1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_SYMBOL(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_SYMBOL(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_SYMBOL(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us, rto_max_ms; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 438 439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 441 icsk->icsk_delack_max = TCP_DELACK_MAX; 442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 444 445 /* So many TCP implementations out there (incorrectly) count the 446 * initial SYN frame in their delayed-ACK and congestion control 447 * algorithms that we must have the following bandaid to talk 448 * efficiently to them. -DaveM 449 */ 450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 451 452 /* There's a bubble in the pipe until at least the first ACK. */ 453 tp->app_limited = ~0U; 454 tp->rate_app_limited = 1; 455 456 /* See draft-stevens-tcpca-spec-01 for discussion of the 457 * initialization of these values. 458 */ 459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 460 tp->snd_cwnd_clamp = ~0; 461 tp->mss_cache = TCP_MSS_DEFAULT; 462 463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 464 tcp_assign_congestion_control(sk); 465 466 tp->tsoffset = 0; 467 tp->rack.reo_wnd_steps = 1; 468 469 sk->sk_write_space = sk_stream_write_space; 470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 471 472 icsk->icsk_sync_mss = tcp_sync_mss; 473 474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 476 tcp_scaling_ratio_init(sk); 477 478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 479 sk_sockets_allocated_inc(sk); 480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 481 } 482 EXPORT_SYMBOL(tcp_init_sock); 483 484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 485 { 486 struct sk_buff *skb = tcp_write_queue_tail(sk); 487 u32 tsflags = sockc->tsflags; 488 489 if (tsflags && skb) { 490 struct skb_shared_info *shinfo = skb_shinfo(skb); 491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 492 493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 494 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 495 tcb->txstamp_ack = 1; 496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 498 } 499 } 500 501 static bool tcp_stream_is_readable(struct sock *sk, int target) 502 { 503 if (tcp_epollin_ready(sk, target)) 504 return true; 505 return sk_is_readable(sk); 506 } 507 508 /* 509 * Wait for a TCP event. 510 * 511 * Note that we don't need to lock the socket, as the upper poll layers 512 * take care of normal races (between the test and the event) and we don't 513 * go look at any of the socket buffers directly. 514 */ 515 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 516 { 517 __poll_t mask; 518 struct sock *sk = sock->sk; 519 const struct tcp_sock *tp = tcp_sk(sk); 520 u8 shutdown; 521 int state; 522 523 sock_poll_wait(file, sock, wait); 524 525 state = inet_sk_state_load(sk); 526 if (state == TCP_LISTEN) 527 return inet_csk_listen_poll(sk); 528 529 /* Socket is not locked. We are protected from async events 530 * by poll logic and correct handling of state changes 531 * made by other threads is impossible in any case. 532 */ 533 534 mask = 0; 535 536 /* 537 * EPOLLHUP is certainly not done right. But poll() doesn't 538 * have a notion of HUP in just one direction, and for a 539 * socket the read side is more interesting. 540 * 541 * Some poll() documentation says that EPOLLHUP is incompatible 542 * with the EPOLLOUT/POLLWR flags, so somebody should check this 543 * all. But careful, it tends to be safer to return too many 544 * bits than too few, and you can easily break real applications 545 * if you don't tell them that something has hung up! 546 * 547 * Check-me. 548 * 549 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 550 * our fs/select.c). It means that after we received EOF, 551 * poll always returns immediately, making impossible poll() on write() 552 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 553 * if and only if shutdown has been made in both directions. 554 * Actually, it is interesting to look how Solaris and DUX 555 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 556 * then we could set it on SND_SHUTDOWN. BTW examples given 557 * in Stevens' books assume exactly this behaviour, it explains 558 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 559 * 560 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 561 * blocking on fresh not-connected or disconnected socket. --ANK 562 */ 563 shutdown = READ_ONCE(sk->sk_shutdown); 564 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 565 mask |= EPOLLHUP; 566 if (shutdown & RCV_SHUTDOWN) 567 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 568 569 /* Connected or passive Fast Open socket? */ 570 if (state != TCP_SYN_SENT && 571 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 572 int target = sock_rcvlowat(sk, 0, INT_MAX); 573 u16 urg_data = READ_ONCE(tp->urg_data); 574 575 if (unlikely(urg_data) && 576 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 577 !sock_flag(sk, SOCK_URGINLINE)) 578 target++; 579 580 if (tcp_stream_is_readable(sk, target)) 581 mask |= EPOLLIN | EPOLLRDNORM; 582 583 if (!(shutdown & SEND_SHUTDOWN)) { 584 if (__sk_stream_is_writeable(sk, 1)) { 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 } else { /* send SIGIO later */ 587 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 588 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 589 590 /* Race breaker. If space is freed after 591 * wspace test but before the flags are set, 592 * IO signal will be lost. Memory barrier 593 * pairs with the input side. 594 */ 595 smp_mb__after_atomic(); 596 if (__sk_stream_is_writeable(sk, 1)) 597 mask |= EPOLLOUT | EPOLLWRNORM; 598 } 599 } else 600 mask |= EPOLLOUT | EPOLLWRNORM; 601 602 if (urg_data & TCP_URG_VALID) 603 mask |= EPOLLPRI; 604 } else if (state == TCP_SYN_SENT && 605 inet_test_bit(DEFER_CONNECT, sk)) { 606 /* Active TCP fastopen socket with defer_connect 607 * Return EPOLLOUT so application can call write() 608 * in order for kernel to generate SYN+data 609 */ 610 mask |= EPOLLOUT | EPOLLWRNORM; 611 } 612 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 613 smp_rmb(); 614 if (READ_ONCE(sk->sk_err) || 615 !skb_queue_empty_lockless(&sk->sk_error_queue)) 616 mask |= EPOLLERR; 617 618 return mask; 619 } 620 EXPORT_SYMBOL(tcp_poll); 621 622 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 623 { 624 struct tcp_sock *tp = tcp_sk(sk); 625 int answ; 626 bool slow; 627 628 switch (cmd) { 629 case SIOCINQ: 630 if (sk->sk_state == TCP_LISTEN) 631 return -EINVAL; 632 633 slow = lock_sock_fast(sk); 634 answ = tcp_inq(sk); 635 unlock_sock_fast(sk, slow); 636 break; 637 case SIOCATMARK: 638 answ = READ_ONCE(tp->urg_data) && 639 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 640 break; 641 case SIOCOUTQ: 642 if (sk->sk_state == TCP_LISTEN) 643 return -EINVAL; 644 645 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 646 answ = 0; 647 else 648 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 649 break; 650 case SIOCOUTQNSD: 651 if (sk->sk_state == TCP_LISTEN) 652 return -EINVAL; 653 654 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 655 answ = 0; 656 else 657 answ = READ_ONCE(tp->write_seq) - 658 READ_ONCE(tp->snd_nxt); 659 break; 660 default: 661 return -ENOIOCTLCMD; 662 } 663 664 *karg = answ; 665 return 0; 666 } 667 EXPORT_SYMBOL(tcp_ioctl); 668 669 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 670 { 671 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 672 tp->pushed_seq = tp->write_seq; 673 } 674 675 static inline bool forced_push(const struct tcp_sock *tp) 676 { 677 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 678 } 679 680 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 681 { 682 struct tcp_sock *tp = tcp_sk(sk); 683 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 684 685 tcb->seq = tcb->end_seq = tp->write_seq; 686 tcb->tcp_flags = TCPHDR_ACK; 687 __skb_header_release(skb); 688 tcp_add_write_queue_tail(sk, skb); 689 sk_wmem_queued_add(sk, skb->truesize); 690 sk_mem_charge(sk, skb->truesize); 691 if (tp->nonagle & TCP_NAGLE_PUSH) 692 tp->nonagle &= ~TCP_NAGLE_PUSH; 693 694 tcp_slow_start_after_idle_check(sk); 695 } 696 697 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 698 { 699 if (flags & MSG_OOB) 700 tp->snd_up = tp->write_seq; 701 } 702 703 /* If a not yet filled skb is pushed, do not send it if 704 * we have data packets in Qdisc or NIC queues : 705 * Because TX completion will happen shortly, it gives a chance 706 * to coalesce future sendmsg() payload into this skb, without 707 * need for a timer, and with no latency trade off. 708 * As packets containing data payload have a bigger truesize 709 * than pure acks (dataless) packets, the last checks prevent 710 * autocorking if we only have an ACK in Qdisc/NIC queues, 711 * or if TX completion was delayed after we processed ACK packet. 712 */ 713 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 714 int size_goal) 715 { 716 return skb->len < size_goal && 717 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 718 !tcp_rtx_queue_empty(sk) && 719 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 720 tcp_skb_can_collapse_to(skb); 721 } 722 723 void tcp_push(struct sock *sk, int flags, int mss_now, 724 int nonagle, int size_goal) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 struct sk_buff *skb; 728 729 skb = tcp_write_queue_tail(sk); 730 if (!skb) 731 return; 732 if (!(flags & MSG_MORE) || forced_push(tp)) 733 tcp_mark_push(tp, skb); 734 735 tcp_mark_urg(tp, flags); 736 737 if (tcp_should_autocork(sk, skb, size_goal)) { 738 739 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 740 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 742 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 743 smp_mb__after_atomic(); 744 } 745 /* It is possible TX completion already happened 746 * before we set TSQ_THROTTLED. 747 */ 748 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 749 return; 750 } 751 752 if (flags & MSG_MORE) 753 nonagle = TCP_NAGLE_CORK; 754 755 __tcp_push_pending_frames(sk, mss_now, nonagle); 756 } 757 758 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 759 unsigned int offset, size_t len) 760 { 761 struct tcp_splice_state *tss = rd_desc->arg.data; 762 int ret; 763 764 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 765 min(rd_desc->count, len), tss->flags); 766 if (ret > 0) 767 rd_desc->count -= ret; 768 return ret; 769 } 770 771 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 772 { 773 /* Store TCP splice context information in read_descriptor_t. */ 774 read_descriptor_t rd_desc = { 775 .arg.data = tss, 776 .count = tss->len, 777 }; 778 779 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 780 } 781 782 /** 783 * tcp_splice_read - splice data from TCP socket to a pipe 784 * @sock: socket to splice from 785 * @ppos: position (not valid) 786 * @pipe: pipe to splice to 787 * @len: number of bytes to splice 788 * @flags: splice modifier flags 789 * 790 * Description: 791 * Will read pages from given socket and fill them into a pipe. 792 * 793 **/ 794 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 795 struct pipe_inode_info *pipe, size_t len, 796 unsigned int flags) 797 { 798 struct sock *sk = sock->sk; 799 struct tcp_splice_state tss = { 800 .pipe = pipe, 801 .len = len, 802 .flags = flags, 803 }; 804 long timeo; 805 ssize_t spliced; 806 int ret; 807 808 sock_rps_record_flow(sk); 809 /* 810 * We can't seek on a socket input 811 */ 812 if (unlikely(*ppos)) 813 return -ESPIPE; 814 815 ret = spliced = 0; 816 817 lock_sock(sk); 818 819 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 820 while (tss.len) { 821 ret = __tcp_splice_read(sk, &tss); 822 if (ret < 0) 823 break; 824 else if (!ret) { 825 if (spliced) 826 break; 827 if (sock_flag(sk, SOCK_DONE)) 828 break; 829 if (sk->sk_err) { 830 ret = sock_error(sk); 831 break; 832 } 833 if (sk->sk_shutdown & RCV_SHUTDOWN) 834 break; 835 if (sk->sk_state == TCP_CLOSE) { 836 /* 837 * This occurs when user tries to read 838 * from never connected socket. 839 */ 840 ret = -ENOTCONN; 841 break; 842 } 843 if (!timeo) { 844 ret = -EAGAIN; 845 break; 846 } 847 /* if __tcp_splice_read() got nothing while we have 848 * an skb in receive queue, we do not want to loop. 849 * This might happen with URG data. 850 */ 851 if (!skb_queue_empty(&sk->sk_receive_queue)) 852 break; 853 ret = sk_wait_data(sk, &timeo, NULL); 854 if (ret < 0) 855 break; 856 if (signal_pending(current)) { 857 ret = sock_intr_errno(timeo); 858 break; 859 } 860 continue; 861 } 862 tss.len -= ret; 863 spliced += ret; 864 865 if (!tss.len || !timeo) 866 break; 867 release_sock(sk); 868 lock_sock(sk); 869 870 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 871 (sk->sk_shutdown & RCV_SHUTDOWN) || 872 signal_pending(current)) 873 break; 874 } 875 876 release_sock(sk); 877 878 if (spliced) 879 return spliced; 880 881 return ret; 882 } 883 EXPORT_SYMBOL(tcp_splice_read); 884 885 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 886 bool force_schedule) 887 { 888 struct sk_buff *skb; 889 890 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 891 if (likely(skb)) { 892 bool mem_scheduled; 893 894 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 895 if (force_schedule) { 896 mem_scheduled = true; 897 sk_forced_mem_schedule(sk, skb->truesize); 898 } else { 899 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 900 } 901 if (likely(mem_scheduled)) { 902 skb_reserve(skb, MAX_TCP_HEADER); 903 skb->ip_summed = CHECKSUM_PARTIAL; 904 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 905 return skb; 906 } 907 __kfree_skb(skb); 908 } else { 909 sk->sk_prot->enter_memory_pressure(sk); 910 sk_stream_moderate_sndbuf(sk); 911 } 912 return NULL; 913 } 914 915 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 916 int large_allowed) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 u32 new_size_goal, size_goal; 920 921 if (!large_allowed) 922 return mss_now; 923 924 /* Note : tcp_tso_autosize() will eventually split this later */ 925 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 926 927 /* We try hard to avoid divides here */ 928 size_goal = tp->gso_segs * mss_now; 929 if (unlikely(new_size_goal < size_goal || 930 new_size_goal >= size_goal + mss_now)) { 931 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 932 sk->sk_gso_max_segs); 933 size_goal = tp->gso_segs * mss_now; 934 } 935 936 return max(size_goal, mss_now); 937 } 938 939 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 940 { 941 int mss_now; 942 943 mss_now = tcp_current_mss(sk); 944 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 945 946 return mss_now; 947 } 948 949 /* In some cases, sendmsg() could have added an skb to the write queue, 950 * but failed adding payload on it. We need to remove it to consume less 951 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 952 * epoll() users. Another reason is that tcp_write_xmit() does not like 953 * finding an empty skb in the write queue. 954 */ 955 void tcp_remove_empty_skb(struct sock *sk) 956 { 957 struct sk_buff *skb = tcp_write_queue_tail(sk); 958 959 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 960 tcp_unlink_write_queue(skb, sk); 961 if (tcp_write_queue_empty(sk)) 962 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 963 tcp_wmem_free_skb(sk, skb); 964 } 965 } 966 967 /* skb changing from pure zc to mixed, must charge zc */ 968 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 969 { 970 if (unlikely(skb_zcopy_pure(skb))) { 971 u32 extra = skb->truesize - 972 SKB_TRUESIZE(skb_end_offset(skb)); 973 974 if (!sk_wmem_schedule(sk, extra)) 975 return -ENOMEM; 976 977 sk_mem_charge(sk, extra); 978 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 979 } 980 return 0; 981 } 982 983 984 int tcp_wmem_schedule(struct sock *sk, int copy) 985 { 986 int left; 987 988 if (likely(sk_wmem_schedule(sk, copy))) 989 return copy; 990 991 /* We could be in trouble if we have nothing queued. 992 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 993 * to guarantee some progress. 994 */ 995 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 996 if (left > 0) 997 sk_forced_mem_schedule(sk, min(left, copy)); 998 return min(copy, sk->sk_forward_alloc); 999 } 1000 1001 void tcp_free_fastopen_req(struct tcp_sock *tp) 1002 { 1003 if (tp->fastopen_req) { 1004 kfree(tp->fastopen_req); 1005 tp->fastopen_req = NULL; 1006 } 1007 } 1008 1009 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1010 size_t size, struct ubuf_info *uarg) 1011 { 1012 struct tcp_sock *tp = tcp_sk(sk); 1013 struct inet_sock *inet = inet_sk(sk); 1014 struct sockaddr *uaddr = msg->msg_name; 1015 int err, flags; 1016 1017 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1018 TFO_CLIENT_ENABLE) || 1019 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1020 uaddr->sa_family == AF_UNSPEC)) 1021 return -EOPNOTSUPP; 1022 if (tp->fastopen_req) 1023 return -EALREADY; /* Another Fast Open is in progress */ 1024 1025 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1026 sk->sk_allocation); 1027 if (unlikely(!tp->fastopen_req)) 1028 return -ENOBUFS; 1029 tp->fastopen_req->data = msg; 1030 tp->fastopen_req->size = size; 1031 tp->fastopen_req->uarg = uarg; 1032 1033 if (inet_test_bit(DEFER_CONNECT, sk)) { 1034 err = tcp_connect(sk); 1035 /* Same failure procedure as in tcp_v4/6_connect */ 1036 if (err) { 1037 tcp_set_state(sk, TCP_CLOSE); 1038 inet->inet_dport = 0; 1039 sk->sk_route_caps = 0; 1040 } 1041 } 1042 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1043 err = __inet_stream_connect(sk->sk_socket, uaddr, 1044 msg->msg_namelen, flags, 1); 1045 /* fastopen_req could already be freed in __inet_stream_connect 1046 * if the connection times out or gets rst 1047 */ 1048 if (tp->fastopen_req) { 1049 *copied = tp->fastopen_req->copied; 1050 tcp_free_fastopen_req(tp); 1051 inet_clear_bit(DEFER_CONNECT, sk); 1052 } 1053 return err; 1054 } 1055 1056 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1057 { 1058 struct tcp_sock *tp = tcp_sk(sk); 1059 struct ubuf_info *uarg = NULL; 1060 struct sk_buff *skb; 1061 struct sockcm_cookie sockc; 1062 int flags, err, copied = 0; 1063 int mss_now = 0, size_goal, copied_syn = 0; 1064 int process_backlog = 0; 1065 int zc = 0; 1066 long timeo; 1067 1068 flags = msg->msg_flags; 1069 1070 if ((flags & MSG_ZEROCOPY) && size) { 1071 if (msg->msg_ubuf) { 1072 uarg = msg->msg_ubuf; 1073 if (sk->sk_route_caps & NETIF_F_SG) 1074 zc = MSG_ZEROCOPY; 1075 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1076 skb = tcp_write_queue_tail(sk); 1077 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1078 if (!uarg) { 1079 err = -ENOBUFS; 1080 goto out_err; 1081 } 1082 if (sk->sk_route_caps & NETIF_F_SG) 1083 zc = MSG_ZEROCOPY; 1084 else 1085 uarg_to_msgzc(uarg)->zerocopy = 0; 1086 } 1087 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1088 if (sk->sk_route_caps & NETIF_F_SG) 1089 zc = MSG_SPLICE_PAGES; 1090 } 1091 1092 if (unlikely(flags & MSG_FASTOPEN || 1093 inet_test_bit(DEFER_CONNECT, sk)) && 1094 !tp->repair) { 1095 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1096 if (err == -EINPROGRESS && copied_syn > 0) 1097 goto out; 1098 else if (err) 1099 goto out_err; 1100 } 1101 1102 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1103 1104 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1105 1106 /* Wait for a connection to finish. One exception is TCP Fast Open 1107 * (passive side) where data is allowed to be sent before a connection 1108 * is fully established. 1109 */ 1110 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1111 !tcp_passive_fastopen(sk)) { 1112 err = sk_stream_wait_connect(sk, &timeo); 1113 if (err != 0) 1114 goto do_error; 1115 } 1116 1117 if (unlikely(tp->repair)) { 1118 if (tp->repair_queue == TCP_RECV_QUEUE) { 1119 copied = tcp_send_rcvq(sk, msg, size); 1120 goto out_nopush; 1121 } 1122 1123 err = -EINVAL; 1124 if (tp->repair_queue == TCP_NO_QUEUE) 1125 goto out_err; 1126 1127 /* 'common' sending to sendq */ 1128 } 1129 1130 sockcm_init(&sockc, sk); 1131 if (msg->msg_controllen) { 1132 err = sock_cmsg_send(sk, msg, &sockc); 1133 if (unlikely(err)) { 1134 err = -EINVAL; 1135 goto out_err; 1136 } 1137 } 1138 1139 /* This should be in poll */ 1140 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1141 1142 /* Ok commence sending. */ 1143 copied = 0; 1144 1145 restart: 1146 mss_now = tcp_send_mss(sk, &size_goal, flags); 1147 1148 err = -EPIPE; 1149 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1150 goto do_error; 1151 1152 while (msg_data_left(msg)) { 1153 ssize_t copy = 0; 1154 1155 skb = tcp_write_queue_tail(sk); 1156 if (skb) 1157 copy = size_goal - skb->len; 1158 1159 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1160 bool first_skb; 1161 1162 new_segment: 1163 if (!sk_stream_memory_free(sk)) 1164 goto wait_for_space; 1165 1166 if (unlikely(process_backlog >= 16)) { 1167 process_backlog = 0; 1168 if (sk_flush_backlog(sk)) 1169 goto restart; 1170 } 1171 first_skb = tcp_rtx_and_write_queues_empty(sk); 1172 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1173 first_skb); 1174 if (!skb) 1175 goto wait_for_space; 1176 1177 process_backlog++; 1178 1179 #ifdef CONFIG_SKB_DECRYPTED 1180 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1181 #endif 1182 tcp_skb_entail(sk, skb); 1183 copy = size_goal; 1184 1185 /* All packets are restored as if they have 1186 * already been sent. skb_mstamp_ns isn't set to 1187 * avoid wrong rtt estimation. 1188 */ 1189 if (tp->repair) 1190 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1191 } 1192 1193 /* Try to append data to the end of skb. */ 1194 if (copy > msg_data_left(msg)) 1195 copy = msg_data_left(msg); 1196 1197 if (zc == 0) { 1198 bool merge = true; 1199 int i = skb_shinfo(skb)->nr_frags; 1200 struct page_frag *pfrag = sk_page_frag(sk); 1201 1202 if (!sk_page_frag_refill(sk, pfrag)) 1203 goto wait_for_space; 1204 1205 if (!skb_can_coalesce(skb, i, pfrag->page, 1206 pfrag->offset)) { 1207 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1208 tcp_mark_push(tp, skb); 1209 goto new_segment; 1210 } 1211 merge = false; 1212 } 1213 1214 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1215 1216 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1217 if (tcp_downgrade_zcopy_pure(sk, skb)) 1218 goto wait_for_space; 1219 skb_zcopy_downgrade_managed(skb); 1220 } 1221 1222 copy = tcp_wmem_schedule(sk, copy); 1223 if (!copy) 1224 goto wait_for_space; 1225 1226 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1227 pfrag->page, 1228 pfrag->offset, 1229 copy); 1230 if (err) 1231 goto do_error; 1232 1233 /* Update the skb. */ 1234 if (merge) { 1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1236 } else { 1237 skb_fill_page_desc(skb, i, pfrag->page, 1238 pfrag->offset, copy); 1239 page_ref_inc(pfrag->page); 1240 } 1241 pfrag->offset += copy; 1242 } else if (zc == MSG_ZEROCOPY) { 1243 /* First append to a fragless skb builds initial 1244 * pure zerocopy skb 1245 */ 1246 if (!skb->len) 1247 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1248 1249 if (!skb_zcopy_pure(skb)) { 1250 copy = tcp_wmem_schedule(sk, copy); 1251 if (!copy) 1252 goto wait_for_space; 1253 } 1254 1255 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1256 if (err == -EMSGSIZE || err == -EEXIST) { 1257 tcp_mark_push(tp, skb); 1258 goto new_segment; 1259 } 1260 if (err < 0) 1261 goto do_error; 1262 copy = err; 1263 } else if (zc == MSG_SPLICE_PAGES) { 1264 /* Splice in data if we can; copy if we can't. */ 1265 if (tcp_downgrade_zcopy_pure(sk, skb)) 1266 goto wait_for_space; 1267 copy = tcp_wmem_schedule(sk, copy); 1268 if (!copy) 1269 goto wait_for_space; 1270 1271 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1272 sk->sk_allocation); 1273 if (err < 0) { 1274 if (err == -EMSGSIZE) { 1275 tcp_mark_push(tp, skb); 1276 goto new_segment; 1277 } 1278 goto do_error; 1279 } 1280 copy = err; 1281 1282 if (!(flags & MSG_NO_SHARED_FRAGS)) 1283 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1284 1285 sk_wmem_queued_add(sk, copy); 1286 sk_mem_charge(sk, copy); 1287 } 1288 1289 if (!copied) 1290 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1291 1292 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1293 TCP_SKB_CB(skb)->end_seq += copy; 1294 tcp_skb_pcount_set(skb, 0); 1295 1296 copied += copy; 1297 if (!msg_data_left(msg)) { 1298 if (unlikely(flags & MSG_EOR)) 1299 TCP_SKB_CB(skb)->eor = 1; 1300 goto out; 1301 } 1302 1303 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1304 continue; 1305 1306 if (forced_push(tp)) { 1307 tcp_mark_push(tp, skb); 1308 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1309 } else if (skb == tcp_send_head(sk)) 1310 tcp_push_one(sk, mss_now); 1311 continue; 1312 1313 wait_for_space: 1314 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1315 tcp_remove_empty_skb(sk); 1316 if (copied) 1317 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1318 TCP_NAGLE_PUSH, size_goal); 1319 1320 err = sk_stream_wait_memory(sk, &timeo); 1321 if (err != 0) 1322 goto do_error; 1323 1324 mss_now = tcp_send_mss(sk, &size_goal, flags); 1325 } 1326 1327 out: 1328 if (copied) { 1329 tcp_tx_timestamp(sk, &sockc); 1330 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1331 } 1332 out_nopush: 1333 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1334 if (uarg && !msg->msg_ubuf) 1335 net_zcopy_put(uarg); 1336 return copied + copied_syn; 1337 1338 do_error: 1339 tcp_remove_empty_skb(sk); 1340 1341 if (copied + copied_syn) 1342 goto out; 1343 out_err: 1344 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1345 if (uarg && !msg->msg_ubuf) 1346 net_zcopy_put_abort(uarg, true); 1347 err = sk_stream_error(sk, flags, err); 1348 /* make sure we wake any epoll edge trigger waiter */ 1349 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1350 sk->sk_write_space(sk); 1351 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1352 } 1353 return err; 1354 } 1355 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1356 1357 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1358 { 1359 int ret; 1360 1361 lock_sock(sk); 1362 ret = tcp_sendmsg_locked(sk, msg, size); 1363 release_sock(sk); 1364 1365 return ret; 1366 } 1367 EXPORT_SYMBOL(tcp_sendmsg); 1368 1369 void tcp_splice_eof(struct socket *sock) 1370 { 1371 struct sock *sk = sock->sk; 1372 struct tcp_sock *tp = tcp_sk(sk); 1373 int mss_now, size_goal; 1374 1375 if (!tcp_write_queue_tail(sk)) 1376 return; 1377 1378 lock_sock(sk); 1379 mss_now = tcp_send_mss(sk, &size_goal, 0); 1380 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1381 release_sock(sk); 1382 } 1383 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1384 1385 /* 1386 * Handle reading urgent data. BSD has very simple semantics for 1387 * this, no blocking and very strange errors 8) 1388 */ 1389 1390 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 1394 /* No URG data to read. */ 1395 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1396 tp->urg_data == TCP_URG_READ) 1397 return -EINVAL; /* Yes this is right ! */ 1398 1399 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1400 return -ENOTCONN; 1401 1402 if (tp->urg_data & TCP_URG_VALID) { 1403 int err = 0; 1404 char c = tp->urg_data; 1405 1406 if (!(flags & MSG_PEEK)) 1407 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1408 1409 /* Read urgent data. */ 1410 msg->msg_flags |= MSG_OOB; 1411 1412 if (len > 0) { 1413 if (!(flags & MSG_TRUNC)) 1414 err = memcpy_to_msg(msg, &c, 1); 1415 len = 1; 1416 } else 1417 msg->msg_flags |= MSG_TRUNC; 1418 1419 return err ? -EFAULT : len; 1420 } 1421 1422 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1423 return 0; 1424 1425 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1426 * the available implementations agree in this case: 1427 * this call should never block, independent of the 1428 * blocking state of the socket. 1429 * Mike <pall@rz.uni-karlsruhe.de> 1430 */ 1431 return -EAGAIN; 1432 } 1433 1434 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1435 { 1436 struct sk_buff *skb; 1437 int copied = 0, err = 0; 1438 1439 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1440 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1441 if (err) 1442 return err; 1443 copied += skb->len; 1444 } 1445 1446 skb_queue_walk(&sk->sk_write_queue, skb) { 1447 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1448 if (err) 1449 break; 1450 1451 copied += skb->len; 1452 } 1453 1454 return err ?: copied; 1455 } 1456 1457 /* Clean up the receive buffer for full frames taken by the user, 1458 * then send an ACK if necessary. COPIED is the number of bytes 1459 * tcp_recvmsg has given to the user so far, it speeds up the 1460 * calculation of whether or not we must ACK for the sake of 1461 * a window update. 1462 */ 1463 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1464 { 1465 struct tcp_sock *tp = tcp_sk(sk); 1466 bool time_to_ack = false; 1467 1468 if (inet_csk_ack_scheduled(sk)) { 1469 const struct inet_connection_sock *icsk = inet_csk(sk); 1470 1471 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1472 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1473 /* 1474 * If this read emptied read buffer, we send ACK, if 1475 * connection is not bidirectional, user drained 1476 * receive buffer and there was a small segment 1477 * in queue. 1478 */ 1479 (copied > 0 && 1480 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1481 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1482 !inet_csk_in_pingpong_mode(sk))) && 1483 !atomic_read(&sk->sk_rmem_alloc))) 1484 time_to_ack = true; 1485 } 1486 1487 /* We send an ACK if we can now advertise a non-zero window 1488 * which has been raised "significantly". 1489 * 1490 * Even if window raised up to infinity, do not send window open ACK 1491 * in states, where we will not receive more. It is useless. 1492 */ 1493 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1494 __u32 rcv_window_now = tcp_receive_window(tp); 1495 1496 /* Optimize, __tcp_select_window() is not cheap. */ 1497 if (2*rcv_window_now <= tp->window_clamp) { 1498 __u32 new_window = __tcp_select_window(sk); 1499 1500 /* Send ACK now, if this read freed lots of space 1501 * in our buffer. Certainly, new_window is new window. 1502 * We can advertise it now, if it is not less than current one. 1503 * "Lots" means "at least twice" here. 1504 */ 1505 if (new_window && new_window >= 2 * rcv_window_now) 1506 time_to_ack = true; 1507 } 1508 } 1509 if (time_to_ack) 1510 tcp_send_ack(sk); 1511 } 1512 1513 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1514 { 1515 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1516 struct tcp_sock *tp = tcp_sk(sk); 1517 1518 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1519 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1520 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1521 __tcp_cleanup_rbuf(sk, copied); 1522 } 1523 1524 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1525 { 1526 __skb_unlink(skb, &sk->sk_receive_queue); 1527 if (likely(skb->destructor == sock_rfree)) { 1528 sock_rfree(skb); 1529 skb->destructor = NULL; 1530 skb->sk = NULL; 1531 return skb_attempt_defer_free(skb); 1532 } 1533 __kfree_skb(skb); 1534 } 1535 1536 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1537 { 1538 struct sk_buff *skb; 1539 u32 offset; 1540 1541 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1542 offset = seq - TCP_SKB_CB(skb)->seq; 1543 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1544 pr_err_once("%s: found a SYN, please report !\n", __func__); 1545 offset--; 1546 } 1547 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1548 *off = offset; 1549 return skb; 1550 } 1551 /* This looks weird, but this can happen if TCP collapsing 1552 * splitted a fat GRO packet, while we released socket lock 1553 * in skb_splice_bits() 1554 */ 1555 tcp_eat_recv_skb(sk, skb); 1556 } 1557 return NULL; 1558 } 1559 EXPORT_SYMBOL(tcp_recv_skb); 1560 1561 /* 1562 * This routine provides an alternative to tcp_recvmsg() for routines 1563 * that would like to handle copying from skbuffs directly in 'sendfile' 1564 * fashion. 1565 * Note: 1566 * - It is assumed that the socket was locked by the caller. 1567 * - The routine does not block. 1568 * - At present, there is no support for reading OOB data 1569 * or for 'peeking' the socket using this routine 1570 * (although both would be easy to implement). 1571 */ 1572 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1573 sk_read_actor_t recv_actor) 1574 { 1575 struct sk_buff *skb; 1576 struct tcp_sock *tp = tcp_sk(sk); 1577 u32 seq = tp->copied_seq; 1578 u32 offset; 1579 int copied = 0; 1580 1581 if (sk->sk_state == TCP_LISTEN) 1582 return -ENOTCONN; 1583 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1584 if (offset < skb->len) { 1585 int used; 1586 size_t len; 1587 1588 len = skb->len - offset; 1589 /* Stop reading if we hit a patch of urgent data */ 1590 if (unlikely(tp->urg_data)) { 1591 u32 urg_offset = tp->urg_seq - seq; 1592 if (urg_offset < len) 1593 len = urg_offset; 1594 if (!len) 1595 break; 1596 } 1597 used = recv_actor(desc, skb, offset, len); 1598 if (used <= 0) { 1599 if (!copied) 1600 copied = used; 1601 break; 1602 } 1603 if (WARN_ON_ONCE(used > len)) 1604 used = len; 1605 seq += used; 1606 copied += used; 1607 offset += used; 1608 1609 /* If recv_actor drops the lock (e.g. TCP splice 1610 * receive) the skb pointer might be invalid when 1611 * getting here: tcp_collapse might have deleted it 1612 * while aggregating skbs from the socket queue. 1613 */ 1614 skb = tcp_recv_skb(sk, seq - 1, &offset); 1615 if (!skb) 1616 break; 1617 /* TCP coalescing might have appended data to the skb. 1618 * Try to splice more frags 1619 */ 1620 if (offset + 1 != skb->len) 1621 continue; 1622 } 1623 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1624 tcp_eat_recv_skb(sk, skb); 1625 ++seq; 1626 break; 1627 } 1628 tcp_eat_recv_skb(sk, skb); 1629 if (!desc->count) 1630 break; 1631 WRITE_ONCE(tp->copied_seq, seq); 1632 } 1633 WRITE_ONCE(tp->copied_seq, seq); 1634 1635 tcp_rcv_space_adjust(sk); 1636 1637 /* Clean up data we have read: This will do ACK frames. */ 1638 if (copied > 0) { 1639 tcp_recv_skb(sk, seq, &offset); 1640 tcp_cleanup_rbuf(sk, copied); 1641 } 1642 return copied; 1643 } 1644 EXPORT_SYMBOL(tcp_read_sock); 1645 1646 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1647 { 1648 struct sk_buff *skb; 1649 int copied = 0; 1650 1651 if (sk->sk_state == TCP_LISTEN) 1652 return -ENOTCONN; 1653 1654 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1655 u8 tcp_flags; 1656 int used; 1657 1658 __skb_unlink(skb, &sk->sk_receive_queue); 1659 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1660 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1661 used = recv_actor(sk, skb); 1662 if (used < 0) { 1663 if (!copied) 1664 copied = used; 1665 break; 1666 } 1667 copied += used; 1668 1669 if (tcp_flags & TCPHDR_FIN) 1670 break; 1671 } 1672 return copied; 1673 } 1674 EXPORT_SYMBOL(tcp_read_skb); 1675 1676 void tcp_read_done(struct sock *sk, size_t len) 1677 { 1678 struct tcp_sock *tp = tcp_sk(sk); 1679 u32 seq = tp->copied_seq; 1680 struct sk_buff *skb; 1681 size_t left; 1682 u32 offset; 1683 1684 if (sk->sk_state == TCP_LISTEN) 1685 return; 1686 1687 left = len; 1688 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1689 int used; 1690 1691 used = min_t(size_t, skb->len - offset, left); 1692 seq += used; 1693 left -= used; 1694 1695 if (skb->len > offset + used) 1696 break; 1697 1698 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1699 tcp_eat_recv_skb(sk, skb); 1700 ++seq; 1701 break; 1702 } 1703 tcp_eat_recv_skb(sk, skb); 1704 } 1705 WRITE_ONCE(tp->copied_seq, seq); 1706 1707 tcp_rcv_space_adjust(sk); 1708 1709 /* Clean up data we have read: This will do ACK frames. */ 1710 if (left != len) 1711 tcp_cleanup_rbuf(sk, len - left); 1712 } 1713 EXPORT_SYMBOL(tcp_read_done); 1714 1715 int tcp_peek_len(struct socket *sock) 1716 { 1717 return tcp_inq(sock->sk); 1718 } 1719 EXPORT_SYMBOL(tcp_peek_len); 1720 1721 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1722 int tcp_set_rcvlowat(struct sock *sk, int val) 1723 { 1724 int space, cap; 1725 1726 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1727 cap = sk->sk_rcvbuf >> 1; 1728 else 1729 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1730 val = min(val, cap); 1731 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1732 1733 /* Check if we need to signal EPOLLIN right now */ 1734 tcp_data_ready(sk); 1735 1736 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1737 return 0; 1738 1739 space = tcp_space_from_win(sk, val); 1740 if (space > sk->sk_rcvbuf) { 1741 WRITE_ONCE(sk->sk_rcvbuf, space); 1742 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1743 } 1744 return 0; 1745 } 1746 EXPORT_SYMBOL(tcp_set_rcvlowat); 1747 1748 void tcp_update_recv_tstamps(struct sk_buff *skb, 1749 struct scm_timestamping_internal *tss) 1750 { 1751 if (skb->tstamp) 1752 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1753 else 1754 tss->ts[0] = (struct timespec64) {0}; 1755 1756 if (skb_hwtstamps(skb)->hwtstamp) 1757 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1758 else 1759 tss->ts[2] = (struct timespec64) {0}; 1760 } 1761 1762 #ifdef CONFIG_MMU 1763 static const struct vm_operations_struct tcp_vm_ops = { 1764 }; 1765 1766 int tcp_mmap(struct file *file, struct socket *sock, 1767 struct vm_area_struct *vma) 1768 { 1769 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1770 return -EPERM; 1771 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1772 1773 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1774 vm_flags_set(vma, VM_MIXEDMAP); 1775 1776 vma->vm_ops = &tcp_vm_ops; 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(tcp_mmap); 1780 1781 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1782 u32 *offset_frag) 1783 { 1784 skb_frag_t *frag; 1785 1786 if (unlikely(offset_skb >= skb->len)) 1787 return NULL; 1788 1789 offset_skb -= skb_headlen(skb); 1790 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1791 return NULL; 1792 1793 frag = skb_shinfo(skb)->frags; 1794 while (offset_skb) { 1795 if (skb_frag_size(frag) > offset_skb) { 1796 *offset_frag = offset_skb; 1797 return frag; 1798 } 1799 offset_skb -= skb_frag_size(frag); 1800 ++frag; 1801 } 1802 *offset_frag = 0; 1803 return frag; 1804 } 1805 1806 static bool can_map_frag(const skb_frag_t *frag) 1807 { 1808 struct page *page; 1809 1810 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1811 return false; 1812 1813 page = skb_frag_page(frag); 1814 1815 if (PageCompound(page) || page->mapping) 1816 return false; 1817 1818 return true; 1819 } 1820 1821 static int find_next_mappable_frag(const skb_frag_t *frag, 1822 int remaining_in_skb) 1823 { 1824 int offset = 0; 1825 1826 if (likely(can_map_frag(frag))) 1827 return 0; 1828 1829 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1830 offset += skb_frag_size(frag); 1831 ++frag; 1832 } 1833 return offset; 1834 } 1835 1836 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1837 struct tcp_zerocopy_receive *zc, 1838 struct sk_buff *skb, u32 offset) 1839 { 1840 u32 frag_offset, partial_frag_remainder = 0; 1841 int mappable_offset; 1842 skb_frag_t *frag; 1843 1844 /* worst case: skip to next skb. try to improve on this case below */ 1845 zc->recv_skip_hint = skb->len - offset; 1846 1847 /* Find the frag containing this offset (and how far into that frag) */ 1848 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1849 if (!frag) 1850 return; 1851 1852 if (frag_offset) { 1853 struct skb_shared_info *info = skb_shinfo(skb); 1854 1855 /* We read part of the last frag, must recvmsg() rest of skb. */ 1856 if (frag == &info->frags[info->nr_frags - 1]) 1857 return; 1858 1859 /* Else, we must at least read the remainder in this frag. */ 1860 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1861 zc->recv_skip_hint -= partial_frag_remainder; 1862 ++frag; 1863 } 1864 1865 /* partial_frag_remainder: If part way through a frag, must read rest. 1866 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1867 * in partial_frag_remainder. 1868 */ 1869 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1870 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1871 } 1872 1873 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1874 int flags, struct scm_timestamping_internal *tss, 1875 int *cmsg_flags); 1876 static int receive_fallback_to_copy(struct sock *sk, 1877 struct tcp_zerocopy_receive *zc, int inq, 1878 struct scm_timestamping_internal *tss) 1879 { 1880 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1881 struct msghdr msg = {}; 1882 int err; 1883 1884 zc->length = 0; 1885 zc->recv_skip_hint = 0; 1886 1887 if (copy_address != zc->copybuf_address) 1888 return -EINVAL; 1889 1890 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1891 &msg.msg_iter); 1892 if (err) 1893 return err; 1894 1895 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1896 tss, &zc->msg_flags); 1897 if (err < 0) 1898 return err; 1899 1900 zc->copybuf_len = err; 1901 if (likely(zc->copybuf_len)) { 1902 struct sk_buff *skb; 1903 u32 offset; 1904 1905 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1906 if (skb) 1907 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1908 } 1909 return 0; 1910 } 1911 1912 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1913 struct sk_buff *skb, u32 copylen, 1914 u32 *offset, u32 *seq) 1915 { 1916 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1917 struct msghdr msg = {}; 1918 int err; 1919 1920 if (copy_address != zc->copybuf_address) 1921 return -EINVAL; 1922 1923 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1924 &msg.msg_iter); 1925 if (err) 1926 return err; 1927 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1928 if (err) 1929 return err; 1930 zc->recv_skip_hint -= copylen; 1931 *offset += copylen; 1932 *seq += copylen; 1933 return (__s32)copylen; 1934 } 1935 1936 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1937 struct sock *sk, 1938 struct sk_buff *skb, 1939 u32 *seq, 1940 s32 copybuf_len, 1941 struct scm_timestamping_internal *tss) 1942 { 1943 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1944 1945 if (!copylen) 1946 return 0; 1947 /* skb is null if inq < PAGE_SIZE. */ 1948 if (skb) { 1949 offset = *seq - TCP_SKB_CB(skb)->seq; 1950 } else { 1951 skb = tcp_recv_skb(sk, *seq, &offset); 1952 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1953 tcp_update_recv_tstamps(skb, tss); 1954 zc->msg_flags |= TCP_CMSG_TS; 1955 } 1956 } 1957 1958 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1959 seq); 1960 return zc->copybuf_len < 0 ? 0 : copylen; 1961 } 1962 1963 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1964 struct page **pending_pages, 1965 unsigned long pages_remaining, 1966 unsigned long *address, 1967 u32 *length, 1968 u32 *seq, 1969 struct tcp_zerocopy_receive *zc, 1970 u32 total_bytes_to_map, 1971 int err) 1972 { 1973 /* At least one page did not map. Try zapping if we skipped earlier. */ 1974 if (err == -EBUSY && 1975 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1976 u32 maybe_zap_len; 1977 1978 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1979 *length + /* Mapped or pending */ 1980 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1981 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1982 err = 0; 1983 } 1984 1985 if (!err) { 1986 unsigned long leftover_pages = pages_remaining; 1987 int bytes_mapped; 1988 1989 /* We called zap_page_range_single, try to reinsert. */ 1990 err = vm_insert_pages(vma, *address, 1991 pending_pages, 1992 &pages_remaining); 1993 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1994 *seq += bytes_mapped; 1995 *address += bytes_mapped; 1996 } 1997 if (err) { 1998 /* Either we were unable to zap, OR we zapped, retried an 1999 * insert, and still had an issue. Either ways, pages_remaining 2000 * is the number of pages we were unable to map, and we unroll 2001 * some state we speculatively touched before. 2002 */ 2003 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2004 2005 *length -= bytes_not_mapped; 2006 zc->recv_skip_hint += bytes_not_mapped; 2007 } 2008 return err; 2009 } 2010 2011 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2012 struct page **pages, 2013 unsigned int pages_to_map, 2014 unsigned long *address, 2015 u32 *length, 2016 u32 *seq, 2017 struct tcp_zerocopy_receive *zc, 2018 u32 total_bytes_to_map) 2019 { 2020 unsigned long pages_remaining = pages_to_map; 2021 unsigned int pages_mapped; 2022 unsigned int bytes_mapped; 2023 int err; 2024 2025 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2026 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2027 bytes_mapped = PAGE_SIZE * pages_mapped; 2028 /* Even if vm_insert_pages fails, it may have partially succeeded in 2029 * mapping (some but not all of the pages). 2030 */ 2031 *seq += bytes_mapped; 2032 *address += bytes_mapped; 2033 2034 if (likely(!err)) 2035 return 0; 2036 2037 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2038 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2039 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2040 err); 2041 } 2042 2043 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2044 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2045 struct tcp_zerocopy_receive *zc, 2046 struct scm_timestamping_internal *tss) 2047 { 2048 unsigned long msg_control_addr; 2049 struct msghdr cmsg_dummy; 2050 2051 msg_control_addr = (unsigned long)zc->msg_control; 2052 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2053 cmsg_dummy.msg_controllen = 2054 (__kernel_size_t)zc->msg_controllen; 2055 cmsg_dummy.msg_flags = in_compat_syscall() 2056 ? MSG_CMSG_COMPAT : 0; 2057 cmsg_dummy.msg_control_is_user = true; 2058 zc->msg_flags = 0; 2059 if (zc->msg_control == msg_control_addr && 2060 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2061 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2062 zc->msg_control = (__u64) 2063 ((uintptr_t)cmsg_dummy.msg_control_user); 2064 zc->msg_controllen = 2065 (__u64)cmsg_dummy.msg_controllen; 2066 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2067 } 2068 } 2069 2070 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2071 unsigned long address, 2072 bool *mmap_locked) 2073 { 2074 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2075 2076 if (vma) { 2077 if (vma->vm_ops != &tcp_vm_ops) { 2078 vma_end_read(vma); 2079 return NULL; 2080 } 2081 *mmap_locked = false; 2082 return vma; 2083 } 2084 2085 mmap_read_lock(mm); 2086 vma = vma_lookup(mm, address); 2087 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2088 mmap_read_unlock(mm); 2089 return NULL; 2090 } 2091 *mmap_locked = true; 2092 return vma; 2093 } 2094 2095 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2096 static int tcp_zerocopy_receive(struct sock *sk, 2097 struct tcp_zerocopy_receive *zc, 2098 struct scm_timestamping_internal *tss) 2099 { 2100 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2101 unsigned long address = (unsigned long)zc->address; 2102 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2103 s32 copybuf_len = zc->copybuf_len; 2104 struct tcp_sock *tp = tcp_sk(sk); 2105 const skb_frag_t *frags = NULL; 2106 unsigned int pages_to_map = 0; 2107 struct vm_area_struct *vma; 2108 struct sk_buff *skb = NULL; 2109 u32 seq = tp->copied_seq; 2110 u32 total_bytes_to_map; 2111 int inq = tcp_inq(sk); 2112 bool mmap_locked; 2113 int ret; 2114 2115 zc->copybuf_len = 0; 2116 zc->msg_flags = 0; 2117 2118 if (address & (PAGE_SIZE - 1) || address != zc->address) 2119 return -EINVAL; 2120 2121 if (sk->sk_state == TCP_LISTEN) 2122 return -ENOTCONN; 2123 2124 sock_rps_record_flow(sk); 2125 2126 if (inq && inq <= copybuf_len) 2127 return receive_fallback_to_copy(sk, zc, inq, tss); 2128 2129 if (inq < PAGE_SIZE) { 2130 zc->length = 0; 2131 zc->recv_skip_hint = inq; 2132 if (!inq && sock_flag(sk, SOCK_DONE)) 2133 return -EIO; 2134 return 0; 2135 } 2136 2137 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2138 if (!vma) 2139 return -EINVAL; 2140 2141 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2142 avail_len = min_t(u32, vma_len, inq); 2143 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2144 if (total_bytes_to_map) { 2145 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2146 zap_page_range_single(vma, address, total_bytes_to_map, 2147 NULL); 2148 zc->length = total_bytes_to_map; 2149 zc->recv_skip_hint = 0; 2150 } else { 2151 zc->length = avail_len; 2152 zc->recv_skip_hint = avail_len; 2153 } 2154 ret = 0; 2155 while (length + PAGE_SIZE <= zc->length) { 2156 int mappable_offset; 2157 struct page *page; 2158 2159 if (zc->recv_skip_hint < PAGE_SIZE) { 2160 u32 offset_frag; 2161 2162 if (skb) { 2163 if (zc->recv_skip_hint > 0) 2164 break; 2165 skb = skb->next; 2166 offset = seq - TCP_SKB_CB(skb)->seq; 2167 } else { 2168 skb = tcp_recv_skb(sk, seq, &offset); 2169 } 2170 2171 if (!skb_frags_readable(skb)) 2172 break; 2173 2174 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2175 tcp_update_recv_tstamps(skb, tss); 2176 zc->msg_flags |= TCP_CMSG_TS; 2177 } 2178 zc->recv_skip_hint = skb->len - offset; 2179 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2180 if (!frags || offset_frag) 2181 break; 2182 } 2183 2184 mappable_offset = find_next_mappable_frag(frags, 2185 zc->recv_skip_hint); 2186 if (mappable_offset) { 2187 zc->recv_skip_hint = mappable_offset; 2188 break; 2189 } 2190 page = skb_frag_page(frags); 2191 if (WARN_ON_ONCE(!page)) 2192 break; 2193 2194 prefetchw(page); 2195 pages[pages_to_map++] = page; 2196 length += PAGE_SIZE; 2197 zc->recv_skip_hint -= PAGE_SIZE; 2198 frags++; 2199 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2200 zc->recv_skip_hint < PAGE_SIZE) { 2201 /* Either full batch, or we're about to go to next skb 2202 * (and we cannot unroll failed ops across skbs). 2203 */ 2204 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2205 pages_to_map, 2206 &address, &length, 2207 &seq, zc, 2208 total_bytes_to_map); 2209 if (ret) 2210 goto out; 2211 pages_to_map = 0; 2212 } 2213 } 2214 if (pages_to_map) { 2215 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2216 &address, &length, &seq, 2217 zc, total_bytes_to_map); 2218 } 2219 out: 2220 if (mmap_locked) 2221 mmap_read_unlock(current->mm); 2222 else 2223 vma_end_read(vma); 2224 /* Try to copy straggler data. */ 2225 if (!ret) 2226 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2227 2228 if (length + copylen) { 2229 WRITE_ONCE(tp->copied_seq, seq); 2230 tcp_rcv_space_adjust(sk); 2231 2232 /* Clean up data we have read: This will do ACK frames. */ 2233 tcp_recv_skb(sk, seq, &offset); 2234 tcp_cleanup_rbuf(sk, length + copylen); 2235 ret = 0; 2236 if (length == zc->length) 2237 zc->recv_skip_hint = 0; 2238 } else { 2239 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2240 ret = -EIO; 2241 } 2242 zc->length = length; 2243 return ret; 2244 } 2245 #endif 2246 2247 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2248 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2249 struct scm_timestamping_internal *tss) 2250 { 2251 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2252 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2253 bool has_timestamping = false; 2254 2255 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2256 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2257 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2258 if (new_tstamp) { 2259 struct __kernel_timespec kts = { 2260 .tv_sec = tss->ts[0].tv_sec, 2261 .tv_nsec = tss->ts[0].tv_nsec, 2262 }; 2263 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2264 sizeof(kts), &kts); 2265 } else { 2266 struct __kernel_old_timespec ts_old = { 2267 .tv_sec = tss->ts[0].tv_sec, 2268 .tv_nsec = tss->ts[0].tv_nsec, 2269 }; 2270 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2271 sizeof(ts_old), &ts_old); 2272 } 2273 } else { 2274 if (new_tstamp) { 2275 struct __kernel_sock_timeval stv = { 2276 .tv_sec = tss->ts[0].tv_sec, 2277 .tv_usec = tss->ts[0].tv_nsec / 1000, 2278 }; 2279 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2280 sizeof(stv), &stv); 2281 } else { 2282 struct __kernel_old_timeval tv = { 2283 .tv_sec = tss->ts[0].tv_sec, 2284 .tv_usec = tss->ts[0].tv_nsec / 1000, 2285 }; 2286 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2287 sizeof(tv), &tv); 2288 } 2289 } 2290 } 2291 2292 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2293 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2294 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2295 has_timestamping = true; 2296 else 2297 tss->ts[0] = (struct timespec64) {0}; 2298 } 2299 2300 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2301 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2302 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2303 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2304 has_timestamping = true; 2305 else 2306 tss->ts[2] = (struct timespec64) {0}; 2307 } 2308 2309 if (has_timestamping) { 2310 tss->ts[1] = (struct timespec64) {0}; 2311 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2312 put_cmsg_scm_timestamping64(msg, tss); 2313 else 2314 put_cmsg_scm_timestamping(msg, tss); 2315 } 2316 } 2317 2318 static int tcp_inq_hint(struct sock *sk) 2319 { 2320 const struct tcp_sock *tp = tcp_sk(sk); 2321 u32 copied_seq = READ_ONCE(tp->copied_seq); 2322 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2323 int inq; 2324 2325 inq = rcv_nxt - copied_seq; 2326 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2327 lock_sock(sk); 2328 inq = tp->rcv_nxt - tp->copied_seq; 2329 release_sock(sk); 2330 } 2331 /* After receiving a FIN, tell the user-space to continue reading 2332 * by returning a non-zero inq. 2333 */ 2334 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2335 inq = 1; 2336 return inq; 2337 } 2338 2339 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2340 struct tcp_xa_pool { 2341 u8 max; /* max <= MAX_SKB_FRAGS */ 2342 u8 idx; /* idx <= max */ 2343 __u32 tokens[MAX_SKB_FRAGS]; 2344 netmem_ref netmems[MAX_SKB_FRAGS]; 2345 }; 2346 2347 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2348 { 2349 int i; 2350 2351 /* Commit part that has been copied to user space. */ 2352 for (i = 0; i < p->idx; i++) 2353 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2354 (__force void *)p->netmems[i], GFP_KERNEL); 2355 /* Rollback what has been pre-allocated and is no longer needed. */ 2356 for (; i < p->max; i++) 2357 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2358 2359 p->max = 0; 2360 p->idx = 0; 2361 } 2362 2363 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2364 { 2365 if (!p->max) 2366 return; 2367 2368 xa_lock_bh(&sk->sk_user_frags); 2369 2370 tcp_xa_pool_commit_locked(sk, p); 2371 2372 xa_unlock_bh(&sk->sk_user_frags); 2373 } 2374 2375 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2376 unsigned int max_frags) 2377 { 2378 int err, k; 2379 2380 if (p->idx < p->max) 2381 return 0; 2382 2383 xa_lock_bh(&sk->sk_user_frags); 2384 2385 tcp_xa_pool_commit_locked(sk, p); 2386 2387 for (k = 0; k < max_frags; k++) { 2388 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2389 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2390 if (err) 2391 break; 2392 } 2393 2394 xa_unlock_bh(&sk->sk_user_frags); 2395 2396 p->max = k; 2397 p->idx = 0; 2398 return k ? 0 : err; 2399 } 2400 2401 /* On error, returns the -errno. On success, returns number of bytes sent to the 2402 * user. May not consume all of @remaining_len. 2403 */ 2404 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2405 unsigned int offset, struct msghdr *msg, 2406 int remaining_len) 2407 { 2408 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2409 struct tcp_xa_pool tcp_xa_pool; 2410 unsigned int start; 2411 int i, copy, n; 2412 int sent = 0; 2413 int err = 0; 2414 2415 tcp_xa_pool.max = 0; 2416 tcp_xa_pool.idx = 0; 2417 do { 2418 start = skb_headlen(skb); 2419 2420 if (skb_frags_readable(skb)) { 2421 err = -ENODEV; 2422 goto out; 2423 } 2424 2425 /* Copy header. */ 2426 copy = start - offset; 2427 if (copy > 0) { 2428 copy = min(copy, remaining_len); 2429 2430 n = copy_to_iter(skb->data + offset, copy, 2431 &msg->msg_iter); 2432 if (n != copy) { 2433 err = -EFAULT; 2434 goto out; 2435 } 2436 2437 offset += copy; 2438 remaining_len -= copy; 2439 2440 /* First a dmabuf_cmsg for # bytes copied to user 2441 * buffer. 2442 */ 2443 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2444 dmabuf_cmsg.frag_size = copy; 2445 err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR, 2446 sizeof(dmabuf_cmsg), &dmabuf_cmsg); 2447 if (err || msg->msg_flags & MSG_CTRUNC) { 2448 msg->msg_flags &= ~MSG_CTRUNC; 2449 if (!err) 2450 err = -ETOOSMALL; 2451 goto out; 2452 } 2453 2454 sent += copy; 2455 2456 if (remaining_len == 0) 2457 goto out; 2458 } 2459 2460 /* after that, send information of dmabuf pages through a 2461 * sequence of cmsg 2462 */ 2463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2464 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2465 struct net_iov *niov; 2466 u64 frag_offset; 2467 int end; 2468 2469 /* !skb_frags_readable() should indicate that ALL the 2470 * frags in this skb are dmabuf net_iovs. We're checking 2471 * for that flag above, but also check individual frags 2472 * here. If the tcp stack is not setting 2473 * skb_frags_readable() correctly, we still don't want 2474 * to crash here. 2475 */ 2476 if (!skb_frag_net_iov(frag)) { 2477 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2478 err = -ENODEV; 2479 goto out; 2480 } 2481 2482 niov = skb_frag_net_iov(frag); 2483 if (!net_is_devmem_iov(niov)) { 2484 err = -ENODEV; 2485 goto out; 2486 } 2487 2488 end = start + skb_frag_size(frag); 2489 copy = end - offset; 2490 2491 if (copy > 0) { 2492 copy = min(copy, remaining_len); 2493 2494 frag_offset = net_iov_virtual_addr(niov) + 2495 skb_frag_off(frag) + offset - 2496 start; 2497 dmabuf_cmsg.frag_offset = frag_offset; 2498 dmabuf_cmsg.frag_size = copy; 2499 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2500 skb_shinfo(skb)->nr_frags - i); 2501 if (err) 2502 goto out; 2503 2504 /* Will perform the exchange later */ 2505 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2506 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2507 2508 offset += copy; 2509 remaining_len -= copy; 2510 2511 err = put_cmsg(msg, SOL_SOCKET, 2512 SO_DEVMEM_DMABUF, 2513 sizeof(dmabuf_cmsg), 2514 &dmabuf_cmsg); 2515 if (err || msg->msg_flags & MSG_CTRUNC) { 2516 msg->msg_flags &= ~MSG_CTRUNC; 2517 if (!err) 2518 err = -ETOOSMALL; 2519 goto out; 2520 } 2521 2522 atomic_long_inc(&niov->pp_ref_count); 2523 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2524 2525 sent += copy; 2526 2527 if (remaining_len == 0) 2528 goto out; 2529 } 2530 start = end; 2531 } 2532 2533 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2534 if (!remaining_len) 2535 goto out; 2536 2537 /* if remaining_len is not satisfied yet, we need to go to the 2538 * next frag in the frag_list to satisfy remaining_len. 2539 */ 2540 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2541 2542 offset = offset - start; 2543 } while (skb); 2544 2545 if (remaining_len) { 2546 err = -EFAULT; 2547 goto out; 2548 } 2549 2550 out: 2551 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2552 if (!sent) 2553 sent = err; 2554 2555 return sent; 2556 } 2557 2558 /* 2559 * This routine copies from a sock struct into the user buffer. 2560 * 2561 * Technical note: in 2.3 we work on _locked_ socket, so that 2562 * tricks with *seq access order and skb->users are not required. 2563 * Probably, code can be easily improved even more. 2564 */ 2565 2566 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2567 int flags, struct scm_timestamping_internal *tss, 2568 int *cmsg_flags) 2569 { 2570 struct tcp_sock *tp = tcp_sk(sk); 2571 int last_copied_dmabuf = -1; /* uninitialized */ 2572 int copied = 0; 2573 u32 peek_seq; 2574 u32 *seq; 2575 unsigned long used; 2576 int err; 2577 int target; /* Read at least this many bytes */ 2578 long timeo; 2579 struct sk_buff *skb, *last; 2580 u32 peek_offset = 0; 2581 u32 urg_hole = 0; 2582 2583 err = -ENOTCONN; 2584 if (sk->sk_state == TCP_LISTEN) 2585 goto out; 2586 2587 if (tp->recvmsg_inq) { 2588 *cmsg_flags = TCP_CMSG_INQ; 2589 msg->msg_get_inq = 1; 2590 } 2591 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2592 2593 /* Urgent data needs to be handled specially. */ 2594 if (flags & MSG_OOB) 2595 goto recv_urg; 2596 2597 if (unlikely(tp->repair)) { 2598 err = -EPERM; 2599 if (!(flags & MSG_PEEK)) 2600 goto out; 2601 2602 if (tp->repair_queue == TCP_SEND_QUEUE) 2603 goto recv_sndq; 2604 2605 err = -EINVAL; 2606 if (tp->repair_queue == TCP_NO_QUEUE) 2607 goto out; 2608 2609 /* 'common' recv queue MSG_PEEK-ing */ 2610 } 2611 2612 seq = &tp->copied_seq; 2613 if (flags & MSG_PEEK) { 2614 peek_offset = max(sk_peek_offset(sk, flags), 0); 2615 peek_seq = tp->copied_seq + peek_offset; 2616 seq = &peek_seq; 2617 } 2618 2619 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2620 2621 do { 2622 u32 offset; 2623 2624 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2625 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2626 if (copied) 2627 break; 2628 if (signal_pending(current)) { 2629 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2630 break; 2631 } 2632 } 2633 2634 /* Next get a buffer. */ 2635 2636 last = skb_peek_tail(&sk->sk_receive_queue); 2637 skb_queue_walk(&sk->sk_receive_queue, skb) { 2638 last = skb; 2639 /* Now that we have two receive queues this 2640 * shouldn't happen. 2641 */ 2642 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2643 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2644 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2645 flags)) 2646 break; 2647 2648 offset = *seq - TCP_SKB_CB(skb)->seq; 2649 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2650 pr_err_once("%s: found a SYN, please report !\n", __func__); 2651 offset--; 2652 } 2653 if (offset < skb->len) 2654 goto found_ok_skb; 2655 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2656 goto found_fin_ok; 2657 WARN(!(flags & MSG_PEEK), 2658 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2659 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2660 } 2661 2662 /* Well, if we have backlog, try to process it now yet. */ 2663 2664 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2665 break; 2666 2667 if (copied) { 2668 if (!timeo || 2669 sk->sk_err || 2670 sk->sk_state == TCP_CLOSE || 2671 (sk->sk_shutdown & RCV_SHUTDOWN) || 2672 signal_pending(current)) 2673 break; 2674 } else { 2675 if (sock_flag(sk, SOCK_DONE)) 2676 break; 2677 2678 if (sk->sk_err) { 2679 copied = sock_error(sk); 2680 break; 2681 } 2682 2683 if (sk->sk_shutdown & RCV_SHUTDOWN) 2684 break; 2685 2686 if (sk->sk_state == TCP_CLOSE) { 2687 /* This occurs when user tries to read 2688 * from never connected socket. 2689 */ 2690 copied = -ENOTCONN; 2691 break; 2692 } 2693 2694 if (!timeo) { 2695 copied = -EAGAIN; 2696 break; 2697 } 2698 2699 if (signal_pending(current)) { 2700 copied = sock_intr_errno(timeo); 2701 break; 2702 } 2703 } 2704 2705 if (copied >= target) { 2706 /* Do not sleep, just process backlog. */ 2707 __sk_flush_backlog(sk); 2708 } else { 2709 tcp_cleanup_rbuf(sk, copied); 2710 err = sk_wait_data(sk, &timeo, last); 2711 if (err < 0) { 2712 err = copied ? : err; 2713 goto out; 2714 } 2715 } 2716 2717 if ((flags & MSG_PEEK) && 2718 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2719 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2720 current->comm, 2721 task_pid_nr(current)); 2722 peek_seq = tp->copied_seq + peek_offset; 2723 } 2724 continue; 2725 2726 found_ok_skb: 2727 /* Ok so how much can we use? */ 2728 used = skb->len - offset; 2729 if (len < used) 2730 used = len; 2731 2732 /* Do we have urgent data here? */ 2733 if (unlikely(tp->urg_data)) { 2734 u32 urg_offset = tp->urg_seq - *seq; 2735 if (urg_offset < used) { 2736 if (!urg_offset) { 2737 if (!sock_flag(sk, SOCK_URGINLINE)) { 2738 WRITE_ONCE(*seq, *seq + 1); 2739 urg_hole++; 2740 offset++; 2741 used--; 2742 if (!used) 2743 goto skip_copy; 2744 } 2745 } else 2746 used = urg_offset; 2747 } 2748 } 2749 2750 if (!(flags & MSG_TRUNC)) { 2751 if (last_copied_dmabuf != -1 && 2752 last_copied_dmabuf != !skb_frags_readable(skb)) 2753 break; 2754 2755 if (skb_frags_readable(skb)) { 2756 err = skb_copy_datagram_msg(skb, offset, msg, 2757 used); 2758 if (err) { 2759 /* Exception. Bailout! */ 2760 if (!copied) 2761 copied = -EFAULT; 2762 break; 2763 } 2764 } else { 2765 if (!(flags & MSG_SOCK_DEVMEM)) { 2766 /* dmabuf skbs can only be received 2767 * with the MSG_SOCK_DEVMEM flag. 2768 */ 2769 if (!copied) 2770 copied = -EFAULT; 2771 2772 break; 2773 } 2774 2775 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2776 used); 2777 if (err <= 0) { 2778 if (!copied) 2779 copied = -EFAULT; 2780 2781 break; 2782 } 2783 used = err; 2784 } 2785 } 2786 2787 last_copied_dmabuf = !skb_frags_readable(skb); 2788 2789 WRITE_ONCE(*seq, *seq + used); 2790 copied += used; 2791 len -= used; 2792 if (flags & MSG_PEEK) 2793 sk_peek_offset_fwd(sk, used); 2794 else 2795 sk_peek_offset_bwd(sk, used); 2796 tcp_rcv_space_adjust(sk); 2797 2798 skip_copy: 2799 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2800 WRITE_ONCE(tp->urg_data, 0); 2801 tcp_fast_path_check(sk); 2802 } 2803 2804 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2805 tcp_update_recv_tstamps(skb, tss); 2806 *cmsg_flags |= TCP_CMSG_TS; 2807 } 2808 2809 if (used + offset < skb->len) 2810 continue; 2811 2812 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2813 goto found_fin_ok; 2814 if (!(flags & MSG_PEEK)) 2815 tcp_eat_recv_skb(sk, skb); 2816 continue; 2817 2818 found_fin_ok: 2819 /* Process the FIN. */ 2820 WRITE_ONCE(*seq, *seq + 1); 2821 if (!(flags & MSG_PEEK)) 2822 tcp_eat_recv_skb(sk, skb); 2823 break; 2824 } while (len > 0); 2825 2826 /* According to UNIX98, msg_name/msg_namelen are ignored 2827 * on connected socket. I was just happy when found this 8) --ANK 2828 */ 2829 2830 /* Clean up data we have read: This will do ACK frames. */ 2831 tcp_cleanup_rbuf(sk, copied); 2832 return copied; 2833 2834 out: 2835 return err; 2836 2837 recv_urg: 2838 err = tcp_recv_urg(sk, msg, len, flags); 2839 goto out; 2840 2841 recv_sndq: 2842 err = tcp_peek_sndq(sk, msg, len); 2843 goto out; 2844 } 2845 2846 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2847 int *addr_len) 2848 { 2849 int cmsg_flags = 0, ret; 2850 struct scm_timestamping_internal tss; 2851 2852 if (unlikely(flags & MSG_ERRQUEUE)) 2853 return inet_recv_error(sk, msg, len, addr_len); 2854 2855 if (sk_can_busy_loop(sk) && 2856 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2857 sk->sk_state == TCP_ESTABLISHED) 2858 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2859 2860 lock_sock(sk); 2861 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2862 release_sock(sk); 2863 2864 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2865 if (cmsg_flags & TCP_CMSG_TS) 2866 tcp_recv_timestamp(msg, sk, &tss); 2867 if (msg->msg_get_inq) { 2868 msg->msg_inq = tcp_inq_hint(sk); 2869 if (cmsg_flags & TCP_CMSG_INQ) 2870 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2871 sizeof(msg->msg_inq), &msg->msg_inq); 2872 } 2873 } 2874 return ret; 2875 } 2876 EXPORT_SYMBOL(tcp_recvmsg); 2877 2878 void tcp_set_state(struct sock *sk, int state) 2879 { 2880 int oldstate = sk->sk_state; 2881 2882 /* We defined a new enum for TCP states that are exported in BPF 2883 * so as not force the internal TCP states to be frozen. The 2884 * following checks will detect if an internal state value ever 2885 * differs from the BPF value. If this ever happens, then we will 2886 * need to remap the internal value to the BPF value before calling 2887 * tcp_call_bpf_2arg. 2888 */ 2889 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2890 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2891 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2892 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2893 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2894 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2895 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2896 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2897 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2898 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2899 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2900 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2901 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2902 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2903 2904 /* bpf uapi header bpf.h defines an anonymous enum with values 2905 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2906 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2907 * But clang built vmlinux does not have this enum in DWARF 2908 * since clang removes the above code before generating IR/debuginfo. 2909 * Let us explicitly emit the type debuginfo to ensure the 2910 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2911 * regardless of which compiler is used. 2912 */ 2913 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2914 2915 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2916 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2917 2918 switch (state) { 2919 case TCP_ESTABLISHED: 2920 if (oldstate != TCP_ESTABLISHED) 2921 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2922 break; 2923 case TCP_CLOSE_WAIT: 2924 if (oldstate == TCP_SYN_RECV) 2925 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2926 break; 2927 2928 case TCP_CLOSE: 2929 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2930 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2931 2932 sk->sk_prot->unhash(sk); 2933 if (inet_csk(sk)->icsk_bind_hash && 2934 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2935 inet_put_port(sk); 2936 fallthrough; 2937 default: 2938 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2939 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2940 } 2941 2942 /* Change state AFTER socket is unhashed to avoid closed 2943 * socket sitting in hash tables. 2944 */ 2945 inet_sk_state_store(sk, state); 2946 } 2947 EXPORT_SYMBOL_GPL(tcp_set_state); 2948 2949 /* 2950 * State processing on a close. This implements the state shift for 2951 * sending our FIN frame. Note that we only send a FIN for some 2952 * states. A shutdown() may have already sent the FIN, or we may be 2953 * closed. 2954 */ 2955 2956 static const unsigned char new_state[16] = { 2957 /* current state: new state: action: */ 2958 [0 /* (Invalid) */] = TCP_CLOSE, 2959 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2960 [TCP_SYN_SENT] = TCP_CLOSE, 2961 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2962 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2963 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2964 [TCP_TIME_WAIT] = TCP_CLOSE, 2965 [TCP_CLOSE] = TCP_CLOSE, 2966 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2967 [TCP_LAST_ACK] = TCP_LAST_ACK, 2968 [TCP_LISTEN] = TCP_CLOSE, 2969 [TCP_CLOSING] = TCP_CLOSING, 2970 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2971 }; 2972 2973 static int tcp_close_state(struct sock *sk) 2974 { 2975 int next = (int)new_state[sk->sk_state]; 2976 int ns = next & TCP_STATE_MASK; 2977 2978 tcp_set_state(sk, ns); 2979 2980 return next & TCP_ACTION_FIN; 2981 } 2982 2983 /* 2984 * Shutdown the sending side of a connection. Much like close except 2985 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2986 */ 2987 2988 void tcp_shutdown(struct sock *sk, int how) 2989 { 2990 /* We need to grab some memory, and put together a FIN, 2991 * and then put it into the queue to be sent. 2992 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2993 */ 2994 if (!(how & SEND_SHUTDOWN)) 2995 return; 2996 2997 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2998 if ((1 << sk->sk_state) & 2999 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3000 TCPF_CLOSE_WAIT)) { 3001 /* Clear out any half completed packets. FIN if needed. */ 3002 if (tcp_close_state(sk)) 3003 tcp_send_fin(sk); 3004 } 3005 } 3006 EXPORT_SYMBOL(tcp_shutdown); 3007 3008 int tcp_orphan_count_sum(void) 3009 { 3010 int i, total = 0; 3011 3012 for_each_possible_cpu(i) 3013 total += per_cpu(tcp_orphan_count, i); 3014 3015 return max(total, 0); 3016 } 3017 3018 static int tcp_orphan_cache; 3019 static struct timer_list tcp_orphan_timer; 3020 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3021 3022 static void tcp_orphan_update(struct timer_list *unused) 3023 { 3024 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3025 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3026 } 3027 3028 static bool tcp_too_many_orphans(int shift) 3029 { 3030 return READ_ONCE(tcp_orphan_cache) << shift > 3031 READ_ONCE(sysctl_tcp_max_orphans); 3032 } 3033 3034 static bool tcp_out_of_memory(const struct sock *sk) 3035 { 3036 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3037 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3038 return true; 3039 return false; 3040 } 3041 3042 bool tcp_check_oom(const struct sock *sk, int shift) 3043 { 3044 bool too_many_orphans, out_of_socket_memory; 3045 3046 too_many_orphans = tcp_too_many_orphans(shift); 3047 out_of_socket_memory = tcp_out_of_memory(sk); 3048 3049 if (too_many_orphans) 3050 net_info_ratelimited("too many orphaned sockets\n"); 3051 if (out_of_socket_memory) 3052 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3053 return too_many_orphans || out_of_socket_memory; 3054 } 3055 3056 void __tcp_close(struct sock *sk, long timeout) 3057 { 3058 struct sk_buff *skb; 3059 int data_was_unread = 0; 3060 int state; 3061 3062 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3063 3064 if (sk->sk_state == TCP_LISTEN) { 3065 tcp_set_state(sk, TCP_CLOSE); 3066 3067 /* Special case. */ 3068 inet_csk_listen_stop(sk); 3069 3070 goto adjudge_to_death; 3071 } 3072 3073 /* We need to flush the recv. buffs. We do this only on the 3074 * descriptor close, not protocol-sourced closes, because the 3075 * reader process may not have drained the data yet! 3076 */ 3077 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3078 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3079 3080 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3081 len--; 3082 data_was_unread += len; 3083 __kfree_skb(skb); 3084 } 3085 3086 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3087 if (sk->sk_state == TCP_CLOSE) 3088 goto adjudge_to_death; 3089 3090 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3091 * data was lost. To witness the awful effects of the old behavior of 3092 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3093 * GET in an FTP client, suspend the process, wait for the client to 3094 * advertise a zero window, then kill -9 the FTP client, wheee... 3095 * Note: timeout is always zero in such a case. 3096 */ 3097 if (unlikely(tcp_sk(sk)->repair)) { 3098 sk->sk_prot->disconnect(sk, 0); 3099 } else if (data_was_unread) { 3100 /* Unread data was tossed, zap the connection. */ 3101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3102 tcp_set_state(sk, TCP_CLOSE); 3103 tcp_send_active_reset(sk, sk->sk_allocation, 3104 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3105 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3106 /* Check zero linger _after_ checking for unread data. */ 3107 sk->sk_prot->disconnect(sk, 0); 3108 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3109 } else if (tcp_close_state(sk)) { 3110 /* We FIN if the application ate all the data before 3111 * zapping the connection. 3112 */ 3113 3114 /* RED-PEN. Formally speaking, we have broken TCP state 3115 * machine. State transitions: 3116 * 3117 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3118 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3119 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3120 * 3121 * are legal only when FIN has been sent (i.e. in window), 3122 * rather than queued out of window. Purists blame. 3123 * 3124 * F.e. "RFC state" is ESTABLISHED, 3125 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3126 * 3127 * The visible declinations are that sometimes 3128 * we enter time-wait state, when it is not required really 3129 * (harmless), do not send active resets, when they are 3130 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3131 * they look as CLOSING or LAST_ACK for Linux) 3132 * Probably, I missed some more holelets. 3133 * --ANK 3134 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3135 * in a single packet! (May consider it later but will 3136 * probably need API support or TCP_CORK SYN-ACK until 3137 * data is written and socket is closed.) 3138 */ 3139 tcp_send_fin(sk); 3140 } 3141 3142 sk_stream_wait_close(sk, timeout); 3143 3144 adjudge_to_death: 3145 state = sk->sk_state; 3146 sock_hold(sk); 3147 sock_orphan(sk); 3148 3149 local_bh_disable(); 3150 bh_lock_sock(sk); 3151 /* remove backlog if any, without releasing ownership. */ 3152 __release_sock(sk); 3153 3154 this_cpu_inc(tcp_orphan_count); 3155 3156 /* Have we already been destroyed by a softirq or backlog? */ 3157 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3158 goto out; 3159 3160 /* This is a (useful) BSD violating of the RFC. There is a 3161 * problem with TCP as specified in that the other end could 3162 * keep a socket open forever with no application left this end. 3163 * We use a 1 minute timeout (about the same as BSD) then kill 3164 * our end. If they send after that then tough - BUT: long enough 3165 * that we won't make the old 4*rto = almost no time - whoops 3166 * reset mistake. 3167 * 3168 * Nope, it was not mistake. It is really desired behaviour 3169 * f.e. on http servers, when such sockets are useless, but 3170 * consume significant resources. Let's do it with special 3171 * linger2 option. --ANK 3172 */ 3173 3174 if (sk->sk_state == TCP_FIN_WAIT2) { 3175 struct tcp_sock *tp = tcp_sk(sk); 3176 if (READ_ONCE(tp->linger2) < 0) { 3177 tcp_set_state(sk, TCP_CLOSE); 3178 tcp_send_active_reset(sk, GFP_ATOMIC, 3179 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3180 __NET_INC_STATS(sock_net(sk), 3181 LINUX_MIB_TCPABORTONLINGER); 3182 } else { 3183 const int tmo = tcp_fin_time(sk); 3184 3185 if (tmo > TCP_TIMEWAIT_LEN) { 3186 tcp_reset_keepalive_timer(sk, 3187 tmo - TCP_TIMEWAIT_LEN); 3188 } else { 3189 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3190 goto out; 3191 } 3192 } 3193 } 3194 if (sk->sk_state != TCP_CLOSE) { 3195 if (tcp_check_oom(sk, 0)) { 3196 tcp_set_state(sk, TCP_CLOSE); 3197 tcp_send_active_reset(sk, GFP_ATOMIC, 3198 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3199 __NET_INC_STATS(sock_net(sk), 3200 LINUX_MIB_TCPABORTONMEMORY); 3201 } else if (!check_net(sock_net(sk))) { 3202 /* Not possible to send reset; just close */ 3203 tcp_set_state(sk, TCP_CLOSE); 3204 } 3205 } 3206 3207 if (sk->sk_state == TCP_CLOSE) { 3208 struct request_sock *req; 3209 3210 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3211 lockdep_sock_is_held(sk)); 3212 /* We could get here with a non-NULL req if the socket is 3213 * aborted (e.g., closed with unread data) before 3WHS 3214 * finishes. 3215 */ 3216 if (req) 3217 reqsk_fastopen_remove(sk, req, false); 3218 inet_csk_destroy_sock(sk); 3219 } 3220 /* Otherwise, socket is reprieved until protocol close. */ 3221 3222 out: 3223 bh_unlock_sock(sk); 3224 local_bh_enable(); 3225 } 3226 3227 void tcp_close(struct sock *sk, long timeout) 3228 { 3229 lock_sock(sk); 3230 __tcp_close(sk, timeout); 3231 release_sock(sk); 3232 if (!sk->sk_net_refcnt) 3233 inet_csk_clear_xmit_timers_sync(sk); 3234 sock_put(sk); 3235 } 3236 EXPORT_SYMBOL(tcp_close); 3237 3238 /* These states need RST on ABORT according to RFC793 */ 3239 3240 static inline bool tcp_need_reset(int state) 3241 { 3242 return (1 << state) & 3243 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3244 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3245 } 3246 3247 static void tcp_rtx_queue_purge(struct sock *sk) 3248 { 3249 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3250 3251 tcp_sk(sk)->highest_sack = NULL; 3252 while (p) { 3253 struct sk_buff *skb = rb_to_skb(p); 3254 3255 p = rb_next(p); 3256 /* Since we are deleting whole queue, no need to 3257 * list_del(&skb->tcp_tsorted_anchor) 3258 */ 3259 tcp_rtx_queue_unlink(skb, sk); 3260 tcp_wmem_free_skb(sk, skb); 3261 } 3262 } 3263 3264 void tcp_write_queue_purge(struct sock *sk) 3265 { 3266 struct sk_buff *skb; 3267 3268 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3269 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3270 tcp_skb_tsorted_anchor_cleanup(skb); 3271 tcp_wmem_free_skb(sk, skb); 3272 } 3273 tcp_rtx_queue_purge(sk); 3274 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3275 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3276 tcp_sk(sk)->packets_out = 0; 3277 inet_csk(sk)->icsk_backoff = 0; 3278 } 3279 3280 int tcp_disconnect(struct sock *sk, int flags) 3281 { 3282 struct inet_sock *inet = inet_sk(sk); 3283 struct inet_connection_sock *icsk = inet_csk(sk); 3284 struct tcp_sock *tp = tcp_sk(sk); 3285 int old_state = sk->sk_state; 3286 u32 seq; 3287 3288 if (old_state != TCP_CLOSE) 3289 tcp_set_state(sk, TCP_CLOSE); 3290 3291 /* ABORT function of RFC793 */ 3292 if (old_state == TCP_LISTEN) { 3293 inet_csk_listen_stop(sk); 3294 } else if (unlikely(tp->repair)) { 3295 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3296 } else if (tcp_need_reset(old_state)) { 3297 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3298 WRITE_ONCE(sk->sk_err, ECONNRESET); 3299 } else if (tp->snd_nxt != tp->write_seq && 3300 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3301 /* The last check adjusts for discrepancy of Linux wrt. RFC 3302 * states 3303 */ 3304 tcp_send_active_reset(sk, gfp_any(), 3305 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3306 WRITE_ONCE(sk->sk_err, ECONNRESET); 3307 } else if (old_state == TCP_SYN_SENT) 3308 WRITE_ONCE(sk->sk_err, ECONNRESET); 3309 3310 tcp_clear_xmit_timers(sk); 3311 __skb_queue_purge(&sk->sk_receive_queue); 3312 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3313 WRITE_ONCE(tp->urg_data, 0); 3314 sk_set_peek_off(sk, -1); 3315 tcp_write_queue_purge(sk); 3316 tcp_fastopen_active_disable_ofo_check(sk); 3317 skb_rbtree_purge(&tp->out_of_order_queue); 3318 3319 inet->inet_dport = 0; 3320 3321 inet_bhash2_reset_saddr(sk); 3322 3323 WRITE_ONCE(sk->sk_shutdown, 0); 3324 sock_reset_flag(sk, SOCK_DONE); 3325 tp->srtt_us = 0; 3326 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3327 tp->rcv_rtt_last_tsecr = 0; 3328 3329 seq = tp->write_seq + tp->max_window + 2; 3330 if (!seq) 3331 seq = 1; 3332 WRITE_ONCE(tp->write_seq, seq); 3333 3334 icsk->icsk_backoff = 0; 3335 icsk->icsk_probes_out = 0; 3336 icsk->icsk_probes_tstamp = 0; 3337 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3338 icsk->icsk_rto_min = TCP_RTO_MIN; 3339 icsk->icsk_delack_max = TCP_DELACK_MAX; 3340 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3341 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3342 tp->snd_cwnd_cnt = 0; 3343 tp->is_cwnd_limited = 0; 3344 tp->max_packets_out = 0; 3345 tp->window_clamp = 0; 3346 tp->delivered = 0; 3347 tp->delivered_ce = 0; 3348 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3349 icsk->icsk_ca_ops->release(sk); 3350 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3351 icsk->icsk_ca_initialized = 0; 3352 tcp_set_ca_state(sk, TCP_CA_Open); 3353 tp->is_sack_reneg = 0; 3354 tcp_clear_retrans(tp); 3355 tp->total_retrans = 0; 3356 inet_csk_delack_init(sk); 3357 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3358 * issue in __tcp_select_window() 3359 */ 3360 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3361 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3362 __sk_dst_reset(sk); 3363 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3364 tcp_saved_syn_free(tp); 3365 tp->compressed_ack = 0; 3366 tp->segs_in = 0; 3367 tp->segs_out = 0; 3368 tp->bytes_sent = 0; 3369 tp->bytes_acked = 0; 3370 tp->bytes_received = 0; 3371 tp->bytes_retrans = 0; 3372 tp->data_segs_in = 0; 3373 tp->data_segs_out = 0; 3374 tp->duplicate_sack[0].start_seq = 0; 3375 tp->duplicate_sack[0].end_seq = 0; 3376 tp->dsack_dups = 0; 3377 tp->reord_seen = 0; 3378 tp->retrans_out = 0; 3379 tp->sacked_out = 0; 3380 tp->tlp_high_seq = 0; 3381 tp->last_oow_ack_time = 0; 3382 tp->plb_rehash = 0; 3383 /* There's a bubble in the pipe until at least the first ACK. */ 3384 tp->app_limited = ~0U; 3385 tp->rate_app_limited = 1; 3386 tp->rack.mstamp = 0; 3387 tp->rack.advanced = 0; 3388 tp->rack.reo_wnd_steps = 1; 3389 tp->rack.last_delivered = 0; 3390 tp->rack.reo_wnd_persist = 0; 3391 tp->rack.dsack_seen = 0; 3392 tp->syn_data_acked = 0; 3393 tp->rx_opt.saw_tstamp = 0; 3394 tp->rx_opt.dsack = 0; 3395 tp->rx_opt.num_sacks = 0; 3396 tp->rcv_ooopack = 0; 3397 3398 3399 /* Clean up fastopen related fields */ 3400 tcp_free_fastopen_req(tp); 3401 inet_clear_bit(DEFER_CONNECT, sk); 3402 tp->fastopen_client_fail = 0; 3403 3404 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3405 3406 if (sk->sk_frag.page) { 3407 put_page(sk->sk_frag.page); 3408 sk->sk_frag.page = NULL; 3409 sk->sk_frag.offset = 0; 3410 } 3411 sk_error_report(sk); 3412 return 0; 3413 } 3414 EXPORT_SYMBOL(tcp_disconnect); 3415 3416 static inline bool tcp_can_repair_sock(const struct sock *sk) 3417 { 3418 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3419 (sk->sk_state != TCP_LISTEN); 3420 } 3421 3422 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3423 { 3424 struct tcp_repair_window opt; 3425 3426 if (!tp->repair) 3427 return -EPERM; 3428 3429 if (len != sizeof(opt)) 3430 return -EINVAL; 3431 3432 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3433 return -EFAULT; 3434 3435 if (opt.max_window < opt.snd_wnd) 3436 return -EINVAL; 3437 3438 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3439 return -EINVAL; 3440 3441 if (after(opt.rcv_wup, tp->rcv_nxt)) 3442 return -EINVAL; 3443 3444 tp->snd_wl1 = opt.snd_wl1; 3445 tp->snd_wnd = opt.snd_wnd; 3446 tp->max_window = opt.max_window; 3447 3448 tp->rcv_wnd = opt.rcv_wnd; 3449 tp->rcv_wup = opt.rcv_wup; 3450 3451 return 0; 3452 } 3453 3454 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3455 unsigned int len) 3456 { 3457 struct tcp_sock *tp = tcp_sk(sk); 3458 struct tcp_repair_opt opt; 3459 size_t offset = 0; 3460 3461 while (len >= sizeof(opt)) { 3462 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3463 return -EFAULT; 3464 3465 offset += sizeof(opt); 3466 len -= sizeof(opt); 3467 3468 switch (opt.opt_code) { 3469 case TCPOPT_MSS: 3470 tp->rx_opt.mss_clamp = opt.opt_val; 3471 tcp_mtup_init(sk); 3472 break; 3473 case TCPOPT_WINDOW: 3474 { 3475 u16 snd_wscale = opt.opt_val & 0xFFFF; 3476 u16 rcv_wscale = opt.opt_val >> 16; 3477 3478 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3479 return -EFBIG; 3480 3481 tp->rx_opt.snd_wscale = snd_wscale; 3482 tp->rx_opt.rcv_wscale = rcv_wscale; 3483 tp->rx_opt.wscale_ok = 1; 3484 } 3485 break; 3486 case TCPOPT_SACK_PERM: 3487 if (opt.opt_val != 0) 3488 return -EINVAL; 3489 3490 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3491 break; 3492 case TCPOPT_TIMESTAMP: 3493 if (opt.opt_val != 0) 3494 return -EINVAL; 3495 3496 tp->rx_opt.tstamp_ok = 1; 3497 break; 3498 } 3499 } 3500 3501 return 0; 3502 } 3503 3504 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3505 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3506 3507 static void tcp_enable_tx_delay(void) 3508 { 3509 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3510 static int __tcp_tx_delay_enabled = 0; 3511 3512 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3513 static_branch_enable(&tcp_tx_delay_enabled); 3514 pr_info("TCP_TX_DELAY enabled\n"); 3515 } 3516 } 3517 } 3518 3519 /* When set indicates to always queue non-full frames. Later the user clears 3520 * this option and we transmit any pending partial frames in the queue. This is 3521 * meant to be used alongside sendfile() to get properly filled frames when the 3522 * user (for example) must write out headers with a write() call first and then 3523 * use sendfile to send out the data parts. 3524 * 3525 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3526 * TCP_NODELAY. 3527 */ 3528 void __tcp_sock_set_cork(struct sock *sk, bool on) 3529 { 3530 struct tcp_sock *tp = tcp_sk(sk); 3531 3532 if (on) { 3533 tp->nonagle |= TCP_NAGLE_CORK; 3534 } else { 3535 tp->nonagle &= ~TCP_NAGLE_CORK; 3536 if (tp->nonagle & TCP_NAGLE_OFF) 3537 tp->nonagle |= TCP_NAGLE_PUSH; 3538 tcp_push_pending_frames(sk); 3539 } 3540 } 3541 3542 void tcp_sock_set_cork(struct sock *sk, bool on) 3543 { 3544 lock_sock(sk); 3545 __tcp_sock_set_cork(sk, on); 3546 release_sock(sk); 3547 } 3548 EXPORT_SYMBOL(tcp_sock_set_cork); 3549 3550 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3551 * remembered, but it is not activated until cork is cleared. 3552 * 3553 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3554 * even TCP_CORK for currently queued segments. 3555 */ 3556 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3557 { 3558 if (on) { 3559 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3560 tcp_push_pending_frames(sk); 3561 } else { 3562 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3563 } 3564 } 3565 3566 void tcp_sock_set_nodelay(struct sock *sk) 3567 { 3568 lock_sock(sk); 3569 __tcp_sock_set_nodelay(sk, true); 3570 release_sock(sk); 3571 } 3572 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3573 3574 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3575 { 3576 if (!val) { 3577 inet_csk_enter_pingpong_mode(sk); 3578 return; 3579 } 3580 3581 inet_csk_exit_pingpong_mode(sk); 3582 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3583 inet_csk_ack_scheduled(sk)) { 3584 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3585 tcp_cleanup_rbuf(sk, 1); 3586 if (!(val & 1)) 3587 inet_csk_enter_pingpong_mode(sk); 3588 } 3589 } 3590 3591 void tcp_sock_set_quickack(struct sock *sk, int val) 3592 { 3593 lock_sock(sk); 3594 __tcp_sock_set_quickack(sk, val); 3595 release_sock(sk); 3596 } 3597 EXPORT_SYMBOL(tcp_sock_set_quickack); 3598 3599 int tcp_sock_set_syncnt(struct sock *sk, int val) 3600 { 3601 if (val < 1 || val > MAX_TCP_SYNCNT) 3602 return -EINVAL; 3603 3604 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3605 return 0; 3606 } 3607 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3608 3609 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3610 { 3611 /* Cap the max time in ms TCP will retry or probe the window 3612 * before giving up and aborting (ETIMEDOUT) a connection. 3613 */ 3614 if (val < 0) 3615 return -EINVAL; 3616 3617 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3618 return 0; 3619 } 3620 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3621 3622 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3623 { 3624 struct tcp_sock *tp = tcp_sk(sk); 3625 3626 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3627 return -EINVAL; 3628 3629 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3630 WRITE_ONCE(tp->keepalive_time, val * HZ); 3631 if (sock_flag(sk, SOCK_KEEPOPEN) && 3632 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3633 u32 elapsed = keepalive_time_elapsed(tp); 3634 3635 if (tp->keepalive_time > elapsed) 3636 elapsed = tp->keepalive_time - elapsed; 3637 else 3638 elapsed = 0; 3639 tcp_reset_keepalive_timer(sk, elapsed); 3640 } 3641 3642 return 0; 3643 } 3644 3645 int tcp_sock_set_keepidle(struct sock *sk, int val) 3646 { 3647 int err; 3648 3649 lock_sock(sk); 3650 err = tcp_sock_set_keepidle_locked(sk, val); 3651 release_sock(sk); 3652 return err; 3653 } 3654 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3655 3656 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3657 { 3658 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3659 return -EINVAL; 3660 3661 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3662 return 0; 3663 } 3664 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3665 3666 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3667 { 3668 if (val < 1 || val > MAX_TCP_KEEPCNT) 3669 return -EINVAL; 3670 3671 /* Paired with READ_ONCE() in keepalive_probes() */ 3672 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3673 return 0; 3674 } 3675 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3676 3677 int tcp_set_window_clamp(struct sock *sk, int val) 3678 { 3679 struct tcp_sock *tp = tcp_sk(sk); 3680 3681 if (!val) { 3682 if (sk->sk_state != TCP_CLOSE) 3683 return -EINVAL; 3684 WRITE_ONCE(tp->window_clamp, 0); 3685 } else { 3686 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3687 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3688 SOCK_MIN_RCVBUF / 2 : val; 3689 3690 if (new_window_clamp == old_window_clamp) 3691 return 0; 3692 3693 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3694 if (new_window_clamp < old_window_clamp) { 3695 /* need to apply the reserved mem provisioning only 3696 * when shrinking the window clamp 3697 */ 3698 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3699 3700 } else { 3701 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3702 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3703 tp->rcv_ssthresh); 3704 } 3705 } 3706 return 0; 3707 } 3708 3709 /* 3710 * Socket option code for TCP. 3711 */ 3712 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3713 sockptr_t optval, unsigned int optlen) 3714 { 3715 struct tcp_sock *tp = tcp_sk(sk); 3716 struct inet_connection_sock *icsk = inet_csk(sk); 3717 struct net *net = sock_net(sk); 3718 int val; 3719 int err = 0; 3720 3721 /* These are data/string values, all the others are ints */ 3722 switch (optname) { 3723 case TCP_CONGESTION: { 3724 char name[TCP_CA_NAME_MAX]; 3725 3726 if (optlen < 1) 3727 return -EINVAL; 3728 3729 val = strncpy_from_sockptr(name, optval, 3730 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3731 if (val < 0) 3732 return -EFAULT; 3733 name[val] = 0; 3734 3735 sockopt_lock_sock(sk); 3736 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3737 sockopt_ns_capable(sock_net(sk)->user_ns, 3738 CAP_NET_ADMIN)); 3739 sockopt_release_sock(sk); 3740 return err; 3741 } 3742 case TCP_ULP: { 3743 char name[TCP_ULP_NAME_MAX]; 3744 3745 if (optlen < 1) 3746 return -EINVAL; 3747 3748 val = strncpy_from_sockptr(name, optval, 3749 min_t(long, TCP_ULP_NAME_MAX - 1, 3750 optlen)); 3751 if (val < 0) 3752 return -EFAULT; 3753 name[val] = 0; 3754 3755 sockopt_lock_sock(sk); 3756 err = tcp_set_ulp(sk, name); 3757 sockopt_release_sock(sk); 3758 return err; 3759 } 3760 case TCP_FASTOPEN_KEY: { 3761 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3762 __u8 *backup_key = NULL; 3763 3764 /* Allow a backup key as well to facilitate key rotation 3765 * First key is the active one. 3766 */ 3767 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3768 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3769 return -EINVAL; 3770 3771 if (copy_from_sockptr(key, optval, optlen)) 3772 return -EFAULT; 3773 3774 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3775 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3776 3777 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3778 } 3779 default: 3780 /* fallthru */ 3781 break; 3782 } 3783 3784 if (optlen < sizeof(int)) 3785 return -EINVAL; 3786 3787 if (copy_from_sockptr(&val, optval, sizeof(val))) 3788 return -EFAULT; 3789 3790 /* Handle options that can be set without locking the socket. */ 3791 switch (optname) { 3792 case TCP_SYNCNT: 3793 return tcp_sock_set_syncnt(sk, val); 3794 case TCP_USER_TIMEOUT: 3795 return tcp_sock_set_user_timeout(sk, val); 3796 case TCP_KEEPINTVL: 3797 return tcp_sock_set_keepintvl(sk, val); 3798 case TCP_KEEPCNT: 3799 return tcp_sock_set_keepcnt(sk, val); 3800 case TCP_LINGER2: 3801 if (val < 0) 3802 WRITE_ONCE(tp->linger2, -1); 3803 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3804 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3805 else 3806 WRITE_ONCE(tp->linger2, val * HZ); 3807 return 0; 3808 case TCP_DEFER_ACCEPT: 3809 /* Translate value in seconds to number of retransmits */ 3810 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3811 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3812 TCP_RTO_MAX / HZ)); 3813 return 0; 3814 case TCP_RTO_MAX_MS: 3815 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3816 return -EINVAL; 3817 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3818 return 0; 3819 } 3820 3821 sockopt_lock_sock(sk); 3822 3823 switch (optname) { 3824 case TCP_MAXSEG: 3825 /* Values greater than interface MTU won't take effect. However 3826 * at the point when this call is done we typically don't yet 3827 * know which interface is going to be used 3828 */ 3829 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3830 err = -EINVAL; 3831 break; 3832 } 3833 tp->rx_opt.user_mss = val; 3834 break; 3835 3836 case TCP_NODELAY: 3837 __tcp_sock_set_nodelay(sk, val); 3838 break; 3839 3840 case TCP_THIN_LINEAR_TIMEOUTS: 3841 if (val < 0 || val > 1) 3842 err = -EINVAL; 3843 else 3844 tp->thin_lto = val; 3845 break; 3846 3847 case TCP_THIN_DUPACK: 3848 if (val < 0 || val > 1) 3849 err = -EINVAL; 3850 break; 3851 3852 case TCP_REPAIR: 3853 if (!tcp_can_repair_sock(sk)) 3854 err = -EPERM; 3855 else if (val == TCP_REPAIR_ON) { 3856 tp->repair = 1; 3857 sk->sk_reuse = SK_FORCE_REUSE; 3858 tp->repair_queue = TCP_NO_QUEUE; 3859 } else if (val == TCP_REPAIR_OFF) { 3860 tp->repair = 0; 3861 sk->sk_reuse = SK_NO_REUSE; 3862 tcp_send_window_probe(sk); 3863 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3864 tp->repair = 0; 3865 sk->sk_reuse = SK_NO_REUSE; 3866 } else 3867 err = -EINVAL; 3868 3869 break; 3870 3871 case TCP_REPAIR_QUEUE: 3872 if (!tp->repair) 3873 err = -EPERM; 3874 else if ((unsigned int)val < TCP_QUEUES_NR) 3875 tp->repair_queue = val; 3876 else 3877 err = -EINVAL; 3878 break; 3879 3880 case TCP_QUEUE_SEQ: 3881 if (sk->sk_state != TCP_CLOSE) { 3882 err = -EPERM; 3883 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3884 if (!tcp_rtx_queue_empty(sk)) 3885 err = -EPERM; 3886 else 3887 WRITE_ONCE(tp->write_seq, val); 3888 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3889 if (tp->rcv_nxt != tp->copied_seq) { 3890 err = -EPERM; 3891 } else { 3892 WRITE_ONCE(tp->rcv_nxt, val); 3893 WRITE_ONCE(tp->copied_seq, val); 3894 } 3895 } else { 3896 err = -EINVAL; 3897 } 3898 break; 3899 3900 case TCP_REPAIR_OPTIONS: 3901 if (!tp->repair) 3902 err = -EINVAL; 3903 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3904 err = tcp_repair_options_est(sk, optval, optlen); 3905 else 3906 err = -EPERM; 3907 break; 3908 3909 case TCP_CORK: 3910 __tcp_sock_set_cork(sk, val); 3911 break; 3912 3913 case TCP_KEEPIDLE: 3914 err = tcp_sock_set_keepidle_locked(sk, val); 3915 break; 3916 case TCP_SAVE_SYN: 3917 /* 0: disable, 1: enable, 2: start from ether_header */ 3918 if (val < 0 || val > 2) 3919 err = -EINVAL; 3920 else 3921 tp->save_syn = val; 3922 break; 3923 3924 case TCP_WINDOW_CLAMP: 3925 err = tcp_set_window_clamp(sk, val); 3926 break; 3927 3928 case TCP_QUICKACK: 3929 __tcp_sock_set_quickack(sk, val); 3930 break; 3931 3932 case TCP_AO_REPAIR: 3933 if (!tcp_can_repair_sock(sk)) { 3934 err = -EPERM; 3935 break; 3936 } 3937 err = tcp_ao_set_repair(sk, optval, optlen); 3938 break; 3939 #ifdef CONFIG_TCP_AO 3940 case TCP_AO_ADD_KEY: 3941 case TCP_AO_DEL_KEY: 3942 case TCP_AO_INFO: { 3943 /* If this is the first TCP-AO setsockopt() on the socket, 3944 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3945 * in any state. 3946 */ 3947 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3948 goto ao_parse; 3949 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3950 lockdep_sock_is_held(sk))) 3951 goto ao_parse; 3952 if (tp->repair) 3953 goto ao_parse; 3954 err = -EISCONN; 3955 break; 3956 ao_parse: 3957 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3958 break; 3959 } 3960 #endif 3961 #ifdef CONFIG_TCP_MD5SIG 3962 case TCP_MD5SIG: 3963 case TCP_MD5SIG_EXT: 3964 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3965 break; 3966 #endif 3967 case TCP_FASTOPEN: 3968 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3969 TCPF_LISTEN))) { 3970 tcp_fastopen_init_key_once(net); 3971 3972 fastopen_queue_tune(sk, val); 3973 } else { 3974 err = -EINVAL; 3975 } 3976 break; 3977 case TCP_FASTOPEN_CONNECT: 3978 if (val > 1 || val < 0) { 3979 err = -EINVAL; 3980 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3981 TFO_CLIENT_ENABLE) { 3982 if (sk->sk_state == TCP_CLOSE) 3983 tp->fastopen_connect = val; 3984 else 3985 err = -EINVAL; 3986 } else { 3987 err = -EOPNOTSUPP; 3988 } 3989 break; 3990 case TCP_FASTOPEN_NO_COOKIE: 3991 if (val > 1 || val < 0) 3992 err = -EINVAL; 3993 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3994 err = -EINVAL; 3995 else 3996 tp->fastopen_no_cookie = val; 3997 break; 3998 case TCP_TIMESTAMP: 3999 if (!tp->repair) { 4000 err = -EPERM; 4001 break; 4002 } 4003 /* val is an opaque field, 4004 * and low order bit contains usec_ts enable bit. 4005 * Its a best effort, and we do not care if user makes an error. 4006 */ 4007 tp->tcp_usec_ts = val & 1; 4008 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4009 break; 4010 case TCP_REPAIR_WINDOW: 4011 err = tcp_repair_set_window(tp, optval, optlen); 4012 break; 4013 case TCP_NOTSENT_LOWAT: 4014 WRITE_ONCE(tp->notsent_lowat, val); 4015 sk->sk_write_space(sk); 4016 break; 4017 case TCP_INQ: 4018 if (val > 1 || val < 0) 4019 err = -EINVAL; 4020 else 4021 tp->recvmsg_inq = val; 4022 break; 4023 case TCP_TX_DELAY: 4024 if (val) 4025 tcp_enable_tx_delay(); 4026 WRITE_ONCE(tp->tcp_tx_delay, val); 4027 break; 4028 default: 4029 err = -ENOPROTOOPT; 4030 break; 4031 } 4032 4033 sockopt_release_sock(sk); 4034 return err; 4035 } 4036 4037 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4038 unsigned int optlen) 4039 { 4040 const struct inet_connection_sock *icsk = inet_csk(sk); 4041 4042 if (level != SOL_TCP) 4043 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4044 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4045 optval, optlen); 4046 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4047 } 4048 EXPORT_SYMBOL(tcp_setsockopt); 4049 4050 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4051 struct tcp_info *info) 4052 { 4053 u64 stats[__TCP_CHRONO_MAX], total = 0; 4054 enum tcp_chrono i; 4055 4056 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4057 stats[i] = tp->chrono_stat[i - 1]; 4058 if (i == tp->chrono_type) 4059 stats[i] += tcp_jiffies32 - tp->chrono_start; 4060 stats[i] *= USEC_PER_SEC / HZ; 4061 total += stats[i]; 4062 } 4063 4064 info->tcpi_busy_time = total; 4065 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4066 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4067 } 4068 4069 /* Return information about state of tcp endpoint in API format. */ 4070 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4071 { 4072 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4073 const struct inet_connection_sock *icsk = inet_csk(sk); 4074 unsigned long rate; 4075 u32 now; 4076 u64 rate64; 4077 bool slow; 4078 4079 memset(info, 0, sizeof(*info)); 4080 if (sk->sk_type != SOCK_STREAM) 4081 return; 4082 4083 info->tcpi_state = inet_sk_state_load(sk); 4084 4085 /* Report meaningful fields for all TCP states, including listeners */ 4086 rate = READ_ONCE(sk->sk_pacing_rate); 4087 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4088 info->tcpi_pacing_rate = rate64; 4089 4090 rate = READ_ONCE(sk->sk_max_pacing_rate); 4091 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4092 info->tcpi_max_pacing_rate = rate64; 4093 4094 info->tcpi_reordering = tp->reordering; 4095 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4096 4097 if (info->tcpi_state == TCP_LISTEN) { 4098 /* listeners aliased fields : 4099 * tcpi_unacked -> Number of children ready for accept() 4100 * tcpi_sacked -> max backlog 4101 */ 4102 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4103 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4104 return; 4105 } 4106 4107 slow = lock_sock_fast(sk); 4108 4109 info->tcpi_ca_state = icsk->icsk_ca_state; 4110 info->tcpi_retransmits = icsk->icsk_retransmits; 4111 info->tcpi_probes = icsk->icsk_probes_out; 4112 info->tcpi_backoff = icsk->icsk_backoff; 4113 4114 if (tp->rx_opt.tstamp_ok) 4115 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4116 if (tcp_is_sack(tp)) 4117 info->tcpi_options |= TCPI_OPT_SACK; 4118 if (tp->rx_opt.wscale_ok) { 4119 info->tcpi_options |= TCPI_OPT_WSCALE; 4120 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4121 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4122 } 4123 4124 if (tp->ecn_flags & TCP_ECN_OK) 4125 info->tcpi_options |= TCPI_OPT_ECN; 4126 if (tp->ecn_flags & TCP_ECN_SEEN) 4127 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4128 if (tp->syn_data_acked) 4129 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4130 if (tp->tcp_usec_ts) 4131 info->tcpi_options |= TCPI_OPT_USEC_TS; 4132 4133 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4134 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4135 tcp_delack_max(sk))); 4136 info->tcpi_snd_mss = tp->mss_cache; 4137 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4138 4139 info->tcpi_unacked = tp->packets_out; 4140 info->tcpi_sacked = tp->sacked_out; 4141 4142 info->tcpi_lost = tp->lost_out; 4143 info->tcpi_retrans = tp->retrans_out; 4144 4145 now = tcp_jiffies32; 4146 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4147 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4148 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4149 4150 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4151 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4152 info->tcpi_rtt = tp->srtt_us >> 3; 4153 info->tcpi_rttvar = tp->mdev_us >> 2; 4154 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4155 info->tcpi_advmss = tp->advmss; 4156 4157 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4158 info->tcpi_rcv_space = tp->rcvq_space.space; 4159 4160 info->tcpi_total_retrans = tp->total_retrans; 4161 4162 info->tcpi_bytes_acked = tp->bytes_acked; 4163 info->tcpi_bytes_received = tp->bytes_received; 4164 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4165 tcp_get_info_chrono_stats(tp, info); 4166 4167 info->tcpi_segs_out = tp->segs_out; 4168 4169 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4170 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4171 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4172 4173 info->tcpi_min_rtt = tcp_min_rtt(tp); 4174 info->tcpi_data_segs_out = tp->data_segs_out; 4175 4176 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4177 rate64 = tcp_compute_delivery_rate(tp); 4178 if (rate64) 4179 info->tcpi_delivery_rate = rate64; 4180 info->tcpi_delivered = tp->delivered; 4181 info->tcpi_delivered_ce = tp->delivered_ce; 4182 info->tcpi_bytes_sent = tp->bytes_sent; 4183 info->tcpi_bytes_retrans = tp->bytes_retrans; 4184 info->tcpi_dsack_dups = tp->dsack_dups; 4185 info->tcpi_reord_seen = tp->reord_seen; 4186 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4187 info->tcpi_snd_wnd = tp->snd_wnd; 4188 info->tcpi_rcv_wnd = tp->rcv_wnd; 4189 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4190 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4191 4192 info->tcpi_total_rto = tp->total_rto; 4193 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4194 info->tcpi_total_rto_time = tp->total_rto_time; 4195 if (tp->rto_stamp) 4196 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4197 4198 unlock_sock_fast(sk, slow); 4199 } 4200 EXPORT_SYMBOL_GPL(tcp_get_info); 4201 4202 static size_t tcp_opt_stats_get_size(void) 4203 { 4204 return 4205 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4206 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4207 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4208 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4209 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4210 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4211 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4212 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4213 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4214 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4215 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4216 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4217 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4218 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4219 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4220 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4221 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4222 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4223 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4224 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4225 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4226 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4227 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4228 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4229 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4230 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4231 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4232 0; 4233 } 4234 4235 /* Returns TTL or hop limit of an incoming packet from skb. */ 4236 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4237 { 4238 if (skb->protocol == htons(ETH_P_IP)) 4239 return ip_hdr(skb)->ttl; 4240 else if (skb->protocol == htons(ETH_P_IPV6)) 4241 return ipv6_hdr(skb)->hop_limit; 4242 else 4243 return 0; 4244 } 4245 4246 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4247 const struct sk_buff *orig_skb, 4248 const struct sk_buff *ack_skb) 4249 { 4250 const struct tcp_sock *tp = tcp_sk(sk); 4251 struct sk_buff *stats; 4252 struct tcp_info info; 4253 unsigned long rate; 4254 u64 rate64; 4255 4256 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4257 if (!stats) 4258 return NULL; 4259 4260 tcp_get_info_chrono_stats(tp, &info); 4261 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4262 info.tcpi_busy_time, TCP_NLA_PAD); 4263 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4264 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4265 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4266 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4267 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4268 tp->data_segs_out, TCP_NLA_PAD); 4269 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4270 tp->total_retrans, TCP_NLA_PAD); 4271 4272 rate = READ_ONCE(sk->sk_pacing_rate); 4273 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4274 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4275 4276 rate64 = tcp_compute_delivery_rate(tp); 4277 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4278 4279 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4280 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4281 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4282 4283 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4284 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4285 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4286 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4287 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4288 4289 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4290 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4291 4292 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4293 TCP_NLA_PAD); 4294 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4295 TCP_NLA_PAD); 4296 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4297 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4298 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4299 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4300 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4301 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4302 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4303 TCP_NLA_PAD); 4304 if (ack_skb) 4305 nla_put_u8(stats, TCP_NLA_TTL, 4306 tcp_skb_ttl_or_hop_limit(ack_skb)); 4307 4308 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4309 return stats; 4310 } 4311 4312 int do_tcp_getsockopt(struct sock *sk, int level, 4313 int optname, sockptr_t optval, sockptr_t optlen) 4314 { 4315 struct inet_connection_sock *icsk = inet_csk(sk); 4316 struct tcp_sock *tp = tcp_sk(sk); 4317 struct net *net = sock_net(sk); 4318 int val, len; 4319 4320 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4321 return -EFAULT; 4322 4323 if (len < 0) 4324 return -EINVAL; 4325 4326 len = min_t(unsigned int, len, sizeof(int)); 4327 4328 switch (optname) { 4329 case TCP_MAXSEG: 4330 val = tp->mss_cache; 4331 if (tp->rx_opt.user_mss && 4332 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4333 val = tp->rx_opt.user_mss; 4334 if (tp->repair) 4335 val = tp->rx_opt.mss_clamp; 4336 break; 4337 case TCP_NODELAY: 4338 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4339 break; 4340 case TCP_CORK: 4341 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4342 break; 4343 case TCP_KEEPIDLE: 4344 val = keepalive_time_when(tp) / HZ; 4345 break; 4346 case TCP_KEEPINTVL: 4347 val = keepalive_intvl_when(tp) / HZ; 4348 break; 4349 case TCP_KEEPCNT: 4350 val = keepalive_probes(tp); 4351 break; 4352 case TCP_SYNCNT: 4353 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4354 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4355 break; 4356 case TCP_LINGER2: 4357 val = READ_ONCE(tp->linger2); 4358 if (val >= 0) 4359 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4360 break; 4361 case TCP_DEFER_ACCEPT: 4362 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4363 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4364 TCP_RTO_MAX / HZ); 4365 break; 4366 case TCP_WINDOW_CLAMP: 4367 val = READ_ONCE(tp->window_clamp); 4368 break; 4369 case TCP_INFO: { 4370 struct tcp_info info; 4371 4372 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4373 return -EFAULT; 4374 4375 tcp_get_info(sk, &info); 4376 4377 len = min_t(unsigned int, len, sizeof(info)); 4378 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4379 return -EFAULT; 4380 if (copy_to_sockptr(optval, &info, len)) 4381 return -EFAULT; 4382 return 0; 4383 } 4384 case TCP_CC_INFO: { 4385 const struct tcp_congestion_ops *ca_ops; 4386 union tcp_cc_info info; 4387 size_t sz = 0; 4388 int attr; 4389 4390 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4391 return -EFAULT; 4392 4393 ca_ops = icsk->icsk_ca_ops; 4394 if (ca_ops && ca_ops->get_info) 4395 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4396 4397 len = min_t(unsigned int, len, sz); 4398 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4399 return -EFAULT; 4400 if (copy_to_sockptr(optval, &info, len)) 4401 return -EFAULT; 4402 return 0; 4403 } 4404 case TCP_QUICKACK: 4405 val = !inet_csk_in_pingpong_mode(sk); 4406 break; 4407 4408 case TCP_CONGESTION: 4409 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4410 return -EFAULT; 4411 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4412 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4413 return -EFAULT; 4414 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4415 return -EFAULT; 4416 return 0; 4417 4418 case TCP_ULP: 4419 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4420 return -EFAULT; 4421 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4422 if (!icsk->icsk_ulp_ops) { 4423 len = 0; 4424 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4425 return -EFAULT; 4426 return 0; 4427 } 4428 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4429 return -EFAULT; 4430 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4431 return -EFAULT; 4432 return 0; 4433 4434 case TCP_FASTOPEN_KEY: { 4435 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4436 unsigned int key_len; 4437 4438 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4439 return -EFAULT; 4440 4441 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4442 TCP_FASTOPEN_KEY_LENGTH; 4443 len = min_t(unsigned int, len, key_len); 4444 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4445 return -EFAULT; 4446 if (copy_to_sockptr(optval, key, len)) 4447 return -EFAULT; 4448 return 0; 4449 } 4450 case TCP_THIN_LINEAR_TIMEOUTS: 4451 val = tp->thin_lto; 4452 break; 4453 4454 case TCP_THIN_DUPACK: 4455 val = 0; 4456 break; 4457 4458 case TCP_REPAIR: 4459 val = tp->repair; 4460 break; 4461 4462 case TCP_REPAIR_QUEUE: 4463 if (tp->repair) 4464 val = tp->repair_queue; 4465 else 4466 return -EINVAL; 4467 break; 4468 4469 case TCP_REPAIR_WINDOW: { 4470 struct tcp_repair_window opt; 4471 4472 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4473 return -EFAULT; 4474 4475 if (len != sizeof(opt)) 4476 return -EINVAL; 4477 4478 if (!tp->repair) 4479 return -EPERM; 4480 4481 opt.snd_wl1 = tp->snd_wl1; 4482 opt.snd_wnd = tp->snd_wnd; 4483 opt.max_window = tp->max_window; 4484 opt.rcv_wnd = tp->rcv_wnd; 4485 opt.rcv_wup = tp->rcv_wup; 4486 4487 if (copy_to_sockptr(optval, &opt, len)) 4488 return -EFAULT; 4489 return 0; 4490 } 4491 case TCP_QUEUE_SEQ: 4492 if (tp->repair_queue == TCP_SEND_QUEUE) 4493 val = tp->write_seq; 4494 else if (tp->repair_queue == TCP_RECV_QUEUE) 4495 val = tp->rcv_nxt; 4496 else 4497 return -EINVAL; 4498 break; 4499 4500 case TCP_USER_TIMEOUT: 4501 val = READ_ONCE(icsk->icsk_user_timeout); 4502 break; 4503 4504 case TCP_FASTOPEN: 4505 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4506 break; 4507 4508 case TCP_FASTOPEN_CONNECT: 4509 val = tp->fastopen_connect; 4510 break; 4511 4512 case TCP_FASTOPEN_NO_COOKIE: 4513 val = tp->fastopen_no_cookie; 4514 break; 4515 4516 case TCP_TX_DELAY: 4517 val = READ_ONCE(tp->tcp_tx_delay); 4518 break; 4519 4520 case TCP_TIMESTAMP: 4521 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4522 if (tp->tcp_usec_ts) 4523 val |= 1; 4524 else 4525 val &= ~1; 4526 break; 4527 case TCP_NOTSENT_LOWAT: 4528 val = READ_ONCE(tp->notsent_lowat); 4529 break; 4530 case TCP_INQ: 4531 val = tp->recvmsg_inq; 4532 break; 4533 case TCP_SAVE_SYN: 4534 val = tp->save_syn; 4535 break; 4536 case TCP_SAVED_SYN: { 4537 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4538 return -EFAULT; 4539 4540 sockopt_lock_sock(sk); 4541 if (tp->saved_syn) { 4542 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4543 len = tcp_saved_syn_len(tp->saved_syn); 4544 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4545 sockopt_release_sock(sk); 4546 return -EFAULT; 4547 } 4548 sockopt_release_sock(sk); 4549 return -EINVAL; 4550 } 4551 len = tcp_saved_syn_len(tp->saved_syn); 4552 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4553 sockopt_release_sock(sk); 4554 return -EFAULT; 4555 } 4556 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4557 sockopt_release_sock(sk); 4558 return -EFAULT; 4559 } 4560 tcp_saved_syn_free(tp); 4561 sockopt_release_sock(sk); 4562 } else { 4563 sockopt_release_sock(sk); 4564 len = 0; 4565 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4566 return -EFAULT; 4567 } 4568 return 0; 4569 } 4570 #ifdef CONFIG_MMU 4571 case TCP_ZEROCOPY_RECEIVE: { 4572 struct scm_timestamping_internal tss; 4573 struct tcp_zerocopy_receive zc = {}; 4574 int err; 4575 4576 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4577 return -EFAULT; 4578 if (len < 0 || 4579 len < offsetofend(struct tcp_zerocopy_receive, length)) 4580 return -EINVAL; 4581 if (unlikely(len > sizeof(zc))) { 4582 err = check_zeroed_sockptr(optval, sizeof(zc), 4583 len - sizeof(zc)); 4584 if (err < 1) 4585 return err == 0 ? -EINVAL : err; 4586 len = sizeof(zc); 4587 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4588 return -EFAULT; 4589 } 4590 if (copy_from_sockptr(&zc, optval, len)) 4591 return -EFAULT; 4592 if (zc.reserved) 4593 return -EINVAL; 4594 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4595 return -EINVAL; 4596 sockopt_lock_sock(sk); 4597 err = tcp_zerocopy_receive(sk, &zc, &tss); 4598 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4599 &zc, &len, err); 4600 sockopt_release_sock(sk); 4601 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4602 goto zerocopy_rcv_cmsg; 4603 switch (len) { 4604 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4605 goto zerocopy_rcv_cmsg; 4606 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4607 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4608 case offsetofend(struct tcp_zerocopy_receive, flags): 4609 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4610 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4611 case offsetofend(struct tcp_zerocopy_receive, err): 4612 goto zerocopy_rcv_sk_err; 4613 case offsetofend(struct tcp_zerocopy_receive, inq): 4614 goto zerocopy_rcv_inq; 4615 case offsetofend(struct tcp_zerocopy_receive, length): 4616 default: 4617 goto zerocopy_rcv_out; 4618 } 4619 zerocopy_rcv_cmsg: 4620 if (zc.msg_flags & TCP_CMSG_TS) 4621 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4622 else 4623 zc.msg_flags = 0; 4624 zerocopy_rcv_sk_err: 4625 if (!err) 4626 zc.err = sock_error(sk); 4627 zerocopy_rcv_inq: 4628 zc.inq = tcp_inq_hint(sk); 4629 zerocopy_rcv_out: 4630 if (!err && copy_to_sockptr(optval, &zc, len)) 4631 err = -EFAULT; 4632 return err; 4633 } 4634 #endif 4635 case TCP_AO_REPAIR: 4636 if (!tcp_can_repair_sock(sk)) 4637 return -EPERM; 4638 return tcp_ao_get_repair(sk, optval, optlen); 4639 case TCP_AO_GET_KEYS: 4640 case TCP_AO_INFO: { 4641 int err; 4642 4643 sockopt_lock_sock(sk); 4644 if (optname == TCP_AO_GET_KEYS) 4645 err = tcp_ao_get_mkts(sk, optval, optlen); 4646 else 4647 err = tcp_ao_get_sock_info(sk, optval, optlen); 4648 sockopt_release_sock(sk); 4649 4650 return err; 4651 } 4652 case TCP_IS_MPTCP: 4653 val = 0; 4654 break; 4655 case TCP_RTO_MAX_MS: 4656 val = jiffies_to_msecs(tcp_rto_max(sk)); 4657 break; 4658 default: 4659 return -ENOPROTOOPT; 4660 } 4661 4662 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4663 return -EFAULT; 4664 if (copy_to_sockptr(optval, &val, len)) 4665 return -EFAULT; 4666 return 0; 4667 } 4668 4669 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4670 { 4671 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4672 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4673 */ 4674 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4675 return true; 4676 4677 return false; 4678 } 4679 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4680 4681 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4682 int __user *optlen) 4683 { 4684 struct inet_connection_sock *icsk = inet_csk(sk); 4685 4686 if (level != SOL_TCP) 4687 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4688 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4689 optval, optlen); 4690 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4691 USER_SOCKPTR(optlen)); 4692 } 4693 EXPORT_SYMBOL(tcp_getsockopt); 4694 4695 #ifdef CONFIG_TCP_MD5SIG 4696 int tcp_md5_sigpool_id = -1; 4697 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4698 4699 int tcp_md5_alloc_sigpool(void) 4700 { 4701 size_t scratch_size; 4702 int ret; 4703 4704 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4705 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4706 if (ret >= 0) { 4707 /* As long as any md5 sigpool was allocated, the return 4708 * id would stay the same. Re-write the id only for the case 4709 * when previously all MD5 keys were deleted and this call 4710 * allocates the first MD5 key, which may return a different 4711 * sigpool id than was used previously. 4712 */ 4713 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4714 return 0; 4715 } 4716 return ret; 4717 } 4718 4719 void tcp_md5_release_sigpool(void) 4720 { 4721 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4722 } 4723 4724 void tcp_md5_add_sigpool(void) 4725 { 4726 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4727 } 4728 4729 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4730 const struct tcp_md5sig_key *key) 4731 { 4732 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4733 struct scatterlist sg; 4734 4735 sg_init_one(&sg, key->key, keylen); 4736 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4737 4738 /* We use data_race() because tcp_md5_do_add() might change 4739 * key->key under us 4740 */ 4741 return data_race(crypto_ahash_update(hp->req)); 4742 } 4743 EXPORT_SYMBOL(tcp_md5_hash_key); 4744 4745 /* Called with rcu_read_lock() */ 4746 static enum skb_drop_reason 4747 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4748 const void *saddr, const void *daddr, 4749 int family, int l3index, const __u8 *hash_location) 4750 { 4751 /* This gets called for each TCP segment that has TCP-MD5 option. 4752 * We have 3 drop cases: 4753 * o No MD5 hash and one expected. 4754 * o MD5 hash and we're not expecting one. 4755 * o MD5 hash and its wrong. 4756 */ 4757 const struct tcp_sock *tp = tcp_sk(sk); 4758 struct tcp_md5sig_key *key; 4759 u8 newhash[16]; 4760 int genhash; 4761 4762 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4763 4764 if (!key && hash_location) { 4765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4766 trace_tcp_hash_md5_unexpected(sk, skb); 4767 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4768 } 4769 4770 /* Check the signature. 4771 * To support dual stack listeners, we need to handle 4772 * IPv4-mapped case. 4773 */ 4774 if (family == AF_INET) 4775 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4776 else 4777 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4778 NULL, skb); 4779 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4781 trace_tcp_hash_md5_mismatch(sk, skb); 4782 return SKB_DROP_REASON_TCP_MD5FAILURE; 4783 } 4784 return SKB_NOT_DROPPED_YET; 4785 } 4786 #else 4787 static inline enum skb_drop_reason 4788 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4789 const void *saddr, const void *daddr, 4790 int family, int l3index, const __u8 *hash_location) 4791 { 4792 return SKB_NOT_DROPPED_YET; 4793 } 4794 4795 #endif 4796 4797 /* Called with rcu_read_lock() */ 4798 enum skb_drop_reason 4799 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4800 const struct sk_buff *skb, 4801 const void *saddr, const void *daddr, 4802 int family, int dif, int sdif) 4803 { 4804 const struct tcphdr *th = tcp_hdr(skb); 4805 const struct tcp_ao_hdr *aoh; 4806 const __u8 *md5_location; 4807 int l3index; 4808 4809 /* Invalid option or two times meet any of auth options */ 4810 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4811 trace_tcp_hash_bad_header(sk, skb); 4812 return SKB_DROP_REASON_TCP_AUTH_HDR; 4813 } 4814 4815 if (req) { 4816 if (tcp_rsk_used_ao(req) != !!aoh) { 4817 u8 keyid, rnext, maclen; 4818 4819 if (aoh) { 4820 keyid = aoh->keyid; 4821 rnext = aoh->rnext_keyid; 4822 maclen = tcp_ao_hdr_maclen(aoh); 4823 } else { 4824 keyid = rnext = maclen = 0; 4825 } 4826 4827 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4828 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4829 return SKB_DROP_REASON_TCP_AOFAILURE; 4830 } 4831 } 4832 4833 /* sdif set, means packet ingressed via a device 4834 * in an L3 domain and dif is set to the l3mdev 4835 */ 4836 l3index = sdif ? dif : 0; 4837 4838 /* Fast path: unsigned segments */ 4839 if (likely(!md5_location && !aoh)) { 4840 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4841 * for the remote peer. On TCP-AO established connection 4842 * the last key is impossible to remove, so there's 4843 * always at least one current_key. 4844 */ 4845 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4846 trace_tcp_hash_ao_required(sk, skb); 4847 return SKB_DROP_REASON_TCP_AONOTFOUND; 4848 } 4849 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4850 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4851 trace_tcp_hash_md5_required(sk, skb); 4852 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4853 } 4854 return SKB_NOT_DROPPED_YET; 4855 } 4856 4857 if (aoh) 4858 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4859 4860 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4861 l3index, md5_location); 4862 } 4863 EXPORT_SYMBOL_GPL(tcp_inbound_hash); 4864 4865 void tcp_done(struct sock *sk) 4866 { 4867 struct request_sock *req; 4868 4869 /* We might be called with a new socket, after 4870 * inet_csk_prepare_forced_close() has been called 4871 * so we can not use lockdep_sock_is_held(sk) 4872 */ 4873 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4874 4875 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4876 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4877 4878 tcp_set_state(sk, TCP_CLOSE); 4879 tcp_clear_xmit_timers(sk); 4880 if (req) 4881 reqsk_fastopen_remove(sk, req, false); 4882 4883 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4884 4885 if (!sock_flag(sk, SOCK_DEAD)) 4886 sk->sk_state_change(sk); 4887 else 4888 inet_csk_destroy_sock(sk); 4889 } 4890 EXPORT_SYMBOL_GPL(tcp_done); 4891 4892 int tcp_abort(struct sock *sk, int err) 4893 { 4894 int state = inet_sk_state_load(sk); 4895 4896 if (state == TCP_NEW_SYN_RECV) { 4897 struct request_sock *req = inet_reqsk(sk); 4898 4899 local_bh_disable(); 4900 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4901 local_bh_enable(); 4902 return 0; 4903 } 4904 if (state == TCP_TIME_WAIT) { 4905 struct inet_timewait_sock *tw = inet_twsk(sk); 4906 4907 refcount_inc(&tw->tw_refcnt); 4908 local_bh_disable(); 4909 inet_twsk_deschedule_put(tw); 4910 local_bh_enable(); 4911 return 0; 4912 } 4913 4914 /* BPF context ensures sock locking. */ 4915 if (!has_current_bpf_ctx()) 4916 /* Don't race with userspace socket closes such as tcp_close. */ 4917 lock_sock(sk); 4918 4919 /* Avoid closing the same socket twice. */ 4920 if (sk->sk_state == TCP_CLOSE) { 4921 if (!has_current_bpf_ctx()) 4922 release_sock(sk); 4923 return -ENOENT; 4924 } 4925 4926 if (sk->sk_state == TCP_LISTEN) { 4927 tcp_set_state(sk, TCP_CLOSE); 4928 inet_csk_listen_stop(sk); 4929 } 4930 4931 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4932 local_bh_disable(); 4933 bh_lock_sock(sk); 4934 4935 if (tcp_need_reset(sk->sk_state)) 4936 tcp_send_active_reset(sk, GFP_ATOMIC, 4937 SK_RST_REASON_TCP_STATE); 4938 tcp_done_with_error(sk, err); 4939 4940 bh_unlock_sock(sk); 4941 local_bh_enable(); 4942 if (!has_current_bpf_ctx()) 4943 release_sock(sk); 4944 return 0; 4945 } 4946 EXPORT_SYMBOL_GPL(tcp_abort); 4947 4948 extern struct tcp_congestion_ops tcp_reno; 4949 4950 static __initdata unsigned long thash_entries; 4951 static int __init set_thash_entries(char *str) 4952 { 4953 ssize_t ret; 4954 4955 if (!str) 4956 return 0; 4957 4958 ret = kstrtoul(str, 0, &thash_entries); 4959 if (ret) 4960 return 0; 4961 4962 return 1; 4963 } 4964 __setup("thash_entries=", set_thash_entries); 4965 4966 static void __init tcp_init_mem(void) 4967 { 4968 unsigned long limit = nr_free_buffer_pages() / 16; 4969 4970 limit = max(limit, 128UL); 4971 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4972 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4973 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4974 } 4975 4976 static void __init tcp_struct_check(void) 4977 { 4978 /* TX read-mostly hotpath cache lines */ 4979 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4980 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4981 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4982 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4983 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4984 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4985 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4986 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4987 4988 /* TXRX read-mostly hotpath cache lines */ 4989 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4990 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4994 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4995 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4996 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4997 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4998 4999 /* RX read-mostly hotpath cache lines */ 5000 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5001 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5006 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5007 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5008 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5012 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5013 5014 /* TX read-write hotpath cache lines */ 5015 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5016 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5030 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5031 5032 /* TXRX read-write hotpath cache lines */ 5033 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5034 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5036 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5048 5049 /* 32bit arches with 8byte alignment on u64 fields might need padding 5050 * before tcp_clock_cache. 5051 */ 5052 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5053 5054 /* RX read-write hotpath cache lines */ 5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5069 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5070 } 5071 5072 void __init tcp_init(void) 5073 { 5074 int max_rshare, max_wshare, cnt; 5075 unsigned long limit; 5076 unsigned int i; 5077 5078 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5079 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5080 sizeof_field(struct sk_buff, cb)); 5081 5082 tcp_struct_check(); 5083 5084 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5085 5086 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5087 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5088 5089 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5090 thash_entries, 21, /* one slot per 2 MB*/ 5091 0, 64 * 1024); 5092 tcp_hashinfo.bind_bucket_cachep = 5093 kmem_cache_create("tcp_bind_bucket", 5094 sizeof(struct inet_bind_bucket), 0, 5095 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5096 SLAB_ACCOUNT, 5097 NULL); 5098 tcp_hashinfo.bind2_bucket_cachep = 5099 kmem_cache_create("tcp_bind2_bucket", 5100 sizeof(struct inet_bind2_bucket), 0, 5101 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5102 SLAB_ACCOUNT, 5103 NULL); 5104 5105 /* Size and allocate the main established and bind bucket 5106 * hash tables. 5107 * 5108 * The methodology is similar to that of the buffer cache. 5109 */ 5110 tcp_hashinfo.ehash = 5111 alloc_large_system_hash("TCP established", 5112 sizeof(struct inet_ehash_bucket), 5113 thash_entries, 5114 17, /* one slot per 128 KB of memory */ 5115 0, 5116 NULL, 5117 &tcp_hashinfo.ehash_mask, 5118 0, 5119 thash_entries ? 0 : 512 * 1024); 5120 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5121 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5122 5123 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5124 panic("TCP: failed to alloc ehash_locks"); 5125 tcp_hashinfo.bhash = 5126 alloc_large_system_hash("TCP bind", 5127 2 * sizeof(struct inet_bind_hashbucket), 5128 tcp_hashinfo.ehash_mask + 1, 5129 17, /* one slot per 128 KB of memory */ 5130 0, 5131 &tcp_hashinfo.bhash_size, 5132 NULL, 5133 0, 5134 64 * 1024); 5135 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5136 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5137 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5138 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5139 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5140 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5141 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5142 } 5143 5144 tcp_hashinfo.pernet = false; 5145 5146 cnt = tcp_hashinfo.ehash_mask + 1; 5147 sysctl_tcp_max_orphans = cnt / 2; 5148 5149 tcp_init_mem(); 5150 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5151 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5152 max_wshare = min(4UL*1024*1024, limit); 5153 max_rshare = min(6UL*1024*1024, limit); 5154 5155 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5156 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5157 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5158 5159 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5160 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5161 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5162 5163 pr_info("Hash tables configured (established %u bind %u)\n", 5164 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5165 5166 tcp_v4_init(); 5167 tcp_metrics_init(); 5168 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5169 tcp_tasklet_init(); 5170 mptcp_init(); 5171 } 5172