1745 		if ((flags & MSG_PEEK) &&
1746 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1747 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1748 					    current->comm,
1749 					    task_pid_nr(current));
1750 			peek_seq = tp->copied_seq;
1751 		}
1752 		continue;
1753 
1754 	found_ok_skb:
1755 		/* Ok so how much can we use? */
1756 		used = skb->len - offset;
1757 		if (len < used)
1758 			used = len;
1759 
1760 		/* Do we have urgent data here? */
1761 		if (tp->urg_data) {
1762 			u32 urg_offset = tp->urg_seq - *seq;
1763 			if (urg_offset < used) {
1764 				if (!urg_offset) {
1765 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1766 						++*seq;
1767 						urg_hole++;
1768 						offset++;
1769 						used--;
1770 						if (!used)
1771 							goto skip_copy;
1772 					}
1773 				} else
1774 					used = urg_offset;
1775 			}
1776 		}
1777 
1778 		if (!(flags & MSG_TRUNC)) {
1779 #ifdef CONFIG_NET_DMA
1780 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1781 				tp->ucopy.dma_chan = net_dma_find_channel();
1782 
1783 			if (tp->ucopy.dma_chan) {
1784 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1785 					tp->ucopy.dma_chan, skb, offset,
1786 					msg->msg_iov, used,
1787 					tp->ucopy.pinned_list);
1788 
1789 				if (tp->ucopy.dma_cookie < 0) {
1790 
1791 					pr_alert("%s: dma_cookie < 0\n",
1792 						 __func__);
1793 
1794 					/* Exception. Bailout! */
1795 					if (!copied)
1796 						copied = -EFAULT;
1797 					break;
1798 				}
1799 
1800 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1801 
1802 				if ((offset + used) == skb->len)
1803 					copied_early = true;
1804 
1805 			} else
1806 #endif
1807 			{
1808 				err = skb_copy_datagram_iovec(skb, offset,
1809 						msg->msg_iov, used);
1810 				if (err) {
1811 					/* Exception. Bailout! */
1812 					if (!copied)
1813 						copied = -EFAULT;
1814 					break;
1815 				}
1816 			}
1817 		}
1818 
1819 		*seq += used;
1820 		copied += used;
1821 		len -= used;
1822 
1823 		tcp_rcv_space_adjust(sk);
1824 
1825 skip_copy:
1826 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1827 			tp->urg_data = 0;
1828 			tcp_fast_path_check(sk);
1829 		}
1830 		if (used + offset < skb->len)
1831 			continue;
1832 
1833 		if (tcp_hdr(skb)->fin)
1834 			goto found_fin_ok;
1835 		if (!(flags & MSG_PEEK)) {
1836 			sk_eat_skb(sk, skb, copied_early);
1837 			copied_early = false;
1838 		}
1839 		continue;
1840 
1841 	found_fin_ok:
1842 		/* Process the FIN. */
1843 		++*seq;
1844 		if (!(flags & MSG_PEEK)) {
1845 			sk_eat_skb(sk, skb, copied_early);
1846 			copied_early = false;
1847 		}
1848 		break;
1849 	} while (len > 0);
1850 
1851 	if (user_recv) {
1852 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1853 			int chunk;
1854 
1855 			tp->ucopy.len = copied > 0 ? len : 0;
1856 
1857 			tcp_prequeue_process(sk);
1858 
1859 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1860 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1861 				len -= chunk;
1862 				copied += chunk;
1863 			}
1864 		}
1865 
1866 		tp->ucopy.task = NULL;
1867 		tp->ucopy.len = 0;
1868 	}
1869 
1870 #ifdef CONFIG_NET_DMA
1871 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1872 	tp->ucopy.dma_chan = NULL;
1873 
1874 	if (tp->ucopy.pinned_list) {
1875 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1876 		tp->ucopy.pinned_list = NULL;
1877 	}
1878 #endif
1879 
1880 	/* According to UNIX98, msg_name/msg_namelen are ignored
1881 	 * on connected socket. I was just happy when found this 8) --ANK
1882 	 */
1883 
1884 	/* Clean up data we have read: This will do ACK frames. */
1885 	tcp_cleanup_rbuf(sk, copied);
1886 
1887 	release_sock(sk);
1888 	return copied;
1889 
1890 out:
1891 	release_sock(sk);
1892 	return err;
1893 
1894 recv_urg:
1895 	err = tcp_recv_urg(sk, msg, len, flags);
1896 	goto out;
1897 
1898 recv_sndq:
1899 	err = tcp_peek_sndq(sk, msg, len);
1900 	goto out;
1901 }
1902 EXPORT_SYMBOL(tcp_recvmsg);
1903 
1904 void tcp_set_state(struct sock *sk, int state)
1905 {
1906 	int oldstate = sk->sk_state;
1907 
1908 	switch (state) {
1909 	case TCP_ESTABLISHED:
1910 		if (oldstate != TCP_ESTABLISHED)
1911 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1912 		break;
1913 
1914 	case TCP_CLOSE:
1915 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1916 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1917 
1918 		sk->sk_prot->unhash(sk);
1919 		if (inet_csk(sk)->icsk_bind_hash &&
1920 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1921 			inet_put_port(sk);
1922 		/* fall through */
1923 	default:
1924 		if (oldstate == TCP_ESTABLISHED)
1925 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1926 	}
1927 
1928 	/* Change state AFTER socket is unhashed to avoid closed
1929 	 * socket sitting in hash tables.
1930 	 */
1931 	sk->sk_state = state;
1932 
1933 #ifdef STATE_TRACE
1934 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1935 #endif
1936 }
1937 EXPORT_SYMBOL_GPL(tcp_set_state);
1938 
1939 /*
1940  *	State processing on a close. This implements the state shift for
1941  *	sending our FIN frame. Note that we only send a FIN for some
1942  *	states. A shutdown() may have already sent the FIN, or we may be
1943  *	closed.
1944  */
1945 
1946 static const unsigned char new_state[16] = {
1947   /* current state:        new state:      action:	*/
1948   /* (Invalid)		*/ TCP_CLOSE,
1949   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1950   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1951   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1952   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1953   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1954   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1955   /* TCP_CLOSE		*/ TCP_CLOSE,
1956   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1957   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1958   /* TCP_LISTEN		*/ TCP_CLOSE,
1959   /* TCP_CLOSING	*/ TCP_CLOSING,
1960 };
1961 
1962 static int tcp_close_state(struct sock *sk)
1963 {
1964 	int next = (int)new_state[sk->sk_state];
1965 	int ns = next & TCP_STATE_MASK;
1966 
1967 	tcp_set_state(sk, ns);
1968 
1969 	return next & TCP_ACTION_FIN;
1970 }
1971 
1972 /*
1973  *	Shutdown the sending side of a connection. Much like close except
1974  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1975  */
1976 
1977 void tcp_shutdown(struct sock *sk, int how)
1978 {
1979 	/*	We need to grab some memory, and put together a FIN,
1980 	 *	and then put it into the queue to be sent.
1981 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1982 	 */
1983 	if (!(how & SEND_SHUTDOWN))
1984 		return;
1985 
1986 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1987 	if ((1 << sk->sk_state) &
1988 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1989 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1990 		/* Clear out any half completed packets.  FIN if needed. */
1991 		if (tcp_close_state(sk))
1992 			tcp_send_fin(sk);
1993 	}
1994 }
1995 EXPORT_SYMBOL(tcp_shutdown);
1996 
1997 bool tcp_check_oom(struct sock *sk, int shift)
1998 {
1999 	bool too_many_orphans, out_of_socket_memory;
2000 
2001 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2002 	out_of_socket_memory = tcp_out_of_memory(sk);
2003 
2004 	if (too_many_orphans)
2005 		net_info_ratelimited("too many orphaned sockets\n");
2006 	if (out_of_socket_memory)
2007 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2008 	return too_many_orphans || out_of_socket_memory;
2009 }
2010 
2011 void tcp_close(struct sock *sk, long timeout)
2012 {
2013 	struct sk_buff *skb;
2014 	int data_was_unread = 0;
2015 	int state;
2016 
2017 	lock_sock(sk);
2018 	sk->sk_shutdown = SHUTDOWN_MASK;
2019 
2020 	if (sk->sk_state == TCP_LISTEN) {
2021 		tcp_set_state(sk, TCP_CLOSE);
2022 
2023 		/* Special case. */
2024 		inet_csk_listen_stop(sk);
2025 
2026 		goto adjudge_to_death;
2027 	}
2028 
2029 	/*  We need to flush the recv. buffs.  We do this only on the
2030 	 *  descriptor close, not protocol-sourced closes, because the
2031 	 *  reader process may not have drained the data yet!
2032 	 */
2033 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2034 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2035 			  tcp_hdr(skb)->fin;
2036 		data_was_unread += len;
2037 		__kfree_skb(skb);
2038 	}
2039 
2040 	sk_mem_reclaim(sk);
2041 
2042 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2043 	if (sk->sk_state == TCP_CLOSE)
2044 		goto adjudge_to_death;
2045 
2046 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2047 	 * data was lost. To witness the awful effects of the old behavior of
2048 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2049 	 * GET in an FTP client, suspend the process, wait for the client to
2050 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2051 	 * Note: timeout is always zero in such a case.
2052 	 */
2053 	if (unlikely(tcp_sk(sk)->repair)) {
2054 		sk->sk_prot->disconnect(sk, 0);
2055 	} else if (data_was_unread) {
2056 		/* Unread data was tossed, zap the connection. */
2057 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2058 		tcp_set_state(sk, TCP_CLOSE);
2059 		tcp_send_active_reset(sk, sk->sk_allocation);
2060 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2061 		/* Check zero linger _after_ checking for unread data. */
2062 		sk->sk_prot->disconnect(sk, 0);
2063 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2064 	} else if (tcp_close_state(sk)) {
2065 		/* We FIN if the application ate all the data before
2066 		 * zapping the connection.
2067 		 */
2068 
2069 		/* RED-PEN. Formally speaking, we have broken TCP state
2070 		 * machine. State transitions:
2071 		 *
2072 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2073 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2074 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2075 		 *
2076 		 * are legal only when FIN has been sent (i.e. in window),
2077 		 * rather than queued out of window. Purists blame.
2078 		 *
2079 		 * F.e. "RFC state" is ESTABLISHED,
2080 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2081 		 *
2082 		 * The visible declinations are that sometimes
2083 		 * we enter time-wait state, when it is not required really
2084 		 * (harmless), do not send active resets, when they are
2085 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2086 		 * they look as CLOSING or LAST_ACK for Linux)
2087 		 * Probably, I missed some more holelets.
2088 		 * 						--ANK
2089 		 */
2090 		tcp_send_fin(sk);
2091 	}
2092 
2093 	sk_stream_wait_close(sk, timeout);
2094 
2095 adjudge_to_death:
2096 	state = sk->sk_state;
2097 	sock_hold(sk);
2098 	sock_orphan(sk);
2099 
2100 	/* It is the last release_sock in its life. It will remove backlog. */
2101 	release_sock(sk);
2102 
2103 
2104 	/* Now socket is owned by kernel and we acquire BH lock
2105 	   to finish close. No need to check for user refs.
2106 	 */
2107 	local_bh_disable();
2108 	bh_lock_sock(sk);
2109 	WARN_ON(sock_owned_by_user(sk));
2110 
2111 	percpu_counter_inc(sk->sk_prot->orphan_count);
2112 
2113 	/* Have we already been destroyed by a softirq or backlog? */
2114 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2115 		goto out;
2116 
2117 	/*	This is a (useful) BSD violating of the RFC. There is a
2118 	 *	problem with TCP as specified in that the other end could
2119 	 *	keep a socket open forever with no application left this end.
2120 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2121 	 *	our end. If they send after that then tough - BUT: long enough
2122 	 *	that we won't make the old 4*rto = almost no time - whoops
2123 	 *	reset mistake.
2124 	 *
2125 	 *	Nope, it was not mistake. It is really desired behaviour
2126 	 *	f.e. on http servers, when such sockets are useless, but
2127 	 *	consume significant resources. Let's do it with special
2128 	 *	linger2	option.					--ANK
2129 	 */
2130 
2131 	if (sk->sk_state == TCP_FIN_WAIT2) {
2132 		struct tcp_sock *tp = tcp_sk(sk);
2133 		if (tp->linger2 < 0) {
2134 			tcp_set_state(sk, TCP_CLOSE);
2135 			tcp_send_active_reset(sk, GFP_ATOMIC);
2136 			NET_INC_STATS_BH(sock_net(sk),
2137 					LINUX_MIB_TCPABORTONLINGER);
2138 		} else {
2139 			const int tmo = tcp_fin_time(sk);
2140 
2141 			if (tmo > TCP_TIMEWAIT_LEN) {
2142 				inet_csk_reset_keepalive_timer(sk,
2143 						tmo - TCP_TIMEWAIT_LEN);
2144 			} else {
2145 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2146 				goto out;
2147 			}
2148 		}
2149 	}
2150 	if (sk->sk_state != TCP_CLOSE) {
2151 		sk_mem_reclaim(sk);
2152 		if (tcp_check_oom(sk, 0)) {
2153 			tcp_set_state(sk, TCP_CLOSE);
2154 			tcp_send_active_reset(sk, GFP_ATOMIC);
2155 			NET_INC_STATS_BH(sock_net(sk),
2156 					LINUX_MIB_TCPABORTONMEMORY);
2157 		}
2158 	}
2159 
2160 	if (sk->sk_state == TCP_CLOSE)
2161 		inet_csk_destroy_sock(sk);
2162 	/* Otherwise, socket is reprieved until protocol close. */
2163 
2164 out:
2165 	bh_unlock_sock(sk);
2166 	local_bh_enable();
2167 	sock_put(sk);
2168 }
2169 EXPORT_SYMBOL(tcp_close);
2170 
2171 /* These states need RST on ABORT according to RFC793 */
2172 
2173 static inline bool tcp_need_reset(int state)
2174 {
2175 	return (1 << state) &
2176 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2177 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2178 }
2179 
2180 int tcp_disconnect(struct sock *sk, int flags)
2181 {
2182 	struct inet_sock *inet = inet_sk(sk);
2183 	struct inet_connection_sock *icsk = inet_csk(sk);
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	int err = 0;
2186 	int old_state = sk->sk_state;
2187 
2188 	if (old_state != TCP_CLOSE)
2189 		tcp_set_state(sk, TCP_CLOSE);
2190 
2191 	/* ABORT function of RFC793 */
2192 	if (old_state == TCP_LISTEN) {
2193 		inet_csk_listen_stop(sk);
2194 	} else if (unlikely(tp->repair)) {
2195 		sk->sk_err = ECONNABORTED;
2196 	} else if (tcp_need_reset(old_state) ||
2197 		   (tp->snd_nxt != tp->write_seq &&
2198 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2199 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2200 		 * states
2201 		 */
2202 		tcp_send_active_reset(sk, gfp_any());
2203 		sk->sk_err = ECONNRESET;
2204 	} else if (old_state == TCP_SYN_SENT)
2205 		sk->sk_err = ECONNRESET;
2206 
2207 	tcp_clear_xmit_timers(sk);
2208 	__skb_queue_purge(&sk->sk_receive_queue);
2209 	tcp_write_queue_purge(sk);
2210 	__skb_queue_purge(&tp->out_of_order_queue);
2211 #ifdef CONFIG_NET_DMA
2212 	__skb_queue_purge(&sk->sk_async_wait_queue);
2213 #endif
2214 
2215 	inet->inet_dport = 0;
2216 
2217 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2218 		inet_reset_saddr(sk);
2219 
2220 	sk->sk_shutdown = 0;
2221 	sock_reset_flag(sk, SOCK_DONE);
2222 	tp->srtt = 0;
2223 	if ((tp->write_seq += tp->max_window + 2) == 0)
2224 		tp->write_seq = 1;
2225 	icsk->icsk_backoff = 0;
2226 	tp->snd_cwnd = 2;
2227 	icsk->icsk_probes_out = 0;
2228 	tp->packets_out = 0;
2229 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2230 	tp->snd_cwnd_cnt = 0;
2231 	tp->bytes_acked = 0;
2232 	tp->window_clamp = 0;
2233 	tcp_set_ca_state(sk, TCP_CA_Open);
2234 	tcp_clear_retrans(tp);
2235 	inet_csk_delack_init(sk);
2236 	tcp_init_send_head(sk);
2237 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2238 	__sk_dst_reset(sk);
2239 
2240 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2241 
2242 	sk->sk_error_report(sk);
2243 	return err;
2244 }
2245 EXPORT_SYMBOL(tcp_disconnect);
2246 
2247 static inline bool tcp_can_repair_sock(const struct sock *sk)
2248 {
2249 	return capable(CAP_NET_ADMIN) &&
2250 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2251 }
2252 
2253 static int tcp_repair_options_est(struct tcp_sock *tp,
2254 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2255 {
2256 	struct tcp_repair_opt opt;
2257 
2258 	while (len >= sizeof(opt)) {
2259 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2260 			return -EFAULT;
2261 
2262 		optbuf++;
2263 		len -= sizeof(opt);
2264 
2265 		switch (opt.opt_code) {
2266 		case TCPOPT_MSS:
2267 			tp->rx_opt.mss_clamp = opt.opt_val;
2268 			break;
2269 		case TCPOPT_WINDOW:
2270 			if (opt.opt_val > 14)
2271 				return -EFBIG;
2272 
2273 			tp->rx_opt.snd_wscale = opt.opt_val;
2274 			break;
2275 		case TCPOPT_SACK_PERM:
2276 			if (opt.opt_val != 0)
2277 				return -EINVAL;
2278 
2279 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2280 			if (sysctl_tcp_fack)
2281 				tcp_enable_fack(tp);
2282 			break;
2283 		case TCPOPT_TIMESTAMP:
2284 			if (opt.opt_val != 0)
2285 				return -EINVAL;
2286 
2287 			tp->rx_opt.tstamp_ok = 1;
2288 			break;
2289 		}
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  *	Socket option code for TCP.
2297  */
2298 static int do_tcp_setsockopt(struct sock *sk, int level,
2299 		int optname, char __user *optval, unsigned int optlen)
2300 {
2301 	struct tcp_sock *tp = tcp_sk(sk);
2302 	struct inet_connection_sock *icsk = inet_csk(sk);
2303 	int val;
2304 	int err = 0;
2305 
2306 	/* These are data/string values, all the others are ints */
2307 	switch (optname) {
2308 	case TCP_CONGESTION: {
2309 		char name[TCP_CA_NAME_MAX];
2310 
2311 		if (optlen < 1)
2312 			return -EINVAL;
2313 
2314 		val = strncpy_from_user(name, optval,
2315 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2316 		if (val < 0)
2317 			return -EFAULT;
2318 		name[val] = 0;
2319 
2320 		lock_sock(sk);
2321 		err = tcp_set_congestion_control(sk, name);
2322 		release_sock(sk);
2323 		return err;
2324 	}
2325 	case TCP_COOKIE_TRANSACTIONS: {
2326 		struct tcp_cookie_transactions ctd;
2327 		struct tcp_cookie_values *cvp = NULL;
2328 
2329 		if (sizeof(ctd) > optlen)
2330 			return -EINVAL;
2331 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2332 			return -EFAULT;
2333 
2334 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2335 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2336 			return -EINVAL;
2337 
2338 		if (ctd.tcpct_cookie_desired == 0) {
2339 			/* default to global value */
2340 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2341 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2342 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2343 			return -EINVAL;
2344 		}
2345 
2346 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2347 			/* Supercedes all other values */
2348 			lock_sock(sk);
2349 			if (tp->cookie_values != NULL) {
2350 				kref_put(&tp->cookie_values->kref,
2351 					 tcp_cookie_values_release);
2352 				tp->cookie_values = NULL;
2353 			}
2354 			tp->rx_opt.cookie_in_always = 0; /* false */
2355 			tp->rx_opt.cookie_out_never = 1; /* true */
2356 			release_sock(sk);
2357 			return err;
2358 		}
2359 
2360 		/* Allocate ancillary memory before locking.
2361 		 */
2362 		if (ctd.tcpct_used > 0 ||
2363 		    (tp->cookie_values == NULL &&
2364 		     (sysctl_tcp_cookie_size > 0 ||
2365 		      ctd.tcpct_cookie_desired > 0 ||
2366 		      ctd.tcpct_s_data_desired > 0))) {
2367 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2368 				      GFP_KERNEL);
2369 			if (cvp == NULL)
2370 				return -ENOMEM;
2371 
2372 			kref_init(&cvp->kref);
2373 		}
2374 		lock_sock(sk);
2375 		tp->rx_opt.cookie_in_always =
2376 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2377 		tp->rx_opt.cookie_out_never = 0; /* false */
2378 
2379 		if (tp->cookie_values != NULL) {
2380 			if (cvp != NULL) {
2381 				/* Changed values are recorded by a changed
2382 				 * pointer, ensuring the cookie will differ,
2383 				 * without separately hashing each value later.
2384 				 */
2385 				kref_put(&tp->cookie_values->kref,
2386 					 tcp_cookie_values_release);
2387 			} else {
2388 				cvp = tp->cookie_values;
2389 			}
2390 		}
2391 
2392 		if (cvp != NULL) {
2393 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2394 
2395 			if (ctd.tcpct_used > 0) {
2396 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2397 				       ctd.tcpct_used);
2398 				cvp->s_data_desired = ctd.tcpct_used;
2399 				cvp->s_data_constant = 1; /* true */
2400 			} else {
2401 				/* No constant payload data. */
2402 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2403 				cvp->s_data_constant = 0; /* false */
2404 			}
2405 
2406 			tp->cookie_values = cvp;
2407 		}
2408 		release_sock(sk);
2409 		return err;
2410 	}
2411 	default:
2412 		/* fallthru */
2413 		break;
2414 	}
2415 
2416 	if (optlen < sizeof(int))
2417 		return -EINVAL;
2418 
2419 	if (get_user(val, (int __user *)optval))
2420 		return -EFAULT;
2421 
2422 	lock_sock(sk);
2423 
2424 	switch (optname) {
2425 	case TCP_MAXSEG:
2426 		/* Values greater than interface MTU won't take effect. However
2427 		 * at the point when this call is done we typically don't yet
2428 		 * know which interface is going to be used */
2429 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2430 			err = -EINVAL;
2431 			break;
2432 		}
2433 		tp->rx_opt.user_mss = val;
2434 		break;
2435 
2436 	case TCP_NODELAY:
2437 		if (val) {
2438 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2439 			 * this option on corked socket is remembered, but
2440 			 * it is not activated until cork is cleared.
2441 			 *
2442 			 * However, when TCP_NODELAY is set we make
2443 			 * an explicit push, which overrides even TCP_CORK
2444 			 * for currently queued segments.
2445 			 */
2446 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2447 			tcp_push_pending_frames(sk);
2448 		} else {
2449 			tp->nonagle &= ~TCP_NAGLE_OFF;
2450 		}
2451 		break;
2452 
2453 	case TCP_THIN_LINEAR_TIMEOUTS:
2454 		if (val < 0 || val > 1)
2455 			err = -EINVAL;
2456 		else
2457 			tp->thin_lto = val;
2458 		break;
2459 
2460 	case TCP_THIN_DUPACK:
2461 		if (val < 0 || val > 1)
2462 			err = -EINVAL;
2463 		else
2464 			tp->thin_dupack = val;
2465 			if (tp->thin_dupack)
2466 				tcp_disable_early_retrans(tp);
2467 		break;
2468 
2469 	case TCP_REPAIR:
2470 		if (!tcp_can_repair_sock(sk))
2471 			err = -EPERM;
2472 		else if (val == 1) {
2473 			tp->repair = 1;
2474 			sk->sk_reuse = SK_FORCE_REUSE;
2475 			tp->repair_queue = TCP_NO_QUEUE;
2476 		} else if (val == 0) {
2477 			tp->repair = 0;
2478 			sk->sk_reuse = SK_NO_REUSE;
2479 			tcp_send_window_probe(sk);
2480 		} else
2481 			err = -EINVAL;
2482 
2483 		break;
2484 
2485 	case TCP_REPAIR_QUEUE:
2486 		if (!tp->repair)
2487 			err = -EPERM;
2488 		else if (val < TCP_QUEUES_NR)
2489 			tp->repair_queue = val;
2490 		else
2491 			err = -EINVAL;
2492 		break;
2493 
2494 	case TCP_QUEUE_SEQ:
2495 		if (sk->sk_state != TCP_CLOSE)
2496 			err = -EPERM;
2497 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2498 			tp->write_seq = val;
2499 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2500 			tp->rcv_nxt = val;
2501 		else
2502 			err = -EINVAL;
2503 		break;
2504 
2505 	case TCP_REPAIR_OPTIONS:
2506 		if (!tp->repair)
2507 			err = -EINVAL;
2508 		else if (sk->sk_state == TCP_ESTABLISHED)
2509 			err = tcp_repair_options_est(tp,
2510 					(struct tcp_repair_opt __user *)optval,
2511 					optlen);
2512 		else
2513 			err = -EPERM;
2514 		break;
2515 
2516 	case TCP_CORK:
2517 		/* When set indicates to always queue non-full frames.
2518 		 * Later the user clears this option and we transmit
2519 		 * any pending partial frames in the queue.  This is
2520 		 * meant to be used alongside sendfile() to get properly
2521 		 * filled frames when the user (for example) must write
2522 		 * out headers with a write() call first and then use
2523 		 * sendfile to send out the data parts.
2524 		 *
2525 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2526 		 * stronger than TCP_NODELAY.
2527 		 */
2528 		if (val) {
2529 			tp->nonagle |= TCP_NAGLE_CORK;
2530 		} else {
2531 			tp->nonagle &= ~TCP_NAGLE_CORK;
2532 			if (tp->nonagle&TCP_NAGLE_OFF)
2533 				tp->nonagle |= TCP_NAGLE_PUSH;
2534 			tcp_push_pending_frames(sk);
2535 		}
2536 		break;
2537 
2538 	case TCP_KEEPIDLE:
2539 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2540 			err = -EINVAL;
2541 		else {
2542 			tp->keepalive_time = val * HZ;
2543 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2544 			    !((1 << sk->sk_state) &
2545 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2546 				u32 elapsed = keepalive_time_elapsed(tp);
2547 				if (tp->keepalive_time > elapsed)
2548 					elapsed = tp->keepalive_time - elapsed;
2549 				else
2550 					elapsed = 0;
2551 				inet_csk_reset_keepalive_timer(sk, elapsed);
2552 			}
2553 		}
2554 		break;
2555 	case TCP_KEEPINTVL:
2556 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2557 			err = -EINVAL;
2558 		else
2559 			tp->keepalive_intvl = val * HZ;
2560 		break;
2561 	case TCP_KEEPCNT:
2562 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2563 			err = -EINVAL;
2564 		else
2565 			tp->keepalive_probes = val;
2566 		break;
2567 	case TCP_SYNCNT:
2568 		if (val < 1 || val > MAX_TCP_SYNCNT)
2569 			err = -EINVAL;
2570 		else
2571 			icsk->icsk_syn_retries = val;
2572 		break;
2573 
2574 	case TCP_LINGER2:
2575 		if (val < 0)
2576 			tp->linger2 = -1;
2577 		else if (val > sysctl_tcp_fin_timeout / HZ)
2578 			tp->linger2 = 0;
2579 		else
2580 			tp->linger2 = val * HZ;
2581 		break;
2582 
2583 	case TCP_DEFER_ACCEPT:
2584 		/* Translate value in seconds to number of retransmits */
2585 		icsk->icsk_accept_queue.rskq_defer_accept =
2586 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2587 					TCP_RTO_MAX / HZ);
2588 		break;
2589 
2590 	case TCP_WINDOW_CLAMP:
2591 		if (!val) {
2592 			if (sk->sk_state != TCP_CLOSE) {
2593 				err = -EINVAL;
2594 				break;
2595 			}
2596 			tp->window_clamp = 0;
2597 		} else
2598 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2599 						SOCK_MIN_RCVBUF / 2 : val;
2600 		break;
2601 
2602 	case TCP_QUICKACK:
2603 		if (!val) {
2604 			icsk->icsk_ack.pingpong = 1;
2605 		} else {
2606 			icsk->icsk_ack.pingpong = 0;
2607 			if ((1 << sk->sk_state) &
2608 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2609 			    inet_csk_ack_scheduled(sk)) {
2610 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2611 				tcp_cleanup_rbuf(sk, 1);
2612 				if (!(val & 1))
2613 					icsk->icsk_ack.pingpong = 1;
2614 			}
2615 		}
2616 		break;
2617 
2618 #ifdef CONFIG_TCP_MD5SIG
2619 	case TCP_MD5SIG:
2620 		/* Read the IP->Key mappings from userspace */
2621 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2622 		break;
2623 #endif
2624 	case TCP_USER_TIMEOUT:
2625 		/* Cap the max timeout in ms TCP will retry/retrans
2626 		 * before giving up and aborting (ETIMEDOUT) a connection.
2627 		 */
2628 		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2629 		break;
2630 	default:
2631 		err = -ENOPROTOOPT;
2632 		break;
2633 	}
2634 
2635 	release_sock(sk);
2636 	return err;
2637 }
2638 
2639 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2640 		   unsigned int optlen)
2641 {
2642 	const struct inet_connection_sock *icsk = inet_csk(sk);
2643 
2644 	if (level != SOL_TCP)
2645 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2646 						     optval, optlen);
2647 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2648 }
2649 EXPORT_SYMBOL(tcp_setsockopt);
2650 
2651 #ifdef CONFIG_COMPAT
2652 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2653 			  char __user *optval, unsigned int optlen)
2654 {
2655 	if (level != SOL_TCP)
2656 		return inet_csk_compat_setsockopt(sk, level, optname,
2657 						  optval, optlen);
2658 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2659 }
2660 EXPORT_SYMBOL(compat_tcp_setsockopt);
2661 #endif
2662 
2663 /* Return information about state of tcp endpoint in API format. */
2664 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2665 {
2666 	const struct tcp_sock *tp = tcp_sk(sk);
2667 	const struct inet_connection_sock *icsk = inet_csk(sk);
2668 	u32 now = tcp_time_stamp;
2669 
2670 	memset(info, 0, sizeof(*info));
2671 
2672 	info->tcpi_state = sk->sk_state;
2673 	info->tcpi_ca_state = icsk->icsk_ca_state;
2674 	info->tcpi_retransmits = icsk->icsk_retransmits;
2675 	info->tcpi_probes = icsk->icsk_probes_out;
2676 	info->tcpi_backoff = icsk->icsk_backoff;
2677 
2678 	if (tp->rx_opt.tstamp_ok)
2679 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2680 	if (tcp_is_sack(tp))
2681 		info->tcpi_options |= TCPI_OPT_SACK;
2682 	if (tp->rx_opt.wscale_ok) {
2683 		info->tcpi_options |= TCPI_OPT_WSCALE;
2684 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2685 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2686 	}
2687 
2688 	if (tp->ecn_flags & TCP_ECN_OK)
2689 		info->tcpi_options |= TCPI_OPT_ECN;
2690 	if (tp->ecn_flags & TCP_ECN_SEEN)
2691 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2692 
2693 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2694 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2695 	info->tcpi_snd_mss = tp->mss_cache;
2696 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2697 
2698 	if (sk->sk_state == TCP_LISTEN) {
2699 		info->tcpi_unacked = sk->sk_ack_backlog;
2700 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2701 	} else {
2702 		info->tcpi_unacked = tp->packets_out;
2703 		info->tcpi_sacked = tp->sacked_out;
2704 	}
2705 	info->tcpi_lost = tp->lost_out;
2706 	info->tcpi_retrans = tp->retrans_out;
2707 	info->tcpi_fackets = tp->fackets_out;
2708 
2709 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2710 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2711 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2712 
2713 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2714 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2715 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2716 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2717 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2718 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2719 	info->tcpi_advmss = tp->advmss;
2720 	info->tcpi_reordering = tp->reordering;
2721 
2722 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2723 	info->tcpi_rcv_space = tp->rcvq_space.space;
2724 
2725 	info->tcpi_total_retrans = tp->total_retrans;
2726 }
2727 EXPORT_SYMBOL_GPL(tcp_get_info);
2728 
2729 static int do_tcp_getsockopt(struct sock *sk, int level,
2730 		int optname, char __user *optval, int __user *optlen)
2731 {
2732 	struct inet_connection_sock *icsk = inet_csk(sk);
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 	int val, len;
2735 
2736 	if (get_user(len, optlen))
2737 		return -EFAULT;
2738 
2739 	len = min_t(unsigned int, len, sizeof(int));
2740 
2741 	if (len < 0)
2742 		return -EINVAL;
2743 
2744 	switch (optname) {
2745 	case TCP_MAXSEG:
2746 		val = tp->mss_cache;
2747 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2748 			val = tp->rx_opt.user_mss;
2749 		if (tp->repair)
2750 			val = tp->rx_opt.mss_clamp;
2751 		break;
2752 	case TCP_NODELAY:
2753 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2754 		break;
2755 	case TCP_CORK:
2756 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2757 		break;
2758 	case TCP_KEEPIDLE:
2759 		val = keepalive_time_when(tp) / HZ;
2760 		break;
2761 	case TCP_KEEPINTVL:
2762 		val = keepalive_intvl_when(tp) / HZ;
2763 		break;
2764 	case TCP_KEEPCNT:
2765 		val = keepalive_probes(tp);
2766 		break;
2767 	case TCP_SYNCNT:
2768 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2769 		break;
2770 	case TCP_LINGER2:
2771 		val = tp->linger2;
2772 		if (val >= 0)
2773 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2774 		break;
2775 	case TCP_DEFER_ACCEPT:
2776 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2777 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2778 		break;
2779 	case TCP_WINDOW_CLAMP:
2780 		val = tp->window_clamp;
2781 		break;
2782 	case TCP_INFO: {
2783 		struct tcp_info info;
2784 
2785 		if (get_user(len, optlen))
2786 			return -EFAULT;
2787 
2788 		tcp_get_info(sk, &info);
2789 
2790 		len = min_t(unsigned int, len, sizeof(info));
2791 		if (put_user(len, optlen))
2792 			return -EFAULT;
2793 		if (copy_to_user(optval, &info, len))
2794 			return -EFAULT;
2795 		return 0;
2796 	}
2797 	case TCP_QUICKACK:
2798 		val = !icsk->icsk_ack.pingpong;
2799 		break;
2800 
2801 	case TCP_CONGESTION:
2802 		if (get_user(len, optlen))
2803 			return -EFAULT;
2804 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2805 		if (put_user(len, optlen))
2806 			return -EFAULT;
2807 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2808 			return -EFAULT;
2809 		return 0;
2810 
2811 	case TCP_COOKIE_TRANSACTIONS: {
2812 		struct tcp_cookie_transactions ctd;
2813 		struct tcp_cookie_values *cvp = tp->cookie_values;
2814 
2815 		if (get_user(len, optlen))
2816 			return -EFAULT;
2817 		if (len < sizeof(ctd))
2818 			return -EINVAL;
2819 
2820 		memset(&ctd, 0, sizeof(ctd));
2821 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2822 				   TCP_COOKIE_IN_ALWAYS : 0)
2823 				| (tp->rx_opt.cookie_out_never ?
2824 				   TCP_COOKIE_OUT_NEVER : 0);
2825 
2826 		if (cvp != NULL) {
2827 			ctd.tcpct_flags |= (cvp->s_data_in ?
2828 					    TCP_S_DATA_IN : 0)
2829 					 | (cvp->s_data_out ?
2830 					    TCP_S_DATA_OUT : 0);
2831 
2832 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2833 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2834 
2835 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2836 			       cvp->cookie_pair_size);
2837 			ctd.tcpct_used = cvp->cookie_pair_size;
2838 		}
2839 
2840 		if (put_user(sizeof(ctd), optlen))
2841 			return -EFAULT;
2842 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2843 			return -EFAULT;
2844 		return 0;
2845 	}
2846 	case TCP_THIN_LINEAR_TIMEOUTS:
2847 		val = tp->thin_lto;
2848 		break;
2849 	case TCP_THIN_DUPACK:
2850 		val = tp->thin_dupack;
2851 		break;
2852 
2853 	case TCP_REPAIR:
2854 		val = tp->repair;
2855 		break;
2856 
2857 	case TCP_REPAIR_QUEUE:
2858 		if (tp->repair)
2859 			val = tp->repair_queue;
2860 		else
2861 			return -EINVAL;
2862 		break;
2863 
2864 	case TCP_QUEUE_SEQ:
2865 		if (tp->repair_queue == TCP_SEND_QUEUE)
2866 			val = tp->write_seq;
2867 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2868 			val = tp->rcv_nxt;
2869 		else
2870 			return -EINVAL;
2871 		break;
2872 
2873 	case TCP_USER_TIMEOUT:
2874 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2875 		break;
2876 	default:
2877 		return -ENOPROTOOPT;
2878 	}
2879 
2880 	if (put_user(len, optlen))
2881 		return -EFAULT;
2882 	if (copy_to_user(optval, &val, len))
2883 		return -EFAULT;
2884 	return 0;
2885 }
2886 
2887 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2888 		   int __user *optlen)
2889 {
2890 	struct inet_connection_sock *icsk = inet_csk(sk);
2891 
2892 	if (level != SOL_TCP)
2893 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2894 						     optval, optlen);
2895 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2896 }
2897 EXPORT_SYMBOL(tcp_getsockopt);
2898 
2899 #ifdef CONFIG_COMPAT
2900 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2901 			  char __user *optval, int __user *optlen)
2902 {
2903 	if (level != SOL_TCP)
2904 		return inet_csk_compat_getsockopt(sk, level, optname,
2905 						  optval, optlen);
2906 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2907 }
2908 EXPORT_SYMBOL(compat_tcp_getsockopt);
2909 #endif
2910 
2911 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2912 	netdev_features_t features)
2913 {
2914 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2915 	struct tcphdr *th;
2916 	unsigned int thlen;
2917 	unsigned int seq;
2918 	__be32 delta;
2919 	unsigned int oldlen;
2920 	unsigned int mss;
2921 
2922 	if (!pskb_may_pull(skb, sizeof(*th)))
2923 		goto out;
2924 
2925 	th = tcp_hdr(skb);
2926 	thlen = th->doff * 4;
2927 	if (thlen < sizeof(*th))
2928 		goto out;
2929 
2930 	if (!pskb_may_pull(skb, thlen))
2931 		goto out;
2932 
2933 	oldlen = (u16)~skb->len;
2934 	__skb_pull(skb, thlen);
2935 
2936 	mss = skb_shinfo(skb)->gso_size;
2937 	if (unlikely(skb->len <= mss))
2938 		goto out;
2939 
2940 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2941 		/* Packet is from an untrusted source, reset gso_segs. */
2942 		int type = skb_shinfo(skb)->gso_type;
2943 
2944 		if (unlikely(type &
2945 			     ~(SKB_GSO_TCPV4 |
2946 			       SKB_GSO_DODGY |
2947 			       SKB_GSO_TCP_ECN |
2948 			       SKB_GSO_TCPV6 |
2949 			       0) ||
2950 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2951 			goto out;
2952 
2953 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2954 
2955 		segs = NULL;
2956 		goto out;
2957 	}
2958 
2959 	segs = skb_segment(skb, features);
2960 	if (IS_ERR(segs))
2961 		goto out;
2962 
2963 	delta = htonl(oldlen + (thlen + mss));
2964 
2965 	skb = segs;
2966 	th = tcp_hdr(skb);
2967 	seq = ntohl(th->seq);
2968 
2969 	do {
2970 		th->fin = th->psh = 0;
2971 
2972 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2973 				       (__force u32)delta));
2974 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2975 			th->check =
2976 			     csum_fold(csum_partial(skb_transport_header(skb),
2977 						    thlen, skb->csum));
2978 
2979 		seq += mss;
2980 		skb = skb->next;
2981 		th = tcp_hdr(skb);
2982 
2983 		th->seq = htonl(seq);
2984 		th->cwr = 0;
2985 	} while (skb->next);
2986 
2987 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2988 		      skb->data_len);
2989 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2990 				(__force u32)delta));
2991 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2992 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2993 						   thlen, skb->csum));
2994 
2995 out:
2996 	return segs;
2997 }
2998 EXPORT_SYMBOL(tcp_tso_segment);
2999 
3000 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3001 {
3002 	struct sk_buff **pp = NULL;
3003 	struct sk_buff *p;
3004 	struct tcphdr *th;
3005 	struct tcphdr *th2;
3006 	unsigned int len;
3007 	unsigned int thlen;
3008 	__be32 flags;
3009 	unsigned int mss = 1;
3010 	unsigned int hlen;
3011 	unsigned int off;
3012 	int flush = 1;
3013 	int i;
3014 
3015 	off = skb_gro_offset(skb);
3016 	hlen = off + sizeof(*th);
3017 	th = skb_gro_header_fast(skb, off);
3018 	if (skb_gro_header_hard(skb, hlen)) {
3019 		th = skb_gro_header_slow(skb, hlen, off);
3020 		if (unlikely(!th))
3021 			goto out;
3022 	}
3023 
3024 	thlen = th->doff * 4;
3025 	if (thlen < sizeof(*th))
3026 		goto out;
3027 
3028 	hlen = off + thlen;
3029 	if (skb_gro_header_hard(skb, hlen)) {
3030 		th = skb_gro_header_slow(skb, hlen, off);
3031 		if (unlikely(!th))
3032 			goto out;
3033 	}
3034 
3035 	skb_gro_pull(skb, thlen);
3036 
3037 	len = skb_gro_len(skb);
3038 	flags = tcp_flag_word(th);
3039 
3040 	for (; (p = *head); head = &p->next) {
3041 		if (!NAPI_GRO_CB(p)->same_flow)
3042 			continue;
3043 
3044 		th2 = tcp_hdr(p);
3045 
3046 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3047 			NAPI_GRO_CB(p)->same_flow = 0;
3048 			continue;
3049 		}
3050 
3051 		goto found;
3052 	}
3053 
3054 	goto out_check_final;
3055 
3056 found:
3057 	flush = NAPI_GRO_CB(p)->flush;
3058 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3059 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3060 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3061 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3062 	for (i = sizeof(*th); i < thlen; i += 4)
3063 		flush |= *(u32 *)((u8 *)th + i) ^
3064 			 *(u32 *)((u8 *)th2 + i);
3065 
3066 	mss = skb_shinfo(p)->gso_size;
3067 
3068 	flush |= (len - 1) >= mss;
3069 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3070 
3071 	if (flush || skb_gro_receive(head, skb)) {
3072 		mss = 1;
3073 		goto out_check_final;
3074 	}
3075 
3076 	p = *head;
3077 	th2 = tcp_hdr(p);
3078 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3079 
3080 out_check_final:
3081 	flush = len < mss;
3082 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3083 					TCP_FLAG_RST | TCP_FLAG_SYN |
3084 					TCP_FLAG_FIN));
3085 
3086 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3087 		pp = head;
3088 
3089 out:
3090 	NAPI_GRO_CB(skb)->flush |= flush;
3091 
3092 	return pp;
3093 }
3094 EXPORT_SYMBOL(tcp_gro_receive);
3095 
3096 int tcp_gro_complete(struct sk_buff *skb)
3097 {
3098 	struct tcphdr *th = tcp_hdr(skb);
3099 
3100 	skb->csum_start = skb_transport_header(skb) - skb->head;
3101 	skb->csum_offset = offsetof(struct tcphdr, check);
3102 	skb->ip_summed = CHECKSUM_PARTIAL;
3103 
3104 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3105 
3106 	if (th->cwr)
3107 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3108 
3109 	return 0;
3110 }
3111 EXPORT_SYMBOL(tcp_gro_complete);
3112 
3113 #ifdef CONFIG_TCP_MD5SIG
3114 static unsigned long tcp_md5sig_users;
3115 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3116 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3117 
3118 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3119 {
3120 	int cpu;
3121 
3122 	for_each_possible_cpu(cpu) {
3123 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3124 
3125 		if (p->md5_desc.tfm)
3126 			crypto_free_hash(p->md5_desc.tfm);
3127 	}
3128 	free_percpu(pool);
3129 }
3130 
3131 void tcp_free_md5sig_pool(void)
3132 {
3133 	struct tcp_md5sig_pool __percpu *pool = NULL;
3134 
3135 	spin_lock_bh(&tcp_md5sig_pool_lock);
3136 	if (--tcp_md5sig_users == 0) {
3137 		pool = tcp_md5sig_pool;
3138 		tcp_md5sig_pool = NULL;
3139 	}
3140 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3141 	if (pool)
3142 		__tcp_free_md5sig_pool(pool);
3143 }
3144 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3145 
3146 static struct tcp_md5sig_pool __percpu *
3147 __tcp_alloc_md5sig_pool(struct sock *sk)
3148 {
3149 	int cpu;
3150 	struct tcp_md5sig_pool __percpu *pool;
3151 
3152 	pool = alloc_percpu(struct tcp_md5sig_pool);
3153 	if (!pool)
3154 		return NULL;
3155 
3156 	for_each_possible_cpu(cpu) {
3157 		struct crypto_hash *hash;
3158 
3159 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3160 		if (!hash || IS_ERR(hash))
3161 			goto out_free;
3162 
3163 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3164 	}
3165 	return pool;
3166 out_free:
3167 	__tcp_free_md5sig_pool(pool);
3168 	return NULL;
3169 }
3170 
3171 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3172 {
3173 	struct tcp_md5sig_pool __percpu *pool;
3174 	bool alloc = false;
3175 
3176 retry:
3177 	spin_lock_bh(&tcp_md5sig_pool_lock);
3178 	pool = tcp_md5sig_pool;
3179 	if (tcp_md5sig_users++ == 0) {
3180 		alloc = true;
3181 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3182 	} else if (!pool) {
3183 		tcp_md5sig_users--;
3184 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3185 		cpu_relax();
3186 		goto retry;
3187 	} else
3188 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3189 
3190 	if (alloc) {
3191 		/* we cannot hold spinlock here because this may sleep. */
3192 		struct tcp_md5sig_pool __percpu *p;
3193 
3194 		p = __tcp_alloc_md5sig_pool(sk);
3195 		spin_lock_bh(&tcp_md5sig_pool_lock);
3196 		if (!p) {
3197 			tcp_md5sig_users--;
3198 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3199 			return NULL;
3200 		}
3201 		pool = tcp_md5sig_pool;
3202 		if (pool) {
3203 			/* oops, it has already been assigned. */
3204 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3205 			__tcp_free_md5sig_pool(p);
3206 		} else {
3207 			tcp_md5sig_pool = pool = p;
3208 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3209 		}
3210 	}
3211 	return pool;
3212 }
3213 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3214 
3215 
3216 /**
3217  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3218  *
3219  *	We use percpu structure, so if we succeed, we exit with preemption
3220  *	and BH disabled, to make sure another thread or softirq handling
3221  *	wont try to get same context.
3222  */
3223 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3224 {
3225 	struct tcp_md5sig_pool __percpu *p;
3226 
3227 	local_bh_disable();
3228 
3229 	spin_lock(&tcp_md5sig_pool_lock);
3230 	p = tcp_md5sig_pool;
3231 	if (p)
3232 		tcp_md5sig_users++;
3233 	spin_unlock(&tcp_md5sig_pool_lock);
3234 
3235 	if (p)
3236 		return this_cpu_ptr(p);
3237 
3238 	local_bh_enable();
3239 	return NULL;
3240 }
3241 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3242 
3243 void tcp_put_md5sig_pool(void)
3244 {
3245 	local_bh_enable();
3246 	tcp_free_md5sig_pool();
3247 }
3248 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3249 
3250 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3251 			const struct tcphdr *th)
3252 {
3253 	struct scatterlist sg;
3254 	struct tcphdr hdr;
3255 	int err;
3256 
3257 	/* We are not allowed to change tcphdr, make a local copy */
3258 	memcpy(&hdr, th, sizeof(hdr));
3259 	hdr.check = 0;
3260 
3261 	/* options aren't included in the hash */
3262 	sg_init_one(&sg, &hdr, sizeof(hdr));
3263 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3264 	return err;
3265 }
3266 EXPORT_SYMBOL(tcp_md5_hash_header);
3267 
3268 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3269 			  const struct sk_buff *skb, unsigned int header_len)
3270 {
3271 	struct scatterlist sg;
3272 	const struct tcphdr *tp = tcp_hdr(skb);
3273 	struct hash_desc *desc = &hp->md5_desc;
3274 	unsigned int i;
3275 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3276 					   skb_headlen(skb) - header_len : 0;
3277 	const struct skb_shared_info *shi = skb_shinfo(skb);
3278 	struct sk_buff *frag_iter;
3279 
3280 	sg_init_table(&sg, 1);
3281 
3282 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3283 	if (crypto_hash_update(desc, &sg, head_data_len))
3284 		return 1;
3285 
3286 	for (i = 0; i < shi->nr_frags; ++i) {
3287 		const struct skb_frag_struct *f = &shi->frags[i];
3288 		struct page *page = skb_frag_page(f);
3289 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3290 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3291 			return 1;
3292 	}
3293 
3294 	skb_walk_frags(skb, frag_iter)
3295 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3296 			return 1;
3297 
3298 	return 0;
3299 }
3300 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3301 
3302 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3303 {
3304 	struct scatterlist sg;
3305 
3306 	sg_init_one(&sg, key->key, key->keylen);
3307 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3308 }
3309 EXPORT_SYMBOL(tcp_md5_hash_key);
3310 
3311 #endif
3312 
3313 /**
3314  * Each Responder maintains up to two secret values concurrently for
3315  * efficient secret rollover.  Each secret value has 4 states:
3316  *
3317  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3318  *    Generates new Responder-Cookies, but not yet used for primary
3319  *    verification.  This is a short-term state, typically lasting only
3320  *    one round trip time (RTT).
3321  *
3322  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3323  *    Used both for generation and primary verification.
3324  *
3325  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3326  *    Used for verification, until the first failure that can be
3327  *    verified by the newer Generating secret.  At that time, this
3328  *    cookie's state is changed to Secondary, and the Generating
3329  *    cookie's state is changed to Primary.  This is a short-term state,
3330  *    typically lasting only one round trip time (RTT).
3331  *
3332  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3333  *    Used for secondary verification, after primary verification
3334  *    failures.  This state lasts no more than twice the Maximum Segment
3335  *    Lifetime (2MSL).  Then, the secret is discarded.
3336  */
3337 struct tcp_cookie_secret {
3338 	/* The secret is divided into two parts.  The digest part is the
3339 	 * equivalent of previously hashing a secret and saving the state,
3340 	 * and serves as an initialization vector (IV).  The message part
3341 	 * serves as the trailing secret.
3342 	 */
3343 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3344 	unsigned long			expires;
3345 };
3346 
3347 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3348 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3349 #define TCP_SECRET_LIFE (HZ * 600)
3350 
3351 static struct tcp_cookie_secret tcp_secret_one;
3352 static struct tcp_cookie_secret tcp_secret_two;
3353 
3354 /* Essentially a circular list, without dynamic allocation. */
3355 static struct tcp_cookie_secret *tcp_secret_generating;
3356 static struct tcp_cookie_secret *tcp_secret_primary;
3357 static struct tcp_cookie_secret *tcp_secret_retiring;
3358 static struct tcp_cookie_secret *tcp_secret_secondary;
3359 
3360 static DEFINE_SPINLOCK(tcp_secret_locker);
3361 
3362 /* Select a pseudo-random word in the cookie workspace.
3363  */
3364 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3365 {
3366 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3367 }
3368 
3369 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3370  * Called in softirq context.
3371  * Returns: 0 for success.
3372  */
3373 int tcp_cookie_generator(u32 *bakery)
3374 {
3375 	unsigned long jiffy = jiffies;
3376 
3377 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3378 		spin_lock_bh(&tcp_secret_locker);
3379 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3380 			/* refreshed by another */
3381 			memcpy(bakery,
3382 			       &tcp_secret_generating->secrets[0],
3383 			       COOKIE_WORKSPACE_WORDS);
3384 		} else {
3385 			/* still needs refreshing */
3386 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3387 
3388 			/* The first time, paranoia assumes that the
3389 			 * randomization function isn't as strong.  But,
3390 			 * this secret initialization is delayed until
3391 			 * the last possible moment (packet arrival).
3392 			 * Although that time is observable, it is
3393 			 * unpredictably variable.  Mash in the most
3394 			 * volatile clock bits available, and expire the
3395 			 * secret extra quickly.
3396 			 */
3397 			if (unlikely(tcp_secret_primary->expires ==
3398 				     tcp_secret_secondary->expires)) {
3399 				struct timespec tv;
3400 
3401 				getnstimeofday(&tv);
3402 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3403 					(u32)tv.tv_nsec;
3404 
3405 				tcp_secret_secondary->expires = jiffy
3406 					+ TCP_SECRET_1MSL
3407 					+ (0x0f & tcp_cookie_work(bakery, 0));
3408 			} else {
3409 				tcp_secret_secondary->expires = jiffy
3410 					+ TCP_SECRET_LIFE
3411 					+ (0xff & tcp_cookie_work(bakery, 1));
3412 				tcp_secret_primary->expires = jiffy
3413 					+ TCP_SECRET_2MSL
3414 					+ (0x1f & tcp_cookie_work(bakery, 2));
3415 			}
3416 			memcpy(&tcp_secret_secondary->secrets[0],
3417 			       bakery, COOKIE_WORKSPACE_WORDS);
3418 
3419 			rcu_assign_pointer(tcp_secret_generating,
3420 					   tcp_secret_secondary);
3421 			rcu_assign_pointer(tcp_secret_retiring,
3422 					   tcp_secret_primary);
3423 			/*
3424 			 * Neither call_rcu() nor synchronize_rcu() needed.
3425 			 * Retiring data is not freed.  It is replaced after
3426 			 * further (locked) pointer updates, and a quiet time
3427 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3428 			 */
3429 		}
3430 		spin_unlock_bh(&tcp_secret_locker);
3431 	} else {
3432 		rcu_read_lock_bh();
3433 		memcpy(bakery,
3434 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3435 		       COOKIE_WORKSPACE_WORDS);
3436 		rcu_read_unlock_bh();
3437 	}
3438 	return 0;
3439 }
3440 EXPORT_SYMBOL(tcp_cookie_generator);
3441 
3442 void tcp_done(struct sock *sk)
3443 {
3444 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3445 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3446 
3447 	tcp_set_state(sk, TCP_CLOSE);
3448 	tcp_clear_xmit_timers(sk);
3449 
3450 	sk->sk_shutdown = SHUTDOWN_MASK;
3451 
3452 	if (!sock_flag(sk, SOCK_DEAD))
3453 		sk->sk_state_change(sk);
3454 	else
3455 		inet_csk_destroy_sock(sk);
3456 }
3457 EXPORT_SYMBOL_GPL(tcp_done);
3458 
3459 extern struct tcp_congestion_ops tcp_reno;
3460 
3461 static __initdata unsigned long thash_entries;
3462 static int __init set_thash_entries(char *str)
3463 {
3464 	ssize_t ret;
3465 
3466 	if (!str)
3467 		return 0;
3468 
3469 	ret = kstrtoul(str, 0, &thash_entries);
3470 	if (ret)
3471 		return 0;
3472 
3473 	return 1;
3474 }
3475 __setup("thash_entries=", set_thash_entries);
3476 
3477 void tcp_init_mem(struct net *net)
3478 {
3479 	unsigned long limit = nr_free_buffer_pages() / 8;
3480 	limit = max(limit, 128UL);
3481 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3482 	net->ipv4.sysctl_tcp_mem[1] = limit;
3483 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3484 }
3485 
3486 void __init tcp_init(void)
3487 {
3488 	struct sk_buff *skb = NULL;
3489 	unsigned long limit;
3490 	int max_rshare, max_wshare, cnt;
3491 	unsigned int i;
3492 	unsigned long jiffy = jiffies;
3493 
3494 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3495 
3496 	percpu_counter_init(&tcp_sockets_allocated, 0);
3497 	percpu_counter_init(&tcp_orphan_count, 0);
3498 	tcp_hashinfo.bind_bucket_cachep =
3499 		kmem_cache_create("tcp_bind_bucket",
3500 				  sizeof(struct inet_bind_bucket), 0,
3501 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3502 
3503 	/* Size and allocate the main established and bind bucket
3504 	 * hash tables.
3505 	 *
3506 	 * The methodology is similar to that of the buffer cache.
3507 	 */
3508 	tcp_hashinfo.ehash =
3509 		alloc_large_system_hash("TCP established",
3510 					sizeof(struct inet_ehash_bucket),
3511 					thash_entries,
3512 					(totalram_pages >= 128 * 1024) ?
3513 					13 : 15,
3514 					0,
3515 					NULL,
3516 					&tcp_hashinfo.ehash_mask,
3517 					0,
3518 					thash_entries ? 0 : 512 * 1024);
3519 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3520 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3521 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3522 	}
3523 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3524 		panic("TCP: failed to alloc ehash_locks");
3525 	tcp_hashinfo.bhash =
3526 		alloc_large_system_hash("TCP bind",
3527 					sizeof(struct inet_bind_hashbucket),
3528 					tcp_hashinfo.ehash_mask + 1,
3529 					(totalram_pages >= 128 * 1024) ?
3530 					13 : 15,
3531 					0,
3532 					&tcp_hashinfo.bhash_size,
3533 					NULL,
3534 					0,
3535 					64 * 1024);
3536 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3537 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3538 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3539 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3540 	}
3541 
3542 
3543 	cnt = tcp_hashinfo.ehash_mask + 1;
3544 
3545 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3546 	sysctl_tcp_max_orphans = cnt / 2;
3547 	sysctl_max_syn_backlog = max(128, cnt / 256);
3548 
3549 	tcp_init_mem(&init_net);
3550 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3551 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3552 	max_wshare = min(4UL*1024*1024, limit);
3553 	max_rshare = min(6UL*1024*1024, limit);
3554 
3555 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3556 	sysctl_tcp_wmem[1] = 16*1024;
3557 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3558 
3559 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3560 	sysctl_tcp_rmem[1] = 87380;
3561 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3562 
3563 	pr_info("Hash tables configured (established %u bind %u)\n",
3564 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3565 
3566 	tcp_register_congestion_control(&tcp_reno);
3567 
3568 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3569 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3570 	tcp_secret_one.expires = jiffy; /* past due */
3571 	tcp_secret_two.expires = jiffy; /* past due */
3572 	tcp_secret_generating = &tcp_secret_one;
3573 	tcp_secret_primary = &tcp_secret_one;
3574 	tcp_secret_retiring = &tcp_secret_two;
3575 	tcp_secret_secondary = &tcp_secret_two;
3576 }
3577