1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <net/rps.h> 286 287 /* Track pending CMSGs. */ 288 enum { 289 TCP_CMSG_INQ = 1, 290 TCP_CMSG_TS = 2 291 }; 292 293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 295 296 DEFINE_PER_CPU(u32, tcp_tw_isn); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 298 299 long sysctl_tcp_mem[3] __read_mostly; 300 EXPORT_SYMBOL(sysctl_tcp_mem); 301 302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 303 EXPORT_SYMBOL(tcp_memory_allocated); 304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 306 307 #if IS_ENABLED(CONFIG_SMC) 308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 309 EXPORT_SYMBOL(tcp_have_smc); 310 #endif 311 312 /* 313 * Current number of TCP sockets. 314 */ 315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 316 EXPORT_SYMBOL(tcp_sockets_allocated); 317 318 /* 319 * TCP splice context 320 */ 321 struct tcp_splice_state { 322 struct pipe_inode_info *pipe; 323 size_t len; 324 unsigned int flags; 325 }; 326 327 /* 328 * Pressure flag: try to collapse. 329 * Technical note: it is used by multiple contexts non atomically. 330 * All the __sk_mem_schedule() is of this nature: accounting 331 * is strict, actions are advisory and have some latency. 332 */ 333 unsigned long tcp_memory_pressure __read_mostly; 334 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 335 336 void tcp_enter_memory_pressure(struct sock *sk) 337 { 338 unsigned long val; 339 340 if (READ_ONCE(tcp_memory_pressure)) 341 return; 342 val = jiffies; 343 344 if (!val) 345 val--; 346 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 347 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 348 } 349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 350 351 void tcp_leave_memory_pressure(struct sock *sk) 352 { 353 unsigned long val; 354 355 if (!READ_ONCE(tcp_memory_pressure)) 356 return; 357 val = xchg(&tcp_memory_pressure, 0); 358 if (val) 359 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 360 jiffies_to_msecs(jiffies - val)); 361 } 362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 363 364 /* Convert seconds to retransmits based on initial and max timeout */ 365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 366 { 367 u8 res = 0; 368 369 if (seconds > 0) { 370 int period = timeout; 371 372 res = 1; 373 while (seconds > period && res < 255) { 374 res++; 375 timeout <<= 1; 376 if (timeout > rto_max) 377 timeout = rto_max; 378 period += timeout; 379 } 380 } 381 return res; 382 } 383 384 /* Convert retransmits to seconds based on initial and max timeout */ 385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 386 { 387 int period = 0; 388 389 if (retrans > 0) { 390 period = timeout; 391 while (--retrans) { 392 timeout <<= 1; 393 if (timeout > rto_max) 394 timeout = rto_max; 395 period += timeout; 396 } 397 } 398 return period; 399 } 400 401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 402 { 403 u32 rate = READ_ONCE(tp->rate_delivered); 404 u32 intv = READ_ONCE(tp->rate_interval_us); 405 u64 rate64 = 0; 406 407 if (rate && intv) { 408 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 409 do_div(rate64, intv); 410 } 411 return rate64; 412 } 413 414 /* Address-family independent initialization for a tcp_sock. 415 * 416 * NOTE: A lot of things set to zero explicitly by call to 417 * sk_alloc() so need not be done here. 418 */ 419 void tcp_init_sock(struct sock *sk) 420 { 421 struct inet_connection_sock *icsk = inet_csk(sk); 422 struct tcp_sock *tp = tcp_sk(sk); 423 424 tp->out_of_order_queue = RB_ROOT; 425 sk->tcp_rtx_queue = RB_ROOT; 426 tcp_init_xmit_timers(sk); 427 INIT_LIST_HEAD(&tp->tsq_node); 428 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 429 430 icsk->icsk_rto = TCP_TIMEOUT_INIT; 431 icsk->icsk_rto_min = TCP_RTO_MIN; 432 icsk->icsk_delack_max = TCP_DELACK_MAX; 433 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 434 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 435 436 /* So many TCP implementations out there (incorrectly) count the 437 * initial SYN frame in their delayed-ACK and congestion control 438 * algorithms that we must have the following bandaid to talk 439 * efficiently to them. -DaveM 440 */ 441 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 442 443 /* There's a bubble in the pipe until at least the first ACK. */ 444 tp->app_limited = ~0U; 445 tp->rate_app_limited = 1; 446 447 /* See draft-stevens-tcpca-spec-01 for discussion of the 448 * initialization of these values. 449 */ 450 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 451 tp->snd_cwnd_clamp = ~0; 452 tp->mss_cache = TCP_MSS_DEFAULT; 453 454 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 455 tcp_assign_congestion_control(sk); 456 457 tp->tsoffset = 0; 458 tp->rack.reo_wnd_steps = 1; 459 460 sk->sk_write_space = sk_stream_write_space; 461 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 462 463 icsk->icsk_sync_mss = tcp_sync_mss; 464 465 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 466 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 467 tcp_scaling_ratio_init(sk); 468 469 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 470 sk_sockets_allocated_inc(sk); 471 } 472 EXPORT_SYMBOL(tcp_init_sock); 473 474 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 475 { 476 struct sk_buff *skb = tcp_write_queue_tail(sk); 477 478 if (tsflags && skb) { 479 struct skb_shared_info *shinfo = skb_shinfo(skb); 480 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 481 482 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 483 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 484 tcb->txstamp_ack = 1; 485 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 486 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 487 } 488 } 489 490 static bool tcp_stream_is_readable(struct sock *sk, int target) 491 { 492 if (tcp_epollin_ready(sk, target)) 493 return true; 494 return sk_is_readable(sk); 495 } 496 497 /* 498 * Wait for a TCP event. 499 * 500 * Note that we don't need to lock the socket, as the upper poll layers 501 * take care of normal races (between the test and the event) and we don't 502 * go look at any of the socket buffers directly. 503 */ 504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 505 { 506 __poll_t mask; 507 struct sock *sk = sock->sk; 508 const struct tcp_sock *tp = tcp_sk(sk); 509 u8 shutdown; 510 int state; 511 512 sock_poll_wait(file, sock, wait); 513 514 state = inet_sk_state_load(sk); 515 if (state == TCP_LISTEN) 516 return inet_csk_listen_poll(sk); 517 518 /* Socket is not locked. We are protected from async events 519 * by poll logic and correct handling of state changes 520 * made by other threads is impossible in any case. 521 */ 522 523 mask = 0; 524 525 /* 526 * EPOLLHUP is certainly not done right. But poll() doesn't 527 * have a notion of HUP in just one direction, and for a 528 * socket the read side is more interesting. 529 * 530 * Some poll() documentation says that EPOLLHUP is incompatible 531 * with the EPOLLOUT/POLLWR flags, so somebody should check this 532 * all. But careful, it tends to be safer to return too many 533 * bits than too few, and you can easily break real applications 534 * if you don't tell them that something has hung up! 535 * 536 * Check-me. 537 * 538 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 539 * our fs/select.c). It means that after we received EOF, 540 * poll always returns immediately, making impossible poll() on write() 541 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 542 * if and only if shutdown has been made in both directions. 543 * Actually, it is interesting to look how Solaris and DUX 544 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 545 * then we could set it on SND_SHUTDOWN. BTW examples given 546 * in Stevens' books assume exactly this behaviour, it explains 547 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 548 * 549 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 550 * blocking on fresh not-connected or disconnected socket. --ANK 551 */ 552 shutdown = READ_ONCE(sk->sk_shutdown); 553 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 554 mask |= EPOLLHUP; 555 if (shutdown & RCV_SHUTDOWN) 556 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 557 558 /* Connected or passive Fast Open socket? */ 559 if (state != TCP_SYN_SENT && 560 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 561 int target = sock_rcvlowat(sk, 0, INT_MAX); 562 u16 urg_data = READ_ONCE(tp->urg_data); 563 564 if (unlikely(urg_data) && 565 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 566 !sock_flag(sk, SOCK_URGINLINE)) 567 target++; 568 569 if (tcp_stream_is_readable(sk, target)) 570 mask |= EPOLLIN | EPOLLRDNORM; 571 572 if (!(shutdown & SEND_SHUTDOWN)) { 573 if (__sk_stream_is_writeable(sk, 1)) { 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } else { /* send SIGIO later */ 576 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 577 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 578 579 /* Race breaker. If space is freed after 580 * wspace test but before the flags are set, 581 * IO signal will be lost. Memory barrier 582 * pairs with the input side. 583 */ 584 smp_mb__after_atomic(); 585 if (__sk_stream_is_writeable(sk, 1)) 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 } else 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 591 if (urg_data & TCP_URG_VALID) 592 mask |= EPOLLPRI; 593 } else if (state == TCP_SYN_SENT && 594 inet_test_bit(DEFER_CONNECT, sk)) { 595 /* Active TCP fastopen socket with defer_connect 596 * Return EPOLLOUT so application can call write() 597 * in order for kernel to generate SYN+data 598 */ 599 mask |= EPOLLOUT | EPOLLWRNORM; 600 } 601 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 602 smp_rmb(); 603 if (READ_ONCE(sk->sk_err) || 604 !skb_queue_empty_lockless(&sk->sk_error_queue)) 605 mask |= EPOLLERR; 606 607 return mask; 608 } 609 EXPORT_SYMBOL(tcp_poll); 610 611 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 612 { 613 struct tcp_sock *tp = tcp_sk(sk); 614 int answ; 615 bool slow; 616 617 switch (cmd) { 618 case SIOCINQ: 619 if (sk->sk_state == TCP_LISTEN) 620 return -EINVAL; 621 622 slow = lock_sock_fast(sk); 623 answ = tcp_inq(sk); 624 unlock_sock_fast(sk, slow); 625 break; 626 case SIOCATMARK: 627 answ = READ_ONCE(tp->urg_data) && 628 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 629 break; 630 case SIOCOUTQ: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 638 break; 639 case SIOCOUTQNSD: 640 if (sk->sk_state == TCP_LISTEN) 641 return -EINVAL; 642 643 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 644 answ = 0; 645 else 646 answ = READ_ONCE(tp->write_seq) - 647 READ_ONCE(tp->snd_nxt); 648 break; 649 default: 650 return -ENOIOCTLCMD; 651 } 652 653 *karg = answ; 654 return 0; 655 } 656 EXPORT_SYMBOL(tcp_ioctl); 657 658 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 659 { 660 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 661 tp->pushed_seq = tp->write_seq; 662 } 663 664 static inline bool forced_push(const struct tcp_sock *tp) 665 { 666 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 667 } 668 669 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 670 { 671 struct tcp_sock *tp = tcp_sk(sk); 672 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 673 674 tcb->seq = tcb->end_seq = tp->write_seq; 675 tcb->tcp_flags = TCPHDR_ACK; 676 __skb_header_release(skb); 677 tcp_add_write_queue_tail(sk, skb); 678 sk_wmem_queued_add(sk, skb->truesize); 679 sk_mem_charge(sk, skb->truesize); 680 if (tp->nonagle & TCP_NAGLE_PUSH) 681 tp->nonagle &= ~TCP_NAGLE_PUSH; 682 683 tcp_slow_start_after_idle_check(sk); 684 } 685 686 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 687 { 688 if (flags & MSG_OOB) 689 tp->snd_up = tp->write_seq; 690 } 691 692 /* If a not yet filled skb is pushed, do not send it if 693 * we have data packets in Qdisc or NIC queues : 694 * Because TX completion will happen shortly, it gives a chance 695 * to coalesce future sendmsg() payload into this skb, without 696 * need for a timer, and with no latency trade off. 697 * As packets containing data payload have a bigger truesize 698 * than pure acks (dataless) packets, the last checks prevent 699 * autocorking if we only have an ACK in Qdisc/NIC queues, 700 * or if TX completion was delayed after we processed ACK packet. 701 */ 702 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 703 int size_goal) 704 { 705 return skb->len < size_goal && 706 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 707 !tcp_rtx_queue_empty(sk) && 708 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 709 tcp_skb_can_collapse_to(skb); 710 } 711 712 void tcp_push(struct sock *sk, int flags, int mss_now, 713 int nonagle, int size_goal) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 struct sk_buff *skb; 717 718 skb = tcp_write_queue_tail(sk); 719 if (!skb) 720 return; 721 if (!(flags & MSG_MORE) || forced_push(tp)) 722 tcp_mark_push(tp, skb); 723 724 tcp_mark_urg(tp, flags); 725 726 if (tcp_should_autocork(sk, skb, size_goal)) { 727 728 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 729 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 731 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 732 smp_mb__after_atomic(); 733 } 734 /* It is possible TX completion already happened 735 * before we set TSQ_THROTTLED. 736 */ 737 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 738 return; 739 } 740 741 if (flags & MSG_MORE) 742 nonagle = TCP_NAGLE_CORK; 743 744 __tcp_push_pending_frames(sk, mss_now, nonagle); 745 } 746 747 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 748 unsigned int offset, size_t len) 749 { 750 struct tcp_splice_state *tss = rd_desc->arg.data; 751 int ret; 752 753 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 754 min(rd_desc->count, len), tss->flags); 755 if (ret > 0) 756 rd_desc->count -= ret; 757 return ret; 758 } 759 760 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 761 { 762 /* Store TCP splice context information in read_descriptor_t. */ 763 read_descriptor_t rd_desc = { 764 .arg.data = tss, 765 .count = tss->len, 766 }; 767 768 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 769 } 770 771 /** 772 * tcp_splice_read - splice data from TCP socket to a pipe 773 * @sock: socket to splice from 774 * @ppos: position (not valid) 775 * @pipe: pipe to splice to 776 * @len: number of bytes to splice 777 * @flags: splice modifier flags 778 * 779 * Description: 780 * Will read pages from given socket and fill them into a pipe. 781 * 782 **/ 783 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 784 struct pipe_inode_info *pipe, size_t len, 785 unsigned int flags) 786 { 787 struct sock *sk = sock->sk; 788 struct tcp_splice_state tss = { 789 .pipe = pipe, 790 .len = len, 791 .flags = flags, 792 }; 793 long timeo; 794 ssize_t spliced; 795 int ret; 796 797 sock_rps_record_flow(sk); 798 /* 799 * We can't seek on a socket input 800 */ 801 if (unlikely(*ppos)) 802 return -ESPIPE; 803 804 ret = spliced = 0; 805 806 lock_sock(sk); 807 808 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 809 while (tss.len) { 810 ret = __tcp_splice_read(sk, &tss); 811 if (ret < 0) 812 break; 813 else if (!ret) { 814 if (spliced) 815 break; 816 if (sock_flag(sk, SOCK_DONE)) 817 break; 818 if (sk->sk_err) { 819 ret = sock_error(sk); 820 break; 821 } 822 if (sk->sk_shutdown & RCV_SHUTDOWN) 823 break; 824 if (sk->sk_state == TCP_CLOSE) { 825 /* 826 * This occurs when user tries to read 827 * from never connected socket. 828 */ 829 ret = -ENOTCONN; 830 break; 831 } 832 if (!timeo) { 833 ret = -EAGAIN; 834 break; 835 } 836 /* if __tcp_splice_read() got nothing while we have 837 * an skb in receive queue, we do not want to loop. 838 * This might happen with URG data. 839 */ 840 if (!skb_queue_empty(&sk->sk_receive_queue)) 841 break; 842 ret = sk_wait_data(sk, &timeo, NULL); 843 if (ret < 0) 844 break; 845 if (signal_pending(current)) { 846 ret = sock_intr_errno(timeo); 847 break; 848 } 849 continue; 850 } 851 tss.len -= ret; 852 spliced += ret; 853 854 if (!tss.len || !timeo) 855 break; 856 release_sock(sk); 857 lock_sock(sk); 858 859 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 860 (sk->sk_shutdown & RCV_SHUTDOWN) || 861 signal_pending(current)) 862 break; 863 } 864 865 release_sock(sk); 866 867 if (spliced) 868 return spliced; 869 870 return ret; 871 } 872 EXPORT_SYMBOL(tcp_splice_read); 873 874 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 875 bool force_schedule) 876 { 877 struct sk_buff *skb; 878 879 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 880 if (likely(skb)) { 881 bool mem_scheduled; 882 883 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 884 if (force_schedule) { 885 mem_scheduled = true; 886 sk_forced_mem_schedule(sk, skb->truesize); 887 } else { 888 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 889 } 890 if (likely(mem_scheduled)) { 891 skb_reserve(skb, MAX_TCP_HEADER); 892 skb->ip_summed = CHECKSUM_PARTIAL; 893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 894 return skb; 895 } 896 __kfree_skb(skb); 897 } else { 898 sk->sk_prot->enter_memory_pressure(sk); 899 sk_stream_moderate_sndbuf(sk); 900 } 901 return NULL; 902 } 903 904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 905 int large_allowed) 906 { 907 struct tcp_sock *tp = tcp_sk(sk); 908 u32 new_size_goal, size_goal; 909 910 if (!large_allowed) 911 return mss_now; 912 913 /* Note : tcp_tso_autosize() will eventually split this later */ 914 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 /* In some cases, sendmsg() could have added an skb to the write queue, 939 * but failed adding payload on it. We need to remove it to consume less 940 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 941 * epoll() users. Another reason is that tcp_write_xmit() does not like 942 * finding an empty skb in the write queue. 943 */ 944 void tcp_remove_empty_skb(struct sock *sk) 945 { 946 struct sk_buff *skb = tcp_write_queue_tail(sk); 947 948 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 949 tcp_unlink_write_queue(skb, sk); 950 if (tcp_write_queue_empty(sk)) 951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 952 tcp_wmem_free_skb(sk, skb); 953 } 954 } 955 956 /* skb changing from pure zc to mixed, must charge zc */ 957 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 958 { 959 if (unlikely(skb_zcopy_pure(skb))) { 960 u32 extra = skb->truesize - 961 SKB_TRUESIZE(skb_end_offset(skb)); 962 963 if (!sk_wmem_schedule(sk, extra)) 964 return -ENOMEM; 965 966 sk_mem_charge(sk, extra); 967 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 968 } 969 return 0; 970 } 971 972 973 int tcp_wmem_schedule(struct sock *sk, int copy) 974 { 975 int left; 976 977 if (likely(sk_wmem_schedule(sk, copy))) 978 return copy; 979 980 /* We could be in trouble if we have nothing queued. 981 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 982 * to guarantee some progress. 983 */ 984 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 985 if (left > 0) 986 sk_forced_mem_schedule(sk, min(left, copy)); 987 return min(copy, sk->sk_forward_alloc); 988 } 989 990 void tcp_free_fastopen_req(struct tcp_sock *tp) 991 { 992 if (tp->fastopen_req) { 993 kfree(tp->fastopen_req); 994 tp->fastopen_req = NULL; 995 } 996 } 997 998 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 999 size_t size, struct ubuf_info *uarg) 1000 { 1001 struct tcp_sock *tp = tcp_sk(sk); 1002 struct inet_sock *inet = inet_sk(sk); 1003 struct sockaddr *uaddr = msg->msg_name; 1004 int err, flags; 1005 1006 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1007 TFO_CLIENT_ENABLE) || 1008 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1009 uaddr->sa_family == AF_UNSPEC)) 1010 return -EOPNOTSUPP; 1011 if (tp->fastopen_req) 1012 return -EALREADY; /* Another Fast Open is in progress */ 1013 1014 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1015 sk->sk_allocation); 1016 if (unlikely(!tp->fastopen_req)) 1017 return -ENOBUFS; 1018 tp->fastopen_req->data = msg; 1019 tp->fastopen_req->size = size; 1020 tp->fastopen_req->uarg = uarg; 1021 1022 if (inet_test_bit(DEFER_CONNECT, sk)) { 1023 err = tcp_connect(sk); 1024 /* Same failure procedure as in tcp_v4/6_connect */ 1025 if (err) { 1026 tcp_set_state(sk, TCP_CLOSE); 1027 inet->inet_dport = 0; 1028 sk->sk_route_caps = 0; 1029 } 1030 } 1031 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1032 err = __inet_stream_connect(sk->sk_socket, uaddr, 1033 msg->msg_namelen, flags, 1); 1034 /* fastopen_req could already be freed in __inet_stream_connect 1035 * if the connection times out or gets rst 1036 */ 1037 if (tp->fastopen_req) { 1038 *copied = tp->fastopen_req->copied; 1039 tcp_free_fastopen_req(tp); 1040 inet_clear_bit(DEFER_CONNECT, sk); 1041 } 1042 return err; 1043 } 1044 1045 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1046 { 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 struct ubuf_info *uarg = NULL; 1049 struct sk_buff *skb; 1050 struct sockcm_cookie sockc; 1051 int flags, err, copied = 0; 1052 int mss_now = 0, size_goal, copied_syn = 0; 1053 int process_backlog = 0; 1054 int zc = 0; 1055 long timeo; 1056 1057 flags = msg->msg_flags; 1058 1059 if ((flags & MSG_ZEROCOPY) && size) { 1060 if (msg->msg_ubuf) { 1061 uarg = msg->msg_ubuf; 1062 if (sk->sk_route_caps & NETIF_F_SG) 1063 zc = MSG_ZEROCOPY; 1064 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1065 skb = tcp_write_queue_tail(sk); 1066 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1067 if (!uarg) { 1068 err = -ENOBUFS; 1069 goto out_err; 1070 } 1071 if (sk->sk_route_caps & NETIF_F_SG) 1072 zc = MSG_ZEROCOPY; 1073 else 1074 uarg_to_msgzc(uarg)->zerocopy = 0; 1075 } 1076 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1077 if (sk->sk_route_caps & NETIF_F_SG) 1078 zc = MSG_SPLICE_PAGES; 1079 } 1080 1081 if (unlikely(flags & MSG_FASTOPEN || 1082 inet_test_bit(DEFER_CONNECT, sk)) && 1083 !tp->repair) { 1084 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1085 if (err == -EINPROGRESS && copied_syn > 0) 1086 goto out; 1087 else if (err) 1088 goto out_err; 1089 } 1090 1091 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1092 1093 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1094 1095 /* Wait for a connection to finish. One exception is TCP Fast Open 1096 * (passive side) where data is allowed to be sent before a connection 1097 * is fully established. 1098 */ 1099 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1100 !tcp_passive_fastopen(sk)) { 1101 err = sk_stream_wait_connect(sk, &timeo); 1102 if (err != 0) 1103 goto do_error; 1104 } 1105 1106 if (unlikely(tp->repair)) { 1107 if (tp->repair_queue == TCP_RECV_QUEUE) { 1108 copied = tcp_send_rcvq(sk, msg, size); 1109 goto out_nopush; 1110 } 1111 1112 err = -EINVAL; 1113 if (tp->repair_queue == TCP_NO_QUEUE) 1114 goto out_err; 1115 1116 /* 'common' sending to sendq */ 1117 } 1118 1119 sockcm_init(&sockc, sk); 1120 if (msg->msg_controllen) { 1121 err = sock_cmsg_send(sk, msg, &sockc); 1122 if (unlikely(err)) { 1123 err = -EINVAL; 1124 goto out_err; 1125 } 1126 } 1127 1128 /* This should be in poll */ 1129 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1130 1131 /* Ok commence sending. */ 1132 copied = 0; 1133 1134 restart: 1135 mss_now = tcp_send_mss(sk, &size_goal, flags); 1136 1137 err = -EPIPE; 1138 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1139 goto do_error; 1140 1141 while (msg_data_left(msg)) { 1142 ssize_t copy = 0; 1143 1144 skb = tcp_write_queue_tail(sk); 1145 if (skb) 1146 copy = size_goal - skb->len; 1147 1148 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1149 bool first_skb; 1150 1151 new_segment: 1152 if (!sk_stream_memory_free(sk)) 1153 goto wait_for_space; 1154 1155 if (unlikely(process_backlog >= 16)) { 1156 process_backlog = 0; 1157 if (sk_flush_backlog(sk)) 1158 goto restart; 1159 } 1160 first_skb = tcp_rtx_and_write_queues_empty(sk); 1161 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1162 first_skb); 1163 if (!skb) 1164 goto wait_for_space; 1165 1166 process_backlog++; 1167 1168 #ifdef CONFIG_SKB_DECRYPTED 1169 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1170 #endif 1171 tcp_skb_entail(sk, skb); 1172 copy = size_goal; 1173 1174 /* All packets are restored as if they have 1175 * already been sent. skb_mstamp_ns isn't set to 1176 * avoid wrong rtt estimation. 1177 */ 1178 if (tp->repair) 1179 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1180 } 1181 1182 /* Try to append data to the end of skb. */ 1183 if (copy > msg_data_left(msg)) 1184 copy = msg_data_left(msg); 1185 1186 if (zc == 0) { 1187 bool merge = true; 1188 int i = skb_shinfo(skb)->nr_frags; 1189 struct page_frag *pfrag = sk_page_frag(sk); 1190 1191 if (!sk_page_frag_refill(sk, pfrag)) 1192 goto wait_for_space; 1193 1194 if (!skb_can_coalesce(skb, i, pfrag->page, 1195 pfrag->offset)) { 1196 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1197 tcp_mark_push(tp, skb); 1198 goto new_segment; 1199 } 1200 merge = false; 1201 } 1202 1203 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1204 1205 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1206 if (tcp_downgrade_zcopy_pure(sk, skb)) 1207 goto wait_for_space; 1208 skb_zcopy_downgrade_managed(skb); 1209 } 1210 1211 copy = tcp_wmem_schedule(sk, copy); 1212 if (!copy) 1213 goto wait_for_space; 1214 1215 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1216 pfrag->page, 1217 pfrag->offset, 1218 copy); 1219 if (err) 1220 goto do_error; 1221 1222 /* Update the skb. */ 1223 if (merge) { 1224 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1225 } else { 1226 skb_fill_page_desc(skb, i, pfrag->page, 1227 pfrag->offset, copy); 1228 page_ref_inc(pfrag->page); 1229 } 1230 pfrag->offset += copy; 1231 } else if (zc == MSG_ZEROCOPY) { 1232 /* First append to a fragless skb builds initial 1233 * pure zerocopy skb 1234 */ 1235 if (!skb->len) 1236 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1237 1238 if (!skb_zcopy_pure(skb)) { 1239 copy = tcp_wmem_schedule(sk, copy); 1240 if (!copy) 1241 goto wait_for_space; 1242 } 1243 1244 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1245 if (err == -EMSGSIZE || err == -EEXIST) { 1246 tcp_mark_push(tp, skb); 1247 goto new_segment; 1248 } 1249 if (err < 0) 1250 goto do_error; 1251 copy = err; 1252 } else if (zc == MSG_SPLICE_PAGES) { 1253 /* Splice in data if we can; copy if we can't. */ 1254 if (tcp_downgrade_zcopy_pure(sk, skb)) 1255 goto wait_for_space; 1256 copy = tcp_wmem_schedule(sk, copy); 1257 if (!copy) 1258 goto wait_for_space; 1259 1260 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1261 sk->sk_allocation); 1262 if (err < 0) { 1263 if (err == -EMSGSIZE) { 1264 tcp_mark_push(tp, skb); 1265 goto new_segment; 1266 } 1267 goto do_error; 1268 } 1269 copy = err; 1270 1271 if (!(flags & MSG_NO_SHARED_FRAGS)) 1272 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1273 1274 sk_wmem_queued_add(sk, copy); 1275 sk_mem_charge(sk, copy); 1276 } 1277 1278 if (!copied) 1279 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1280 1281 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1282 TCP_SKB_CB(skb)->end_seq += copy; 1283 tcp_skb_pcount_set(skb, 0); 1284 1285 copied += copy; 1286 if (!msg_data_left(msg)) { 1287 if (unlikely(flags & MSG_EOR)) 1288 TCP_SKB_CB(skb)->eor = 1; 1289 goto out; 1290 } 1291 1292 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1293 continue; 1294 1295 if (forced_push(tp)) { 1296 tcp_mark_push(tp, skb); 1297 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1298 } else if (skb == tcp_send_head(sk)) 1299 tcp_push_one(sk, mss_now); 1300 continue; 1301 1302 wait_for_space: 1303 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1304 tcp_remove_empty_skb(sk); 1305 if (copied) 1306 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1307 TCP_NAGLE_PUSH, size_goal); 1308 1309 err = sk_stream_wait_memory(sk, &timeo); 1310 if (err != 0) 1311 goto do_error; 1312 1313 mss_now = tcp_send_mss(sk, &size_goal, flags); 1314 } 1315 1316 out: 1317 if (copied) { 1318 tcp_tx_timestamp(sk, sockc.tsflags); 1319 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1320 } 1321 out_nopush: 1322 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1323 if (uarg && !msg->msg_ubuf) 1324 net_zcopy_put(uarg); 1325 return copied + copied_syn; 1326 1327 do_error: 1328 tcp_remove_empty_skb(sk); 1329 1330 if (copied + copied_syn) 1331 goto out; 1332 out_err: 1333 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1334 if (uarg && !msg->msg_ubuf) 1335 net_zcopy_put_abort(uarg, true); 1336 err = sk_stream_error(sk, flags, err); 1337 /* make sure we wake any epoll edge trigger waiter */ 1338 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1339 sk->sk_write_space(sk); 1340 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1341 } 1342 return err; 1343 } 1344 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1345 1346 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1347 { 1348 int ret; 1349 1350 lock_sock(sk); 1351 ret = tcp_sendmsg_locked(sk, msg, size); 1352 release_sock(sk); 1353 1354 return ret; 1355 } 1356 EXPORT_SYMBOL(tcp_sendmsg); 1357 1358 void tcp_splice_eof(struct socket *sock) 1359 { 1360 struct sock *sk = sock->sk; 1361 struct tcp_sock *tp = tcp_sk(sk); 1362 int mss_now, size_goal; 1363 1364 if (!tcp_write_queue_tail(sk)) 1365 return; 1366 1367 lock_sock(sk); 1368 mss_now = tcp_send_mss(sk, &size_goal, 0); 1369 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1370 release_sock(sk); 1371 } 1372 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1373 1374 /* 1375 * Handle reading urgent data. BSD has very simple semantics for 1376 * this, no blocking and very strange errors 8) 1377 */ 1378 1379 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1380 { 1381 struct tcp_sock *tp = tcp_sk(sk); 1382 1383 /* No URG data to read. */ 1384 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1385 tp->urg_data == TCP_URG_READ) 1386 return -EINVAL; /* Yes this is right ! */ 1387 1388 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1389 return -ENOTCONN; 1390 1391 if (tp->urg_data & TCP_URG_VALID) { 1392 int err = 0; 1393 char c = tp->urg_data; 1394 1395 if (!(flags & MSG_PEEK)) 1396 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1397 1398 /* Read urgent data. */ 1399 msg->msg_flags |= MSG_OOB; 1400 1401 if (len > 0) { 1402 if (!(flags & MSG_TRUNC)) 1403 err = memcpy_to_msg(msg, &c, 1); 1404 len = 1; 1405 } else 1406 msg->msg_flags |= MSG_TRUNC; 1407 1408 return err ? -EFAULT : len; 1409 } 1410 1411 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1412 return 0; 1413 1414 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1415 * the available implementations agree in this case: 1416 * this call should never block, independent of the 1417 * blocking state of the socket. 1418 * Mike <pall@rz.uni-karlsruhe.de> 1419 */ 1420 return -EAGAIN; 1421 } 1422 1423 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1424 { 1425 struct sk_buff *skb; 1426 int copied = 0, err = 0; 1427 1428 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1429 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1430 if (err) 1431 return err; 1432 copied += skb->len; 1433 } 1434 1435 skb_queue_walk(&sk->sk_write_queue, skb) { 1436 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1437 if (err) 1438 break; 1439 1440 copied += skb->len; 1441 } 1442 1443 return err ?: copied; 1444 } 1445 1446 /* Clean up the receive buffer for full frames taken by the user, 1447 * then send an ACK if necessary. COPIED is the number of bytes 1448 * tcp_recvmsg has given to the user so far, it speeds up the 1449 * calculation of whether or not we must ACK for the sake of 1450 * a window update. 1451 */ 1452 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1453 { 1454 struct tcp_sock *tp = tcp_sk(sk); 1455 bool time_to_ack = false; 1456 1457 if (inet_csk_ack_scheduled(sk)) { 1458 const struct inet_connection_sock *icsk = inet_csk(sk); 1459 1460 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1461 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1462 /* 1463 * If this read emptied read buffer, we send ACK, if 1464 * connection is not bidirectional, user drained 1465 * receive buffer and there was a small segment 1466 * in queue. 1467 */ 1468 (copied > 0 && 1469 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1470 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1471 !inet_csk_in_pingpong_mode(sk))) && 1472 !atomic_read(&sk->sk_rmem_alloc))) 1473 time_to_ack = true; 1474 } 1475 1476 /* We send an ACK if we can now advertise a non-zero window 1477 * which has been raised "significantly". 1478 * 1479 * Even if window raised up to infinity, do not send window open ACK 1480 * in states, where we will not receive more. It is useless. 1481 */ 1482 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1483 __u32 rcv_window_now = tcp_receive_window(tp); 1484 1485 /* Optimize, __tcp_select_window() is not cheap. */ 1486 if (2*rcv_window_now <= tp->window_clamp) { 1487 __u32 new_window = __tcp_select_window(sk); 1488 1489 /* Send ACK now, if this read freed lots of space 1490 * in our buffer. Certainly, new_window is new window. 1491 * We can advertise it now, if it is not less than current one. 1492 * "Lots" means "at least twice" here. 1493 */ 1494 if (new_window && new_window >= 2 * rcv_window_now) 1495 time_to_ack = true; 1496 } 1497 } 1498 if (time_to_ack) 1499 tcp_send_ack(sk); 1500 } 1501 1502 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1503 { 1504 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1505 struct tcp_sock *tp = tcp_sk(sk); 1506 1507 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1508 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1509 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1510 __tcp_cleanup_rbuf(sk, copied); 1511 } 1512 1513 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1514 { 1515 __skb_unlink(skb, &sk->sk_receive_queue); 1516 if (likely(skb->destructor == sock_rfree)) { 1517 sock_rfree(skb); 1518 skb->destructor = NULL; 1519 skb->sk = NULL; 1520 return skb_attempt_defer_free(skb); 1521 } 1522 __kfree_skb(skb); 1523 } 1524 1525 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1526 { 1527 struct sk_buff *skb; 1528 u32 offset; 1529 1530 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1531 offset = seq - TCP_SKB_CB(skb)->seq; 1532 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1533 pr_err_once("%s: found a SYN, please report !\n", __func__); 1534 offset--; 1535 } 1536 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1537 *off = offset; 1538 return skb; 1539 } 1540 /* This looks weird, but this can happen if TCP collapsing 1541 * splitted a fat GRO packet, while we released socket lock 1542 * in skb_splice_bits() 1543 */ 1544 tcp_eat_recv_skb(sk, skb); 1545 } 1546 return NULL; 1547 } 1548 EXPORT_SYMBOL(tcp_recv_skb); 1549 1550 /* 1551 * This routine provides an alternative to tcp_recvmsg() for routines 1552 * that would like to handle copying from skbuffs directly in 'sendfile' 1553 * fashion. 1554 * Note: 1555 * - It is assumed that the socket was locked by the caller. 1556 * - The routine does not block. 1557 * - At present, there is no support for reading OOB data 1558 * or for 'peeking' the socket using this routine 1559 * (although both would be easy to implement). 1560 */ 1561 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1562 sk_read_actor_t recv_actor) 1563 { 1564 struct sk_buff *skb; 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 u32 seq = tp->copied_seq; 1567 u32 offset; 1568 int copied = 0; 1569 1570 if (sk->sk_state == TCP_LISTEN) 1571 return -ENOTCONN; 1572 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1573 if (offset < skb->len) { 1574 int used; 1575 size_t len; 1576 1577 len = skb->len - offset; 1578 /* Stop reading if we hit a patch of urgent data */ 1579 if (unlikely(tp->urg_data)) { 1580 u32 urg_offset = tp->urg_seq - seq; 1581 if (urg_offset < len) 1582 len = urg_offset; 1583 if (!len) 1584 break; 1585 } 1586 used = recv_actor(desc, skb, offset, len); 1587 if (used <= 0) { 1588 if (!copied) 1589 copied = used; 1590 break; 1591 } 1592 if (WARN_ON_ONCE(used > len)) 1593 used = len; 1594 seq += used; 1595 copied += used; 1596 offset += used; 1597 1598 /* If recv_actor drops the lock (e.g. TCP splice 1599 * receive) the skb pointer might be invalid when 1600 * getting here: tcp_collapse might have deleted it 1601 * while aggregating skbs from the socket queue. 1602 */ 1603 skb = tcp_recv_skb(sk, seq - 1, &offset); 1604 if (!skb) 1605 break; 1606 /* TCP coalescing might have appended data to the skb. 1607 * Try to splice more frags 1608 */ 1609 if (offset + 1 != skb->len) 1610 continue; 1611 } 1612 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1613 tcp_eat_recv_skb(sk, skb); 1614 ++seq; 1615 break; 1616 } 1617 tcp_eat_recv_skb(sk, skb); 1618 if (!desc->count) 1619 break; 1620 WRITE_ONCE(tp->copied_seq, seq); 1621 } 1622 WRITE_ONCE(tp->copied_seq, seq); 1623 1624 tcp_rcv_space_adjust(sk); 1625 1626 /* Clean up data we have read: This will do ACK frames. */ 1627 if (copied > 0) { 1628 tcp_recv_skb(sk, seq, &offset); 1629 tcp_cleanup_rbuf(sk, copied); 1630 } 1631 return copied; 1632 } 1633 EXPORT_SYMBOL(tcp_read_sock); 1634 1635 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1636 { 1637 struct sk_buff *skb; 1638 int copied = 0; 1639 1640 if (sk->sk_state == TCP_LISTEN) 1641 return -ENOTCONN; 1642 1643 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1644 u8 tcp_flags; 1645 int used; 1646 1647 __skb_unlink(skb, &sk->sk_receive_queue); 1648 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1649 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1650 used = recv_actor(sk, skb); 1651 if (used < 0) { 1652 if (!copied) 1653 copied = used; 1654 break; 1655 } 1656 copied += used; 1657 1658 if (tcp_flags & TCPHDR_FIN) 1659 break; 1660 } 1661 return copied; 1662 } 1663 EXPORT_SYMBOL(tcp_read_skb); 1664 1665 void tcp_read_done(struct sock *sk, size_t len) 1666 { 1667 struct tcp_sock *tp = tcp_sk(sk); 1668 u32 seq = tp->copied_seq; 1669 struct sk_buff *skb; 1670 size_t left; 1671 u32 offset; 1672 1673 if (sk->sk_state == TCP_LISTEN) 1674 return; 1675 1676 left = len; 1677 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1678 int used; 1679 1680 used = min_t(size_t, skb->len - offset, left); 1681 seq += used; 1682 left -= used; 1683 1684 if (skb->len > offset + used) 1685 break; 1686 1687 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1688 tcp_eat_recv_skb(sk, skb); 1689 ++seq; 1690 break; 1691 } 1692 tcp_eat_recv_skb(sk, skb); 1693 } 1694 WRITE_ONCE(tp->copied_seq, seq); 1695 1696 tcp_rcv_space_adjust(sk); 1697 1698 /* Clean up data we have read: This will do ACK frames. */ 1699 if (left != len) 1700 tcp_cleanup_rbuf(sk, len - left); 1701 } 1702 EXPORT_SYMBOL(tcp_read_done); 1703 1704 int tcp_peek_len(struct socket *sock) 1705 { 1706 return tcp_inq(sock->sk); 1707 } 1708 EXPORT_SYMBOL(tcp_peek_len); 1709 1710 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1711 int tcp_set_rcvlowat(struct sock *sk, int val) 1712 { 1713 int space, cap; 1714 1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1716 cap = sk->sk_rcvbuf >> 1; 1717 else 1718 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1719 val = min(val, cap); 1720 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1721 1722 /* Check if we need to signal EPOLLIN right now */ 1723 tcp_data_ready(sk); 1724 1725 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1726 return 0; 1727 1728 space = tcp_space_from_win(sk, val); 1729 if (space > sk->sk_rcvbuf) { 1730 WRITE_ONCE(sk->sk_rcvbuf, space); 1731 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1732 } 1733 return 0; 1734 } 1735 EXPORT_SYMBOL(tcp_set_rcvlowat); 1736 1737 void tcp_update_recv_tstamps(struct sk_buff *skb, 1738 struct scm_timestamping_internal *tss) 1739 { 1740 if (skb->tstamp) 1741 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1742 else 1743 tss->ts[0] = (struct timespec64) {0}; 1744 1745 if (skb_hwtstamps(skb)->hwtstamp) 1746 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1747 else 1748 tss->ts[2] = (struct timespec64) {0}; 1749 } 1750 1751 #ifdef CONFIG_MMU 1752 static const struct vm_operations_struct tcp_vm_ops = { 1753 }; 1754 1755 int tcp_mmap(struct file *file, struct socket *sock, 1756 struct vm_area_struct *vma) 1757 { 1758 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1759 return -EPERM; 1760 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1761 1762 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1763 vm_flags_set(vma, VM_MIXEDMAP); 1764 1765 vma->vm_ops = &tcp_vm_ops; 1766 return 0; 1767 } 1768 EXPORT_SYMBOL(tcp_mmap); 1769 1770 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1771 u32 *offset_frag) 1772 { 1773 skb_frag_t *frag; 1774 1775 if (unlikely(offset_skb >= skb->len)) 1776 return NULL; 1777 1778 offset_skb -= skb_headlen(skb); 1779 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1780 return NULL; 1781 1782 frag = skb_shinfo(skb)->frags; 1783 while (offset_skb) { 1784 if (skb_frag_size(frag) > offset_skb) { 1785 *offset_frag = offset_skb; 1786 return frag; 1787 } 1788 offset_skb -= skb_frag_size(frag); 1789 ++frag; 1790 } 1791 *offset_frag = 0; 1792 return frag; 1793 } 1794 1795 static bool can_map_frag(const skb_frag_t *frag) 1796 { 1797 struct page *page; 1798 1799 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1800 return false; 1801 1802 page = skb_frag_page(frag); 1803 1804 if (PageCompound(page) || page->mapping) 1805 return false; 1806 1807 return true; 1808 } 1809 1810 static int find_next_mappable_frag(const skb_frag_t *frag, 1811 int remaining_in_skb) 1812 { 1813 int offset = 0; 1814 1815 if (likely(can_map_frag(frag))) 1816 return 0; 1817 1818 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1819 offset += skb_frag_size(frag); 1820 ++frag; 1821 } 1822 return offset; 1823 } 1824 1825 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1826 struct tcp_zerocopy_receive *zc, 1827 struct sk_buff *skb, u32 offset) 1828 { 1829 u32 frag_offset, partial_frag_remainder = 0; 1830 int mappable_offset; 1831 skb_frag_t *frag; 1832 1833 /* worst case: skip to next skb. try to improve on this case below */ 1834 zc->recv_skip_hint = skb->len - offset; 1835 1836 /* Find the frag containing this offset (and how far into that frag) */ 1837 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1838 if (!frag) 1839 return; 1840 1841 if (frag_offset) { 1842 struct skb_shared_info *info = skb_shinfo(skb); 1843 1844 /* We read part of the last frag, must recvmsg() rest of skb. */ 1845 if (frag == &info->frags[info->nr_frags - 1]) 1846 return; 1847 1848 /* Else, we must at least read the remainder in this frag. */ 1849 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1850 zc->recv_skip_hint -= partial_frag_remainder; 1851 ++frag; 1852 } 1853 1854 /* partial_frag_remainder: If part way through a frag, must read rest. 1855 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1856 * in partial_frag_remainder. 1857 */ 1858 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1859 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1860 } 1861 1862 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1863 int flags, struct scm_timestamping_internal *tss, 1864 int *cmsg_flags); 1865 static int receive_fallback_to_copy(struct sock *sk, 1866 struct tcp_zerocopy_receive *zc, int inq, 1867 struct scm_timestamping_internal *tss) 1868 { 1869 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1870 struct msghdr msg = {}; 1871 int err; 1872 1873 zc->length = 0; 1874 zc->recv_skip_hint = 0; 1875 1876 if (copy_address != zc->copybuf_address) 1877 return -EINVAL; 1878 1879 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1880 &msg.msg_iter); 1881 if (err) 1882 return err; 1883 1884 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1885 tss, &zc->msg_flags); 1886 if (err < 0) 1887 return err; 1888 1889 zc->copybuf_len = err; 1890 if (likely(zc->copybuf_len)) { 1891 struct sk_buff *skb; 1892 u32 offset; 1893 1894 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1895 if (skb) 1896 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1897 } 1898 return 0; 1899 } 1900 1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1902 struct sk_buff *skb, u32 copylen, 1903 u32 *offset, u32 *seq) 1904 { 1905 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1906 struct msghdr msg = {}; 1907 int err; 1908 1909 if (copy_address != zc->copybuf_address) 1910 return -EINVAL; 1911 1912 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1913 &msg.msg_iter); 1914 if (err) 1915 return err; 1916 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1917 if (err) 1918 return err; 1919 zc->recv_skip_hint -= copylen; 1920 *offset += copylen; 1921 *seq += copylen; 1922 return (__s32)copylen; 1923 } 1924 1925 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1926 struct sock *sk, 1927 struct sk_buff *skb, 1928 u32 *seq, 1929 s32 copybuf_len, 1930 struct scm_timestamping_internal *tss) 1931 { 1932 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1933 1934 if (!copylen) 1935 return 0; 1936 /* skb is null if inq < PAGE_SIZE. */ 1937 if (skb) { 1938 offset = *seq - TCP_SKB_CB(skb)->seq; 1939 } else { 1940 skb = tcp_recv_skb(sk, *seq, &offset); 1941 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1942 tcp_update_recv_tstamps(skb, tss); 1943 zc->msg_flags |= TCP_CMSG_TS; 1944 } 1945 } 1946 1947 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1948 seq); 1949 return zc->copybuf_len < 0 ? 0 : copylen; 1950 } 1951 1952 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1953 struct page **pending_pages, 1954 unsigned long pages_remaining, 1955 unsigned long *address, 1956 u32 *length, 1957 u32 *seq, 1958 struct tcp_zerocopy_receive *zc, 1959 u32 total_bytes_to_map, 1960 int err) 1961 { 1962 /* At least one page did not map. Try zapping if we skipped earlier. */ 1963 if (err == -EBUSY && 1964 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1965 u32 maybe_zap_len; 1966 1967 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1968 *length + /* Mapped or pending */ 1969 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1970 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1971 err = 0; 1972 } 1973 1974 if (!err) { 1975 unsigned long leftover_pages = pages_remaining; 1976 int bytes_mapped; 1977 1978 /* We called zap_page_range_single, try to reinsert. */ 1979 err = vm_insert_pages(vma, *address, 1980 pending_pages, 1981 &pages_remaining); 1982 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1983 *seq += bytes_mapped; 1984 *address += bytes_mapped; 1985 } 1986 if (err) { 1987 /* Either we were unable to zap, OR we zapped, retried an 1988 * insert, and still had an issue. Either ways, pages_remaining 1989 * is the number of pages we were unable to map, and we unroll 1990 * some state we speculatively touched before. 1991 */ 1992 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1993 1994 *length -= bytes_not_mapped; 1995 zc->recv_skip_hint += bytes_not_mapped; 1996 } 1997 return err; 1998 } 1999 2000 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2001 struct page **pages, 2002 unsigned int pages_to_map, 2003 unsigned long *address, 2004 u32 *length, 2005 u32 *seq, 2006 struct tcp_zerocopy_receive *zc, 2007 u32 total_bytes_to_map) 2008 { 2009 unsigned long pages_remaining = pages_to_map; 2010 unsigned int pages_mapped; 2011 unsigned int bytes_mapped; 2012 int err; 2013 2014 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2015 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2016 bytes_mapped = PAGE_SIZE * pages_mapped; 2017 /* Even if vm_insert_pages fails, it may have partially succeeded in 2018 * mapping (some but not all of the pages). 2019 */ 2020 *seq += bytes_mapped; 2021 *address += bytes_mapped; 2022 2023 if (likely(!err)) 2024 return 0; 2025 2026 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2027 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2028 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2029 err); 2030 } 2031 2032 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2033 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2034 struct tcp_zerocopy_receive *zc, 2035 struct scm_timestamping_internal *tss) 2036 { 2037 unsigned long msg_control_addr; 2038 struct msghdr cmsg_dummy; 2039 2040 msg_control_addr = (unsigned long)zc->msg_control; 2041 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2042 cmsg_dummy.msg_controllen = 2043 (__kernel_size_t)zc->msg_controllen; 2044 cmsg_dummy.msg_flags = in_compat_syscall() 2045 ? MSG_CMSG_COMPAT : 0; 2046 cmsg_dummy.msg_control_is_user = true; 2047 zc->msg_flags = 0; 2048 if (zc->msg_control == msg_control_addr && 2049 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2050 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2051 zc->msg_control = (__u64) 2052 ((uintptr_t)cmsg_dummy.msg_control_user); 2053 zc->msg_controllen = 2054 (__u64)cmsg_dummy.msg_controllen; 2055 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2056 } 2057 } 2058 2059 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2060 unsigned long address, 2061 bool *mmap_locked) 2062 { 2063 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2064 2065 if (vma) { 2066 if (vma->vm_ops != &tcp_vm_ops) { 2067 vma_end_read(vma); 2068 return NULL; 2069 } 2070 *mmap_locked = false; 2071 return vma; 2072 } 2073 2074 mmap_read_lock(mm); 2075 vma = vma_lookup(mm, address); 2076 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2077 mmap_read_unlock(mm); 2078 return NULL; 2079 } 2080 *mmap_locked = true; 2081 return vma; 2082 } 2083 2084 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2085 static int tcp_zerocopy_receive(struct sock *sk, 2086 struct tcp_zerocopy_receive *zc, 2087 struct scm_timestamping_internal *tss) 2088 { 2089 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2090 unsigned long address = (unsigned long)zc->address; 2091 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2092 s32 copybuf_len = zc->copybuf_len; 2093 struct tcp_sock *tp = tcp_sk(sk); 2094 const skb_frag_t *frags = NULL; 2095 unsigned int pages_to_map = 0; 2096 struct vm_area_struct *vma; 2097 struct sk_buff *skb = NULL; 2098 u32 seq = tp->copied_seq; 2099 u32 total_bytes_to_map; 2100 int inq = tcp_inq(sk); 2101 bool mmap_locked; 2102 int ret; 2103 2104 zc->copybuf_len = 0; 2105 zc->msg_flags = 0; 2106 2107 if (address & (PAGE_SIZE - 1) || address != zc->address) 2108 return -EINVAL; 2109 2110 if (sk->sk_state == TCP_LISTEN) 2111 return -ENOTCONN; 2112 2113 sock_rps_record_flow(sk); 2114 2115 if (inq && inq <= copybuf_len) 2116 return receive_fallback_to_copy(sk, zc, inq, tss); 2117 2118 if (inq < PAGE_SIZE) { 2119 zc->length = 0; 2120 zc->recv_skip_hint = inq; 2121 if (!inq && sock_flag(sk, SOCK_DONE)) 2122 return -EIO; 2123 return 0; 2124 } 2125 2126 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2127 if (!vma) 2128 return -EINVAL; 2129 2130 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2131 avail_len = min_t(u32, vma_len, inq); 2132 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2133 if (total_bytes_to_map) { 2134 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2135 zap_page_range_single(vma, address, total_bytes_to_map, 2136 NULL); 2137 zc->length = total_bytes_to_map; 2138 zc->recv_skip_hint = 0; 2139 } else { 2140 zc->length = avail_len; 2141 zc->recv_skip_hint = avail_len; 2142 } 2143 ret = 0; 2144 while (length + PAGE_SIZE <= zc->length) { 2145 int mappable_offset; 2146 struct page *page; 2147 2148 if (zc->recv_skip_hint < PAGE_SIZE) { 2149 u32 offset_frag; 2150 2151 if (skb) { 2152 if (zc->recv_skip_hint > 0) 2153 break; 2154 skb = skb->next; 2155 offset = seq - TCP_SKB_CB(skb)->seq; 2156 } else { 2157 skb = tcp_recv_skb(sk, seq, &offset); 2158 } 2159 2160 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2161 tcp_update_recv_tstamps(skb, tss); 2162 zc->msg_flags |= TCP_CMSG_TS; 2163 } 2164 zc->recv_skip_hint = skb->len - offset; 2165 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2166 if (!frags || offset_frag) 2167 break; 2168 } 2169 2170 mappable_offset = find_next_mappable_frag(frags, 2171 zc->recv_skip_hint); 2172 if (mappable_offset) { 2173 zc->recv_skip_hint = mappable_offset; 2174 break; 2175 } 2176 page = skb_frag_page(frags); 2177 prefetchw(page); 2178 pages[pages_to_map++] = page; 2179 length += PAGE_SIZE; 2180 zc->recv_skip_hint -= PAGE_SIZE; 2181 frags++; 2182 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2183 zc->recv_skip_hint < PAGE_SIZE) { 2184 /* Either full batch, or we're about to go to next skb 2185 * (and we cannot unroll failed ops across skbs). 2186 */ 2187 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2188 pages_to_map, 2189 &address, &length, 2190 &seq, zc, 2191 total_bytes_to_map); 2192 if (ret) 2193 goto out; 2194 pages_to_map = 0; 2195 } 2196 } 2197 if (pages_to_map) { 2198 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2199 &address, &length, &seq, 2200 zc, total_bytes_to_map); 2201 } 2202 out: 2203 if (mmap_locked) 2204 mmap_read_unlock(current->mm); 2205 else 2206 vma_end_read(vma); 2207 /* Try to copy straggler data. */ 2208 if (!ret) 2209 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2210 2211 if (length + copylen) { 2212 WRITE_ONCE(tp->copied_seq, seq); 2213 tcp_rcv_space_adjust(sk); 2214 2215 /* Clean up data we have read: This will do ACK frames. */ 2216 tcp_recv_skb(sk, seq, &offset); 2217 tcp_cleanup_rbuf(sk, length + copylen); 2218 ret = 0; 2219 if (length == zc->length) 2220 zc->recv_skip_hint = 0; 2221 } else { 2222 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2223 ret = -EIO; 2224 } 2225 zc->length = length; 2226 return ret; 2227 } 2228 #endif 2229 2230 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2231 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2232 struct scm_timestamping_internal *tss) 2233 { 2234 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2235 bool has_timestamping = false; 2236 2237 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2238 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2239 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2240 if (new_tstamp) { 2241 struct __kernel_timespec kts = { 2242 .tv_sec = tss->ts[0].tv_sec, 2243 .tv_nsec = tss->ts[0].tv_nsec, 2244 }; 2245 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2246 sizeof(kts), &kts); 2247 } else { 2248 struct __kernel_old_timespec ts_old = { 2249 .tv_sec = tss->ts[0].tv_sec, 2250 .tv_nsec = tss->ts[0].tv_nsec, 2251 }; 2252 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2253 sizeof(ts_old), &ts_old); 2254 } 2255 } else { 2256 if (new_tstamp) { 2257 struct __kernel_sock_timeval stv = { 2258 .tv_sec = tss->ts[0].tv_sec, 2259 .tv_usec = tss->ts[0].tv_nsec / 1000, 2260 }; 2261 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2262 sizeof(stv), &stv); 2263 } else { 2264 struct __kernel_old_timeval tv = { 2265 .tv_sec = tss->ts[0].tv_sec, 2266 .tv_usec = tss->ts[0].tv_nsec / 1000, 2267 }; 2268 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2269 sizeof(tv), &tv); 2270 } 2271 } 2272 } 2273 2274 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2275 has_timestamping = true; 2276 else 2277 tss->ts[0] = (struct timespec64) {0}; 2278 } 2279 2280 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2281 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2282 has_timestamping = true; 2283 else 2284 tss->ts[2] = (struct timespec64) {0}; 2285 } 2286 2287 if (has_timestamping) { 2288 tss->ts[1] = (struct timespec64) {0}; 2289 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2290 put_cmsg_scm_timestamping64(msg, tss); 2291 else 2292 put_cmsg_scm_timestamping(msg, tss); 2293 } 2294 } 2295 2296 static int tcp_inq_hint(struct sock *sk) 2297 { 2298 const struct tcp_sock *tp = tcp_sk(sk); 2299 u32 copied_seq = READ_ONCE(tp->copied_seq); 2300 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2301 int inq; 2302 2303 inq = rcv_nxt - copied_seq; 2304 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2305 lock_sock(sk); 2306 inq = tp->rcv_nxt - tp->copied_seq; 2307 release_sock(sk); 2308 } 2309 /* After receiving a FIN, tell the user-space to continue reading 2310 * by returning a non-zero inq. 2311 */ 2312 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2313 inq = 1; 2314 return inq; 2315 } 2316 2317 /* 2318 * This routine copies from a sock struct into the user buffer. 2319 * 2320 * Technical note: in 2.3 we work on _locked_ socket, so that 2321 * tricks with *seq access order and skb->users are not required. 2322 * Probably, code can be easily improved even more. 2323 */ 2324 2325 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2326 int flags, struct scm_timestamping_internal *tss, 2327 int *cmsg_flags) 2328 { 2329 struct tcp_sock *tp = tcp_sk(sk); 2330 int copied = 0; 2331 u32 peek_seq; 2332 u32 *seq; 2333 unsigned long used; 2334 int err; 2335 int target; /* Read at least this many bytes */ 2336 long timeo; 2337 struct sk_buff *skb, *last; 2338 u32 peek_offset = 0; 2339 u32 urg_hole = 0; 2340 2341 err = -ENOTCONN; 2342 if (sk->sk_state == TCP_LISTEN) 2343 goto out; 2344 2345 if (tp->recvmsg_inq) { 2346 *cmsg_flags = TCP_CMSG_INQ; 2347 msg->msg_get_inq = 1; 2348 } 2349 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2350 2351 /* Urgent data needs to be handled specially. */ 2352 if (flags & MSG_OOB) 2353 goto recv_urg; 2354 2355 if (unlikely(tp->repair)) { 2356 err = -EPERM; 2357 if (!(flags & MSG_PEEK)) 2358 goto out; 2359 2360 if (tp->repair_queue == TCP_SEND_QUEUE) 2361 goto recv_sndq; 2362 2363 err = -EINVAL; 2364 if (tp->repair_queue == TCP_NO_QUEUE) 2365 goto out; 2366 2367 /* 'common' recv queue MSG_PEEK-ing */ 2368 } 2369 2370 seq = &tp->copied_seq; 2371 if (flags & MSG_PEEK) { 2372 peek_offset = max(sk_peek_offset(sk, flags), 0); 2373 peek_seq = tp->copied_seq + peek_offset; 2374 seq = &peek_seq; 2375 } 2376 2377 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2378 2379 do { 2380 u32 offset; 2381 2382 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2383 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2384 if (copied) 2385 break; 2386 if (signal_pending(current)) { 2387 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2388 break; 2389 } 2390 } 2391 2392 /* Next get a buffer. */ 2393 2394 last = skb_peek_tail(&sk->sk_receive_queue); 2395 skb_queue_walk(&sk->sk_receive_queue, skb) { 2396 last = skb; 2397 /* Now that we have two receive queues this 2398 * shouldn't happen. 2399 */ 2400 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2401 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2402 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2403 flags)) 2404 break; 2405 2406 offset = *seq - TCP_SKB_CB(skb)->seq; 2407 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2408 pr_err_once("%s: found a SYN, please report !\n", __func__); 2409 offset--; 2410 } 2411 if (offset < skb->len) 2412 goto found_ok_skb; 2413 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2414 goto found_fin_ok; 2415 WARN(!(flags & MSG_PEEK), 2416 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2417 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2418 } 2419 2420 /* Well, if we have backlog, try to process it now yet. */ 2421 2422 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2423 break; 2424 2425 if (copied) { 2426 if (!timeo || 2427 sk->sk_err || 2428 sk->sk_state == TCP_CLOSE || 2429 (sk->sk_shutdown & RCV_SHUTDOWN) || 2430 signal_pending(current)) 2431 break; 2432 } else { 2433 if (sock_flag(sk, SOCK_DONE)) 2434 break; 2435 2436 if (sk->sk_err) { 2437 copied = sock_error(sk); 2438 break; 2439 } 2440 2441 if (sk->sk_shutdown & RCV_SHUTDOWN) 2442 break; 2443 2444 if (sk->sk_state == TCP_CLOSE) { 2445 /* This occurs when user tries to read 2446 * from never connected socket. 2447 */ 2448 copied = -ENOTCONN; 2449 break; 2450 } 2451 2452 if (!timeo) { 2453 copied = -EAGAIN; 2454 break; 2455 } 2456 2457 if (signal_pending(current)) { 2458 copied = sock_intr_errno(timeo); 2459 break; 2460 } 2461 } 2462 2463 if (copied >= target) { 2464 /* Do not sleep, just process backlog. */ 2465 __sk_flush_backlog(sk); 2466 } else { 2467 tcp_cleanup_rbuf(sk, copied); 2468 err = sk_wait_data(sk, &timeo, last); 2469 if (err < 0) { 2470 err = copied ? : err; 2471 goto out; 2472 } 2473 } 2474 2475 if ((flags & MSG_PEEK) && 2476 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2477 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2478 current->comm, 2479 task_pid_nr(current)); 2480 peek_seq = tp->copied_seq + peek_offset; 2481 } 2482 continue; 2483 2484 found_ok_skb: 2485 /* Ok so how much can we use? */ 2486 used = skb->len - offset; 2487 if (len < used) 2488 used = len; 2489 2490 /* Do we have urgent data here? */ 2491 if (unlikely(tp->urg_data)) { 2492 u32 urg_offset = tp->urg_seq - *seq; 2493 if (urg_offset < used) { 2494 if (!urg_offset) { 2495 if (!sock_flag(sk, SOCK_URGINLINE)) { 2496 WRITE_ONCE(*seq, *seq + 1); 2497 urg_hole++; 2498 offset++; 2499 used--; 2500 if (!used) 2501 goto skip_copy; 2502 } 2503 } else 2504 used = urg_offset; 2505 } 2506 } 2507 2508 if (!(flags & MSG_TRUNC)) { 2509 err = skb_copy_datagram_msg(skb, offset, msg, used); 2510 if (err) { 2511 /* Exception. Bailout! */ 2512 if (!copied) 2513 copied = -EFAULT; 2514 break; 2515 } 2516 } 2517 2518 WRITE_ONCE(*seq, *seq + used); 2519 copied += used; 2520 len -= used; 2521 if (flags & MSG_PEEK) 2522 sk_peek_offset_fwd(sk, used); 2523 else 2524 sk_peek_offset_bwd(sk, used); 2525 tcp_rcv_space_adjust(sk); 2526 2527 skip_copy: 2528 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2529 WRITE_ONCE(tp->urg_data, 0); 2530 tcp_fast_path_check(sk); 2531 } 2532 2533 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2534 tcp_update_recv_tstamps(skb, tss); 2535 *cmsg_flags |= TCP_CMSG_TS; 2536 } 2537 2538 if (used + offset < skb->len) 2539 continue; 2540 2541 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2542 goto found_fin_ok; 2543 if (!(flags & MSG_PEEK)) 2544 tcp_eat_recv_skb(sk, skb); 2545 continue; 2546 2547 found_fin_ok: 2548 /* Process the FIN. */ 2549 WRITE_ONCE(*seq, *seq + 1); 2550 if (!(flags & MSG_PEEK)) 2551 tcp_eat_recv_skb(sk, skb); 2552 break; 2553 } while (len > 0); 2554 2555 /* According to UNIX98, msg_name/msg_namelen are ignored 2556 * on connected socket. I was just happy when found this 8) --ANK 2557 */ 2558 2559 /* Clean up data we have read: This will do ACK frames. */ 2560 tcp_cleanup_rbuf(sk, copied); 2561 return copied; 2562 2563 out: 2564 return err; 2565 2566 recv_urg: 2567 err = tcp_recv_urg(sk, msg, len, flags); 2568 goto out; 2569 2570 recv_sndq: 2571 err = tcp_peek_sndq(sk, msg, len); 2572 goto out; 2573 } 2574 2575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2576 int *addr_len) 2577 { 2578 int cmsg_flags = 0, ret; 2579 struct scm_timestamping_internal tss; 2580 2581 if (unlikely(flags & MSG_ERRQUEUE)) 2582 return inet_recv_error(sk, msg, len, addr_len); 2583 2584 if (sk_can_busy_loop(sk) && 2585 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2586 sk->sk_state == TCP_ESTABLISHED) 2587 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2588 2589 lock_sock(sk); 2590 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2591 release_sock(sk); 2592 2593 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2594 if (cmsg_flags & TCP_CMSG_TS) 2595 tcp_recv_timestamp(msg, sk, &tss); 2596 if (msg->msg_get_inq) { 2597 msg->msg_inq = tcp_inq_hint(sk); 2598 if (cmsg_flags & TCP_CMSG_INQ) 2599 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2600 sizeof(msg->msg_inq), &msg->msg_inq); 2601 } 2602 } 2603 return ret; 2604 } 2605 EXPORT_SYMBOL(tcp_recvmsg); 2606 2607 void tcp_set_state(struct sock *sk, int state) 2608 { 2609 int oldstate = sk->sk_state; 2610 2611 /* We defined a new enum for TCP states that are exported in BPF 2612 * so as not force the internal TCP states to be frozen. The 2613 * following checks will detect if an internal state value ever 2614 * differs from the BPF value. If this ever happens, then we will 2615 * need to remap the internal value to the BPF value before calling 2616 * tcp_call_bpf_2arg. 2617 */ 2618 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2619 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2620 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2621 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2622 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2623 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2624 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2625 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2626 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2627 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2628 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2629 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2630 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2631 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2632 2633 /* bpf uapi header bpf.h defines an anonymous enum with values 2634 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2635 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2636 * But clang built vmlinux does not have this enum in DWARF 2637 * since clang removes the above code before generating IR/debuginfo. 2638 * Let us explicitly emit the type debuginfo to ensure the 2639 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2640 * regardless of which compiler is used. 2641 */ 2642 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2643 2644 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2645 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2646 2647 switch (state) { 2648 case TCP_ESTABLISHED: 2649 if (oldstate != TCP_ESTABLISHED) 2650 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2651 break; 2652 2653 case TCP_CLOSE: 2654 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2655 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2656 2657 sk->sk_prot->unhash(sk); 2658 if (inet_csk(sk)->icsk_bind_hash && 2659 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2660 inet_put_port(sk); 2661 fallthrough; 2662 default: 2663 if (oldstate == TCP_ESTABLISHED) 2664 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2665 } 2666 2667 /* Change state AFTER socket is unhashed to avoid closed 2668 * socket sitting in hash tables. 2669 */ 2670 inet_sk_state_store(sk, state); 2671 } 2672 EXPORT_SYMBOL_GPL(tcp_set_state); 2673 2674 /* 2675 * State processing on a close. This implements the state shift for 2676 * sending our FIN frame. Note that we only send a FIN for some 2677 * states. A shutdown() may have already sent the FIN, or we may be 2678 * closed. 2679 */ 2680 2681 static const unsigned char new_state[16] = { 2682 /* current state: new state: action: */ 2683 [0 /* (Invalid) */] = TCP_CLOSE, 2684 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2685 [TCP_SYN_SENT] = TCP_CLOSE, 2686 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2687 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2688 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2689 [TCP_TIME_WAIT] = TCP_CLOSE, 2690 [TCP_CLOSE] = TCP_CLOSE, 2691 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2692 [TCP_LAST_ACK] = TCP_LAST_ACK, 2693 [TCP_LISTEN] = TCP_CLOSE, 2694 [TCP_CLOSING] = TCP_CLOSING, 2695 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2696 }; 2697 2698 static int tcp_close_state(struct sock *sk) 2699 { 2700 int next = (int)new_state[sk->sk_state]; 2701 int ns = next & TCP_STATE_MASK; 2702 2703 tcp_set_state(sk, ns); 2704 2705 return next & TCP_ACTION_FIN; 2706 } 2707 2708 /* 2709 * Shutdown the sending side of a connection. Much like close except 2710 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2711 */ 2712 2713 void tcp_shutdown(struct sock *sk, int how) 2714 { 2715 /* We need to grab some memory, and put together a FIN, 2716 * and then put it into the queue to be sent. 2717 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2718 */ 2719 if (!(how & SEND_SHUTDOWN)) 2720 return; 2721 2722 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2723 if ((1 << sk->sk_state) & 2724 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2725 TCPF_CLOSE_WAIT)) { 2726 /* Clear out any half completed packets. FIN if needed. */ 2727 if (tcp_close_state(sk)) 2728 tcp_send_fin(sk); 2729 } 2730 } 2731 EXPORT_SYMBOL(tcp_shutdown); 2732 2733 int tcp_orphan_count_sum(void) 2734 { 2735 int i, total = 0; 2736 2737 for_each_possible_cpu(i) 2738 total += per_cpu(tcp_orphan_count, i); 2739 2740 return max(total, 0); 2741 } 2742 2743 static int tcp_orphan_cache; 2744 static struct timer_list tcp_orphan_timer; 2745 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2746 2747 static void tcp_orphan_update(struct timer_list *unused) 2748 { 2749 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2750 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2751 } 2752 2753 static bool tcp_too_many_orphans(int shift) 2754 { 2755 return READ_ONCE(tcp_orphan_cache) << shift > 2756 READ_ONCE(sysctl_tcp_max_orphans); 2757 } 2758 2759 static bool tcp_out_of_memory(const struct sock *sk) 2760 { 2761 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 2762 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 2763 return true; 2764 return false; 2765 } 2766 2767 bool tcp_check_oom(const struct sock *sk, int shift) 2768 { 2769 bool too_many_orphans, out_of_socket_memory; 2770 2771 too_many_orphans = tcp_too_many_orphans(shift); 2772 out_of_socket_memory = tcp_out_of_memory(sk); 2773 2774 if (too_many_orphans) 2775 net_info_ratelimited("too many orphaned sockets\n"); 2776 if (out_of_socket_memory) 2777 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2778 return too_many_orphans || out_of_socket_memory; 2779 } 2780 2781 void __tcp_close(struct sock *sk, long timeout) 2782 { 2783 struct sk_buff *skb; 2784 int data_was_unread = 0; 2785 int state; 2786 2787 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2788 2789 if (sk->sk_state == TCP_LISTEN) { 2790 tcp_set_state(sk, TCP_CLOSE); 2791 2792 /* Special case. */ 2793 inet_csk_listen_stop(sk); 2794 2795 goto adjudge_to_death; 2796 } 2797 2798 /* We need to flush the recv. buffs. We do this only on the 2799 * descriptor close, not protocol-sourced closes, because the 2800 * reader process may not have drained the data yet! 2801 */ 2802 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2803 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2804 2805 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2806 len--; 2807 data_was_unread += len; 2808 __kfree_skb(skb); 2809 } 2810 2811 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2812 if (sk->sk_state == TCP_CLOSE) 2813 goto adjudge_to_death; 2814 2815 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2816 * data was lost. To witness the awful effects of the old behavior of 2817 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2818 * GET in an FTP client, suspend the process, wait for the client to 2819 * advertise a zero window, then kill -9 the FTP client, wheee... 2820 * Note: timeout is always zero in such a case. 2821 */ 2822 if (unlikely(tcp_sk(sk)->repair)) { 2823 sk->sk_prot->disconnect(sk, 0); 2824 } else if (data_was_unread) { 2825 /* Unread data was tossed, zap the connection. */ 2826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2827 tcp_set_state(sk, TCP_CLOSE); 2828 tcp_send_active_reset(sk, sk->sk_allocation, 2829 SK_RST_REASON_NOT_SPECIFIED); 2830 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2831 /* Check zero linger _after_ checking for unread data. */ 2832 sk->sk_prot->disconnect(sk, 0); 2833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2834 } else if (tcp_close_state(sk)) { 2835 /* We FIN if the application ate all the data before 2836 * zapping the connection. 2837 */ 2838 2839 /* RED-PEN. Formally speaking, we have broken TCP state 2840 * machine. State transitions: 2841 * 2842 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2843 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2844 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2845 * 2846 * are legal only when FIN has been sent (i.e. in window), 2847 * rather than queued out of window. Purists blame. 2848 * 2849 * F.e. "RFC state" is ESTABLISHED, 2850 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2851 * 2852 * The visible declinations are that sometimes 2853 * we enter time-wait state, when it is not required really 2854 * (harmless), do not send active resets, when they are 2855 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2856 * they look as CLOSING or LAST_ACK for Linux) 2857 * Probably, I missed some more holelets. 2858 * --ANK 2859 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2860 * in a single packet! (May consider it later but will 2861 * probably need API support or TCP_CORK SYN-ACK until 2862 * data is written and socket is closed.) 2863 */ 2864 tcp_send_fin(sk); 2865 } 2866 2867 sk_stream_wait_close(sk, timeout); 2868 2869 adjudge_to_death: 2870 state = sk->sk_state; 2871 sock_hold(sk); 2872 sock_orphan(sk); 2873 2874 local_bh_disable(); 2875 bh_lock_sock(sk); 2876 /* remove backlog if any, without releasing ownership. */ 2877 __release_sock(sk); 2878 2879 this_cpu_inc(tcp_orphan_count); 2880 2881 /* Have we already been destroyed by a softirq or backlog? */ 2882 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2883 goto out; 2884 2885 /* This is a (useful) BSD violating of the RFC. There is a 2886 * problem with TCP as specified in that the other end could 2887 * keep a socket open forever with no application left this end. 2888 * We use a 1 minute timeout (about the same as BSD) then kill 2889 * our end. If they send after that then tough - BUT: long enough 2890 * that we won't make the old 4*rto = almost no time - whoops 2891 * reset mistake. 2892 * 2893 * Nope, it was not mistake. It is really desired behaviour 2894 * f.e. on http servers, when such sockets are useless, but 2895 * consume significant resources. Let's do it with special 2896 * linger2 option. --ANK 2897 */ 2898 2899 if (sk->sk_state == TCP_FIN_WAIT2) { 2900 struct tcp_sock *tp = tcp_sk(sk); 2901 if (READ_ONCE(tp->linger2) < 0) { 2902 tcp_set_state(sk, TCP_CLOSE); 2903 tcp_send_active_reset(sk, GFP_ATOMIC, 2904 SK_RST_REASON_NOT_SPECIFIED); 2905 __NET_INC_STATS(sock_net(sk), 2906 LINUX_MIB_TCPABORTONLINGER); 2907 } else { 2908 const int tmo = tcp_fin_time(sk); 2909 2910 if (tmo > TCP_TIMEWAIT_LEN) { 2911 inet_csk_reset_keepalive_timer(sk, 2912 tmo - TCP_TIMEWAIT_LEN); 2913 } else { 2914 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2915 goto out; 2916 } 2917 } 2918 } 2919 if (sk->sk_state != TCP_CLOSE) { 2920 if (tcp_check_oom(sk, 0)) { 2921 tcp_set_state(sk, TCP_CLOSE); 2922 tcp_send_active_reset(sk, GFP_ATOMIC, 2923 SK_RST_REASON_NOT_SPECIFIED); 2924 __NET_INC_STATS(sock_net(sk), 2925 LINUX_MIB_TCPABORTONMEMORY); 2926 } else if (!check_net(sock_net(sk))) { 2927 /* Not possible to send reset; just close */ 2928 tcp_set_state(sk, TCP_CLOSE); 2929 } 2930 } 2931 2932 if (sk->sk_state == TCP_CLOSE) { 2933 struct request_sock *req; 2934 2935 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2936 lockdep_sock_is_held(sk)); 2937 /* We could get here with a non-NULL req if the socket is 2938 * aborted (e.g., closed with unread data) before 3WHS 2939 * finishes. 2940 */ 2941 if (req) 2942 reqsk_fastopen_remove(sk, req, false); 2943 inet_csk_destroy_sock(sk); 2944 } 2945 /* Otherwise, socket is reprieved until protocol close. */ 2946 2947 out: 2948 bh_unlock_sock(sk); 2949 local_bh_enable(); 2950 } 2951 2952 void tcp_close(struct sock *sk, long timeout) 2953 { 2954 lock_sock(sk); 2955 __tcp_close(sk, timeout); 2956 release_sock(sk); 2957 if (!sk->sk_net_refcnt) 2958 inet_csk_clear_xmit_timers_sync(sk); 2959 sock_put(sk); 2960 } 2961 EXPORT_SYMBOL(tcp_close); 2962 2963 /* These states need RST on ABORT according to RFC793 */ 2964 2965 static inline bool tcp_need_reset(int state) 2966 { 2967 return (1 << state) & 2968 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2969 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2970 } 2971 2972 static void tcp_rtx_queue_purge(struct sock *sk) 2973 { 2974 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2975 2976 tcp_sk(sk)->highest_sack = NULL; 2977 while (p) { 2978 struct sk_buff *skb = rb_to_skb(p); 2979 2980 p = rb_next(p); 2981 /* Since we are deleting whole queue, no need to 2982 * list_del(&skb->tcp_tsorted_anchor) 2983 */ 2984 tcp_rtx_queue_unlink(skb, sk); 2985 tcp_wmem_free_skb(sk, skb); 2986 } 2987 } 2988 2989 void tcp_write_queue_purge(struct sock *sk) 2990 { 2991 struct sk_buff *skb; 2992 2993 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2994 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2995 tcp_skb_tsorted_anchor_cleanup(skb); 2996 tcp_wmem_free_skb(sk, skb); 2997 } 2998 tcp_rtx_queue_purge(sk); 2999 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3000 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3001 tcp_sk(sk)->packets_out = 0; 3002 inet_csk(sk)->icsk_backoff = 0; 3003 } 3004 3005 int tcp_disconnect(struct sock *sk, int flags) 3006 { 3007 struct inet_sock *inet = inet_sk(sk); 3008 struct inet_connection_sock *icsk = inet_csk(sk); 3009 struct tcp_sock *tp = tcp_sk(sk); 3010 int old_state = sk->sk_state; 3011 u32 seq; 3012 3013 if (old_state != TCP_CLOSE) 3014 tcp_set_state(sk, TCP_CLOSE); 3015 3016 /* ABORT function of RFC793 */ 3017 if (old_state == TCP_LISTEN) { 3018 inet_csk_listen_stop(sk); 3019 } else if (unlikely(tp->repair)) { 3020 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3021 } else if (tcp_need_reset(old_state) || 3022 (tp->snd_nxt != tp->write_seq && 3023 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3024 /* The last check adjusts for discrepancy of Linux wrt. RFC 3025 * states 3026 */ 3027 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED); 3028 WRITE_ONCE(sk->sk_err, ECONNRESET); 3029 } else if (old_state == TCP_SYN_SENT) 3030 WRITE_ONCE(sk->sk_err, ECONNRESET); 3031 3032 tcp_clear_xmit_timers(sk); 3033 __skb_queue_purge(&sk->sk_receive_queue); 3034 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3035 WRITE_ONCE(tp->urg_data, 0); 3036 sk_set_peek_off(sk, -1); 3037 tcp_write_queue_purge(sk); 3038 tcp_fastopen_active_disable_ofo_check(sk); 3039 skb_rbtree_purge(&tp->out_of_order_queue); 3040 3041 inet->inet_dport = 0; 3042 3043 inet_bhash2_reset_saddr(sk); 3044 3045 WRITE_ONCE(sk->sk_shutdown, 0); 3046 sock_reset_flag(sk, SOCK_DONE); 3047 tp->srtt_us = 0; 3048 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3049 tp->rcv_rtt_last_tsecr = 0; 3050 3051 seq = tp->write_seq + tp->max_window + 2; 3052 if (!seq) 3053 seq = 1; 3054 WRITE_ONCE(tp->write_seq, seq); 3055 3056 icsk->icsk_backoff = 0; 3057 icsk->icsk_probes_out = 0; 3058 icsk->icsk_probes_tstamp = 0; 3059 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3060 icsk->icsk_rto_min = TCP_RTO_MIN; 3061 icsk->icsk_delack_max = TCP_DELACK_MAX; 3062 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3063 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3064 tp->snd_cwnd_cnt = 0; 3065 tp->is_cwnd_limited = 0; 3066 tp->max_packets_out = 0; 3067 tp->window_clamp = 0; 3068 tp->delivered = 0; 3069 tp->delivered_ce = 0; 3070 if (icsk->icsk_ca_ops->release) 3071 icsk->icsk_ca_ops->release(sk); 3072 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3073 icsk->icsk_ca_initialized = 0; 3074 tcp_set_ca_state(sk, TCP_CA_Open); 3075 tp->is_sack_reneg = 0; 3076 tcp_clear_retrans(tp); 3077 tp->total_retrans = 0; 3078 inet_csk_delack_init(sk); 3079 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3080 * issue in __tcp_select_window() 3081 */ 3082 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3083 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3084 __sk_dst_reset(sk); 3085 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3086 tcp_saved_syn_free(tp); 3087 tp->compressed_ack = 0; 3088 tp->segs_in = 0; 3089 tp->segs_out = 0; 3090 tp->bytes_sent = 0; 3091 tp->bytes_acked = 0; 3092 tp->bytes_received = 0; 3093 tp->bytes_retrans = 0; 3094 tp->data_segs_in = 0; 3095 tp->data_segs_out = 0; 3096 tp->duplicate_sack[0].start_seq = 0; 3097 tp->duplicate_sack[0].end_seq = 0; 3098 tp->dsack_dups = 0; 3099 tp->reord_seen = 0; 3100 tp->retrans_out = 0; 3101 tp->sacked_out = 0; 3102 tp->tlp_high_seq = 0; 3103 tp->last_oow_ack_time = 0; 3104 tp->plb_rehash = 0; 3105 /* There's a bubble in the pipe until at least the first ACK. */ 3106 tp->app_limited = ~0U; 3107 tp->rate_app_limited = 1; 3108 tp->rack.mstamp = 0; 3109 tp->rack.advanced = 0; 3110 tp->rack.reo_wnd_steps = 1; 3111 tp->rack.last_delivered = 0; 3112 tp->rack.reo_wnd_persist = 0; 3113 tp->rack.dsack_seen = 0; 3114 tp->syn_data_acked = 0; 3115 tp->rx_opt.saw_tstamp = 0; 3116 tp->rx_opt.dsack = 0; 3117 tp->rx_opt.num_sacks = 0; 3118 tp->rcv_ooopack = 0; 3119 3120 3121 /* Clean up fastopen related fields */ 3122 tcp_free_fastopen_req(tp); 3123 inet_clear_bit(DEFER_CONNECT, sk); 3124 tp->fastopen_client_fail = 0; 3125 3126 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3127 3128 if (sk->sk_frag.page) { 3129 put_page(sk->sk_frag.page); 3130 sk->sk_frag.page = NULL; 3131 sk->sk_frag.offset = 0; 3132 } 3133 sk_error_report(sk); 3134 return 0; 3135 } 3136 EXPORT_SYMBOL(tcp_disconnect); 3137 3138 static inline bool tcp_can_repair_sock(const struct sock *sk) 3139 { 3140 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3141 (sk->sk_state != TCP_LISTEN); 3142 } 3143 3144 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3145 { 3146 struct tcp_repair_window opt; 3147 3148 if (!tp->repair) 3149 return -EPERM; 3150 3151 if (len != sizeof(opt)) 3152 return -EINVAL; 3153 3154 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3155 return -EFAULT; 3156 3157 if (opt.max_window < opt.snd_wnd) 3158 return -EINVAL; 3159 3160 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3161 return -EINVAL; 3162 3163 if (after(opt.rcv_wup, tp->rcv_nxt)) 3164 return -EINVAL; 3165 3166 tp->snd_wl1 = opt.snd_wl1; 3167 tp->snd_wnd = opt.snd_wnd; 3168 tp->max_window = opt.max_window; 3169 3170 tp->rcv_wnd = opt.rcv_wnd; 3171 tp->rcv_wup = opt.rcv_wup; 3172 3173 return 0; 3174 } 3175 3176 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3177 unsigned int len) 3178 { 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 struct tcp_repair_opt opt; 3181 size_t offset = 0; 3182 3183 while (len >= sizeof(opt)) { 3184 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3185 return -EFAULT; 3186 3187 offset += sizeof(opt); 3188 len -= sizeof(opt); 3189 3190 switch (opt.opt_code) { 3191 case TCPOPT_MSS: 3192 tp->rx_opt.mss_clamp = opt.opt_val; 3193 tcp_mtup_init(sk); 3194 break; 3195 case TCPOPT_WINDOW: 3196 { 3197 u16 snd_wscale = opt.opt_val & 0xFFFF; 3198 u16 rcv_wscale = opt.opt_val >> 16; 3199 3200 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3201 return -EFBIG; 3202 3203 tp->rx_opt.snd_wscale = snd_wscale; 3204 tp->rx_opt.rcv_wscale = rcv_wscale; 3205 tp->rx_opt.wscale_ok = 1; 3206 } 3207 break; 3208 case TCPOPT_SACK_PERM: 3209 if (opt.opt_val != 0) 3210 return -EINVAL; 3211 3212 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3213 break; 3214 case TCPOPT_TIMESTAMP: 3215 if (opt.opt_val != 0) 3216 return -EINVAL; 3217 3218 tp->rx_opt.tstamp_ok = 1; 3219 break; 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3227 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3228 3229 static void tcp_enable_tx_delay(void) 3230 { 3231 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3232 static int __tcp_tx_delay_enabled = 0; 3233 3234 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3235 static_branch_enable(&tcp_tx_delay_enabled); 3236 pr_info("TCP_TX_DELAY enabled\n"); 3237 } 3238 } 3239 } 3240 3241 /* When set indicates to always queue non-full frames. Later the user clears 3242 * this option and we transmit any pending partial frames in the queue. This is 3243 * meant to be used alongside sendfile() to get properly filled frames when the 3244 * user (for example) must write out headers with a write() call first and then 3245 * use sendfile to send out the data parts. 3246 * 3247 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3248 * TCP_NODELAY. 3249 */ 3250 void __tcp_sock_set_cork(struct sock *sk, bool on) 3251 { 3252 struct tcp_sock *tp = tcp_sk(sk); 3253 3254 if (on) { 3255 tp->nonagle |= TCP_NAGLE_CORK; 3256 } else { 3257 tp->nonagle &= ~TCP_NAGLE_CORK; 3258 if (tp->nonagle & TCP_NAGLE_OFF) 3259 tp->nonagle |= TCP_NAGLE_PUSH; 3260 tcp_push_pending_frames(sk); 3261 } 3262 } 3263 3264 void tcp_sock_set_cork(struct sock *sk, bool on) 3265 { 3266 lock_sock(sk); 3267 __tcp_sock_set_cork(sk, on); 3268 release_sock(sk); 3269 } 3270 EXPORT_SYMBOL(tcp_sock_set_cork); 3271 3272 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3273 * remembered, but it is not activated until cork is cleared. 3274 * 3275 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3276 * even TCP_CORK for currently queued segments. 3277 */ 3278 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3279 { 3280 if (on) { 3281 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3282 tcp_push_pending_frames(sk); 3283 } else { 3284 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3285 } 3286 } 3287 3288 void tcp_sock_set_nodelay(struct sock *sk) 3289 { 3290 lock_sock(sk); 3291 __tcp_sock_set_nodelay(sk, true); 3292 release_sock(sk); 3293 } 3294 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3295 3296 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3297 { 3298 if (!val) { 3299 inet_csk_enter_pingpong_mode(sk); 3300 return; 3301 } 3302 3303 inet_csk_exit_pingpong_mode(sk); 3304 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3305 inet_csk_ack_scheduled(sk)) { 3306 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3307 tcp_cleanup_rbuf(sk, 1); 3308 if (!(val & 1)) 3309 inet_csk_enter_pingpong_mode(sk); 3310 } 3311 } 3312 3313 void tcp_sock_set_quickack(struct sock *sk, int val) 3314 { 3315 lock_sock(sk); 3316 __tcp_sock_set_quickack(sk, val); 3317 release_sock(sk); 3318 } 3319 EXPORT_SYMBOL(tcp_sock_set_quickack); 3320 3321 int tcp_sock_set_syncnt(struct sock *sk, int val) 3322 { 3323 if (val < 1 || val > MAX_TCP_SYNCNT) 3324 return -EINVAL; 3325 3326 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3327 return 0; 3328 } 3329 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3330 3331 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3332 { 3333 /* Cap the max time in ms TCP will retry or probe the window 3334 * before giving up and aborting (ETIMEDOUT) a connection. 3335 */ 3336 if (val < 0) 3337 return -EINVAL; 3338 3339 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3340 return 0; 3341 } 3342 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3343 3344 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3345 { 3346 struct tcp_sock *tp = tcp_sk(sk); 3347 3348 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3349 return -EINVAL; 3350 3351 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3352 WRITE_ONCE(tp->keepalive_time, val * HZ); 3353 if (sock_flag(sk, SOCK_KEEPOPEN) && 3354 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3355 u32 elapsed = keepalive_time_elapsed(tp); 3356 3357 if (tp->keepalive_time > elapsed) 3358 elapsed = tp->keepalive_time - elapsed; 3359 else 3360 elapsed = 0; 3361 inet_csk_reset_keepalive_timer(sk, elapsed); 3362 } 3363 3364 return 0; 3365 } 3366 3367 int tcp_sock_set_keepidle(struct sock *sk, int val) 3368 { 3369 int err; 3370 3371 lock_sock(sk); 3372 err = tcp_sock_set_keepidle_locked(sk, val); 3373 release_sock(sk); 3374 return err; 3375 } 3376 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3377 3378 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3379 { 3380 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3381 return -EINVAL; 3382 3383 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3384 return 0; 3385 } 3386 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3387 3388 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3389 { 3390 if (val < 1 || val > MAX_TCP_KEEPCNT) 3391 return -EINVAL; 3392 3393 /* Paired with READ_ONCE() in keepalive_probes() */ 3394 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3395 return 0; 3396 } 3397 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3398 3399 int tcp_set_window_clamp(struct sock *sk, int val) 3400 { 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 3403 if (!val) { 3404 if (sk->sk_state != TCP_CLOSE) 3405 return -EINVAL; 3406 WRITE_ONCE(tp->window_clamp, 0); 3407 } else { 3408 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3409 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3410 SOCK_MIN_RCVBUF / 2 : val; 3411 3412 if (new_window_clamp == old_window_clamp) 3413 return 0; 3414 3415 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3416 if (new_window_clamp < old_window_clamp) { 3417 /* need to apply the reserved mem provisioning only 3418 * when shrinking the window clamp 3419 */ 3420 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3421 3422 } else { 3423 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3424 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3425 tp->rcv_ssthresh); 3426 } 3427 } 3428 return 0; 3429 } 3430 3431 /* 3432 * Socket option code for TCP. 3433 */ 3434 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3435 sockptr_t optval, unsigned int optlen) 3436 { 3437 struct tcp_sock *tp = tcp_sk(sk); 3438 struct inet_connection_sock *icsk = inet_csk(sk); 3439 struct net *net = sock_net(sk); 3440 int val; 3441 int err = 0; 3442 3443 /* These are data/string values, all the others are ints */ 3444 switch (optname) { 3445 case TCP_CONGESTION: { 3446 char name[TCP_CA_NAME_MAX]; 3447 3448 if (optlen < 1) 3449 return -EINVAL; 3450 3451 val = strncpy_from_sockptr(name, optval, 3452 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3453 if (val < 0) 3454 return -EFAULT; 3455 name[val] = 0; 3456 3457 sockopt_lock_sock(sk); 3458 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3459 sockopt_ns_capable(sock_net(sk)->user_ns, 3460 CAP_NET_ADMIN)); 3461 sockopt_release_sock(sk); 3462 return err; 3463 } 3464 case TCP_ULP: { 3465 char name[TCP_ULP_NAME_MAX]; 3466 3467 if (optlen < 1) 3468 return -EINVAL; 3469 3470 val = strncpy_from_sockptr(name, optval, 3471 min_t(long, TCP_ULP_NAME_MAX - 1, 3472 optlen)); 3473 if (val < 0) 3474 return -EFAULT; 3475 name[val] = 0; 3476 3477 sockopt_lock_sock(sk); 3478 err = tcp_set_ulp(sk, name); 3479 sockopt_release_sock(sk); 3480 return err; 3481 } 3482 case TCP_FASTOPEN_KEY: { 3483 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3484 __u8 *backup_key = NULL; 3485 3486 /* Allow a backup key as well to facilitate key rotation 3487 * First key is the active one. 3488 */ 3489 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3490 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3491 return -EINVAL; 3492 3493 if (copy_from_sockptr(key, optval, optlen)) 3494 return -EFAULT; 3495 3496 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3497 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3498 3499 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3500 } 3501 default: 3502 /* fallthru */ 3503 break; 3504 } 3505 3506 if (optlen < sizeof(int)) 3507 return -EINVAL; 3508 3509 if (copy_from_sockptr(&val, optval, sizeof(val))) 3510 return -EFAULT; 3511 3512 /* Handle options that can be set without locking the socket. */ 3513 switch (optname) { 3514 case TCP_SYNCNT: 3515 return tcp_sock_set_syncnt(sk, val); 3516 case TCP_USER_TIMEOUT: 3517 return tcp_sock_set_user_timeout(sk, val); 3518 case TCP_KEEPINTVL: 3519 return tcp_sock_set_keepintvl(sk, val); 3520 case TCP_KEEPCNT: 3521 return tcp_sock_set_keepcnt(sk, val); 3522 case TCP_LINGER2: 3523 if (val < 0) 3524 WRITE_ONCE(tp->linger2, -1); 3525 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3526 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3527 else 3528 WRITE_ONCE(tp->linger2, val * HZ); 3529 return 0; 3530 case TCP_DEFER_ACCEPT: 3531 /* Translate value in seconds to number of retransmits */ 3532 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3533 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3534 TCP_RTO_MAX / HZ)); 3535 return 0; 3536 } 3537 3538 sockopt_lock_sock(sk); 3539 3540 switch (optname) { 3541 case TCP_MAXSEG: 3542 /* Values greater than interface MTU won't take effect. However 3543 * at the point when this call is done we typically don't yet 3544 * know which interface is going to be used 3545 */ 3546 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3547 err = -EINVAL; 3548 break; 3549 } 3550 tp->rx_opt.user_mss = val; 3551 break; 3552 3553 case TCP_NODELAY: 3554 __tcp_sock_set_nodelay(sk, val); 3555 break; 3556 3557 case TCP_THIN_LINEAR_TIMEOUTS: 3558 if (val < 0 || val > 1) 3559 err = -EINVAL; 3560 else 3561 tp->thin_lto = val; 3562 break; 3563 3564 case TCP_THIN_DUPACK: 3565 if (val < 0 || val > 1) 3566 err = -EINVAL; 3567 break; 3568 3569 case TCP_REPAIR: 3570 if (!tcp_can_repair_sock(sk)) 3571 err = -EPERM; 3572 else if (val == TCP_REPAIR_ON) { 3573 tp->repair = 1; 3574 sk->sk_reuse = SK_FORCE_REUSE; 3575 tp->repair_queue = TCP_NO_QUEUE; 3576 } else if (val == TCP_REPAIR_OFF) { 3577 tp->repair = 0; 3578 sk->sk_reuse = SK_NO_REUSE; 3579 tcp_send_window_probe(sk); 3580 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3581 tp->repair = 0; 3582 sk->sk_reuse = SK_NO_REUSE; 3583 } else 3584 err = -EINVAL; 3585 3586 break; 3587 3588 case TCP_REPAIR_QUEUE: 3589 if (!tp->repair) 3590 err = -EPERM; 3591 else if ((unsigned int)val < TCP_QUEUES_NR) 3592 tp->repair_queue = val; 3593 else 3594 err = -EINVAL; 3595 break; 3596 3597 case TCP_QUEUE_SEQ: 3598 if (sk->sk_state != TCP_CLOSE) { 3599 err = -EPERM; 3600 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3601 if (!tcp_rtx_queue_empty(sk)) 3602 err = -EPERM; 3603 else 3604 WRITE_ONCE(tp->write_seq, val); 3605 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3606 if (tp->rcv_nxt != tp->copied_seq) { 3607 err = -EPERM; 3608 } else { 3609 WRITE_ONCE(tp->rcv_nxt, val); 3610 WRITE_ONCE(tp->copied_seq, val); 3611 } 3612 } else { 3613 err = -EINVAL; 3614 } 3615 break; 3616 3617 case TCP_REPAIR_OPTIONS: 3618 if (!tp->repair) 3619 err = -EINVAL; 3620 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3621 err = tcp_repair_options_est(sk, optval, optlen); 3622 else 3623 err = -EPERM; 3624 break; 3625 3626 case TCP_CORK: 3627 __tcp_sock_set_cork(sk, val); 3628 break; 3629 3630 case TCP_KEEPIDLE: 3631 err = tcp_sock_set_keepidle_locked(sk, val); 3632 break; 3633 case TCP_SAVE_SYN: 3634 /* 0: disable, 1: enable, 2: start from ether_header */ 3635 if (val < 0 || val > 2) 3636 err = -EINVAL; 3637 else 3638 tp->save_syn = val; 3639 break; 3640 3641 case TCP_WINDOW_CLAMP: 3642 err = tcp_set_window_clamp(sk, val); 3643 break; 3644 3645 case TCP_QUICKACK: 3646 __tcp_sock_set_quickack(sk, val); 3647 break; 3648 3649 case TCP_AO_REPAIR: 3650 if (!tcp_can_repair_sock(sk)) { 3651 err = -EPERM; 3652 break; 3653 } 3654 err = tcp_ao_set_repair(sk, optval, optlen); 3655 break; 3656 #ifdef CONFIG_TCP_AO 3657 case TCP_AO_ADD_KEY: 3658 case TCP_AO_DEL_KEY: 3659 case TCP_AO_INFO: { 3660 /* If this is the first TCP-AO setsockopt() on the socket, 3661 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3662 * in any state. 3663 */ 3664 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3665 goto ao_parse; 3666 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3667 lockdep_sock_is_held(sk))) 3668 goto ao_parse; 3669 if (tp->repair) 3670 goto ao_parse; 3671 err = -EISCONN; 3672 break; 3673 ao_parse: 3674 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3675 break; 3676 } 3677 #endif 3678 #ifdef CONFIG_TCP_MD5SIG 3679 case TCP_MD5SIG: 3680 case TCP_MD5SIG_EXT: 3681 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3682 break; 3683 #endif 3684 case TCP_FASTOPEN: 3685 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3686 TCPF_LISTEN))) { 3687 tcp_fastopen_init_key_once(net); 3688 3689 fastopen_queue_tune(sk, val); 3690 } else { 3691 err = -EINVAL; 3692 } 3693 break; 3694 case TCP_FASTOPEN_CONNECT: 3695 if (val > 1 || val < 0) { 3696 err = -EINVAL; 3697 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3698 TFO_CLIENT_ENABLE) { 3699 if (sk->sk_state == TCP_CLOSE) 3700 tp->fastopen_connect = val; 3701 else 3702 err = -EINVAL; 3703 } else { 3704 err = -EOPNOTSUPP; 3705 } 3706 break; 3707 case TCP_FASTOPEN_NO_COOKIE: 3708 if (val > 1 || val < 0) 3709 err = -EINVAL; 3710 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3711 err = -EINVAL; 3712 else 3713 tp->fastopen_no_cookie = val; 3714 break; 3715 case TCP_TIMESTAMP: 3716 if (!tp->repair) { 3717 err = -EPERM; 3718 break; 3719 } 3720 /* val is an opaque field, 3721 * and low order bit contains usec_ts enable bit. 3722 * Its a best effort, and we do not care if user makes an error. 3723 */ 3724 tp->tcp_usec_ts = val & 1; 3725 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3726 break; 3727 case TCP_REPAIR_WINDOW: 3728 err = tcp_repair_set_window(tp, optval, optlen); 3729 break; 3730 case TCP_NOTSENT_LOWAT: 3731 WRITE_ONCE(tp->notsent_lowat, val); 3732 sk->sk_write_space(sk); 3733 break; 3734 case TCP_INQ: 3735 if (val > 1 || val < 0) 3736 err = -EINVAL; 3737 else 3738 tp->recvmsg_inq = val; 3739 break; 3740 case TCP_TX_DELAY: 3741 if (val) 3742 tcp_enable_tx_delay(); 3743 WRITE_ONCE(tp->tcp_tx_delay, val); 3744 break; 3745 default: 3746 err = -ENOPROTOOPT; 3747 break; 3748 } 3749 3750 sockopt_release_sock(sk); 3751 return err; 3752 } 3753 3754 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3755 unsigned int optlen) 3756 { 3757 const struct inet_connection_sock *icsk = inet_csk(sk); 3758 3759 if (level != SOL_TCP) 3760 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3761 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3762 optval, optlen); 3763 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3764 } 3765 EXPORT_SYMBOL(tcp_setsockopt); 3766 3767 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3768 struct tcp_info *info) 3769 { 3770 u64 stats[__TCP_CHRONO_MAX], total = 0; 3771 enum tcp_chrono i; 3772 3773 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3774 stats[i] = tp->chrono_stat[i - 1]; 3775 if (i == tp->chrono_type) 3776 stats[i] += tcp_jiffies32 - tp->chrono_start; 3777 stats[i] *= USEC_PER_SEC / HZ; 3778 total += stats[i]; 3779 } 3780 3781 info->tcpi_busy_time = total; 3782 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3783 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3784 } 3785 3786 /* Return information about state of tcp endpoint in API format. */ 3787 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3788 { 3789 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3790 const struct inet_connection_sock *icsk = inet_csk(sk); 3791 unsigned long rate; 3792 u32 now; 3793 u64 rate64; 3794 bool slow; 3795 3796 memset(info, 0, sizeof(*info)); 3797 if (sk->sk_type != SOCK_STREAM) 3798 return; 3799 3800 info->tcpi_state = inet_sk_state_load(sk); 3801 3802 /* Report meaningful fields for all TCP states, including listeners */ 3803 rate = READ_ONCE(sk->sk_pacing_rate); 3804 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3805 info->tcpi_pacing_rate = rate64; 3806 3807 rate = READ_ONCE(sk->sk_max_pacing_rate); 3808 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3809 info->tcpi_max_pacing_rate = rate64; 3810 3811 info->tcpi_reordering = tp->reordering; 3812 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3813 3814 if (info->tcpi_state == TCP_LISTEN) { 3815 /* listeners aliased fields : 3816 * tcpi_unacked -> Number of children ready for accept() 3817 * tcpi_sacked -> max backlog 3818 */ 3819 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3820 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3821 return; 3822 } 3823 3824 slow = lock_sock_fast(sk); 3825 3826 info->tcpi_ca_state = icsk->icsk_ca_state; 3827 info->tcpi_retransmits = icsk->icsk_retransmits; 3828 info->tcpi_probes = icsk->icsk_probes_out; 3829 info->tcpi_backoff = icsk->icsk_backoff; 3830 3831 if (tp->rx_opt.tstamp_ok) 3832 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3833 if (tcp_is_sack(tp)) 3834 info->tcpi_options |= TCPI_OPT_SACK; 3835 if (tp->rx_opt.wscale_ok) { 3836 info->tcpi_options |= TCPI_OPT_WSCALE; 3837 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3838 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3839 } 3840 3841 if (tp->ecn_flags & TCP_ECN_OK) 3842 info->tcpi_options |= TCPI_OPT_ECN; 3843 if (tp->ecn_flags & TCP_ECN_SEEN) 3844 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3845 if (tp->syn_data_acked) 3846 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3847 if (tp->tcp_usec_ts) 3848 info->tcpi_options |= TCPI_OPT_USEC_TS; 3849 3850 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3851 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3852 tcp_delack_max(sk))); 3853 info->tcpi_snd_mss = tp->mss_cache; 3854 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3855 3856 info->tcpi_unacked = tp->packets_out; 3857 info->tcpi_sacked = tp->sacked_out; 3858 3859 info->tcpi_lost = tp->lost_out; 3860 info->tcpi_retrans = tp->retrans_out; 3861 3862 now = tcp_jiffies32; 3863 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3864 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3865 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3866 3867 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3868 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3869 info->tcpi_rtt = tp->srtt_us >> 3; 3870 info->tcpi_rttvar = tp->mdev_us >> 2; 3871 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3872 info->tcpi_advmss = tp->advmss; 3873 3874 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3875 info->tcpi_rcv_space = tp->rcvq_space.space; 3876 3877 info->tcpi_total_retrans = tp->total_retrans; 3878 3879 info->tcpi_bytes_acked = tp->bytes_acked; 3880 info->tcpi_bytes_received = tp->bytes_received; 3881 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3882 tcp_get_info_chrono_stats(tp, info); 3883 3884 info->tcpi_segs_out = tp->segs_out; 3885 3886 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3887 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3888 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3889 3890 info->tcpi_min_rtt = tcp_min_rtt(tp); 3891 info->tcpi_data_segs_out = tp->data_segs_out; 3892 3893 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3894 rate64 = tcp_compute_delivery_rate(tp); 3895 if (rate64) 3896 info->tcpi_delivery_rate = rate64; 3897 info->tcpi_delivered = tp->delivered; 3898 info->tcpi_delivered_ce = tp->delivered_ce; 3899 info->tcpi_bytes_sent = tp->bytes_sent; 3900 info->tcpi_bytes_retrans = tp->bytes_retrans; 3901 info->tcpi_dsack_dups = tp->dsack_dups; 3902 info->tcpi_reord_seen = tp->reord_seen; 3903 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3904 info->tcpi_snd_wnd = tp->snd_wnd; 3905 info->tcpi_rcv_wnd = tp->rcv_wnd; 3906 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3907 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3908 3909 info->tcpi_total_rto = tp->total_rto; 3910 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3911 info->tcpi_total_rto_time = tp->total_rto_time; 3912 if (tp->rto_stamp) 3913 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3914 3915 unlock_sock_fast(sk, slow); 3916 } 3917 EXPORT_SYMBOL_GPL(tcp_get_info); 3918 3919 static size_t tcp_opt_stats_get_size(void) 3920 { 3921 return 3922 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3923 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3924 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3925 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3926 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3927 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3928 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3929 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3930 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3931 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3932 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3933 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3934 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3935 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3936 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3937 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3938 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3939 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3940 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3941 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3942 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3943 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3944 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3945 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3946 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3947 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3948 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3949 0; 3950 } 3951 3952 /* Returns TTL or hop limit of an incoming packet from skb. */ 3953 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3954 { 3955 if (skb->protocol == htons(ETH_P_IP)) 3956 return ip_hdr(skb)->ttl; 3957 else if (skb->protocol == htons(ETH_P_IPV6)) 3958 return ipv6_hdr(skb)->hop_limit; 3959 else 3960 return 0; 3961 } 3962 3963 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3964 const struct sk_buff *orig_skb, 3965 const struct sk_buff *ack_skb) 3966 { 3967 const struct tcp_sock *tp = tcp_sk(sk); 3968 struct sk_buff *stats; 3969 struct tcp_info info; 3970 unsigned long rate; 3971 u64 rate64; 3972 3973 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3974 if (!stats) 3975 return NULL; 3976 3977 tcp_get_info_chrono_stats(tp, &info); 3978 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3979 info.tcpi_busy_time, TCP_NLA_PAD); 3980 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3981 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3982 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3983 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3984 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3985 tp->data_segs_out, TCP_NLA_PAD); 3986 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3987 tp->total_retrans, TCP_NLA_PAD); 3988 3989 rate = READ_ONCE(sk->sk_pacing_rate); 3990 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3991 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3992 3993 rate64 = tcp_compute_delivery_rate(tp); 3994 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3995 3996 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3997 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3998 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3999 4000 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4001 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4002 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4003 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4004 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4005 4006 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4007 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4008 4009 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4010 TCP_NLA_PAD); 4011 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4012 TCP_NLA_PAD); 4013 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4014 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4015 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4016 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4017 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4018 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4019 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4020 TCP_NLA_PAD); 4021 if (ack_skb) 4022 nla_put_u8(stats, TCP_NLA_TTL, 4023 tcp_skb_ttl_or_hop_limit(ack_skb)); 4024 4025 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4026 return stats; 4027 } 4028 4029 int do_tcp_getsockopt(struct sock *sk, int level, 4030 int optname, sockptr_t optval, sockptr_t optlen) 4031 { 4032 struct inet_connection_sock *icsk = inet_csk(sk); 4033 struct tcp_sock *tp = tcp_sk(sk); 4034 struct net *net = sock_net(sk); 4035 int val, len; 4036 4037 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4038 return -EFAULT; 4039 4040 if (len < 0) 4041 return -EINVAL; 4042 4043 len = min_t(unsigned int, len, sizeof(int)); 4044 4045 switch (optname) { 4046 case TCP_MAXSEG: 4047 val = tp->mss_cache; 4048 if (tp->rx_opt.user_mss && 4049 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4050 val = tp->rx_opt.user_mss; 4051 if (tp->repair) 4052 val = tp->rx_opt.mss_clamp; 4053 break; 4054 case TCP_NODELAY: 4055 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4056 break; 4057 case TCP_CORK: 4058 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4059 break; 4060 case TCP_KEEPIDLE: 4061 val = keepalive_time_when(tp) / HZ; 4062 break; 4063 case TCP_KEEPINTVL: 4064 val = keepalive_intvl_when(tp) / HZ; 4065 break; 4066 case TCP_KEEPCNT: 4067 val = keepalive_probes(tp); 4068 break; 4069 case TCP_SYNCNT: 4070 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4071 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4072 break; 4073 case TCP_LINGER2: 4074 val = READ_ONCE(tp->linger2); 4075 if (val >= 0) 4076 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4077 break; 4078 case TCP_DEFER_ACCEPT: 4079 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4080 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4081 TCP_RTO_MAX / HZ); 4082 break; 4083 case TCP_WINDOW_CLAMP: 4084 val = READ_ONCE(tp->window_clamp); 4085 break; 4086 case TCP_INFO: { 4087 struct tcp_info info; 4088 4089 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4090 return -EFAULT; 4091 4092 tcp_get_info(sk, &info); 4093 4094 len = min_t(unsigned int, len, sizeof(info)); 4095 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4096 return -EFAULT; 4097 if (copy_to_sockptr(optval, &info, len)) 4098 return -EFAULT; 4099 return 0; 4100 } 4101 case TCP_CC_INFO: { 4102 const struct tcp_congestion_ops *ca_ops; 4103 union tcp_cc_info info; 4104 size_t sz = 0; 4105 int attr; 4106 4107 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4108 return -EFAULT; 4109 4110 ca_ops = icsk->icsk_ca_ops; 4111 if (ca_ops && ca_ops->get_info) 4112 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4113 4114 len = min_t(unsigned int, len, sz); 4115 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4116 return -EFAULT; 4117 if (copy_to_sockptr(optval, &info, len)) 4118 return -EFAULT; 4119 return 0; 4120 } 4121 case TCP_QUICKACK: 4122 val = !inet_csk_in_pingpong_mode(sk); 4123 break; 4124 4125 case TCP_CONGESTION: 4126 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4127 return -EFAULT; 4128 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4129 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4130 return -EFAULT; 4131 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4132 return -EFAULT; 4133 return 0; 4134 4135 case TCP_ULP: 4136 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4137 return -EFAULT; 4138 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4139 if (!icsk->icsk_ulp_ops) { 4140 len = 0; 4141 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4142 return -EFAULT; 4143 return 0; 4144 } 4145 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4146 return -EFAULT; 4147 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4148 return -EFAULT; 4149 return 0; 4150 4151 case TCP_FASTOPEN_KEY: { 4152 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4153 unsigned int key_len; 4154 4155 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4156 return -EFAULT; 4157 4158 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4159 TCP_FASTOPEN_KEY_LENGTH; 4160 len = min_t(unsigned int, len, key_len); 4161 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4162 return -EFAULT; 4163 if (copy_to_sockptr(optval, key, len)) 4164 return -EFAULT; 4165 return 0; 4166 } 4167 case TCP_THIN_LINEAR_TIMEOUTS: 4168 val = tp->thin_lto; 4169 break; 4170 4171 case TCP_THIN_DUPACK: 4172 val = 0; 4173 break; 4174 4175 case TCP_REPAIR: 4176 val = tp->repair; 4177 break; 4178 4179 case TCP_REPAIR_QUEUE: 4180 if (tp->repair) 4181 val = tp->repair_queue; 4182 else 4183 return -EINVAL; 4184 break; 4185 4186 case TCP_REPAIR_WINDOW: { 4187 struct tcp_repair_window opt; 4188 4189 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4190 return -EFAULT; 4191 4192 if (len != sizeof(opt)) 4193 return -EINVAL; 4194 4195 if (!tp->repair) 4196 return -EPERM; 4197 4198 opt.snd_wl1 = tp->snd_wl1; 4199 opt.snd_wnd = tp->snd_wnd; 4200 opt.max_window = tp->max_window; 4201 opt.rcv_wnd = tp->rcv_wnd; 4202 opt.rcv_wup = tp->rcv_wup; 4203 4204 if (copy_to_sockptr(optval, &opt, len)) 4205 return -EFAULT; 4206 return 0; 4207 } 4208 case TCP_QUEUE_SEQ: 4209 if (tp->repair_queue == TCP_SEND_QUEUE) 4210 val = tp->write_seq; 4211 else if (tp->repair_queue == TCP_RECV_QUEUE) 4212 val = tp->rcv_nxt; 4213 else 4214 return -EINVAL; 4215 break; 4216 4217 case TCP_USER_TIMEOUT: 4218 val = READ_ONCE(icsk->icsk_user_timeout); 4219 break; 4220 4221 case TCP_FASTOPEN: 4222 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4223 break; 4224 4225 case TCP_FASTOPEN_CONNECT: 4226 val = tp->fastopen_connect; 4227 break; 4228 4229 case TCP_FASTOPEN_NO_COOKIE: 4230 val = tp->fastopen_no_cookie; 4231 break; 4232 4233 case TCP_TX_DELAY: 4234 val = READ_ONCE(tp->tcp_tx_delay); 4235 break; 4236 4237 case TCP_TIMESTAMP: 4238 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4239 if (tp->tcp_usec_ts) 4240 val |= 1; 4241 else 4242 val &= ~1; 4243 break; 4244 case TCP_NOTSENT_LOWAT: 4245 val = READ_ONCE(tp->notsent_lowat); 4246 break; 4247 case TCP_INQ: 4248 val = tp->recvmsg_inq; 4249 break; 4250 case TCP_SAVE_SYN: 4251 val = tp->save_syn; 4252 break; 4253 case TCP_SAVED_SYN: { 4254 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4255 return -EFAULT; 4256 4257 sockopt_lock_sock(sk); 4258 if (tp->saved_syn) { 4259 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4260 len = tcp_saved_syn_len(tp->saved_syn); 4261 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4262 sockopt_release_sock(sk); 4263 return -EFAULT; 4264 } 4265 sockopt_release_sock(sk); 4266 return -EINVAL; 4267 } 4268 len = tcp_saved_syn_len(tp->saved_syn); 4269 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4270 sockopt_release_sock(sk); 4271 return -EFAULT; 4272 } 4273 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4274 sockopt_release_sock(sk); 4275 return -EFAULT; 4276 } 4277 tcp_saved_syn_free(tp); 4278 sockopt_release_sock(sk); 4279 } else { 4280 sockopt_release_sock(sk); 4281 len = 0; 4282 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4283 return -EFAULT; 4284 } 4285 return 0; 4286 } 4287 #ifdef CONFIG_MMU 4288 case TCP_ZEROCOPY_RECEIVE: { 4289 struct scm_timestamping_internal tss; 4290 struct tcp_zerocopy_receive zc = {}; 4291 int err; 4292 4293 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4294 return -EFAULT; 4295 if (len < 0 || 4296 len < offsetofend(struct tcp_zerocopy_receive, length)) 4297 return -EINVAL; 4298 if (unlikely(len > sizeof(zc))) { 4299 err = check_zeroed_sockptr(optval, sizeof(zc), 4300 len - sizeof(zc)); 4301 if (err < 1) 4302 return err == 0 ? -EINVAL : err; 4303 len = sizeof(zc); 4304 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4305 return -EFAULT; 4306 } 4307 if (copy_from_sockptr(&zc, optval, len)) 4308 return -EFAULT; 4309 if (zc.reserved) 4310 return -EINVAL; 4311 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4312 return -EINVAL; 4313 sockopt_lock_sock(sk); 4314 err = tcp_zerocopy_receive(sk, &zc, &tss); 4315 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4316 &zc, &len, err); 4317 sockopt_release_sock(sk); 4318 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4319 goto zerocopy_rcv_cmsg; 4320 switch (len) { 4321 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4322 goto zerocopy_rcv_cmsg; 4323 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4324 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4325 case offsetofend(struct tcp_zerocopy_receive, flags): 4326 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4327 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4328 case offsetofend(struct tcp_zerocopy_receive, err): 4329 goto zerocopy_rcv_sk_err; 4330 case offsetofend(struct tcp_zerocopy_receive, inq): 4331 goto zerocopy_rcv_inq; 4332 case offsetofend(struct tcp_zerocopy_receive, length): 4333 default: 4334 goto zerocopy_rcv_out; 4335 } 4336 zerocopy_rcv_cmsg: 4337 if (zc.msg_flags & TCP_CMSG_TS) 4338 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4339 else 4340 zc.msg_flags = 0; 4341 zerocopy_rcv_sk_err: 4342 if (!err) 4343 zc.err = sock_error(sk); 4344 zerocopy_rcv_inq: 4345 zc.inq = tcp_inq_hint(sk); 4346 zerocopy_rcv_out: 4347 if (!err && copy_to_sockptr(optval, &zc, len)) 4348 err = -EFAULT; 4349 return err; 4350 } 4351 #endif 4352 case TCP_AO_REPAIR: 4353 if (!tcp_can_repair_sock(sk)) 4354 return -EPERM; 4355 return tcp_ao_get_repair(sk, optval, optlen); 4356 case TCP_AO_GET_KEYS: 4357 case TCP_AO_INFO: { 4358 int err; 4359 4360 sockopt_lock_sock(sk); 4361 if (optname == TCP_AO_GET_KEYS) 4362 err = tcp_ao_get_mkts(sk, optval, optlen); 4363 else 4364 err = tcp_ao_get_sock_info(sk, optval, optlen); 4365 sockopt_release_sock(sk); 4366 4367 return err; 4368 } 4369 case TCP_IS_MPTCP: 4370 val = 0; 4371 break; 4372 default: 4373 return -ENOPROTOOPT; 4374 } 4375 4376 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4377 return -EFAULT; 4378 if (copy_to_sockptr(optval, &val, len)) 4379 return -EFAULT; 4380 return 0; 4381 } 4382 4383 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4384 { 4385 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4386 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4387 */ 4388 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4389 return true; 4390 4391 return false; 4392 } 4393 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4394 4395 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4396 int __user *optlen) 4397 { 4398 struct inet_connection_sock *icsk = inet_csk(sk); 4399 4400 if (level != SOL_TCP) 4401 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4402 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4403 optval, optlen); 4404 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4405 USER_SOCKPTR(optlen)); 4406 } 4407 EXPORT_SYMBOL(tcp_getsockopt); 4408 4409 #ifdef CONFIG_TCP_MD5SIG 4410 int tcp_md5_sigpool_id = -1; 4411 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4412 4413 int tcp_md5_alloc_sigpool(void) 4414 { 4415 size_t scratch_size; 4416 int ret; 4417 4418 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4419 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4420 if (ret >= 0) { 4421 /* As long as any md5 sigpool was allocated, the return 4422 * id would stay the same. Re-write the id only for the case 4423 * when previously all MD5 keys were deleted and this call 4424 * allocates the first MD5 key, which may return a different 4425 * sigpool id than was used previously. 4426 */ 4427 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4428 return 0; 4429 } 4430 return ret; 4431 } 4432 4433 void tcp_md5_release_sigpool(void) 4434 { 4435 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4436 } 4437 4438 void tcp_md5_add_sigpool(void) 4439 { 4440 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4441 } 4442 4443 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4444 const struct tcp_md5sig_key *key) 4445 { 4446 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4447 struct scatterlist sg; 4448 4449 sg_init_one(&sg, key->key, keylen); 4450 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4451 4452 /* We use data_race() because tcp_md5_do_add() might change 4453 * key->key under us 4454 */ 4455 return data_race(crypto_ahash_update(hp->req)); 4456 } 4457 EXPORT_SYMBOL(tcp_md5_hash_key); 4458 4459 /* Called with rcu_read_lock() */ 4460 enum skb_drop_reason 4461 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4462 const void *saddr, const void *daddr, 4463 int family, int l3index, const __u8 *hash_location) 4464 { 4465 /* This gets called for each TCP segment that has TCP-MD5 option. 4466 * We have 3 drop cases: 4467 * o No MD5 hash and one expected. 4468 * o MD5 hash and we're not expecting one. 4469 * o MD5 hash and its wrong. 4470 */ 4471 const struct tcp_sock *tp = tcp_sk(sk); 4472 struct tcp_md5sig_key *key; 4473 u8 newhash[16]; 4474 int genhash; 4475 4476 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4477 4478 if (!key && hash_location) { 4479 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4480 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, ""); 4481 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4482 } 4483 4484 /* Check the signature. 4485 * To support dual stack listeners, we need to handle 4486 * IPv4-mapped case. 4487 */ 4488 if (family == AF_INET) 4489 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4490 else 4491 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4492 NULL, skb); 4493 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4495 if (family == AF_INET) { 4496 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d", 4497 genhash ? "tcp_v4_calc_md5_hash failed" 4498 : "", l3index); 4499 } else { 4500 if (genhash) { 4501 tcp_hash_fail("MD5 Hash failed", 4502 AF_INET6, skb, "L3 index %d", 4503 l3index); 4504 } else { 4505 tcp_hash_fail("MD5 Hash mismatch", 4506 AF_INET6, skb, "L3 index %d", 4507 l3index); 4508 } 4509 } 4510 return SKB_DROP_REASON_TCP_MD5FAILURE; 4511 } 4512 return SKB_NOT_DROPPED_YET; 4513 } 4514 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4515 4516 #endif 4517 4518 void tcp_done(struct sock *sk) 4519 { 4520 struct request_sock *req; 4521 4522 /* We might be called with a new socket, after 4523 * inet_csk_prepare_forced_close() has been called 4524 * so we can not use lockdep_sock_is_held(sk) 4525 */ 4526 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4527 4528 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4529 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4530 4531 tcp_set_state(sk, TCP_CLOSE); 4532 tcp_clear_xmit_timers(sk); 4533 if (req) 4534 reqsk_fastopen_remove(sk, req, false); 4535 4536 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4537 4538 if (!sock_flag(sk, SOCK_DEAD)) 4539 sk->sk_state_change(sk); 4540 else 4541 inet_csk_destroy_sock(sk); 4542 } 4543 EXPORT_SYMBOL_GPL(tcp_done); 4544 4545 int tcp_abort(struct sock *sk, int err) 4546 { 4547 int state = inet_sk_state_load(sk); 4548 4549 if (state == TCP_NEW_SYN_RECV) { 4550 struct request_sock *req = inet_reqsk(sk); 4551 4552 local_bh_disable(); 4553 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4554 local_bh_enable(); 4555 return 0; 4556 } 4557 if (state == TCP_TIME_WAIT) { 4558 struct inet_timewait_sock *tw = inet_twsk(sk); 4559 4560 refcount_inc(&tw->tw_refcnt); 4561 local_bh_disable(); 4562 inet_twsk_deschedule_put(tw); 4563 local_bh_enable(); 4564 return 0; 4565 } 4566 4567 /* BPF context ensures sock locking. */ 4568 if (!has_current_bpf_ctx()) 4569 /* Don't race with userspace socket closes such as tcp_close. */ 4570 lock_sock(sk); 4571 4572 if (sk->sk_state == TCP_LISTEN) { 4573 tcp_set_state(sk, TCP_CLOSE); 4574 inet_csk_listen_stop(sk); 4575 } 4576 4577 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4578 local_bh_disable(); 4579 bh_lock_sock(sk); 4580 4581 if (!sock_flag(sk, SOCK_DEAD)) { 4582 WRITE_ONCE(sk->sk_err, err); 4583 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4584 smp_wmb(); 4585 sk_error_report(sk); 4586 if (tcp_need_reset(sk->sk_state)) 4587 tcp_send_active_reset(sk, GFP_ATOMIC, 4588 SK_RST_REASON_NOT_SPECIFIED); 4589 tcp_done(sk); 4590 } 4591 4592 bh_unlock_sock(sk); 4593 local_bh_enable(); 4594 tcp_write_queue_purge(sk); 4595 if (!has_current_bpf_ctx()) 4596 release_sock(sk); 4597 return 0; 4598 } 4599 EXPORT_SYMBOL_GPL(tcp_abort); 4600 4601 extern struct tcp_congestion_ops tcp_reno; 4602 4603 static __initdata unsigned long thash_entries; 4604 static int __init set_thash_entries(char *str) 4605 { 4606 ssize_t ret; 4607 4608 if (!str) 4609 return 0; 4610 4611 ret = kstrtoul(str, 0, &thash_entries); 4612 if (ret) 4613 return 0; 4614 4615 return 1; 4616 } 4617 __setup("thash_entries=", set_thash_entries); 4618 4619 static void __init tcp_init_mem(void) 4620 { 4621 unsigned long limit = nr_free_buffer_pages() / 16; 4622 4623 limit = max(limit, 128UL); 4624 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4625 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4626 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4627 } 4628 4629 static void __init tcp_struct_check(void) 4630 { 4631 /* TX read-mostly hotpath cache lines */ 4632 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4633 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4634 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4635 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4637 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4638 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4639 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4640 4641 /* TXRX read-mostly hotpath cache lines */ 4642 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4643 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4644 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4645 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4650 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4651 4652 /* RX read-mostly hotpath cache lines */ 4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4654 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4655 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4656 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4658 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4659 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4660 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4661 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4662 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4665 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4666 4667 /* TX read-write hotpath cache lines */ 4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4669 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4670 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4671 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4675 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4676 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4677 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4678 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4679 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4680 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4681 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4682 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4683 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 4684 4685 /* TXRX read-write hotpath cache lines */ 4686 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4687 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 4688 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 4689 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4690 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4691 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4692 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4693 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4694 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4695 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4696 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4697 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4698 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4699 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4700 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4701 4702 /* 32bit arches with 8byte alignment on u64 fields might need padding 4703 * before tcp_clock_cache. 4704 */ 4705 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 4706 4707 /* RX read-write hotpath cache lines */ 4708 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4709 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4710 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4711 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4712 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4713 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4714 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4715 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4716 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4717 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4718 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4719 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4720 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4721 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4722 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4723 } 4724 4725 void __init tcp_init(void) 4726 { 4727 int max_rshare, max_wshare, cnt; 4728 unsigned long limit; 4729 unsigned int i; 4730 4731 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4732 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4733 sizeof_field(struct sk_buff, cb)); 4734 4735 tcp_struct_check(); 4736 4737 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4738 4739 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4740 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4741 4742 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4743 thash_entries, 21, /* one slot per 2 MB*/ 4744 0, 64 * 1024); 4745 tcp_hashinfo.bind_bucket_cachep = 4746 kmem_cache_create("tcp_bind_bucket", 4747 sizeof(struct inet_bind_bucket), 0, 4748 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4749 SLAB_ACCOUNT, 4750 NULL); 4751 tcp_hashinfo.bind2_bucket_cachep = 4752 kmem_cache_create("tcp_bind2_bucket", 4753 sizeof(struct inet_bind2_bucket), 0, 4754 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4755 SLAB_ACCOUNT, 4756 NULL); 4757 4758 /* Size and allocate the main established and bind bucket 4759 * hash tables. 4760 * 4761 * The methodology is similar to that of the buffer cache. 4762 */ 4763 tcp_hashinfo.ehash = 4764 alloc_large_system_hash("TCP established", 4765 sizeof(struct inet_ehash_bucket), 4766 thash_entries, 4767 17, /* one slot per 128 KB of memory */ 4768 0, 4769 NULL, 4770 &tcp_hashinfo.ehash_mask, 4771 0, 4772 thash_entries ? 0 : 512 * 1024); 4773 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4774 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4775 4776 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4777 panic("TCP: failed to alloc ehash_locks"); 4778 tcp_hashinfo.bhash = 4779 alloc_large_system_hash("TCP bind", 4780 2 * sizeof(struct inet_bind_hashbucket), 4781 tcp_hashinfo.ehash_mask + 1, 4782 17, /* one slot per 128 KB of memory */ 4783 0, 4784 &tcp_hashinfo.bhash_size, 4785 NULL, 4786 0, 4787 64 * 1024); 4788 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4789 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4790 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4791 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4792 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4793 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4794 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4795 } 4796 4797 tcp_hashinfo.pernet = false; 4798 4799 cnt = tcp_hashinfo.ehash_mask + 1; 4800 sysctl_tcp_max_orphans = cnt / 2; 4801 4802 tcp_init_mem(); 4803 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4804 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4805 max_wshare = min(4UL*1024*1024, limit); 4806 max_rshare = min(6UL*1024*1024, limit); 4807 4808 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4809 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4810 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4811 4812 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4813 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4814 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4815 4816 pr_info("Hash tables configured (established %u bind %u)\n", 4817 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4818 4819 tcp_v4_init(); 4820 tcp_metrics_init(); 4821 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4822 tcp_tasklet_init(); 4823 mptcp_init(); 4824 } 4825