1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_IPV6_MOD(sysctl_tcp_mem); 304 305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 307 308 #if IS_ENABLED(CONFIG_SMC) 309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 310 EXPORT_SYMBOL(tcp_have_smc); 311 #endif 312 313 /* 314 * Current number of TCP sockets. 315 */ 316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 317 EXPORT_IPV6_MOD(tcp_sockets_allocated); 318 319 /* 320 * TCP splice context 321 */ 322 struct tcp_splice_state { 323 struct pipe_inode_info *pipe; 324 size_t len; 325 unsigned int flags; 326 }; 327 328 /* 329 * Pressure flag: try to collapse. 330 * Technical note: it is used by multiple contexts non atomically. 331 * All the __sk_mem_schedule() is of this nature: accounting 332 * is strict, actions are advisory and have some latency. 333 */ 334 unsigned long tcp_memory_pressure __read_mostly; 335 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 336 337 void tcp_enter_memory_pressure(struct sock *sk) 338 { 339 unsigned long val; 340 341 if (READ_ONCE(tcp_memory_pressure)) 342 return; 343 val = jiffies; 344 345 if (!val) 346 val--; 347 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 349 } 350 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 351 352 void tcp_leave_memory_pressure(struct sock *sk) 353 { 354 unsigned long val; 355 356 if (!READ_ONCE(tcp_memory_pressure)) 357 return; 358 val = xchg(&tcp_memory_pressure, 0); 359 if (val) 360 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 361 jiffies_to_msecs(jiffies - val)); 362 } 363 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 364 365 /* Convert seconds to retransmits based on initial and max timeout */ 366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 367 { 368 u8 res = 0; 369 370 if (seconds > 0) { 371 int period = timeout; 372 373 res = 1; 374 while (seconds > period && res < 255) { 375 res++; 376 timeout <<= 1; 377 if (timeout > rto_max) 378 timeout = rto_max; 379 period += timeout; 380 } 381 } 382 return res; 383 } 384 385 /* Convert retransmits to seconds based on initial and max timeout */ 386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 387 { 388 int period = 0; 389 390 if (retrans > 0) { 391 period = timeout; 392 while (--retrans) { 393 timeout <<= 1; 394 if (timeout > rto_max) 395 timeout = rto_max; 396 period += timeout; 397 } 398 } 399 return period; 400 } 401 402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 403 { 404 u32 rate = READ_ONCE(tp->rate_delivered); 405 u32 intv = READ_ONCE(tp->rate_interval_us); 406 u64 rate64 = 0; 407 408 if (rate && intv) { 409 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 410 do_div(rate64, intv); 411 } 412 return rate64; 413 } 414 415 /* Address-family independent initialization for a tcp_sock. 416 * 417 * NOTE: A lot of things set to zero explicitly by call to 418 * sk_alloc() so need not be done here. 419 */ 420 void tcp_init_sock(struct sock *sk) 421 { 422 struct inet_connection_sock *icsk = inet_csk(sk); 423 struct tcp_sock *tp = tcp_sk(sk); 424 int rto_min_us, rto_max_ms; 425 426 tp->out_of_order_queue = RB_ROOT; 427 sk->tcp_rtx_queue = RB_ROOT; 428 tcp_init_xmit_timers(sk); 429 INIT_LIST_HEAD(&tp->tsq_node); 430 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 431 432 icsk->icsk_rto = TCP_TIMEOUT_INIT; 433 434 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 435 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 436 437 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 438 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 439 icsk->icsk_delack_max = TCP_DELACK_MAX; 440 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 441 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 442 443 /* So many TCP implementations out there (incorrectly) count the 444 * initial SYN frame in their delayed-ACK and congestion control 445 * algorithms that we must have the following bandaid to talk 446 * efficiently to them. -DaveM 447 */ 448 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 449 450 /* There's a bubble in the pipe until at least the first ACK. */ 451 tp->app_limited = ~0U; 452 tp->rate_app_limited = 1; 453 454 /* See draft-stevens-tcpca-spec-01 for discussion of the 455 * initialization of these values. 456 */ 457 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 458 tp->snd_cwnd_clamp = ~0; 459 tp->mss_cache = TCP_MSS_DEFAULT; 460 461 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 462 tcp_assign_congestion_control(sk); 463 464 tp->tsoffset = 0; 465 tp->rack.reo_wnd_steps = 1; 466 467 sk->sk_write_space = sk_stream_write_space; 468 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 469 470 icsk->icsk_sync_mss = tcp_sync_mss; 471 472 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 473 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 474 tcp_scaling_ratio_init(sk); 475 476 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 477 sk_sockets_allocated_inc(sk); 478 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 479 } 480 EXPORT_IPV6_MOD(tcp_init_sock); 481 482 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 483 { 484 struct sk_buff *skb = tcp_write_queue_tail(sk); 485 u32 tsflags = sockc->tsflags; 486 487 if (tsflags && skb) { 488 struct skb_shared_info *shinfo = skb_shinfo(skb); 489 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 490 491 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 492 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 493 tcb->txstamp_ack |= TSTAMP_ACK_SK; 494 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 495 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 496 } 497 498 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 499 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 500 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 501 } 502 503 static bool tcp_stream_is_readable(struct sock *sk, int target) 504 { 505 if (tcp_epollin_ready(sk, target)) 506 return true; 507 return sk_is_readable(sk); 508 } 509 510 /* 511 * Wait for a TCP event. 512 * 513 * Note that we don't need to lock the socket, as the upper poll layers 514 * take care of normal races (between the test and the event) and we don't 515 * go look at any of the socket buffers directly. 516 */ 517 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 518 { 519 __poll_t mask; 520 struct sock *sk = sock->sk; 521 const struct tcp_sock *tp = tcp_sk(sk); 522 u8 shutdown; 523 int state; 524 525 sock_poll_wait(file, sock, wait); 526 527 state = inet_sk_state_load(sk); 528 if (state == TCP_LISTEN) 529 return inet_csk_listen_poll(sk); 530 531 /* Socket is not locked. We are protected from async events 532 * by poll logic and correct handling of state changes 533 * made by other threads is impossible in any case. 534 */ 535 536 mask = 0; 537 538 /* 539 * EPOLLHUP is certainly not done right. But poll() doesn't 540 * have a notion of HUP in just one direction, and for a 541 * socket the read side is more interesting. 542 * 543 * Some poll() documentation says that EPOLLHUP is incompatible 544 * with the EPOLLOUT/POLLWR flags, so somebody should check this 545 * all. But careful, it tends to be safer to return too many 546 * bits than too few, and you can easily break real applications 547 * if you don't tell them that something has hung up! 548 * 549 * Check-me. 550 * 551 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 552 * our fs/select.c). It means that after we received EOF, 553 * poll always returns immediately, making impossible poll() on write() 554 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 555 * if and only if shutdown has been made in both directions. 556 * Actually, it is interesting to look how Solaris and DUX 557 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 558 * then we could set it on SND_SHUTDOWN. BTW examples given 559 * in Stevens' books assume exactly this behaviour, it explains 560 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 561 * 562 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 563 * blocking on fresh not-connected or disconnected socket. --ANK 564 */ 565 shutdown = READ_ONCE(sk->sk_shutdown); 566 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 567 mask |= EPOLLHUP; 568 if (shutdown & RCV_SHUTDOWN) 569 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 570 571 /* Connected or passive Fast Open socket? */ 572 if (state != TCP_SYN_SENT && 573 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 574 int target = sock_rcvlowat(sk, 0, INT_MAX); 575 u16 urg_data = READ_ONCE(tp->urg_data); 576 577 if (unlikely(urg_data) && 578 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 579 !sock_flag(sk, SOCK_URGINLINE)) 580 target++; 581 582 if (tcp_stream_is_readable(sk, target)) 583 mask |= EPOLLIN | EPOLLRDNORM; 584 585 if (!(shutdown & SEND_SHUTDOWN)) { 586 if (__sk_stream_is_writeable(sk, 1)) { 587 mask |= EPOLLOUT | EPOLLWRNORM; 588 } else { /* send SIGIO later */ 589 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 590 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 591 592 /* Race breaker. If space is freed after 593 * wspace test but before the flags are set, 594 * IO signal will be lost. Memory barrier 595 * pairs with the input side. 596 */ 597 smp_mb__after_atomic(); 598 if (__sk_stream_is_writeable(sk, 1)) 599 mask |= EPOLLOUT | EPOLLWRNORM; 600 } 601 } else 602 mask |= EPOLLOUT | EPOLLWRNORM; 603 604 if (urg_data & TCP_URG_VALID) 605 mask |= EPOLLPRI; 606 } else if (state == TCP_SYN_SENT && 607 inet_test_bit(DEFER_CONNECT, sk)) { 608 /* Active TCP fastopen socket with defer_connect 609 * Return EPOLLOUT so application can call write() 610 * in order for kernel to generate SYN+data 611 */ 612 mask |= EPOLLOUT | EPOLLWRNORM; 613 } 614 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 615 smp_rmb(); 616 if (READ_ONCE(sk->sk_err) || 617 !skb_queue_empty_lockless(&sk->sk_error_queue)) 618 mask |= EPOLLERR; 619 620 return mask; 621 } 622 EXPORT_SYMBOL(tcp_poll); 623 624 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 625 { 626 struct tcp_sock *tp = tcp_sk(sk); 627 int answ; 628 bool slow; 629 630 switch (cmd) { 631 case SIOCINQ: 632 if (sk->sk_state == TCP_LISTEN) 633 return -EINVAL; 634 635 slow = lock_sock_fast(sk); 636 answ = tcp_inq(sk); 637 unlock_sock_fast(sk, slow); 638 break; 639 case SIOCATMARK: 640 answ = READ_ONCE(tp->urg_data) && 641 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 642 break; 643 case SIOCOUTQ: 644 if (sk->sk_state == TCP_LISTEN) 645 return -EINVAL; 646 647 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 648 answ = 0; 649 else 650 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 651 break; 652 case SIOCOUTQNSD: 653 if (sk->sk_state == TCP_LISTEN) 654 return -EINVAL; 655 656 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 657 answ = 0; 658 else 659 answ = READ_ONCE(tp->write_seq) - 660 READ_ONCE(tp->snd_nxt); 661 break; 662 default: 663 return -ENOIOCTLCMD; 664 } 665 666 *karg = answ; 667 return 0; 668 } 669 EXPORT_IPV6_MOD(tcp_ioctl); 670 671 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 672 { 673 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 674 tp->pushed_seq = tp->write_seq; 675 } 676 677 static inline bool forced_push(const struct tcp_sock *tp) 678 { 679 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 680 } 681 682 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 683 { 684 struct tcp_sock *tp = tcp_sk(sk); 685 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 686 687 tcb->seq = tcb->end_seq = tp->write_seq; 688 tcb->tcp_flags = TCPHDR_ACK; 689 __skb_header_release(skb); 690 tcp_add_write_queue_tail(sk, skb); 691 sk_wmem_queued_add(sk, skb->truesize); 692 sk_mem_charge(sk, skb->truesize); 693 if (tp->nonagle & TCP_NAGLE_PUSH) 694 tp->nonagle &= ~TCP_NAGLE_PUSH; 695 696 tcp_slow_start_after_idle_check(sk); 697 } 698 699 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 700 { 701 if (flags & MSG_OOB) 702 tp->snd_up = tp->write_seq; 703 } 704 705 /* If a not yet filled skb is pushed, do not send it if 706 * we have data packets in Qdisc or NIC queues : 707 * Because TX completion will happen shortly, it gives a chance 708 * to coalesce future sendmsg() payload into this skb, without 709 * need for a timer, and with no latency trade off. 710 * As packets containing data payload have a bigger truesize 711 * than pure acks (dataless) packets, the last checks prevent 712 * autocorking if we only have an ACK in Qdisc/NIC queues, 713 * or if TX completion was delayed after we processed ACK packet. 714 */ 715 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 716 int size_goal) 717 { 718 return skb->len < size_goal && 719 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 720 !tcp_rtx_queue_empty(sk) && 721 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 722 tcp_skb_can_collapse_to(skb); 723 } 724 725 void tcp_push(struct sock *sk, int flags, int mss_now, 726 int nonagle, int size_goal) 727 { 728 struct tcp_sock *tp = tcp_sk(sk); 729 struct sk_buff *skb; 730 731 skb = tcp_write_queue_tail(sk); 732 if (!skb) 733 return; 734 if (!(flags & MSG_MORE) || forced_push(tp)) 735 tcp_mark_push(tp, skb); 736 737 tcp_mark_urg(tp, flags); 738 739 if (tcp_should_autocork(sk, skb, size_goal)) { 740 741 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 742 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 744 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 745 smp_mb__after_atomic(); 746 } 747 /* It is possible TX completion already happened 748 * before we set TSQ_THROTTLED. 749 */ 750 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 751 return; 752 } 753 754 if (flags & MSG_MORE) 755 nonagle = TCP_NAGLE_CORK; 756 757 __tcp_push_pending_frames(sk, mss_now, nonagle); 758 } 759 760 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 761 unsigned int offset, size_t len) 762 { 763 struct tcp_splice_state *tss = rd_desc->arg.data; 764 int ret; 765 766 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 767 min(rd_desc->count, len), tss->flags); 768 if (ret > 0) 769 rd_desc->count -= ret; 770 return ret; 771 } 772 773 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 774 { 775 /* Store TCP splice context information in read_descriptor_t. */ 776 read_descriptor_t rd_desc = { 777 .arg.data = tss, 778 .count = tss->len, 779 }; 780 781 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 782 } 783 784 /** 785 * tcp_splice_read - splice data from TCP socket to a pipe 786 * @sock: socket to splice from 787 * @ppos: position (not valid) 788 * @pipe: pipe to splice to 789 * @len: number of bytes to splice 790 * @flags: splice modifier flags 791 * 792 * Description: 793 * Will read pages from given socket and fill them into a pipe. 794 * 795 **/ 796 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 797 struct pipe_inode_info *pipe, size_t len, 798 unsigned int flags) 799 { 800 struct sock *sk = sock->sk; 801 struct tcp_splice_state tss = { 802 .pipe = pipe, 803 .len = len, 804 .flags = flags, 805 }; 806 long timeo; 807 ssize_t spliced; 808 int ret; 809 810 sock_rps_record_flow(sk); 811 /* 812 * We can't seek on a socket input 813 */ 814 if (unlikely(*ppos)) 815 return -ESPIPE; 816 817 ret = spliced = 0; 818 819 lock_sock(sk); 820 821 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 822 while (tss.len) { 823 ret = __tcp_splice_read(sk, &tss); 824 if (ret < 0) 825 break; 826 else if (!ret) { 827 if (spliced) 828 break; 829 if (sock_flag(sk, SOCK_DONE)) 830 break; 831 if (sk->sk_err) { 832 ret = sock_error(sk); 833 break; 834 } 835 if (sk->sk_shutdown & RCV_SHUTDOWN) 836 break; 837 if (sk->sk_state == TCP_CLOSE) { 838 /* 839 * This occurs when user tries to read 840 * from never connected socket. 841 */ 842 ret = -ENOTCONN; 843 break; 844 } 845 if (!timeo) { 846 ret = -EAGAIN; 847 break; 848 } 849 /* if __tcp_splice_read() got nothing while we have 850 * an skb in receive queue, we do not want to loop. 851 * This might happen with URG data. 852 */ 853 if (!skb_queue_empty(&sk->sk_receive_queue)) 854 break; 855 ret = sk_wait_data(sk, &timeo, NULL); 856 if (ret < 0) 857 break; 858 if (signal_pending(current)) { 859 ret = sock_intr_errno(timeo); 860 break; 861 } 862 continue; 863 } 864 tss.len -= ret; 865 spliced += ret; 866 867 if (!tss.len || !timeo) 868 break; 869 release_sock(sk); 870 lock_sock(sk); 871 872 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 873 (sk->sk_shutdown & RCV_SHUTDOWN) || 874 signal_pending(current)) 875 break; 876 } 877 878 release_sock(sk); 879 880 if (spliced) 881 return spliced; 882 883 return ret; 884 } 885 EXPORT_IPV6_MOD(tcp_splice_read); 886 887 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 888 bool force_schedule) 889 { 890 struct sk_buff *skb; 891 892 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 893 if (likely(skb)) { 894 bool mem_scheduled; 895 896 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 897 if (force_schedule) { 898 mem_scheduled = true; 899 sk_forced_mem_schedule(sk, skb->truesize); 900 } else { 901 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 902 } 903 if (likely(mem_scheduled)) { 904 skb_reserve(skb, MAX_TCP_HEADER); 905 skb->ip_summed = CHECKSUM_PARTIAL; 906 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 907 return skb; 908 } 909 __kfree_skb(skb); 910 } else { 911 sk->sk_prot->enter_memory_pressure(sk); 912 sk_stream_moderate_sndbuf(sk); 913 } 914 return NULL; 915 } 916 917 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 918 int large_allowed) 919 { 920 struct tcp_sock *tp = tcp_sk(sk); 921 u32 new_size_goal, size_goal; 922 923 if (!large_allowed) 924 return mss_now; 925 926 /* Note : tcp_tso_autosize() will eventually split this later */ 927 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 928 929 /* We try hard to avoid divides here */ 930 size_goal = tp->gso_segs * mss_now; 931 if (unlikely(new_size_goal < size_goal || 932 new_size_goal >= size_goal + mss_now)) { 933 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 934 sk->sk_gso_max_segs); 935 size_goal = tp->gso_segs * mss_now; 936 } 937 938 return max(size_goal, mss_now); 939 } 940 941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 942 { 943 int mss_now; 944 945 mss_now = tcp_current_mss(sk); 946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 947 948 return mss_now; 949 } 950 951 /* In some cases, sendmsg() could have added an skb to the write queue, 952 * but failed adding payload on it. We need to remove it to consume less 953 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 954 * epoll() users. Another reason is that tcp_write_xmit() does not like 955 * finding an empty skb in the write queue. 956 */ 957 void tcp_remove_empty_skb(struct sock *sk) 958 { 959 struct sk_buff *skb = tcp_write_queue_tail(sk); 960 961 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 962 tcp_unlink_write_queue(skb, sk); 963 if (tcp_write_queue_empty(sk)) 964 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 965 tcp_wmem_free_skb(sk, skb); 966 } 967 } 968 969 /* skb changing from pure zc to mixed, must charge zc */ 970 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 971 { 972 if (unlikely(skb_zcopy_pure(skb))) { 973 u32 extra = skb->truesize - 974 SKB_TRUESIZE(skb_end_offset(skb)); 975 976 if (!sk_wmem_schedule(sk, extra)) 977 return -ENOMEM; 978 979 sk_mem_charge(sk, extra); 980 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 981 } 982 return 0; 983 } 984 985 986 int tcp_wmem_schedule(struct sock *sk, int copy) 987 { 988 int left; 989 990 if (likely(sk_wmem_schedule(sk, copy))) 991 return copy; 992 993 /* We could be in trouble if we have nothing queued. 994 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 995 * to guarantee some progress. 996 */ 997 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 998 if (left > 0) 999 sk_forced_mem_schedule(sk, min(left, copy)); 1000 return min(copy, sk->sk_forward_alloc); 1001 } 1002 1003 void tcp_free_fastopen_req(struct tcp_sock *tp) 1004 { 1005 if (tp->fastopen_req) { 1006 kfree(tp->fastopen_req); 1007 tp->fastopen_req = NULL; 1008 } 1009 } 1010 1011 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1012 size_t size, struct ubuf_info *uarg) 1013 { 1014 struct tcp_sock *tp = tcp_sk(sk); 1015 struct inet_sock *inet = inet_sk(sk); 1016 struct sockaddr *uaddr = msg->msg_name; 1017 int err, flags; 1018 1019 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1020 TFO_CLIENT_ENABLE) || 1021 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1022 uaddr->sa_family == AF_UNSPEC)) 1023 return -EOPNOTSUPP; 1024 if (tp->fastopen_req) 1025 return -EALREADY; /* Another Fast Open is in progress */ 1026 1027 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1028 sk->sk_allocation); 1029 if (unlikely(!tp->fastopen_req)) 1030 return -ENOBUFS; 1031 tp->fastopen_req->data = msg; 1032 tp->fastopen_req->size = size; 1033 tp->fastopen_req->uarg = uarg; 1034 1035 if (inet_test_bit(DEFER_CONNECT, sk)) { 1036 err = tcp_connect(sk); 1037 /* Same failure procedure as in tcp_v4/6_connect */ 1038 if (err) { 1039 tcp_set_state(sk, TCP_CLOSE); 1040 inet->inet_dport = 0; 1041 sk->sk_route_caps = 0; 1042 } 1043 } 1044 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1045 err = __inet_stream_connect(sk->sk_socket, uaddr, 1046 msg->msg_namelen, flags, 1); 1047 /* fastopen_req could already be freed in __inet_stream_connect 1048 * if the connection times out or gets rst 1049 */ 1050 if (tp->fastopen_req) { 1051 *copied = tp->fastopen_req->copied; 1052 tcp_free_fastopen_req(tp); 1053 inet_clear_bit(DEFER_CONNECT, sk); 1054 } 1055 return err; 1056 } 1057 1058 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1059 { 1060 struct net_devmem_dmabuf_binding *binding = NULL; 1061 struct tcp_sock *tp = tcp_sk(sk); 1062 struct ubuf_info *uarg = NULL; 1063 struct sk_buff *skb; 1064 struct sockcm_cookie sockc; 1065 int flags, err, copied = 0; 1066 int mss_now = 0, size_goal, copied_syn = 0; 1067 int process_backlog = 0; 1068 int sockc_err = 0; 1069 int zc = 0; 1070 long timeo; 1071 1072 flags = msg->msg_flags; 1073 1074 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; 1075 if (msg->msg_controllen) { 1076 sockc_err = sock_cmsg_send(sk, msg, &sockc); 1077 /* Don't return error until MSG_FASTOPEN has been processed; 1078 * that may succeed even if the cmsg is invalid. 1079 */ 1080 } 1081 1082 if ((flags & MSG_ZEROCOPY) && size) { 1083 if (msg->msg_ubuf) { 1084 uarg = msg->msg_ubuf; 1085 if (sk->sk_route_caps & NETIF_F_SG) 1086 zc = MSG_ZEROCOPY; 1087 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1088 skb = tcp_write_queue_tail(sk); 1089 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb), 1090 !sockc_err && sockc.dmabuf_id); 1091 if (!uarg) { 1092 err = -ENOBUFS; 1093 goto out_err; 1094 } 1095 if (sk->sk_route_caps & NETIF_F_SG) 1096 zc = MSG_ZEROCOPY; 1097 else 1098 uarg_to_msgzc(uarg)->zerocopy = 0; 1099 1100 if (!sockc_err && sockc.dmabuf_id) { 1101 binding = net_devmem_get_binding(sk, sockc.dmabuf_id); 1102 if (IS_ERR(binding)) { 1103 err = PTR_ERR(binding); 1104 binding = NULL; 1105 goto out_err; 1106 } 1107 } 1108 } 1109 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1110 if (sk->sk_route_caps & NETIF_F_SG) 1111 zc = MSG_SPLICE_PAGES; 1112 } 1113 1114 if (!sockc_err && sockc.dmabuf_id && 1115 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) { 1116 err = -EINVAL; 1117 goto out_err; 1118 } 1119 1120 if (unlikely(flags & MSG_FASTOPEN || 1121 inet_test_bit(DEFER_CONNECT, sk)) && 1122 !tp->repair) { 1123 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1124 if (err == -EINPROGRESS && copied_syn > 0) 1125 goto out; 1126 else if (err) 1127 goto out_err; 1128 } 1129 1130 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1131 1132 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1133 1134 /* Wait for a connection to finish. One exception is TCP Fast Open 1135 * (passive side) where data is allowed to be sent before a connection 1136 * is fully established. 1137 */ 1138 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1139 !tcp_passive_fastopen(sk)) { 1140 err = sk_stream_wait_connect(sk, &timeo); 1141 if (err != 0) 1142 goto do_error; 1143 } 1144 1145 if (unlikely(tp->repair)) { 1146 if (tp->repair_queue == TCP_RECV_QUEUE) { 1147 copied = tcp_send_rcvq(sk, msg, size); 1148 goto out_nopush; 1149 } 1150 1151 err = -EINVAL; 1152 if (tp->repair_queue == TCP_NO_QUEUE) 1153 goto out_err; 1154 1155 /* 'common' sending to sendq */ 1156 } 1157 1158 if (sockc_err) { 1159 err = sockc_err; 1160 goto out_err; 1161 } 1162 1163 /* This should be in poll */ 1164 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1165 1166 /* Ok commence sending. */ 1167 copied = 0; 1168 1169 restart: 1170 mss_now = tcp_send_mss(sk, &size_goal, flags); 1171 1172 err = -EPIPE; 1173 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1174 goto do_error; 1175 1176 while (msg_data_left(msg)) { 1177 ssize_t copy = 0; 1178 1179 skb = tcp_write_queue_tail(sk); 1180 if (skb) 1181 copy = size_goal - skb->len; 1182 1183 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); 1184 1185 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1186 bool first_skb; 1187 1188 new_segment: 1189 if (!sk_stream_memory_free(sk)) 1190 goto wait_for_space; 1191 1192 if (unlikely(process_backlog >= 16)) { 1193 process_backlog = 0; 1194 if (sk_flush_backlog(sk)) 1195 goto restart; 1196 } 1197 first_skb = tcp_rtx_and_write_queues_empty(sk); 1198 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1199 first_skb); 1200 if (!skb) 1201 goto wait_for_space; 1202 1203 process_backlog++; 1204 1205 #ifdef CONFIG_SKB_DECRYPTED 1206 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1207 #endif 1208 tcp_skb_entail(sk, skb); 1209 copy = size_goal; 1210 1211 /* All packets are restored as if they have 1212 * already been sent. skb_mstamp_ns isn't set to 1213 * avoid wrong rtt estimation. 1214 */ 1215 if (tp->repair) 1216 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1217 } 1218 1219 /* Try to append data to the end of skb. */ 1220 if (copy > msg_data_left(msg)) 1221 copy = msg_data_left(msg); 1222 1223 if (zc == 0) { 1224 bool merge = true; 1225 int i = skb_shinfo(skb)->nr_frags; 1226 struct page_frag *pfrag = sk_page_frag(sk); 1227 1228 if (!sk_page_frag_refill(sk, pfrag)) 1229 goto wait_for_space; 1230 1231 if (!skb_can_coalesce(skb, i, pfrag->page, 1232 pfrag->offset)) { 1233 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1234 tcp_mark_push(tp, skb); 1235 goto new_segment; 1236 } 1237 merge = false; 1238 } 1239 1240 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1241 1242 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1243 if (tcp_downgrade_zcopy_pure(sk, skb)) 1244 goto wait_for_space; 1245 skb_zcopy_downgrade_managed(skb); 1246 } 1247 1248 copy = tcp_wmem_schedule(sk, copy); 1249 if (!copy) 1250 goto wait_for_space; 1251 1252 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1253 pfrag->page, 1254 pfrag->offset, 1255 copy); 1256 if (err) 1257 goto do_error; 1258 1259 /* Update the skb. */ 1260 if (merge) { 1261 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1262 } else { 1263 skb_fill_page_desc(skb, i, pfrag->page, 1264 pfrag->offset, copy); 1265 page_ref_inc(pfrag->page); 1266 } 1267 pfrag->offset += copy; 1268 } else if (zc == MSG_ZEROCOPY) { 1269 /* First append to a fragless skb builds initial 1270 * pure zerocopy skb 1271 */ 1272 if (!skb->len) 1273 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1274 1275 if (!skb_zcopy_pure(skb)) { 1276 copy = tcp_wmem_schedule(sk, copy); 1277 if (!copy) 1278 goto wait_for_space; 1279 } 1280 1281 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg, 1282 binding); 1283 if (err == -EMSGSIZE || err == -EEXIST) { 1284 tcp_mark_push(tp, skb); 1285 goto new_segment; 1286 } 1287 if (err < 0) 1288 goto do_error; 1289 copy = err; 1290 } else if (zc == MSG_SPLICE_PAGES) { 1291 /* Splice in data if we can; copy if we can't. */ 1292 if (tcp_downgrade_zcopy_pure(sk, skb)) 1293 goto wait_for_space; 1294 copy = tcp_wmem_schedule(sk, copy); 1295 if (!copy) 1296 goto wait_for_space; 1297 1298 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1299 sk->sk_allocation); 1300 if (err < 0) { 1301 if (err == -EMSGSIZE) { 1302 tcp_mark_push(tp, skb); 1303 goto new_segment; 1304 } 1305 goto do_error; 1306 } 1307 copy = err; 1308 1309 if (!(flags & MSG_NO_SHARED_FRAGS)) 1310 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1311 1312 sk_wmem_queued_add(sk, copy); 1313 sk_mem_charge(sk, copy); 1314 } 1315 1316 if (!copied) 1317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1318 1319 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1320 TCP_SKB_CB(skb)->end_seq += copy; 1321 tcp_skb_pcount_set(skb, 0); 1322 1323 copied += copy; 1324 if (!msg_data_left(msg)) { 1325 if (unlikely(flags & MSG_EOR)) 1326 TCP_SKB_CB(skb)->eor = 1; 1327 goto out; 1328 } 1329 1330 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1331 continue; 1332 1333 if (forced_push(tp)) { 1334 tcp_mark_push(tp, skb); 1335 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1336 } else if (skb == tcp_send_head(sk)) 1337 tcp_push_one(sk, mss_now); 1338 continue; 1339 1340 wait_for_space: 1341 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1342 tcp_remove_empty_skb(sk); 1343 if (copied) 1344 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1345 TCP_NAGLE_PUSH, size_goal); 1346 1347 err = sk_stream_wait_memory(sk, &timeo); 1348 if (err != 0) 1349 goto do_error; 1350 1351 mss_now = tcp_send_mss(sk, &size_goal, flags); 1352 } 1353 1354 out: 1355 if (copied) { 1356 tcp_tx_timestamp(sk, &sockc); 1357 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1358 } 1359 out_nopush: 1360 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1361 if (uarg && !msg->msg_ubuf) 1362 net_zcopy_put(uarg); 1363 if (binding) 1364 net_devmem_dmabuf_binding_put(binding); 1365 return copied + copied_syn; 1366 1367 do_error: 1368 tcp_remove_empty_skb(sk); 1369 1370 if (copied + copied_syn) 1371 goto out; 1372 out_err: 1373 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1374 if (uarg && !msg->msg_ubuf) 1375 net_zcopy_put_abort(uarg, true); 1376 err = sk_stream_error(sk, flags, err); 1377 /* make sure we wake any epoll edge trigger waiter */ 1378 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1379 sk->sk_write_space(sk); 1380 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1381 } 1382 if (binding) 1383 net_devmem_dmabuf_binding_put(binding); 1384 1385 return err; 1386 } 1387 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1388 1389 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1390 { 1391 int ret; 1392 1393 lock_sock(sk); 1394 ret = tcp_sendmsg_locked(sk, msg, size); 1395 release_sock(sk); 1396 1397 return ret; 1398 } 1399 EXPORT_SYMBOL(tcp_sendmsg); 1400 1401 void tcp_splice_eof(struct socket *sock) 1402 { 1403 struct sock *sk = sock->sk; 1404 struct tcp_sock *tp = tcp_sk(sk); 1405 int mss_now, size_goal; 1406 1407 if (!tcp_write_queue_tail(sk)) 1408 return; 1409 1410 lock_sock(sk); 1411 mss_now = tcp_send_mss(sk, &size_goal, 0); 1412 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1413 release_sock(sk); 1414 } 1415 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1416 1417 /* 1418 * Handle reading urgent data. BSD has very simple semantics for 1419 * this, no blocking and very strange errors 8) 1420 */ 1421 1422 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1423 { 1424 struct tcp_sock *tp = tcp_sk(sk); 1425 1426 /* No URG data to read. */ 1427 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1428 tp->urg_data == TCP_URG_READ) 1429 return -EINVAL; /* Yes this is right ! */ 1430 1431 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1432 return -ENOTCONN; 1433 1434 if (tp->urg_data & TCP_URG_VALID) { 1435 int err = 0; 1436 char c = tp->urg_data; 1437 1438 if (!(flags & MSG_PEEK)) 1439 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1440 1441 /* Read urgent data. */ 1442 msg->msg_flags |= MSG_OOB; 1443 1444 if (len > 0) { 1445 if (!(flags & MSG_TRUNC)) 1446 err = memcpy_to_msg(msg, &c, 1); 1447 len = 1; 1448 } else 1449 msg->msg_flags |= MSG_TRUNC; 1450 1451 return err ? -EFAULT : len; 1452 } 1453 1454 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1455 return 0; 1456 1457 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1458 * the available implementations agree in this case: 1459 * this call should never block, independent of the 1460 * blocking state of the socket. 1461 * Mike <pall@rz.uni-karlsruhe.de> 1462 */ 1463 return -EAGAIN; 1464 } 1465 1466 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1467 { 1468 struct sk_buff *skb; 1469 int copied = 0, err = 0; 1470 1471 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1472 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1473 if (err) 1474 return err; 1475 copied += skb->len; 1476 } 1477 1478 skb_queue_walk(&sk->sk_write_queue, skb) { 1479 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1480 if (err) 1481 break; 1482 1483 copied += skb->len; 1484 } 1485 1486 return err ?: copied; 1487 } 1488 1489 /* Clean up the receive buffer for full frames taken by the user, 1490 * then send an ACK if necessary. COPIED is the number of bytes 1491 * tcp_recvmsg has given to the user so far, it speeds up the 1492 * calculation of whether or not we must ACK for the sake of 1493 * a window update. 1494 */ 1495 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1496 { 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 bool time_to_ack = false; 1499 1500 if (inet_csk_ack_scheduled(sk)) { 1501 const struct inet_connection_sock *icsk = inet_csk(sk); 1502 1503 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1504 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1505 /* 1506 * If this read emptied read buffer, we send ACK, if 1507 * connection is not bidirectional, user drained 1508 * receive buffer and there was a small segment 1509 * in queue. 1510 */ 1511 (copied > 0 && 1512 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1513 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1514 !inet_csk_in_pingpong_mode(sk))) && 1515 !atomic_read(&sk->sk_rmem_alloc))) 1516 time_to_ack = true; 1517 } 1518 1519 /* We send an ACK if we can now advertise a non-zero window 1520 * which has been raised "significantly". 1521 * 1522 * Even if window raised up to infinity, do not send window open ACK 1523 * in states, where we will not receive more. It is useless. 1524 */ 1525 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1526 __u32 rcv_window_now = tcp_receive_window(tp); 1527 1528 /* Optimize, __tcp_select_window() is not cheap. */ 1529 if (2*rcv_window_now <= tp->window_clamp) { 1530 __u32 new_window = __tcp_select_window(sk); 1531 1532 /* Send ACK now, if this read freed lots of space 1533 * in our buffer. Certainly, new_window is new window. 1534 * We can advertise it now, if it is not less than current one. 1535 * "Lots" means "at least twice" here. 1536 */ 1537 if (new_window && new_window >= 2 * rcv_window_now) 1538 time_to_ack = true; 1539 } 1540 } 1541 if (time_to_ack) 1542 tcp_send_ack(sk); 1543 } 1544 1545 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1546 { 1547 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1548 struct tcp_sock *tp = tcp_sk(sk); 1549 1550 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1551 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1552 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1553 __tcp_cleanup_rbuf(sk, copied); 1554 } 1555 1556 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1557 { 1558 __skb_unlink(skb, &sk->sk_receive_queue); 1559 if (likely(skb->destructor == sock_rfree)) { 1560 sock_rfree(skb); 1561 skb->destructor = NULL; 1562 skb->sk = NULL; 1563 return skb_attempt_defer_free(skb); 1564 } 1565 __kfree_skb(skb); 1566 } 1567 1568 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1569 { 1570 struct sk_buff *skb; 1571 u32 offset; 1572 1573 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1574 offset = seq - TCP_SKB_CB(skb)->seq; 1575 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1576 pr_err_once("%s: found a SYN, please report !\n", __func__); 1577 offset--; 1578 } 1579 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1580 *off = offset; 1581 return skb; 1582 } 1583 /* This looks weird, but this can happen if TCP collapsing 1584 * splitted a fat GRO packet, while we released socket lock 1585 * in skb_splice_bits() 1586 */ 1587 tcp_eat_recv_skb(sk, skb); 1588 } 1589 return NULL; 1590 } 1591 EXPORT_SYMBOL(tcp_recv_skb); 1592 1593 /* 1594 * This routine provides an alternative to tcp_recvmsg() for routines 1595 * that would like to handle copying from skbuffs directly in 'sendfile' 1596 * fashion. 1597 * Note: 1598 * - It is assumed that the socket was locked by the caller. 1599 * - The routine does not block. 1600 * - At present, there is no support for reading OOB data 1601 * or for 'peeking' the socket using this routine 1602 * (although both would be easy to implement). 1603 */ 1604 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1605 sk_read_actor_t recv_actor, bool noack, 1606 u32 *copied_seq) 1607 { 1608 struct sk_buff *skb; 1609 struct tcp_sock *tp = tcp_sk(sk); 1610 u32 seq = *copied_seq; 1611 u32 offset; 1612 int copied = 0; 1613 1614 if (sk->sk_state == TCP_LISTEN) 1615 return -ENOTCONN; 1616 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1617 if (offset < skb->len) { 1618 int used; 1619 size_t len; 1620 1621 len = skb->len - offset; 1622 /* Stop reading if we hit a patch of urgent data */ 1623 if (unlikely(tp->urg_data)) { 1624 u32 urg_offset = tp->urg_seq - seq; 1625 if (urg_offset < len) 1626 len = urg_offset; 1627 if (!len) 1628 break; 1629 } 1630 used = recv_actor(desc, skb, offset, len); 1631 if (used <= 0) { 1632 if (!copied) 1633 copied = used; 1634 break; 1635 } 1636 if (WARN_ON_ONCE(used > len)) 1637 used = len; 1638 seq += used; 1639 copied += used; 1640 offset += used; 1641 1642 /* If recv_actor drops the lock (e.g. TCP splice 1643 * receive) the skb pointer might be invalid when 1644 * getting here: tcp_collapse might have deleted it 1645 * while aggregating skbs from the socket queue. 1646 */ 1647 skb = tcp_recv_skb(sk, seq - 1, &offset); 1648 if (!skb) 1649 break; 1650 /* TCP coalescing might have appended data to the skb. 1651 * Try to splice more frags 1652 */ 1653 if (offset + 1 != skb->len) 1654 continue; 1655 } 1656 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1657 tcp_eat_recv_skb(sk, skb); 1658 ++seq; 1659 break; 1660 } 1661 tcp_eat_recv_skb(sk, skb); 1662 if (!desc->count) 1663 break; 1664 WRITE_ONCE(*copied_seq, seq); 1665 } 1666 WRITE_ONCE(*copied_seq, seq); 1667 1668 if (noack) 1669 goto out; 1670 1671 tcp_rcv_space_adjust(sk); 1672 1673 /* Clean up data we have read: This will do ACK frames. */ 1674 if (copied > 0) { 1675 tcp_recv_skb(sk, seq, &offset); 1676 tcp_cleanup_rbuf(sk, copied); 1677 } 1678 out: 1679 return copied; 1680 } 1681 1682 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1683 sk_read_actor_t recv_actor) 1684 { 1685 return __tcp_read_sock(sk, desc, recv_actor, false, 1686 &tcp_sk(sk)->copied_seq); 1687 } 1688 EXPORT_SYMBOL(tcp_read_sock); 1689 1690 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1691 sk_read_actor_t recv_actor, bool noack, 1692 u32 *copied_seq) 1693 { 1694 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1695 } 1696 1697 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1698 { 1699 struct sk_buff *skb; 1700 int copied = 0; 1701 1702 if (sk->sk_state == TCP_LISTEN) 1703 return -ENOTCONN; 1704 1705 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1706 u8 tcp_flags; 1707 int used; 1708 1709 __skb_unlink(skb, &sk->sk_receive_queue); 1710 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1711 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1712 used = recv_actor(sk, skb); 1713 if (used < 0) { 1714 if (!copied) 1715 copied = used; 1716 break; 1717 } 1718 copied += used; 1719 1720 if (tcp_flags & TCPHDR_FIN) 1721 break; 1722 } 1723 return copied; 1724 } 1725 EXPORT_IPV6_MOD(tcp_read_skb); 1726 1727 void tcp_read_done(struct sock *sk, size_t len) 1728 { 1729 struct tcp_sock *tp = tcp_sk(sk); 1730 u32 seq = tp->copied_seq; 1731 struct sk_buff *skb; 1732 size_t left; 1733 u32 offset; 1734 1735 if (sk->sk_state == TCP_LISTEN) 1736 return; 1737 1738 left = len; 1739 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1740 int used; 1741 1742 used = min_t(size_t, skb->len - offset, left); 1743 seq += used; 1744 left -= used; 1745 1746 if (skb->len > offset + used) 1747 break; 1748 1749 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1750 tcp_eat_recv_skb(sk, skb); 1751 ++seq; 1752 break; 1753 } 1754 tcp_eat_recv_skb(sk, skb); 1755 } 1756 WRITE_ONCE(tp->copied_seq, seq); 1757 1758 tcp_rcv_space_adjust(sk); 1759 1760 /* Clean up data we have read: This will do ACK frames. */ 1761 if (left != len) 1762 tcp_cleanup_rbuf(sk, len - left); 1763 } 1764 EXPORT_SYMBOL(tcp_read_done); 1765 1766 int tcp_peek_len(struct socket *sock) 1767 { 1768 return tcp_inq(sock->sk); 1769 } 1770 EXPORT_IPV6_MOD(tcp_peek_len); 1771 1772 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1773 int tcp_set_rcvlowat(struct sock *sk, int val) 1774 { 1775 int space, cap; 1776 1777 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1778 cap = sk->sk_rcvbuf >> 1; 1779 else 1780 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1781 val = min(val, cap); 1782 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1783 1784 /* Check if we need to signal EPOLLIN right now */ 1785 tcp_data_ready(sk); 1786 1787 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1788 return 0; 1789 1790 space = tcp_space_from_win(sk, val); 1791 if (space > sk->sk_rcvbuf) { 1792 WRITE_ONCE(sk->sk_rcvbuf, space); 1793 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1794 } 1795 return 0; 1796 } 1797 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1798 1799 void tcp_update_recv_tstamps(struct sk_buff *skb, 1800 struct scm_timestamping_internal *tss) 1801 { 1802 if (skb->tstamp) 1803 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1804 else 1805 tss->ts[0] = (struct timespec64) {0}; 1806 1807 if (skb_hwtstamps(skb)->hwtstamp) 1808 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1809 else 1810 tss->ts[2] = (struct timespec64) {0}; 1811 } 1812 1813 #ifdef CONFIG_MMU 1814 static const struct vm_operations_struct tcp_vm_ops = { 1815 }; 1816 1817 int tcp_mmap(struct file *file, struct socket *sock, 1818 struct vm_area_struct *vma) 1819 { 1820 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1821 return -EPERM; 1822 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1823 1824 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1825 vm_flags_set(vma, VM_MIXEDMAP); 1826 1827 vma->vm_ops = &tcp_vm_ops; 1828 return 0; 1829 } 1830 EXPORT_IPV6_MOD(tcp_mmap); 1831 1832 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1833 u32 *offset_frag) 1834 { 1835 skb_frag_t *frag; 1836 1837 if (unlikely(offset_skb >= skb->len)) 1838 return NULL; 1839 1840 offset_skb -= skb_headlen(skb); 1841 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1842 return NULL; 1843 1844 frag = skb_shinfo(skb)->frags; 1845 while (offset_skb) { 1846 if (skb_frag_size(frag) > offset_skb) { 1847 *offset_frag = offset_skb; 1848 return frag; 1849 } 1850 offset_skb -= skb_frag_size(frag); 1851 ++frag; 1852 } 1853 *offset_frag = 0; 1854 return frag; 1855 } 1856 1857 static bool can_map_frag(const skb_frag_t *frag) 1858 { 1859 struct page *page; 1860 1861 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1862 return false; 1863 1864 page = skb_frag_page(frag); 1865 1866 if (PageCompound(page) || page->mapping) 1867 return false; 1868 1869 return true; 1870 } 1871 1872 static int find_next_mappable_frag(const skb_frag_t *frag, 1873 int remaining_in_skb) 1874 { 1875 int offset = 0; 1876 1877 if (likely(can_map_frag(frag))) 1878 return 0; 1879 1880 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1881 offset += skb_frag_size(frag); 1882 ++frag; 1883 } 1884 return offset; 1885 } 1886 1887 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1888 struct tcp_zerocopy_receive *zc, 1889 struct sk_buff *skb, u32 offset) 1890 { 1891 u32 frag_offset, partial_frag_remainder = 0; 1892 int mappable_offset; 1893 skb_frag_t *frag; 1894 1895 /* worst case: skip to next skb. try to improve on this case below */ 1896 zc->recv_skip_hint = skb->len - offset; 1897 1898 /* Find the frag containing this offset (and how far into that frag) */ 1899 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1900 if (!frag) 1901 return; 1902 1903 if (frag_offset) { 1904 struct skb_shared_info *info = skb_shinfo(skb); 1905 1906 /* We read part of the last frag, must recvmsg() rest of skb. */ 1907 if (frag == &info->frags[info->nr_frags - 1]) 1908 return; 1909 1910 /* Else, we must at least read the remainder in this frag. */ 1911 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1912 zc->recv_skip_hint -= partial_frag_remainder; 1913 ++frag; 1914 } 1915 1916 /* partial_frag_remainder: If part way through a frag, must read rest. 1917 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1918 * in partial_frag_remainder. 1919 */ 1920 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1921 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1922 } 1923 1924 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1925 int flags, struct scm_timestamping_internal *tss, 1926 int *cmsg_flags); 1927 static int receive_fallback_to_copy(struct sock *sk, 1928 struct tcp_zerocopy_receive *zc, int inq, 1929 struct scm_timestamping_internal *tss) 1930 { 1931 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1932 struct msghdr msg = {}; 1933 int err; 1934 1935 zc->length = 0; 1936 zc->recv_skip_hint = 0; 1937 1938 if (copy_address != zc->copybuf_address) 1939 return -EINVAL; 1940 1941 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1942 &msg.msg_iter); 1943 if (err) 1944 return err; 1945 1946 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1947 tss, &zc->msg_flags); 1948 if (err < 0) 1949 return err; 1950 1951 zc->copybuf_len = err; 1952 if (likely(zc->copybuf_len)) { 1953 struct sk_buff *skb; 1954 u32 offset; 1955 1956 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1957 if (skb) 1958 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1959 } 1960 return 0; 1961 } 1962 1963 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1964 struct sk_buff *skb, u32 copylen, 1965 u32 *offset, u32 *seq) 1966 { 1967 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1968 struct msghdr msg = {}; 1969 int err; 1970 1971 if (copy_address != zc->copybuf_address) 1972 return -EINVAL; 1973 1974 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1975 &msg.msg_iter); 1976 if (err) 1977 return err; 1978 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1979 if (err) 1980 return err; 1981 zc->recv_skip_hint -= copylen; 1982 *offset += copylen; 1983 *seq += copylen; 1984 return (__s32)copylen; 1985 } 1986 1987 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1988 struct sock *sk, 1989 struct sk_buff *skb, 1990 u32 *seq, 1991 s32 copybuf_len, 1992 struct scm_timestamping_internal *tss) 1993 { 1994 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1995 1996 if (!copylen) 1997 return 0; 1998 /* skb is null if inq < PAGE_SIZE. */ 1999 if (skb) { 2000 offset = *seq - TCP_SKB_CB(skb)->seq; 2001 } else { 2002 skb = tcp_recv_skb(sk, *seq, &offset); 2003 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2004 tcp_update_recv_tstamps(skb, tss); 2005 zc->msg_flags |= TCP_CMSG_TS; 2006 } 2007 } 2008 2009 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2010 seq); 2011 return zc->copybuf_len < 0 ? 0 : copylen; 2012 } 2013 2014 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2015 struct page **pending_pages, 2016 unsigned long pages_remaining, 2017 unsigned long *address, 2018 u32 *length, 2019 u32 *seq, 2020 struct tcp_zerocopy_receive *zc, 2021 u32 total_bytes_to_map, 2022 int err) 2023 { 2024 /* At least one page did not map. Try zapping if we skipped earlier. */ 2025 if (err == -EBUSY && 2026 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2027 u32 maybe_zap_len; 2028 2029 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2030 *length + /* Mapped or pending */ 2031 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2032 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2033 err = 0; 2034 } 2035 2036 if (!err) { 2037 unsigned long leftover_pages = pages_remaining; 2038 int bytes_mapped; 2039 2040 /* We called zap_page_range_single, try to reinsert. */ 2041 err = vm_insert_pages(vma, *address, 2042 pending_pages, 2043 &pages_remaining); 2044 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2045 *seq += bytes_mapped; 2046 *address += bytes_mapped; 2047 } 2048 if (err) { 2049 /* Either we were unable to zap, OR we zapped, retried an 2050 * insert, and still had an issue. Either ways, pages_remaining 2051 * is the number of pages we were unable to map, and we unroll 2052 * some state we speculatively touched before. 2053 */ 2054 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2055 2056 *length -= bytes_not_mapped; 2057 zc->recv_skip_hint += bytes_not_mapped; 2058 } 2059 return err; 2060 } 2061 2062 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2063 struct page **pages, 2064 unsigned int pages_to_map, 2065 unsigned long *address, 2066 u32 *length, 2067 u32 *seq, 2068 struct tcp_zerocopy_receive *zc, 2069 u32 total_bytes_to_map) 2070 { 2071 unsigned long pages_remaining = pages_to_map; 2072 unsigned int pages_mapped; 2073 unsigned int bytes_mapped; 2074 int err; 2075 2076 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2077 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2078 bytes_mapped = PAGE_SIZE * pages_mapped; 2079 /* Even if vm_insert_pages fails, it may have partially succeeded in 2080 * mapping (some but not all of the pages). 2081 */ 2082 *seq += bytes_mapped; 2083 *address += bytes_mapped; 2084 2085 if (likely(!err)) 2086 return 0; 2087 2088 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2089 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2090 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2091 err); 2092 } 2093 2094 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2095 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2096 struct tcp_zerocopy_receive *zc, 2097 struct scm_timestamping_internal *tss) 2098 { 2099 unsigned long msg_control_addr; 2100 struct msghdr cmsg_dummy; 2101 2102 msg_control_addr = (unsigned long)zc->msg_control; 2103 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2104 cmsg_dummy.msg_controllen = 2105 (__kernel_size_t)zc->msg_controllen; 2106 cmsg_dummy.msg_flags = in_compat_syscall() 2107 ? MSG_CMSG_COMPAT : 0; 2108 cmsg_dummy.msg_control_is_user = true; 2109 zc->msg_flags = 0; 2110 if (zc->msg_control == msg_control_addr && 2111 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2112 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2113 zc->msg_control = (__u64) 2114 ((uintptr_t)cmsg_dummy.msg_control_user); 2115 zc->msg_controllen = 2116 (__u64)cmsg_dummy.msg_controllen; 2117 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2118 } 2119 } 2120 2121 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2122 unsigned long address, 2123 bool *mmap_locked) 2124 { 2125 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2126 2127 if (vma) { 2128 if (vma->vm_ops != &tcp_vm_ops) { 2129 vma_end_read(vma); 2130 return NULL; 2131 } 2132 *mmap_locked = false; 2133 return vma; 2134 } 2135 2136 mmap_read_lock(mm); 2137 vma = vma_lookup(mm, address); 2138 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2139 mmap_read_unlock(mm); 2140 return NULL; 2141 } 2142 *mmap_locked = true; 2143 return vma; 2144 } 2145 2146 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2147 static int tcp_zerocopy_receive(struct sock *sk, 2148 struct tcp_zerocopy_receive *zc, 2149 struct scm_timestamping_internal *tss) 2150 { 2151 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2152 unsigned long address = (unsigned long)zc->address; 2153 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2154 s32 copybuf_len = zc->copybuf_len; 2155 struct tcp_sock *tp = tcp_sk(sk); 2156 const skb_frag_t *frags = NULL; 2157 unsigned int pages_to_map = 0; 2158 struct vm_area_struct *vma; 2159 struct sk_buff *skb = NULL; 2160 u32 seq = tp->copied_seq; 2161 u32 total_bytes_to_map; 2162 int inq = tcp_inq(sk); 2163 bool mmap_locked; 2164 int ret; 2165 2166 zc->copybuf_len = 0; 2167 zc->msg_flags = 0; 2168 2169 if (address & (PAGE_SIZE - 1) || address != zc->address) 2170 return -EINVAL; 2171 2172 if (sk->sk_state == TCP_LISTEN) 2173 return -ENOTCONN; 2174 2175 sock_rps_record_flow(sk); 2176 2177 if (inq && inq <= copybuf_len) 2178 return receive_fallback_to_copy(sk, zc, inq, tss); 2179 2180 if (inq < PAGE_SIZE) { 2181 zc->length = 0; 2182 zc->recv_skip_hint = inq; 2183 if (!inq && sock_flag(sk, SOCK_DONE)) 2184 return -EIO; 2185 return 0; 2186 } 2187 2188 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2189 if (!vma) 2190 return -EINVAL; 2191 2192 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2193 avail_len = min_t(u32, vma_len, inq); 2194 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2195 if (total_bytes_to_map) { 2196 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2197 zap_page_range_single(vma, address, total_bytes_to_map, 2198 NULL); 2199 zc->length = total_bytes_to_map; 2200 zc->recv_skip_hint = 0; 2201 } else { 2202 zc->length = avail_len; 2203 zc->recv_skip_hint = avail_len; 2204 } 2205 ret = 0; 2206 while (length + PAGE_SIZE <= zc->length) { 2207 int mappable_offset; 2208 struct page *page; 2209 2210 if (zc->recv_skip_hint < PAGE_SIZE) { 2211 u32 offset_frag; 2212 2213 if (skb) { 2214 if (zc->recv_skip_hint > 0) 2215 break; 2216 skb = skb->next; 2217 offset = seq - TCP_SKB_CB(skb)->seq; 2218 } else { 2219 skb = tcp_recv_skb(sk, seq, &offset); 2220 } 2221 2222 if (!skb_frags_readable(skb)) 2223 break; 2224 2225 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2226 tcp_update_recv_tstamps(skb, tss); 2227 zc->msg_flags |= TCP_CMSG_TS; 2228 } 2229 zc->recv_skip_hint = skb->len - offset; 2230 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2231 if (!frags || offset_frag) 2232 break; 2233 } 2234 2235 mappable_offset = find_next_mappable_frag(frags, 2236 zc->recv_skip_hint); 2237 if (mappable_offset) { 2238 zc->recv_skip_hint = mappable_offset; 2239 break; 2240 } 2241 page = skb_frag_page(frags); 2242 if (WARN_ON_ONCE(!page)) 2243 break; 2244 2245 prefetchw(page); 2246 pages[pages_to_map++] = page; 2247 length += PAGE_SIZE; 2248 zc->recv_skip_hint -= PAGE_SIZE; 2249 frags++; 2250 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2251 zc->recv_skip_hint < PAGE_SIZE) { 2252 /* Either full batch, or we're about to go to next skb 2253 * (and we cannot unroll failed ops across skbs). 2254 */ 2255 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2256 pages_to_map, 2257 &address, &length, 2258 &seq, zc, 2259 total_bytes_to_map); 2260 if (ret) 2261 goto out; 2262 pages_to_map = 0; 2263 } 2264 } 2265 if (pages_to_map) { 2266 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2267 &address, &length, &seq, 2268 zc, total_bytes_to_map); 2269 } 2270 out: 2271 if (mmap_locked) 2272 mmap_read_unlock(current->mm); 2273 else 2274 vma_end_read(vma); 2275 /* Try to copy straggler data. */ 2276 if (!ret) 2277 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2278 2279 if (length + copylen) { 2280 WRITE_ONCE(tp->copied_seq, seq); 2281 tcp_rcv_space_adjust(sk); 2282 2283 /* Clean up data we have read: This will do ACK frames. */ 2284 tcp_recv_skb(sk, seq, &offset); 2285 tcp_cleanup_rbuf(sk, length + copylen); 2286 ret = 0; 2287 if (length == zc->length) 2288 zc->recv_skip_hint = 0; 2289 } else { 2290 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2291 ret = -EIO; 2292 } 2293 zc->length = length; 2294 return ret; 2295 } 2296 #endif 2297 2298 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2299 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2300 struct scm_timestamping_internal *tss) 2301 { 2302 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2303 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2304 bool has_timestamping = false; 2305 2306 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2307 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2308 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2309 if (new_tstamp) { 2310 struct __kernel_timespec kts = { 2311 .tv_sec = tss->ts[0].tv_sec, 2312 .tv_nsec = tss->ts[0].tv_nsec, 2313 }; 2314 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2315 sizeof(kts), &kts); 2316 } else { 2317 struct __kernel_old_timespec ts_old = { 2318 .tv_sec = tss->ts[0].tv_sec, 2319 .tv_nsec = tss->ts[0].tv_nsec, 2320 }; 2321 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2322 sizeof(ts_old), &ts_old); 2323 } 2324 } else { 2325 if (new_tstamp) { 2326 struct __kernel_sock_timeval stv = { 2327 .tv_sec = tss->ts[0].tv_sec, 2328 .tv_usec = tss->ts[0].tv_nsec / 1000, 2329 }; 2330 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2331 sizeof(stv), &stv); 2332 } else { 2333 struct __kernel_old_timeval tv = { 2334 .tv_sec = tss->ts[0].tv_sec, 2335 .tv_usec = tss->ts[0].tv_nsec / 1000, 2336 }; 2337 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2338 sizeof(tv), &tv); 2339 } 2340 } 2341 } 2342 2343 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2344 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2345 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2346 has_timestamping = true; 2347 else 2348 tss->ts[0] = (struct timespec64) {0}; 2349 } 2350 2351 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2352 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2353 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2354 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2355 has_timestamping = true; 2356 else 2357 tss->ts[2] = (struct timespec64) {0}; 2358 } 2359 2360 if (has_timestamping) { 2361 tss->ts[1] = (struct timespec64) {0}; 2362 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2363 put_cmsg_scm_timestamping64(msg, tss); 2364 else 2365 put_cmsg_scm_timestamping(msg, tss); 2366 } 2367 } 2368 2369 static int tcp_inq_hint(struct sock *sk) 2370 { 2371 const struct tcp_sock *tp = tcp_sk(sk); 2372 u32 copied_seq = READ_ONCE(tp->copied_seq); 2373 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2374 int inq; 2375 2376 inq = rcv_nxt - copied_seq; 2377 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2378 lock_sock(sk); 2379 inq = tp->rcv_nxt - tp->copied_seq; 2380 release_sock(sk); 2381 } 2382 /* After receiving a FIN, tell the user-space to continue reading 2383 * by returning a non-zero inq. 2384 */ 2385 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2386 inq = 1; 2387 return inq; 2388 } 2389 2390 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2391 struct tcp_xa_pool { 2392 u8 max; /* max <= MAX_SKB_FRAGS */ 2393 u8 idx; /* idx <= max */ 2394 __u32 tokens[MAX_SKB_FRAGS]; 2395 netmem_ref netmems[MAX_SKB_FRAGS]; 2396 }; 2397 2398 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2399 { 2400 int i; 2401 2402 /* Commit part that has been copied to user space. */ 2403 for (i = 0; i < p->idx; i++) 2404 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2405 (__force void *)p->netmems[i], GFP_KERNEL); 2406 /* Rollback what has been pre-allocated and is no longer needed. */ 2407 for (; i < p->max; i++) 2408 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2409 2410 p->max = 0; 2411 p->idx = 0; 2412 } 2413 2414 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2415 { 2416 if (!p->max) 2417 return; 2418 2419 xa_lock_bh(&sk->sk_user_frags); 2420 2421 tcp_xa_pool_commit_locked(sk, p); 2422 2423 xa_unlock_bh(&sk->sk_user_frags); 2424 } 2425 2426 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2427 unsigned int max_frags) 2428 { 2429 int err, k; 2430 2431 if (p->idx < p->max) 2432 return 0; 2433 2434 xa_lock_bh(&sk->sk_user_frags); 2435 2436 tcp_xa_pool_commit_locked(sk, p); 2437 2438 for (k = 0; k < max_frags; k++) { 2439 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2440 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2441 if (err) 2442 break; 2443 } 2444 2445 xa_unlock_bh(&sk->sk_user_frags); 2446 2447 p->max = k; 2448 p->idx = 0; 2449 return k ? 0 : err; 2450 } 2451 2452 /* On error, returns the -errno. On success, returns number of bytes sent to the 2453 * user. May not consume all of @remaining_len. 2454 */ 2455 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2456 unsigned int offset, struct msghdr *msg, 2457 int remaining_len) 2458 { 2459 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2460 struct tcp_xa_pool tcp_xa_pool; 2461 unsigned int start; 2462 int i, copy, n; 2463 int sent = 0; 2464 int err = 0; 2465 2466 tcp_xa_pool.max = 0; 2467 tcp_xa_pool.idx = 0; 2468 do { 2469 start = skb_headlen(skb); 2470 2471 if (skb_frags_readable(skb)) { 2472 err = -ENODEV; 2473 goto out; 2474 } 2475 2476 /* Copy header. */ 2477 copy = start - offset; 2478 if (copy > 0) { 2479 copy = min(copy, remaining_len); 2480 2481 n = copy_to_iter(skb->data + offset, copy, 2482 &msg->msg_iter); 2483 if (n != copy) { 2484 err = -EFAULT; 2485 goto out; 2486 } 2487 2488 offset += copy; 2489 remaining_len -= copy; 2490 2491 /* First a dmabuf_cmsg for # bytes copied to user 2492 * buffer. 2493 */ 2494 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2495 dmabuf_cmsg.frag_size = copy; 2496 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2497 SO_DEVMEM_LINEAR, 2498 sizeof(dmabuf_cmsg), 2499 &dmabuf_cmsg); 2500 if (err) 2501 goto out; 2502 2503 sent += copy; 2504 2505 if (remaining_len == 0) 2506 goto out; 2507 } 2508 2509 /* after that, send information of dmabuf pages through a 2510 * sequence of cmsg 2511 */ 2512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2514 struct net_iov *niov; 2515 u64 frag_offset; 2516 int end; 2517 2518 /* !skb_frags_readable() should indicate that ALL the 2519 * frags in this skb are dmabuf net_iovs. We're checking 2520 * for that flag above, but also check individual frags 2521 * here. If the tcp stack is not setting 2522 * skb_frags_readable() correctly, we still don't want 2523 * to crash here. 2524 */ 2525 if (!skb_frag_net_iov(frag)) { 2526 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2527 err = -ENODEV; 2528 goto out; 2529 } 2530 2531 niov = skb_frag_net_iov(frag); 2532 if (!net_is_devmem_iov(niov)) { 2533 err = -ENODEV; 2534 goto out; 2535 } 2536 2537 end = start + skb_frag_size(frag); 2538 copy = end - offset; 2539 2540 if (copy > 0) { 2541 copy = min(copy, remaining_len); 2542 2543 frag_offset = net_iov_virtual_addr(niov) + 2544 skb_frag_off(frag) + offset - 2545 start; 2546 dmabuf_cmsg.frag_offset = frag_offset; 2547 dmabuf_cmsg.frag_size = copy; 2548 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2549 skb_shinfo(skb)->nr_frags - i); 2550 if (err) 2551 goto out; 2552 2553 /* Will perform the exchange later */ 2554 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2555 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2556 2557 offset += copy; 2558 remaining_len -= copy; 2559 2560 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2561 SO_DEVMEM_DMABUF, 2562 sizeof(dmabuf_cmsg), 2563 &dmabuf_cmsg); 2564 if (err) 2565 goto out; 2566 2567 atomic_long_inc(&niov->pp_ref_count); 2568 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2569 2570 sent += copy; 2571 2572 if (remaining_len == 0) 2573 goto out; 2574 } 2575 start = end; 2576 } 2577 2578 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2579 if (!remaining_len) 2580 goto out; 2581 2582 /* if remaining_len is not satisfied yet, we need to go to the 2583 * next frag in the frag_list to satisfy remaining_len. 2584 */ 2585 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2586 2587 offset = offset - start; 2588 } while (skb); 2589 2590 if (remaining_len) { 2591 err = -EFAULT; 2592 goto out; 2593 } 2594 2595 out: 2596 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2597 if (!sent) 2598 sent = err; 2599 2600 return sent; 2601 } 2602 2603 /* 2604 * This routine copies from a sock struct into the user buffer. 2605 * 2606 * Technical note: in 2.3 we work on _locked_ socket, so that 2607 * tricks with *seq access order and skb->users are not required. 2608 * Probably, code can be easily improved even more. 2609 */ 2610 2611 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2612 int flags, struct scm_timestamping_internal *tss, 2613 int *cmsg_flags) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 int last_copied_dmabuf = -1; /* uninitialized */ 2617 int copied = 0; 2618 u32 peek_seq; 2619 u32 *seq; 2620 unsigned long used; 2621 int err; 2622 int target; /* Read at least this many bytes */ 2623 long timeo; 2624 struct sk_buff *skb, *last; 2625 u32 peek_offset = 0; 2626 u32 urg_hole = 0; 2627 2628 err = -ENOTCONN; 2629 if (sk->sk_state == TCP_LISTEN) 2630 goto out; 2631 2632 if (tp->recvmsg_inq) { 2633 *cmsg_flags = TCP_CMSG_INQ; 2634 msg->msg_get_inq = 1; 2635 } 2636 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2637 2638 /* Urgent data needs to be handled specially. */ 2639 if (flags & MSG_OOB) 2640 goto recv_urg; 2641 2642 if (unlikely(tp->repair)) { 2643 err = -EPERM; 2644 if (!(flags & MSG_PEEK)) 2645 goto out; 2646 2647 if (tp->repair_queue == TCP_SEND_QUEUE) 2648 goto recv_sndq; 2649 2650 err = -EINVAL; 2651 if (tp->repair_queue == TCP_NO_QUEUE) 2652 goto out; 2653 2654 /* 'common' recv queue MSG_PEEK-ing */ 2655 } 2656 2657 seq = &tp->copied_seq; 2658 if (flags & MSG_PEEK) { 2659 peek_offset = max(sk_peek_offset(sk, flags), 0); 2660 peek_seq = tp->copied_seq + peek_offset; 2661 seq = &peek_seq; 2662 } 2663 2664 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2665 2666 do { 2667 u32 offset; 2668 2669 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2670 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2671 if (copied) 2672 break; 2673 if (signal_pending(current)) { 2674 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2675 break; 2676 } 2677 } 2678 2679 /* Next get a buffer. */ 2680 2681 last = skb_peek_tail(&sk->sk_receive_queue); 2682 skb_queue_walk(&sk->sk_receive_queue, skb) { 2683 last = skb; 2684 /* Now that we have two receive queues this 2685 * shouldn't happen. 2686 */ 2687 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2688 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2689 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2690 flags)) 2691 break; 2692 2693 offset = *seq - TCP_SKB_CB(skb)->seq; 2694 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2695 pr_err_once("%s: found a SYN, please report !\n", __func__); 2696 offset--; 2697 } 2698 if (offset < skb->len) 2699 goto found_ok_skb; 2700 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2701 goto found_fin_ok; 2702 WARN(!(flags & MSG_PEEK), 2703 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2704 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2705 } 2706 2707 /* Well, if we have backlog, try to process it now yet. */ 2708 2709 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2710 break; 2711 2712 if (copied) { 2713 if (!timeo || 2714 sk->sk_err || 2715 sk->sk_state == TCP_CLOSE || 2716 (sk->sk_shutdown & RCV_SHUTDOWN) || 2717 signal_pending(current)) 2718 break; 2719 } else { 2720 if (sock_flag(sk, SOCK_DONE)) 2721 break; 2722 2723 if (sk->sk_err) { 2724 copied = sock_error(sk); 2725 break; 2726 } 2727 2728 if (sk->sk_shutdown & RCV_SHUTDOWN) 2729 break; 2730 2731 if (sk->sk_state == TCP_CLOSE) { 2732 /* This occurs when user tries to read 2733 * from never connected socket. 2734 */ 2735 copied = -ENOTCONN; 2736 break; 2737 } 2738 2739 if (!timeo) { 2740 copied = -EAGAIN; 2741 break; 2742 } 2743 2744 if (signal_pending(current)) { 2745 copied = sock_intr_errno(timeo); 2746 break; 2747 } 2748 } 2749 2750 if (copied >= target) { 2751 /* Do not sleep, just process backlog. */ 2752 __sk_flush_backlog(sk); 2753 } else { 2754 tcp_cleanup_rbuf(sk, copied); 2755 err = sk_wait_data(sk, &timeo, last); 2756 if (err < 0) { 2757 err = copied ? : err; 2758 goto out; 2759 } 2760 } 2761 2762 if ((flags & MSG_PEEK) && 2763 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2764 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2765 current->comm, 2766 task_pid_nr(current)); 2767 peek_seq = tp->copied_seq + peek_offset; 2768 } 2769 continue; 2770 2771 found_ok_skb: 2772 /* Ok so how much can we use? */ 2773 used = skb->len - offset; 2774 if (len < used) 2775 used = len; 2776 2777 /* Do we have urgent data here? */ 2778 if (unlikely(tp->urg_data)) { 2779 u32 urg_offset = tp->urg_seq - *seq; 2780 if (urg_offset < used) { 2781 if (!urg_offset) { 2782 if (!sock_flag(sk, SOCK_URGINLINE)) { 2783 WRITE_ONCE(*seq, *seq + 1); 2784 urg_hole++; 2785 offset++; 2786 used--; 2787 if (!used) 2788 goto skip_copy; 2789 } 2790 } else 2791 used = urg_offset; 2792 } 2793 } 2794 2795 if (!(flags & MSG_TRUNC)) { 2796 if (last_copied_dmabuf != -1 && 2797 last_copied_dmabuf != !skb_frags_readable(skb)) 2798 break; 2799 2800 if (skb_frags_readable(skb)) { 2801 err = skb_copy_datagram_msg(skb, offset, msg, 2802 used); 2803 if (err) { 2804 /* Exception. Bailout! */ 2805 if (!copied) 2806 copied = -EFAULT; 2807 break; 2808 } 2809 } else { 2810 if (!(flags & MSG_SOCK_DEVMEM)) { 2811 /* dmabuf skbs can only be received 2812 * with the MSG_SOCK_DEVMEM flag. 2813 */ 2814 if (!copied) 2815 copied = -EFAULT; 2816 2817 break; 2818 } 2819 2820 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2821 used); 2822 if (err <= 0) { 2823 if (!copied) 2824 copied = -EFAULT; 2825 2826 break; 2827 } 2828 used = err; 2829 } 2830 } 2831 2832 last_copied_dmabuf = !skb_frags_readable(skb); 2833 2834 WRITE_ONCE(*seq, *seq + used); 2835 copied += used; 2836 len -= used; 2837 if (flags & MSG_PEEK) 2838 sk_peek_offset_fwd(sk, used); 2839 else 2840 sk_peek_offset_bwd(sk, used); 2841 tcp_rcv_space_adjust(sk); 2842 2843 skip_copy: 2844 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2845 WRITE_ONCE(tp->urg_data, 0); 2846 tcp_fast_path_check(sk); 2847 } 2848 2849 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2850 tcp_update_recv_tstamps(skb, tss); 2851 *cmsg_flags |= TCP_CMSG_TS; 2852 } 2853 2854 if (used + offset < skb->len) 2855 continue; 2856 2857 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2858 goto found_fin_ok; 2859 if (!(flags & MSG_PEEK)) 2860 tcp_eat_recv_skb(sk, skb); 2861 continue; 2862 2863 found_fin_ok: 2864 /* Process the FIN. */ 2865 WRITE_ONCE(*seq, *seq + 1); 2866 if (!(flags & MSG_PEEK)) 2867 tcp_eat_recv_skb(sk, skb); 2868 break; 2869 } while (len > 0); 2870 2871 /* According to UNIX98, msg_name/msg_namelen are ignored 2872 * on connected socket. I was just happy when found this 8) --ANK 2873 */ 2874 2875 /* Clean up data we have read: This will do ACK frames. */ 2876 tcp_cleanup_rbuf(sk, copied); 2877 return copied; 2878 2879 out: 2880 return err; 2881 2882 recv_urg: 2883 err = tcp_recv_urg(sk, msg, len, flags); 2884 goto out; 2885 2886 recv_sndq: 2887 err = tcp_peek_sndq(sk, msg, len); 2888 goto out; 2889 } 2890 2891 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2892 int *addr_len) 2893 { 2894 int cmsg_flags = 0, ret; 2895 struct scm_timestamping_internal tss; 2896 2897 if (unlikely(flags & MSG_ERRQUEUE)) 2898 return inet_recv_error(sk, msg, len, addr_len); 2899 2900 if (sk_can_busy_loop(sk) && 2901 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2902 sk->sk_state == TCP_ESTABLISHED) 2903 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2904 2905 lock_sock(sk); 2906 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2907 release_sock(sk); 2908 2909 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2910 if (cmsg_flags & TCP_CMSG_TS) 2911 tcp_recv_timestamp(msg, sk, &tss); 2912 if (msg->msg_get_inq) { 2913 msg->msg_inq = tcp_inq_hint(sk); 2914 if (cmsg_flags & TCP_CMSG_INQ) 2915 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2916 sizeof(msg->msg_inq), &msg->msg_inq); 2917 } 2918 } 2919 return ret; 2920 } 2921 EXPORT_IPV6_MOD(tcp_recvmsg); 2922 2923 void tcp_set_state(struct sock *sk, int state) 2924 { 2925 int oldstate = sk->sk_state; 2926 2927 /* We defined a new enum for TCP states that are exported in BPF 2928 * so as not force the internal TCP states to be frozen. The 2929 * following checks will detect if an internal state value ever 2930 * differs from the BPF value. If this ever happens, then we will 2931 * need to remap the internal value to the BPF value before calling 2932 * tcp_call_bpf_2arg. 2933 */ 2934 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2935 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2936 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2937 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2938 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2939 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2940 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2941 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2942 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2943 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2944 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2945 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2946 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2947 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2948 2949 /* bpf uapi header bpf.h defines an anonymous enum with values 2950 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2951 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2952 * But clang built vmlinux does not have this enum in DWARF 2953 * since clang removes the above code before generating IR/debuginfo. 2954 * Let us explicitly emit the type debuginfo to ensure the 2955 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2956 * regardless of which compiler is used. 2957 */ 2958 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2959 2960 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2961 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2962 2963 switch (state) { 2964 case TCP_ESTABLISHED: 2965 if (oldstate != TCP_ESTABLISHED) 2966 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2967 break; 2968 case TCP_CLOSE_WAIT: 2969 if (oldstate == TCP_SYN_RECV) 2970 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2971 break; 2972 2973 case TCP_CLOSE: 2974 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2975 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2976 2977 sk->sk_prot->unhash(sk); 2978 if (inet_csk(sk)->icsk_bind_hash && 2979 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2980 inet_put_port(sk); 2981 fallthrough; 2982 default: 2983 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2984 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2985 } 2986 2987 /* Change state AFTER socket is unhashed to avoid closed 2988 * socket sitting in hash tables. 2989 */ 2990 inet_sk_state_store(sk, state); 2991 } 2992 EXPORT_SYMBOL_GPL(tcp_set_state); 2993 2994 /* 2995 * State processing on a close. This implements the state shift for 2996 * sending our FIN frame. Note that we only send a FIN for some 2997 * states. A shutdown() may have already sent the FIN, or we may be 2998 * closed. 2999 */ 3000 3001 static const unsigned char new_state[16] = { 3002 /* current state: new state: action: */ 3003 [0 /* (Invalid) */] = TCP_CLOSE, 3004 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3005 [TCP_SYN_SENT] = TCP_CLOSE, 3006 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3007 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3008 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3009 [TCP_TIME_WAIT] = TCP_CLOSE, 3010 [TCP_CLOSE] = TCP_CLOSE, 3011 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3012 [TCP_LAST_ACK] = TCP_LAST_ACK, 3013 [TCP_LISTEN] = TCP_CLOSE, 3014 [TCP_CLOSING] = TCP_CLOSING, 3015 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3016 }; 3017 3018 static int tcp_close_state(struct sock *sk) 3019 { 3020 int next = (int)new_state[sk->sk_state]; 3021 int ns = next & TCP_STATE_MASK; 3022 3023 tcp_set_state(sk, ns); 3024 3025 return next & TCP_ACTION_FIN; 3026 } 3027 3028 /* 3029 * Shutdown the sending side of a connection. Much like close except 3030 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3031 */ 3032 3033 void tcp_shutdown(struct sock *sk, int how) 3034 { 3035 /* We need to grab some memory, and put together a FIN, 3036 * and then put it into the queue to be sent. 3037 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3038 */ 3039 if (!(how & SEND_SHUTDOWN)) 3040 return; 3041 3042 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3043 if ((1 << sk->sk_state) & 3044 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3045 TCPF_CLOSE_WAIT)) { 3046 /* Clear out any half completed packets. FIN if needed. */ 3047 if (tcp_close_state(sk)) 3048 tcp_send_fin(sk); 3049 } 3050 } 3051 EXPORT_IPV6_MOD(tcp_shutdown); 3052 3053 int tcp_orphan_count_sum(void) 3054 { 3055 int i, total = 0; 3056 3057 for_each_possible_cpu(i) 3058 total += per_cpu(tcp_orphan_count, i); 3059 3060 return max(total, 0); 3061 } 3062 3063 static int tcp_orphan_cache; 3064 static struct timer_list tcp_orphan_timer; 3065 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3066 3067 static void tcp_orphan_update(struct timer_list *unused) 3068 { 3069 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3070 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3071 } 3072 3073 static bool tcp_too_many_orphans(int shift) 3074 { 3075 return READ_ONCE(tcp_orphan_cache) << shift > 3076 READ_ONCE(sysctl_tcp_max_orphans); 3077 } 3078 3079 static bool tcp_out_of_memory(const struct sock *sk) 3080 { 3081 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3082 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3083 return true; 3084 return false; 3085 } 3086 3087 bool tcp_check_oom(const struct sock *sk, int shift) 3088 { 3089 bool too_many_orphans, out_of_socket_memory; 3090 3091 too_many_orphans = tcp_too_many_orphans(shift); 3092 out_of_socket_memory = tcp_out_of_memory(sk); 3093 3094 if (too_many_orphans) 3095 net_info_ratelimited("too many orphaned sockets\n"); 3096 if (out_of_socket_memory) 3097 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3098 return too_many_orphans || out_of_socket_memory; 3099 } 3100 3101 void __tcp_close(struct sock *sk, long timeout) 3102 { 3103 struct sk_buff *skb; 3104 int data_was_unread = 0; 3105 int state; 3106 3107 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3108 3109 if (sk->sk_state == TCP_LISTEN) { 3110 tcp_set_state(sk, TCP_CLOSE); 3111 3112 /* Special case. */ 3113 inet_csk_listen_stop(sk); 3114 3115 goto adjudge_to_death; 3116 } 3117 3118 /* We need to flush the recv. buffs. We do this only on the 3119 * descriptor close, not protocol-sourced closes, because the 3120 * reader process may not have drained the data yet! 3121 */ 3122 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3123 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3124 3125 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3126 len--; 3127 data_was_unread += len; 3128 __kfree_skb(skb); 3129 } 3130 3131 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3132 if (sk->sk_state == TCP_CLOSE) 3133 goto adjudge_to_death; 3134 3135 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3136 * data was lost. To witness the awful effects of the old behavior of 3137 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3138 * GET in an FTP client, suspend the process, wait for the client to 3139 * advertise a zero window, then kill -9 the FTP client, wheee... 3140 * Note: timeout is always zero in such a case. 3141 */ 3142 if (unlikely(tcp_sk(sk)->repair)) { 3143 sk->sk_prot->disconnect(sk, 0); 3144 } else if (data_was_unread) { 3145 /* Unread data was tossed, zap the connection. */ 3146 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3147 tcp_set_state(sk, TCP_CLOSE); 3148 tcp_send_active_reset(sk, sk->sk_allocation, 3149 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3150 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3151 /* Check zero linger _after_ checking for unread data. */ 3152 sk->sk_prot->disconnect(sk, 0); 3153 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3154 } else if (tcp_close_state(sk)) { 3155 /* We FIN if the application ate all the data before 3156 * zapping the connection. 3157 */ 3158 3159 /* RED-PEN. Formally speaking, we have broken TCP state 3160 * machine. State transitions: 3161 * 3162 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3163 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3164 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3165 * 3166 * are legal only when FIN has been sent (i.e. in window), 3167 * rather than queued out of window. Purists blame. 3168 * 3169 * F.e. "RFC state" is ESTABLISHED, 3170 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3171 * 3172 * The visible declinations are that sometimes 3173 * we enter time-wait state, when it is not required really 3174 * (harmless), do not send active resets, when they are 3175 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3176 * they look as CLOSING or LAST_ACK for Linux) 3177 * Probably, I missed some more holelets. 3178 * --ANK 3179 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3180 * in a single packet! (May consider it later but will 3181 * probably need API support or TCP_CORK SYN-ACK until 3182 * data is written and socket is closed.) 3183 */ 3184 tcp_send_fin(sk); 3185 } 3186 3187 sk_stream_wait_close(sk, timeout); 3188 3189 adjudge_to_death: 3190 state = sk->sk_state; 3191 sock_hold(sk); 3192 sock_orphan(sk); 3193 3194 local_bh_disable(); 3195 bh_lock_sock(sk); 3196 /* remove backlog if any, without releasing ownership. */ 3197 __release_sock(sk); 3198 3199 this_cpu_inc(tcp_orphan_count); 3200 3201 /* Have we already been destroyed by a softirq or backlog? */ 3202 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3203 goto out; 3204 3205 /* This is a (useful) BSD violating of the RFC. There is a 3206 * problem with TCP as specified in that the other end could 3207 * keep a socket open forever with no application left this end. 3208 * We use a 1 minute timeout (about the same as BSD) then kill 3209 * our end. If they send after that then tough - BUT: long enough 3210 * that we won't make the old 4*rto = almost no time - whoops 3211 * reset mistake. 3212 * 3213 * Nope, it was not mistake. It is really desired behaviour 3214 * f.e. on http servers, when such sockets are useless, but 3215 * consume significant resources. Let's do it with special 3216 * linger2 option. --ANK 3217 */ 3218 3219 if (sk->sk_state == TCP_FIN_WAIT2) { 3220 struct tcp_sock *tp = tcp_sk(sk); 3221 if (READ_ONCE(tp->linger2) < 0) { 3222 tcp_set_state(sk, TCP_CLOSE); 3223 tcp_send_active_reset(sk, GFP_ATOMIC, 3224 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3225 __NET_INC_STATS(sock_net(sk), 3226 LINUX_MIB_TCPABORTONLINGER); 3227 } else { 3228 const int tmo = tcp_fin_time(sk); 3229 3230 if (tmo > TCP_TIMEWAIT_LEN) { 3231 tcp_reset_keepalive_timer(sk, 3232 tmo - TCP_TIMEWAIT_LEN); 3233 } else { 3234 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3235 goto out; 3236 } 3237 } 3238 } 3239 if (sk->sk_state != TCP_CLOSE) { 3240 if (tcp_check_oom(sk, 0)) { 3241 tcp_set_state(sk, TCP_CLOSE); 3242 tcp_send_active_reset(sk, GFP_ATOMIC, 3243 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3244 __NET_INC_STATS(sock_net(sk), 3245 LINUX_MIB_TCPABORTONMEMORY); 3246 } else if (!check_net(sock_net(sk))) { 3247 /* Not possible to send reset; just close */ 3248 tcp_set_state(sk, TCP_CLOSE); 3249 } 3250 } 3251 3252 if (sk->sk_state == TCP_CLOSE) { 3253 struct request_sock *req; 3254 3255 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3256 lockdep_sock_is_held(sk)); 3257 /* We could get here with a non-NULL req if the socket is 3258 * aborted (e.g., closed with unread data) before 3WHS 3259 * finishes. 3260 */ 3261 if (req) 3262 reqsk_fastopen_remove(sk, req, false); 3263 inet_csk_destroy_sock(sk); 3264 } 3265 /* Otherwise, socket is reprieved until protocol close. */ 3266 3267 out: 3268 bh_unlock_sock(sk); 3269 local_bh_enable(); 3270 } 3271 3272 void tcp_close(struct sock *sk, long timeout) 3273 { 3274 lock_sock(sk); 3275 __tcp_close(sk, timeout); 3276 release_sock(sk); 3277 if (!sk->sk_net_refcnt) 3278 inet_csk_clear_xmit_timers_sync(sk); 3279 sock_put(sk); 3280 } 3281 EXPORT_SYMBOL(tcp_close); 3282 3283 /* These states need RST on ABORT according to RFC793 */ 3284 3285 static inline bool tcp_need_reset(int state) 3286 { 3287 return (1 << state) & 3288 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3289 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3290 } 3291 3292 static void tcp_rtx_queue_purge(struct sock *sk) 3293 { 3294 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3295 3296 tcp_sk(sk)->highest_sack = NULL; 3297 while (p) { 3298 struct sk_buff *skb = rb_to_skb(p); 3299 3300 p = rb_next(p); 3301 /* Since we are deleting whole queue, no need to 3302 * list_del(&skb->tcp_tsorted_anchor) 3303 */ 3304 tcp_rtx_queue_unlink(skb, sk); 3305 tcp_wmem_free_skb(sk, skb); 3306 } 3307 } 3308 3309 void tcp_write_queue_purge(struct sock *sk) 3310 { 3311 struct sk_buff *skb; 3312 3313 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3314 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3315 tcp_skb_tsorted_anchor_cleanup(skb); 3316 tcp_wmem_free_skb(sk, skb); 3317 } 3318 tcp_rtx_queue_purge(sk); 3319 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3320 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3321 tcp_sk(sk)->packets_out = 0; 3322 inet_csk(sk)->icsk_backoff = 0; 3323 } 3324 3325 int tcp_disconnect(struct sock *sk, int flags) 3326 { 3327 struct inet_sock *inet = inet_sk(sk); 3328 struct inet_connection_sock *icsk = inet_csk(sk); 3329 struct tcp_sock *tp = tcp_sk(sk); 3330 int old_state = sk->sk_state; 3331 u32 seq; 3332 3333 if (old_state != TCP_CLOSE) 3334 tcp_set_state(sk, TCP_CLOSE); 3335 3336 /* ABORT function of RFC793 */ 3337 if (old_state == TCP_LISTEN) { 3338 inet_csk_listen_stop(sk); 3339 } else if (unlikely(tp->repair)) { 3340 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3341 } else if (tcp_need_reset(old_state)) { 3342 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3343 WRITE_ONCE(sk->sk_err, ECONNRESET); 3344 } else if (tp->snd_nxt != tp->write_seq && 3345 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3346 /* The last check adjusts for discrepancy of Linux wrt. RFC 3347 * states 3348 */ 3349 tcp_send_active_reset(sk, gfp_any(), 3350 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3351 WRITE_ONCE(sk->sk_err, ECONNRESET); 3352 } else if (old_state == TCP_SYN_SENT) 3353 WRITE_ONCE(sk->sk_err, ECONNRESET); 3354 3355 tcp_clear_xmit_timers(sk); 3356 __skb_queue_purge(&sk->sk_receive_queue); 3357 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3358 WRITE_ONCE(tp->urg_data, 0); 3359 sk_set_peek_off(sk, -1); 3360 tcp_write_queue_purge(sk); 3361 tcp_fastopen_active_disable_ofo_check(sk); 3362 skb_rbtree_purge(&tp->out_of_order_queue); 3363 3364 inet->inet_dport = 0; 3365 3366 inet_bhash2_reset_saddr(sk); 3367 3368 WRITE_ONCE(sk->sk_shutdown, 0); 3369 sock_reset_flag(sk, SOCK_DONE); 3370 tp->srtt_us = 0; 3371 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3372 tp->rcv_rtt_last_tsecr = 0; 3373 3374 seq = tp->write_seq + tp->max_window + 2; 3375 if (!seq) 3376 seq = 1; 3377 WRITE_ONCE(tp->write_seq, seq); 3378 3379 icsk->icsk_backoff = 0; 3380 icsk->icsk_probes_out = 0; 3381 icsk->icsk_probes_tstamp = 0; 3382 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3383 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3384 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3385 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3386 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3387 tp->snd_cwnd_cnt = 0; 3388 tp->is_cwnd_limited = 0; 3389 tp->max_packets_out = 0; 3390 tp->window_clamp = 0; 3391 tp->delivered = 0; 3392 tp->delivered_ce = 0; 3393 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3394 icsk->icsk_ca_ops->release(sk); 3395 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3396 icsk->icsk_ca_initialized = 0; 3397 tcp_set_ca_state(sk, TCP_CA_Open); 3398 tp->is_sack_reneg = 0; 3399 tcp_clear_retrans(tp); 3400 tp->total_retrans = 0; 3401 inet_csk_delack_init(sk); 3402 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3403 * issue in __tcp_select_window() 3404 */ 3405 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3406 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3407 __sk_dst_reset(sk); 3408 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3409 tcp_saved_syn_free(tp); 3410 tp->compressed_ack = 0; 3411 tp->segs_in = 0; 3412 tp->segs_out = 0; 3413 tp->bytes_sent = 0; 3414 tp->bytes_acked = 0; 3415 tp->bytes_received = 0; 3416 tp->bytes_retrans = 0; 3417 tp->data_segs_in = 0; 3418 tp->data_segs_out = 0; 3419 tp->duplicate_sack[0].start_seq = 0; 3420 tp->duplicate_sack[0].end_seq = 0; 3421 tp->dsack_dups = 0; 3422 tp->reord_seen = 0; 3423 tp->retrans_out = 0; 3424 tp->sacked_out = 0; 3425 tp->tlp_high_seq = 0; 3426 tp->last_oow_ack_time = 0; 3427 tp->plb_rehash = 0; 3428 /* There's a bubble in the pipe until at least the first ACK. */ 3429 tp->app_limited = ~0U; 3430 tp->rate_app_limited = 1; 3431 tp->rack.mstamp = 0; 3432 tp->rack.advanced = 0; 3433 tp->rack.reo_wnd_steps = 1; 3434 tp->rack.last_delivered = 0; 3435 tp->rack.reo_wnd_persist = 0; 3436 tp->rack.dsack_seen = 0; 3437 tp->syn_data_acked = 0; 3438 tp->syn_fastopen_child = 0; 3439 tp->rx_opt.saw_tstamp = 0; 3440 tp->rx_opt.dsack = 0; 3441 tp->rx_opt.num_sacks = 0; 3442 tp->rcv_ooopack = 0; 3443 3444 3445 /* Clean up fastopen related fields */ 3446 tcp_free_fastopen_req(tp); 3447 inet_clear_bit(DEFER_CONNECT, sk); 3448 tp->fastopen_client_fail = 0; 3449 3450 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3451 3452 if (sk->sk_frag.page) { 3453 put_page(sk->sk_frag.page); 3454 sk->sk_frag.page = NULL; 3455 sk->sk_frag.offset = 0; 3456 } 3457 sk_error_report(sk); 3458 return 0; 3459 } 3460 EXPORT_SYMBOL(tcp_disconnect); 3461 3462 static inline bool tcp_can_repair_sock(const struct sock *sk) 3463 { 3464 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3465 (sk->sk_state != TCP_LISTEN); 3466 } 3467 3468 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3469 { 3470 struct tcp_repair_window opt; 3471 3472 if (!tp->repair) 3473 return -EPERM; 3474 3475 if (len != sizeof(opt)) 3476 return -EINVAL; 3477 3478 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3479 return -EFAULT; 3480 3481 if (opt.max_window < opt.snd_wnd) 3482 return -EINVAL; 3483 3484 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3485 return -EINVAL; 3486 3487 if (after(opt.rcv_wup, tp->rcv_nxt)) 3488 return -EINVAL; 3489 3490 tp->snd_wl1 = opt.snd_wl1; 3491 tp->snd_wnd = opt.snd_wnd; 3492 tp->max_window = opt.max_window; 3493 3494 tp->rcv_wnd = opt.rcv_wnd; 3495 tp->rcv_wup = opt.rcv_wup; 3496 3497 return 0; 3498 } 3499 3500 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3501 unsigned int len) 3502 { 3503 struct tcp_sock *tp = tcp_sk(sk); 3504 struct tcp_repair_opt opt; 3505 size_t offset = 0; 3506 3507 while (len >= sizeof(opt)) { 3508 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3509 return -EFAULT; 3510 3511 offset += sizeof(opt); 3512 len -= sizeof(opt); 3513 3514 switch (opt.opt_code) { 3515 case TCPOPT_MSS: 3516 tp->rx_opt.mss_clamp = opt.opt_val; 3517 tcp_mtup_init(sk); 3518 break; 3519 case TCPOPT_WINDOW: 3520 { 3521 u16 snd_wscale = opt.opt_val & 0xFFFF; 3522 u16 rcv_wscale = opt.opt_val >> 16; 3523 3524 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3525 return -EFBIG; 3526 3527 tp->rx_opt.snd_wscale = snd_wscale; 3528 tp->rx_opt.rcv_wscale = rcv_wscale; 3529 tp->rx_opt.wscale_ok = 1; 3530 } 3531 break; 3532 case TCPOPT_SACK_PERM: 3533 if (opt.opt_val != 0) 3534 return -EINVAL; 3535 3536 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3537 break; 3538 case TCPOPT_TIMESTAMP: 3539 if (opt.opt_val != 0) 3540 return -EINVAL; 3541 3542 tp->rx_opt.tstamp_ok = 1; 3543 break; 3544 } 3545 } 3546 3547 return 0; 3548 } 3549 3550 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3551 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3552 3553 static void tcp_enable_tx_delay(void) 3554 { 3555 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3556 static int __tcp_tx_delay_enabled = 0; 3557 3558 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3559 static_branch_enable(&tcp_tx_delay_enabled); 3560 pr_info("TCP_TX_DELAY enabled\n"); 3561 } 3562 } 3563 } 3564 3565 /* When set indicates to always queue non-full frames. Later the user clears 3566 * this option and we transmit any pending partial frames in the queue. This is 3567 * meant to be used alongside sendfile() to get properly filled frames when the 3568 * user (for example) must write out headers with a write() call first and then 3569 * use sendfile to send out the data parts. 3570 * 3571 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3572 * TCP_NODELAY. 3573 */ 3574 void __tcp_sock_set_cork(struct sock *sk, bool on) 3575 { 3576 struct tcp_sock *tp = tcp_sk(sk); 3577 3578 if (on) { 3579 tp->nonagle |= TCP_NAGLE_CORK; 3580 } else { 3581 tp->nonagle &= ~TCP_NAGLE_CORK; 3582 if (tp->nonagle & TCP_NAGLE_OFF) 3583 tp->nonagle |= TCP_NAGLE_PUSH; 3584 tcp_push_pending_frames(sk); 3585 } 3586 } 3587 3588 void tcp_sock_set_cork(struct sock *sk, bool on) 3589 { 3590 lock_sock(sk); 3591 __tcp_sock_set_cork(sk, on); 3592 release_sock(sk); 3593 } 3594 EXPORT_SYMBOL(tcp_sock_set_cork); 3595 3596 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3597 * remembered, but it is not activated until cork is cleared. 3598 * 3599 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3600 * even TCP_CORK for currently queued segments. 3601 */ 3602 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3603 { 3604 if (on) { 3605 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3606 tcp_push_pending_frames(sk); 3607 } else { 3608 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3609 } 3610 } 3611 3612 void tcp_sock_set_nodelay(struct sock *sk) 3613 { 3614 lock_sock(sk); 3615 __tcp_sock_set_nodelay(sk, true); 3616 release_sock(sk); 3617 } 3618 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3619 3620 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3621 { 3622 if (!val) { 3623 inet_csk_enter_pingpong_mode(sk); 3624 return; 3625 } 3626 3627 inet_csk_exit_pingpong_mode(sk); 3628 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3629 inet_csk_ack_scheduled(sk)) { 3630 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3631 tcp_cleanup_rbuf(sk, 1); 3632 if (!(val & 1)) 3633 inet_csk_enter_pingpong_mode(sk); 3634 } 3635 } 3636 3637 void tcp_sock_set_quickack(struct sock *sk, int val) 3638 { 3639 lock_sock(sk); 3640 __tcp_sock_set_quickack(sk, val); 3641 release_sock(sk); 3642 } 3643 EXPORT_SYMBOL(tcp_sock_set_quickack); 3644 3645 int tcp_sock_set_syncnt(struct sock *sk, int val) 3646 { 3647 if (val < 1 || val > MAX_TCP_SYNCNT) 3648 return -EINVAL; 3649 3650 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3651 return 0; 3652 } 3653 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3654 3655 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3656 { 3657 /* Cap the max time in ms TCP will retry or probe the window 3658 * before giving up and aborting (ETIMEDOUT) a connection. 3659 */ 3660 if (val < 0) 3661 return -EINVAL; 3662 3663 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3664 return 0; 3665 } 3666 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3667 3668 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3669 { 3670 struct tcp_sock *tp = tcp_sk(sk); 3671 3672 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3673 return -EINVAL; 3674 3675 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3676 WRITE_ONCE(tp->keepalive_time, val * HZ); 3677 if (sock_flag(sk, SOCK_KEEPOPEN) && 3678 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3679 u32 elapsed = keepalive_time_elapsed(tp); 3680 3681 if (tp->keepalive_time > elapsed) 3682 elapsed = tp->keepalive_time - elapsed; 3683 else 3684 elapsed = 0; 3685 tcp_reset_keepalive_timer(sk, elapsed); 3686 } 3687 3688 return 0; 3689 } 3690 3691 int tcp_sock_set_keepidle(struct sock *sk, int val) 3692 { 3693 int err; 3694 3695 lock_sock(sk); 3696 err = tcp_sock_set_keepidle_locked(sk, val); 3697 release_sock(sk); 3698 return err; 3699 } 3700 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3701 3702 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3703 { 3704 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3705 return -EINVAL; 3706 3707 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3708 return 0; 3709 } 3710 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3711 3712 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3713 { 3714 if (val < 1 || val > MAX_TCP_KEEPCNT) 3715 return -EINVAL; 3716 3717 /* Paired with READ_ONCE() in keepalive_probes() */ 3718 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3719 return 0; 3720 } 3721 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3722 3723 int tcp_set_window_clamp(struct sock *sk, int val) 3724 { 3725 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3726 struct tcp_sock *tp = tcp_sk(sk); 3727 3728 if (!val) { 3729 if (sk->sk_state != TCP_CLOSE) 3730 return -EINVAL; 3731 WRITE_ONCE(tp->window_clamp, 0); 3732 return 0; 3733 } 3734 3735 old_window_clamp = tp->window_clamp; 3736 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3737 3738 if (new_window_clamp == old_window_clamp) 3739 return 0; 3740 3741 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3742 3743 /* Need to apply the reserved mem provisioning only 3744 * when shrinking the window clamp. 3745 */ 3746 if (new_window_clamp < old_window_clamp) { 3747 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3748 } else { 3749 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3750 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3751 } 3752 return 0; 3753 } 3754 3755 /* 3756 * Socket option code for TCP. 3757 */ 3758 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3759 sockptr_t optval, unsigned int optlen) 3760 { 3761 struct tcp_sock *tp = tcp_sk(sk); 3762 struct inet_connection_sock *icsk = inet_csk(sk); 3763 struct net *net = sock_net(sk); 3764 int val; 3765 int err = 0; 3766 3767 /* These are data/string values, all the others are ints */ 3768 switch (optname) { 3769 case TCP_CONGESTION: { 3770 char name[TCP_CA_NAME_MAX]; 3771 3772 if (optlen < 1) 3773 return -EINVAL; 3774 3775 val = strncpy_from_sockptr(name, optval, 3776 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3777 if (val < 0) 3778 return -EFAULT; 3779 name[val] = 0; 3780 3781 sockopt_lock_sock(sk); 3782 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3783 sockopt_ns_capable(sock_net(sk)->user_ns, 3784 CAP_NET_ADMIN)); 3785 sockopt_release_sock(sk); 3786 return err; 3787 } 3788 case TCP_ULP: { 3789 char name[TCP_ULP_NAME_MAX]; 3790 3791 if (optlen < 1) 3792 return -EINVAL; 3793 3794 val = strncpy_from_sockptr(name, optval, 3795 min_t(long, TCP_ULP_NAME_MAX - 1, 3796 optlen)); 3797 if (val < 0) 3798 return -EFAULT; 3799 name[val] = 0; 3800 3801 sockopt_lock_sock(sk); 3802 err = tcp_set_ulp(sk, name); 3803 sockopt_release_sock(sk); 3804 return err; 3805 } 3806 case TCP_FASTOPEN_KEY: { 3807 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3808 __u8 *backup_key = NULL; 3809 3810 /* Allow a backup key as well to facilitate key rotation 3811 * First key is the active one. 3812 */ 3813 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3814 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3815 return -EINVAL; 3816 3817 if (copy_from_sockptr(key, optval, optlen)) 3818 return -EFAULT; 3819 3820 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3821 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3822 3823 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3824 } 3825 default: 3826 /* fallthru */ 3827 break; 3828 } 3829 3830 if (optlen < sizeof(int)) 3831 return -EINVAL; 3832 3833 if (copy_from_sockptr(&val, optval, sizeof(val))) 3834 return -EFAULT; 3835 3836 /* Handle options that can be set without locking the socket. */ 3837 switch (optname) { 3838 case TCP_SYNCNT: 3839 return tcp_sock_set_syncnt(sk, val); 3840 case TCP_USER_TIMEOUT: 3841 return tcp_sock_set_user_timeout(sk, val); 3842 case TCP_KEEPINTVL: 3843 return tcp_sock_set_keepintvl(sk, val); 3844 case TCP_KEEPCNT: 3845 return tcp_sock_set_keepcnt(sk, val); 3846 case TCP_LINGER2: 3847 if (val < 0) 3848 WRITE_ONCE(tp->linger2, -1); 3849 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3850 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3851 else 3852 WRITE_ONCE(tp->linger2, val * HZ); 3853 return 0; 3854 case TCP_DEFER_ACCEPT: 3855 /* Translate value in seconds to number of retransmits */ 3856 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3857 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3858 TCP_RTO_MAX / HZ)); 3859 return 0; 3860 case TCP_RTO_MAX_MS: 3861 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3862 return -EINVAL; 3863 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3864 return 0; 3865 case TCP_RTO_MIN_US: { 3866 int rto_min = usecs_to_jiffies(val); 3867 3868 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3869 return -EINVAL; 3870 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3871 return 0; 3872 } 3873 case TCP_DELACK_MAX_US: { 3874 int delack_max = usecs_to_jiffies(val); 3875 3876 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3877 return -EINVAL; 3878 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3879 return 0; 3880 } 3881 } 3882 3883 sockopt_lock_sock(sk); 3884 3885 switch (optname) { 3886 case TCP_MAXSEG: 3887 /* Values greater than interface MTU won't take effect. However 3888 * at the point when this call is done we typically don't yet 3889 * know which interface is going to be used 3890 */ 3891 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3892 err = -EINVAL; 3893 break; 3894 } 3895 tp->rx_opt.user_mss = val; 3896 break; 3897 3898 case TCP_NODELAY: 3899 __tcp_sock_set_nodelay(sk, val); 3900 break; 3901 3902 case TCP_THIN_LINEAR_TIMEOUTS: 3903 if (val < 0 || val > 1) 3904 err = -EINVAL; 3905 else 3906 tp->thin_lto = val; 3907 break; 3908 3909 case TCP_THIN_DUPACK: 3910 if (val < 0 || val > 1) 3911 err = -EINVAL; 3912 break; 3913 3914 case TCP_REPAIR: 3915 if (!tcp_can_repair_sock(sk)) 3916 err = -EPERM; 3917 else if (val == TCP_REPAIR_ON) { 3918 tp->repair = 1; 3919 sk->sk_reuse = SK_FORCE_REUSE; 3920 tp->repair_queue = TCP_NO_QUEUE; 3921 } else if (val == TCP_REPAIR_OFF) { 3922 tp->repair = 0; 3923 sk->sk_reuse = SK_NO_REUSE; 3924 tcp_send_window_probe(sk); 3925 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3926 tp->repair = 0; 3927 sk->sk_reuse = SK_NO_REUSE; 3928 } else 3929 err = -EINVAL; 3930 3931 break; 3932 3933 case TCP_REPAIR_QUEUE: 3934 if (!tp->repair) 3935 err = -EPERM; 3936 else if ((unsigned int)val < TCP_QUEUES_NR) 3937 tp->repair_queue = val; 3938 else 3939 err = -EINVAL; 3940 break; 3941 3942 case TCP_QUEUE_SEQ: 3943 if (sk->sk_state != TCP_CLOSE) { 3944 err = -EPERM; 3945 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3946 if (!tcp_rtx_queue_empty(sk)) 3947 err = -EPERM; 3948 else 3949 WRITE_ONCE(tp->write_seq, val); 3950 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3951 if (tp->rcv_nxt != tp->copied_seq) { 3952 err = -EPERM; 3953 } else { 3954 WRITE_ONCE(tp->rcv_nxt, val); 3955 WRITE_ONCE(tp->copied_seq, val); 3956 } 3957 } else { 3958 err = -EINVAL; 3959 } 3960 break; 3961 3962 case TCP_REPAIR_OPTIONS: 3963 if (!tp->repair) 3964 err = -EINVAL; 3965 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3966 err = tcp_repair_options_est(sk, optval, optlen); 3967 else 3968 err = -EPERM; 3969 break; 3970 3971 case TCP_CORK: 3972 __tcp_sock_set_cork(sk, val); 3973 break; 3974 3975 case TCP_KEEPIDLE: 3976 err = tcp_sock_set_keepidle_locked(sk, val); 3977 break; 3978 case TCP_SAVE_SYN: 3979 /* 0: disable, 1: enable, 2: start from ether_header */ 3980 if (val < 0 || val > 2) 3981 err = -EINVAL; 3982 else 3983 tp->save_syn = val; 3984 break; 3985 3986 case TCP_WINDOW_CLAMP: 3987 err = tcp_set_window_clamp(sk, val); 3988 break; 3989 3990 case TCP_QUICKACK: 3991 __tcp_sock_set_quickack(sk, val); 3992 break; 3993 3994 case TCP_AO_REPAIR: 3995 if (!tcp_can_repair_sock(sk)) { 3996 err = -EPERM; 3997 break; 3998 } 3999 err = tcp_ao_set_repair(sk, optval, optlen); 4000 break; 4001 #ifdef CONFIG_TCP_AO 4002 case TCP_AO_ADD_KEY: 4003 case TCP_AO_DEL_KEY: 4004 case TCP_AO_INFO: { 4005 /* If this is the first TCP-AO setsockopt() on the socket, 4006 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 4007 * in any state. 4008 */ 4009 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 4010 goto ao_parse; 4011 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 4012 lockdep_sock_is_held(sk))) 4013 goto ao_parse; 4014 if (tp->repair) 4015 goto ao_parse; 4016 err = -EISCONN; 4017 break; 4018 ao_parse: 4019 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 4020 break; 4021 } 4022 #endif 4023 #ifdef CONFIG_TCP_MD5SIG 4024 case TCP_MD5SIG: 4025 case TCP_MD5SIG_EXT: 4026 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4027 break; 4028 #endif 4029 case TCP_FASTOPEN: 4030 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4031 TCPF_LISTEN))) { 4032 tcp_fastopen_init_key_once(net); 4033 4034 fastopen_queue_tune(sk, val); 4035 } else { 4036 err = -EINVAL; 4037 } 4038 break; 4039 case TCP_FASTOPEN_CONNECT: 4040 if (val > 1 || val < 0) { 4041 err = -EINVAL; 4042 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4043 TFO_CLIENT_ENABLE) { 4044 if (sk->sk_state == TCP_CLOSE) 4045 tp->fastopen_connect = val; 4046 else 4047 err = -EINVAL; 4048 } else { 4049 err = -EOPNOTSUPP; 4050 } 4051 break; 4052 case TCP_FASTOPEN_NO_COOKIE: 4053 if (val > 1 || val < 0) 4054 err = -EINVAL; 4055 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4056 err = -EINVAL; 4057 else 4058 tp->fastopen_no_cookie = val; 4059 break; 4060 case TCP_TIMESTAMP: 4061 if (!tp->repair) { 4062 err = -EPERM; 4063 break; 4064 } 4065 /* val is an opaque field, 4066 * and low order bit contains usec_ts enable bit. 4067 * Its a best effort, and we do not care if user makes an error. 4068 */ 4069 tp->tcp_usec_ts = val & 1; 4070 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4071 break; 4072 case TCP_REPAIR_WINDOW: 4073 err = tcp_repair_set_window(tp, optval, optlen); 4074 break; 4075 case TCP_NOTSENT_LOWAT: 4076 WRITE_ONCE(tp->notsent_lowat, val); 4077 sk->sk_write_space(sk); 4078 break; 4079 case TCP_INQ: 4080 if (val > 1 || val < 0) 4081 err = -EINVAL; 4082 else 4083 tp->recvmsg_inq = val; 4084 break; 4085 case TCP_TX_DELAY: 4086 if (val) 4087 tcp_enable_tx_delay(); 4088 WRITE_ONCE(tp->tcp_tx_delay, val); 4089 break; 4090 default: 4091 err = -ENOPROTOOPT; 4092 break; 4093 } 4094 4095 sockopt_release_sock(sk); 4096 return err; 4097 } 4098 4099 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4100 unsigned int optlen) 4101 { 4102 const struct inet_connection_sock *icsk = inet_csk(sk); 4103 4104 if (level != SOL_TCP) 4105 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4106 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4107 optval, optlen); 4108 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4109 } 4110 EXPORT_IPV6_MOD(tcp_setsockopt); 4111 4112 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4113 struct tcp_info *info) 4114 { 4115 u64 stats[__TCP_CHRONO_MAX], total = 0; 4116 enum tcp_chrono i; 4117 4118 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4119 stats[i] = tp->chrono_stat[i - 1]; 4120 if (i == tp->chrono_type) 4121 stats[i] += tcp_jiffies32 - tp->chrono_start; 4122 stats[i] *= USEC_PER_SEC / HZ; 4123 total += stats[i]; 4124 } 4125 4126 info->tcpi_busy_time = total; 4127 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4128 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4129 } 4130 4131 /* Return information about state of tcp endpoint in API format. */ 4132 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4133 { 4134 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4135 const struct inet_connection_sock *icsk = inet_csk(sk); 4136 unsigned long rate; 4137 u32 now; 4138 u64 rate64; 4139 bool slow; 4140 4141 memset(info, 0, sizeof(*info)); 4142 if (sk->sk_type != SOCK_STREAM) 4143 return; 4144 4145 info->tcpi_state = inet_sk_state_load(sk); 4146 4147 /* Report meaningful fields for all TCP states, including listeners */ 4148 rate = READ_ONCE(sk->sk_pacing_rate); 4149 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4150 info->tcpi_pacing_rate = rate64; 4151 4152 rate = READ_ONCE(sk->sk_max_pacing_rate); 4153 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4154 info->tcpi_max_pacing_rate = rate64; 4155 4156 info->tcpi_reordering = tp->reordering; 4157 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4158 4159 if (info->tcpi_state == TCP_LISTEN) { 4160 /* listeners aliased fields : 4161 * tcpi_unacked -> Number of children ready for accept() 4162 * tcpi_sacked -> max backlog 4163 */ 4164 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4165 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4166 return; 4167 } 4168 4169 slow = lock_sock_fast(sk); 4170 4171 info->tcpi_ca_state = icsk->icsk_ca_state; 4172 info->tcpi_retransmits = icsk->icsk_retransmits; 4173 info->tcpi_probes = icsk->icsk_probes_out; 4174 info->tcpi_backoff = icsk->icsk_backoff; 4175 4176 if (tp->rx_opt.tstamp_ok) 4177 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4178 if (tcp_is_sack(tp)) 4179 info->tcpi_options |= TCPI_OPT_SACK; 4180 if (tp->rx_opt.wscale_ok) { 4181 info->tcpi_options |= TCPI_OPT_WSCALE; 4182 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4183 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4184 } 4185 4186 if (tcp_ecn_mode_any(tp)) 4187 info->tcpi_options |= TCPI_OPT_ECN; 4188 if (tp->ecn_flags & TCP_ECN_SEEN) 4189 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4190 if (tp->syn_data_acked) 4191 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4192 if (tp->tcp_usec_ts) 4193 info->tcpi_options |= TCPI_OPT_USEC_TS; 4194 if (tp->syn_fastopen_child) 4195 info->tcpi_options |= TCPI_OPT_TFO_CHILD; 4196 4197 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4198 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4199 tcp_delack_max(sk))); 4200 info->tcpi_snd_mss = tp->mss_cache; 4201 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4202 4203 info->tcpi_unacked = tp->packets_out; 4204 info->tcpi_sacked = tp->sacked_out; 4205 4206 info->tcpi_lost = tp->lost_out; 4207 info->tcpi_retrans = tp->retrans_out; 4208 4209 now = tcp_jiffies32; 4210 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4211 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4212 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4213 4214 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4215 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4216 info->tcpi_rtt = tp->srtt_us >> 3; 4217 info->tcpi_rttvar = tp->mdev_us >> 2; 4218 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4219 info->tcpi_advmss = tp->advmss; 4220 4221 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4222 info->tcpi_rcv_space = tp->rcvq_space.space; 4223 4224 info->tcpi_total_retrans = tp->total_retrans; 4225 4226 info->tcpi_bytes_acked = tp->bytes_acked; 4227 info->tcpi_bytes_received = tp->bytes_received; 4228 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4229 tcp_get_info_chrono_stats(tp, info); 4230 4231 info->tcpi_segs_out = tp->segs_out; 4232 4233 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4234 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4235 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4236 4237 info->tcpi_min_rtt = tcp_min_rtt(tp); 4238 info->tcpi_data_segs_out = tp->data_segs_out; 4239 4240 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4241 rate64 = tcp_compute_delivery_rate(tp); 4242 if (rate64) 4243 info->tcpi_delivery_rate = rate64; 4244 info->tcpi_delivered = tp->delivered; 4245 info->tcpi_delivered_ce = tp->delivered_ce; 4246 info->tcpi_bytes_sent = tp->bytes_sent; 4247 info->tcpi_bytes_retrans = tp->bytes_retrans; 4248 info->tcpi_dsack_dups = tp->dsack_dups; 4249 info->tcpi_reord_seen = tp->reord_seen; 4250 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4251 info->tcpi_snd_wnd = tp->snd_wnd; 4252 info->tcpi_rcv_wnd = tp->rcv_wnd; 4253 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4254 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4255 4256 info->tcpi_total_rto = tp->total_rto; 4257 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4258 info->tcpi_total_rto_time = tp->total_rto_time; 4259 if (tp->rto_stamp) 4260 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4261 4262 unlock_sock_fast(sk, slow); 4263 } 4264 EXPORT_SYMBOL_GPL(tcp_get_info); 4265 4266 static size_t tcp_opt_stats_get_size(void) 4267 { 4268 return 4269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4271 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4272 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4276 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4277 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4278 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4279 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4280 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4281 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4282 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4283 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4284 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4285 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4286 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4287 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4288 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4289 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4290 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4291 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4292 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4293 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4294 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4295 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4296 0; 4297 } 4298 4299 /* Returns TTL or hop limit of an incoming packet from skb. */ 4300 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4301 { 4302 if (skb->protocol == htons(ETH_P_IP)) 4303 return ip_hdr(skb)->ttl; 4304 else if (skb->protocol == htons(ETH_P_IPV6)) 4305 return ipv6_hdr(skb)->hop_limit; 4306 else 4307 return 0; 4308 } 4309 4310 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4311 const struct sk_buff *orig_skb, 4312 const struct sk_buff *ack_skb) 4313 { 4314 const struct tcp_sock *tp = tcp_sk(sk); 4315 struct sk_buff *stats; 4316 struct tcp_info info; 4317 unsigned long rate; 4318 u64 rate64; 4319 4320 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4321 if (!stats) 4322 return NULL; 4323 4324 tcp_get_info_chrono_stats(tp, &info); 4325 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4326 info.tcpi_busy_time, TCP_NLA_PAD); 4327 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4328 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4329 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4330 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4331 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4332 tp->data_segs_out, TCP_NLA_PAD); 4333 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4334 tp->total_retrans, TCP_NLA_PAD); 4335 4336 rate = READ_ONCE(sk->sk_pacing_rate); 4337 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4338 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4339 4340 rate64 = tcp_compute_delivery_rate(tp); 4341 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4342 4343 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4344 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4345 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4346 4347 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4348 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4349 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4350 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4351 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4352 4353 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4354 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4355 4356 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4357 TCP_NLA_PAD); 4358 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4359 TCP_NLA_PAD); 4360 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4361 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4362 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4363 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4364 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4365 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4366 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4367 TCP_NLA_PAD); 4368 if (ack_skb) 4369 nla_put_u8(stats, TCP_NLA_TTL, 4370 tcp_skb_ttl_or_hop_limit(ack_skb)); 4371 4372 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4373 return stats; 4374 } 4375 4376 int do_tcp_getsockopt(struct sock *sk, int level, 4377 int optname, sockptr_t optval, sockptr_t optlen) 4378 { 4379 struct inet_connection_sock *icsk = inet_csk(sk); 4380 struct tcp_sock *tp = tcp_sk(sk); 4381 struct net *net = sock_net(sk); 4382 int val, len; 4383 4384 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4385 return -EFAULT; 4386 4387 if (len < 0) 4388 return -EINVAL; 4389 4390 len = min_t(unsigned int, len, sizeof(int)); 4391 4392 switch (optname) { 4393 case TCP_MAXSEG: 4394 val = tp->mss_cache; 4395 if (tp->rx_opt.user_mss && 4396 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4397 val = tp->rx_opt.user_mss; 4398 if (tp->repair) 4399 val = tp->rx_opt.mss_clamp; 4400 break; 4401 case TCP_NODELAY: 4402 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4403 break; 4404 case TCP_CORK: 4405 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4406 break; 4407 case TCP_KEEPIDLE: 4408 val = keepalive_time_when(tp) / HZ; 4409 break; 4410 case TCP_KEEPINTVL: 4411 val = keepalive_intvl_when(tp) / HZ; 4412 break; 4413 case TCP_KEEPCNT: 4414 val = keepalive_probes(tp); 4415 break; 4416 case TCP_SYNCNT: 4417 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4418 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4419 break; 4420 case TCP_LINGER2: 4421 val = READ_ONCE(tp->linger2); 4422 if (val >= 0) 4423 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4424 break; 4425 case TCP_DEFER_ACCEPT: 4426 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4427 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4428 TCP_RTO_MAX / HZ); 4429 break; 4430 case TCP_WINDOW_CLAMP: 4431 val = READ_ONCE(tp->window_clamp); 4432 break; 4433 case TCP_INFO: { 4434 struct tcp_info info; 4435 4436 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4437 return -EFAULT; 4438 4439 tcp_get_info(sk, &info); 4440 4441 len = min_t(unsigned int, len, sizeof(info)); 4442 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4443 return -EFAULT; 4444 if (copy_to_sockptr(optval, &info, len)) 4445 return -EFAULT; 4446 return 0; 4447 } 4448 case TCP_CC_INFO: { 4449 const struct tcp_congestion_ops *ca_ops; 4450 union tcp_cc_info info; 4451 size_t sz = 0; 4452 int attr; 4453 4454 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4455 return -EFAULT; 4456 4457 ca_ops = icsk->icsk_ca_ops; 4458 if (ca_ops && ca_ops->get_info) 4459 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4460 4461 len = min_t(unsigned int, len, sz); 4462 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4463 return -EFAULT; 4464 if (copy_to_sockptr(optval, &info, len)) 4465 return -EFAULT; 4466 return 0; 4467 } 4468 case TCP_QUICKACK: 4469 val = !inet_csk_in_pingpong_mode(sk); 4470 break; 4471 4472 case TCP_CONGESTION: 4473 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4474 return -EFAULT; 4475 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4476 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4477 return -EFAULT; 4478 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4479 return -EFAULT; 4480 return 0; 4481 4482 case TCP_ULP: 4483 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4484 return -EFAULT; 4485 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4486 if (!icsk->icsk_ulp_ops) { 4487 len = 0; 4488 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4489 return -EFAULT; 4490 return 0; 4491 } 4492 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4493 return -EFAULT; 4494 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4495 return -EFAULT; 4496 return 0; 4497 4498 case TCP_FASTOPEN_KEY: { 4499 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4500 unsigned int key_len; 4501 4502 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4503 return -EFAULT; 4504 4505 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4506 TCP_FASTOPEN_KEY_LENGTH; 4507 len = min_t(unsigned int, len, key_len); 4508 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4509 return -EFAULT; 4510 if (copy_to_sockptr(optval, key, len)) 4511 return -EFAULT; 4512 return 0; 4513 } 4514 case TCP_THIN_LINEAR_TIMEOUTS: 4515 val = tp->thin_lto; 4516 break; 4517 4518 case TCP_THIN_DUPACK: 4519 val = 0; 4520 break; 4521 4522 case TCP_REPAIR: 4523 val = tp->repair; 4524 break; 4525 4526 case TCP_REPAIR_QUEUE: 4527 if (tp->repair) 4528 val = tp->repair_queue; 4529 else 4530 return -EINVAL; 4531 break; 4532 4533 case TCP_REPAIR_WINDOW: { 4534 struct tcp_repair_window opt; 4535 4536 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4537 return -EFAULT; 4538 4539 if (len != sizeof(opt)) 4540 return -EINVAL; 4541 4542 if (!tp->repair) 4543 return -EPERM; 4544 4545 opt.snd_wl1 = tp->snd_wl1; 4546 opt.snd_wnd = tp->snd_wnd; 4547 opt.max_window = tp->max_window; 4548 opt.rcv_wnd = tp->rcv_wnd; 4549 opt.rcv_wup = tp->rcv_wup; 4550 4551 if (copy_to_sockptr(optval, &opt, len)) 4552 return -EFAULT; 4553 return 0; 4554 } 4555 case TCP_QUEUE_SEQ: 4556 if (tp->repair_queue == TCP_SEND_QUEUE) 4557 val = tp->write_seq; 4558 else if (tp->repair_queue == TCP_RECV_QUEUE) 4559 val = tp->rcv_nxt; 4560 else 4561 return -EINVAL; 4562 break; 4563 4564 case TCP_USER_TIMEOUT: 4565 val = READ_ONCE(icsk->icsk_user_timeout); 4566 break; 4567 4568 case TCP_FASTOPEN: 4569 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4570 break; 4571 4572 case TCP_FASTOPEN_CONNECT: 4573 val = tp->fastopen_connect; 4574 break; 4575 4576 case TCP_FASTOPEN_NO_COOKIE: 4577 val = tp->fastopen_no_cookie; 4578 break; 4579 4580 case TCP_TX_DELAY: 4581 val = READ_ONCE(tp->tcp_tx_delay); 4582 break; 4583 4584 case TCP_TIMESTAMP: 4585 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4586 if (tp->tcp_usec_ts) 4587 val |= 1; 4588 else 4589 val &= ~1; 4590 break; 4591 case TCP_NOTSENT_LOWAT: 4592 val = READ_ONCE(tp->notsent_lowat); 4593 break; 4594 case TCP_INQ: 4595 val = tp->recvmsg_inq; 4596 break; 4597 case TCP_SAVE_SYN: 4598 val = tp->save_syn; 4599 break; 4600 case TCP_SAVED_SYN: { 4601 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4602 return -EFAULT; 4603 4604 sockopt_lock_sock(sk); 4605 if (tp->saved_syn) { 4606 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4607 len = tcp_saved_syn_len(tp->saved_syn); 4608 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4609 sockopt_release_sock(sk); 4610 return -EFAULT; 4611 } 4612 sockopt_release_sock(sk); 4613 return -EINVAL; 4614 } 4615 len = tcp_saved_syn_len(tp->saved_syn); 4616 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4617 sockopt_release_sock(sk); 4618 return -EFAULT; 4619 } 4620 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4621 sockopt_release_sock(sk); 4622 return -EFAULT; 4623 } 4624 tcp_saved_syn_free(tp); 4625 sockopt_release_sock(sk); 4626 } else { 4627 sockopt_release_sock(sk); 4628 len = 0; 4629 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4630 return -EFAULT; 4631 } 4632 return 0; 4633 } 4634 #ifdef CONFIG_MMU 4635 case TCP_ZEROCOPY_RECEIVE: { 4636 struct scm_timestamping_internal tss; 4637 struct tcp_zerocopy_receive zc = {}; 4638 int err; 4639 4640 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4641 return -EFAULT; 4642 if (len < 0 || 4643 len < offsetofend(struct tcp_zerocopy_receive, length)) 4644 return -EINVAL; 4645 if (unlikely(len > sizeof(zc))) { 4646 err = check_zeroed_sockptr(optval, sizeof(zc), 4647 len - sizeof(zc)); 4648 if (err < 1) 4649 return err == 0 ? -EINVAL : err; 4650 len = sizeof(zc); 4651 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4652 return -EFAULT; 4653 } 4654 if (copy_from_sockptr(&zc, optval, len)) 4655 return -EFAULT; 4656 if (zc.reserved) 4657 return -EINVAL; 4658 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4659 return -EINVAL; 4660 sockopt_lock_sock(sk); 4661 err = tcp_zerocopy_receive(sk, &zc, &tss); 4662 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4663 &zc, &len, err); 4664 sockopt_release_sock(sk); 4665 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4666 goto zerocopy_rcv_cmsg; 4667 switch (len) { 4668 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4669 goto zerocopy_rcv_cmsg; 4670 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4671 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4672 case offsetofend(struct tcp_zerocopy_receive, flags): 4673 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4674 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4675 case offsetofend(struct tcp_zerocopy_receive, err): 4676 goto zerocopy_rcv_sk_err; 4677 case offsetofend(struct tcp_zerocopy_receive, inq): 4678 goto zerocopy_rcv_inq; 4679 case offsetofend(struct tcp_zerocopy_receive, length): 4680 default: 4681 goto zerocopy_rcv_out; 4682 } 4683 zerocopy_rcv_cmsg: 4684 if (zc.msg_flags & TCP_CMSG_TS) 4685 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4686 else 4687 zc.msg_flags = 0; 4688 zerocopy_rcv_sk_err: 4689 if (!err) 4690 zc.err = sock_error(sk); 4691 zerocopy_rcv_inq: 4692 zc.inq = tcp_inq_hint(sk); 4693 zerocopy_rcv_out: 4694 if (!err && copy_to_sockptr(optval, &zc, len)) 4695 err = -EFAULT; 4696 return err; 4697 } 4698 #endif 4699 case TCP_AO_REPAIR: 4700 if (!tcp_can_repair_sock(sk)) 4701 return -EPERM; 4702 return tcp_ao_get_repair(sk, optval, optlen); 4703 case TCP_AO_GET_KEYS: 4704 case TCP_AO_INFO: { 4705 int err; 4706 4707 sockopt_lock_sock(sk); 4708 if (optname == TCP_AO_GET_KEYS) 4709 err = tcp_ao_get_mkts(sk, optval, optlen); 4710 else 4711 err = tcp_ao_get_sock_info(sk, optval, optlen); 4712 sockopt_release_sock(sk); 4713 4714 return err; 4715 } 4716 case TCP_IS_MPTCP: 4717 val = 0; 4718 break; 4719 case TCP_RTO_MAX_MS: 4720 val = jiffies_to_msecs(tcp_rto_max(sk)); 4721 break; 4722 case TCP_RTO_MIN_US: 4723 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4724 break; 4725 case TCP_DELACK_MAX_US: 4726 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4727 break; 4728 default: 4729 return -ENOPROTOOPT; 4730 } 4731 4732 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4733 return -EFAULT; 4734 if (copy_to_sockptr(optval, &val, len)) 4735 return -EFAULT; 4736 return 0; 4737 } 4738 4739 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4740 { 4741 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4742 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4743 */ 4744 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4745 return true; 4746 4747 return false; 4748 } 4749 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4750 4751 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4752 int __user *optlen) 4753 { 4754 struct inet_connection_sock *icsk = inet_csk(sk); 4755 4756 if (level != SOL_TCP) 4757 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4758 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4759 optval, optlen); 4760 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4761 USER_SOCKPTR(optlen)); 4762 } 4763 EXPORT_IPV6_MOD(tcp_getsockopt); 4764 4765 #ifdef CONFIG_TCP_MD5SIG 4766 int tcp_md5_sigpool_id = -1; 4767 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); 4768 4769 int tcp_md5_alloc_sigpool(void) 4770 { 4771 size_t scratch_size; 4772 int ret; 4773 4774 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4775 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4776 if (ret >= 0) { 4777 /* As long as any md5 sigpool was allocated, the return 4778 * id would stay the same. Re-write the id only for the case 4779 * when previously all MD5 keys were deleted and this call 4780 * allocates the first MD5 key, which may return a different 4781 * sigpool id than was used previously. 4782 */ 4783 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4784 return 0; 4785 } 4786 return ret; 4787 } 4788 4789 void tcp_md5_release_sigpool(void) 4790 { 4791 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4792 } 4793 4794 void tcp_md5_add_sigpool(void) 4795 { 4796 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4797 } 4798 4799 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4800 const struct tcp_md5sig_key *key) 4801 { 4802 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4803 struct scatterlist sg; 4804 4805 sg_init_one(&sg, key->key, keylen); 4806 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4807 4808 /* We use data_race() because tcp_md5_do_add() might change 4809 * key->key under us 4810 */ 4811 return data_race(crypto_ahash_update(hp->req)); 4812 } 4813 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4814 4815 /* Called with rcu_read_lock() */ 4816 static enum skb_drop_reason 4817 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4818 const void *saddr, const void *daddr, 4819 int family, int l3index, const __u8 *hash_location) 4820 { 4821 /* This gets called for each TCP segment that has TCP-MD5 option. 4822 * We have 3 drop cases: 4823 * o No MD5 hash and one expected. 4824 * o MD5 hash and we're not expecting one. 4825 * o MD5 hash and its wrong. 4826 */ 4827 const struct tcp_sock *tp = tcp_sk(sk); 4828 struct tcp_md5sig_key *key; 4829 u8 newhash[16]; 4830 int genhash; 4831 4832 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4833 4834 if (!key && hash_location) { 4835 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4836 trace_tcp_hash_md5_unexpected(sk, skb); 4837 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4838 } 4839 4840 /* Check the signature. 4841 * To support dual stack listeners, we need to handle 4842 * IPv4-mapped case. 4843 */ 4844 if (family == AF_INET) 4845 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4846 else 4847 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4848 NULL, skb); 4849 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4850 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4851 trace_tcp_hash_md5_mismatch(sk, skb); 4852 return SKB_DROP_REASON_TCP_MD5FAILURE; 4853 } 4854 return SKB_NOT_DROPPED_YET; 4855 } 4856 #else 4857 static inline enum skb_drop_reason 4858 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4859 const void *saddr, const void *daddr, 4860 int family, int l3index, const __u8 *hash_location) 4861 { 4862 return SKB_NOT_DROPPED_YET; 4863 } 4864 4865 #endif 4866 4867 /* Called with rcu_read_lock() */ 4868 enum skb_drop_reason 4869 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4870 const struct sk_buff *skb, 4871 const void *saddr, const void *daddr, 4872 int family, int dif, int sdif) 4873 { 4874 const struct tcphdr *th = tcp_hdr(skb); 4875 const struct tcp_ao_hdr *aoh; 4876 const __u8 *md5_location; 4877 int l3index; 4878 4879 /* Invalid option or two times meet any of auth options */ 4880 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4881 trace_tcp_hash_bad_header(sk, skb); 4882 return SKB_DROP_REASON_TCP_AUTH_HDR; 4883 } 4884 4885 if (req) { 4886 if (tcp_rsk_used_ao(req) != !!aoh) { 4887 u8 keyid, rnext, maclen; 4888 4889 if (aoh) { 4890 keyid = aoh->keyid; 4891 rnext = aoh->rnext_keyid; 4892 maclen = tcp_ao_hdr_maclen(aoh); 4893 } else { 4894 keyid = rnext = maclen = 0; 4895 } 4896 4897 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4898 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4899 return SKB_DROP_REASON_TCP_AOFAILURE; 4900 } 4901 } 4902 4903 /* sdif set, means packet ingressed via a device 4904 * in an L3 domain and dif is set to the l3mdev 4905 */ 4906 l3index = sdif ? dif : 0; 4907 4908 /* Fast path: unsigned segments */ 4909 if (likely(!md5_location && !aoh)) { 4910 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4911 * for the remote peer. On TCP-AO established connection 4912 * the last key is impossible to remove, so there's 4913 * always at least one current_key. 4914 */ 4915 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4916 trace_tcp_hash_ao_required(sk, skb); 4917 return SKB_DROP_REASON_TCP_AONOTFOUND; 4918 } 4919 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4920 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4921 trace_tcp_hash_md5_required(sk, skb); 4922 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4923 } 4924 return SKB_NOT_DROPPED_YET; 4925 } 4926 4927 if (aoh) 4928 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4929 4930 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4931 l3index, md5_location); 4932 } 4933 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 4934 4935 void tcp_done(struct sock *sk) 4936 { 4937 struct request_sock *req; 4938 4939 /* We might be called with a new socket, after 4940 * inet_csk_prepare_forced_close() has been called 4941 * so we can not use lockdep_sock_is_held(sk) 4942 */ 4943 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4944 4945 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4946 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4947 4948 tcp_set_state(sk, TCP_CLOSE); 4949 tcp_clear_xmit_timers(sk); 4950 if (req) 4951 reqsk_fastopen_remove(sk, req, false); 4952 4953 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4954 4955 if (!sock_flag(sk, SOCK_DEAD)) 4956 sk->sk_state_change(sk); 4957 else 4958 inet_csk_destroy_sock(sk); 4959 } 4960 EXPORT_SYMBOL_GPL(tcp_done); 4961 4962 int tcp_abort(struct sock *sk, int err) 4963 { 4964 int state = inet_sk_state_load(sk); 4965 4966 if (state == TCP_NEW_SYN_RECV) { 4967 struct request_sock *req = inet_reqsk(sk); 4968 4969 local_bh_disable(); 4970 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4971 local_bh_enable(); 4972 return 0; 4973 } 4974 if (state == TCP_TIME_WAIT) { 4975 struct inet_timewait_sock *tw = inet_twsk(sk); 4976 4977 refcount_inc(&tw->tw_refcnt); 4978 local_bh_disable(); 4979 inet_twsk_deschedule_put(tw); 4980 local_bh_enable(); 4981 return 0; 4982 } 4983 4984 /* BPF context ensures sock locking. */ 4985 if (!has_current_bpf_ctx()) 4986 /* Don't race with userspace socket closes such as tcp_close. */ 4987 lock_sock(sk); 4988 4989 /* Avoid closing the same socket twice. */ 4990 if (sk->sk_state == TCP_CLOSE) { 4991 if (!has_current_bpf_ctx()) 4992 release_sock(sk); 4993 return -ENOENT; 4994 } 4995 4996 if (sk->sk_state == TCP_LISTEN) { 4997 tcp_set_state(sk, TCP_CLOSE); 4998 inet_csk_listen_stop(sk); 4999 } 5000 5001 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 5002 local_bh_disable(); 5003 bh_lock_sock(sk); 5004 5005 if (tcp_need_reset(sk->sk_state)) 5006 tcp_send_active_reset(sk, GFP_ATOMIC, 5007 SK_RST_REASON_TCP_STATE); 5008 tcp_done_with_error(sk, err); 5009 5010 bh_unlock_sock(sk); 5011 local_bh_enable(); 5012 if (!has_current_bpf_ctx()) 5013 release_sock(sk); 5014 return 0; 5015 } 5016 EXPORT_SYMBOL_GPL(tcp_abort); 5017 5018 extern struct tcp_congestion_ops tcp_reno; 5019 5020 static __initdata unsigned long thash_entries; 5021 static int __init set_thash_entries(char *str) 5022 { 5023 ssize_t ret; 5024 5025 if (!str) 5026 return 0; 5027 5028 ret = kstrtoul(str, 0, &thash_entries); 5029 if (ret) 5030 return 0; 5031 5032 return 1; 5033 } 5034 __setup("thash_entries=", set_thash_entries); 5035 5036 static void __init tcp_init_mem(void) 5037 { 5038 unsigned long limit = nr_free_buffer_pages() / 16; 5039 5040 limit = max(limit, 128UL); 5041 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5042 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5043 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5044 } 5045 5046 static void __init tcp_struct_check(void) 5047 { 5048 /* TX read-mostly hotpath cache lines */ 5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5055 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 32); 5056 5057 /* TXRX read-mostly hotpath cache lines */ 5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5066 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5067 5068 /* RX read-mostly hotpath cache lines */ 5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5070 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5071 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5081 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); 5083 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); 5084 #else 5085 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5086 #endif 5087 5088 /* TX read-write hotpath cache lines */ 5089 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5090 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5091 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5104 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5105 5106 /* TXRX read-write hotpath cache lines */ 5107 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5108 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5109 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5122 5123 /* 32bit arches with 8byte alignment on u64 fields might need padding 5124 * before tcp_clock_cache. 5125 */ 5126 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5127 5128 /* RX read-write hotpath cache lines */ 5129 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5130 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5131 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5132 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5143 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5144 } 5145 5146 void __init tcp_init(void) 5147 { 5148 int max_rshare, max_wshare, cnt; 5149 unsigned long limit; 5150 unsigned int i; 5151 5152 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5153 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5154 sizeof_field(struct sk_buff, cb)); 5155 5156 tcp_struct_check(); 5157 5158 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5159 5160 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5161 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5162 5163 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5164 thash_entries, 21, /* one slot per 2 MB*/ 5165 0, 64 * 1024); 5166 tcp_hashinfo.bind_bucket_cachep = 5167 kmem_cache_create("tcp_bind_bucket", 5168 sizeof(struct inet_bind_bucket), 0, 5169 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5170 SLAB_ACCOUNT, 5171 NULL); 5172 tcp_hashinfo.bind2_bucket_cachep = 5173 kmem_cache_create("tcp_bind2_bucket", 5174 sizeof(struct inet_bind2_bucket), 0, 5175 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5176 SLAB_ACCOUNT, 5177 NULL); 5178 5179 /* Size and allocate the main established and bind bucket 5180 * hash tables. 5181 * 5182 * The methodology is similar to that of the buffer cache. 5183 */ 5184 tcp_hashinfo.ehash = 5185 alloc_large_system_hash("TCP established", 5186 sizeof(struct inet_ehash_bucket), 5187 thash_entries, 5188 17, /* one slot per 128 KB of memory */ 5189 0, 5190 NULL, 5191 &tcp_hashinfo.ehash_mask, 5192 0, 5193 thash_entries ? 0 : 512 * 1024); 5194 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5195 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5196 5197 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5198 panic("TCP: failed to alloc ehash_locks"); 5199 tcp_hashinfo.bhash = 5200 alloc_large_system_hash("TCP bind", 5201 2 * sizeof(struct inet_bind_hashbucket), 5202 tcp_hashinfo.ehash_mask + 1, 5203 17, /* one slot per 128 KB of memory */ 5204 0, 5205 &tcp_hashinfo.bhash_size, 5206 NULL, 5207 0, 5208 64 * 1024); 5209 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5210 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5211 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5212 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5213 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5214 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5215 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5216 } 5217 5218 tcp_hashinfo.pernet = false; 5219 5220 cnt = tcp_hashinfo.ehash_mask + 1; 5221 sysctl_tcp_max_orphans = cnt / 2; 5222 5223 tcp_init_mem(); 5224 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5225 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5226 max_wshare = min(4UL*1024*1024, limit); 5227 max_rshare = min(32UL*1024*1024, limit); 5228 5229 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5230 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5231 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5232 5233 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5234 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5235 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5236 5237 pr_info("Hash tables configured (established %u bind %u)\n", 5238 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5239 5240 tcp_v4_init(); 5241 tcp_metrics_init(); 5242 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5243 tcp_tsq_work_init(); 5244 mptcp_init(); 5245 } 5246