xref: /linux/net/ipv4/tcp.c (revision 1bc80d673087e5704adbb3ee8e4b785c14899cce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/md5.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/splice.h>
257 #include <linux/net.h>
258 #include <linux/socket.h>
259 #include <linux/random.h>
260 #include <linux/memblock.h>
261 #include <linux/highmem.h>
262 #include <linux/cache.h>
263 #include <linux/err.h>
264 #include <linux/time.h>
265 #include <linux/slab.h>
266 #include <linux/errqueue.h>
267 #include <linux/static_key.h>
268 #include <linux/btf.h>
269 
270 #include <net/icmp.h>
271 #include <net/inet_common.h>
272 #include <net/inet_ecn.h>
273 #include <net/tcp.h>
274 #include <net/tcp_ecn.h>
275 #include <net/mptcp.h>
276 #include <net/proto_memory.h>
277 #include <net/xfrm.h>
278 #include <net/ip.h>
279 #include <net/psp.h>
280 #include <net/sock.h>
281 #include <net/rstreason.h>
282 
283 #include <linux/uaccess.h>
284 #include <asm/ioctls.h>
285 #include <net/busy_poll.h>
286 #include <net/hotdata.h>
287 #include <trace/events/tcp.h>
288 #include <net/rps.h>
289 
290 #include "../core/devmem.h"
291 
292 /* Track pending CMSGs. */
293 enum {
294 	TCP_CMSG_INQ = 1,
295 	TCP_CMSG_TS = 2
296 };
297 
298 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
300 
301 DEFINE_PER_CPU(u32, tcp_tw_isn);
302 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
303 
304 long sysctl_tcp_mem[3] __read_mostly;
305 EXPORT_IPV6_MOD(sysctl_tcp_mem);
306 
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 #ifdef CONFIG_TCP_MD5SIG
418 void tcp_md5_destruct_sock(struct sock *sk)
419 {
420 	struct tcp_sock *tp = tcp_sk(sk);
421 
422 	if (tp->md5sig_info) {
423 
424 		tcp_clear_md5_list(sk);
425 		kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 1));
426 		static_branch_slow_dec_deferred(&tcp_md5_needed);
427 	}
428 }
429 EXPORT_IPV6_MOD_GPL(tcp_md5_destruct_sock);
430 #endif
431 
432 /* Address-family independent initialization for a tcp_sock.
433  *
434  * NOTE: A lot of things set to zero explicitly by call to
435  *       sk_alloc() so need not be done here.
436  */
437 void tcp_init_sock(struct sock *sk)
438 {
439 	struct inet_connection_sock *icsk = inet_csk(sk);
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	int rto_min_us, rto_max_ms;
442 
443 	tp->out_of_order_queue = RB_ROOT;
444 	sk->tcp_rtx_queue = RB_ROOT;
445 	tcp_init_xmit_timers(sk);
446 	INIT_LIST_HEAD(&tp->tsq_node);
447 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
448 
449 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
450 
451 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
452 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
453 
454 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
455 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
456 	icsk->icsk_delack_max = TCP_DELACK_MAX;
457 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
458 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
459 
460 	/* So many TCP implementations out there (incorrectly) count the
461 	 * initial SYN frame in their delayed-ACK and congestion control
462 	 * algorithms that we must have the following bandaid to talk
463 	 * efficiently to them.  -DaveM
464 	 */
465 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
466 
467 	/* There's a bubble in the pipe until at least the first ACK. */
468 	tp->app_limited = ~0U;
469 	tp->rate_app_limited = 1;
470 
471 	/* See draft-stevens-tcpca-spec-01 for discussion of the
472 	 * initialization of these values.
473 	 */
474 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475 	tp->snd_cwnd_clamp = ~0;
476 	tp->mss_cache = TCP_MSS_DEFAULT;
477 
478 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
479 	tcp_assign_congestion_control(sk);
480 
481 	tp->tsoffset = 0;
482 	tp->rack.reo_wnd_steps = 1;
483 
484 	sk->sk_write_space = sk_stream_write_space;
485 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
486 
487 	icsk->icsk_sync_mss = tcp_sync_mss;
488 
489 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
490 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
491 	tcp_scaling_ratio_init(sk);
492 
493 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
494 	sk_sockets_allocated_inc(sk);
495 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
496 }
497 EXPORT_IPV6_MOD(tcp_init_sock);
498 
499 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
500 {
501 	struct sk_buff *skb = tcp_write_queue_tail(sk);
502 	u32 tsflags = sockc->tsflags;
503 
504 	if (tsflags && skb) {
505 		struct skb_shared_info *shinfo = skb_shinfo(skb);
506 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
507 
508 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
509 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
510 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
511 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
512 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
513 	}
514 
515 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
516 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
517 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
518 }
519 
520 static bool tcp_stream_is_readable(struct sock *sk, int target)
521 {
522 	if (tcp_epollin_ready(sk, target))
523 		return true;
524 	return sk_is_readable(sk);
525 }
526 
527 /*
528  *	Wait for a TCP event.
529  *
530  *	Note that we don't need to lock the socket, as the upper poll layers
531  *	take care of normal races (between the test and the event) and we don't
532  *	go look at any of the socket buffers directly.
533  */
534 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
535 {
536 	__poll_t mask;
537 	struct sock *sk = sock->sk;
538 	const struct tcp_sock *tp = tcp_sk(sk);
539 	u8 shutdown;
540 	int state;
541 
542 	sock_poll_wait(file, sock, wait);
543 
544 	state = inet_sk_state_load(sk);
545 	if (state == TCP_LISTEN)
546 		return inet_csk_listen_poll(sk);
547 
548 	/* Socket is not locked. We are protected from async events
549 	 * by poll logic and correct handling of state changes
550 	 * made by other threads is impossible in any case.
551 	 */
552 
553 	mask = 0;
554 
555 	/*
556 	 * EPOLLHUP is certainly not done right. But poll() doesn't
557 	 * have a notion of HUP in just one direction, and for a
558 	 * socket the read side is more interesting.
559 	 *
560 	 * Some poll() documentation says that EPOLLHUP is incompatible
561 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
562 	 * all. But careful, it tends to be safer to return too many
563 	 * bits than too few, and you can easily break real applications
564 	 * if you don't tell them that something has hung up!
565 	 *
566 	 * Check-me.
567 	 *
568 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
569 	 * our fs/select.c). It means that after we received EOF,
570 	 * poll always returns immediately, making impossible poll() on write()
571 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
572 	 * if and only if shutdown has been made in both directions.
573 	 * Actually, it is interesting to look how Solaris and DUX
574 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
575 	 * then we could set it on SND_SHUTDOWN. BTW examples given
576 	 * in Stevens' books assume exactly this behaviour, it explains
577 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
578 	 *
579 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
580 	 * blocking on fresh not-connected or disconnected socket. --ANK
581 	 */
582 	shutdown = READ_ONCE(sk->sk_shutdown);
583 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
584 		mask |= EPOLLHUP;
585 	if (shutdown & RCV_SHUTDOWN)
586 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
587 
588 	/* Connected or passive Fast Open socket? */
589 	if (state != TCP_SYN_SENT &&
590 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
591 		int target = sock_rcvlowat(sk, 0, INT_MAX);
592 		u16 urg_data = READ_ONCE(tp->urg_data);
593 
594 		if (unlikely(urg_data) &&
595 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
596 		    !sock_flag(sk, SOCK_URGINLINE))
597 			target++;
598 
599 		if (tcp_stream_is_readable(sk, target))
600 			mask |= EPOLLIN | EPOLLRDNORM;
601 
602 		if (!(shutdown & SEND_SHUTDOWN)) {
603 			if (__sk_stream_is_writeable(sk, 1)) {
604 				mask |= EPOLLOUT | EPOLLWRNORM;
605 			} else {  /* send SIGIO later */
606 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
607 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
608 
609 				/* Race breaker. If space is freed after
610 				 * wspace test but before the flags are set,
611 				 * IO signal will be lost. Memory barrier
612 				 * pairs with the input side.
613 				 */
614 				smp_mb__after_atomic();
615 				if (__sk_stream_is_writeable(sk, 1))
616 					mask |= EPOLLOUT | EPOLLWRNORM;
617 			}
618 		} else
619 			mask |= EPOLLOUT | EPOLLWRNORM;
620 
621 		if (urg_data & TCP_URG_VALID)
622 			mask |= EPOLLPRI;
623 	} else if (state == TCP_SYN_SENT &&
624 		   inet_test_bit(DEFER_CONNECT, sk)) {
625 		/* Active TCP fastopen socket with defer_connect
626 		 * Return EPOLLOUT so application can call write()
627 		 * in order for kernel to generate SYN+data
628 		 */
629 		mask |= EPOLLOUT | EPOLLWRNORM;
630 	}
631 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
632 	smp_rmb();
633 	if (READ_ONCE(sk->sk_err) ||
634 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
635 		mask |= EPOLLERR;
636 
637 	return mask;
638 }
639 EXPORT_SYMBOL(tcp_poll);
640 
641 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
642 {
643 	struct tcp_sock *tp = tcp_sk(sk);
644 	int answ;
645 	bool slow;
646 
647 	switch (cmd) {
648 	case SIOCINQ:
649 		if (sk->sk_state == TCP_LISTEN)
650 			return -EINVAL;
651 
652 		slow = lock_sock_fast(sk);
653 		answ = tcp_inq(sk);
654 		unlock_sock_fast(sk, slow);
655 		break;
656 	case SIOCATMARK:
657 		answ = READ_ONCE(tp->urg_data) &&
658 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
659 		break;
660 	case SIOCOUTQ:
661 		if (sk->sk_state == TCP_LISTEN)
662 			return -EINVAL;
663 
664 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
665 			answ = 0;
666 		else
667 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
668 		break;
669 	case SIOCOUTQNSD:
670 		if (sk->sk_state == TCP_LISTEN)
671 			return -EINVAL;
672 
673 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
674 			answ = 0;
675 		else
676 			answ = READ_ONCE(tp->write_seq) -
677 			       READ_ONCE(tp->snd_nxt);
678 		break;
679 	default:
680 		return -ENOIOCTLCMD;
681 	}
682 
683 	*karg = answ;
684 	return 0;
685 }
686 EXPORT_IPV6_MOD(tcp_ioctl);
687 
688 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
689 {
690 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
691 	tp->pushed_seq = tp->write_seq;
692 }
693 
694 static inline bool forced_push(const struct tcp_sock *tp)
695 {
696 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
697 }
698 
699 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
700 {
701 	struct tcp_sock *tp = tcp_sk(sk);
702 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
703 
704 	tcb->seq     = tcb->end_seq = tp->write_seq;
705 	tcb->tcp_flags = TCPHDR_ACK;
706 	__skb_header_release(skb);
707 	psp_enqueue_set_decrypted(sk, skb);
708 	tcp_add_write_queue_tail(sk, skb);
709 	sk_wmem_queued_add(sk, skb->truesize);
710 	sk_mem_charge(sk, skb->truesize);
711 	if (tp->nonagle & TCP_NAGLE_PUSH)
712 		tp->nonagle &= ~TCP_NAGLE_PUSH;
713 
714 	tcp_slow_start_after_idle_check(sk);
715 }
716 
717 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
718 {
719 	if (flags & MSG_OOB)
720 		tp->snd_up = tp->write_seq;
721 }
722 
723 /* If a not yet filled skb is pushed, do not send it if
724  * we have data packets in Qdisc or NIC queues :
725  * Because TX completion will happen shortly, it gives a chance
726  * to coalesce future sendmsg() payload into this skb, without
727  * need for a timer, and with no latency trade off.
728  * As packets containing data payload have a bigger truesize
729  * than pure acks (dataless) packets, the last checks prevent
730  * autocorking if we only have an ACK in Qdisc/NIC queues,
731  * or if TX completion was delayed after we processed ACK packet.
732  */
733 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
734 				int size_goal)
735 {
736 	return skb->len < size_goal &&
737 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
738 	       !tcp_rtx_queue_empty(sk) &&
739 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
740 	       tcp_skb_can_collapse_to(skb);
741 }
742 
743 void tcp_push(struct sock *sk, int flags, int mss_now,
744 	      int nonagle, int size_goal)
745 {
746 	struct tcp_sock *tp = tcp_sk(sk);
747 	struct sk_buff *skb;
748 
749 	skb = tcp_write_queue_tail(sk);
750 	if (!skb)
751 		return;
752 	if (!(flags & MSG_MORE) || forced_push(tp))
753 		tcp_mark_push(tp, skb);
754 
755 	tcp_mark_urg(tp, flags);
756 
757 	if (tcp_should_autocork(sk, skb, size_goal)) {
758 
759 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
760 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
761 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
762 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
763 			smp_mb__after_atomic();
764 		}
765 		/* It is possible TX completion already happened
766 		 * before we set TSQ_THROTTLED.
767 		 */
768 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
769 			return;
770 	}
771 
772 	if (flags & MSG_MORE)
773 		nonagle = TCP_NAGLE_CORK;
774 
775 	__tcp_push_pending_frames(sk, mss_now, nonagle);
776 }
777 
778 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
779 				unsigned int offset, size_t len)
780 {
781 	struct tcp_splice_state *tss = rd_desc->arg.data;
782 	int ret;
783 
784 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
785 			      min(rd_desc->count, len), tss->flags);
786 	if (ret > 0)
787 		rd_desc->count -= ret;
788 	return ret;
789 }
790 
791 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
792 {
793 	/* Store TCP splice context information in read_descriptor_t. */
794 	read_descriptor_t rd_desc = {
795 		.arg.data = tss,
796 		.count	  = tss->len,
797 	};
798 
799 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
800 }
801 
802 /**
803  *  tcp_splice_read - splice data from TCP socket to a pipe
804  * @sock:	socket to splice from
805  * @ppos:	position (not valid)
806  * @pipe:	pipe to splice to
807  * @len:	number of bytes to splice
808  * @flags:	splice modifier flags
809  *
810  * Description:
811  *    Will read pages from given socket and fill them into a pipe.
812  *
813  **/
814 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
815 			struct pipe_inode_info *pipe, size_t len,
816 			unsigned int flags)
817 {
818 	struct sock *sk = sock->sk;
819 	struct tcp_splice_state tss = {
820 		.pipe = pipe,
821 		.len = len,
822 		.flags = flags,
823 	};
824 	long timeo;
825 	ssize_t spliced;
826 	int ret;
827 
828 	sock_rps_record_flow(sk);
829 	/*
830 	 * We can't seek on a socket input
831 	 */
832 	if (unlikely(*ppos))
833 		return -ESPIPE;
834 
835 	ret = spliced = 0;
836 
837 	lock_sock(sk);
838 
839 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
840 	while (tss.len) {
841 		ret = __tcp_splice_read(sk, &tss);
842 		if (ret < 0)
843 			break;
844 		else if (!ret) {
845 			if (spliced)
846 				break;
847 			if (sock_flag(sk, SOCK_DONE))
848 				break;
849 			if (sk->sk_err) {
850 				ret = sock_error(sk);
851 				break;
852 			}
853 			if (sk->sk_shutdown & RCV_SHUTDOWN)
854 				break;
855 			if (sk->sk_state == TCP_CLOSE) {
856 				/*
857 				 * This occurs when user tries to read
858 				 * from never connected socket.
859 				 */
860 				ret = -ENOTCONN;
861 				break;
862 			}
863 			if (!timeo) {
864 				ret = -EAGAIN;
865 				break;
866 			}
867 			/* if __tcp_splice_read() got nothing while we have
868 			 * an skb in receive queue, we do not want to loop.
869 			 * This might happen with URG data.
870 			 */
871 			if (!skb_queue_empty(&sk->sk_receive_queue))
872 				break;
873 			ret = sk_wait_data(sk, &timeo, NULL);
874 			if (ret < 0)
875 				break;
876 			if (signal_pending(current)) {
877 				ret = sock_intr_errno(timeo);
878 				break;
879 			}
880 			continue;
881 		}
882 		tss.len -= ret;
883 		spliced += ret;
884 
885 		if (!tss.len || !timeo)
886 			break;
887 		release_sock(sk);
888 		lock_sock(sk);
889 
890 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
891 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
892 		    signal_pending(current))
893 			break;
894 	}
895 
896 	release_sock(sk);
897 
898 	if (spliced)
899 		return spliced;
900 
901 	return ret;
902 }
903 EXPORT_IPV6_MOD(tcp_splice_read);
904 
905 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
906 				     bool force_schedule)
907 {
908 	struct sk_buff *skb;
909 
910 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
911 	if (likely(skb)) {
912 		bool mem_scheduled;
913 
914 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
915 		if (force_schedule) {
916 			mem_scheduled = true;
917 			sk_forced_mem_schedule(sk, skb->truesize);
918 		} else {
919 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
920 		}
921 		if (likely(mem_scheduled)) {
922 			skb_reserve(skb, MAX_TCP_HEADER);
923 			skb->ip_summed = CHECKSUM_PARTIAL;
924 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
925 			return skb;
926 		}
927 		__kfree_skb(skb);
928 	} else {
929 		if (!sk->sk_bypass_prot_mem)
930 			tcp_enter_memory_pressure(sk);
931 		sk_stream_moderate_sndbuf(sk);
932 	}
933 	return NULL;
934 }
935 
936 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
937 				       int large_allowed)
938 {
939 	struct tcp_sock *tp = tcp_sk(sk);
940 	u32 new_size_goal, size_goal;
941 
942 	if (!large_allowed)
943 		return mss_now;
944 
945 	/* Note : tcp_tso_autosize() will eventually split this later */
946 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
947 
948 	/* We try hard to avoid divides here */
949 	size_goal = tp->gso_segs * mss_now;
950 	if (unlikely(new_size_goal < size_goal ||
951 		     new_size_goal >= size_goal + mss_now)) {
952 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
953 				     sk->sk_gso_max_segs);
954 		size_goal = tp->gso_segs * mss_now;
955 	}
956 
957 	return max(size_goal, mss_now);
958 }
959 
960 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
961 {
962 	int mss_now;
963 
964 	mss_now = tcp_current_mss(sk);
965 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
966 
967 	return mss_now;
968 }
969 
970 /* In some cases, sendmsg() could have added an skb to the write queue,
971  * but failed adding payload on it. We need to remove it to consume less
972  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
973  * epoll() users. Another reason is that tcp_write_xmit() does not like
974  * finding an empty skb in the write queue.
975  */
976 void tcp_remove_empty_skb(struct sock *sk)
977 {
978 	struct sk_buff *skb = tcp_write_queue_tail(sk);
979 
980 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
981 		tcp_unlink_write_queue(skb, sk);
982 		if (tcp_write_queue_empty(sk))
983 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
984 		tcp_wmem_free_skb(sk, skb);
985 	}
986 }
987 
988 /* skb changing from pure zc to mixed, must charge zc */
989 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
990 {
991 	if (unlikely(skb_zcopy_pure(skb))) {
992 		u32 extra = skb->truesize -
993 			    SKB_TRUESIZE(skb_end_offset(skb));
994 
995 		if (!sk_wmem_schedule(sk, extra))
996 			return -ENOMEM;
997 
998 		sk_mem_charge(sk, extra);
999 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1000 	}
1001 	return 0;
1002 }
1003 
1004 
1005 int tcp_wmem_schedule(struct sock *sk, int copy)
1006 {
1007 	int left;
1008 
1009 	if (likely(sk_wmem_schedule(sk, copy)))
1010 		return copy;
1011 
1012 	/* We could be in trouble if we have nothing queued.
1013 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
1014 	 * to guarantee some progress.
1015 	 */
1016 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1017 	if (left > 0)
1018 		sk_forced_mem_schedule(sk, min(left, copy));
1019 	return min(copy, sk->sk_forward_alloc);
1020 }
1021 
1022 void tcp_free_fastopen_req(struct tcp_sock *tp)
1023 {
1024 	if (tp->fastopen_req) {
1025 		kfree(tp->fastopen_req);
1026 		tp->fastopen_req = NULL;
1027 	}
1028 }
1029 
1030 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1031 			 size_t size, struct ubuf_info *uarg)
1032 {
1033 	struct tcp_sock *tp = tcp_sk(sk);
1034 	struct inet_sock *inet = inet_sk(sk);
1035 	struct sockaddr *uaddr = msg->msg_name;
1036 	int err, flags;
1037 
1038 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1039 	      TFO_CLIENT_ENABLE) ||
1040 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1041 	     uaddr->sa_family == AF_UNSPEC))
1042 		return -EOPNOTSUPP;
1043 	if (tp->fastopen_req)
1044 		return -EALREADY; /* Another Fast Open is in progress */
1045 
1046 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1047 				   sk->sk_allocation);
1048 	if (unlikely(!tp->fastopen_req))
1049 		return -ENOBUFS;
1050 	tp->fastopen_req->data = msg;
1051 	tp->fastopen_req->size = size;
1052 	tp->fastopen_req->uarg = uarg;
1053 
1054 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1055 		err = tcp_connect(sk);
1056 		/* Same failure procedure as in tcp_v4/6_connect */
1057 		if (err) {
1058 			tcp_set_state(sk, TCP_CLOSE);
1059 			inet->inet_dport = 0;
1060 			sk->sk_route_caps = 0;
1061 		}
1062 	}
1063 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1064 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1065 				    msg->msg_namelen, flags, 1);
1066 	/* fastopen_req could already be freed in __inet_stream_connect
1067 	 * if the connection times out or gets rst
1068 	 */
1069 	if (tp->fastopen_req) {
1070 		*copied = tp->fastopen_req->copied;
1071 		tcp_free_fastopen_req(tp);
1072 		inet_clear_bit(DEFER_CONNECT, sk);
1073 	}
1074 	return err;
1075 }
1076 
1077 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1078 {
1079 	struct net_devmem_dmabuf_binding *binding = NULL;
1080 	struct tcp_sock *tp = tcp_sk(sk);
1081 	struct ubuf_info *uarg = NULL;
1082 	struct sk_buff *skb;
1083 	struct sockcm_cookie sockc;
1084 	int flags, err, copied = 0;
1085 	int mss_now = 0, size_goal, copied_syn = 0;
1086 	int process_backlog = 0;
1087 	int sockc_err = 0;
1088 	int zc = 0;
1089 	long timeo;
1090 
1091 	flags = msg->msg_flags;
1092 
1093 	sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1094 	if (msg->msg_controllen) {
1095 		sockc_err = sock_cmsg_send(sk, msg, &sockc);
1096 		/* Don't return error until MSG_FASTOPEN has been processed;
1097 		 * that may succeed even if the cmsg is invalid.
1098 		 */
1099 	}
1100 
1101 	if ((flags & MSG_ZEROCOPY) && size) {
1102 		if (msg->msg_ubuf) {
1103 			uarg = msg->msg_ubuf;
1104 			if (sk->sk_route_caps & NETIF_F_SG)
1105 				zc = MSG_ZEROCOPY;
1106 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1107 			skb = tcp_write_queue_tail(sk);
1108 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1109 						    !sockc_err && sockc.dmabuf_id);
1110 			if (!uarg) {
1111 				err = -ENOBUFS;
1112 				goto out_err;
1113 			}
1114 			if (sk->sk_route_caps & NETIF_F_SG)
1115 				zc = MSG_ZEROCOPY;
1116 			else
1117 				uarg_to_msgzc(uarg)->zerocopy = 0;
1118 
1119 			if (!sockc_err && sockc.dmabuf_id) {
1120 				binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1121 				if (IS_ERR(binding)) {
1122 					err = PTR_ERR(binding);
1123 					binding = NULL;
1124 					goto out_err;
1125 				}
1126 			}
1127 		}
1128 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1129 		if (sk->sk_route_caps & NETIF_F_SG)
1130 			zc = MSG_SPLICE_PAGES;
1131 	}
1132 
1133 	if (!sockc_err && sockc.dmabuf_id &&
1134 	    (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1135 		err = -EINVAL;
1136 		goto out_err;
1137 	}
1138 
1139 	if (unlikely(flags & MSG_FASTOPEN ||
1140 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1141 	    !tp->repair) {
1142 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1143 		if (err == -EINPROGRESS && copied_syn > 0)
1144 			goto out;
1145 		else if (err)
1146 			goto out_err;
1147 	}
1148 
1149 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1150 
1151 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1152 
1153 	/* Wait for a connection to finish. One exception is TCP Fast Open
1154 	 * (passive side) where data is allowed to be sent before a connection
1155 	 * is fully established.
1156 	 */
1157 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1158 	    !tcp_passive_fastopen(sk)) {
1159 		err = sk_stream_wait_connect(sk, &timeo);
1160 		if (err != 0)
1161 			goto do_error;
1162 	}
1163 
1164 	if (unlikely(tp->repair)) {
1165 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1166 			copied = tcp_send_rcvq(sk, msg, size);
1167 			goto out_nopush;
1168 		}
1169 
1170 		err = -EINVAL;
1171 		if (tp->repair_queue == TCP_NO_QUEUE)
1172 			goto out_err;
1173 
1174 		/* 'common' sending to sendq */
1175 	}
1176 
1177 	if (sockc_err) {
1178 		err = sockc_err;
1179 		goto out_err;
1180 	}
1181 
1182 	/* This should be in poll */
1183 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1184 
1185 	/* Ok commence sending. */
1186 	copied = 0;
1187 
1188 restart:
1189 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1190 
1191 	err = -EPIPE;
1192 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1193 		goto do_error;
1194 
1195 	while (msg_data_left(msg)) {
1196 		int copy = 0;
1197 
1198 		skb = tcp_write_queue_tail(sk);
1199 		if (skb)
1200 			copy = size_goal - skb->len;
1201 
1202 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1203 
1204 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1205 			bool first_skb;
1206 
1207 new_segment:
1208 			if (!sk_stream_memory_free(sk))
1209 				goto wait_for_space;
1210 
1211 			if (unlikely(process_backlog >= 16)) {
1212 				process_backlog = 0;
1213 				if (sk_flush_backlog(sk))
1214 					goto restart;
1215 			}
1216 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1217 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1218 						   first_skb);
1219 			if (!skb)
1220 				goto wait_for_space;
1221 
1222 			process_backlog++;
1223 
1224 #ifdef CONFIG_SKB_DECRYPTED
1225 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1226 #endif
1227 			tcp_skb_entail(sk, skb);
1228 			copy = size_goal;
1229 
1230 			/* All packets are restored as if they have
1231 			 * already been sent. skb_mstamp_ns isn't set to
1232 			 * avoid wrong rtt estimation.
1233 			 */
1234 			if (tp->repair)
1235 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1236 		}
1237 
1238 		/* Try to append data to the end of skb. */
1239 		if (copy > msg_data_left(msg))
1240 			copy = msg_data_left(msg);
1241 
1242 		if (zc == 0) {
1243 			bool merge = true;
1244 			int i = skb_shinfo(skb)->nr_frags;
1245 			struct page_frag *pfrag = sk_page_frag(sk);
1246 
1247 			if (!sk_page_frag_refill(sk, pfrag))
1248 				goto wait_for_space;
1249 
1250 			if (!skb_can_coalesce(skb, i, pfrag->page,
1251 					      pfrag->offset)) {
1252 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1253 					tcp_mark_push(tp, skb);
1254 					goto new_segment;
1255 				}
1256 				merge = false;
1257 			}
1258 
1259 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1260 
1261 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1262 				if (tcp_downgrade_zcopy_pure(sk, skb))
1263 					goto wait_for_space;
1264 				skb_zcopy_downgrade_managed(skb);
1265 			}
1266 
1267 			copy = tcp_wmem_schedule(sk, copy);
1268 			if (!copy)
1269 				goto wait_for_space;
1270 
1271 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1272 						       pfrag->page,
1273 						       pfrag->offset,
1274 						       copy);
1275 			if (err)
1276 				goto do_error;
1277 
1278 			/* Update the skb. */
1279 			if (merge) {
1280 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1281 			} else {
1282 				skb_fill_page_desc(skb, i, pfrag->page,
1283 						   pfrag->offset, copy);
1284 				page_ref_inc(pfrag->page);
1285 			}
1286 			pfrag->offset += copy;
1287 		} else if (zc == MSG_ZEROCOPY)  {
1288 			/* First append to a fragless skb builds initial
1289 			 * pure zerocopy skb
1290 			 */
1291 			if (!skb->len)
1292 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1293 
1294 			if (!skb_zcopy_pure(skb)) {
1295 				copy = tcp_wmem_schedule(sk, copy);
1296 				if (!copy)
1297 					goto wait_for_space;
1298 			}
1299 
1300 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1301 						       binding);
1302 			if (err == -EMSGSIZE || err == -EEXIST) {
1303 				tcp_mark_push(tp, skb);
1304 				goto new_segment;
1305 			}
1306 			if (err < 0)
1307 				goto do_error;
1308 			copy = err;
1309 		} else if (zc == MSG_SPLICE_PAGES) {
1310 			/* Splice in data if we can; copy if we can't. */
1311 			if (tcp_downgrade_zcopy_pure(sk, skb))
1312 				goto wait_for_space;
1313 			copy = tcp_wmem_schedule(sk, copy);
1314 			if (!copy)
1315 				goto wait_for_space;
1316 
1317 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1318 			if (err < 0) {
1319 				if (err == -EMSGSIZE) {
1320 					tcp_mark_push(tp, skb);
1321 					goto new_segment;
1322 				}
1323 				goto do_error;
1324 			}
1325 			copy = err;
1326 
1327 			if (!(flags & MSG_NO_SHARED_FRAGS))
1328 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1329 
1330 			sk_wmem_queued_add(sk, copy);
1331 			sk_mem_charge(sk, copy);
1332 		}
1333 
1334 		if (!copied)
1335 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1336 
1337 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1338 		TCP_SKB_CB(skb)->end_seq += copy;
1339 		tcp_skb_pcount_set(skb, 0);
1340 
1341 		copied += copy;
1342 		if (!msg_data_left(msg)) {
1343 			if (unlikely(flags & MSG_EOR))
1344 				TCP_SKB_CB(skb)->eor = 1;
1345 			goto out;
1346 		}
1347 
1348 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1349 			continue;
1350 
1351 		if (forced_push(tp)) {
1352 			tcp_mark_push(tp, skb);
1353 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1354 		} else if (skb == tcp_send_head(sk))
1355 			tcp_push_one(sk, mss_now);
1356 		continue;
1357 
1358 wait_for_space:
1359 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1360 		tcp_remove_empty_skb(sk);
1361 		if (copied)
1362 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1363 				 TCP_NAGLE_PUSH, size_goal);
1364 
1365 		err = sk_stream_wait_memory(sk, &timeo);
1366 		if (err != 0)
1367 			goto do_error;
1368 
1369 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1370 	}
1371 
1372 out:
1373 	if (copied) {
1374 		tcp_tx_timestamp(sk, &sockc);
1375 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1376 	}
1377 out_nopush:
1378 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1379 	if (uarg && !msg->msg_ubuf)
1380 		net_zcopy_put(uarg);
1381 	if (binding)
1382 		net_devmem_dmabuf_binding_put(binding);
1383 	return copied + copied_syn;
1384 
1385 do_error:
1386 	tcp_remove_empty_skb(sk);
1387 
1388 	if (copied + copied_syn)
1389 		goto out;
1390 out_err:
1391 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1392 	if (uarg && !msg->msg_ubuf)
1393 		net_zcopy_put_abort(uarg, true);
1394 	err = sk_stream_error(sk, flags, err);
1395 	/* make sure we wake any epoll edge trigger waiter */
1396 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1397 		sk->sk_write_space(sk);
1398 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1399 	}
1400 	if (binding)
1401 		net_devmem_dmabuf_binding_put(binding);
1402 
1403 	return err;
1404 }
1405 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1406 
1407 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1408 {
1409 	int ret;
1410 
1411 	lock_sock(sk);
1412 	ret = tcp_sendmsg_locked(sk, msg, size);
1413 	release_sock(sk);
1414 
1415 	return ret;
1416 }
1417 EXPORT_SYMBOL(tcp_sendmsg);
1418 
1419 void tcp_splice_eof(struct socket *sock)
1420 {
1421 	struct sock *sk = sock->sk;
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 	int mss_now, size_goal;
1424 
1425 	if (!tcp_write_queue_tail(sk))
1426 		return;
1427 
1428 	lock_sock(sk);
1429 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1430 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1431 	release_sock(sk);
1432 }
1433 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1434 
1435 /*
1436  *	Handle reading urgent data. BSD has very simple semantics for
1437  *	this, no blocking and very strange errors 8)
1438  */
1439 
1440 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1441 {
1442 	struct tcp_sock *tp = tcp_sk(sk);
1443 
1444 	/* No URG data to read. */
1445 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1446 	    tp->urg_data == TCP_URG_READ)
1447 		return -EINVAL;	/* Yes this is right ! */
1448 
1449 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1450 		return -ENOTCONN;
1451 
1452 	if (tp->urg_data & TCP_URG_VALID) {
1453 		int err = 0;
1454 		char c = tp->urg_data;
1455 
1456 		if (!(flags & MSG_PEEK))
1457 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1458 
1459 		/* Read urgent data. */
1460 		msg->msg_flags |= MSG_OOB;
1461 
1462 		if (len > 0) {
1463 			if (!(flags & MSG_TRUNC))
1464 				err = memcpy_to_msg(msg, &c, 1);
1465 			len = 1;
1466 		} else
1467 			msg->msg_flags |= MSG_TRUNC;
1468 
1469 		return err ? -EFAULT : len;
1470 	}
1471 
1472 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1473 		return 0;
1474 
1475 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1476 	 * the available implementations agree in this case:
1477 	 * this call should never block, independent of the
1478 	 * blocking state of the socket.
1479 	 * Mike <pall@rz.uni-karlsruhe.de>
1480 	 */
1481 	return -EAGAIN;
1482 }
1483 
1484 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1485 {
1486 	struct sk_buff *skb;
1487 	int copied = 0, err = 0;
1488 
1489 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1490 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1491 		if (err)
1492 			return err;
1493 		copied += skb->len;
1494 	}
1495 
1496 	skb_queue_walk(&sk->sk_write_queue, skb) {
1497 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1498 		if (err)
1499 			break;
1500 
1501 		copied += skb->len;
1502 	}
1503 
1504 	return err ?: copied;
1505 }
1506 
1507 /* Clean up the receive buffer for full frames taken by the user,
1508  * then send an ACK if necessary.  COPIED is the number of bytes
1509  * tcp_recvmsg has given to the user so far, it speeds up the
1510  * calculation of whether or not we must ACK for the sake of
1511  * a window update.
1512  */
1513 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1514 {
1515 	struct tcp_sock *tp = tcp_sk(sk);
1516 	bool time_to_ack = false;
1517 
1518 	if (inet_csk_ack_scheduled(sk)) {
1519 		const struct inet_connection_sock *icsk = inet_csk(sk);
1520 
1521 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1522 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1523 		    /*
1524 		     * If this read emptied read buffer, we send ACK, if
1525 		     * connection is not bidirectional, user drained
1526 		     * receive buffer and there was a small segment
1527 		     * in queue.
1528 		     */
1529 		    (copied > 0 &&
1530 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1531 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1532 		       !inet_csk_in_pingpong_mode(sk))) &&
1533 		      !atomic_read(&sk->sk_rmem_alloc)))
1534 			time_to_ack = true;
1535 	}
1536 
1537 	/* We send an ACK if we can now advertise a non-zero window
1538 	 * which has been raised "significantly".
1539 	 *
1540 	 * Even if window raised up to infinity, do not send window open ACK
1541 	 * in states, where we will not receive more. It is useless.
1542 	 */
1543 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1544 		__u32 rcv_window_now = tcp_receive_window(tp);
1545 
1546 		/* Optimize, __tcp_select_window() is not cheap. */
1547 		if (2*rcv_window_now <= tp->window_clamp) {
1548 			__u32 new_window = __tcp_select_window(sk);
1549 
1550 			/* Send ACK now, if this read freed lots of space
1551 			 * in our buffer. Certainly, new_window is new window.
1552 			 * We can advertise it now, if it is not less than current one.
1553 			 * "Lots" means "at least twice" here.
1554 			 */
1555 			if (new_window && new_window >= 2 * rcv_window_now)
1556 				time_to_ack = true;
1557 		}
1558 	}
1559 	if (time_to_ack)
1560 		tcp_send_ack(sk);
1561 }
1562 
1563 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1564 {
1565 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1566 	struct tcp_sock *tp = tcp_sk(sk);
1567 
1568 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1569 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1570 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1571 	__tcp_cleanup_rbuf(sk, copied);
1572 }
1573 
1574 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1575 {
1576 	__skb_unlink(skb, &sk->sk_receive_queue);
1577 	if (likely(skb->destructor == sock_rfree)) {
1578 		sock_rfree(skb);
1579 		skb->destructor = NULL;
1580 		skb->sk = NULL;
1581 		return skb_attempt_defer_free(skb);
1582 	}
1583 	__kfree_skb(skb);
1584 }
1585 
1586 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1587 {
1588 	struct sk_buff *skb;
1589 	u32 offset;
1590 
1591 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1592 		offset = seq - TCP_SKB_CB(skb)->seq;
1593 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1594 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1595 			offset--;
1596 		}
1597 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1598 			*off = offset;
1599 			return skb;
1600 		}
1601 		/* This looks weird, but this can happen if TCP collapsing
1602 		 * splitted a fat GRO packet, while we released socket lock
1603 		 * in skb_splice_bits()
1604 		 */
1605 		tcp_eat_recv_skb(sk, skb);
1606 	}
1607 	return NULL;
1608 }
1609 EXPORT_SYMBOL(tcp_recv_skb);
1610 
1611 /*
1612  * This routine provides an alternative to tcp_recvmsg() for routines
1613  * that would like to handle copying from skbuffs directly in 'sendfile'
1614  * fashion.
1615  * Note:
1616  *	- It is assumed that the socket was locked by the caller.
1617  *	- The routine does not block.
1618  *	- At present, there is no support for reading OOB data
1619  *	  or for 'peeking' the socket using this routine
1620  *	  (although both would be easy to implement).
1621  */
1622 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1623 			   sk_read_actor_t recv_actor, bool noack,
1624 			   u32 *copied_seq)
1625 {
1626 	struct sk_buff *skb;
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	u32 seq = *copied_seq;
1629 	u32 offset;
1630 	int copied = 0;
1631 
1632 	if (sk->sk_state == TCP_LISTEN)
1633 		return -ENOTCONN;
1634 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1635 		if (offset < skb->len) {
1636 			int used;
1637 			size_t len;
1638 
1639 			len = skb->len - offset;
1640 			/* Stop reading if we hit a patch of urgent data */
1641 			if (unlikely(tp->urg_data)) {
1642 				u32 urg_offset = tp->urg_seq - seq;
1643 				if (urg_offset < len)
1644 					len = urg_offset;
1645 				if (!len)
1646 					break;
1647 			}
1648 			used = recv_actor(desc, skb, offset, len);
1649 			if (used <= 0) {
1650 				if (!copied)
1651 					copied = used;
1652 				break;
1653 			}
1654 			if (WARN_ON_ONCE(used > len))
1655 				used = len;
1656 			seq += used;
1657 			copied += used;
1658 			offset += used;
1659 
1660 			/* If recv_actor drops the lock (e.g. TCP splice
1661 			 * receive) the skb pointer might be invalid when
1662 			 * getting here: tcp_collapse might have deleted it
1663 			 * while aggregating skbs from the socket queue.
1664 			 */
1665 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1666 			if (!skb)
1667 				break;
1668 			/* TCP coalescing might have appended data to the skb.
1669 			 * Try to splice more frags
1670 			 */
1671 			if (offset + 1 != skb->len)
1672 				continue;
1673 		}
1674 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1675 			tcp_eat_recv_skb(sk, skb);
1676 			++seq;
1677 			break;
1678 		}
1679 		tcp_eat_recv_skb(sk, skb);
1680 		if (!desc->count)
1681 			break;
1682 		WRITE_ONCE(*copied_seq, seq);
1683 	}
1684 	WRITE_ONCE(*copied_seq, seq);
1685 
1686 	if (noack)
1687 		goto out;
1688 
1689 	tcp_rcv_space_adjust(sk);
1690 
1691 	/* Clean up data we have read: This will do ACK frames. */
1692 	if (copied > 0) {
1693 		tcp_recv_skb(sk, seq, &offset);
1694 		tcp_cleanup_rbuf(sk, copied);
1695 	}
1696 out:
1697 	return copied;
1698 }
1699 
1700 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1701 		  sk_read_actor_t recv_actor)
1702 {
1703 	return __tcp_read_sock(sk, desc, recv_actor, false,
1704 			       &tcp_sk(sk)->copied_seq);
1705 }
1706 EXPORT_SYMBOL(tcp_read_sock);
1707 
1708 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1709 			sk_read_actor_t recv_actor, bool noack,
1710 			u32 *copied_seq)
1711 {
1712 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1713 }
1714 
1715 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1716 {
1717 	struct sk_buff *skb;
1718 	int copied = 0;
1719 
1720 	if (sk->sk_state == TCP_LISTEN)
1721 		return -ENOTCONN;
1722 
1723 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1724 		u8 tcp_flags;
1725 		int used;
1726 
1727 		__skb_unlink(skb, &sk->sk_receive_queue);
1728 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1729 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1730 		used = recv_actor(sk, skb);
1731 		if (used < 0) {
1732 			if (!copied)
1733 				copied = used;
1734 			break;
1735 		}
1736 		copied += used;
1737 
1738 		if (tcp_flags & TCPHDR_FIN)
1739 			break;
1740 	}
1741 	return copied;
1742 }
1743 EXPORT_IPV6_MOD(tcp_read_skb);
1744 
1745 void tcp_read_done(struct sock *sk, size_t len)
1746 {
1747 	struct tcp_sock *tp = tcp_sk(sk);
1748 	u32 seq = tp->copied_seq;
1749 	struct sk_buff *skb;
1750 	size_t left;
1751 	u32 offset;
1752 
1753 	if (sk->sk_state == TCP_LISTEN)
1754 		return;
1755 
1756 	left = len;
1757 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1758 		int used;
1759 
1760 		used = min_t(size_t, skb->len - offset, left);
1761 		seq += used;
1762 		left -= used;
1763 
1764 		if (skb->len > offset + used)
1765 			break;
1766 
1767 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1768 			tcp_eat_recv_skb(sk, skb);
1769 			++seq;
1770 			break;
1771 		}
1772 		tcp_eat_recv_skb(sk, skb);
1773 	}
1774 	WRITE_ONCE(tp->copied_seq, seq);
1775 
1776 	tcp_rcv_space_adjust(sk);
1777 
1778 	/* Clean up data we have read: This will do ACK frames. */
1779 	if (left != len)
1780 		tcp_cleanup_rbuf(sk, len - left);
1781 }
1782 EXPORT_SYMBOL(tcp_read_done);
1783 
1784 int tcp_peek_len(struct socket *sock)
1785 {
1786 	return tcp_inq(sock->sk);
1787 }
1788 EXPORT_IPV6_MOD(tcp_peek_len);
1789 
1790 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1791 int tcp_set_rcvlowat(struct sock *sk, int val)
1792 {
1793 	struct tcp_sock *tp = tcp_sk(sk);
1794 	int space, cap;
1795 
1796 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1797 		cap = sk->sk_rcvbuf >> 1;
1798 	else
1799 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1800 	val = min(val, cap);
1801 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1802 
1803 	/* Check if we need to signal EPOLLIN right now */
1804 	tcp_data_ready(sk);
1805 
1806 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1807 		return 0;
1808 
1809 	space = tcp_space_from_win(sk, val);
1810 	if (space > sk->sk_rcvbuf) {
1811 		WRITE_ONCE(sk->sk_rcvbuf, space);
1812 
1813 		if (tp->window_clamp && tp->window_clamp < val)
1814 			WRITE_ONCE(tp->window_clamp, val);
1815 	}
1816 	return 0;
1817 }
1818 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1819 
1820 void tcp_update_recv_tstamps(struct sk_buff *skb,
1821 			     struct scm_timestamping_internal *tss)
1822 {
1823 	if (skb->tstamp)
1824 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1825 	else
1826 		tss->ts[0] = (struct timespec64) {0};
1827 
1828 	if (skb_hwtstamps(skb)->hwtstamp)
1829 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1830 	else
1831 		tss->ts[2] = (struct timespec64) {0};
1832 }
1833 
1834 #ifdef CONFIG_MMU
1835 static const struct vm_operations_struct tcp_vm_ops = {
1836 };
1837 
1838 int tcp_mmap(struct file *file, struct socket *sock,
1839 	     struct vm_area_struct *vma)
1840 {
1841 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1842 		return -EPERM;
1843 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1844 
1845 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1846 	vm_flags_set(vma, VM_MIXEDMAP);
1847 
1848 	vma->vm_ops = &tcp_vm_ops;
1849 	return 0;
1850 }
1851 EXPORT_IPV6_MOD(tcp_mmap);
1852 
1853 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1854 				       u32 *offset_frag)
1855 {
1856 	skb_frag_t *frag;
1857 
1858 	if (unlikely(offset_skb >= skb->len))
1859 		return NULL;
1860 
1861 	offset_skb -= skb_headlen(skb);
1862 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1863 		return NULL;
1864 
1865 	frag = skb_shinfo(skb)->frags;
1866 	while (offset_skb) {
1867 		if (skb_frag_size(frag) > offset_skb) {
1868 			*offset_frag = offset_skb;
1869 			return frag;
1870 		}
1871 		offset_skb -= skb_frag_size(frag);
1872 		++frag;
1873 	}
1874 	*offset_frag = 0;
1875 	return frag;
1876 }
1877 
1878 static bool can_map_frag(const skb_frag_t *frag)
1879 {
1880 	struct page *page;
1881 
1882 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1883 		return false;
1884 
1885 	page = skb_frag_page(frag);
1886 
1887 	if (PageCompound(page) || page->mapping)
1888 		return false;
1889 
1890 	return true;
1891 }
1892 
1893 static int find_next_mappable_frag(const skb_frag_t *frag,
1894 				   int remaining_in_skb)
1895 {
1896 	int offset = 0;
1897 
1898 	if (likely(can_map_frag(frag)))
1899 		return 0;
1900 
1901 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1902 		offset += skb_frag_size(frag);
1903 		++frag;
1904 	}
1905 	return offset;
1906 }
1907 
1908 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1909 					  struct tcp_zerocopy_receive *zc,
1910 					  struct sk_buff *skb, u32 offset)
1911 {
1912 	u32 frag_offset, partial_frag_remainder = 0;
1913 	int mappable_offset;
1914 	skb_frag_t *frag;
1915 
1916 	/* worst case: skip to next skb. try to improve on this case below */
1917 	zc->recv_skip_hint = skb->len - offset;
1918 
1919 	/* Find the frag containing this offset (and how far into that frag) */
1920 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1921 	if (!frag)
1922 		return;
1923 
1924 	if (frag_offset) {
1925 		struct skb_shared_info *info = skb_shinfo(skb);
1926 
1927 		/* We read part of the last frag, must recvmsg() rest of skb. */
1928 		if (frag == &info->frags[info->nr_frags - 1])
1929 			return;
1930 
1931 		/* Else, we must at least read the remainder in this frag. */
1932 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1933 		zc->recv_skip_hint -= partial_frag_remainder;
1934 		++frag;
1935 	}
1936 
1937 	/* partial_frag_remainder: If part way through a frag, must read rest.
1938 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1939 	 * in partial_frag_remainder.
1940 	 */
1941 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1942 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1943 }
1944 
1945 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1946 			      int flags, struct scm_timestamping_internal *tss,
1947 			      int *cmsg_flags);
1948 static int receive_fallback_to_copy(struct sock *sk,
1949 				    struct tcp_zerocopy_receive *zc, int inq,
1950 				    struct scm_timestamping_internal *tss)
1951 {
1952 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1953 	struct msghdr msg = {};
1954 	int err;
1955 
1956 	zc->length = 0;
1957 	zc->recv_skip_hint = 0;
1958 
1959 	if (copy_address != zc->copybuf_address)
1960 		return -EINVAL;
1961 
1962 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1963 			  &msg.msg_iter);
1964 	if (err)
1965 		return err;
1966 
1967 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1968 				 tss, &zc->msg_flags);
1969 	if (err < 0)
1970 		return err;
1971 
1972 	zc->copybuf_len = err;
1973 	if (likely(zc->copybuf_len)) {
1974 		struct sk_buff *skb;
1975 		u32 offset;
1976 
1977 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1978 		if (skb)
1979 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1980 	}
1981 	return 0;
1982 }
1983 
1984 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1985 				   struct sk_buff *skb, u32 copylen,
1986 				   u32 *offset, u32 *seq)
1987 {
1988 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1989 	struct msghdr msg = {};
1990 	int err;
1991 
1992 	if (copy_address != zc->copybuf_address)
1993 		return -EINVAL;
1994 
1995 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1996 			  &msg.msg_iter);
1997 	if (err)
1998 		return err;
1999 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2000 	if (err)
2001 		return err;
2002 	zc->recv_skip_hint -= copylen;
2003 	*offset += copylen;
2004 	*seq += copylen;
2005 	return (__s32)copylen;
2006 }
2007 
2008 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2009 				  struct sock *sk,
2010 				  struct sk_buff *skb,
2011 				  u32 *seq,
2012 				  s32 copybuf_len,
2013 				  struct scm_timestamping_internal *tss)
2014 {
2015 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2016 
2017 	if (!copylen)
2018 		return 0;
2019 	/* skb is null if inq < PAGE_SIZE. */
2020 	if (skb) {
2021 		offset = *seq - TCP_SKB_CB(skb)->seq;
2022 	} else {
2023 		skb = tcp_recv_skb(sk, *seq, &offset);
2024 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2025 			tcp_update_recv_tstamps(skb, tss);
2026 			zc->msg_flags |= TCP_CMSG_TS;
2027 		}
2028 	}
2029 
2030 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2031 						  seq);
2032 	return zc->copybuf_len < 0 ? 0 : copylen;
2033 }
2034 
2035 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2036 					      struct page **pending_pages,
2037 					      unsigned long pages_remaining,
2038 					      unsigned long *address,
2039 					      u32 *length,
2040 					      u32 *seq,
2041 					      struct tcp_zerocopy_receive *zc,
2042 					      u32 total_bytes_to_map,
2043 					      int err)
2044 {
2045 	/* At least one page did not map. Try zapping if we skipped earlier. */
2046 	if (err == -EBUSY &&
2047 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2048 		u32 maybe_zap_len;
2049 
2050 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2051 				*length + /* Mapped or pending */
2052 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2053 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2054 		err = 0;
2055 	}
2056 
2057 	if (!err) {
2058 		unsigned long leftover_pages = pages_remaining;
2059 		int bytes_mapped;
2060 
2061 		/* We called zap_page_range_single, try to reinsert. */
2062 		err = vm_insert_pages(vma, *address,
2063 				      pending_pages,
2064 				      &pages_remaining);
2065 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2066 		*seq += bytes_mapped;
2067 		*address += bytes_mapped;
2068 	}
2069 	if (err) {
2070 		/* Either we were unable to zap, OR we zapped, retried an
2071 		 * insert, and still had an issue. Either ways, pages_remaining
2072 		 * is the number of pages we were unable to map, and we unroll
2073 		 * some state we speculatively touched before.
2074 		 */
2075 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2076 
2077 		*length -= bytes_not_mapped;
2078 		zc->recv_skip_hint += bytes_not_mapped;
2079 	}
2080 	return err;
2081 }
2082 
2083 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2084 					struct page **pages,
2085 					unsigned int pages_to_map,
2086 					unsigned long *address,
2087 					u32 *length,
2088 					u32 *seq,
2089 					struct tcp_zerocopy_receive *zc,
2090 					u32 total_bytes_to_map)
2091 {
2092 	unsigned long pages_remaining = pages_to_map;
2093 	unsigned int pages_mapped;
2094 	unsigned int bytes_mapped;
2095 	int err;
2096 
2097 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2098 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2099 	bytes_mapped = PAGE_SIZE * pages_mapped;
2100 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2101 	 * mapping (some but not all of the pages).
2102 	 */
2103 	*seq += bytes_mapped;
2104 	*address += bytes_mapped;
2105 
2106 	if (likely(!err))
2107 		return 0;
2108 
2109 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2110 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2111 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2112 		err);
2113 }
2114 
2115 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2116 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2117 				      struct tcp_zerocopy_receive *zc,
2118 				      struct scm_timestamping_internal *tss)
2119 {
2120 	unsigned long msg_control_addr;
2121 	struct msghdr cmsg_dummy;
2122 
2123 	msg_control_addr = (unsigned long)zc->msg_control;
2124 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2125 	cmsg_dummy.msg_controllen =
2126 		(__kernel_size_t)zc->msg_controllen;
2127 	cmsg_dummy.msg_flags = in_compat_syscall()
2128 		? MSG_CMSG_COMPAT : 0;
2129 	cmsg_dummy.msg_control_is_user = true;
2130 	zc->msg_flags = 0;
2131 	if (zc->msg_control == msg_control_addr &&
2132 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2133 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2134 		zc->msg_control = (__u64)
2135 			((uintptr_t)cmsg_dummy.msg_control_user);
2136 		zc->msg_controllen =
2137 			(__u64)cmsg_dummy.msg_controllen;
2138 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2139 	}
2140 }
2141 
2142 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2143 					   unsigned long address,
2144 					   bool *mmap_locked)
2145 {
2146 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2147 
2148 	if (vma) {
2149 		if (vma->vm_ops != &tcp_vm_ops) {
2150 			vma_end_read(vma);
2151 			return NULL;
2152 		}
2153 		*mmap_locked = false;
2154 		return vma;
2155 	}
2156 
2157 	mmap_read_lock(mm);
2158 	vma = vma_lookup(mm, address);
2159 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2160 		mmap_read_unlock(mm);
2161 		return NULL;
2162 	}
2163 	*mmap_locked = true;
2164 	return vma;
2165 }
2166 
2167 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2168 static int tcp_zerocopy_receive(struct sock *sk,
2169 				struct tcp_zerocopy_receive *zc,
2170 				struct scm_timestamping_internal *tss)
2171 {
2172 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2173 	unsigned long address = (unsigned long)zc->address;
2174 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2175 	s32 copybuf_len = zc->copybuf_len;
2176 	struct tcp_sock *tp = tcp_sk(sk);
2177 	const skb_frag_t *frags = NULL;
2178 	unsigned int pages_to_map = 0;
2179 	struct vm_area_struct *vma;
2180 	struct sk_buff *skb = NULL;
2181 	u32 seq = tp->copied_seq;
2182 	u32 total_bytes_to_map;
2183 	int inq = tcp_inq(sk);
2184 	bool mmap_locked;
2185 	int ret;
2186 
2187 	zc->copybuf_len = 0;
2188 	zc->msg_flags = 0;
2189 
2190 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2191 		return -EINVAL;
2192 
2193 	if (sk->sk_state == TCP_LISTEN)
2194 		return -ENOTCONN;
2195 
2196 	sock_rps_record_flow(sk);
2197 
2198 	if (inq && inq <= copybuf_len)
2199 		return receive_fallback_to_copy(sk, zc, inq, tss);
2200 
2201 	if (inq < PAGE_SIZE) {
2202 		zc->length = 0;
2203 		zc->recv_skip_hint = inq;
2204 		if (!inq && sock_flag(sk, SOCK_DONE))
2205 			return -EIO;
2206 		return 0;
2207 	}
2208 
2209 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2210 	if (!vma)
2211 		return -EINVAL;
2212 
2213 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2214 	avail_len = min_t(u32, vma_len, inq);
2215 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2216 	if (total_bytes_to_map) {
2217 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2218 			zap_page_range_single(vma, address, total_bytes_to_map,
2219 					      NULL);
2220 		zc->length = total_bytes_to_map;
2221 		zc->recv_skip_hint = 0;
2222 	} else {
2223 		zc->length = avail_len;
2224 		zc->recv_skip_hint = avail_len;
2225 	}
2226 	ret = 0;
2227 	while (length + PAGE_SIZE <= zc->length) {
2228 		int mappable_offset;
2229 		struct page *page;
2230 
2231 		if (zc->recv_skip_hint < PAGE_SIZE) {
2232 			u32 offset_frag;
2233 
2234 			if (skb) {
2235 				if (zc->recv_skip_hint > 0)
2236 					break;
2237 				skb = skb->next;
2238 				offset = seq - TCP_SKB_CB(skb)->seq;
2239 			} else {
2240 				skb = tcp_recv_skb(sk, seq, &offset);
2241 			}
2242 
2243 			if (!skb_frags_readable(skb))
2244 				break;
2245 
2246 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2247 				tcp_update_recv_tstamps(skb, tss);
2248 				zc->msg_flags |= TCP_CMSG_TS;
2249 			}
2250 			zc->recv_skip_hint = skb->len - offset;
2251 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2252 			if (!frags || offset_frag)
2253 				break;
2254 		}
2255 
2256 		mappable_offset = find_next_mappable_frag(frags,
2257 							  zc->recv_skip_hint);
2258 		if (mappable_offset) {
2259 			zc->recv_skip_hint = mappable_offset;
2260 			break;
2261 		}
2262 		page = skb_frag_page(frags);
2263 		if (WARN_ON_ONCE(!page))
2264 			break;
2265 
2266 		prefetchw(page);
2267 		pages[pages_to_map++] = page;
2268 		length += PAGE_SIZE;
2269 		zc->recv_skip_hint -= PAGE_SIZE;
2270 		frags++;
2271 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2272 		    zc->recv_skip_hint < PAGE_SIZE) {
2273 			/* Either full batch, or we're about to go to next skb
2274 			 * (and we cannot unroll failed ops across skbs).
2275 			 */
2276 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2277 							   pages_to_map,
2278 							   &address, &length,
2279 							   &seq, zc,
2280 							   total_bytes_to_map);
2281 			if (ret)
2282 				goto out;
2283 			pages_to_map = 0;
2284 		}
2285 	}
2286 	if (pages_to_map) {
2287 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2288 						   &address, &length, &seq,
2289 						   zc, total_bytes_to_map);
2290 	}
2291 out:
2292 	if (mmap_locked)
2293 		mmap_read_unlock(current->mm);
2294 	else
2295 		vma_end_read(vma);
2296 	/* Try to copy straggler data. */
2297 	if (!ret)
2298 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2299 
2300 	if (length + copylen) {
2301 		WRITE_ONCE(tp->copied_seq, seq);
2302 		tcp_rcv_space_adjust(sk);
2303 
2304 		/* Clean up data we have read: This will do ACK frames. */
2305 		tcp_recv_skb(sk, seq, &offset);
2306 		tcp_cleanup_rbuf(sk, length + copylen);
2307 		ret = 0;
2308 		if (length == zc->length)
2309 			zc->recv_skip_hint = 0;
2310 	} else {
2311 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2312 			ret = -EIO;
2313 	}
2314 	zc->length = length;
2315 	return ret;
2316 }
2317 #endif
2318 
2319 /* Similar to __sock_recv_timestamp, but does not require an skb */
2320 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2321 			struct scm_timestamping_internal *tss)
2322 {
2323 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2324 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2325 	bool has_timestamping = false;
2326 
2327 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2328 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2329 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2330 				if (new_tstamp) {
2331 					struct __kernel_timespec kts = {
2332 						.tv_sec = tss->ts[0].tv_sec,
2333 						.tv_nsec = tss->ts[0].tv_nsec,
2334 					};
2335 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2336 						 sizeof(kts), &kts);
2337 				} else {
2338 					struct __kernel_old_timespec ts_old = {
2339 						.tv_sec = tss->ts[0].tv_sec,
2340 						.tv_nsec = tss->ts[0].tv_nsec,
2341 					};
2342 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2343 						 sizeof(ts_old), &ts_old);
2344 				}
2345 			} else {
2346 				if (new_tstamp) {
2347 					struct __kernel_sock_timeval stv = {
2348 						.tv_sec = tss->ts[0].tv_sec,
2349 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2350 					};
2351 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2352 						 sizeof(stv), &stv);
2353 				} else {
2354 					struct __kernel_old_timeval tv = {
2355 						.tv_sec = tss->ts[0].tv_sec,
2356 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2357 					};
2358 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2359 						 sizeof(tv), &tv);
2360 				}
2361 			}
2362 		}
2363 
2364 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2365 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2366 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2367 			has_timestamping = true;
2368 		else
2369 			tss->ts[0] = (struct timespec64) {0};
2370 	}
2371 
2372 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2373 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2374 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2375 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2376 			has_timestamping = true;
2377 		else
2378 			tss->ts[2] = (struct timespec64) {0};
2379 	}
2380 
2381 	if (has_timestamping) {
2382 		tss->ts[1] = (struct timespec64) {0};
2383 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2384 			put_cmsg_scm_timestamping64(msg, tss);
2385 		else
2386 			put_cmsg_scm_timestamping(msg, tss);
2387 	}
2388 }
2389 
2390 static int tcp_inq_hint(struct sock *sk)
2391 {
2392 	const struct tcp_sock *tp = tcp_sk(sk);
2393 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2394 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2395 	int inq;
2396 
2397 	inq = rcv_nxt - copied_seq;
2398 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2399 		lock_sock(sk);
2400 		inq = tp->rcv_nxt - tp->copied_seq;
2401 		release_sock(sk);
2402 	}
2403 	/* After receiving a FIN, tell the user-space to continue reading
2404 	 * by returning a non-zero inq.
2405 	 */
2406 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2407 		inq = 1;
2408 	return inq;
2409 }
2410 
2411 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2412 struct tcp_xa_pool {
2413 	u8		max; /* max <= MAX_SKB_FRAGS */
2414 	u8		idx; /* idx <= max */
2415 	__u32		tokens[MAX_SKB_FRAGS];
2416 	netmem_ref	netmems[MAX_SKB_FRAGS];
2417 };
2418 
2419 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2420 {
2421 	int i;
2422 
2423 	/* Commit part that has been copied to user space. */
2424 	for (i = 0; i < p->idx; i++)
2425 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2426 			     (__force void *)p->netmems[i], GFP_KERNEL);
2427 	/* Rollback what has been pre-allocated and is no longer needed. */
2428 	for (; i < p->max; i++)
2429 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2430 
2431 	p->max = 0;
2432 	p->idx = 0;
2433 }
2434 
2435 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2436 {
2437 	if (!p->max)
2438 		return;
2439 
2440 	xa_lock_bh(&sk->sk_user_frags);
2441 
2442 	tcp_xa_pool_commit_locked(sk, p);
2443 
2444 	xa_unlock_bh(&sk->sk_user_frags);
2445 }
2446 
2447 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2448 			      unsigned int max_frags)
2449 {
2450 	int err, k;
2451 
2452 	if (p->idx < p->max)
2453 		return 0;
2454 
2455 	xa_lock_bh(&sk->sk_user_frags);
2456 
2457 	tcp_xa_pool_commit_locked(sk, p);
2458 
2459 	for (k = 0; k < max_frags; k++) {
2460 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2461 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2462 		if (err)
2463 			break;
2464 	}
2465 
2466 	xa_unlock_bh(&sk->sk_user_frags);
2467 
2468 	p->max = k;
2469 	p->idx = 0;
2470 	return k ? 0 : err;
2471 }
2472 
2473 /* On error, returns the -errno. On success, returns number of bytes sent to the
2474  * user. May not consume all of @remaining_len.
2475  */
2476 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2477 			      unsigned int offset, struct msghdr *msg,
2478 			      int remaining_len)
2479 {
2480 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2481 	struct tcp_xa_pool tcp_xa_pool;
2482 	unsigned int start;
2483 	int i, copy, n;
2484 	int sent = 0;
2485 	int err = 0;
2486 
2487 	tcp_xa_pool.max = 0;
2488 	tcp_xa_pool.idx = 0;
2489 	do {
2490 		start = skb_headlen(skb);
2491 
2492 		if (skb_frags_readable(skb)) {
2493 			err = -ENODEV;
2494 			goto out;
2495 		}
2496 
2497 		/* Copy header. */
2498 		copy = start - offset;
2499 		if (copy > 0) {
2500 			copy = min(copy, remaining_len);
2501 
2502 			n = copy_to_iter(skb->data + offset, copy,
2503 					 &msg->msg_iter);
2504 			if (n != copy) {
2505 				err = -EFAULT;
2506 				goto out;
2507 			}
2508 
2509 			offset += copy;
2510 			remaining_len -= copy;
2511 
2512 			/* First a dmabuf_cmsg for # bytes copied to user
2513 			 * buffer.
2514 			 */
2515 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2516 			dmabuf_cmsg.frag_size = copy;
2517 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2518 					       SO_DEVMEM_LINEAR,
2519 					       sizeof(dmabuf_cmsg),
2520 					       &dmabuf_cmsg);
2521 			if (err)
2522 				goto out;
2523 
2524 			sent += copy;
2525 
2526 			if (remaining_len == 0)
2527 				goto out;
2528 		}
2529 
2530 		/* after that, send information of dmabuf pages through a
2531 		 * sequence of cmsg
2532 		 */
2533 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2534 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2535 			struct net_iov *niov;
2536 			u64 frag_offset;
2537 			int end;
2538 
2539 			/* !skb_frags_readable() should indicate that ALL the
2540 			 * frags in this skb are dmabuf net_iovs. We're checking
2541 			 * for that flag above, but also check individual frags
2542 			 * here. If the tcp stack is not setting
2543 			 * skb_frags_readable() correctly, we still don't want
2544 			 * to crash here.
2545 			 */
2546 			if (!skb_frag_net_iov(frag)) {
2547 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2548 				err = -ENODEV;
2549 				goto out;
2550 			}
2551 
2552 			niov = skb_frag_net_iov(frag);
2553 			if (!net_is_devmem_iov(niov)) {
2554 				err = -ENODEV;
2555 				goto out;
2556 			}
2557 
2558 			end = start + skb_frag_size(frag);
2559 			copy = end - offset;
2560 
2561 			if (copy > 0) {
2562 				copy = min(copy, remaining_len);
2563 
2564 				frag_offset = net_iov_virtual_addr(niov) +
2565 					      skb_frag_off(frag) + offset -
2566 					      start;
2567 				dmabuf_cmsg.frag_offset = frag_offset;
2568 				dmabuf_cmsg.frag_size = copy;
2569 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2570 							 skb_shinfo(skb)->nr_frags - i);
2571 				if (err)
2572 					goto out;
2573 
2574 				/* Will perform the exchange later */
2575 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2576 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2577 
2578 				offset += copy;
2579 				remaining_len -= copy;
2580 
2581 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2582 						       SO_DEVMEM_DMABUF,
2583 						       sizeof(dmabuf_cmsg),
2584 						       &dmabuf_cmsg);
2585 				if (err)
2586 					goto out;
2587 
2588 				atomic_long_inc(&niov->pp_ref_count);
2589 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2590 
2591 				sent += copy;
2592 
2593 				if (remaining_len == 0)
2594 					goto out;
2595 			}
2596 			start = end;
2597 		}
2598 
2599 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2600 		if (!remaining_len)
2601 			goto out;
2602 
2603 		/* if remaining_len is not satisfied yet, we need to go to the
2604 		 * next frag in the frag_list to satisfy remaining_len.
2605 		 */
2606 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2607 
2608 		offset = offset - start;
2609 	} while (skb);
2610 
2611 	if (remaining_len) {
2612 		err = -EFAULT;
2613 		goto out;
2614 	}
2615 
2616 out:
2617 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2618 	if (!sent)
2619 		sent = err;
2620 
2621 	return sent;
2622 }
2623 
2624 /*
2625  *	This routine copies from a sock struct into the user buffer.
2626  *
2627  *	Technical note: in 2.3 we work on _locked_ socket, so that
2628  *	tricks with *seq access order and skb->users are not required.
2629  *	Probably, code can be easily improved even more.
2630  */
2631 
2632 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2633 			      int flags, struct scm_timestamping_internal *tss,
2634 			      int *cmsg_flags)
2635 {
2636 	struct tcp_sock *tp = tcp_sk(sk);
2637 	int last_copied_dmabuf = -1; /* uninitialized */
2638 	int copied = 0;
2639 	u32 peek_seq;
2640 	u32 *seq;
2641 	unsigned long used;
2642 	int err;
2643 	int target;		/* Read at least this many bytes */
2644 	long timeo;
2645 	struct sk_buff *skb, *last;
2646 	u32 peek_offset = 0;
2647 	u32 urg_hole = 0;
2648 
2649 	err = -ENOTCONN;
2650 	if (sk->sk_state == TCP_LISTEN)
2651 		goto out;
2652 
2653 	if (tp->recvmsg_inq) {
2654 		*cmsg_flags = TCP_CMSG_INQ;
2655 		msg->msg_get_inq = 1;
2656 	}
2657 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2658 
2659 	/* Urgent data needs to be handled specially. */
2660 	if (flags & MSG_OOB)
2661 		goto recv_urg;
2662 
2663 	if (unlikely(tp->repair)) {
2664 		err = -EPERM;
2665 		if (!(flags & MSG_PEEK))
2666 			goto out;
2667 
2668 		if (tp->repair_queue == TCP_SEND_QUEUE)
2669 			goto recv_sndq;
2670 
2671 		err = -EINVAL;
2672 		if (tp->repair_queue == TCP_NO_QUEUE)
2673 			goto out;
2674 
2675 		/* 'common' recv queue MSG_PEEK-ing */
2676 	}
2677 
2678 	seq = &tp->copied_seq;
2679 	if (flags & MSG_PEEK) {
2680 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2681 		peek_seq = tp->copied_seq + peek_offset;
2682 		seq = &peek_seq;
2683 	}
2684 
2685 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2686 
2687 	do {
2688 		u32 offset;
2689 
2690 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2691 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2692 			if (copied)
2693 				break;
2694 			if (signal_pending(current)) {
2695 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2696 				break;
2697 			}
2698 		}
2699 
2700 		/* Next get a buffer. */
2701 
2702 		last = skb_peek_tail(&sk->sk_receive_queue);
2703 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2704 			last = skb;
2705 			/* Now that we have two receive queues this
2706 			 * shouldn't happen.
2707 			 */
2708 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2709 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2710 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2711 				 flags))
2712 				break;
2713 
2714 			offset = *seq - TCP_SKB_CB(skb)->seq;
2715 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2716 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2717 				offset--;
2718 			}
2719 			if (offset < skb->len)
2720 				goto found_ok_skb;
2721 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2722 				goto found_fin_ok;
2723 			WARN(!(flags & MSG_PEEK),
2724 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2725 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2726 		}
2727 
2728 		/* Well, if we have backlog, try to process it now yet. */
2729 
2730 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2731 			break;
2732 
2733 		if (copied) {
2734 			if (!timeo ||
2735 			    sk->sk_err ||
2736 			    sk->sk_state == TCP_CLOSE ||
2737 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2738 			    signal_pending(current))
2739 				break;
2740 		} else {
2741 			if (sock_flag(sk, SOCK_DONE))
2742 				break;
2743 
2744 			if (sk->sk_err) {
2745 				copied = sock_error(sk);
2746 				break;
2747 			}
2748 
2749 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2750 				break;
2751 
2752 			if (sk->sk_state == TCP_CLOSE) {
2753 				/* This occurs when user tries to read
2754 				 * from never connected socket.
2755 				 */
2756 				copied = -ENOTCONN;
2757 				break;
2758 			}
2759 
2760 			if (!timeo) {
2761 				copied = -EAGAIN;
2762 				break;
2763 			}
2764 
2765 			if (signal_pending(current)) {
2766 				copied = sock_intr_errno(timeo);
2767 				break;
2768 			}
2769 		}
2770 
2771 		if (copied >= target) {
2772 			/* Do not sleep, just process backlog. */
2773 			__sk_flush_backlog(sk);
2774 		} else {
2775 			tcp_cleanup_rbuf(sk, copied);
2776 			err = sk_wait_data(sk, &timeo, last);
2777 			if (err < 0) {
2778 				err = copied ? : err;
2779 				goto out;
2780 			}
2781 		}
2782 
2783 		if ((flags & MSG_PEEK) &&
2784 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2785 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2786 					    current->comm,
2787 					    task_pid_nr(current));
2788 			peek_seq = tp->copied_seq + peek_offset;
2789 		}
2790 		continue;
2791 
2792 found_ok_skb:
2793 		/* Ok so how much can we use? */
2794 		used = skb->len - offset;
2795 		if (len < used)
2796 			used = len;
2797 
2798 		/* Do we have urgent data here? */
2799 		if (unlikely(tp->urg_data)) {
2800 			u32 urg_offset = tp->urg_seq - *seq;
2801 			if (urg_offset < used) {
2802 				if (!urg_offset) {
2803 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2804 						WRITE_ONCE(*seq, *seq + 1);
2805 						urg_hole++;
2806 						offset++;
2807 						used--;
2808 						if (!used)
2809 							goto skip_copy;
2810 					}
2811 				} else
2812 					used = urg_offset;
2813 			}
2814 		}
2815 
2816 		if (!(flags & MSG_TRUNC)) {
2817 			if (last_copied_dmabuf != -1 &&
2818 			    last_copied_dmabuf != !skb_frags_readable(skb))
2819 				break;
2820 
2821 			if (skb_frags_readable(skb)) {
2822 				err = skb_copy_datagram_msg(skb, offset, msg,
2823 							    used);
2824 				if (err) {
2825 					/* Exception. Bailout! */
2826 					if (!copied)
2827 						copied = -EFAULT;
2828 					break;
2829 				}
2830 			} else {
2831 				if (!(flags & MSG_SOCK_DEVMEM)) {
2832 					/* dmabuf skbs can only be received
2833 					 * with the MSG_SOCK_DEVMEM flag.
2834 					 */
2835 					if (!copied)
2836 						copied = -EFAULT;
2837 
2838 					break;
2839 				}
2840 
2841 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2842 							 used);
2843 				if (err < 0) {
2844 					if (!copied)
2845 						copied = err;
2846 
2847 					break;
2848 				}
2849 				used = err;
2850 			}
2851 		}
2852 
2853 		last_copied_dmabuf = !skb_frags_readable(skb);
2854 
2855 		WRITE_ONCE(*seq, *seq + used);
2856 		copied += used;
2857 		len -= used;
2858 		if (flags & MSG_PEEK)
2859 			sk_peek_offset_fwd(sk, used);
2860 		else
2861 			sk_peek_offset_bwd(sk, used);
2862 		tcp_rcv_space_adjust(sk);
2863 
2864 skip_copy:
2865 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2866 			WRITE_ONCE(tp->urg_data, 0);
2867 			tcp_fast_path_check(sk);
2868 		}
2869 
2870 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2871 			tcp_update_recv_tstamps(skb, tss);
2872 			*cmsg_flags |= TCP_CMSG_TS;
2873 		}
2874 
2875 		if (used + offset < skb->len)
2876 			continue;
2877 
2878 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2879 			goto found_fin_ok;
2880 		if (!(flags & MSG_PEEK))
2881 			tcp_eat_recv_skb(sk, skb);
2882 		continue;
2883 
2884 found_fin_ok:
2885 		/* Process the FIN. */
2886 		WRITE_ONCE(*seq, *seq + 1);
2887 		if (!(flags & MSG_PEEK))
2888 			tcp_eat_recv_skb(sk, skb);
2889 		break;
2890 	} while (len > 0);
2891 
2892 	/* According to UNIX98, msg_name/msg_namelen are ignored
2893 	 * on connected socket. I was just happy when found this 8) --ANK
2894 	 */
2895 
2896 	/* Clean up data we have read: This will do ACK frames. */
2897 	tcp_cleanup_rbuf(sk, copied);
2898 	return copied;
2899 
2900 out:
2901 	return err;
2902 
2903 recv_urg:
2904 	err = tcp_recv_urg(sk, msg, len, flags);
2905 	goto out;
2906 
2907 recv_sndq:
2908 	err = tcp_peek_sndq(sk, msg, len);
2909 	goto out;
2910 }
2911 
2912 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2913 		int *addr_len)
2914 {
2915 	int cmsg_flags = 0, ret;
2916 	struct scm_timestamping_internal tss;
2917 
2918 	if (unlikely(flags & MSG_ERRQUEUE))
2919 		return inet_recv_error(sk, msg, len, addr_len);
2920 
2921 	if (sk_can_busy_loop(sk) &&
2922 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2923 	    sk->sk_state == TCP_ESTABLISHED)
2924 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2925 
2926 	lock_sock(sk);
2927 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2928 	release_sock(sk);
2929 
2930 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2931 		if (cmsg_flags & TCP_CMSG_TS)
2932 			tcp_recv_timestamp(msg, sk, &tss);
2933 		if (msg->msg_get_inq) {
2934 			msg->msg_inq = tcp_inq_hint(sk);
2935 			if (cmsg_flags & TCP_CMSG_INQ)
2936 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2937 					 sizeof(msg->msg_inq), &msg->msg_inq);
2938 		}
2939 	}
2940 	return ret;
2941 }
2942 EXPORT_IPV6_MOD(tcp_recvmsg);
2943 
2944 void tcp_set_state(struct sock *sk, int state)
2945 {
2946 	int oldstate = sk->sk_state;
2947 
2948 	/* We defined a new enum for TCP states that are exported in BPF
2949 	 * so as not force the internal TCP states to be frozen. The
2950 	 * following checks will detect if an internal state value ever
2951 	 * differs from the BPF value. If this ever happens, then we will
2952 	 * need to remap the internal value to the BPF value before calling
2953 	 * tcp_call_bpf_2arg.
2954 	 */
2955 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2956 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2957 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2958 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2959 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2960 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2961 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2962 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2963 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2964 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2965 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2966 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2967 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2968 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2969 
2970 	/* bpf uapi header bpf.h defines an anonymous enum with values
2971 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2972 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2973 	 * But clang built vmlinux does not have this enum in DWARF
2974 	 * since clang removes the above code before generating IR/debuginfo.
2975 	 * Let us explicitly emit the type debuginfo to ensure the
2976 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2977 	 * regardless of which compiler is used.
2978 	 */
2979 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2980 
2981 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2982 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2983 
2984 	switch (state) {
2985 	case TCP_ESTABLISHED:
2986 		if (oldstate != TCP_ESTABLISHED)
2987 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2988 		break;
2989 	case TCP_CLOSE_WAIT:
2990 		if (oldstate == TCP_SYN_RECV)
2991 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2992 		break;
2993 
2994 	case TCP_CLOSE:
2995 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2996 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2997 
2998 		sk->sk_prot->unhash(sk);
2999 		if (inet_csk(sk)->icsk_bind_hash &&
3000 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
3001 			inet_put_port(sk);
3002 		fallthrough;
3003 	default:
3004 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3005 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
3006 	}
3007 
3008 	/* Change state AFTER socket is unhashed to avoid closed
3009 	 * socket sitting in hash tables.
3010 	 */
3011 	inet_sk_state_store(sk, state);
3012 }
3013 EXPORT_SYMBOL_GPL(tcp_set_state);
3014 
3015 /*
3016  *	State processing on a close. This implements the state shift for
3017  *	sending our FIN frame. Note that we only send a FIN for some
3018  *	states. A shutdown() may have already sent the FIN, or we may be
3019  *	closed.
3020  */
3021 
3022 static const unsigned char new_state[16] = {
3023   /* current state:        new state:      action:	*/
3024   [0 /* (Invalid) */]	= TCP_CLOSE,
3025   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3026   [TCP_SYN_SENT]	= TCP_CLOSE,
3027   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3028   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
3029   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
3030   [TCP_TIME_WAIT]	= TCP_CLOSE,
3031   [TCP_CLOSE]		= TCP_CLOSE,
3032   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
3033   [TCP_LAST_ACK]	= TCP_LAST_ACK,
3034   [TCP_LISTEN]		= TCP_CLOSE,
3035   [TCP_CLOSING]		= TCP_CLOSING,
3036   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3037 };
3038 
3039 static int tcp_close_state(struct sock *sk)
3040 {
3041 	int next = (int)new_state[sk->sk_state];
3042 	int ns = next & TCP_STATE_MASK;
3043 
3044 	tcp_set_state(sk, ns);
3045 
3046 	return next & TCP_ACTION_FIN;
3047 }
3048 
3049 /*
3050  *	Shutdown the sending side of a connection. Much like close except
3051  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3052  */
3053 
3054 void tcp_shutdown(struct sock *sk, int how)
3055 {
3056 	/*	We need to grab some memory, and put together a FIN,
3057 	 *	and then put it into the queue to be sent.
3058 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3059 	 */
3060 	if (!(how & SEND_SHUTDOWN))
3061 		return;
3062 
3063 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3064 	if ((1 << sk->sk_state) &
3065 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3066 	     TCPF_CLOSE_WAIT)) {
3067 		/* Clear out any half completed packets.  FIN if needed. */
3068 		if (tcp_close_state(sk))
3069 			tcp_send_fin(sk);
3070 	}
3071 }
3072 EXPORT_IPV6_MOD(tcp_shutdown);
3073 
3074 int tcp_orphan_count_sum(void)
3075 {
3076 	int i, total = 0;
3077 
3078 	for_each_possible_cpu(i)
3079 		total += per_cpu(tcp_orphan_count, i);
3080 
3081 	return max(total, 0);
3082 }
3083 
3084 static int tcp_orphan_cache;
3085 static struct timer_list tcp_orphan_timer;
3086 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3087 
3088 static void tcp_orphan_update(struct timer_list *unused)
3089 {
3090 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3091 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3092 }
3093 
3094 static bool tcp_too_many_orphans(int shift)
3095 {
3096 	return READ_ONCE(tcp_orphan_cache) << shift >
3097 		READ_ONCE(sysctl_tcp_max_orphans);
3098 }
3099 
3100 static bool tcp_out_of_memory(const struct sock *sk)
3101 {
3102 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3103 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3104 		return true;
3105 	return false;
3106 }
3107 
3108 bool tcp_check_oom(const struct sock *sk, int shift)
3109 {
3110 	bool too_many_orphans, out_of_socket_memory;
3111 
3112 	too_many_orphans = tcp_too_many_orphans(shift);
3113 	out_of_socket_memory = tcp_out_of_memory(sk);
3114 
3115 	if (too_many_orphans)
3116 		net_info_ratelimited("too many orphaned sockets\n");
3117 	if (out_of_socket_memory)
3118 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3119 	return too_many_orphans || out_of_socket_memory;
3120 }
3121 
3122 void __tcp_close(struct sock *sk, long timeout)
3123 {
3124 	bool data_was_unread = false;
3125 	struct sk_buff *skb;
3126 	int state;
3127 
3128 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3129 
3130 	if (sk->sk_state == TCP_LISTEN) {
3131 		tcp_set_state(sk, TCP_CLOSE);
3132 
3133 		/* Special case. */
3134 		inet_csk_listen_stop(sk);
3135 
3136 		goto adjudge_to_death;
3137 	}
3138 
3139 	/*  We need to flush the recv. buffs.  We do this only on the
3140 	 *  descriptor close, not protocol-sourced closes, because the
3141 	 *  reader process may not have drained the data yet!
3142 	 */
3143 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
3144 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3145 
3146 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3147 			end_seq--;
3148 		if (after(end_seq, tcp_sk(sk)->copied_seq))
3149 			data_was_unread = true;
3150 		tcp_eat_recv_skb(sk, skb);
3151 	}
3152 
3153 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3154 	if (sk->sk_state == TCP_CLOSE)
3155 		goto adjudge_to_death;
3156 
3157 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3158 	 * data was lost. To witness the awful effects of the old behavior of
3159 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3160 	 * GET in an FTP client, suspend the process, wait for the client to
3161 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3162 	 * Note: timeout is always zero in such a case.
3163 	 */
3164 	if (unlikely(tcp_sk(sk)->repair)) {
3165 		sk->sk_prot->disconnect(sk, 0);
3166 	} else if (data_was_unread) {
3167 		/* Unread data was tossed, zap the connection. */
3168 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3169 		tcp_set_state(sk, TCP_CLOSE);
3170 		tcp_send_active_reset(sk, sk->sk_allocation,
3171 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3172 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3173 		/* Check zero linger _after_ checking for unread data. */
3174 		sk->sk_prot->disconnect(sk, 0);
3175 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3176 	} else if (tcp_close_state(sk)) {
3177 		/* We FIN if the application ate all the data before
3178 		 * zapping the connection.
3179 		 */
3180 
3181 		/* RED-PEN. Formally speaking, we have broken TCP state
3182 		 * machine. State transitions:
3183 		 *
3184 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3185 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3186 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3187 		 *
3188 		 * are legal only when FIN has been sent (i.e. in window),
3189 		 * rather than queued out of window. Purists blame.
3190 		 *
3191 		 * F.e. "RFC state" is ESTABLISHED,
3192 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3193 		 *
3194 		 * The visible declinations are that sometimes
3195 		 * we enter time-wait state, when it is not required really
3196 		 * (harmless), do not send active resets, when they are
3197 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3198 		 * they look as CLOSING or LAST_ACK for Linux)
3199 		 * Probably, I missed some more holelets.
3200 		 * 						--ANK
3201 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3202 		 * in a single packet! (May consider it later but will
3203 		 * probably need API support or TCP_CORK SYN-ACK until
3204 		 * data is written and socket is closed.)
3205 		 */
3206 		tcp_send_fin(sk);
3207 	}
3208 
3209 	sk_stream_wait_close(sk, timeout);
3210 
3211 adjudge_to_death:
3212 	state = sk->sk_state;
3213 	sock_hold(sk);
3214 	sock_orphan(sk);
3215 
3216 	local_bh_disable();
3217 	bh_lock_sock(sk);
3218 	/* remove backlog if any, without releasing ownership. */
3219 	__release_sock(sk);
3220 
3221 	tcp_orphan_count_inc();
3222 
3223 	/* Have we already been destroyed by a softirq or backlog? */
3224 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3225 		goto out;
3226 
3227 	/*	This is a (useful) BSD violating of the RFC. There is a
3228 	 *	problem with TCP as specified in that the other end could
3229 	 *	keep a socket open forever with no application left this end.
3230 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3231 	 *	our end. If they send after that then tough - BUT: long enough
3232 	 *	that we won't make the old 4*rto = almost no time - whoops
3233 	 *	reset mistake.
3234 	 *
3235 	 *	Nope, it was not mistake. It is really desired behaviour
3236 	 *	f.e. on http servers, when such sockets are useless, but
3237 	 *	consume significant resources. Let's do it with special
3238 	 *	linger2	option.					--ANK
3239 	 */
3240 
3241 	if (sk->sk_state == TCP_FIN_WAIT2) {
3242 		struct tcp_sock *tp = tcp_sk(sk);
3243 		if (READ_ONCE(tp->linger2) < 0) {
3244 			tcp_set_state(sk, TCP_CLOSE);
3245 			tcp_send_active_reset(sk, GFP_ATOMIC,
3246 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3247 			__NET_INC_STATS(sock_net(sk),
3248 					LINUX_MIB_TCPABORTONLINGER);
3249 		} else {
3250 			const int tmo = tcp_fin_time(sk);
3251 
3252 			if (tmo > TCP_TIMEWAIT_LEN) {
3253 				tcp_reset_keepalive_timer(sk,
3254 						tmo - TCP_TIMEWAIT_LEN);
3255 			} else {
3256 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3257 				goto out;
3258 			}
3259 		}
3260 	}
3261 	if (sk->sk_state != TCP_CLOSE) {
3262 		if (tcp_check_oom(sk, 0)) {
3263 			tcp_set_state(sk, TCP_CLOSE);
3264 			tcp_send_active_reset(sk, GFP_ATOMIC,
3265 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3266 			__NET_INC_STATS(sock_net(sk),
3267 					LINUX_MIB_TCPABORTONMEMORY);
3268 		} else if (!check_net(sock_net(sk))) {
3269 			/* Not possible to send reset; just close */
3270 			tcp_set_state(sk, TCP_CLOSE);
3271 		}
3272 	}
3273 
3274 	if (sk->sk_state == TCP_CLOSE) {
3275 		struct request_sock *req;
3276 
3277 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3278 						lockdep_sock_is_held(sk));
3279 		/* We could get here with a non-NULL req if the socket is
3280 		 * aborted (e.g., closed with unread data) before 3WHS
3281 		 * finishes.
3282 		 */
3283 		if (req)
3284 			reqsk_fastopen_remove(sk, req, false);
3285 		inet_csk_destroy_sock(sk);
3286 	}
3287 	/* Otherwise, socket is reprieved until protocol close. */
3288 
3289 out:
3290 	bh_unlock_sock(sk);
3291 	local_bh_enable();
3292 }
3293 
3294 void tcp_close(struct sock *sk, long timeout)
3295 {
3296 	lock_sock(sk);
3297 	__tcp_close(sk, timeout);
3298 	release_sock(sk);
3299 	if (!sk->sk_net_refcnt)
3300 		inet_csk_clear_xmit_timers_sync(sk);
3301 	sock_put(sk);
3302 }
3303 EXPORT_SYMBOL(tcp_close);
3304 
3305 /* These states need RST on ABORT according to RFC793 */
3306 
3307 static inline bool tcp_need_reset(int state)
3308 {
3309 	return (1 << state) &
3310 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3311 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3312 }
3313 
3314 static void tcp_rtx_queue_purge(struct sock *sk)
3315 {
3316 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3317 
3318 	tcp_sk(sk)->highest_sack = NULL;
3319 	while (p) {
3320 		struct sk_buff *skb = rb_to_skb(p);
3321 
3322 		p = rb_next(p);
3323 		/* Since we are deleting whole queue, no need to
3324 		 * list_del(&skb->tcp_tsorted_anchor)
3325 		 */
3326 		tcp_rtx_queue_unlink(skb, sk);
3327 		tcp_wmem_free_skb(sk, skb);
3328 	}
3329 }
3330 
3331 void tcp_write_queue_purge(struct sock *sk)
3332 {
3333 	struct sk_buff *skb;
3334 
3335 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3336 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3337 		tcp_skb_tsorted_anchor_cleanup(skb);
3338 		tcp_wmem_free_skb(sk, skb);
3339 	}
3340 	tcp_rtx_queue_purge(sk);
3341 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3342 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3343 	tcp_sk(sk)->packets_out = 0;
3344 	inet_csk(sk)->icsk_backoff = 0;
3345 }
3346 
3347 int tcp_disconnect(struct sock *sk, int flags)
3348 {
3349 	struct inet_sock *inet = inet_sk(sk);
3350 	struct inet_connection_sock *icsk = inet_csk(sk);
3351 	struct tcp_sock *tp = tcp_sk(sk);
3352 	int old_state = sk->sk_state;
3353 	struct request_sock *req;
3354 	u32 seq;
3355 
3356 	if (old_state != TCP_CLOSE)
3357 		tcp_set_state(sk, TCP_CLOSE);
3358 
3359 	/* ABORT function of RFC793 */
3360 	if (old_state == TCP_LISTEN) {
3361 		inet_csk_listen_stop(sk);
3362 	} else if (unlikely(tp->repair)) {
3363 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3364 	} else if (tcp_need_reset(old_state)) {
3365 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3366 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3367 	} else if (tp->snd_nxt != tp->write_seq &&
3368 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3369 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3370 		 * states
3371 		 */
3372 		tcp_send_active_reset(sk, gfp_any(),
3373 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3374 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3375 	} else if (old_state == TCP_SYN_SENT)
3376 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3377 
3378 	tcp_clear_xmit_timers(sk);
3379 	__skb_queue_purge(&sk->sk_receive_queue);
3380 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3381 	WRITE_ONCE(tp->urg_data, 0);
3382 	sk_set_peek_off(sk, -1);
3383 	tcp_write_queue_purge(sk);
3384 	tcp_fastopen_active_disable_ofo_check(sk);
3385 	skb_rbtree_purge(&tp->out_of_order_queue);
3386 
3387 	inet->inet_dport = 0;
3388 
3389 	inet_bhash2_reset_saddr(sk);
3390 
3391 	WRITE_ONCE(sk->sk_shutdown, 0);
3392 	sock_reset_flag(sk, SOCK_DONE);
3393 	tp->srtt_us = 0;
3394 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3395 	tp->rcv_rtt_last_tsecr = 0;
3396 
3397 	seq = tp->write_seq + tp->max_window + 2;
3398 	if (!seq)
3399 		seq = 1;
3400 	WRITE_ONCE(tp->write_seq, seq);
3401 
3402 	icsk->icsk_backoff = 0;
3403 	WRITE_ONCE(icsk->icsk_probes_out, 0);
3404 	icsk->icsk_probes_tstamp = 0;
3405 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3406 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3407 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3408 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3409 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3410 	tp->snd_cwnd_cnt = 0;
3411 	tp->is_cwnd_limited = 0;
3412 	tp->max_packets_out = 0;
3413 	tp->window_clamp = 0;
3414 	tp->delivered = 0;
3415 	tp->delivered_ce = 0;
3416 	tp->accecn_fail_mode = 0;
3417 	tp->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
3418 	tcp_accecn_init_counters(tp);
3419 	tp->prev_ecnfield = 0;
3420 	tp->accecn_opt_tstamp = 0;
3421 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3422 		icsk->icsk_ca_ops->release(sk);
3423 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3424 	icsk->icsk_ca_initialized = 0;
3425 	tcp_set_ca_state(sk, TCP_CA_Open);
3426 	tp->is_sack_reneg = 0;
3427 	tcp_clear_retrans(tp);
3428 	tp->total_retrans = 0;
3429 	inet_csk_delack_init(sk);
3430 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3431 	 * issue in __tcp_select_window()
3432 	 */
3433 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3434 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3435 	__sk_dst_reset(sk);
3436 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3437 	tcp_saved_syn_free(tp);
3438 	tp->compressed_ack = 0;
3439 	tp->segs_in = 0;
3440 	tp->segs_out = 0;
3441 	tp->bytes_sent = 0;
3442 	tp->bytes_acked = 0;
3443 	tp->bytes_received = 0;
3444 	tp->bytes_retrans = 0;
3445 	tp->data_segs_in = 0;
3446 	tp->data_segs_out = 0;
3447 	tp->duplicate_sack[0].start_seq = 0;
3448 	tp->duplicate_sack[0].end_seq = 0;
3449 	tp->dsack_dups = 0;
3450 	tp->reord_seen = 0;
3451 	tp->retrans_out = 0;
3452 	tp->sacked_out = 0;
3453 	tp->tlp_high_seq = 0;
3454 	tp->last_oow_ack_time = 0;
3455 	tp->plb_rehash = 0;
3456 	/* There's a bubble in the pipe until at least the first ACK. */
3457 	tp->app_limited = ~0U;
3458 	tp->rate_app_limited = 1;
3459 	tp->rack.mstamp = 0;
3460 	tp->rack.advanced = 0;
3461 	tp->rack.reo_wnd_steps = 1;
3462 	tp->rack.last_delivered = 0;
3463 	tp->rack.reo_wnd_persist = 0;
3464 	tp->rack.dsack_seen = 0;
3465 	tp->syn_data_acked = 0;
3466 	tp->syn_fastopen_child = 0;
3467 	tp->rx_opt.saw_tstamp = 0;
3468 	tp->rx_opt.dsack = 0;
3469 	tp->rx_opt.num_sacks = 0;
3470 	tp->rcv_ooopack = 0;
3471 
3472 
3473 	/* Clean up fastopen related fields */
3474 	req = rcu_dereference_protected(tp->fastopen_rsk,
3475 					lockdep_sock_is_held(sk));
3476 	if (req)
3477 		reqsk_fastopen_remove(sk, req, false);
3478 	tcp_free_fastopen_req(tp);
3479 	inet_clear_bit(DEFER_CONNECT, sk);
3480 	tp->fastopen_client_fail = 0;
3481 
3482 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3483 
3484 	if (sk->sk_frag.page) {
3485 		put_page(sk->sk_frag.page);
3486 		sk->sk_frag.page = NULL;
3487 		sk->sk_frag.offset = 0;
3488 	}
3489 	sk_error_report(sk);
3490 	return 0;
3491 }
3492 EXPORT_SYMBOL(tcp_disconnect);
3493 
3494 static inline bool tcp_can_repair_sock(const struct sock *sk)
3495 {
3496 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3497 		(sk->sk_state != TCP_LISTEN);
3498 }
3499 
3500 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3501 {
3502 	struct tcp_repair_window opt;
3503 
3504 	if (!tp->repair)
3505 		return -EPERM;
3506 
3507 	if (len != sizeof(opt))
3508 		return -EINVAL;
3509 
3510 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3511 		return -EFAULT;
3512 
3513 	if (opt.max_window < opt.snd_wnd)
3514 		return -EINVAL;
3515 
3516 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3517 		return -EINVAL;
3518 
3519 	if (after(opt.rcv_wup, tp->rcv_nxt))
3520 		return -EINVAL;
3521 
3522 	tp->snd_wl1	= opt.snd_wl1;
3523 	tp->snd_wnd	= opt.snd_wnd;
3524 	tp->max_window	= opt.max_window;
3525 
3526 	tp->rcv_wnd	= opt.rcv_wnd;
3527 	tp->rcv_wup	= opt.rcv_wup;
3528 
3529 	return 0;
3530 }
3531 
3532 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3533 		unsigned int len)
3534 {
3535 	struct tcp_sock *tp = tcp_sk(sk);
3536 	struct tcp_repair_opt opt;
3537 	size_t offset = 0;
3538 
3539 	while (len >= sizeof(opt)) {
3540 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3541 			return -EFAULT;
3542 
3543 		offset += sizeof(opt);
3544 		len -= sizeof(opt);
3545 
3546 		switch (opt.opt_code) {
3547 		case TCPOPT_MSS:
3548 			tp->rx_opt.mss_clamp = opt.opt_val;
3549 			tcp_mtup_init(sk);
3550 			break;
3551 		case TCPOPT_WINDOW:
3552 			{
3553 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3554 				u16 rcv_wscale = opt.opt_val >> 16;
3555 
3556 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3557 					return -EFBIG;
3558 
3559 				tp->rx_opt.snd_wscale = snd_wscale;
3560 				tp->rx_opt.rcv_wscale = rcv_wscale;
3561 				tp->rx_opt.wscale_ok = 1;
3562 			}
3563 			break;
3564 		case TCPOPT_SACK_PERM:
3565 			if (opt.opt_val != 0)
3566 				return -EINVAL;
3567 
3568 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3569 			break;
3570 		case TCPOPT_TIMESTAMP:
3571 			if (opt.opt_val != 0)
3572 				return -EINVAL;
3573 
3574 			tp->rx_opt.tstamp_ok = 1;
3575 			break;
3576 		}
3577 	}
3578 
3579 	return 0;
3580 }
3581 
3582 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3583 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3584 
3585 static void tcp_enable_tx_delay(struct sock *sk, int val)
3586 {
3587 	struct tcp_sock *tp = tcp_sk(sk);
3588 	s32 delta = (val - tp->tcp_tx_delay) << 3;
3589 
3590 	if (val && !static_branch_unlikely(&tcp_tx_delay_enabled)) {
3591 		static int __tcp_tx_delay_enabled = 0;
3592 
3593 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3594 			static_branch_enable(&tcp_tx_delay_enabled);
3595 			pr_info("TCP_TX_DELAY enabled\n");
3596 		}
3597 	}
3598 	/* If we change tcp_tx_delay on a live flow, adjust tp->srtt_us,
3599 	 * tp->rtt_min, icsk_rto and sk->sk_pacing_rate.
3600 	 * This is best effort.
3601 	 */
3602 	if (delta && sk->sk_state == TCP_ESTABLISHED) {
3603 		s64 srtt = (s64)tp->srtt_us + delta;
3604 
3605 		tp->srtt_us = clamp_t(s64, srtt, 1, ~0U);
3606 
3607 		/* Note: does not deal with non zero icsk_backoff */
3608 		tcp_set_rto(sk);
3609 
3610 		minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
3611 
3612 		tcp_update_pacing_rate(sk);
3613 	}
3614 }
3615 
3616 /* When set indicates to always queue non-full frames.  Later the user clears
3617  * this option and we transmit any pending partial frames in the queue.  This is
3618  * meant to be used alongside sendfile() to get properly filled frames when the
3619  * user (for example) must write out headers with a write() call first and then
3620  * use sendfile to send out the data parts.
3621  *
3622  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3623  * TCP_NODELAY.
3624  */
3625 void __tcp_sock_set_cork(struct sock *sk, bool on)
3626 {
3627 	struct tcp_sock *tp = tcp_sk(sk);
3628 
3629 	if (on) {
3630 		tp->nonagle |= TCP_NAGLE_CORK;
3631 	} else {
3632 		tp->nonagle &= ~TCP_NAGLE_CORK;
3633 		if (tp->nonagle & TCP_NAGLE_OFF)
3634 			tp->nonagle |= TCP_NAGLE_PUSH;
3635 		tcp_push_pending_frames(sk);
3636 	}
3637 }
3638 
3639 void tcp_sock_set_cork(struct sock *sk, bool on)
3640 {
3641 	lock_sock(sk);
3642 	__tcp_sock_set_cork(sk, on);
3643 	release_sock(sk);
3644 }
3645 EXPORT_SYMBOL(tcp_sock_set_cork);
3646 
3647 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3648  * remembered, but it is not activated until cork is cleared.
3649  *
3650  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3651  * even TCP_CORK for currently queued segments.
3652  */
3653 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3654 {
3655 	if (on) {
3656 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3657 		tcp_push_pending_frames(sk);
3658 	} else {
3659 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3660 	}
3661 }
3662 
3663 void tcp_sock_set_nodelay(struct sock *sk)
3664 {
3665 	lock_sock(sk);
3666 	__tcp_sock_set_nodelay(sk, true);
3667 	release_sock(sk);
3668 }
3669 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3670 
3671 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3672 {
3673 	if (!val) {
3674 		inet_csk_enter_pingpong_mode(sk);
3675 		return;
3676 	}
3677 
3678 	inet_csk_exit_pingpong_mode(sk);
3679 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3680 	    inet_csk_ack_scheduled(sk)) {
3681 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3682 		tcp_cleanup_rbuf(sk, 1);
3683 		if (!(val & 1))
3684 			inet_csk_enter_pingpong_mode(sk);
3685 	}
3686 }
3687 
3688 void tcp_sock_set_quickack(struct sock *sk, int val)
3689 {
3690 	lock_sock(sk);
3691 	__tcp_sock_set_quickack(sk, val);
3692 	release_sock(sk);
3693 }
3694 EXPORT_SYMBOL(tcp_sock_set_quickack);
3695 
3696 int tcp_sock_set_syncnt(struct sock *sk, int val)
3697 {
3698 	if (val < 1 || val > MAX_TCP_SYNCNT)
3699 		return -EINVAL;
3700 
3701 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3702 	return 0;
3703 }
3704 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3705 
3706 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3707 {
3708 	/* Cap the max time in ms TCP will retry or probe the window
3709 	 * before giving up and aborting (ETIMEDOUT) a connection.
3710 	 */
3711 	if (val < 0)
3712 		return -EINVAL;
3713 
3714 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3715 	return 0;
3716 }
3717 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3718 
3719 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3720 {
3721 	struct tcp_sock *tp = tcp_sk(sk);
3722 
3723 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3724 		return -EINVAL;
3725 
3726 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3727 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3728 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3729 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3730 		u32 elapsed = keepalive_time_elapsed(tp);
3731 
3732 		if (tp->keepalive_time > elapsed)
3733 			elapsed = tp->keepalive_time - elapsed;
3734 		else
3735 			elapsed = 0;
3736 		tcp_reset_keepalive_timer(sk, elapsed);
3737 	}
3738 
3739 	return 0;
3740 }
3741 
3742 int tcp_sock_set_keepidle(struct sock *sk, int val)
3743 {
3744 	int err;
3745 
3746 	lock_sock(sk);
3747 	err = tcp_sock_set_keepidle_locked(sk, val);
3748 	release_sock(sk);
3749 	return err;
3750 }
3751 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3752 
3753 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3754 {
3755 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3756 		return -EINVAL;
3757 
3758 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3759 	return 0;
3760 }
3761 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3762 
3763 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3764 {
3765 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3766 		return -EINVAL;
3767 
3768 	/* Paired with READ_ONCE() in keepalive_probes() */
3769 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3770 	return 0;
3771 }
3772 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3773 
3774 int tcp_set_window_clamp(struct sock *sk, int val)
3775 {
3776 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3777 	struct tcp_sock *tp = tcp_sk(sk);
3778 
3779 	if (!val) {
3780 		if (sk->sk_state != TCP_CLOSE)
3781 			return -EINVAL;
3782 		WRITE_ONCE(tp->window_clamp, 0);
3783 		return 0;
3784 	}
3785 
3786 	old_window_clamp = tp->window_clamp;
3787 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3788 
3789 	if (new_window_clamp == old_window_clamp)
3790 		return 0;
3791 
3792 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3793 
3794 	/* Need to apply the reserved mem provisioning only
3795 	 * when shrinking the window clamp.
3796 	 */
3797 	if (new_window_clamp < old_window_clamp) {
3798 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3799 	} else {
3800 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3801 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3802 	}
3803 	return 0;
3804 }
3805 
3806 int tcp_sock_set_maxseg(struct sock *sk, int val)
3807 {
3808 	/* Values greater than interface MTU won't take effect. However
3809 	 * at the point when this call is done we typically don't yet
3810 	 * know which interface is going to be used
3811 	 */
3812 	if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW))
3813 		return -EINVAL;
3814 
3815 	WRITE_ONCE(tcp_sk(sk)->rx_opt.user_mss, val);
3816 	return 0;
3817 }
3818 
3819 /*
3820  *	Socket option code for TCP.
3821  */
3822 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3823 		      sockptr_t optval, unsigned int optlen)
3824 {
3825 	struct tcp_sock *tp = tcp_sk(sk);
3826 	struct inet_connection_sock *icsk = inet_csk(sk);
3827 	struct net *net = sock_net(sk);
3828 	int val;
3829 	int err = 0;
3830 
3831 	/* These are data/string values, all the others are ints */
3832 	switch (optname) {
3833 	case TCP_CONGESTION: {
3834 		char name[TCP_CA_NAME_MAX];
3835 
3836 		if (optlen < 1)
3837 			return -EINVAL;
3838 
3839 		val = strncpy_from_sockptr(name, optval,
3840 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3841 		if (val < 0)
3842 			return -EFAULT;
3843 		name[val] = 0;
3844 
3845 		sockopt_lock_sock(sk);
3846 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3847 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3848 								    CAP_NET_ADMIN));
3849 		sockopt_release_sock(sk);
3850 		return err;
3851 	}
3852 	case TCP_ULP: {
3853 		char name[TCP_ULP_NAME_MAX];
3854 
3855 		if (optlen < 1)
3856 			return -EINVAL;
3857 
3858 		val = strncpy_from_sockptr(name, optval,
3859 					min_t(long, TCP_ULP_NAME_MAX - 1,
3860 					      optlen));
3861 		if (val < 0)
3862 			return -EFAULT;
3863 		name[val] = 0;
3864 
3865 		sockopt_lock_sock(sk);
3866 		err = tcp_set_ulp(sk, name);
3867 		sockopt_release_sock(sk);
3868 		return err;
3869 	}
3870 	case TCP_FASTOPEN_KEY: {
3871 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3872 		__u8 *backup_key = NULL;
3873 
3874 		/* Allow a backup key as well to facilitate key rotation
3875 		 * First key is the active one.
3876 		 */
3877 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3878 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3879 			return -EINVAL;
3880 
3881 		if (copy_from_sockptr(key, optval, optlen))
3882 			return -EFAULT;
3883 
3884 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3885 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3886 
3887 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3888 	}
3889 	default:
3890 		/* fallthru */
3891 		break;
3892 	}
3893 
3894 	if (optlen < sizeof(int))
3895 		return -EINVAL;
3896 
3897 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3898 		return -EFAULT;
3899 
3900 	/* Handle options that can be set without locking the socket. */
3901 	switch (optname) {
3902 	case TCP_SYNCNT:
3903 		return tcp_sock_set_syncnt(sk, val);
3904 	case TCP_USER_TIMEOUT:
3905 		return tcp_sock_set_user_timeout(sk, val);
3906 	case TCP_KEEPINTVL:
3907 		return tcp_sock_set_keepintvl(sk, val);
3908 	case TCP_KEEPCNT:
3909 		return tcp_sock_set_keepcnt(sk, val);
3910 	case TCP_LINGER2:
3911 		if (val < 0)
3912 			WRITE_ONCE(tp->linger2, -1);
3913 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3914 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3915 		else
3916 			WRITE_ONCE(tp->linger2, val * HZ);
3917 		return 0;
3918 	case TCP_DEFER_ACCEPT:
3919 		/* Translate value in seconds to number of retransmits */
3920 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3921 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3922 					   TCP_RTO_MAX / HZ));
3923 		return 0;
3924 	case TCP_RTO_MAX_MS:
3925 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3926 			return -EINVAL;
3927 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3928 		return 0;
3929 	case TCP_RTO_MIN_US: {
3930 		int rto_min = usecs_to_jiffies(val);
3931 
3932 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3933 			return -EINVAL;
3934 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3935 		return 0;
3936 	}
3937 	case TCP_DELACK_MAX_US: {
3938 		int delack_max = usecs_to_jiffies(val);
3939 
3940 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3941 			return -EINVAL;
3942 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3943 		return 0;
3944 	}
3945 	case TCP_MAXSEG:
3946 		return tcp_sock_set_maxseg(sk, val);
3947 	}
3948 
3949 	sockopt_lock_sock(sk);
3950 
3951 	switch (optname) {
3952 	case TCP_NODELAY:
3953 		__tcp_sock_set_nodelay(sk, val);
3954 		break;
3955 
3956 	case TCP_THIN_LINEAR_TIMEOUTS:
3957 		if (val < 0 || val > 1)
3958 			err = -EINVAL;
3959 		else
3960 			tp->thin_lto = val;
3961 		break;
3962 
3963 	case TCP_THIN_DUPACK:
3964 		if (val < 0 || val > 1)
3965 			err = -EINVAL;
3966 		break;
3967 
3968 	case TCP_REPAIR:
3969 		if (!tcp_can_repair_sock(sk))
3970 			err = -EPERM;
3971 		else if (val == TCP_REPAIR_ON) {
3972 			tp->repair = 1;
3973 			sk->sk_reuse = SK_FORCE_REUSE;
3974 			tp->repair_queue = TCP_NO_QUEUE;
3975 		} else if (val == TCP_REPAIR_OFF) {
3976 			tp->repair = 0;
3977 			sk->sk_reuse = SK_NO_REUSE;
3978 			tcp_send_window_probe(sk);
3979 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3980 			tp->repair = 0;
3981 			sk->sk_reuse = SK_NO_REUSE;
3982 		} else
3983 			err = -EINVAL;
3984 
3985 		break;
3986 
3987 	case TCP_REPAIR_QUEUE:
3988 		if (!tp->repair)
3989 			err = -EPERM;
3990 		else if ((unsigned int)val < TCP_QUEUES_NR)
3991 			tp->repair_queue = val;
3992 		else
3993 			err = -EINVAL;
3994 		break;
3995 
3996 	case TCP_QUEUE_SEQ:
3997 		if (sk->sk_state != TCP_CLOSE) {
3998 			err = -EPERM;
3999 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
4000 			if (!tcp_rtx_queue_empty(sk))
4001 				err = -EPERM;
4002 			else
4003 				WRITE_ONCE(tp->write_seq, val);
4004 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
4005 			if (tp->rcv_nxt != tp->copied_seq) {
4006 				err = -EPERM;
4007 			} else {
4008 				WRITE_ONCE(tp->rcv_nxt, val);
4009 				WRITE_ONCE(tp->copied_seq, val);
4010 			}
4011 		} else {
4012 			err = -EINVAL;
4013 		}
4014 		break;
4015 
4016 	case TCP_REPAIR_OPTIONS:
4017 		if (!tp->repair)
4018 			err = -EINVAL;
4019 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
4020 			err = tcp_repair_options_est(sk, optval, optlen);
4021 		else
4022 			err = -EPERM;
4023 		break;
4024 
4025 	case TCP_CORK:
4026 		__tcp_sock_set_cork(sk, val);
4027 		break;
4028 
4029 	case TCP_KEEPIDLE:
4030 		err = tcp_sock_set_keepidle_locked(sk, val);
4031 		break;
4032 	case TCP_SAVE_SYN:
4033 		/* 0: disable, 1: enable, 2: start from ether_header */
4034 		if (val < 0 || val > 2)
4035 			err = -EINVAL;
4036 		else
4037 			tp->save_syn = val;
4038 		break;
4039 
4040 	case TCP_WINDOW_CLAMP:
4041 		err = tcp_set_window_clamp(sk, val);
4042 		break;
4043 
4044 	case TCP_QUICKACK:
4045 		__tcp_sock_set_quickack(sk, val);
4046 		break;
4047 
4048 	case TCP_AO_REPAIR:
4049 		if (!tcp_can_repair_sock(sk)) {
4050 			err = -EPERM;
4051 			break;
4052 		}
4053 		err = tcp_ao_set_repair(sk, optval, optlen);
4054 		break;
4055 #ifdef CONFIG_TCP_AO
4056 	case TCP_AO_ADD_KEY:
4057 	case TCP_AO_DEL_KEY:
4058 	case TCP_AO_INFO: {
4059 		/* If this is the first TCP-AO setsockopt() on the socket,
4060 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4061 		 * in any state.
4062 		 */
4063 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4064 			goto ao_parse;
4065 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4066 					      lockdep_sock_is_held(sk)))
4067 			goto ao_parse;
4068 		if (tp->repair)
4069 			goto ao_parse;
4070 		err = -EISCONN;
4071 		break;
4072 ao_parse:
4073 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4074 		break;
4075 	}
4076 #endif
4077 #ifdef CONFIG_TCP_MD5SIG
4078 	case TCP_MD5SIG:
4079 	case TCP_MD5SIG_EXT:
4080 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4081 		break;
4082 #endif
4083 	case TCP_FASTOPEN:
4084 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4085 		    TCPF_LISTEN))) {
4086 			tcp_fastopen_init_key_once(net);
4087 
4088 			fastopen_queue_tune(sk, val);
4089 		} else {
4090 			err = -EINVAL;
4091 		}
4092 		break;
4093 	case TCP_FASTOPEN_CONNECT:
4094 		if (val > 1 || val < 0) {
4095 			err = -EINVAL;
4096 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4097 			   TFO_CLIENT_ENABLE) {
4098 			if (sk->sk_state == TCP_CLOSE)
4099 				tp->fastopen_connect = val;
4100 			else
4101 				err = -EINVAL;
4102 		} else {
4103 			err = -EOPNOTSUPP;
4104 		}
4105 		break;
4106 	case TCP_FASTOPEN_NO_COOKIE:
4107 		if (val > 1 || val < 0)
4108 			err = -EINVAL;
4109 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4110 			err = -EINVAL;
4111 		else
4112 			tp->fastopen_no_cookie = val;
4113 		break;
4114 	case TCP_TIMESTAMP:
4115 		if (!tp->repair) {
4116 			err = -EPERM;
4117 			break;
4118 		}
4119 		/* val is an opaque field,
4120 		 * and low order bit contains usec_ts enable bit.
4121 		 * Its a best effort, and we do not care if user makes an error.
4122 		 */
4123 		tp->tcp_usec_ts = val & 1;
4124 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4125 		break;
4126 	case TCP_REPAIR_WINDOW:
4127 		err = tcp_repair_set_window(tp, optval, optlen);
4128 		break;
4129 	case TCP_NOTSENT_LOWAT:
4130 		WRITE_ONCE(tp->notsent_lowat, val);
4131 		sk->sk_write_space(sk);
4132 		break;
4133 	case TCP_INQ:
4134 		if (val > 1 || val < 0)
4135 			err = -EINVAL;
4136 		else
4137 			tp->recvmsg_inq = val;
4138 		break;
4139 	case TCP_TX_DELAY:
4140 		/* tp->srtt_us is u32, and is shifted by 3 */
4141 		if (val < 0 || val >= (1U << (31 - 3))) {
4142 			err = -EINVAL;
4143 			break;
4144 		}
4145 		tcp_enable_tx_delay(sk, val);
4146 		WRITE_ONCE(tp->tcp_tx_delay, val);
4147 		break;
4148 	default:
4149 		err = -ENOPROTOOPT;
4150 		break;
4151 	}
4152 
4153 	sockopt_release_sock(sk);
4154 	return err;
4155 }
4156 
4157 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4158 		   unsigned int optlen)
4159 {
4160 	const struct inet_connection_sock *icsk = inet_csk(sk);
4161 
4162 	if (level != SOL_TCP)
4163 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4164 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4165 								optval, optlen);
4166 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4167 }
4168 EXPORT_IPV6_MOD(tcp_setsockopt);
4169 
4170 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4171 				      struct tcp_info *info)
4172 {
4173 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4174 	enum tcp_chrono i;
4175 
4176 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4177 		stats[i] = tp->chrono_stat[i - 1];
4178 		if (i == tp->chrono_type)
4179 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4180 		stats[i] *= USEC_PER_SEC / HZ;
4181 		total += stats[i];
4182 	}
4183 
4184 	info->tcpi_busy_time = total;
4185 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4186 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4187 }
4188 
4189 /* Return information about state of tcp endpoint in API format. */
4190 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4191 {
4192 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4193 	const struct inet_connection_sock *icsk = inet_csk(sk);
4194 	const u8 ect1_idx = INET_ECN_ECT_1 - 1;
4195 	const u8 ect0_idx = INET_ECN_ECT_0 - 1;
4196 	const u8 ce_idx = INET_ECN_CE - 1;
4197 	unsigned long rate;
4198 	u32 now;
4199 	u64 rate64;
4200 	bool slow;
4201 
4202 	memset(info, 0, sizeof(*info));
4203 	if (sk->sk_type != SOCK_STREAM)
4204 		return;
4205 
4206 	info->tcpi_state = inet_sk_state_load(sk);
4207 
4208 	/* Report meaningful fields for all TCP states, including listeners */
4209 	rate = READ_ONCE(sk->sk_pacing_rate);
4210 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4211 	info->tcpi_pacing_rate = rate64;
4212 
4213 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4214 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4215 	info->tcpi_max_pacing_rate = rate64;
4216 
4217 	info->tcpi_reordering = tp->reordering;
4218 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4219 
4220 	if (info->tcpi_state == TCP_LISTEN) {
4221 		/* listeners aliased fields :
4222 		 * tcpi_unacked -> Number of children ready for accept()
4223 		 * tcpi_sacked  -> max backlog
4224 		 */
4225 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4226 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4227 		return;
4228 	}
4229 
4230 	slow = lock_sock_fast(sk);
4231 
4232 	info->tcpi_ca_state = icsk->icsk_ca_state;
4233 	info->tcpi_retransmits = icsk->icsk_retransmits;
4234 	info->tcpi_probes = icsk->icsk_probes_out;
4235 	info->tcpi_backoff = icsk->icsk_backoff;
4236 
4237 	if (tp->rx_opt.tstamp_ok)
4238 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4239 	if (tcp_is_sack(tp))
4240 		info->tcpi_options |= TCPI_OPT_SACK;
4241 	if (tp->rx_opt.wscale_ok) {
4242 		info->tcpi_options |= TCPI_OPT_WSCALE;
4243 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4244 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4245 	}
4246 
4247 	if (tcp_ecn_mode_any(tp))
4248 		info->tcpi_options |= TCPI_OPT_ECN;
4249 	if (tp->ecn_flags & TCP_ECN_SEEN)
4250 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4251 	if (tp->syn_data_acked)
4252 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4253 	if (tp->tcp_usec_ts)
4254 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4255 	if (tp->syn_fastopen_child)
4256 		info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4257 
4258 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4259 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4260 						tcp_delack_max(sk)));
4261 	info->tcpi_snd_mss = tp->mss_cache;
4262 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4263 
4264 	info->tcpi_unacked = tp->packets_out;
4265 	info->tcpi_sacked = tp->sacked_out;
4266 
4267 	info->tcpi_lost = tp->lost_out;
4268 	info->tcpi_retrans = tp->retrans_out;
4269 
4270 	now = tcp_jiffies32;
4271 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4272 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4273 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4274 
4275 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4276 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4277 	info->tcpi_rtt = tp->srtt_us >> 3;
4278 	info->tcpi_rttvar = tp->mdev_us >> 2;
4279 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4280 	info->tcpi_advmss = tp->advmss;
4281 
4282 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4283 	info->tcpi_rcv_space = tp->rcvq_space.space;
4284 
4285 	info->tcpi_total_retrans = tp->total_retrans;
4286 
4287 	info->tcpi_bytes_acked = tp->bytes_acked;
4288 	info->tcpi_bytes_received = tp->bytes_received;
4289 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4290 	tcp_get_info_chrono_stats(tp, info);
4291 
4292 	info->tcpi_segs_out = tp->segs_out;
4293 
4294 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4295 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4296 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4297 
4298 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4299 	info->tcpi_data_segs_out = tp->data_segs_out;
4300 
4301 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4302 	rate64 = tcp_compute_delivery_rate(tp);
4303 	if (rate64)
4304 		info->tcpi_delivery_rate = rate64;
4305 	info->tcpi_delivered = tp->delivered;
4306 	info->tcpi_delivered_ce = tp->delivered_ce;
4307 	info->tcpi_bytes_sent = tp->bytes_sent;
4308 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4309 	info->tcpi_dsack_dups = tp->dsack_dups;
4310 	info->tcpi_reord_seen = tp->reord_seen;
4311 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4312 	info->tcpi_snd_wnd = tp->snd_wnd;
4313 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4314 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4315 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4316 
4317 	info->tcpi_total_rto = tp->total_rto;
4318 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4319 	info->tcpi_total_rto_time = tp->total_rto_time;
4320 	if (tp->rto_stamp)
4321 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4322 
4323 	info->tcpi_accecn_fail_mode = tp->accecn_fail_mode;
4324 	info->tcpi_accecn_opt_seen = tp->saw_accecn_opt;
4325 	info->tcpi_received_ce = tp->received_ce;
4326 	info->tcpi_delivered_e1_bytes = tp->delivered_ecn_bytes[ect1_idx];
4327 	info->tcpi_delivered_e0_bytes = tp->delivered_ecn_bytes[ect0_idx];
4328 	info->tcpi_delivered_ce_bytes = tp->delivered_ecn_bytes[ce_idx];
4329 	info->tcpi_received_e1_bytes = tp->received_ecn_bytes[ect1_idx];
4330 	info->tcpi_received_e0_bytes = tp->received_ecn_bytes[ect0_idx];
4331 	info->tcpi_received_ce_bytes = tp->received_ecn_bytes[ce_idx];
4332 
4333 	unlock_sock_fast(sk, slow);
4334 }
4335 EXPORT_SYMBOL_GPL(tcp_get_info);
4336 
4337 static size_t tcp_opt_stats_get_size(void)
4338 {
4339 	return
4340 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4341 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4342 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4343 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4344 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4345 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4346 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4347 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4348 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4349 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4350 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4351 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4352 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4353 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4354 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4355 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4356 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4357 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4358 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4359 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4360 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4361 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4362 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4363 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4364 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4365 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4366 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4367 		0;
4368 }
4369 
4370 /* Returns TTL or hop limit of an incoming packet from skb. */
4371 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4372 {
4373 	if (skb->protocol == htons(ETH_P_IP))
4374 		return ip_hdr(skb)->ttl;
4375 	else if (skb->protocol == htons(ETH_P_IPV6))
4376 		return ipv6_hdr(skb)->hop_limit;
4377 	else
4378 		return 0;
4379 }
4380 
4381 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4382 					       const struct sk_buff *orig_skb,
4383 					       const struct sk_buff *ack_skb)
4384 {
4385 	const struct tcp_sock *tp = tcp_sk(sk);
4386 	struct sk_buff *stats;
4387 	struct tcp_info info;
4388 	unsigned long rate;
4389 	u64 rate64;
4390 
4391 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4392 	if (!stats)
4393 		return NULL;
4394 
4395 	tcp_get_info_chrono_stats(tp, &info);
4396 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4397 			  info.tcpi_busy_time, TCP_NLA_PAD);
4398 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4399 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4400 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4401 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4402 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4403 			  tp->data_segs_out, TCP_NLA_PAD);
4404 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4405 			  tp->total_retrans, TCP_NLA_PAD);
4406 
4407 	rate = READ_ONCE(sk->sk_pacing_rate);
4408 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4409 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4410 
4411 	rate64 = tcp_compute_delivery_rate(tp);
4412 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4413 
4414 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4415 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4416 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4417 
4418 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS,
4419 		   READ_ONCE(inet_csk(sk)->icsk_retransmits));
4420 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4421 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4422 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4423 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4424 
4425 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4426 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4427 
4428 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4429 			  TCP_NLA_PAD);
4430 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4431 			  TCP_NLA_PAD);
4432 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4433 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4434 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4435 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4436 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4437 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4438 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4439 			  TCP_NLA_PAD);
4440 	if (ack_skb)
4441 		nla_put_u8(stats, TCP_NLA_TTL,
4442 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4443 
4444 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4445 	return stats;
4446 }
4447 
4448 int do_tcp_getsockopt(struct sock *sk, int level,
4449 		      int optname, sockptr_t optval, sockptr_t optlen)
4450 {
4451 	struct inet_connection_sock *icsk = inet_csk(sk);
4452 	struct tcp_sock *tp = tcp_sk(sk);
4453 	struct net *net = sock_net(sk);
4454 	int user_mss;
4455 	int val, len;
4456 
4457 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4458 		return -EFAULT;
4459 
4460 	if (len < 0)
4461 		return -EINVAL;
4462 
4463 	len = min_t(unsigned int, len, sizeof(int));
4464 
4465 	switch (optname) {
4466 	case TCP_MAXSEG:
4467 		val = tp->mss_cache;
4468 		user_mss = READ_ONCE(tp->rx_opt.user_mss);
4469 		if (user_mss &&
4470 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4471 			val = user_mss;
4472 		if (tp->repair)
4473 			val = tp->rx_opt.mss_clamp;
4474 		break;
4475 	case TCP_NODELAY:
4476 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4477 		break;
4478 	case TCP_CORK:
4479 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4480 		break;
4481 	case TCP_KEEPIDLE:
4482 		val = keepalive_time_when(tp) / HZ;
4483 		break;
4484 	case TCP_KEEPINTVL:
4485 		val = keepalive_intvl_when(tp) / HZ;
4486 		break;
4487 	case TCP_KEEPCNT:
4488 		val = keepalive_probes(tp);
4489 		break;
4490 	case TCP_SYNCNT:
4491 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4492 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4493 		break;
4494 	case TCP_LINGER2:
4495 		val = READ_ONCE(tp->linger2);
4496 		if (val >= 0)
4497 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4498 		break;
4499 	case TCP_DEFER_ACCEPT:
4500 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4501 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4502 				      TCP_RTO_MAX / HZ);
4503 		break;
4504 	case TCP_WINDOW_CLAMP:
4505 		val = READ_ONCE(tp->window_clamp);
4506 		break;
4507 	case TCP_INFO: {
4508 		struct tcp_info info;
4509 
4510 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4511 			return -EFAULT;
4512 
4513 		tcp_get_info(sk, &info);
4514 
4515 		len = min_t(unsigned int, len, sizeof(info));
4516 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4517 			return -EFAULT;
4518 		if (copy_to_sockptr(optval, &info, len))
4519 			return -EFAULT;
4520 		return 0;
4521 	}
4522 	case TCP_CC_INFO: {
4523 		const struct tcp_congestion_ops *ca_ops;
4524 		union tcp_cc_info info;
4525 		size_t sz = 0;
4526 		int attr;
4527 
4528 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4529 			return -EFAULT;
4530 
4531 		ca_ops = icsk->icsk_ca_ops;
4532 		if (ca_ops && ca_ops->get_info)
4533 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4534 
4535 		len = min_t(unsigned int, len, sz);
4536 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4537 			return -EFAULT;
4538 		if (copy_to_sockptr(optval, &info, len))
4539 			return -EFAULT;
4540 		return 0;
4541 	}
4542 	case TCP_QUICKACK:
4543 		val = !inet_csk_in_pingpong_mode(sk);
4544 		break;
4545 
4546 	case TCP_CONGESTION:
4547 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4548 			return -EFAULT;
4549 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4550 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4551 			return -EFAULT;
4552 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4553 			return -EFAULT;
4554 		return 0;
4555 
4556 	case TCP_ULP:
4557 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4558 			return -EFAULT;
4559 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4560 		if (!icsk->icsk_ulp_ops) {
4561 			len = 0;
4562 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4563 				return -EFAULT;
4564 			return 0;
4565 		}
4566 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4567 			return -EFAULT;
4568 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4569 			return -EFAULT;
4570 		return 0;
4571 
4572 	case TCP_FASTOPEN_KEY: {
4573 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4574 		unsigned int key_len;
4575 
4576 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4577 			return -EFAULT;
4578 
4579 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4580 				TCP_FASTOPEN_KEY_LENGTH;
4581 		len = min_t(unsigned int, len, key_len);
4582 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4583 			return -EFAULT;
4584 		if (copy_to_sockptr(optval, key, len))
4585 			return -EFAULT;
4586 		return 0;
4587 	}
4588 	case TCP_THIN_LINEAR_TIMEOUTS:
4589 		val = tp->thin_lto;
4590 		break;
4591 
4592 	case TCP_THIN_DUPACK:
4593 		val = 0;
4594 		break;
4595 
4596 	case TCP_REPAIR:
4597 		val = tp->repair;
4598 		break;
4599 
4600 	case TCP_REPAIR_QUEUE:
4601 		if (tp->repair)
4602 			val = tp->repair_queue;
4603 		else
4604 			return -EINVAL;
4605 		break;
4606 
4607 	case TCP_REPAIR_WINDOW: {
4608 		struct tcp_repair_window opt;
4609 
4610 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4611 			return -EFAULT;
4612 
4613 		if (len != sizeof(opt))
4614 			return -EINVAL;
4615 
4616 		if (!tp->repair)
4617 			return -EPERM;
4618 
4619 		opt.snd_wl1	= tp->snd_wl1;
4620 		opt.snd_wnd	= tp->snd_wnd;
4621 		opt.max_window	= tp->max_window;
4622 		opt.rcv_wnd	= tp->rcv_wnd;
4623 		opt.rcv_wup	= tp->rcv_wup;
4624 
4625 		if (copy_to_sockptr(optval, &opt, len))
4626 			return -EFAULT;
4627 		return 0;
4628 	}
4629 	case TCP_QUEUE_SEQ:
4630 		if (tp->repair_queue == TCP_SEND_QUEUE)
4631 			val = tp->write_seq;
4632 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4633 			val = tp->rcv_nxt;
4634 		else
4635 			return -EINVAL;
4636 		break;
4637 
4638 	case TCP_USER_TIMEOUT:
4639 		val = READ_ONCE(icsk->icsk_user_timeout);
4640 		break;
4641 
4642 	case TCP_FASTOPEN:
4643 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4644 		break;
4645 
4646 	case TCP_FASTOPEN_CONNECT:
4647 		val = tp->fastopen_connect;
4648 		break;
4649 
4650 	case TCP_FASTOPEN_NO_COOKIE:
4651 		val = tp->fastopen_no_cookie;
4652 		break;
4653 
4654 	case TCP_TX_DELAY:
4655 		val = READ_ONCE(tp->tcp_tx_delay);
4656 		break;
4657 
4658 	case TCP_TIMESTAMP:
4659 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4660 		if (tp->tcp_usec_ts)
4661 			val |= 1;
4662 		else
4663 			val &= ~1;
4664 		break;
4665 	case TCP_NOTSENT_LOWAT:
4666 		val = READ_ONCE(tp->notsent_lowat);
4667 		break;
4668 	case TCP_INQ:
4669 		val = tp->recvmsg_inq;
4670 		break;
4671 	case TCP_SAVE_SYN:
4672 		val = tp->save_syn;
4673 		break;
4674 	case TCP_SAVED_SYN: {
4675 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4676 			return -EFAULT;
4677 
4678 		sockopt_lock_sock(sk);
4679 		if (tp->saved_syn) {
4680 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4681 				len = tcp_saved_syn_len(tp->saved_syn);
4682 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4683 					sockopt_release_sock(sk);
4684 					return -EFAULT;
4685 				}
4686 				sockopt_release_sock(sk);
4687 				return -EINVAL;
4688 			}
4689 			len = tcp_saved_syn_len(tp->saved_syn);
4690 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4691 				sockopt_release_sock(sk);
4692 				return -EFAULT;
4693 			}
4694 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4695 				sockopt_release_sock(sk);
4696 				return -EFAULT;
4697 			}
4698 			tcp_saved_syn_free(tp);
4699 			sockopt_release_sock(sk);
4700 		} else {
4701 			sockopt_release_sock(sk);
4702 			len = 0;
4703 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4704 				return -EFAULT;
4705 		}
4706 		return 0;
4707 	}
4708 #ifdef CONFIG_MMU
4709 	case TCP_ZEROCOPY_RECEIVE: {
4710 		struct scm_timestamping_internal tss;
4711 		struct tcp_zerocopy_receive zc = {};
4712 		int err;
4713 
4714 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4715 			return -EFAULT;
4716 		if (len < 0 ||
4717 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4718 			return -EINVAL;
4719 		if (unlikely(len > sizeof(zc))) {
4720 			err = check_zeroed_sockptr(optval, sizeof(zc),
4721 						   len - sizeof(zc));
4722 			if (err < 1)
4723 				return err == 0 ? -EINVAL : err;
4724 			len = sizeof(zc);
4725 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4726 				return -EFAULT;
4727 		}
4728 		if (copy_from_sockptr(&zc, optval, len))
4729 			return -EFAULT;
4730 		if (zc.reserved)
4731 			return -EINVAL;
4732 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4733 			return -EINVAL;
4734 		sockopt_lock_sock(sk);
4735 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4736 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4737 							  &zc, &len, err);
4738 		sockopt_release_sock(sk);
4739 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4740 			goto zerocopy_rcv_cmsg;
4741 		switch (len) {
4742 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4743 			goto zerocopy_rcv_cmsg;
4744 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4745 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4746 		case offsetofend(struct tcp_zerocopy_receive, flags):
4747 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4748 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4749 		case offsetofend(struct tcp_zerocopy_receive, err):
4750 			goto zerocopy_rcv_sk_err;
4751 		case offsetofend(struct tcp_zerocopy_receive, inq):
4752 			goto zerocopy_rcv_inq;
4753 		case offsetofend(struct tcp_zerocopy_receive, length):
4754 		default:
4755 			goto zerocopy_rcv_out;
4756 		}
4757 zerocopy_rcv_cmsg:
4758 		if (zc.msg_flags & TCP_CMSG_TS)
4759 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4760 		else
4761 			zc.msg_flags = 0;
4762 zerocopy_rcv_sk_err:
4763 		if (!err)
4764 			zc.err = sock_error(sk);
4765 zerocopy_rcv_inq:
4766 		zc.inq = tcp_inq_hint(sk);
4767 zerocopy_rcv_out:
4768 		if (!err && copy_to_sockptr(optval, &zc, len))
4769 			err = -EFAULT;
4770 		return err;
4771 	}
4772 #endif
4773 	case TCP_AO_REPAIR:
4774 		if (!tcp_can_repair_sock(sk))
4775 			return -EPERM;
4776 		return tcp_ao_get_repair(sk, optval, optlen);
4777 	case TCP_AO_GET_KEYS:
4778 	case TCP_AO_INFO: {
4779 		int err;
4780 
4781 		sockopt_lock_sock(sk);
4782 		if (optname == TCP_AO_GET_KEYS)
4783 			err = tcp_ao_get_mkts(sk, optval, optlen);
4784 		else
4785 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4786 		sockopt_release_sock(sk);
4787 
4788 		return err;
4789 	}
4790 	case TCP_IS_MPTCP:
4791 		val = 0;
4792 		break;
4793 	case TCP_RTO_MAX_MS:
4794 		val = jiffies_to_msecs(tcp_rto_max(sk));
4795 		break;
4796 	case TCP_RTO_MIN_US:
4797 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4798 		break;
4799 	case TCP_DELACK_MAX_US:
4800 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4801 		break;
4802 	default:
4803 		return -ENOPROTOOPT;
4804 	}
4805 
4806 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4807 		return -EFAULT;
4808 	if (copy_to_sockptr(optval, &val, len))
4809 		return -EFAULT;
4810 	return 0;
4811 }
4812 
4813 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4814 {
4815 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4816 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4817 	 */
4818 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4819 		return true;
4820 
4821 	return false;
4822 }
4823 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4824 
4825 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4826 		   int __user *optlen)
4827 {
4828 	struct inet_connection_sock *icsk = inet_csk(sk);
4829 
4830 	if (level != SOL_TCP)
4831 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4832 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4833 								optval, optlen);
4834 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4835 				 USER_SOCKPTR(optlen));
4836 }
4837 EXPORT_IPV6_MOD(tcp_getsockopt);
4838 
4839 #ifdef CONFIG_TCP_MD5SIG
4840 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
4841 			   unsigned int header_len)
4842 {
4843 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4844 					   skb_headlen(skb) - header_len : 0;
4845 	const struct skb_shared_info *shi = skb_shinfo(skb);
4846 	struct sk_buff *frag_iter;
4847 	unsigned int i;
4848 
4849 	md5_update(ctx, (const u8 *)tcp_hdr(skb) + header_len, head_data_len);
4850 
4851 	for (i = 0; i < shi->nr_frags; ++i) {
4852 		const skb_frag_t *f = &shi->frags[i];
4853 		u32 p_off, p_len, copied;
4854 		const void *vaddr;
4855 		struct page *p;
4856 
4857 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
4858 				      p, p_off, p_len, copied) {
4859 			vaddr = kmap_local_page(p);
4860 			md5_update(ctx, vaddr + p_off, p_len);
4861 			kunmap_local(vaddr);
4862 		}
4863 	}
4864 
4865 	skb_walk_frags(skb, frag_iter)
4866 		tcp_md5_hash_skb_data(ctx, frag_iter, 0);
4867 }
4868 EXPORT_IPV6_MOD(tcp_md5_hash_skb_data);
4869 
4870 void tcp_md5_hash_key(struct md5_ctx *ctx,
4871 		      const struct tcp_md5sig_key *key)
4872 {
4873 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4874 
4875 	/* We use data_race() because tcp_md5_do_add() might change
4876 	 * key->key under us
4877 	 */
4878 	data_race(({ md5_update(ctx, key->key, keylen), 0; }));
4879 }
4880 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4881 
4882 /* Called with rcu_read_lock() */
4883 static enum skb_drop_reason
4884 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4885 		     const void *saddr, const void *daddr,
4886 		     int family, int l3index, const __u8 *hash_location)
4887 {
4888 	/* This gets called for each TCP segment that has TCP-MD5 option.
4889 	 * We have 2 drop cases:
4890 	 * o An MD5 signature is present, but we're not expecting one.
4891 	 * o The MD5 signature is wrong.
4892 	 */
4893 	const struct tcp_sock *tp = tcp_sk(sk);
4894 	struct tcp_md5sig_key *key;
4895 	u8 newhash[16];
4896 
4897 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4898 	if (!key) {
4899 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4900 		trace_tcp_hash_md5_unexpected(sk, skb);
4901 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4902 	}
4903 
4904 	/* Check the signature.
4905 	 * To support dual stack listeners, we need to handle
4906 	 * IPv4-mapped case.
4907 	 */
4908 	if (family == AF_INET)
4909 		tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4910 	else
4911 		tp->af_specific->calc_md5_hash(newhash, key, NULL, skb);
4912 	if (memcmp(hash_location, newhash, 16) != 0) {
4913 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4914 		trace_tcp_hash_md5_mismatch(sk, skb);
4915 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4916 	}
4917 	return SKB_NOT_DROPPED_YET;
4918 }
4919 #else
4920 static inline enum skb_drop_reason
4921 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4922 		     const void *saddr, const void *daddr,
4923 		     int family, int l3index, const __u8 *hash_location)
4924 {
4925 	return SKB_NOT_DROPPED_YET;
4926 }
4927 
4928 #endif
4929 
4930 /* Called with rcu_read_lock() */
4931 enum skb_drop_reason
4932 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4933 		 const struct sk_buff *skb,
4934 		 const void *saddr, const void *daddr,
4935 		 int family, int dif, int sdif)
4936 {
4937 	const struct tcphdr *th = tcp_hdr(skb);
4938 	const struct tcp_ao_hdr *aoh;
4939 	const __u8 *md5_location;
4940 	int l3index;
4941 
4942 	/* Invalid option or two times meet any of auth options */
4943 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4944 		trace_tcp_hash_bad_header(sk, skb);
4945 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4946 	}
4947 
4948 	if (req) {
4949 		if (tcp_rsk_used_ao(req) != !!aoh) {
4950 			u8 keyid, rnext, maclen;
4951 
4952 			if (aoh) {
4953 				keyid = aoh->keyid;
4954 				rnext = aoh->rnext_keyid;
4955 				maclen = tcp_ao_hdr_maclen(aoh);
4956 			} else {
4957 				keyid = rnext = maclen = 0;
4958 			}
4959 
4960 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4961 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4962 			return SKB_DROP_REASON_TCP_AOFAILURE;
4963 		}
4964 	}
4965 
4966 	/* sdif set, means packet ingressed via a device
4967 	 * in an L3 domain and dif is set to the l3mdev
4968 	 */
4969 	l3index = sdif ? dif : 0;
4970 
4971 	/* Fast path: unsigned segments */
4972 	if (likely(!md5_location && !aoh)) {
4973 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4974 		 * for the remote peer. On TCP-AO established connection
4975 		 * the last key is impossible to remove, so there's
4976 		 * always at least one current_key.
4977 		 */
4978 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4979 			trace_tcp_hash_ao_required(sk, skb);
4980 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4981 		}
4982 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4983 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4984 			trace_tcp_hash_md5_required(sk, skb);
4985 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4986 		}
4987 		return SKB_NOT_DROPPED_YET;
4988 	}
4989 
4990 	if (aoh)
4991 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4992 
4993 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4994 				    l3index, md5_location);
4995 }
4996 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4997 
4998 void tcp_done(struct sock *sk)
4999 {
5000 	struct request_sock *req;
5001 
5002 	/* We might be called with a new socket, after
5003 	 * inet_csk_prepare_forced_close() has been called
5004 	 * so we can not use lockdep_sock_is_held(sk)
5005 	 */
5006 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
5007 
5008 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
5009 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
5010 
5011 	tcp_set_state(sk, TCP_CLOSE);
5012 	tcp_clear_xmit_timers(sk);
5013 	if (req)
5014 		reqsk_fastopen_remove(sk, req, false);
5015 
5016 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
5017 
5018 	if (!sock_flag(sk, SOCK_DEAD))
5019 		sk->sk_state_change(sk);
5020 	else
5021 		inet_csk_destroy_sock(sk);
5022 }
5023 EXPORT_SYMBOL_GPL(tcp_done);
5024 
5025 int tcp_abort(struct sock *sk, int err)
5026 {
5027 	int state = inet_sk_state_load(sk);
5028 
5029 	if (state == TCP_NEW_SYN_RECV) {
5030 		struct request_sock *req = inet_reqsk(sk);
5031 
5032 		local_bh_disable();
5033 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
5034 		local_bh_enable();
5035 		return 0;
5036 	}
5037 	if (state == TCP_TIME_WAIT) {
5038 		struct inet_timewait_sock *tw = inet_twsk(sk);
5039 
5040 		refcount_inc(&tw->tw_refcnt);
5041 		local_bh_disable();
5042 		inet_twsk_deschedule_put(tw);
5043 		local_bh_enable();
5044 		return 0;
5045 	}
5046 
5047 	/* BPF context ensures sock locking. */
5048 	if (!has_current_bpf_ctx())
5049 		/* Don't race with userspace socket closes such as tcp_close. */
5050 		lock_sock(sk);
5051 
5052 	/* Avoid closing the same socket twice. */
5053 	if (sk->sk_state == TCP_CLOSE) {
5054 		if (!has_current_bpf_ctx())
5055 			release_sock(sk);
5056 		return -ENOENT;
5057 	}
5058 
5059 	if (sk->sk_state == TCP_LISTEN) {
5060 		tcp_set_state(sk, TCP_CLOSE);
5061 		inet_csk_listen_stop(sk);
5062 	}
5063 
5064 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
5065 	local_bh_disable();
5066 	bh_lock_sock(sk);
5067 
5068 	if (tcp_need_reset(sk->sk_state))
5069 		tcp_send_active_reset(sk, GFP_ATOMIC,
5070 				      SK_RST_REASON_TCP_STATE);
5071 	tcp_done_with_error(sk, err);
5072 
5073 	bh_unlock_sock(sk);
5074 	local_bh_enable();
5075 	if (!has_current_bpf_ctx())
5076 		release_sock(sk);
5077 	return 0;
5078 }
5079 EXPORT_SYMBOL_GPL(tcp_abort);
5080 
5081 extern struct tcp_congestion_ops tcp_reno;
5082 
5083 static __initdata unsigned long thash_entries;
5084 static int __init set_thash_entries(char *str)
5085 {
5086 	ssize_t ret;
5087 
5088 	if (!str)
5089 		return 0;
5090 
5091 	ret = kstrtoul(str, 0, &thash_entries);
5092 	if (ret)
5093 		return 0;
5094 
5095 	return 1;
5096 }
5097 __setup("thash_entries=", set_thash_entries);
5098 
5099 static void __init tcp_init_mem(void)
5100 {
5101 	unsigned long limit = nr_free_buffer_pages() / 16;
5102 
5103 	limit = max(limit, 128UL);
5104 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5105 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5106 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5107 }
5108 
5109 static void __init tcp_struct_check(void)
5110 {
5111 	/* TX read-mostly hotpath cache lines */
5112 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5113 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, tcp_clean_acked);
5120 #endif
5121 
5122 	/* TXRX read-mostly hotpath cache lines */
5123 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5124 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5125 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5126 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5127 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5128 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5129 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5130 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5131 
5132 	/* RX read-mostly hotpath cache lines */
5133 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5134 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5135 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5136 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5137 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5138 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5139 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5140 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5141 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5142 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5143 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5144 
5145 	/* TX read-write hotpath cache lines */
5146 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5147 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5148 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5149 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5150 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5151 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5152 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5153 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5154 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5155 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5156 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5157 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, accecn_opt_tstamp);
5158 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5159 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5160 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5161 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5162 
5163 	/* TXRX read-write hotpath cache lines */
5164 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5165 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5166 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5167 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5168 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5169 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5170 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5171 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5172 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5173 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5174 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5175 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5176 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ce);
5177 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ecn_bytes);
5178 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5179 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5180 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_tstamp);
5181 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5182 
5183 	/* RX read-write hotpath cache lines */
5184 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5185 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5186 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5187 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5188 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5189 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5190 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5191 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5192 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5193 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_ecn_bytes);
5194 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5195 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5196 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5197 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5198 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5199 }
5200 
5201 void __init tcp_init(void)
5202 {
5203 	int max_rshare, max_wshare, cnt;
5204 	unsigned long limit;
5205 	unsigned int i;
5206 
5207 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5208 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5209 		     sizeof_field(struct sk_buff, cb));
5210 
5211 	tcp_struct_check();
5212 
5213 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5214 
5215 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5216 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5217 
5218 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5219 			    thash_entries, 21,  /* one slot per 2 MB*/
5220 			    0, 64 * 1024);
5221 	tcp_hashinfo.bind_bucket_cachep =
5222 		kmem_cache_create("tcp_bind_bucket",
5223 				  sizeof(struct inet_bind_bucket), 0,
5224 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5225 				  SLAB_ACCOUNT,
5226 				  NULL);
5227 	tcp_hashinfo.bind2_bucket_cachep =
5228 		kmem_cache_create("tcp_bind2_bucket",
5229 				  sizeof(struct inet_bind2_bucket), 0,
5230 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5231 				  SLAB_ACCOUNT,
5232 				  NULL);
5233 
5234 	/* Size and allocate the main established and bind bucket
5235 	 * hash tables.
5236 	 *
5237 	 * The methodology is similar to that of the buffer cache.
5238 	 */
5239 	tcp_hashinfo.ehash =
5240 		alloc_large_system_hash("TCP established",
5241 					sizeof(struct inet_ehash_bucket),
5242 					thash_entries,
5243 					17, /* one slot per 128 KB of memory */
5244 					0,
5245 					NULL,
5246 					&tcp_hashinfo.ehash_mask,
5247 					0,
5248 					thash_entries ? 0 : 512 * 1024);
5249 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5250 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5251 
5252 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5253 		panic("TCP: failed to alloc ehash_locks");
5254 	tcp_hashinfo.bhash =
5255 		alloc_large_system_hash("TCP bind",
5256 					2 * sizeof(struct inet_bind_hashbucket),
5257 					tcp_hashinfo.ehash_mask + 1,
5258 					17, /* one slot per 128 KB of memory */
5259 					0,
5260 					&tcp_hashinfo.bhash_size,
5261 					NULL,
5262 					0,
5263 					64 * 1024);
5264 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5265 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5266 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5267 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5268 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5269 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5270 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5271 	}
5272 
5273 	tcp_hashinfo.pernet = false;
5274 
5275 	cnt = tcp_hashinfo.ehash_mask + 1;
5276 	sysctl_tcp_max_orphans = cnt / 2;
5277 
5278 	tcp_init_mem();
5279 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5280 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5281 	max_wshare = min(4UL*1024*1024, limit);
5282 	max_rshare = min(32UL*1024*1024, limit);
5283 
5284 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5285 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5286 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5287 
5288 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5289 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5290 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5291 
5292 	pr_info("Hash tables configured (established %u bind %u)\n",
5293 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5294 
5295 	tcp_v4_init();
5296 	tcp_metrics_init();
5297 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5298 	tcp_tsq_work_init();
5299 	mptcp_init();
5300 }
5301