xref: /linux/net/ipv4/tcp.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290 
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  *       sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	skb_queue_head_init(&tp->out_of_order_queue);
378 	tcp_init_xmit_timers(sk);
379 	tcp_prequeue_init(tp);
380 	INIT_LIST_HEAD(&tp->tsq_node);
381 
382 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 	tp->mdev = TCP_TIMEOUT_INIT;
384 
385 	/* So many TCP implementations out there (incorrectly) count the
386 	 * initial SYN frame in their delayed-ACK and congestion control
387 	 * algorithms that we must have the following bandaid to talk
388 	 * efficiently to them.  -DaveM
389 	 */
390 	tp->snd_cwnd = TCP_INIT_CWND;
391 
392 	/* See draft-stevens-tcpca-spec-01 for discussion of the
393 	 * initialization of these values.
394 	 */
395 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 	tp->snd_cwnd_clamp = ~0;
397 	tp->mss_cache = TCP_MSS_DEFAULT;
398 
399 	tp->reordering = sysctl_tcp_reordering;
400 	tcp_enable_early_retrans(tp);
401 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402 
403 	sk->sk_state = TCP_CLOSE;
404 
405 	sk->sk_write_space = sk_stream_write_space;
406 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407 
408 	icsk->icsk_sync_mss = tcp_sync_mss;
409 
410 	/* TCP Cookie Transactions */
411 	if (sysctl_tcp_cookie_size > 0) {
412 		/* Default, cookies without s_data_payload. */
413 		tp->cookie_values =
414 			kzalloc(sizeof(*tp->cookie_values),
415 				sk->sk_allocation);
416 		if (tp->cookie_values != NULL)
417 			kref_init(&tp->cookie_values->kref);
418 	}
419 	/* Presumed zeroed, in order of appearance:
420 	 *	cookie_in_always, cookie_out_never,
421 	 *	s_data_constant, s_data_in, s_data_out
422 	 */
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sock_update_memcg(sk);
428 	sk_sockets_allocated_inc(sk);
429 	local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432 
433 /*
434  *	Wait for a TCP event.
435  *
436  *	Note that we don't need to lock the socket, as the upper poll layers
437  *	take care of normal races (between the test and the event) and we don't
438  *	go look at any of the socket buffers directly.
439  */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 	unsigned int mask;
443 	struct sock *sk = sock->sk;
444 	const struct tcp_sock *tp = tcp_sk(sk);
445 
446 	sock_poll_wait(file, sk_sleep(sk), wait);
447 	if (sk->sk_state == TCP_LISTEN)
448 		return inet_csk_listen_poll(sk);
449 
450 	/* Socket is not locked. We are protected from async events
451 	 * by poll logic and correct handling of state changes
452 	 * made by other threads is impossible in any case.
453 	 */
454 
455 	mask = 0;
456 
457 	/*
458 	 * POLLHUP is certainly not done right. But poll() doesn't
459 	 * have a notion of HUP in just one direction, and for a
460 	 * socket the read side is more interesting.
461 	 *
462 	 * Some poll() documentation says that POLLHUP is incompatible
463 	 * with the POLLOUT/POLLWR flags, so somebody should check this
464 	 * all. But careful, it tends to be safer to return too many
465 	 * bits than too few, and you can easily break real applications
466 	 * if you don't tell them that something has hung up!
467 	 *
468 	 * Check-me.
469 	 *
470 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 	 * our fs/select.c). It means that after we received EOF,
472 	 * poll always returns immediately, making impossible poll() on write()
473 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 	 * if and only if shutdown has been made in both directions.
475 	 * Actually, it is interesting to look how Solaris and DUX
476 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 	 * then we could set it on SND_SHUTDOWN. BTW examples given
478 	 * in Stevens' books assume exactly this behaviour, it explains
479 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
480 	 *
481 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 	 * blocking on fresh not-connected or disconnected socket. --ANK
483 	 */
484 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 		mask |= POLLHUP;
486 	if (sk->sk_shutdown & RCV_SHUTDOWN)
487 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488 
489 	/* Connected? */
490 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
491 		int target = sock_rcvlowat(sk, 0, INT_MAX);
492 
493 		if (tp->urg_seq == tp->copied_seq &&
494 		    !sock_flag(sk, SOCK_URGINLINE) &&
495 		    tp->urg_data)
496 			target++;
497 
498 		/* Potential race condition. If read of tp below will
499 		 * escape above sk->sk_state, we can be illegally awaken
500 		 * in SYN_* states. */
501 		if (tp->rcv_nxt - tp->copied_seq >= target)
502 			mask |= POLLIN | POLLRDNORM;
503 
504 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
505 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
506 				mask |= POLLOUT | POLLWRNORM;
507 			} else {  /* send SIGIO later */
508 				set_bit(SOCK_ASYNC_NOSPACE,
509 					&sk->sk_socket->flags);
510 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
511 
512 				/* Race breaker. If space is freed after
513 				 * wspace test but before the flags are set,
514 				 * IO signal will be lost.
515 				 */
516 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
517 					mask |= POLLOUT | POLLWRNORM;
518 			}
519 		} else
520 			mask |= POLLOUT | POLLWRNORM;
521 
522 		if (tp->urg_data & TCP_URG_VALID)
523 			mask |= POLLPRI;
524 	}
525 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
526 	smp_rmb();
527 	if (sk->sk_err)
528 		mask |= POLLERR;
529 
530 	return mask;
531 }
532 EXPORT_SYMBOL(tcp_poll);
533 
534 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
535 {
536 	struct tcp_sock *tp = tcp_sk(sk);
537 	int answ;
538 
539 	switch (cmd) {
540 	case SIOCINQ:
541 		if (sk->sk_state == TCP_LISTEN)
542 			return -EINVAL;
543 
544 		lock_sock(sk);
545 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
546 			answ = 0;
547 		else if (sock_flag(sk, SOCK_URGINLINE) ||
548 			 !tp->urg_data ||
549 			 before(tp->urg_seq, tp->copied_seq) ||
550 			 !before(tp->urg_seq, tp->rcv_nxt)) {
551 			struct sk_buff *skb;
552 
553 			answ = tp->rcv_nxt - tp->copied_seq;
554 
555 			/* Subtract 1, if FIN is in queue. */
556 			skb = skb_peek_tail(&sk->sk_receive_queue);
557 			if (answ && skb)
558 				answ -= tcp_hdr(skb)->fin;
559 		} else
560 			answ = tp->urg_seq - tp->copied_seq;
561 		release_sock(sk);
562 		break;
563 	case SIOCATMARK:
564 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 		break;
566 	case SIOCOUTQ:
567 		if (sk->sk_state == TCP_LISTEN)
568 			return -EINVAL;
569 
570 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 			answ = 0;
572 		else
573 			answ = tp->write_seq - tp->snd_una;
574 		break;
575 	case SIOCOUTQNSD:
576 		if (sk->sk_state == TCP_LISTEN)
577 			return -EINVAL;
578 
579 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 			answ = 0;
581 		else
582 			answ = tp->write_seq - tp->snd_nxt;
583 		break;
584 	default:
585 		return -ENOIOCTLCMD;
586 	}
587 
588 	return put_user(answ, (int __user *)arg);
589 }
590 EXPORT_SYMBOL(tcp_ioctl);
591 
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
593 {
594 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 	tp->pushed_seq = tp->write_seq;
596 }
597 
598 static inline bool forced_push(const struct tcp_sock *tp)
599 {
600 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601 }
602 
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
607 
608 	skb->csum    = 0;
609 	tcb->seq     = tcb->end_seq = tp->write_seq;
610 	tcb->tcp_flags = TCPHDR_ACK;
611 	tcb->sacked  = 0;
612 	skb_header_release(skb);
613 	tcp_add_write_queue_tail(sk, skb);
614 	sk->sk_wmem_queued += skb->truesize;
615 	sk_mem_charge(sk, skb->truesize);
616 	if (tp->nonagle & TCP_NAGLE_PUSH)
617 		tp->nonagle &= ~TCP_NAGLE_PUSH;
618 }
619 
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
621 {
622 	if (flags & MSG_OOB)
623 		tp->snd_up = tp->write_seq;
624 }
625 
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 			    int nonagle)
628 {
629 	if (tcp_send_head(sk)) {
630 		struct tcp_sock *tp = tcp_sk(sk);
631 
632 		if (!(flags & MSG_MORE) || forced_push(tp))
633 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
634 
635 		tcp_mark_urg(tp, flags);
636 		__tcp_push_pending_frames(sk, mss_now,
637 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
638 	}
639 }
640 
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 				unsigned int offset, size_t len)
643 {
644 	struct tcp_splice_state *tss = rd_desc->arg.data;
645 	int ret;
646 
647 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 			      tss->flags);
649 	if (ret > 0)
650 		rd_desc->count -= ret;
651 	return ret;
652 }
653 
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
655 {
656 	/* Store TCP splice context information in read_descriptor_t. */
657 	read_descriptor_t rd_desc = {
658 		.arg.data = tss,
659 		.count	  = tss->len,
660 	};
661 
662 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
663 }
664 
665 /**
666  *  tcp_splice_read - splice data from TCP socket to a pipe
667  * @sock:	socket to splice from
668  * @ppos:	position (not valid)
669  * @pipe:	pipe to splice to
670  * @len:	number of bytes to splice
671  * @flags:	splice modifier flags
672  *
673  * Description:
674  *    Will read pages from given socket and fill them into a pipe.
675  *
676  **/
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 			struct pipe_inode_info *pipe, size_t len,
679 			unsigned int flags)
680 {
681 	struct sock *sk = sock->sk;
682 	struct tcp_splice_state tss = {
683 		.pipe = pipe,
684 		.len = len,
685 		.flags = flags,
686 	};
687 	long timeo;
688 	ssize_t spliced;
689 	int ret;
690 
691 	sock_rps_record_flow(sk);
692 	/*
693 	 * We can't seek on a socket input
694 	 */
695 	if (unlikely(*ppos))
696 		return -ESPIPE;
697 
698 	ret = spliced = 0;
699 
700 	lock_sock(sk);
701 
702 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 	while (tss.len) {
704 		ret = __tcp_splice_read(sk, &tss);
705 		if (ret < 0)
706 			break;
707 		else if (!ret) {
708 			if (spliced)
709 				break;
710 			if (sock_flag(sk, SOCK_DONE))
711 				break;
712 			if (sk->sk_err) {
713 				ret = sock_error(sk);
714 				break;
715 			}
716 			if (sk->sk_shutdown & RCV_SHUTDOWN)
717 				break;
718 			if (sk->sk_state == TCP_CLOSE) {
719 				/*
720 				 * This occurs when user tries to read
721 				 * from never connected socket.
722 				 */
723 				if (!sock_flag(sk, SOCK_DONE))
724 					ret = -ENOTCONN;
725 				break;
726 			}
727 			if (!timeo) {
728 				ret = -EAGAIN;
729 				break;
730 			}
731 			sk_wait_data(sk, &timeo);
732 			if (signal_pending(current)) {
733 				ret = sock_intr_errno(timeo);
734 				break;
735 			}
736 			continue;
737 		}
738 		tss.len -= ret;
739 		spliced += ret;
740 
741 		if (!timeo)
742 			break;
743 		release_sock(sk);
744 		lock_sock(sk);
745 
746 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 		    signal_pending(current))
749 			break;
750 	}
751 
752 	release_sock(sk);
753 
754 	if (spliced)
755 		return spliced;
756 
757 	return ret;
758 }
759 EXPORT_SYMBOL(tcp_splice_read);
760 
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
762 {
763 	struct sk_buff *skb;
764 
765 	/* The TCP header must be at least 32-bit aligned.  */
766 	size = ALIGN(size, 4);
767 
768 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 	if (skb) {
770 		if (sk_wmem_schedule(sk, skb->truesize)) {
771 			skb_reserve(skb, sk->sk_prot->max_header);
772 			/*
773 			 * Make sure that we have exactly size bytes
774 			 * available to the caller, no more, no less.
775 			 */
776 			skb->avail_size = size;
777 			return skb;
778 		}
779 		__kfree_skb(skb);
780 	} else {
781 		sk->sk_prot->enter_memory_pressure(sk);
782 		sk_stream_moderate_sndbuf(sk);
783 	}
784 	return NULL;
785 }
786 
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 				       int large_allowed)
789 {
790 	struct tcp_sock *tp = tcp_sk(sk);
791 	u32 xmit_size_goal, old_size_goal;
792 
793 	xmit_size_goal = mss_now;
794 
795 	if (large_allowed && sk_can_gso(sk)) {
796 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 				  inet_csk(sk)->icsk_af_ops->net_header_len -
798 				  inet_csk(sk)->icsk_ext_hdr_len -
799 				  tp->tcp_header_len);
800 
801 		/* TSQ : try to have two TSO segments in flight */
802 		xmit_size_goal = min_t(u32, xmit_size_goal,
803 				       sysctl_tcp_limit_output_bytes >> 1);
804 
805 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
806 
807 		/* We try hard to avoid divides here */
808 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
809 
810 		if (likely(old_size_goal <= xmit_size_goal &&
811 			   old_size_goal + mss_now > xmit_size_goal)) {
812 			xmit_size_goal = old_size_goal;
813 		} else {
814 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
815 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
816 		}
817 	}
818 
819 	return max(xmit_size_goal, mss_now);
820 }
821 
822 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
823 {
824 	int mss_now;
825 
826 	mss_now = tcp_current_mss(sk);
827 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
828 
829 	return mss_now;
830 }
831 
832 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
833 			 size_t psize, int flags)
834 {
835 	struct tcp_sock *tp = tcp_sk(sk);
836 	int mss_now, size_goal;
837 	int err;
838 	ssize_t copied;
839 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
840 
841 	/* Wait for a connection to finish. */
842 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
843 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
844 			goto out_err;
845 
846 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
847 
848 	mss_now = tcp_send_mss(sk, &size_goal, flags);
849 	copied = 0;
850 
851 	err = -EPIPE;
852 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
853 		goto out_err;
854 
855 	while (psize > 0) {
856 		struct sk_buff *skb = tcp_write_queue_tail(sk);
857 		struct page *page = pages[poffset / PAGE_SIZE];
858 		int copy, i;
859 		int offset = poffset % PAGE_SIZE;
860 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
861 		bool can_coalesce;
862 
863 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
864 new_segment:
865 			if (!sk_stream_memory_free(sk))
866 				goto wait_for_sndbuf;
867 
868 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
869 			if (!skb)
870 				goto wait_for_memory;
871 
872 			skb_entail(sk, skb);
873 			copy = size_goal;
874 		}
875 
876 		if (copy > size)
877 			copy = size;
878 
879 		i = skb_shinfo(skb)->nr_frags;
880 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
881 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
882 			tcp_mark_push(tp, skb);
883 			goto new_segment;
884 		}
885 		if (!sk_wmem_schedule(sk, copy))
886 			goto wait_for_memory;
887 
888 		if (can_coalesce) {
889 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
890 		} else {
891 			get_page(page);
892 			skb_fill_page_desc(skb, i, page, offset, copy);
893 		}
894 
895 		skb->len += copy;
896 		skb->data_len += copy;
897 		skb->truesize += copy;
898 		sk->sk_wmem_queued += copy;
899 		sk_mem_charge(sk, copy);
900 		skb->ip_summed = CHECKSUM_PARTIAL;
901 		tp->write_seq += copy;
902 		TCP_SKB_CB(skb)->end_seq += copy;
903 		skb_shinfo(skb)->gso_segs = 0;
904 
905 		if (!copied)
906 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
907 
908 		copied += copy;
909 		poffset += copy;
910 		if (!(psize -= copy))
911 			goto out;
912 
913 		if (skb->len < size_goal || (flags & MSG_OOB))
914 			continue;
915 
916 		if (forced_push(tp)) {
917 			tcp_mark_push(tp, skb);
918 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
919 		} else if (skb == tcp_send_head(sk))
920 			tcp_push_one(sk, mss_now);
921 		continue;
922 
923 wait_for_sndbuf:
924 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
925 wait_for_memory:
926 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
927 
928 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
929 			goto do_error;
930 
931 		mss_now = tcp_send_mss(sk, &size_goal, flags);
932 	}
933 
934 out:
935 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
936 		tcp_push(sk, flags, mss_now, tp->nonagle);
937 	return copied;
938 
939 do_error:
940 	if (copied)
941 		goto out;
942 out_err:
943 	return sk_stream_error(sk, flags, err);
944 }
945 
946 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
947 		 size_t size, int flags)
948 {
949 	ssize_t res;
950 
951 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
952 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
953 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
954 					flags);
955 
956 	lock_sock(sk);
957 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
958 	release_sock(sk);
959 	return res;
960 }
961 EXPORT_SYMBOL(tcp_sendpage);
962 
963 static inline int select_size(const struct sock *sk, bool sg)
964 {
965 	const struct tcp_sock *tp = tcp_sk(sk);
966 	int tmp = tp->mss_cache;
967 
968 	if (sg) {
969 		if (sk_can_gso(sk)) {
970 			/* Small frames wont use a full page:
971 			 * Payload will immediately follow tcp header.
972 			 */
973 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
974 		} else {
975 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
976 
977 			if (tmp >= pgbreak &&
978 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
979 				tmp = pgbreak;
980 		}
981 	}
982 
983 	return tmp;
984 }
985 
986 void tcp_free_fastopen_req(struct tcp_sock *tp)
987 {
988 	if (tp->fastopen_req != NULL) {
989 		kfree(tp->fastopen_req);
990 		tp->fastopen_req = NULL;
991 	}
992 }
993 
994 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
995 {
996 	struct tcp_sock *tp = tcp_sk(sk);
997 	int err, flags;
998 
999 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1000 		return -EOPNOTSUPP;
1001 	if (tp->fastopen_req != NULL)
1002 		return -EALREADY; /* Another Fast Open is in progress */
1003 
1004 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1005 				   sk->sk_allocation);
1006 	if (unlikely(tp->fastopen_req == NULL))
1007 		return -ENOBUFS;
1008 	tp->fastopen_req->data = msg;
1009 
1010 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1011 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1012 				    msg->msg_namelen, flags);
1013 	*size = tp->fastopen_req->copied;
1014 	tcp_free_fastopen_req(tp);
1015 	return err;
1016 }
1017 
1018 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1019 		size_t size)
1020 {
1021 	struct iovec *iov;
1022 	struct tcp_sock *tp = tcp_sk(sk);
1023 	struct sk_buff *skb;
1024 	int iovlen, flags, err, copied = 0;
1025 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1026 	bool sg;
1027 	long timeo;
1028 
1029 	lock_sock(sk);
1030 
1031 	flags = msg->msg_flags;
1032 	if (flags & MSG_FASTOPEN) {
1033 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1034 		if (err == -EINPROGRESS && copied_syn > 0)
1035 			goto out;
1036 		else if (err)
1037 			goto out_err;
1038 		offset = copied_syn;
1039 	}
1040 
1041 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1042 
1043 	/* Wait for a connection to finish. */
1044 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1045 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1046 			goto do_error;
1047 
1048 	if (unlikely(tp->repair)) {
1049 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1050 			copied = tcp_send_rcvq(sk, msg, size);
1051 			goto out;
1052 		}
1053 
1054 		err = -EINVAL;
1055 		if (tp->repair_queue == TCP_NO_QUEUE)
1056 			goto out_err;
1057 
1058 		/* 'common' sending to sendq */
1059 	}
1060 
1061 	/* This should be in poll */
1062 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1063 
1064 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 
1066 	/* Ok commence sending. */
1067 	iovlen = msg->msg_iovlen;
1068 	iov = msg->msg_iov;
1069 	copied = 0;
1070 
1071 	err = -EPIPE;
1072 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1073 		goto out_err;
1074 
1075 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1076 
1077 	while (--iovlen >= 0) {
1078 		size_t seglen = iov->iov_len;
1079 		unsigned char __user *from = iov->iov_base;
1080 
1081 		iov++;
1082 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1083 			if (offset >= seglen) {
1084 				offset -= seglen;
1085 				continue;
1086 			}
1087 			seglen -= offset;
1088 			from += offset;
1089 			offset = 0;
1090 		}
1091 
1092 		while (seglen > 0) {
1093 			int copy = 0;
1094 			int max = size_goal;
1095 
1096 			skb = tcp_write_queue_tail(sk);
1097 			if (tcp_send_head(sk)) {
1098 				if (skb->ip_summed == CHECKSUM_NONE)
1099 					max = mss_now;
1100 				copy = max - skb->len;
1101 			}
1102 
1103 			if (copy <= 0) {
1104 new_segment:
1105 				/* Allocate new segment. If the interface is SG,
1106 				 * allocate skb fitting to single page.
1107 				 */
1108 				if (!sk_stream_memory_free(sk))
1109 					goto wait_for_sndbuf;
1110 
1111 				skb = sk_stream_alloc_skb(sk,
1112 							  select_size(sk, sg),
1113 							  sk->sk_allocation);
1114 				if (!skb)
1115 					goto wait_for_memory;
1116 
1117 				/*
1118 				 * Check whether we can use HW checksum.
1119 				 */
1120 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1121 					skb->ip_summed = CHECKSUM_PARTIAL;
1122 
1123 				skb_entail(sk, skb);
1124 				copy = size_goal;
1125 				max = size_goal;
1126 			}
1127 
1128 			/* Try to append data to the end of skb. */
1129 			if (copy > seglen)
1130 				copy = seglen;
1131 
1132 			/* Where to copy to? */
1133 			if (skb_availroom(skb) > 0) {
1134 				/* We have some space in skb head. Superb! */
1135 				copy = min_t(int, copy, skb_availroom(skb));
1136 				err = skb_add_data_nocache(sk, skb, from, copy);
1137 				if (err)
1138 					goto do_fault;
1139 			} else {
1140 				bool merge = false;
1141 				int i = skb_shinfo(skb)->nr_frags;
1142 				struct page *page = sk->sk_sndmsg_page;
1143 				int off;
1144 
1145 				if (page && page_count(page) == 1)
1146 					sk->sk_sndmsg_off = 0;
1147 
1148 				off = sk->sk_sndmsg_off;
1149 
1150 				if (skb_can_coalesce(skb, i, page, off) &&
1151 				    off != PAGE_SIZE) {
1152 					/* We can extend the last page
1153 					 * fragment. */
1154 					merge = true;
1155 				} else if (i == MAX_SKB_FRAGS || !sg) {
1156 					/* Need to add new fragment and cannot
1157 					 * do this because interface is non-SG,
1158 					 * or because all the page slots are
1159 					 * busy. */
1160 					tcp_mark_push(tp, skb);
1161 					goto new_segment;
1162 				} else if (page) {
1163 					if (off == PAGE_SIZE) {
1164 						put_page(page);
1165 						sk->sk_sndmsg_page = page = NULL;
1166 						off = 0;
1167 					}
1168 				} else
1169 					off = 0;
1170 
1171 				if (copy > PAGE_SIZE - off)
1172 					copy = PAGE_SIZE - off;
1173 
1174 				if (!sk_wmem_schedule(sk, copy))
1175 					goto wait_for_memory;
1176 
1177 				if (!page) {
1178 					/* Allocate new cache page. */
1179 					if (!(page = sk_stream_alloc_page(sk)))
1180 						goto wait_for_memory;
1181 				}
1182 
1183 				/* Time to copy data. We are close to
1184 				 * the end! */
1185 				err = skb_copy_to_page_nocache(sk, from, skb,
1186 							       page, off, copy);
1187 				if (err) {
1188 					/* If this page was new, give it to the
1189 					 * socket so it does not get leaked.
1190 					 */
1191 					if (!sk->sk_sndmsg_page) {
1192 						sk->sk_sndmsg_page = page;
1193 						sk->sk_sndmsg_off = 0;
1194 					}
1195 					goto do_error;
1196 				}
1197 
1198 				/* Update the skb. */
1199 				if (merge) {
1200 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1201 				} else {
1202 					skb_fill_page_desc(skb, i, page, off, copy);
1203 					if (sk->sk_sndmsg_page) {
1204 						get_page(page);
1205 					} else if (off + copy < PAGE_SIZE) {
1206 						get_page(page);
1207 						sk->sk_sndmsg_page = page;
1208 					}
1209 				}
1210 
1211 				sk->sk_sndmsg_off = off + copy;
1212 			}
1213 
1214 			if (!copied)
1215 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1216 
1217 			tp->write_seq += copy;
1218 			TCP_SKB_CB(skb)->end_seq += copy;
1219 			skb_shinfo(skb)->gso_segs = 0;
1220 
1221 			from += copy;
1222 			copied += copy;
1223 			if ((seglen -= copy) == 0 && iovlen == 0)
1224 				goto out;
1225 
1226 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1227 				continue;
1228 
1229 			if (forced_push(tp)) {
1230 				tcp_mark_push(tp, skb);
1231 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1232 			} else if (skb == tcp_send_head(sk))
1233 				tcp_push_one(sk, mss_now);
1234 			continue;
1235 
1236 wait_for_sndbuf:
1237 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1238 wait_for_memory:
1239 			if (copied && likely(!tp->repair))
1240 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1241 
1242 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1243 				goto do_error;
1244 
1245 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1246 		}
1247 	}
1248 
1249 out:
1250 	if (copied && likely(!tp->repair))
1251 		tcp_push(sk, flags, mss_now, tp->nonagle);
1252 	release_sock(sk);
1253 	return copied + copied_syn;
1254 
1255 do_fault:
1256 	if (!skb->len) {
1257 		tcp_unlink_write_queue(skb, sk);
1258 		/* It is the one place in all of TCP, except connection
1259 		 * reset, where we can be unlinking the send_head.
1260 		 */
1261 		tcp_check_send_head(sk, skb);
1262 		sk_wmem_free_skb(sk, skb);
1263 	}
1264 
1265 do_error:
1266 	if (copied + copied_syn)
1267 		goto out;
1268 out_err:
1269 	err = sk_stream_error(sk, flags, err);
1270 	release_sock(sk);
1271 	return err;
1272 }
1273 EXPORT_SYMBOL(tcp_sendmsg);
1274 
1275 /*
1276  *	Handle reading urgent data. BSD has very simple semantics for
1277  *	this, no blocking and very strange errors 8)
1278  */
1279 
1280 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1281 {
1282 	struct tcp_sock *tp = tcp_sk(sk);
1283 
1284 	/* No URG data to read. */
1285 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1286 	    tp->urg_data == TCP_URG_READ)
1287 		return -EINVAL;	/* Yes this is right ! */
1288 
1289 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1290 		return -ENOTCONN;
1291 
1292 	if (tp->urg_data & TCP_URG_VALID) {
1293 		int err = 0;
1294 		char c = tp->urg_data;
1295 
1296 		if (!(flags & MSG_PEEK))
1297 			tp->urg_data = TCP_URG_READ;
1298 
1299 		/* Read urgent data. */
1300 		msg->msg_flags |= MSG_OOB;
1301 
1302 		if (len > 0) {
1303 			if (!(flags & MSG_TRUNC))
1304 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1305 			len = 1;
1306 		} else
1307 			msg->msg_flags |= MSG_TRUNC;
1308 
1309 		return err ? -EFAULT : len;
1310 	}
1311 
1312 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1313 		return 0;
1314 
1315 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1316 	 * the available implementations agree in this case:
1317 	 * this call should never block, independent of the
1318 	 * blocking state of the socket.
1319 	 * Mike <pall@rz.uni-karlsruhe.de>
1320 	 */
1321 	return -EAGAIN;
1322 }
1323 
1324 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1325 {
1326 	struct sk_buff *skb;
1327 	int copied = 0, err = 0;
1328 
1329 	/* XXX -- need to support SO_PEEK_OFF */
1330 
1331 	skb_queue_walk(&sk->sk_write_queue, skb) {
1332 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1333 		if (err)
1334 			break;
1335 
1336 		copied += skb->len;
1337 	}
1338 
1339 	return err ?: copied;
1340 }
1341 
1342 /* Clean up the receive buffer for full frames taken by the user,
1343  * then send an ACK if necessary.  COPIED is the number of bytes
1344  * tcp_recvmsg has given to the user so far, it speeds up the
1345  * calculation of whether or not we must ACK for the sake of
1346  * a window update.
1347  */
1348 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1349 {
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 	bool time_to_ack = false;
1352 
1353 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1354 
1355 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1356 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1357 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1358 
1359 	if (inet_csk_ack_scheduled(sk)) {
1360 		const struct inet_connection_sock *icsk = inet_csk(sk);
1361 		   /* Delayed ACKs frequently hit locked sockets during bulk
1362 		    * receive. */
1363 		if (icsk->icsk_ack.blocked ||
1364 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1365 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1366 		    /*
1367 		     * If this read emptied read buffer, we send ACK, if
1368 		     * connection is not bidirectional, user drained
1369 		     * receive buffer and there was a small segment
1370 		     * in queue.
1371 		     */
1372 		    (copied > 0 &&
1373 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1374 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1375 		       !icsk->icsk_ack.pingpong)) &&
1376 		      !atomic_read(&sk->sk_rmem_alloc)))
1377 			time_to_ack = true;
1378 	}
1379 
1380 	/* We send an ACK if we can now advertise a non-zero window
1381 	 * which has been raised "significantly".
1382 	 *
1383 	 * Even if window raised up to infinity, do not send window open ACK
1384 	 * in states, where we will not receive more. It is useless.
1385 	 */
1386 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1387 		__u32 rcv_window_now = tcp_receive_window(tp);
1388 
1389 		/* Optimize, __tcp_select_window() is not cheap. */
1390 		if (2*rcv_window_now <= tp->window_clamp) {
1391 			__u32 new_window = __tcp_select_window(sk);
1392 
1393 			/* Send ACK now, if this read freed lots of space
1394 			 * in our buffer. Certainly, new_window is new window.
1395 			 * We can advertise it now, if it is not less than current one.
1396 			 * "Lots" means "at least twice" here.
1397 			 */
1398 			if (new_window && new_window >= 2 * rcv_window_now)
1399 				time_to_ack = true;
1400 		}
1401 	}
1402 	if (time_to_ack)
1403 		tcp_send_ack(sk);
1404 }
1405 
1406 static void tcp_prequeue_process(struct sock *sk)
1407 {
1408 	struct sk_buff *skb;
1409 	struct tcp_sock *tp = tcp_sk(sk);
1410 
1411 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1412 
1413 	/* RX process wants to run with disabled BHs, though it is not
1414 	 * necessary */
1415 	local_bh_disable();
1416 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1417 		sk_backlog_rcv(sk, skb);
1418 	local_bh_enable();
1419 
1420 	/* Clear memory counter. */
1421 	tp->ucopy.memory = 0;
1422 }
1423 
1424 #ifdef CONFIG_NET_DMA
1425 static void tcp_service_net_dma(struct sock *sk, bool wait)
1426 {
1427 	dma_cookie_t done, used;
1428 	dma_cookie_t last_issued;
1429 	struct tcp_sock *tp = tcp_sk(sk);
1430 
1431 	if (!tp->ucopy.dma_chan)
1432 		return;
1433 
1434 	last_issued = tp->ucopy.dma_cookie;
1435 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1436 
1437 	do {
1438 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1439 					      last_issued, &done,
1440 					      &used) == DMA_SUCCESS) {
1441 			/* Safe to free early-copied skbs now */
1442 			__skb_queue_purge(&sk->sk_async_wait_queue);
1443 			break;
1444 		} else {
1445 			struct sk_buff *skb;
1446 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1447 			       (dma_async_is_complete(skb->dma_cookie, done,
1448 						      used) == DMA_SUCCESS)) {
1449 				__skb_dequeue(&sk->sk_async_wait_queue);
1450 				kfree_skb(skb);
1451 			}
1452 		}
1453 	} while (wait);
1454 }
1455 #endif
1456 
1457 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1458 {
1459 	struct sk_buff *skb;
1460 	u32 offset;
1461 
1462 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1463 		offset = seq - TCP_SKB_CB(skb)->seq;
1464 		if (tcp_hdr(skb)->syn)
1465 			offset--;
1466 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1467 			*off = offset;
1468 			return skb;
1469 		}
1470 	}
1471 	return NULL;
1472 }
1473 
1474 /*
1475  * This routine provides an alternative to tcp_recvmsg() for routines
1476  * that would like to handle copying from skbuffs directly in 'sendfile'
1477  * fashion.
1478  * Note:
1479  *	- It is assumed that the socket was locked by the caller.
1480  *	- The routine does not block.
1481  *	- At present, there is no support for reading OOB data
1482  *	  or for 'peeking' the socket using this routine
1483  *	  (although both would be easy to implement).
1484  */
1485 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1486 		  sk_read_actor_t recv_actor)
1487 {
1488 	struct sk_buff *skb;
1489 	struct tcp_sock *tp = tcp_sk(sk);
1490 	u32 seq = tp->copied_seq;
1491 	u32 offset;
1492 	int copied = 0;
1493 
1494 	if (sk->sk_state == TCP_LISTEN)
1495 		return -ENOTCONN;
1496 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1497 		if (offset < skb->len) {
1498 			int used;
1499 			size_t len;
1500 
1501 			len = skb->len - offset;
1502 			/* Stop reading if we hit a patch of urgent data */
1503 			if (tp->urg_data) {
1504 				u32 urg_offset = tp->urg_seq - seq;
1505 				if (urg_offset < len)
1506 					len = urg_offset;
1507 				if (!len)
1508 					break;
1509 			}
1510 			used = recv_actor(desc, skb, offset, len);
1511 			if (used < 0) {
1512 				if (!copied)
1513 					copied = used;
1514 				break;
1515 			} else if (used <= len) {
1516 				seq += used;
1517 				copied += used;
1518 				offset += used;
1519 			}
1520 			/*
1521 			 * If recv_actor drops the lock (e.g. TCP splice
1522 			 * receive) the skb pointer might be invalid when
1523 			 * getting here: tcp_collapse might have deleted it
1524 			 * while aggregating skbs from the socket queue.
1525 			 */
1526 			skb = tcp_recv_skb(sk, seq-1, &offset);
1527 			if (!skb || (offset+1 != skb->len))
1528 				break;
1529 		}
1530 		if (tcp_hdr(skb)->fin) {
1531 			sk_eat_skb(sk, skb, false);
1532 			++seq;
1533 			break;
1534 		}
1535 		sk_eat_skb(sk, skb, false);
1536 		if (!desc->count)
1537 			break;
1538 		tp->copied_seq = seq;
1539 	}
1540 	tp->copied_seq = seq;
1541 
1542 	tcp_rcv_space_adjust(sk);
1543 
1544 	/* Clean up data we have read: This will do ACK frames. */
1545 	if (copied > 0)
1546 		tcp_cleanup_rbuf(sk, copied);
1547 	return copied;
1548 }
1549 EXPORT_SYMBOL(tcp_read_sock);
1550 
1551 /*
1552  *	This routine copies from a sock struct into the user buffer.
1553  *
1554  *	Technical note: in 2.3 we work on _locked_ socket, so that
1555  *	tricks with *seq access order and skb->users are not required.
1556  *	Probably, code can be easily improved even more.
1557  */
1558 
1559 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1560 		size_t len, int nonblock, int flags, int *addr_len)
1561 {
1562 	struct tcp_sock *tp = tcp_sk(sk);
1563 	int copied = 0;
1564 	u32 peek_seq;
1565 	u32 *seq;
1566 	unsigned long used;
1567 	int err;
1568 	int target;		/* Read at least this many bytes */
1569 	long timeo;
1570 	struct task_struct *user_recv = NULL;
1571 	bool copied_early = false;
1572 	struct sk_buff *skb;
1573 	u32 urg_hole = 0;
1574 
1575 	lock_sock(sk);
1576 
1577 	err = -ENOTCONN;
1578 	if (sk->sk_state == TCP_LISTEN)
1579 		goto out;
1580 
1581 	timeo = sock_rcvtimeo(sk, nonblock);
1582 
1583 	/* Urgent data needs to be handled specially. */
1584 	if (flags & MSG_OOB)
1585 		goto recv_urg;
1586 
1587 	if (unlikely(tp->repair)) {
1588 		err = -EPERM;
1589 		if (!(flags & MSG_PEEK))
1590 			goto out;
1591 
1592 		if (tp->repair_queue == TCP_SEND_QUEUE)
1593 			goto recv_sndq;
1594 
1595 		err = -EINVAL;
1596 		if (tp->repair_queue == TCP_NO_QUEUE)
1597 			goto out;
1598 
1599 		/* 'common' recv queue MSG_PEEK-ing */
1600 	}
1601 
1602 	seq = &tp->copied_seq;
1603 	if (flags & MSG_PEEK) {
1604 		peek_seq = tp->copied_seq;
1605 		seq = &peek_seq;
1606 	}
1607 
1608 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1609 
1610 #ifdef CONFIG_NET_DMA
1611 	tp->ucopy.dma_chan = NULL;
1612 	preempt_disable();
1613 	skb = skb_peek_tail(&sk->sk_receive_queue);
1614 	{
1615 		int available = 0;
1616 
1617 		if (skb)
1618 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1619 		if ((available < target) &&
1620 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1621 		    !sysctl_tcp_low_latency &&
1622 		    net_dma_find_channel()) {
1623 			preempt_enable_no_resched();
1624 			tp->ucopy.pinned_list =
1625 					dma_pin_iovec_pages(msg->msg_iov, len);
1626 		} else {
1627 			preempt_enable_no_resched();
1628 		}
1629 	}
1630 #endif
1631 
1632 	do {
1633 		u32 offset;
1634 
1635 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1636 		if (tp->urg_data && tp->urg_seq == *seq) {
1637 			if (copied)
1638 				break;
1639 			if (signal_pending(current)) {
1640 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1641 				break;
1642 			}
1643 		}
1644 
1645 		/* Next get a buffer. */
1646 
1647 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1648 			/* Now that we have two receive queues this
1649 			 * shouldn't happen.
1650 			 */
1651 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1652 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1653 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1654 				 flags))
1655 				break;
1656 
1657 			offset = *seq - TCP_SKB_CB(skb)->seq;
1658 			if (tcp_hdr(skb)->syn)
1659 				offset--;
1660 			if (offset < skb->len)
1661 				goto found_ok_skb;
1662 			if (tcp_hdr(skb)->fin)
1663 				goto found_fin_ok;
1664 			WARN(!(flags & MSG_PEEK),
1665 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1666 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1667 		}
1668 
1669 		/* Well, if we have backlog, try to process it now yet. */
1670 
1671 		if (copied >= target && !sk->sk_backlog.tail)
1672 			break;
1673 
1674 		if (copied) {
1675 			if (sk->sk_err ||
1676 			    sk->sk_state == TCP_CLOSE ||
1677 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1678 			    !timeo ||
1679 			    signal_pending(current))
1680 				break;
1681 		} else {
1682 			if (sock_flag(sk, SOCK_DONE))
1683 				break;
1684 
1685 			if (sk->sk_err) {
1686 				copied = sock_error(sk);
1687 				break;
1688 			}
1689 
1690 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1691 				break;
1692 
1693 			if (sk->sk_state == TCP_CLOSE) {
1694 				if (!sock_flag(sk, SOCK_DONE)) {
1695 					/* This occurs when user tries to read
1696 					 * from never connected socket.
1697 					 */
1698 					copied = -ENOTCONN;
1699 					break;
1700 				}
1701 				break;
1702 			}
1703 
1704 			if (!timeo) {
1705 				copied = -EAGAIN;
1706 				break;
1707 			}
1708 
1709 			if (signal_pending(current)) {
1710 				copied = sock_intr_errno(timeo);
1711 				break;
1712 			}
1713 		}
1714 
1715 		tcp_cleanup_rbuf(sk, copied);
1716 
1717 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1718 			/* Install new reader */
1719 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1720 				user_recv = current;
1721 				tp->ucopy.task = user_recv;
1722 				tp->ucopy.iov = msg->msg_iov;
1723 			}
1724 
1725 			tp->ucopy.len = len;
1726 
1727 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1728 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1729 
1730 			/* Ugly... If prequeue is not empty, we have to
1731 			 * process it before releasing socket, otherwise
1732 			 * order will be broken at second iteration.
1733 			 * More elegant solution is required!!!
1734 			 *
1735 			 * Look: we have the following (pseudo)queues:
1736 			 *
1737 			 * 1. packets in flight
1738 			 * 2. backlog
1739 			 * 3. prequeue
1740 			 * 4. receive_queue
1741 			 *
1742 			 * Each queue can be processed only if the next ones
1743 			 * are empty. At this point we have empty receive_queue.
1744 			 * But prequeue _can_ be not empty after 2nd iteration,
1745 			 * when we jumped to start of loop because backlog
1746 			 * processing added something to receive_queue.
1747 			 * We cannot release_sock(), because backlog contains
1748 			 * packets arrived _after_ prequeued ones.
1749 			 *
1750 			 * Shortly, algorithm is clear --- to process all
1751 			 * the queues in order. We could make it more directly,
1752 			 * requeueing packets from backlog to prequeue, if
1753 			 * is not empty. It is more elegant, but eats cycles,
1754 			 * unfortunately.
1755 			 */
1756 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1757 				goto do_prequeue;
1758 
1759 			/* __ Set realtime policy in scheduler __ */
1760 		}
1761 
1762 #ifdef CONFIG_NET_DMA
1763 		if (tp->ucopy.dma_chan)
1764 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1765 #endif
1766 		if (copied >= target) {
1767 			/* Do not sleep, just process backlog. */
1768 			release_sock(sk);
1769 			lock_sock(sk);
1770 		} else
1771 			sk_wait_data(sk, &timeo);
1772 
1773 #ifdef CONFIG_NET_DMA
1774 		tcp_service_net_dma(sk, false);  /* Don't block */
1775 		tp->ucopy.wakeup = 0;
1776 #endif
1777 
1778 		if (user_recv) {
1779 			int chunk;
1780 
1781 			/* __ Restore normal policy in scheduler __ */
1782 
1783 			if ((chunk = len - tp->ucopy.len) != 0) {
1784 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1785 				len -= chunk;
1786 				copied += chunk;
1787 			}
1788 
1789 			if (tp->rcv_nxt == tp->copied_seq &&
1790 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1791 do_prequeue:
1792 				tcp_prequeue_process(sk);
1793 
1794 				if ((chunk = len - tp->ucopy.len) != 0) {
1795 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1796 					len -= chunk;
1797 					copied += chunk;
1798 				}
1799 			}
1800 		}
1801 		if ((flags & MSG_PEEK) &&
1802 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1803 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1804 					    current->comm,
1805 					    task_pid_nr(current));
1806 			peek_seq = tp->copied_seq;
1807 		}
1808 		continue;
1809 
1810 	found_ok_skb:
1811 		/* Ok so how much can we use? */
1812 		used = skb->len - offset;
1813 		if (len < used)
1814 			used = len;
1815 
1816 		/* Do we have urgent data here? */
1817 		if (tp->urg_data) {
1818 			u32 urg_offset = tp->urg_seq - *seq;
1819 			if (urg_offset < used) {
1820 				if (!urg_offset) {
1821 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1822 						++*seq;
1823 						urg_hole++;
1824 						offset++;
1825 						used--;
1826 						if (!used)
1827 							goto skip_copy;
1828 					}
1829 				} else
1830 					used = urg_offset;
1831 			}
1832 		}
1833 
1834 		if (!(flags & MSG_TRUNC)) {
1835 #ifdef CONFIG_NET_DMA
1836 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1837 				tp->ucopy.dma_chan = net_dma_find_channel();
1838 
1839 			if (tp->ucopy.dma_chan) {
1840 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1841 					tp->ucopy.dma_chan, skb, offset,
1842 					msg->msg_iov, used,
1843 					tp->ucopy.pinned_list);
1844 
1845 				if (tp->ucopy.dma_cookie < 0) {
1846 
1847 					pr_alert("%s: dma_cookie < 0\n",
1848 						 __func__);
1849 
1850 					/* Exception. Bailout! */
1851 					if (!copied)
1852 						copied = -EFAULT;
1853 					break;
1854 				}
1855 
1856 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1857 
1858 				if ((offset + used) == skb->len)
1859 					copied_early = true;
1860 
1861 			} else
1862 #endif
1863 			{
1864 				err = skb_copy_datagram_iovec(skb, offset,
1865 						msg->msg_iov, used);
1866 				if (err) {
1867 					/* Exception. Bailout! */
1868 					if (!copied)
1869 						copied = -EFAULT;
1870 					break;
1871 				}
1872 			}
1873 		}
1874 
1875 		*seq += used;
1876 		copied += used;
1877 		len -= used;
1878 
1879 		tcp_rcv_space_adjust(sk);
1880 
1881 skip_copy:
1882 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1883 			tp->urg_data = 0;
1884 			tcp_fast_path_check(sk);
1885 		}
1886 		if (used + offset < skb->len)
1887 			continue;
1888 
1889 		if (tcp_hdr(skb)->fin)
1890 			goto found_fin_ok;
1891 		if (!(flags & MSG_PEEK)) {
1892 			sk_eat_skb(sk, skb, copied_early);
1893 			copied_early = false;
1894 		}
1895 		continue;
1896 
1897 	found_fin_ok:
1898 		/* Process the FIN. */
1899 		++*seq;
1900 		if (!(flags & MSG_PEEK)) {
1901 			sk_eat_skb(sk, skb, copied_early);
1902 			copied_early = false;
1903 		}
1904 		break;
1905 	} while (len > 0);
1906 
1907 	if (user_recv) {
1908 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1909 			int chunk;
1910 
1911 			tp->ucopy.len = copied > 0 ? len : 0;
1912 
1913 			tcp_prequeue_process(sk);
1914 
1915 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1916 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1917 				len -= chunk;
1918 				copied += chunk;
1919 			}
1920 		}
1921 
1922 		tp->ucopy.task = NULL;
1923 		tp->ucopy.len = 0;
1924 	}
1925 
1926 #ifdef CONFIG_NET_DMA
1927 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1928 	tp->ucopy.dma_chan = NULL;
1929 
1930 	if (tp->ucopy.pinned_list) {
1931 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1932 		tp->ucopy.pinned_list = NULL;
1933 	}
1934 #endif
1935 
1936 	/* According to UNIX98, msg_name/msg_namelen are ignored
1937 	 * on connected socket. I was just happy when found this 8) --ANK
1938 	 */
1939 
1940 	/* Clean up data we have read: This will do ACK frames. */
1941 	tcp_cleanup_rbuf(sk, copied);
1942 
1943 	release_sock(sk);
1944 	return copied;
1945 
1946 out:
1947 	release_sock(sk);
1948 	return err;
1949 
1950 recv_urg:
1951 	err = tcp_recv_urg(sk, msg, len, flags);
1952 	goto out;
1953 
1954 recv_sndq:
1955 	err = tcp_peek_sndq(sk, msg, len);
1956 	goto out;
1957 }
1958 EXPORT_SYMBOL(tcp_recvmsg);
1959 
1960 void tcp_set_state(struct sock *sk, int state)
1961 {
1962 	int oldstate = sk->sk_state;
1963 
1964 	switch (state) {
1965 	case TCP_ESTABLISHED:
1966 		if (oldstate != TCP_ESTABLISHED)
1967 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1968 		break;
1969 
1970 	case TCP_CLOSE:
1971 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1972 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1973 
1974 		sk->sk_prot->unhash(sk);
1975 		if (inet_csk(sk)->icsk_bind_hash &&
1976 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1977 			inet_put_port(sk);
1978 		/* fall through */
1979 	default:
1980 		if (oldstate == TCP_ESTABLISHED)
1981 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1982 	}
1983 
1984 	/* Change state AFTER socket is unhashed to avoid closed
1985 	 * socket sitting in hash tables.
1986 	 */
1987 	sk->sk_state = state;
1988 
1989 #ifdef STATE_TRACE
1990 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1991 #endif
1992 }
1993 EXPORT_SYMBOL_GPL(tcp_set_state);
1994 
1995 /*
1996  *	State processing on a close. This implements the state shift for
1997  *	sending our FIN frame. Note that we only send a FIN for some
1998  *	states. A shutdown() may have already sent the FIN, or we may be
1999  *	closed.
2000  */
2001 
2002 static const unsigned char new_state[16] = {
2003   /* current state:        new state:      action:	*/
2004   /* (Invalid)		*/ TCP_CLOSE,
2005   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2006   /* TCP_SYN_SENT	*/ TCP_CLOSE,
2007   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2008   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2009   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2010   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2011   /* TCP_CLOSE		*/ TCP_CLOSE,
2012   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2013   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2014   /* TCP_LISTEN		*/ TCP_CLOSE,
2015   /* TCP_CLOSING	*/ TCP_CLOSING,
2016 };
2017 
2018 static int tcp_close_state(struct sock *sk)
2019 {
2020 	int next = (int)new_state[sk->sk_state];
2021 	int ns = next & TCP_STATE_MASK;
2022 
2023 	tcp_set_state(sk, ns);
2024 
2025 	return next & TCP_ACTION_FIN;
2026 }
2027 
2028 /*
2029  *	Shutdown the sending side of a connection. Much like close except
2030  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2031  */
2032 
2033 void tcp_shutdown(struct sock *sk, int how)
2034 {
2035 	/*	We need to grab some memory, and put together a FIN,
2036 	 *	and then put it into the queue to be sent.
2037 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2038 	 */
2039 	if (!(how & SEND_SHUTDOWN))
2040 		return;
2041 
2042 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2043 	if ((1 << sk->sk_state) &
2044 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2045 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2046 		/* Clear out any half completed packets.  FIN if needed. */
2047 		if (tcp_close_state(sk))
2048 			tcp_send_fin(sk);
2049 	}
2050 }
2051 EXPORT_SYMBOL(tcp_shutdown);
2052 
2053 bool tcp_check_oom(struct sock *sk, int shift)
2054 {
2055 	bool too_many_orphans, out_of_socket_memory;
2056 
2057 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2058 	out_of_socket_memory = tcp_out_of_memory(sk);
2059 
2060 	if (too_many_orphans)
2061 		net_info_ratelimited("too many orphaned sockets\n");
2062 	if (out_of_socket_memory)
2063 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2064 	return too_many_orphans || out_of_socket_memory;
2065 }
2066 
2067 void tcp_close(struct sock *sk, long timeout)
2068 {
2069 	struct sk_buff *skb;
2070 	int data_was_unread = 0;
2071 	int state;
2072 
2073 	lock_sock(sk);
2074 	sk->sk_shutdown = SHUTDOWN_MASK;
2075 
2076 	if (sk->sk_state == TCP_LISTEN) {
2077 		tcp_set_state(sk, TCP_CLOSE);
2078 
2079 		/* Special case. */
2080 		inet_csk_listen_stop(sk);
2081 
2082 		goto adjudge_to_death;
2083 	}
2084 
2085 	/*  We need to flush the recv. buffs.  We do this only on the
2086 	 *  descriptor close, not protocol-sourced closes, because the
2087 	 *  reader process may not have drained the data yet!
2088 	 */
2089 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2090 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2091 			  tcp_hdr(skb)->fin;
2092 		data_was_unread += len;
2093 		__kfree_skb(skb);
2094 	}
2095 
2096 	sk_mem_reclaim(sk);
2097 
2098 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2099 	if (sk->sk_state == TCP_CLOSE)
2100 		goto adjudge_to_death;
2101 
2102 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2103 	 * data was lost. To witness the awful effects of the old behavior of
2104 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2105 	 * GET in an FTP client, suspend the process, wait for the client to
2106 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2107 	 * Note: timeout is always zero in such a case.
2108 	 */
2109 	if (unlikely(tcp_sk(sk)->repair)) {
2110 		sk->sk_prot->disconnect(sk, 0);
2111 	} else if (data_was_unread) {
2112 		/* Unread data was tossed, zap the connection. */
2113 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2114 		tcp_set_state(sk, TCP_CLOSE);
2115 		tcp_send_active_reset(sk, sk->sk_allocation);
2116 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2117 		/* Check zero linger _after_ checking for unread data. */
2118 		sk->sk_prot->disconnect(sk, 0);
2119 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2120 	} else if (tcp_close_state(sk)) {
2121 		/* We FIN if the application ate all the data before
2122 		 * zapping the connection.
2123 		 */
2124 
2125 		/* RED-PEN. Formally speaking, we have broken TCP state
2126 		 * machine. State transitions:
2127 		 *
2128 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2129 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2130 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2131 		 *
2132 		 * are legal only when FIN has been sent (i.e. in window),
2133 		 * rather than queued out of window. Purists blame.
2134 		 *
2135 		 * F.e. "RFC state" is ESTABLISHED,
2136 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2137 		 *
2138 		 * The visible declinations are that sometimes
2139 		 * we enter time-wait state, when it is not required really
2140 		 * (harmless), do not send active resets, when they are
2141 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2142 		 * they look as CLOSING or LAST_ACK for Linux)
2143 		 * Probably, I missed some more holelets.
2144 		 * 						--ANK
2145 		 */
2146 		tcp_send_fin(sk);
2147 	}
2148 
2149 	sk_stream_wait_close(sk, timeout);
2150 
2151 adjudge_to_death:
2152 	state = sk->sk_state;
2153 	sock_hold(sk);
2154 	sock_orphan(sk);
2155 
2156 	/* It is the last release_sock in its life. It will remove backlog. */
2157 	release_sock(sk);
2158 
2159 
2160 	/* Now socket is owned by kernel and we acquire BH lock
2161 	   to finish close. No need to check for user refs.
2162 	 */
2163 	local_bh_disable();
2164 	bh_lock_sock(sk);
2165 	WARN_ON(sock_owned_by_user(sk));
2166 
2167 	percpu_counter_inc(sk->sk_prot->orphan_count);
2168 
2169 	/* Have we already been destroyed by a softirq or backlog? */
2170 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2171 		goto out;
2172 
2173 	/*	This is a (useful) BSD violating of the RFC. There is a
2174 	 *	problem with TCP as specified in that the other end could
2175 	 *	keep a socket open forever with no application left this end.
2176 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2177 	 *	our end. If they send after that then tough - BUT: long enough
2178 	 *	that we won't make the old 4*rto = almost no time - whoops
2179 	 *	reset mistake.
2180 	 *
2181 	 *	Nope, it was not mistake. It is really desired behaviour
2182 	 *	f.e. on http servers, when such sockets are useless, but
2183 	 *	consume significant resources. Let's do it with special
2184 	 *	linger2	option.					--ANK
2185 	 */
2186 
2187 	if (sk->sk_state == TCP_FIN_WAIT2) {
2188 		struct tcp_sock *tp = tcp_sk(sk);
2189 		if (tp->linger2 < 0) {
2190 			tcp_set_state(sk, TCP_CLOSE);
2191 			tcp_send_active_reset(sk, GFP_ATOMIC);
2192 			NET_INC_STATS_BH(sock_net(sk),
2193 					LINUX_MIB_TCPABORTONLINGER);
2194 		} else {
2195 			const int tmo = tcp_fin_time(sk);
2196 
2197 			if (tmo > TCP_TIMEWAIT_LEN) {
2198 				inet_csk_reset_keepalive_timer(sk,
2199 						tmo - TCP_TIMEWAIT_LEN);
2200 			} else {
2201 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2202 				goto out;
2203 			}
2204 		}
2205 	}
2206 	if (sk->sk_state != TCP_CLOSE) {
2207 		sk_mem_reclaim(sk);
2208 		if (tcp_check_oom(sk, 0)) {
2209 			tcp_set_state(sk, TCP_CLOSE);
2210 			tcp_send_active_reset(sk, GFP_ATOMIC);
2211 			NET_INC_STATS_BH(sock_net(sk),
2212 					LINUX_MIB_TCPABORTONMEMORY);
2213 		}
2214 	}
2215 
2216 	if (sk->sk_state == TCP_CLOSE)
2217 		inet_csk_destroy_sock(sk);
2218 	/* Otherwise, socket is reprieved until protocol close. */
2219 
2220 out:
2221 	bh_unlock_sock(sk);
2222 	local_bh_enable();
2223 	sock_put(sk);
2224 }
2225 EXPORT_SYMBOL(tcp_close);
2226 
2227 /* These states need RST on ABORT according to RFC793 */
2228 
2229 static inline bool tcp_need_reset(int state)
2230 {
2231 	return (1 << state) &
2232 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2233 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2234 }
2235 
2236 int tcp_disconnect(struct sock *sk, int flags)
2237 {
2238 	struct inet_sock *inet = inet_sk(sk);
2239 	struct inet_connection_sock *icsk = inet_csk(sk);
2240 	struct tcp_sock *tp = tcp_sk(sk);
2241 	int err = 0;
2242 	int old_state = sk->sk_state;
2243 
2244 	if (old_state != TCP_CLOSE)
2245 		tcp_set_state(sk, TCP_CLOSE);
2246 
2247 	/* ABORT function of RFC793 */
2248 	if (old_state == TCP_LISTEN) {
2249 		inet_csk_listen_stop(sk);
2250 	} else if (unlikely(tp->repair)) {
2251 		sk->sk_err = ECONNABORTED;
2252 	} else if (tcp_need_reset(old_state) ||
2253 		   (tp->snd_nxt != tp->write_seq &&
2254 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2255 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2256 		 * states
2257 		 */
2258 		tcp_send_active_reset(sk, gfp_any());
2259 		sk->sk_err = ECONNRESET;
2260 	} else if (old_state == TCP_SYN_SENT)
2261 		sk->sk_err = ECONNRESET;
2262 
2263 	tcp_clear_xmit_timers(sk);
2264 	__skb_queue_purge(&sk->sk_receive_queue);
2265 	tcp_write_queue_purge(sk);
2266 	__skb_queue_purge(&tp->out_of_order_queue);
2267 #ifdef CONFIG_NET_DMA
2268 	__skb_queue_purge(&sk->sk_async_wait_queue);
2269 #endif
2270 
2271 	inet->inet_dport = 0;
2272 
2273 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2274 		inet_reset_saddr(sk);
2275 
2276 	sk->sk_shutdown = 0;
2277 	sock_reset_flag(sk, SOCK_DONE);
2278 	tp->srtt = 0;
2279 	if ((tp->write_seq += tp->max_window + 2) == 0)
2280 		tp->write_seq = 1;
2281 	icsk->icsk_backoff = 0;
2282 	tp->snd_cwnd = 2;
2283 	icsk->icsk_probes_out = 0;
2284 	tp->packets_out = 0;
2285 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2286 	tp->snd_cwnd_cnt = 0;
2287 	tp->bytes_acked = 0;
2288 	tp->window_clamp = 0;
2289 	tcp_set_ca_state(sk, TCP_CA_Open);
2290 	tcp_clear_retrans(tp);
2291 	inet_csk_delack_init(sk);
2292 	tcp_init_send_head(sk);
2293 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2294 	__sk_dst_reset(sk);
2295 
2296 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2297 
2298 	sk->sk_error_report(sk);
2299 	return err;
2300 }
2301 EXPORT_SYMBOL(tcp_disconnect);
2302 
2303 static inline bool tcp_can_repair_sock(const struct sock *sk)
2304 {
2305 	return capable(CAP_NET_ADMIN) &&
2306 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2307 }
2308 
2309 static int tcp_repair_options_est(struct tcp_sock *tp,
2310 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2311 {
2312 	struct tcp_repair_opt opt;
2313 
2314 	while (len >= sizeof(opt)) {
2315 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2316 			return -EFAULT;
2317 
2318 		optbuf++;
2319 		len -= sizeof(opt);
2320 
2321 		switch (opt.opt_code) {
2322 		case TCPOPT_MSS:
2323 			tp->rx_opt.mss_clamp = opt.opt_val;
2324 			break;
2325 		case TCPOPT_WINDOW:
2326 			if (opt.opt_val > 14)
2327 				return -EFBIG;
2328 
2329 			tp->rx_opt.snd_wscale = opt.opt_val;
2330 			break;
2331 		case TCPOPT_SACK_PERM:
2332 			if (opt.opt_val != 0)
2333 				return -EINVAL;
2334 
2335 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2336 			if (sysctl_tcp_fack)
2337 				tcp_enable_fack(tp);
2338 			break;
2339 		case TCPOPT_TIMESTAMP:
2340 			if (opt.opt_val != 0)
2341 				return -EINVAL;
2342 
2343 			tp->rx_opt.tstamp_ok = 1;
2344 			break;
2345 		}
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 /*
2352  *	Socket option code for TCP.
2353  */
2354 static int do_tcp_setsockopt(struct sock *sk, int level,
2355 		int optname, char __user *optval, unsigned int optlen)
2356 {
2357 	struct tcp_sock *tp = tcp_sk(sk);
2358 	struct inet_connection_sock *icsk = inet_csk(sk);
2359 	int val;
2360 	int err = 0;
2361 
2362 	/* These are data/string values, all the others are ints */
2363 	switch (optname) {
2364 	case TCP_CONGESTION: {
2365 		char name[TCP_CA_NAME_MAX];
2366 
2367 		if (optlen < 1)
2368 			return -EINVAL;
2369 
2370 		val = strncpy_from_user(name, optval,
2371 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2372 		if (val < 0)
2373 			return -EFAULT;
2374 		name[val] = 0;
2375 
2376 		lock_sock(sk);
2377 		err = tcp_set_congestion_control(sk, name);
2378 		release_sock(sk);
2379 		return err;
2380 	}
2381 	case TCP_COOKIE_TRANSACTIONS: {
2382 		struct tcp_cookie_transactions ctd;
2383 		struct tcp_cookie_values *cvp = NULL;
2384 
2385 		if (sizeof(ctd) > optlen)
2386 			return -EINVAL;
2387 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2388 			return -EFAULT;
2389 
2390 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2391 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2392 			return -EINVAL;
2393 
2394 		if (ctd.tcpct_cookie_desired == 0) {
2395 			/* default to global value */
2396 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2397 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2398 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2399 			return -EINVAL;
2400 		}
2401 
2402 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2403 			/* Supercedes all other values */
2404 			lock_sock(sk);
2405 			if (tp->cookie_values != NULL) {
2406 				kref_put(&tp->cookie_values->kref,
2407 					 tcp_cookie_values_release);
2408 				tp->cookie_values = NULL;
2409 			}
2410 			tp->rx_opt.cookie_in_always = 0; /* false */
2411 			tp->rx_opt.cookie_out_never = 1; /* true */
2412 			release_sock(sk);
2413 			return err;
2414 		}
2415 
2416 		/* Allocate ancillary memory before locking.
2417 		 */
2418 		if (ctd.tcpct_used > 0 ||
2419 		    (tp->cookie_values == NULL &&
2420 		     (sysctl_tcp_cookie_size > 0 ||
2421 		      ctd.tcpct_cookie_desired > 0 ||
2422 		      ctd.tcpct_s_data_desired > 0))) {
2423 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2424 				      GFP_KERNEL);
2425 			if (cvp == NULL)
2426 				return -ENOMEM;
2427 
2428 			kref_init(&cvp->kref);
2429 		}
2430 		lock_sock(sk);
2431 		tp->rx_opt.cookie_in_always =
2432 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2433 		tp->rx_opt.cookie_out_never = 0; /* false */
2434 
2435 		if (tp->cookie_values != NULL) {
2436 			if (cvp != NULL) {
2437 				/* Changed values are recorded by a changed
2438 				 * pointer, ensuring the cookie will differ,
2439 				 * without separately hashing each value later.
2440 				 */
2441 				kref_put(&tp->cookie_values->kref,
2442 					 tcp_cookie_values_release);
2443 			} else {
2444 				cvp = tp->cookie_values;
2445 			}
2446 		}
2447 
2448 		if (cvp != NULL) {
2449 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2450 
2451 			if (ctd.tcpct_used > 0) {
2452 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2453 				       ctd.tcpct_used);
2454 				cvp->s_data_desired = ctd.tcpct_used;
2455 				cvp->s_data_constant = 1; /* true */
2456 			} else {
2457 				/* No constant payload data. */
2458 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2459 				cvp->s_data_constant = 0; /* false */
2460 			}
2461 
2462 			tp->cookie_values = cvp;
2463 		}
2464 		release_sock(sk);
2465 		return err;
2466 	}
2467 	default:
2468 		/* fallthru */
2469 		break;
2470 	}
2471 
2472 	if (optlen < sizeof(int))
2473 		return -EINVAL;
2474 
2475 	if (get_user(val, (int __user *)optval))
2476 		return -EFAULT;
2477 
2478 	lock_sock(sk);
2479 
2480 	switch (optname) {
2481 	case TCP_MAXSEG:
2482 		/* Values greater than interface MTU won't take effect. However
2483 		 * at the point when this call is done we typically don't yet
2484 		 * know which interface is going to be used */
2485 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2486 			err = -EINVAL;
2487 			break;
2488 		}
2489 		tp->rx_opt.user_mss = val;
2490 		break;
2491 
2492 	case TCP_NODELAY:
2493 		if (val) {
2494 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2495 			 * this option on corked socket is remembered, but
2496 			 * it is not activated until cork is cleared.
2497 			 *
2498 			 * However, when TCP_NODELAY is set we make
2499 			 * an explicit push, which overrides even TCP_CORK
2500 			 * for currently queued segments.
2501 			 */
2502 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2503 			tcp_push_pending_frames(sk);
2504 		} else {
2505 			tp->nonagle &= ~TCP_NAGLE_OFF;
2506 		}
2507 		break;
2508 
2509 	case TCP_THIN_LINEAR_TIMEOUTS:
2510 		if (val < 0 || val > 1)
2511 			err = -EINVAL;
2512 		else
2513 			tp->thin_lto = val;
2514 		break;
2515 
2516 	case TCP_THIN_DUPACK:
2517 		if (val < 0 || val > 1)
2518 			err = -EINVAL;
2519 		else
2520 			tp->thin_dupack = val;
2521 			if (tp->thin_dupack)
2522 				tcp_disable_early_retrans(tp);
2523 		break;
2524 
2525 	case TCP_REPAIR:
2526 		if (!tcp_can_repair_sock(sk))
2527 			err = -EPERM;
2528 		else if (val == 1) {
2529 			tp->repair = 1;
2530 			sk->sk_reuse = SK_FORCE_REUSE;
2531 			tp->repair_queue = TCP_NO_QUEUE;
2532 		} else if (val == 0) {
2533 			tp->repair = 0;
2534 			sk->sk_reuse = SK_NO_REUSE;
2535 			tcp_send_window_probe(sk);
2536 		} else
2537 			err = -EINVAL;
2538 
2539 		break;
2540 
2541 	case TCP_REPAIR_QUEUE:
2542 		if (!tp->repair)
2543 			err = -EPERM;
2544 		else if (val < TCP_QUEUES_NR)
2545 			tp->repair_queue = val;
2546 		else
2547 			err = -EINVAL;
2548 		break;
2549 
2550 	case TCP_QUEUE_SEQ:
2551 		if (sk->sk_state != TCP_CLOSE)
2552 			err = -EPERM;
2553 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2554 			tp->write_seq = val;
2555 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2556 			tp->rcv_nxt = val;
2557 		else
2558 			err = -EINVAL;
2559 		break;
2560 
2561 	case TCP_REPAIR_OPTIONS:
2562 		if (!tp->repair)
2563 			err = -EINVAL;
2564 		else if (sk->sk_state == TCP_ESTABLISHED)
2565 			err = tcp_repair_options_est(tp,
2566 					(struct tcp_repair_opt __user *)optval,
2567 					optlen);
2568 		else
2569 			err = -EPERM;
2570 		break;
2571 
2572 	case TCP_CORK:
2573 		/* When set indicates to always queue non-full frames.
2574 		 * Later the user clears this option and we transmit
2575 		 * any pending partial frames in the queue.  This is
2576 		 * meant to be used alongside sendfile() to get properly
2577 		 * filled frames when the user (for example) must write
2578 		 * out headers with a write() call first and then use
2579 		 * sendfile to send out the data parts.
2580 		 *
2581 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2582 		 * stronger than TCP_NODELAY.
2583 		 */
2584 		if (val) {
2585 			tp->nonagle |= TCP_NAGLE_CORK;
2586 		} else {
2587 			tp->nonagle &= ~TCP_NAGLE_CORK;
2588 			if (tp->nonagle&TCP_NAGLE_OFF)
2589 				tp->nonagle |= TCP_NAGLE_PUSH;
2590 			tcp_push_pending_frames(sk);
2591 		}
2592 		break;
2593 
2594 	case TCP_KEEPIDLE:
2595 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2596 			err = -EINVAL;
2597 		else {
2598 			tp->keepalive_time = val * HZ;
2599 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2600 			    !((1 << sk->sk_state) &
2601 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2602 				u32 elapsed = keepalive_time_elapsed(tp);
2603 				if (tp->keepalive_time > elapsed)
2604 					elapsed = tp->keepalive_time - elapsed;
2605 				else
2606 					elapsed = 0;
2607 				inet_csk_reset_keepalive_timer(sk, elapsed);
2608 			}
2609 		}
2610 		break;
2611 	case TCP_KEEPINTVL:
2612 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2613 			err = -EINVAL;
2614 		else
2615 			tp->keepalive_intvl = val * HZ;
2616 		break;
2617 	case TCP_KEEPCNT:
2618 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2619 			err = -EINVAL;
2620 		else
2621 			tp->keepalive_probes = val;
2622 		break;
2623 	case TCP_SYNCNT:
2624 		if (val < 1 || val > MAX_TCP_SYNCNT)
2625 			err = -EINVAL;
2626 		else
2627 			icsk->icsk_syn_retries = val;
2628 		break;
2629 
2630 	case TCP_LINGER2:
2631 		if (val < 0)
2632 			tp->linger2 = -1;
2633 		else if (val > sysctl_tcp_fin_timeout / HZ)
2634 			tp->linger2 = 0;
2635 		else
2636 			tp->linger2 = val * HZ;
2637 		break;
2638 
2639 	case TCP_DEFER_ACCEPT:
2640 		/* Translate value in seconds to number of retransmits */
2641 		icsk->icsk_accept_queue.rskq_defer_accept =
2642 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2643 					TCP_RTO_MAX / HZ);
2644 		break;
2645 
2646 	case TCP_WINDOW_CLAMP:
2647 		if (!val) {
2648 			if (sk->sk_state != TCP_CLOSE) {
2649 				err = -EINVAL;
2650 				break;
2651 			}
2652 			tp->window_clamp = 0;
2653 		} else
2654 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2655 						SOCK_MIN_RCVBUF / 2 : val;
2656 		break;
2657 
2658 	case TCP_QUICKACK:
2659 		if (!val) {
2660 			icsk->icsk_ack.pingpong = 1;
2661 		} else {
2662 			icsk->icsk_ack.pingpong = 0;
2663 			if ((1 << sk->sk_state) &
2664 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2665 			    inet_csk_ack_scheduled(sk)) {
2666 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2667 				tcp_cleanup_rbuf(sk, 1);
2668 				if (!(val & 1))
2669 					icsk->icsk_ack.pingpong = 1;
2670 			}
2671 		}
2672 		break;
2673 
2674 #ifdef CONFIG_TCP_MD5SIG
2675 	case TCP_MD5SIG:
2676 		/* Read the IP->Key mappings from userspace */
2677 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2678 		break;
2679 #endif
2680 	case TCP_USER_TIMEOUT:
2681 		/* Cap the max timeout in ms TCP will retry/retrans
2682 		 * before giving up and aborting (ETIMEDOUT) a connection.
2683 		 */
2684 		if (val < 0)
2685 			err = -EINVAL;
2686 		else
2687 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2688 		break;
2689 	default:
2690 		err = -ENOPROTOOPT;
2691 		break;
2692 	}
2693 
2694 	release_sock(sk);
2695 	return err;
2696 }
2697 
2698 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2699 		   unsigned int optlen)
2700 {
2701 	const struct inet_connection_sock *icsk = inet_csk(sk);
2702 
2703 	if (level != SOL_TCP)
2704 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2705 						     optval, optlen);
2706 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2707 }
2708 EXPORT_SYMBOL(tcp_setsockopt);
2709 
2710 #ifdef CONFIG_COMPAT
2711 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2712 			  char __user *optval, unsigned int optlen)
2713 {
2714 	if (level != SOL_TCP)
2715 		return inet_csk_compat_setsockopt(sk, level, optname,
2716 						  optval, optlen);
2717 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2718 }
2719 EXPORT_SYMBOL(compat_tcp_setsockopt);
2720 #endif
2721 
2722 /* Return information about state of tcp endpoint in API format. */
2723 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2724 {
2725 	const struct tcp_sock *tp = tcp_sk(sk);
2726 	const struct inet_connection_sock *icsk = inet_csk(sk);
2727 	u32 now = tcp_time_stamp;
2728 
2729 	memset(info, 0, sizeof(*info));
2730 
2731 	info->tcpi_state = sk->sk_state;
2732 	info->tcpi_ca_state = icsk->icsk_ca_state;
2733 	info->tcpi_retransmits = icsk->icsk_retransmits;
2734 	info->tcpi_probes = icsk->icsk_probes_out;
2735 	info->tcpi_backoff = icsk->icsk_backoff;
2736 
2737 	if (tp->rx_opt.tstamp_ok)
2738 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2739 	if (tcp_is_sack(tp))
2740 		info->tcpi_options |= TCPI_OPT_SACK;
2741 	if (tp->rx_opt.wscale_ok) {
2742 		info->tcpi_options |= TCPI_OPT_WSCALE;
2743 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2744 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2745 	}
2746 
2747 	if (tp->ecn_flags & TCP_ECN_OK)
2748 		info->tcpi_options |= TCPI_OPT_ECN;
2749 	if (tp->ecn_flags & TCP_ECN_SEEN)
2750 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2751 
2752 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2753 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2754 	info->tcpi_snd_mss = tp->mss_cache;
2755 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2756 
2757 	if (sk->sk_state == TCP_LISTEN) {
2758 		info->tcpi_unacked = sk->sk_ack_backlog;
2759 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2760 	} else {
2761 		info->tcpi_unacked = tp->packets_out;
2762 		info->tcpi_sacked = tp->sacked_out;
2763 	}
2764 	info->tcpi_lost = tp->lost_out;
2765 	info->tcpi_retrans = tp->retrans_out;
2766 	info->tcpi_fackets = tp->fackets_out;
2767 
2768 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2769 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2770 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2771 
2772 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2773 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2774 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2775 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2776 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2777 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2778 	info->tcpi_advmss = tp->advmss;
2779 	info->tcpi_reordering = tp->reordering;
2780 
2781 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2782 	info->tcpi_rcv_space = tp->rcvq_space.space;
2783 
2784 	info->tcpi_total_retrans = tp->total_retrans;
2785 }
2786 EXPORT_SYMBOL_GPL(tcp_get_info);
2787 
2788 static int do_tcp_getsockopt(struct sock *sk, int level,
2789 		int optname, char __user *optval, int __user *optlen)
2790 {
2791 	struct inet_connection_sock *icsk = inet_csk(sk);
2792 	struct tcp_sock *tp = tcp_sk(sk);
2793 	int val, len;
2794 
2795 	if (get_user(len, optlen))
2796 		return -EFAULT;
2797 
2798 	len = min_t(unsigned int, len, sizeof(int));
2799 
2800 	if (len < 0)
2801 		return -EINVAL;
2802 
2803 	switch (optname) {
2804 	case TCP_MAXSEG:
2805 		val = tp->mss_cache;
2806 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2807 			val = tp->rx_opt.user_mss;
2808 		if (tp->repair)
2809 			val = tp->rx_opt.mss_clamp;
2810 		break;
2811 	case TCP_NODELAY:
2812 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2813 		break;
2814 	case TCP_CORK:
2815 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2816 		break;
2817 	case TCP_KEEPIDLE:
2818 		val = keepalive_time_when(tp) / HZ;
2819 		break;
2820 	case TCP_KEEPINTVL:
2821 		val = keepalive_intvl_when(tp) / HZ;
2822 		break;
2823 	case TCP_KEEPCNT:
2824 		val = keepalive_probes(tp);
2825 		break;
2826 	case TCP_SYNCNT:
2827 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2828 		break;
2829 	case TCP_LINGER2:
2830 		val = tp->linger2;
2831 		if (val >= 0)
2832 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2833 		break;
2834 	case TCP_DEFER_ACCEPT:
2835 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2836 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2837 		break;
2838 	case TCP_WINDOW_CLAMP:
2839 		val = tp->window_clamp;
2840 		break;
2841 	case TCP_INFO: {
2842 		struct tcp_info info;
2843 
2844 		if (get_user(len, optlen))
2845 			return -EFAULT;
2846 
2847 		tcp_get_info(sk, &info);
2848 
2849 		len = min_t(unsigned int, len, sizeof(info));
2850 		if (put_user(len, optlen))
2851 			return -EFAULT;
2852 		if (copy_to_user(optval, &info, len))
2853 			return -EFAULT;
2854 		return 0;
2855 	}
2856 	case TCP_QUICKACK:
2857 		val = !icsk->icsk_ack.pingpong;
2858 		break;
2859 
2860 	case TCP_CONGESTION:
2861 		if (get_user(len, optlen))
2862 			return -EFAULT;
2863 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2864 		if (put_user(len, optlen))
2865 			return -EFAULT;
2866 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2867 			return -EFAULT;
2868 		return 0;
2869 
2870 	case TCP_COOKIE_TRANSACTIONS: {
2871 		struct tcp_cookie_transactions ctd;
2872 		struct tcp_cookie_values *cvp = tp->cookie_values;
2873 
2874 		if (get_user(len, optlen))
2875 			return -EFAULT;
2876 		if (len < sizeof(ctd))
2877 			return -EINVAL;
2878 
2879 		memset(&ctd, 0, sizeof(ctd));
2880 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2881 				   TCP_COOKIE_IN_ALWAYS : 0)
2882 				| (tp->rx_opt.cookie_out_never ?
2883 				   TCP_COOKIE_OUT_NEVER : 0);
2884 
2885 		if (cvp != NULL) {
2886 			ctd.tcpct_flags |= (cvp->s_data_in ?
2887 					    TCP_S_DATA_IN : 0)
2888 					 | (cvp->s_data_out ?
2889 					    TCP_S_DATA_OUT : 0);
2890 
2891 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2892 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2893 
2894 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2895 			       cvp->cookie_pair_size);
2896 			ctd.tcpct_used = cvp->cookie_pair_size;
2897 		}
2898 
2899 		if (put_user(sizeof(ctd), optlen))
2900 			return -EFAULT;
2901 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2902 			return -EFAULT;
2903 		return 0;
2904 	}
2905 	case TCP_THIN_LINEAR_TIMEOUTS:
2906 		val = tp->thin_lto;
2907 		break;
2908 	case TCP_THIN_DUPACK:
2909 		val = tp->thin_dupack;
2910 		break;
2911 
2912 	case TCP_REPAIR:
2913 		val = tp->repair;
2914 		break;
2915 
2916 	case TCP_REPAIR_QUEUE:
2917 		if (tp->repair)
2918 			val = tp->repair_queue;
2919 		else
2920 			return -EINVAL;
2921 		break;
2922 
2923 	case TCP_QUEUE_SEQ:
2924 		if (tp->repair_queue == TCP_SEND_QUEUE)
2925 			val = tp->write_seq;
2926 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2927 			val = tp->rcv_nxt;
2928 		else
2929 			return -EINVAL;
2930 		break;
2931 
2932 	case TCP_USER_TIMEOUT:
2933 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2934 		break;
2935 	default:
2936 		return -ENOPROTOOPT;
2937 	}
2938 
2939 	if (put_user(len, optlen))
2940 		return -EFAULT;
2941 	if (copy_to_user(optval, &val, len))
2942 		return -EFAULT;
2943 	return 0;
2944 }
2945 
2946 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2947 		   int __user *optlen)
2948 {
2949 	struct inet_connection_sock *icsk = inet_csk(sk);
2950 
2951 	if (level != SOL_TCP)
2952 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2953 						     optval, optlen);
2954 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2955 }
2956 EXPORT_SYMBOL(tcp_getsockopt);
2957 
2958 #ifdef CONFIG_COMPAT
2959 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2960 			  char __user *optval, int __user *optlen)
2961 {
2962 	if (level != SOL_TCP)
2963 		return inet_csk_compat_getsockopt(sk, level, optname,
2964 						  optval, optlen);
2965 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2966 }
2967 EXPORT_SYMBOL(compat_tcp_getsockopt);
2968 #endif
2969 
2970 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2971 	netdev_features_t features)
2972 {
2973 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2974 	struct tcphdr *th;
2975 	unsigned int thlen;
2976 	unsigned int seq;
2977 	__be32 delta;
2978 	unsigned int oldlen;
2979 	unsigned int mss;
2980 
2981 	if (!pskb_may_pull(skb, sizeof(*th)))
2982 		goto out;
2983 
2984 	th = tcp_hdr(skb);
2985 	thlen = th->doff * 4;
2986 	if (thlen < sizeof(*th))
2987 		goto out;
2988 
2989 	if (!pskb_may_pull(skb, thlen))
2990 		goto out;
2991 
2992 	oldlen = (u16)~skb->len;
2993 	__skb_pull(skb, thlen);
2994 
2995 	mss = skb_shinfo(skb)->gso_size;
2996 	if (unlikely(skb->len <= mss))
2997 		goto out;
2998 
2999 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3000 		/* Packet is from an untrusted source, reset gso_segs. */
3001 		int type = skb_shinfo(skb)->gso_type;
3002 
3003 		if (unlikely(type &
3004 			     ~(SKB_GSO_TCPV4 |
3005 			       SKB_GSO_DODGY |
3006 			       SKB_GSO_TCP_ECN |
3007 			       SKB_GSO_TCPV6 |
3008 			       0) ||
3009 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3010 			goto out;
3011 
3012 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3013 
3014 		segs = NULL;
3015 		goto out;
3016 	}
3017 
3018 	segs = skb_segment(skb, features);
3019 	if (IS_ERR(segs))
3020 		goto out;
3021 
3022 	delta = htonl(oldlen + (thlen + mss));
3023 
3024 	skb = segs;
3025 	th = tcp_hdr(skb);
3026 	seq = ntohl(th->seq);
3027 
3028 	do {
3029 		th->fin = th->psh = 0;
3030 
3031 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3032 				       (__force u32)delta));
3033 		if (skb->ip_summed != CHECKSUM_PARTIAL)
3034 			th->check =
3035 			     csum_fold(csum_partial(skb_transport_header(skb),
3036 						    thlen, skb->csum));
3037 
3038 		seq += mss;
3039 		skb = skb->next;
3040 		th = tcp_hdr(skb);
3041 
3042 		th->seq = htonl(seq);
3043 		th->cwr = 0;
3044 	} while (skb->next);
3045 
3046 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3047 		      skb->data_len);
3048 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3049 				(__force u32)delta));
3050 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3051 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3052 						   thlen, skb->csum));
3053 
3054 out:
3055 	return segs;
3056 }
3057 EXPORT_SYMBOL(tcp_tso_segment);
3058 
3059 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3060 {
3061 	struct sk_buff **pp = NULL;
3062 	struct sk_buff *p;
3063 	struct tcphdr *th;
3064 	struct tcphdr *th2;
3065 	unsigned int len;
3066 	unsigned int thlen;
3067 	__be32 flags;
3068 	unsigned int mss = 1;
3069 	unsigned int hlen;
3070 	unsigned int off;
3071 	int flush = 1;
3072 	int i;
3073 
3074 	off = skb_gro_offset(skb);
3075 	hlen = off + sizeof(*th);
3076 	th = skb_gro_header_fast(skb, off);
3077 	if (skb_gro_header_hard(skb, hlen)) {
3078 		th = skb_gro_header_slow(skb, hlen, off);
3079 		if (unlikely(!th))
3080 			goto out;
3081 	}
3082 
3083 	thlen = th->doff * 4;
3084 	if (thlen < sizeof(*th))
3085 		goto out;
3086 
3087 	hlen = off + thlen;
3088 	if (skb_gro_header_hard(skb, hlen)) {
3089 		th = skb_gro_header_slow(skb, hlen, off);
3090 		if (unlikely(!th))
3091 			goto out;
3092 	}
3093 
3094 	skb_gro_pull(skb, thlen);
3095 
3096 	len = skb_gro_len(skb);
3097 	flags = tcp_flag_word(th);
3098 
3099 	for (; (p = *head); head = &p->next) {
3100 		if (!NAPI_GRO_CB(p)->same_flow)
3101 			continue;
3102 
3103 		th2 = tcp_hdr(p);
3104 
3105 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3106 			NAPI_GRO_CB(p)->same_flow = 0;
3107 			continue;
3108 		}
3109 
3110 		goto found;
3111 	}
3112 
3113 	goto out_check_final;
3114 
3115 found:
3116 	flush = NAPI_GRO_CB(p)->flush;
3117 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3118 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3119 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3120 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3121 	for (i = sizeof(*th); i < thlen; i += 4)
3122 		flush |= *(u32 *)((u8 *)th + i) ^
3123 			 *(u32 *)((u8 *)th2 + i);
3124 
3125 	mss = skb_shinfo(p)->gso_size;
3126 
3127 	flush |= (len - 1) >= mss;
3128 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3129 
3130 	if (flush || skb_gro_receive(head, skb)) {
3131 		mss = 1;
3132 		goto out_check_final;
3133 	}
3134 
3135 	p = *head;
3136 	th2 = tcp_hdr(p);
3137 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3138 
3139 out_check_final:
3140 	flush = len < mss;
3141 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3142 					TCP_FLAG_RST | TCP_FLAG_SYN |
3143 					TCP_FLAG_FIN));
3144 
3145 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3146 		pp = head;
3147 
3148 out:
3149 	NAPI_GRO_CB(skb)->flush |= flush;
3150 
3151 	return pp;
3152 }
3153 EXPORT_SYMBOL(tcp_gro_receive);
3154 
3155 int tcp_gro_complete(struct sk_buff *skb)
3156 {
3157 	struct tcphdr *th = tcp_hdr(skb);
3158 
3159 	skb->csum_start = skb_transport_header(skb) - skb->head;
3160 	skb->csum_offset = offsetof(struct tcphdr, check);
3161 	skb->ip_summed = CHECKSUM_PARTIAL;
3162 
3163 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3164 
3165 	if (th->cwr)
3166 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3167 
3168 	return 0;
3169 }
3170 EXPORT_SYMBOL(tcp_gro_complete);
3171 
3172 #ifdef CONFIG_TCP_MD5SIG
3173 static unsigned long tcp_md5sig_users;
3174 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3175 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3176 
3177 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3178 {
3179 	int cpu;
3180 
3181 	for_each_possible_cpu(cpu) {
3182 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3183 
3184 		if (p->md5_desc.tfm)
3185 			crypto_free_hash(p->md5_desc.tfm);
3186 	}
3187 	free_percpu(pool);
3188 }
3189 
3190 void tcp_free_md5sig_pool(void)
3191 {
3192 	struct tcp_md5sig_pool __percpu *pool = NULL;
3193 
3194 	spin_lock_bh(&tcp_md5sig_pool_lock);
3195 	if (--tcp_md5sig_users == 0) {
3196 		pool = tcp_md5sig_pool;
3197 		tcp_md5sig_pool = NULL;
3198 	}
3199 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3200 	if (pool)
3201 		__tcp_free_md5sig_pool(pool);
3202 }
3203 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3204 
3205 static struct tcp_md5sig_pool __percpu *
3206 __tcp_alloc_md5sig_pool(struct sock *sk)
3207 {
3208 	int cpu;
3209 	struct tcp_md5sig_pool __percpu *pool;
3210 
3211 	pool = alloc_percpu(struct tcp_md5sig_pool);
3212 	if (!pool)
3213 		return NULL;
3214 
3215 	for_each_possible_cpu(cpu) {
3216 		struct crypto_hash *hash;
3217 
3218 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3219 		if (!hash || IS_ERR(hash))
3220 			goto out_free;
3221 
3222 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3223 	}
3224 	return pool;
3225 out_free:
3226 	__tcp_free_md5sig_pool(pool);
3227 	return NULL;
3228 }
3229 
3230 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3231 {
3232 	struct tcp_md5sig_pool __percpu *pool;
3233 	bool alloc = false;
3234 
3235 retry:
3236 	spin_lock_bh(&tcp_md5sig_pool_lock);
3237 	pool = tcp_md5sig_pool;
3238 	if (tcp_md5sig_users++ == 0) {
3239 		alloc = true;
3240 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3241 	} else if (!pool) {
3242 		tcp_md5sig_users--;
3243 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3244 		cpu_relax();
3245 		goto retry;
3246 	} else
3247 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3248 
3249 	if (alloc) {
3250 		/* we cannot hold spinlock here because this may sleep. */
3251 		struct tcp_md5sig_pool __percpu *p;
3252 
3253 		p = __tcp_alloc_md5sig_pool(sk);
3254 		spin_lock_bh(&tcp_md5sig_pool_lock);
3255 		if (!p) {
3256 			tcp_md5sig_users--;
3257 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3258 			return NULL;
3259 		}
3260 		pool = tcp_md5sig_pool;
3261 		if (pool) {
3262 			/* oops, it has already been assigned. */
3263 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3264 			__tcp_free_md5sig_pool(p);
3265 		} else {
3266 			tcp_md5sig_pool = pool = p;
3267 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3268 		}
3269 	}
3270 	return pool;
3271 }
3272 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3273 
3274 
3275 /**
3276  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3277  *
3278  *	We use percpu structure, so if we succeed, we exit with preemption
3279  *	and BH disabled, to make sure another thread or softirq handling
3280  *	wont try to get same context.
3281  */
3282 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3283 {
3284 	struct tcp_md5sig_pool __percpu *p;
3285 
3286 	local_bh_disable();
3287 
3288 	spin_lock(&tcp_md5sig_pool_lock);
3289 	p = tcp_md5sig_pool;
3290 	if (p)
3291 		tcp_md5sig_users++;
3292 	spin_unlock(&tcp_md5sig_pool_lock);
3293 
3294 	if (p)
3295 		return this_cpu_ptr(p);
3296 
3297 	local_bh_enable();
3298 	return NULL;
3299 }
3300 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3301 
3302 void tcp_put_md5sig_pool(void)
3303 {
3304 	local_bh_enable();
3305 	tcp_free_md5sig_pool();
3306 }
3307 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3308 
3309 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3310 			const struct tcphdr *th)
3311 {
3312 	struct scatterlist sg;
3313 	struct tcphdr hdr;
3314 	int err;
3315 
3316 	/* We are not allowed to change tcphdr, make a local copy */
3317 	memcpy(&hdr, th, sizeof(hdr));
3318 	hdr.check = 0;
3319 
3320 	/* options aren't included in the hash */
3321 	sg_init_one(&sg, &hdr, sizeof(hdr));
3322 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3323 	return err;
3324 }
3325 EXPORT_SYMBOL(tcp_md5_hash_header);
3326 
3327 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3328 			  const struct sk_buff *skb, unsigned int header_len)
3329 {
3330 	struct scatterlist sg;
3331 	const struct tcphdr *tp = tcp_hdr(skb);
3332 	struct hash_desc *desc = &hp->md5_desc;
3333 	unsigned int i;
3334 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3335 					   skb_headlen(skb) - header_len : 0;
3336 	const struct skb_shared_info *shi = skb_shinfo(skb);
3337 	struct sk_buff *frag_iter;
3338 
3339 	sg_init_table(&sg, 1);
3340 
3341 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3342 	if (crypto_hash_update(desc, &sg, head_data_len))
3343 		return 1;
3344 
3345 	for (i = 0; i < shi->nr_frags; ++i) {
3346 		const struct skb_frag_struct *f = &shi->frags[i];
3347 		struct page *page = skb_frag_page(f);
3348 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3349 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3350 			return 1;
3351 	}
3352 
3353 	skb_walk_frags(skb, frag_iter)
3354 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3355 			return 1;
3356 
3357 	return 0;
3358 }
3359 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3360 
3361 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3362 {
3363 	struct scatterlist sg;
3364 
3365 	sg_init_one(&sg, key->key, key->keylen);
3366 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3367 }
3368 EXPORT_SYMBOL(tcp_md5_hash_key);
3369 
3370 #endif
3371 
3372 /* Each Responder maintains up to two secret values concurrently for
3373  * efficient secret rollover.  Each secret value has 4 states:
3374  *
3375  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3376  *    Generates new Responder-Cookies, but not yet used for primary
3377  *    verification.  This is a short-term state, typically lasting only
3378  *    one round trip time (RTT).
3379  *
3380  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3381  *    Used both for generation and primary verification.
3382  *
3383  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3384  *    Used for verification, until the first failure that can be
3385  *    verified by the newer Generating secret.  At that time, this
3386  *    cookie's state is changed to Secondary, and the Generating
3387  *    cookie's state is changed to Primary.  This is a short-term state,
3388  *    typically lasting only one round trip time (RTT).
3389  *
3390  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3391  *    Used for secondary verification, after primary verification
3392  *    failures.  This state lasts no more than twice the Maximum Segment
3393  *    Lifetime (2MSL).  Then, the secret is discarded.
3394  */
3395 struct tcp_cookie_secret {
3396 	/* The secret is divided into two parts.  The digest part is the
3397 	 * equivalent of previously hashing a secret and saving the state,
3398 	 * and serves as an initialization vector (IV).  The message part
3399 	 * serves as the trailing secret.
3400 	 */
3401 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3402 	unsigned long			expires;
3403 };
3404 
3405 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3406 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3407 #define TCP_SECRET_LIFE (HZ * 600)
3408 
3409 static struct tcp_cookie_secret tcp_secret_one;
3410 static struct tcp_cookie_secret tcp_secret_two;
3411 
3412 /* Essentially a circular list, without dynamic allocation. */
3413 static struct tcp_cookie_secret *tcp_secret_generating;
3414 static struct tcp_cookie_secret *tcp_secret_primary;
3415 static struct tcp_cookie_secret *tcp_secret_retiring;
3416 static struct tcp_cookie_secret *tcp_secret_secondary;
3417 
3418 static DEFINE_SPINLOCK(tcp_secret_locker);
3419 
3420 /* Select a pseudo-random word in the cookie workspace.
3421  */
3422 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3423 {
3424 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3425 }
3426 
3427 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3428  * Called in softirq context.
3429  * Returns: 0 for success.
3430  */
3431 int tcp_cookie_generator(u32 *bakery)
3432 {
3433 	unsigned long jiffy = jiffies;
3434 
3435 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3436 		spin_lock_bh(&tcp_secret_locker);
3437 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3438 			/* refreshed by another */
3439 			memcpy(bakery,
3440 			       &tcp_secret_generating->secrets[0],
3441 			       COOKIE_WORKSPACE_WORDS);
3442 		} else {
3443 			/* still needs refreshing */
3444 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3445 
3446 			/* The first time, paranoia assumes that the
3447 			 * randomization function isn't as strong.  But,
3448 			 * this secret initialization is delayed until
3449 			 * the last possible moment (packet arrival).
3450 			 * Although that time is observable, it is
3451 			 * unpredictably variable.  Mash in the most
3452 			 * volatile clock bits available, and expire the
3453 			 * secret extra quickly.
3454 			 */
3455 			if (unlikely(tcp_secret_primary->expires ==
3456 				     tcp_secret_secondary->expires)) {
3457 				struct timespec tv;
3458 
3459 				getnstimeofday(&tv);
3460 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3461 					(u32)tv.tv_nsec;
3462 
3463 				tcp_secret_secondary->expires = jiffy
3464 					+ TCP_SECRET_1MSL
3465 					+ (0x0f & tcp_cookie_work(bakery, 0));
3466 			} else {
3467 				tcp_secret_secondary->expires = jiffy
3468 					+ TCP_SECRET_LIFE
3469 					+ (0xff & tcp_cookie_work(bakery, 1));
3470 				tcp_secret_primary->expires = jiffy
3471 					+ TCP_SECRET_2MSL
3472 					+ (0x1f & tcp_cookie_work(bakery, 2));
3473 			}
3474 			memcpy(&tcp_secret_secondary->secrets[0],
3475 			       bakery, COOKIE_WORKSPACE_WORDS);
3476 
3477 			rcu_assign_pointer(tcp_secret_generating,
3478 					   tcp_secret_secondary);
3479 			rcu_assign_pointer(tcp_secret_retiring,
3480 					   tcp_secret_primary);
3481 			/*
3482 			 * Neither call_rcu() nor synchronize_rcu() needed.
3483 			 * Retiring data is not freed.  It is replaced after
3484 			 * further (locked) pointer updates, and a quiet time
3485 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3486 			 */
3487 		}
3488 		spin_unlock_bh(&tcp_secret_locker);
3489 	} else {
3490 		rcu_read_lock_bh();
3491 		memcpy(bakery,
3492 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3493 		       COOKIE_WORKSPACE_WORDS);
3494 		rcu_read_unlock_bh();
3495 	}
3496 	return 0;
3497 }
3498 EXPORT_SYMBOL(tcp_cookie_generator);
3499 
3500 void tcp_done(struct sock *sk)
3501 {
3502 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3503 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3504 
3505 	tcp_set_state(sk, TCP_CLOSE);
3506 	tcp_clear_xmit_timers(sk);
3507 
3508 	sk->sk_shutdown = SHUTDOWN_MASK;
3509 
3510 	if (!sock_flag(sk, SOCK_DEAD))
3511 		sk->sk_state_change(sk);
3512 	else
3513 		inet_csk_destroy_sock(sk);
3514 }
3515 EXPORT_SYMBOL_GPL(tcp_done);
3516 
3517 extern struct tcp_congestion_ops tcp_reno;
3518 
3519 static __initdata unsigned long thash_entries;
3520 static int __init set_thash_entries(char *str)
3521 {
3522 	ssize_t ret;
3523 
3524 	if (!str)
3525 		return 0;
3526 
3527 	ret = kstrtoul(str, 0, &thash_entries);
3528 	if (ret)
3529 		return 0;
3530 
3531 	return 1;
3532 }
3533 __setup("thash_entries=", set_thash_entries);
3534 
3535 void tcp_init_mem(struct net *net)
3536 {
3537 	unsigned long limit = nr_free_buffer_pages() / 8;
3538 	limit = max(limit, 128UL);
3539 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3540 	net->ipv4.sysctl_tcp_mem[1] = limit;
3541 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3542 }
3543 
3544 void __init tcp_init(void)
3545 {
3546 	struct sk_buff *skb = NULL;
3547 	unsigned long limit;
3548 	int max_rshare, max_wshare, cnt;
3549 	unsigned int i;
3550 	unsigned long jiffy = jiffies;
3551 
3552 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3553 
3554 	percpu_counter_init(&tcp_sockets_allocated, 0);
3555 	percpu_counter_init(&tcp_orphan_count, 0);
3556 	tcp_hashinfo.bind_bucket_cachep =
3557 		kmem_cache_create("tcp_bind_bucket",
3558 				  sizeof(struct inet_bind_bucket), 0,
3559 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3560 
3561 	/* Size and allocate the main established and bind bucket
3562 	 * hash tables.
3563 	 *
3564 	 * The methodology is similar to that of the buffer cache.
3565 	 */
3566 	tcp_hashinfo.ehash =
3567 		alloc_large_system_hash("TCP established",
3568 					sizeof(struct inet_ehash_bucket),
3569 					thash_entries,
3570 					(totalram_pages >= 128 * 1024) ?
3571 					13 : 15,
3572 					0,
3573 					NULL,
3574 					&tcp_hashinfo.ehash_mask,
3575 					0,
3576 					thash_entries ? 0 : 512 * 1024);
3577 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3578 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3579 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3580 	}
3581 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3582 		panic("TCP: failed to alloc ehash_locks");
3583 	tcp_hashinfo.bhash =
3584 		alloc_large_system_hash("TCP bind",
3585 					sizeof(struct inet_bind_hashbucket),
3586 					tcp_hashinfo.ehash_mask + 1,
3587 					(totalram_pages >= 128 * 1024) ?
3588 					13 : 15,
3589 					0,
3590 					&tcp_hashinfo.bhash_size,
3591 					NULL,
3592 					0,
3593 					64 * 1024);
3594 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3595 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3596 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3597 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3598 	}
3599 
3600 
3601 	cnt = tcp_hashinfo.ehash_mask + 1;
3602 
3603 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3604 	sysctl_tcp_max_orphans = cnt / 2;
3605 	sysctl_max_syn_backlog = max(128, cnt / 256);
3606 
3607 	tcp_init_mem(&init_net);
3608 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3609 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3610 	max_wshare = min(4UL*1024*1024, limit);
3611 	max_rshare = min(6UL*1024*1024, limit);
3612 
3613 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3614 	sysctl_tcp_wmem[1] = 16*1024;
3615 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3616 
3617 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3618 	sysctl_tcp_rmem[1] = 87380;
3619 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3620 
3621 	pr_info("Hash tables configured (established %u bind %u)\n",
3622 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3623 
3624 	tcp_metrics_init();
3625 
3626 	tcp_register_congestion_control(&tcp_reno);
3627 
3628 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3629 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3630 	tcp_secret_one.expires = jiffy; /* past due */
3631 	tcp_secret_two.expires = jiffy; /* past due */
3632 	tcp_secret_generating = &tcp_secret_one;
3633 	tcp_secret_primary = &tcp_secret_one;
3634 	tcp_secret_retiring = &tcp_secret_two;
3635 	tcp_secret_secondary = &tcp_secret_two;
3636 	tcp_tasklet_init();
3637 }
3638