xref: /linux/net/ipv4/tcp.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290 
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  *       sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	skb_queue_head_init(&tp->out_of_order_queue);
378 	tcp_init_xmit_timers(sk);
379 	tcp_prequeue_init(tp);
380 	INIT_LIST_HEAD(&tp->tsq_node);
381 
382 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 	tp->mdev = TCP_TIMEOUT_INIT;
384 
385 	/* So many TCP implementations out there (incorrectly) count the
386 	 * initial SYN frame in their delayed-ACK and congestion control
387 	 * algorithms that we must have the following bandaid to talk
388 	 * efficiently to them.  -DaveM
389 	 */
390 	tp->snd_cwnd = TCP_INIT_CWND;
391 
392 	/* See draft-stevens-tcpca-spec-01 for discussion of the
393 	 * initialization of these values.
394 	 */
395 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 	tp->snd_cwnd_clamp = ~0;
397 	tp->mss_cache = TCP_MSS_DEFAULT;
398 
399 	tp->reordering = sysctl_tcp_reordering;
400 	tcp_enable_early_retrans(tp);
401 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402 
403 	sk->sk_state = TCP_CLOSE;
404 
405 	sk->sk_write_space = sk_stream_write_space;
406 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407 
408 	icsk->icsk_sync_mss = tcp_sync_mss;
409 
410 	/* TCP Cookie Transactions */
411 	if (sysctl_tcp_cookie_size > 0) {
412 		/* Default, cookies without s_data_payload. */
413 		tp->cookie_values =
414 			kzalloc(sizeof(*tp->cookie_values),
415 				sk->sk_allocation);
416 		if (tp->cookie_values != NULL)
417 			kref_init(&tp->cookie_values->kref);
418 	}
419 	/* Presumed zeroed, in order of appearance:
420 	 *	cookie_in_always, cookie_out_never,
421 	 *	s_data_constant, s_data_in, s_data_out
422 	 */
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sock_update_memcg(sk);
428 	sk_sockets_allocated_inc(sk);
429 	local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432 
433 /*
434  *	Wait for a TCP event.
435  *
436  *	Note that we don't need to lock the socket, as the upper poll layers
437  *	take care of normal races (between the test and the event) and we don't
438  *	go look at any of the socket buffers directly.
439  */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 	unsigned int mask;
443 	struct sock *sk = sock->sk;
444 	const struct tcp_sock *tp = tcp_sk(sk);
445 
446 	sock_poll_wait(file, sk_sleep(sk), wait);
447 	if (sk->sk_state == TCP_LISTEN)
448 		return inet_csk_listen_poll(sk);
449 
450 	/* Socket is not locked. We are protected from async events
451 	 * by poll logic and correct handling of state changes
452 	 * made by other threads is impossible in any case.
453 	 */
454 
455 	mask = 0;
456 
457 	/*
458 	 * POLLHUP is certainly not done right. But poll() doesn't
459 	 * have a notion of HUP in just one direction, and for a
460 	 * socket the read side is more interesting.
461 	 *
462 	 * Some poll() documentation says that POLLHUP is incompatible
463 	 * with the POLLOUT/POLLWR flags, so somebody should check this
464 	 * all. But careful, it tends to be safer to return too many
465 	 * bits than too few, and you can easily break real applications
466 	 * if you don't tell them that something has hung up!
467 	 *
468 	 * Check-me.
469 	 *
470 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 	 * our fs/select.c). It means that after we received EOF,
472 	 * poll always returns immediately, making impossible poll() on write()
473 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 	 * if and only if shutdown has been made in both directions.
475 	 * Actually, it is interesting to look how Solaris and DUX
476 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 	 * then we could set it on SND_SHUTDOWN. BTW examples given
478 	 * in Stevens' books assume exactly this behaviour, it explains
479 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
480 	 *
481 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 	 * blocking on fresh not-connected or disconnected socket. --ANK
483 	 */
484 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 		mask |= POLLHUP;
486 	if (sk->sk_shutdown & RCV_SHUTDOWN)
487 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488 
489 	/* Connected or passive Fast Open socket? */
490 	if (sk->sk_state != TCP_SYN_SENT &&
491 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 		int target = sock_rcvlowat(sk, 0, INT_MAX);
493 
494 		if (tp->urg_seq == tp->copied_seq &&
495 		    !sock_flag(sk, SOCK_URGINLINE) &&
496 		    tp->urg_data)
497 			target++;
498 
499 		/* Potential race condition. If read of tp below will
500 		 * escape above sk->sk_state, we can be illegally awaken
501 		 * in SYN_* states. */
502 		if (tp->rcv_nxt - tp->copied_seq >= target)
503 			mask |= POLLIN | POLLRDNORM;
504 
505 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 				mask |= POLLOUT | POLLWRNORM;
508 			} else {  /* send SIGIO later */
509 				set_bit(SOCK_ASYNC_NOSPACE,
510 					&sk->sk_socket->flags);
511 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512 
513 				/* Race breaker. If space is freed after
514 				 * wspace test but before the flags are set,
515 				 * IO signal will be lost.
516 				 */
517 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 					mask |= POLLOUT | POLLWRNORM;
519 			}
520 		} else
521 			mask |= POLLOUT | POLLWRNORM;
522 
523 		if (tp->urg_data & TCP_URG_VALID)
524 			mask |= POLLPRI;
525 	}
526 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
527 	smp_rmb();
528 	if (sk->sk_err)
529 		mask |= POLLERR;
530 
531 	return mask;
532 }
533 EXPORT_SYMBOL(tcp_poll);
534 
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536 {
537 	struct tcp_sock *tp = tcp_sk(sk);
538 	int answ;
539 
540 	switch (cmd) {
541 	case SIOCINQ:
542 		if (sk->sk_state == TCP_LISTEN)
543 			return -EINVAL;
544 
545 		lock_sock(sk);
546 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
547 			answ = 0;
548 		else if (sock_flag(sk, SOCK_URGINLINE) ||
549 			 !tp->urg_data ||
550 			 before(tp->urg_seq, tp->copied_seq) ||
551 			 !before(tp->urg_seq, tp->rcv_nxt)) {
552 			struct sk_buff *skb;
553 
554 			answ = tp->rcv_nxt - tp->copied_seq;
555 
556 			/* Subtract 1, if FIN is in queue. */
557 			skb = skb_peek_tail(&sk->sk_receive_queue);
558 			if (answ && skb)
559 				answ -= tcp_hdr(skb)->fin;
560 		} else
561 			answ = tp->urg_seq - tp->copied_seq;
562 		release_sock(sk);
563 		break;
564 	case SIOCATMARK:
565 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
566 		break;
567 	case SIOCOUTQ:
568 		if (sk->sk_state == TCP_LISTEN)
569 			return -EINVAL;
570 
571 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
572 			answ = 0;
573 		else
574 			answ = tp->write_seq - tp->snd_una;
575 		break;
576 	case SIOCOUTQNSD:
577 		if (sk->sk_state == TCP_LISTEN)
578 			return -EINVAL;
579 
580 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 			answ = 0;
582 		else
583 			answ = tp->write_seq - tp->snd_nxt;
584 		break;
585 	default:
586 		return -ENOIOCTLCMD;
587 	}
588 
589 	return put_user(answ, (int __user *)arg);
590 }
591 EXPORT_SYMBOL(tcp_ioctl);
592 
593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 {
595 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
596 	tp->pushed_seq = tp->write_seq;
597 }
598 
599 static inline bool forced_push(const struct tcp_sock *tp)
600 {
601 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
602 }
603 
604 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608 
609 	skb->csum    = 0;
610 	tcb->seq     = tcb->end_seq = tp->write_seq;
611 	tcb->tcp_flags = TCPHDR_ACK;
612 	tcb->sacked  = 0;
613 	skb_header_release(skb);
614 	tcp_add_write_queue_tail(sk, skb);
615 	sk->sk_wmem_queued += skb->truesize;
616 	sk_mem_charge(sk, skb->truesize);
617 	if (tp->nonagle & TCP_NAGLE_PUSH)
618 		tp->nonagle &= ~TCP_NAGLE_PUSH;
619 }
620 
621 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
622 {
623 	if (flags & MSG_OOB)
624 		tp->snd_up = tp->write_seq;
625 }
626 
627 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
628 			    int nonagle)
629 {
630 	if (tcp_send_head(sk)) {
631 		struct tcp_sock *tp = tcp_sk(sk);
632 
633 		if (!(flags & MSG_MORE) || forced_push(tp))
634 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
635 
636 		tcp_mark_urg(tp, flags);
637 		__tcp_push_pending_frames(sk, mss_now,
638 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
639 	}
640 }
641 
642 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
643 				unsigned int offset, size_t len)
644 {
645 	struct tcp_splice_state *tss = rd_desc->arg.data;
646 	int ret;
647 
648 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
649 			      tss->flags);
650 	if (ret > 0)
651 		rd_desc->count -= ret;
652 	return ret;
653 }
654 
655 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
656 {
657 	/* Store TCP splice context information in read_descriptor_t. */
658 	read_descriptor_t rd_desc = {
659 		.arg.data = tss,
660 		.count	  = tss->len,
661 	};
662 
663 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
664 }
665 
666 /**
667  *  tcp_splice_read - splice data from TCP socket to a pipe
668  * @sock:	socket to splice from
669  * @ppos:	position (not valid)
670  * @pipe:	pipe to splice to
671  * @len:	number of bytes to splice
672  * @flags:	splice modifier flags
673  *
674  * Description:
675  *    Will read pages from given socket and fill them into a pipe.
676  *
677  **/
678 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
679 			struct pipe_inode_info *pipe, size_t len,
680 			unsigned int flags)
681 {
682 	struct sock *sk = sock->sk;
683 	struct tcp_splice_state tss = {
684 		.pipe = pipe,
685 		.len = len,
686 		.flags = flags,
687 	};
688 	long timeo;
689 	ssize_t spliced;
690 	int ret;
691 
692 	sock_rps_record_flow(sk);
693 	/*
694 	 * We can't seek on a socket input
695 	 */
696 	if (unlikely(*ppos))
697 		return -ESPIPE;
698 
699 	ret = spliced = 0;
700 
701 	lock_sock(sk);
702 
703 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
704 	while (tss.len) {
705 		ret = __tcp_splice_read(sk, &tss);
706 		if (ret < 0)
707 			break;
708 		else if (!ret) {
709 			if (spliced)
710 				break;
711 			if (sock_flag(sk, SOCK_DONE))
712 				break;
713 			if (sk->sk_err) {
714 				ret = sock_error(sk);
715 				break;
716 			}
717 			if (sk->sk_shutdown & RCV_SHUTDOWN)
718 				break;
719 			if (sk->sk_state == TCP_CLOSE) {
720 				/*
721 				 * This occurs when user tries to read
722 				 * from never connected socket.
723 				 */
724 				if (!sock_flag(sk, SOCK_DONE))
725 					ret = -ENOTCONN;
726 				break;
727 			}
728 			if (!timeo) {
729 				ret = -EAGAIN;
730 				break;
731 			}
732 			sk_wait_data(sk, &timeo);
733 			if (signal_pending(current)) {
734 				ret = sock_intr_errno(timeo);
735 				break;
736 			}
737 			continue;
738 		}
739 		tss.len -= ret;
740 		spliced += ret;
741 
742 		if (!timeo)
743 			break;
744 		release_sock(sk);
745 		lock_sock(sk);
746 
747 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
748 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
749 		    signal_pending(current))
750 			break;
751 	}
752 
753 	release_sock(sk);
754 
755 	if (spliced)
756 		return spliced;
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL(tcp_splice_read);
761 
762 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
763 {
764 	struct sk_buff *skb;
765 
766 	/* The TCP header must be at least 32-bit aligned.  */
767 	size = ALIGN(size, 4);
768 
769 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
770 	if (skb) {
771 		if (sk_wmem_schedule(sk, skb->truesize)) {
772 			skb_reserve(skb, sk->sk_prot->max_header);
773 			/*
774 			 * Make sure that we have exactly size bytes
775 			 * available to the caller, no more, no less.
776 			 */
777 			skb->avail_size = size;
778 			return skb;
779 		}
780 		__kfree_skb(skb);
781 	} else {
782 		sk->sk_prot->enter_memory_pressure(sk);
783 		sk_stream_moderate_sndbuf(sk);
784 	}
785 	return NULL;
786 }
787 
788 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
789 				       int large_allowed)
790 {
791 	struct tcp_sock *tp = tcp_sk(sk);
792 	u32 xmit_size_goal, old_size_goal;
793 
794 	xmit_size_goal = mss_now;
795 
796 	if (large_allowed && sk_can_gso(sk)) {
797 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
798 				  inet_csk(sk)->icsk_af_ops->net_header_len -
799 				  inet_csk(sk)->icsk_ext_hdr_len -
800 				  tp->tcp_header_len);
801 
802 		/* TSQ : try to have two TSO segments in flight */
803 		xmit_size_goal = min_t(u32, xmit_size_goal,
804 				       sysctl_tcp_limit_output_bytes >> 1);
805 
806 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
807 
808 		/* We try hard to avoid divides here */
809 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
810 
811 		if (likely(old_size_goal <= xmit_size_goal &&
812 			   old_size_goal + mss_now > xmit_size_goal)) {
813 			xmit_size_goal = old_size_goal;
814 		} else {
815 			tp->xmit_size_goal_segs =
816 				min_t(u16, xmit_size_goal / mss_now,
817 				      sk->sk_gso_max_segs);
818 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
819 		}
820 	}
821 
822 	return max(xmit_size_goal, mss_now);
823 }
824 
825 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
826 {
827 	int mss_now;
828 
829 	mss_now = tcp_current_mss(sk);
830 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
831 
832 	return mss_now;
833 }
834 
835 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
836 			 size_t psize, int flags)
837 {
838 	struct tcp_sock *tp = tcp_sk(sk);
839 	int mss_now, size_goal;
840 	int err;
841 	ssize_t copied;
842 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
843 
844 	/* Wait for a connection to finish. One exception is TCP Fast Open
845 	 * (passive side) where data is allowed to be sent before a connection
846 	 * is fully established.
847 	 */
848 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
849 	    !tcp_passive_fastopen(sk)) {
850 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
851 			goto out_err;
852 	}
853 
854 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
855 
856 	mss_now = tcp_send_mss(sk, &size_goal, flags);
857 	copied = 0;
858 
859 	err = -EPIPE;
860 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
861 		goto out_err;
862 
863 	while (psize > 0) {
864 		struct sk_buff *skb = tcp_write_queue_tail(sk);
865 		struct page *page = pages[poffset / PAGE_SIZE];
866 		int copy, i;
867 		int offset = poffset % PAGE_SIZE;
868 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
869 		bool can_coalesce;
870 
871 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
872 new_segment:
873 			if (!sk_stream_memory_free(sk))
874 				goto wait_for_sndbuf;
875 
876 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
877 			if (!skb)
878 				goto wait_for_memory;
879 
880 			skb_entail(sk, skb);
881 			copy = size_goal;
882 		}
883 
884 		if (copy > size)
885 			copy = size;
886 
887 		i = skb_shinfo(skb)->nr_frags;
888 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
889 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
890 			tcp_mark_push(tp, skb);
891 			goto new_segment;
892 		}
893 		if (!sk_wmem_schedule(sk, copy))
894 			goto wait_for_memory;
895 
896 		if (can_coalesce) {
897 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
898 		} else {
899 			get_page(page);
900 			skb_fill_page_desc(skb, i, page, offset, copy);
901 		}
902 
903 		skb->len += copy;
904 		skb->data_len += copy;
905 		skb->truesize += copy;
906 		sk->sk_wmem_queued += copy;
907 		sk_mem_charge(sk, copy);
908 		skb->ip_summed = CHECKSUM_PARTIAL;
909 		tp->write_seq += copy;
910 		TCP_SKB_CB(skb)->end_seq += copy;
911 		skb_shinfo(skb)->gso_segs = 0;
912 
913 		if (!copied)
914 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
915 
916 		copied += copy;
917 		poffset += copy;
918 		if (!(psize -= copy))
919 			goto out;
920 
921 		if (skb->len < size_goal || (flags & MSG_OOB))
922 			continue;
923 
924 		if (forced_push(tp)) {
925 			tcp_mark_push(tp, skb);
926 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
927 		} else if (skb == tcp_send_head(sk))
928 			tcp_push_one(sk, mss_now);
929 		continue;
930 
931 wait_for_sndbuf:
932 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
933 wait_for_memory:
934 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
935 
936 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
937 			goto do_error;
938 
939 		mss_now = tcp_send_mss(sk, &size_goal, flags);
940 	}
941 
942 out:
943 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
944 		tcp_push(sk, flags, mss_now, tp->nonagle);
945 	return copied;
946 
947 do_error:
948 	if (copied)
949 		goto out;
950 out_err:
951 	return sk_stream_error(sk, flags, err);
952 }
953 
954 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
955 		 size_t size, int flags)
956 {
957 	ssize_t res;
958 
959 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
960 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
961 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
962 					flags);
963 
964 	lock_sock(sk);
965 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
966 	release_sock(sk);
967 	return res;
968 }
969 EXPORT_SYMBOL(tcp_sendpage);
970 
971 static inline int select_size(const struct sock *sk, bool sg)
972 {
973 	const struct tcp_sock *tp = tcp_sk(sk);
974 	int tmp = tp->mss_cache;
975 
976 	if (sg) {
977 		if (sk_can_gso(sk)) {
978 			/* Small frames wont use a full page:
979 			 * Payload will immediately follow tcp header.
980 			 */
981 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
982 		} else {
983 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
984 
985 			if (tmp >= pgbreak &&
986 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
987 				tmp = pgbreak;
988 		}
989 	}
990 
991 	return tmp;
992 }
993 
994 void tcp_free_fastopen_req(struct tcp_sock *tp)
995 {
996 	if (tp->fastopen_req != NULL) {
997 		kfree(tp->fastopen_req);
998 		tp->fastopen_req = NULL;
999 	}
1000 }
1001 
1002 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1003 {
1004 	struct tcp_sock *tp = tcp_sk(sk);
1005 	int err, flags;
1006 
1007 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1008 		return -EOPNOTSUPP;
1009 	if (tp->fastopen_req != NULL)
1010 		return -EALREADY; /* Another Fast Open is in progress */
1011 
1012 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1013 				   sk->sk_allocation);
1014 	if (unlikely(tp->fastopen_req == NULL))
1015 		return -ENOBUFS;
1016 	tp->fastopen_req->data = msg;
1017 
1018 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1019 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1020 				    msg->msg_namelen, flags);
1021 	*size = tp->fastopen_req->copied;
1022 	tcp_free_fastopen_req(tp);
1023 	return err;
1024 }
1025 
1026 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1027 		size_t size)
1028 {
1029 	struct iovec *iov;
1030 	struct tcp_sock *tp = tcp_sk(sk);
1031 	struct sk_buff *skb;
1032 	int iovlen, flags, err, copied = 0;
1033 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1034 	bool sg;
1035 	long timeo;
1036 
1037 	lock_sock(sk);
1038 
1039 	flags = msg->msg_flags;
1040 	if (flags & MSG_FASTOPEN) {
1041 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1042 		if (err == -EINPROGRESS && copied_syn > 0)
1043 			goto out;
1044 		else if (err)
1045 			goto out_err;
1046 		offset = copied_syn;
1047 	}
1048 
1049 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1050 
1051 	/* Wait for a connection to finish. One exception is TCP Fast Open
1052 	 * (passive side) where data is allowed to be sent before a connection
1053 	 * is fully established.
1054 	 */
1055 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 	    !tcp_passive_fastopen(sk)) {
1057 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1058 			goto do_error;
1059 	}
1060 
1061 	if (unlikely(tp->repair)) {
1062 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1063 			copied = tcp_send_rcvq(sk, msg, size);
1064 			goto out;
1065 		}
1066 
1067 		err = -EINVAL;
1068 		if (tp->repair_queue == TCP_NO_QUEUE)
1069 			goto out_err;
1070 
1071 		/* 'common' sending to sendq */
1072 	}
1073 
1074 	/* This should be in poll */
1075 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1076 
1077 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1078 
1079 	/* Ok commence sending. */
1080 	iovlen = msg->msg_iovlen;
1081 	iov = msg->msg_iov;
1082 	copied = 0;
1083 
1084 	err = -EPIPE;
1085 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1086 		goto out_err;
1087 
1088 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1089 
1090 	while (--iovlen >= 0) {
1091 		size_t seglen = iov->iov_len;
1092 		unsigned char __user *from = iov->iov_base;
1093 
1094 		iov++;
1095 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1096 			if (offset >= seglen) {
1097 				offset -= seglen;
1098 				continue;
1099 			}
1100 			seglen -= offset;
1101 			from += offset;
1102 			offset = 0;
1103 		}
1104 
1105 		while (seglen > 0) {
1106 			int copy = 0;
1107 			int max = size_goal;
1108 
1109 			skb = tcp_write_queue_tail(sk);
1110 			if (tcp_send_head(sk)) {
1111 				if (skb->ip_summed == CHECKSUM_NONE)
1112 					max = mss_now;
1113 				copy = max - skb->len;
1114 			}
1115 
1116 			if (copy <= 0) {
1117 new_segment:
1118 				/* Allocate new segment. If the interface is SG,
1119 				 * allocate skb fitting to single page.
1120 				 */
1121 				if (!sk_stream_memory_free(sk))
1122 					goto wait_for_sndbuf;
1123 
1124 				skb = sk_stream_alloc_skb(sk,
1125 							  select_size(sk, sg),
1126 							  sk->sk_allocation);
1127 				if (!skb)
1128 					goto wait_for_memory;
1129 
1130 				/*
1131 				 * Check whether we can use HW checksum.
1132 				 */
1133 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1134 					skb->ip_summed = CHECKSUM_PARTIAL;
1135 
1136 				skb_entail(sk, skb);
1137 				copy = size_goal;
1138 				max = size_goal;
1139 			}
1140 
1141 			/* Try to append data to the end of skb. */
1142 			if (copy > seglen)
1143 				copy = seglen;
1144 
1145 			/* Where to copy to? */
1146 			if (skb_availroom(skb) > 0) {
1147 				/* We have some space in skb head. Superb! */
1148 				copy = min_t(int, copy, skb_availroom(skb));
1149 				err = skb_add_data_nocache(sk, skb, from, copy);
1150 				if (err)
1151 					goto do_fault;
1152 			} else {
1153 				bool merge = true;
1154 				int i = skb_shinfo(skb)->nr_frags;
1155 				struct page_frag *pfrag = sk_page_frag(sk);
1156 
1157 				if (!sk_page_frag_refill(sk, pfrag))
1158 					goto wait_for_memory;
1159 
1160 				if (!skb_can_coalesce(skb, i, pfrag->page,
1161 						      pfrag->offset)) {
1162 					if (i == MAX_SKB_FRAGS || !sg) {
1163 						tcp_mark_push(tp, skb);
1164 						goto new_segment;
1165 					}
1166 					merge = false;
1167 				}
1168 
1169 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1170 
1171 				if (!sk_wmem_schedule(sk, copy))
1172 					goto wait_for_memory;
1173 
1174 				err = skb_copy_to_page_nocache(sk, from, skb,
1175 							       pfrag->page,
1176 							       pfrag->offset,
1177 							       copy);
1178 				if (err)
1179 					goto do_error;
1180 
1181 				/* Update the skb. */
1182 				if (merge) {
1183 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1184 				} else {
1185 					skb_fill_page_desc(skb, i, pfrag->page,
1186 							   pfrag->offset, copy);
1187 					get_page(pfrag->page);
1188 				}
1189 				pfrag->offset += copy;
1190 			}
1191 
1192 			if (!copied)
1193 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1194 
1195 			tp->write_seq += copy;
1196 			TCP_SKB_CB(skb)->end_seq += copy;
1197 			skb_shinfo(skb)->gso_segs = 0;
1198 
1199 			from += copy;
1200 			copied += copy;
1201 			if ((seglen -= copy) == 0 && iovlen == 0)
1202 				goto out;
1203 
1204 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1205 				continue;
1206 
1207 			if (forced_push(tp)) {
1208 				tcp_mark_push(tp, skb);
1209 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1210 			} else if (skb == tcp_send_head(sk))
1211 				tcp_push_one(sk, mss_now);
1212 			continue;
1213 
1214 wait_for_sndbuf:
1215 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1216 wait_for_memory:
1217 			if (copied && likely(!tp->repair))
1218 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1219 
1220 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1221 				goto do_error;
1222 
1223 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1224 		}
1225 	}
1226 
1227 out:
1228 	if (copied && likely(!tp->repair))
1229 		tcp_push(sk, flags, mss_now, tp->nonagle);
1230 	release_sock(sk);
1231 	return copied + copied_syn;
1232 
1233 do_fault:
1234 	if (!skb->len) {
1235 		tcp_unlink_write_queue(skb, sk);
1236 		/* It is the one place in all of TCP, except connection
1237 		 * reset, where we can be unlinking the send_head.
1238 		 */
1239 		tcp_check_send_head(sk, skb);
1240 		sk_wmem_free_skb(sk, skb);
1241 	}
1242 
1243 do_error:
1244 	if (copied + copied_syn)
1245 		goto out;
1246 out_err:
1247 	err = sk_stream_error(sk, flags, err);
1248 	release_sock(sk);
1249 	return err;
1250 }
1251 EXPORT_SYMBOL(tcp_sendmsg);
1252 
1253 /*
1254  *	Handle reading urgent data. BSD has very simple semantics for
1255  *	this, no blocking and very strange errors 8)
1256  */
1257 
1258 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1259 {
1260 	struct tcp_sock *tp = tcp_sk(sk);
1261 
1262 	/* No URG data to read. */
1263 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1264 	    tp->urg_data == TCP_URG_READ)
1265 		return -EINVAL;	/* Yes this is right ! */
1266 
1267 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1268 		return -ENOTCONN;
1269 
1270 	if (tp->urg_data & TCP_URG_VALID) {
1271 		int err = 0;
1272 		char c = tp->urg_data;
1273 
1274 		if (!(flags & MSG_PEEK))
1275 			tp->urg_data = TCP_URG_READ;
1276 
1277 		/* Read urgent data. */
1278 		msg->msg_flags |= MSG_OOB;
1279 
1280 		if (len > 0) {
1281 			if (!(flags & MSG_TRUNC))
1282 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1283 			len = 1;
1284 		} else
1285 			msg->msg_flags |= MSG_TRUNC;
1286 
1287 		return err ? -EFAULT : len;
1288 	}
1289 
1290 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1291 		return 0;
1292 
1293 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1294 	 * the available implementations agree in this case:
1295 	 * this call should never block, independent of the
1296 	 * blocking state of the socket.
1297 	 * Mike <pall@rz.uni-karlsruhe.de>
1298 	 */
1299 	return -EAGAIN;
1300 }
1301 
1302 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1303 {
1304 	struct sk_buff *skb;
1305 	int copied = 0, err = 0;
1306 
1307 	/* XXX -- need to support SO_PEEK_OFF */
1308 
1309 	skb_queue_walk(&sk->sk_write_queue, skb) {
1310 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1311 		if (err)
1312 			break;
1313 
1314 		copied += skb->len;
1315 	}
1316 
1317 	return err ?: copied;
1318 }
1319 
1320 /* Clean up the receive buffer for full frames taken by the user,
1321  * then send an ACK if necessary.  COPIED is the number of bytes
1322  * tcp_recvmsg has given to the user so far, it speeds up the
1323  * calculation of whether or not we must ACK for the sake of
1324  * a window update.
1325  */
1326 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1327 {
1328 	struct tcp_sock *tp = tcp_sk(sk);
1329 	bool time_to_ack = false;
1330 
1331 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1332 
1333 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1334 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1335 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1336 
1337 	if (inet_csk_ack_scheduled(sk)) {
1338 		const struct inet_connection_sock *icsk = inet_csk(sk);
1339 		   /* Delayed ACKs frequently hit locked sockets during bulk
1340 		    * receive. */
1341 		if (icsk->icsk_ack.blocked ||
1342 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1343 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1344 		    /*
1345 		     * If this read emptied read buffer, we send ACK, if
1346 		     * connection is not bidirectional, user drained
1347 		     * receive buffer and there was a small segment
1348 		     * in queue.
1349 		     */
1350 		    (copied > 0 &&
1351 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1352 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1353 		       !icsk->icsk_ack.pingpong)) &&
1354 		      !atomic_read(&sk->sk_rmem_alloc)))
1355 			time_to_ack = true;
1356 	}
1357 
1358 	/* We send an ACK if we can now advertise a non-zero window
1359 	 * which has been raised "significantly".
1360 	 *
1361 	 * Even if window raised up to infinity, do not send window open ACK
1362 	 * in states, where we will not receive more. It is useless.
1363 	 */
1364 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1365 		__u32 rcv_window_now = tcp_receive_window(tp);
1366 
1367 		/* Optimize, __tcp_select_window() is not cheap. */
1368 		if (2*rcv_window_now <= tp->window_clamp) {
1369 			__u32 new_window = __tcp_select_window(sk);
1370 
1371 			/* Send ACK now, if this read freed lots of space
1372 			 * in our buffer. Certainly, new_window is new window.
1373 			 * We can advertise it now, if it is not less than current one.
1374 			 * "Lots" means "at least twice" here.
1375 			 */
1376 			if (new_window && new_window >= 2 * rcv_window_now)
1377 				time_to_ack = true;
1378 		}
1379 	}
1380 	if (time_to_ack)
1381 		tcp_send_ack(sk);
1382 }
1383 
1384 static void tcp_prequeue_process(struct sock *sk)
1385 {
1386 	struct sk_buff *skb;
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 
1389 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1390 
1391 	/* RX process wants to run with disabled BHs, though it is not
1392 	 * necessary */
1393 	local_bh_disable();
1394 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1395 		sk_backlog_rcv(sk, skb);
1396 	local_bh_enable();
1397 
1398 	/* Clear memory counter. */
1399 	tp->ucopy.memory = 0;
1400 }
1401 
1402 #ifdef CONFIG_NET_DMA
1403 static void tcp_service_net_dma(struct sock *sk, bool wait)
1404 {
1405 	dma_cookie_t done, used;
1406 	dma_cookie_t last_issued;
1407 	struct tcp_sock *tp = tcp_sk(sk);
1408 
1409 	if (!tp->ucopy.dma_chan)
1410 		return;
1411 
1412 	last_issued = tp->ucopy.dma_cookie;
1413 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1414 
1415 	do {
1416 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1417 					      last_issued, &done,
1418 					      &used) == DMA_SUCCESS) {
1419 			/* Safe to free early-copied skbs now */
1420 			__skb_queue_purge(&sk->sk_async_wait_queue);
1421 			break;
1422 		} else {
1423 			struct sk_buff *skb;
1424 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1425 			       (dma_async_is_complete(skb->dma_cookie, done,
1426 						      used) == DMA_SUCCESS)) {
1427 				__skb_dequeue(&sk->sk_async_wait_queue);
1428 				kfree_skb(skb);
1429 			}
1430 		}
1431 	} while (wait);
1432 }
1433 #endif
1434 
1435 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1436 {
1437 	struct sk_buff *skb;
1438 	u32 offset;
1439 
1440 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1441 		offset = seq - TCP_SKB_CB(skb)->seq;
1442 		if (tcp_hdr(skb)->syn)
1443 			offset--;
1444 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1445 			*off = offset;
1446 			return skb;
1447 		}
1448 	}
1449 	return NULL;
1450 }
1451 
1452 /*
1453  * This routine provides an alternative to tcp_recvmsg() for routines
1454  * that would like to handle copying from skbuffs directly in 'sendfile'
1455  * fashion.
1456  * Note:
1457  *	- It is assumed that the socket was locked by the caller.
1458  *	- The routine does not block.
1459  *	- At present, there is no support for reading OOB data
1460  *	  or for 'peeking' the socket using this routine
1461  *	  (although both would be easy to implement).
1462  */
1463 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1464 		  sk_read_actor_t recv_actor)
1465 {
1466 	struct sk_buff *skb;
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 	u32 seq = tp->copied_seq;
1469 	u32 offset;
1470 	int copied = 0;
1471 
1472 	if (sk->sk_state == TCP_LISTEN)
1473 		return -ENOTCONN;
1474 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1475 		if (offset < skb->len) {
1476 			int used;
1477 			size_t len;
1478 
1479 			len = skb->len - offset;
1480 			/* Stop reading if we hit a patch of urgent data */
1481 			if (tp->urg_data) {
1482 				u32 urg_offset = tp->urg_seq - seq;
1483 				if (urg_offset < len)
1484 					len = urg_offset;
1485 				if (!len)
1486 					break;
1487 			}
1488 			used = recv_actor(desc, skb, offset, len);
1489 			if (used < 0) {
1490 				if (!copied)
1491 					copied = used;
1492 				break;
1493 			} else if (used <= len) {
1494 				seq += used;
1495 				copied += used;
1496 				offset += used;
1497 			}
1498 			/*
1499 			 * If recv_actor drops the lock (e.g. TCP splice
1500 			 * receive) the skb pointer might be invalid when
1501 			 * getting here: tcp_collapse might have deleted it
1502 			 * while aggregating skbs from the socket queue.
1503 			 */
1504 			skb = tcp_recv_skb(sk, seq-1, &offset);
1505 			if (!skb || (offset+1 != skb->len))
1506 				break;
1507 		}
1508 		if (tcp_hdr(skb)->fin) {
1509 			sk_eat_skb(sk, skb, false);
1510 			++seq;
1511 			break;
1512 		}
1513 		sk_eat_skb(sk, skb, false);
1514 		if (!desc->count)
1515 			break;
1516 		tp->copied_seq = seq;
1517 	}
1518 	tp->copied_seq = seq;
1519 
1520 	tcp_rcv_space_adjust(sk);
1521 
1522 	/* Clean up data we have read: This will do ACK frames. */
1523 	if (copied > 0)
1524 		tcp_cleanup_rbuf(sk, copied);
1525 	return copied;
1526 }
1527 EXPORT_SYMBOL(tcp_read_sock);
1528 
1529 /*
1530  *	This routine copies from a sock struct into the user buffer.
1531  *
1532  *	Technical note: in 2.3 we work on _locked_ socket, so that
1533  *	tricks with *seq access order and skb->users are not required.
1534  *	Probably, code can be easily improved even more.
1535  */
1536 
1537 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1538 		size_t len, int nonblock, int flags, int *addr_len)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	int copied = 0;
1542 	u32 peek_seq;
1543 	u32 *seq;
1544 	unsigned long used;
1545 	int err;
1546 	int target;		/* Read at least this many bytes */
1547 	long timeo;
1548 	struct task_struct *user_recv = NULL;
1549 	bool copied_early = false;
1550 	struct sk_buff *skb;
1551 	u32 urg_hole = 0;
1552 
1553 	lock_sock(sk);
1554 
1555 	err = -ENOTCONN;
1556 	if (sk->sk_state == TCP_LISTEN)
1557 		goto out;
1558 
1559 	timeo = sock_rcvtimeo(sk, nonblock);
1560 
1561 	/* Urgent data needs to be handled specially. */
1562 	if (flags & MSG_OOB)
1563 		goto recv_urg;
1564 
1565 	if (unlikely(tp->repair)) {
1566 		err = -EPERM;
1567 		if (!(flags & MSG_PEEK))
1568 			goto out;
1569 
1570 		if (tp->repair_queue == TCP_SEND_QUEUE)
1571 			goto recv_sndq;
1572 
1573 		err = -EINVAL;
1574 		if (tp->repair_queue == TCP_NO_QUEUE)
1575 			goto out;
1576 
1577 		/* 'common' recv queue MSG_PEEK-ing */
1578 	}
1579 
1580 	seq = &tp->copied_seq;
1581 	if (flags & MSG_PEEK) {
1582 		peek_seq = tp->copied_seq;
1583 		seq = &peek_seq;
1584 	}
1585 
1586 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1587 
1588 #ifdef CONFIG_NET_DMA
1589 	tp->ucopy.dma_chan = NULL;
1590 	preempt_disable();
1591 	skb = skb_peek_tail(&sk->sk_receive_queue);
1592 	{
1593 		int available = 0;
1594 
1595 		if (skb)
1596 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1597 		if ((available < target) &&
1598 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1599 		    !sysctl_tcp_low_latency &&
1600 		    net_dma_find_channel()) {
1601 			preempt_enable_no_resched();
1602 			tp->ucopy.pinned_list =
1603 					dma_pin_iovec_pages(msg->msg_iov, len);
1604 		} else {
1605 			preempt_enable_no_resched();
1606 		}
1607 	}
1608 #endif
1609 
1610 	do {
1611 		u32 offset;
1612 
1613 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1614 		if (tp->urg_data && tp->urg_seq == *seq) {
1615 			if (copied)
1616 				break;
1617 			if (signal_pending(current)) {
1618 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1619 				break;
1620 			}
1621 		}
1622 
1623 		/* Next get a buffer. */
1624 
1625 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1626 			/* Now that we have two receive queues this
1627 			 * shouldn't happen.
1628 			 */
1629 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1630 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1631 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1632 				 flags))
1633 				break;
1634 
1635 			offset = *seq - TCP_SKB_CB(skb)->seq;
1636 			if (tcp_hdr(skb)->syn)
1637 				offset--;
1638 			if (offset < skb->len)
1639 				goto found_ok_skb;
1640 			if (tcp_hdr(skb)->fin)
1641 				goto found_fin_ok;
1642 			WARN(!(flags & MSG_PEEK),
1643 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1644 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1645 		}
1646 
1647 		/* Well, if we have backlog, try to process it now yet. */
1648 
1649 		if (copied >= target && !sk->sk_backlog.tail)
1650 			break;
1651 
1652 		if (copied) {
1653 			if (sk->sk_err ||
1654 			    sk->sk_state == TCP_CLOSE ||
1655 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1656 			    !timeo ||
1657 			    signal_pending(current))
1658 				break;
1659 		} else {
1660 			if (sock_flag(sk, SOCK_DONE))
1661 				break;
1662 
1663 			if (sk->sk_err) {
1664 				copied = sock_error(sk);
1665 				break;
1666 			}
1667 
1668 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1669 				break;
1670 
1671 			if (sk->sk_state == TCP_CLOSE) {
1672 				if (!sock_flag(sk, SOCK_DONE)) {
1673 					/* This occurs when user tries to read
1674 					 * from never connected socket.
1675 					 */
1676 					copied = -ENOTCONN;
1677 					break;
1678 				}
1679 				break;
1680 			}
1681 
1682 			if (!timeo) {
1683 				copied = -EAGAIN;
1684 				break;
1685 			}
1686 
1687 			if (signal_pending(current)) {
1688 				copied = sock_intr_errno(timeo);
1689 				break;
1690 			}
1691 		}
1692 
1693 		tcp_cleanup_rbuf(sk, copied);
1694 
1695 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1696 			/* Install new reader */
1697 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1698 				user_recv = current;
1699 				tp->ucopy.task = user_recv;
1700 				tp->ucopy.iov = msg->msg_iov;
1701 			}
1702 
1703 			tp->ucopy.len = len;
1704 
1705 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1706 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1707 
1708 			/* Ugly... If prequeue is not empty, we have to
1709 			 * process it before releasing socket, otherwise
1710 			 * order will be broken at second iteration.
1711 			 * More elegant solution is required!!!
1712 			 *
1713 			 * Look: we have the following (pseudo)queues:
1714 			 *
1715 			 * 1. packets in flight
1716 			 * 2. backlog
1717 			 * 3. prequeue
1718 			 * 4. receive_queue
1719 			 *
1720 			 * Each queue can be processed only if the next ones
1721 			 * are empty. At this point we have empty receive_queue.
1722 			 * But prequeue _can_ be not empty after 2nd iteration,
1723 			 * when we jumped to start of loop because backlog
1724 			 * processing added something to receive_queue.
1725 			 * We cannot release_sock(), because backlog contains
1726 			 * packets arrived _after_ prequeued ones.
1727 			 *
1728 			 * Shortly, algorithm is clear --- to process all
1729 			 * the queues in order. We could make it more directly,
1730 			 * requeueing packets from backlog to prequeue, if
1731 			 * is not empty. It is more elegant, but eats cycles,
1732 			 * unfortunately.
1733 			 */
1734 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1735 				goto do_prequeue;
1736 
1737 			/* __ Set realtime policy in scheduler __ */
1738 		}
1739 
1740 #ifdef CONFIG_NET_DMA
1741 		if (tp->ucopy.dma_chan) {
1742 			if (tp->rcv_wnd == 0 &&
1743 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1744 				tcp_service_net_dma(sk, true);
1745 				tcp_cleanup_rbuf(sk, copied);
1746 			} else
1747 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1748 		}
1749 #endif
1750 		if (copied >= target) {
1751 			/* Do not sleep, just process backlog. */
1752 			release_sock(sk);
1753 			lock_sock(sk);
1754 		} else
1755 			sk_wait_data(sk, &timeo);
1756 
1757 #ifdef CONFIG_NET_DMA
1758 		tcp_service_net_dma(sk, false);  /* Don't block */
1759 		tp->ucopy.wakeup = 0;
1760 #endif
1761 
1762 		if (user_recv) {
1763 			int chunk;
1764 
1765 			/* __ Restore normal policy in scheduler __ */
1766 
1767 			if ((chunk = len - tp->ucopy.len) != 0) {
1768 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1769 				len -= chunk;
1770 				copied += chunk;
1771 			}
1772 
1773 			if (tp->rcv_nxt == tp->copied_seq &&
1774 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1775 do_prequeue:
1776 				tcp_prequeue_process(sk);
1777 
1778 				if ((chunk = len - tp->ucopy.len) != 0) {
1779 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1780 					len -= chunk;
1781 					copied += chunk;
1782 				}
1783 			}
1784 		}
1785 		if ((flags & MSG_PEEK) &&
1786 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1787 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1788 					    current->comm,
1789 					    task_pid_nr(current));
1790 			peek_seq = tp->copied_seq;
1791 		}
1792 		continue;
1793 
1794 	found_ok_skb:
1795 		/* Ok so how much can we use? */
1796 		used = skb->len - offset;
1797 		if (len < used)
1798 			used = len;
1799 
1800 		/* Do we have urgent data here? */
1801 		if (tp->urg_data) {
1802 			u32 urg_offset = tp->urg_seq - *seq;
1803 			if (urg_offset < used) {
1804 				if (!urg_offset) {
1805 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1806 						++*seq;
1807 						urg_hole++;
1808 						offset++;
1809 						used--;
1810 						if (!used)
1811 							goto skip_copy;
1812 					}
1813 				} else
1814 					used = urg_offset;
1815 			}
1816 		}
1817 
1818 		if (!(flags & MSG_TRUNC)) {
1819 #ifdef CONFIG_NET_DMA
1820 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1821 				tp->ucopy.dma_chan = net_dma_find_channel();
1822 
1823 			if (tp->ucopy.dma_chan) {
1824 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1825 					tp->ucopy.dma_chan, skb, offset,
1826 					msg->msg_iov, used,
1827 					tp->ucopy.pinned_list);
1828 
1829 				if (tp->ucopy.dma_cookie < 0) {
1830 
1831 					pr_alert("%s: dma_cookie < 0\n",
1832 						 __func__);
1833 
1834 					/* Exception. Bailout! */
1835 					if (!copied)
1836 						copied = -EFAULT;
1837 					break;
1838 				}
1839 
1840 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1841 
1842 				if ((offset + used) == skb->len)
1843 					copied_early = true;
1844 
1845 			} else
1846 #endif
1847 			{
1848 				err = skb_copy_datagram_iovec(skb, offset,
1849 						msg->msg_iov, used);
1850 				if (err) {
1851 					/* Exception. Bailout! */
1852 					if (!copied)
1853 						copied = -EFAULT;
1854 					break;
1855 				}
1856 			}
1857 		}
1858 
1859 		*seq += used;
1860 		copied += used;
1861 		len -= used;
1862 
1863 		tcp_rcv_space_adjust(sk);
1864 
1865 skip_copy:
1866 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1867 			tp->urg_data = 0;
1868 			tcp_fast_path_check(sk);
1869 		}
1870 		if (used + offset < skb->len)
1871 			continue;
1872 
1873 		if (tcp_hdr(skb)->fin)
1874 			goto found_fin_ok;
1875 		if (!(flags & MSG_PEEK)) {
1876 			sk_eat_skb(sk, skb, copied_early);
1877 			copied_early = false;
1878 		}
1879 		continue;
1880 
1881 	found_fin_ok:
1882 		/* Process the FIN. */
1883 		++*seq;
1884 		if (!(flags & MSG_PEEK)) {
1885 			sk_eat_skb(sk, skb, copied_early);
1886 			copied_early = false;
1887 		}
1888 		break;
1889 	} while (len > 0);
1890 
1891 	if (user_recv) {
1892 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1893 			int chunk;
1894 
1895 			tp->ucopy.len = copied > 0 ? len : 0;
1896 
1897 			tcp_prequeue_process(sk);
1898 
1899 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1900 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1901 				len -= chunk;
1902 				copied += chunk;
1903 			}
1904 		}
1905 
1906 		tp->ucopy.task = NULL;
1907 		tp->ucopy.len = 0;
1908 	}
1909 
1910 #ifdef CONFIG_NET_DMA
1911 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1912 	tp->ucopy.dma_chan = NULL;
1913 
1914 	if (tp->ucopy.pinned_list) {
1915 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1916 		tp->ucopy.pinned_list = NULL;
1917 	}
1918 #endif
1919 
1920 	/* According to UNIX98, msg_name/msg_namelen are ignored
1921 	 * on connected socket. I was just happy when found this 8) --ANK
1922 	 */
1923 
1924 	/* Clean up data we have read: This will do ACK frames. */
1925 	tcp_cleanup_rbuf(sk, copied);
1926 
1927 	release_sock(sk);
1928 	return copied;
1929 
1930 out:
1931 	release_sock(sk);
1932 	return err;
1933 
1934 recv_urg:
1935 	err = tcp_recv_urg(sk, msg, len, flags);
1936 	goto out;
1937 
1938 recv_sndq:
1939 	err = tcp_peek_sndq(sk, msg, len);
1940 	goto out;
1941 }
1942 EXPORT_SYMBOL(tcp_recvmsg);
1943 
1944 void tcp_set_state(struct sock *sk, int state)
1945 {
1946 	int oldstate = sk->sk_state;
1947 
1948 	switch (state) {
1949 	case TCP_ESTABLISHED:
1950 		if (oldstate != TCP_ESTABLISHED)
1951 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1952 		break;
1953 
1954 	case TCP_CLOSE:
1955 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1956 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1957 
1958 		sk->sk_prot->unhash(sk);
1959 		if (inet_csk(sk)->icsk_bind_hash &&
1960 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1961 			inet_put_port(sk);
1962 		/* fall through */
1963 	default:
1964 		if (oldstate == TCP_ESTABLISHED)
1965 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1966 	}
1967 
1968 	/* Change state AFTER socket is unhashed to avoid closed
1969 	 * socket sitting in hash tables.
1970 	 */
1971 	sk->sk_state = state;
1972 
1973 #ifdef STATE_TRACE
1974 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1975 #endif
1976 }
1977 EXPORT_SYMBOL_GPL(tcp_set_state);
1978 
1979 /*
1980  *	State processing on a close. This implements the state shift for
1981  *	sending our FIN frame. Note that we only send a FIN for some
1982  *	states. A shutdown() may have already sent the FIN, or we may be
1983  *	closed.
1984  */
1985 
1986 static const unsigned char new_state[16] = {
1987   /* current state:        new state:      action:	*/
1988   /* (Invalid)		*/ TCP_CLOSE,
1989   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1990   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1991   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1992   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1993   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1994   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1995   /* TCP_CLOSE		*/ TCP_CLOSE,
1996   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1997   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1998   /* TCP_LISTEN		*/ TCP_CLOSE,
1999   /* TCP_CLOSING	*/ TCP_CLOSING,
2000 };
2001 
2002 static int tcp_close_state(struct sock *sk)
2003 {
2004 	int next = (int)new_state[sk->sk_state];
2005 	int ns = next & TCP_STATE_MASK;
2006 
2007 	tcp_set_state(sk, ns);
2008 
2009 	return next & TCP_ACTION_FIN;
2010 }
2011 
2012 /*
2013  *	Shutdown the sending side of a connection. Much like close except
2014  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2015  */
2016 
2017 void tcp_shutdown(struct sock *sk, int how)
2018 {
2019 	/*	We need to grab some memory, and put together a FIN,
2020 	 *	and then put it into the queue to be sent.
2021 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2022 	 */
2023 	if (!(how & SEND_SHUTDOWN))
2024 		return;
2025 
2026 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2027 	if ((1 << sk->sk_state) &
2028 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2029 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2030 		/* Clear out any half completed packets.  FIN if needed. */
2031 		if (tcp_close_state(sk))
2032 			tcp_send_fin(sk);
2033 	}
2034 }
2035 EXPORT_SYMBOL(tcp_shutdown);
2036 
2037 bool tcp_check_oom(struct sock *sk, int shift)
2038 {
2039 	bool too_many_orphans, out_of_socket_memory;
2040 
2041 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2042 	out_of_socket_memory = tcp_out_of_memory(sk);
2043 
2044 	if (too_many_orphans)
2045 		net_info_ratelimited("too many orphaned sockets\n");
2046 	if (out_of_socket_memory)
2047 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2048 	return too_many_orphans || out_of_socket_memory;
2049 }
2050 
2051 void tcp_close(struct sock *sk, long timeout)
2052 {
2053 	struct sk_buff *skb;
2054 	int data_was_unread = 0;
2055 	int state;
2056 
2057 	lock_sock(sk);
2058 	sk->sk_shutdown = SHUTDOWN_MASK;
2059 
2060 	if (sk->sk_state == TCP_LISTEN) {
2061 		tcp_set_state(sk, TCP_CLOSE);
2062 
2063 		/* Special case. */
2064 		inet_csk_listen_stop(sk);
2065 
2066 		goto adjudge_to_death;
2067 	}
2068 
2069 	/*  We need to flush the recv. buffs.  We do this only on the
2070 	 *  descriptor close, not protocol-sourced closes, because the
2071 	 *  reader process may not have drained the data yet!
2072 	 */
2073 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2074 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2075 			  tcp_hdr(skb)->fin;
2076 		data_was_unread += len;
2077 		__kfree_skb(skb);
2078 	}
2079 
2080 	sk_mem_reclaim(sk);
2081 
2082 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2083 	if (sk->sk_state == TCP_CLOSE)
2084 		goto adjudge_to_death;
2085 
2086 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2087 	 * data was lost. To witness the awful effects of the old behavior of
2088 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2089 	 * GET in an FTP client, suspend the process, wait for the client to
2090 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2091 	 * Note: timeout is always zero in such a case.
2092 	 */
2093 	if (unlikely(tcp_sk(sk)->repair)) {
2094 		sk->sk_prot->disconnect(sk, 0);
2095 	} else if (data_was_unread) {
2096 		/* Unread data was tossed, zap the connection. */
2097 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2098 		tcp_set_state(sk, TCP_CLOSE);
2099 		tcp_send_active_reset(sk, sk->sk_allocation);
2100 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2101 		/* Check zero linger _after_ checking for unread data. */
2102 		sk->sk_prot->disconnect(sk, 0);
2103 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2104 	} else if (tcp_close_state(sk)) {
2105 		/* We FIN if the application ate all the data before
2106 		 * zapping the connection.
2107 		 */
2108 
2109 		/* RED-PEN. Formally speaking, we have broken TCP state
2110 		 * machine. State transitions:
2111 		 *
2112 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2113 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2114 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2115 		 *
2116 		 * are legal only when FIN has been sent (i.e. in window),
2117 		 * rather than queued out of window. Purists blame.
2118 		 *
2119 		 * F.e. "RFC state" is ESTABLISHED,
2120 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2121 		 *
2122 		 * The visible declinations are that sometimes
2123 		 * we enter time-wait state, when it is not required really
2124 		 * (harmless), do not send active resets, when they are
2125 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2126 		 * they look as CLOSING or LAST_ACK for Linux)
2127 		 * Probably, I missed some more holelets.
2128 		 * 						--ANK
2129 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2130 		 * in a single packet! (May consider it later but will
2131 		 * probably need API support or TCP_CORK SYN-ACK until
2132 		 * data is written and socket is closed.)
2133 		 */
2134 		tcp_send_fin(sk);
2135 	}
2136 
2137 	sk_stream_wait_close(sk, timeout);
2138 
2139 adjudge_to_death:
2140 	state = sk->sk_state;
2141 	sock_hold(sk);
2142 	sock_orphan(sk);
2143 
2144 	/* It is the last release_sock in its life. It will remove backlog. */
2145 	release_sock(sk);
2146 
2147 
2148 	/* Now socket is owned by kernel and we acquire BH lock
2149 	   to finish close. No need to check for user refs.
2150 	 */
2151 	local_bh_disable();
2152 	bh_lock_sock(sk);
2153 	WARN_ON(sock_owned_by_user(sk));
2154 
2155 	percpu_counter_inc(sk->sk_prot->orphan_count);
2156 
2157 	/* Have we already been destroyed by a softirq or backlog? */
2158 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2159 		goto out;
2160 
2161 	/*	This is a (useful) BSD violating of the RFC. There is a
2162 	 *	problem with TCP as specified in that the other end could
2163 	 *	keep a socket open forever with no application left this end.
2164 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2165 	 *	our end. If they send after that then tough - BUT: long enough
2166 	 *	that we won't make the old 4*rto = almost no time - whoops
2167 	 *	reset mistake.
2168 	 *
2169 	 *	Nope, it was not mistake. It is really desired behaviour
2170 	 *	f.e. on http servers, when such sockets are useless, but
2171 	 *	consume significant resources. Let's do it with special
2172 	 *	linger2	option.					--ANK
2173 	 */
2174 
2175 	if (sk->sk_state == TCP_FIN_WAIT2) {
2176 		struct tcp_sock *tp = tcp_sk(sk);
2177 		if (tp->linger2 < 0) {
2178 			tcp_set_state(sk, TCP_CLOSE);
2179 			tcp_send_active_reset(sk, GFP_ATOMIC);
2180 			NET_INC_STATS_BH(sock_net(sk),
2181 					LINUX_MIB_TCPABORTONLINGER);
2182 		} else {
2183 			const int tmo = tcp_fin_time(sk);
2184 
2185 			if (tmo > TCP_TIMEWAIT_LEN) {
2186 				inet_csk_reset_keepalive_timer(sk,
2187 						tmo - TCP_TIMEWAIT_LEN);
2188 			} else {
2189 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2190 				goto out;
2191 			}
2192 		}
2193 	}
2194 	if (sk->sk_state != TCP_CLOSE) {
2195 		sk_mem_reclaim(sk);
2196 		if (tcp_check_oom(sk, 0)) {
2197 			tcp_set_state(sk, TCP_CLOSE);
2198 			tcp_send_active_reset(sk, GFP_ATOMIC);
2199 			NET_INC_STATS_BH(sock_net(sk),
2200 					LINUX_MIB_TCPABORTONMEMORY);
2201 		}
2202 	}
2203 
2204 	if (sk->sk_state == TCP_CLOSE) {
2205 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2206 		/* We could get here with a non-NULL req if the socket is
2207 		 * aborted (e.g., closed with unread data) before 3WHS
2208 		 * finishes.
2209 		 */
2210 		if (req != NULL)
2211 			reqsk_fastopen_remove(sk, req, false);
2212 		inet_csk_destroy_sock(sk);
2213 	}
2214 	/* Otherwise, socket is reprieved until protocol close. */
2215 
2216 out:
2217 	bh_unlock_sock(sk);
2218 	local_bh_enable();
2219 	sock_put(sk);
2220 }
2221 EXPORT_SYMBOL(tcp_close);
2222 
2223 /* These states need RST on ABORT according to RFC793 */
2224 
2225 static inline bool tcp_need_reset(int state)
2226 {
2227 	return (1 << state) &
2228 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2229 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2230 }
2231 
2232 int tcp_disconnect(struct sock *sk, int flags)
2233 {
2234 	struct inet_sock *inet = inet_sk(sk);
2235 	struct inet_connection_sock *icsk = inet_csk(sk);
2236 	struct tcp_sock *tp = tcp_sk(sk);
2237 	int err = 0;
2238 	int old_state = sk->sk_state;
2239 
2240 	if (old_state != TCP_CLOSE)
2241 		tcp_set_state(sk, TCP_CLOSE);
2242 
2243 	/* ABORT function of RFC793 */
2244 	if (old_state == TCP_LISTEN) {
2245 		inet_csk_listen_stop(sk);
2246 	} else if (unlikely(tp->repair)) {
2247 		sk->sk_err = ECONNABORTED;
2248 	} else if (tcp_need_reset(old_state) ||
2249 		   (tp->snd_nxt != tp->write_seq &&
2250 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2251 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2252 		 * states
2253 		 */
2254 		tcp_send_active_reset(sk, gfp_any());
2255 		sk->sk_err = ECONNRESET;
2256 	} else if (old_state == TCP_SYN_SENT)
2257 		sk->sk_err = ECONNRESET;
2258 
2259 	tcp_clear_xmit_timers(sk);
2260 	__skb_queue_purge(&sk->sk_receive_queue);
2261 	tcp_write_queue_purge(sk);
2262 	__skb_queue_purge(&tp->out_of_order_queue);
2263 #ifdef CONFIG_NET_DMA
2264 	__skb_queue_purge(&sk->sk_async_wait_queue);
2265 #endif
2266 
2267 	inet->inet_dport = 0;
2268 
2269 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2270 		inet_reset_saddr(sk);
2271 
2272 	sk->sk_shutdown = 0;
2273 	sock_reset_flag(sk, SOCK_DONE);
2274 	tp->srtt = 0;
2275 	if ((tp->write_seq += tp->max_window + 2) == 0)
2276 		tp->write_seq = 1;
2277 	icsk->icsk_backoff = 0;
2278 	tp->snd_cwnd = 2;
2279 	icsk->icsk_probes_out = 0;
2280 	tp->packets_out = 0;
2281 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2282 	tp->snd_cwnd_cnt = 0;
2283 	tp->bytes_acked = 0;
2284 	tp->window_clamp = 0;
2285 	tcp_set_ca_state(sk, TCP_CA_Open);
2286 	tcp_clear_retrans(tp);
2287 	inet_csk_delack_init(sk);
2288 	tcp_init_send_head(sk);
2289 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2290 	__sk_dst_reset(sk);
2291 
2292 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2293 
2294 	sk->sk_error_report(sk);
2295 	return err;
2296 }
2297 EXPORT_SYMBOL(tcp_disconnect);
2298 
2299 void tcp_sock_destruct(struct sock *sk)
2300 {
2301 	inet_sock_destruct(sk);
2302 
2303 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2304 }
2305 
2306 static inline bool tcp_can_repair_sock(const struct sock *sk)
2307 {
2308 	return capable(CAP_NET_ADMIN) &&
2309 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2310 }
2311 
2312 static int tcp_repair_options_est(struct tcp_sock *tp,
2313 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2314 {
2315 	struct tcp_repair_opt opt;
2316 
2317 	while (len >= sizeof(opt)) {
2318 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2319 			return -EFAULT;
2320 
2321 		optbuf++;
2322 		len -= sizeof(opt);
2323 
2324 		switch (opt.opt_code) {
2325 		case TCPOPT_MSS:
2326 			tp->rx_opt.mss_clamp = opt.opt_val;
2327 			break;
2328 		case TCPOPT_WINDOW:
2329 			{
2330 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2331 				u16 rcv_wscale = opt.opt_val >> 16;
2332 
2333 				if (snd_wscale > 14 || rcv_wscale > 14)
2334 					return -EFBIG;
2335 
2336 				tp->rx_opt.snd_wscale = snd_wscale;
2337 				tp->rx_opt.rcv_wscale = rcv_wscale;
2338 				tp->rx_opt.wscale_ok = 1;
2339 			}
2340 			break;
2341 		case TCPOPT_SACK_PERM:
2342 			if (opt.opt_val != 0)
2343 				return -EINVAL;
2344 
2345 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2346 			if (sysctl_tcp_fack)
2347 				tcp_enable_fack(tp);
2348 			break;
2349 		case TCPOPT_TIMESTAMP:
2350 			if (opt.opt_val != 0)
2351 				return -EINVAL;
2352 
2353 			tp->rx_opt.tstamp_ok = 1;
2354 			break;
2355 		}
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 /*
2362  *	Socket option code for TCP.
2363  */
2364 static int do_tcp_setsockopt(struct sock *sk, int level,
2365 		int optname, char __user *optval, unsigned int optlen)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 	struct inet_connection_sock *icsk = inet_csk(sk);
2369 	int val;
2370 	int err = 0;
2371 
2372 	/* These are data/string values, all the others are ints */
2373 	switch (optname) {
2374 	case TCP_CONGESTION: {
2375 		char name[TCP_CA_NAME_MAX];
2376 
2377 		if (optlen < 1)
2378 			return -EINVAL;
2379 
2380 		val = strncpy_from_user(name, optval,
2381 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2382 		if (val < 0)
2383 			return -EFAULT;
2384 		name[val] = 0;
2385 
2386 		lock_sock(sk);
2387 		err = tcp_set_congestion_control(sk, name);
2388 		release_sock(sk);
2389 		return err;
2390 	}
2391 	case TCP_COOKIE_TRANSACTIONS: {
2392 		struct tcp_cookie_transactions ctd;
2393 		struct tcp_cookie_values *cvp = NULL;
2394 
2395 		if (sizeof(ctd) > optlen)
2396 			return -EINVAL;
2397 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2398 			return -EFAULT;
2399 
2400 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2401 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2402 			return -EINVAL;
2403 
2404 		if (ctd.tcpct_cookie_desired == 0) {
2405 			/* default to global value */
2406 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2407 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2408 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2409 			return -EINVAL;
2410 		}
2411 
2412 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2413 			/* Supercedes all other values */
2414 			lock_sock(sk);
2415 			if (tp->cookie_values != NULL) {
2416 				kref_put(&tp->cookie_values->kref,
2417 					 tcp_cookie_values_release);
2418 				tp->cookie_values = NULL;
2419 			}
2420 			tp->rx_opt.cookie_in_always = 0; /* false */
2421 			tp->rx_opt.cookie_out_never = 1; /* true */
2422 			release_sock(sk);
2423 			return err;
2424 		}
2425 
2426 		/* Allocate ancillary memory before locking.
2427 		 */
2428 		if (ctd.tcpct_used > 0 ||
2429 		    (tp->cookie_values == NULL &&
2430 		     (sysctl_tcp_cookie_size > 0 ||
2431 		      ctd.tcpct_cookie_desired > 0 ||
2432 		      ctd.tcpct_s_data_desired > 0))) {
2433 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2434 				      GFP_KERNEL);
2435 			if (cvp == NULL)
2436 				return -ENOMEM;
2437 
2438 			kref_init(&cvp->kref);
2439 		}
2440 		lock_sock(sk);
2441 		tp->rx_opt.cookie_in_always =
2442 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2443 		tp->rx_opt.cookie_out_never = 0; /* false */
2444 
2445 		if (tp->cookie_values != NULL) {
2446 			if (cvp != NULL) {
2447 				/* Changed values are recorded by a changed
2448 				 * pointer, ensuring the cookie will differ,
2449 				 * without separately hashing each value later.
2450 				 */
2451 				kref_put(&tp->cookie_values->kref,
2452 					 tcp_cookie_values_release);
2453 			} else {
2454 				cvp = tp->cookie_values;
2455 			}
2456 		}
2457 
2458 		if (cvp != NULL) {
2459 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2460 
2461 			if (ctd.tcpct_used > 0) {
2462 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2463 				       ctd.tcpct_used);
2464 				cvp->s_data_desired = ctd.tcpct_used;
2465 				cvp->s_data_constant = 1; /* true */
2466 			} else {
2467 				/* No constant payload data. */
2468 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2469 				cvp->s_data_constant = 0; /* false */
2470 			}
2471 
2472 			tp->cookie_values = cvp;
2473 		}
2474 		release_sock(sk);
2475 		return err;
2476 	}
2477 	default:
2478 		/* fallthru */
2479 		break;
2480 	}
2481 
2482 	if (optlen < sizeof(int))
2483 		return -EINVAL;
2484 
2485 	if (get_user(val, (int __user *)optval))
2486 		return -EFAULT;
2487 
2488 	lock_sock(sk);
2489 
2490 	switch (optname) {
2491 	case TCP_MAXSEG:
2492 		/* Values greater than interface MTU won't take effect. However
2493 		 * at the point when this call is done we typically don't yet
2494 		 * know which interface is going to be used */
2495 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2496 			err = -EINVAL;
2497 			break;
2498 		}
2499 		tp->rx_opt.user_mss = val;
2500 		break;
2501 
2502 	case TCP_NODELAY:
2503 		if (val) {
2504 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2505 			 * this option on corked socket is remembered, but
2506 			 * it is not activated until cork is cleared.
2507 			 *
2508 			 * However, when TCP_NODELAY is set we make
2509 			 * an explicit push, which overrides even TCP_CORK
2510 			 * for currently queued segments.
2511 			 */
2512 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2513 			tcp_push_pending_frames(sk);
2514 		} else {
2515 			tp->nonagle &= ~TCP_NAGLE_OFF;
2516 		}
2517 		break;
2518 
2519 	case TCP_THIN_LINEAR_TIMEOUTS:
2520 		if (val < 0 || val > 1)
2521 			err = -EINVAL;
2522 		else
2523 			tp->thin_lto = val;
2524 		break;
2525 
2526 	case TCP_THIN_DUPACK:
2527 		if (val < 0 || val > 1)
2528 			err = -EINVAL;
2529 		else
2530 			tp->thin_dupack = val;
2531 			if (tp->thin_dupack)
2532 				tcp_disable_early_retrans(tp);
2533 		break;
2534 
2535 	case TCP_REPAIR:
2536 		if (!tcp_can_repair_sock(sk))
2537 			err = -EPERM;
2538 		else if (val == 1) {
2539 			tp->repair = 1;
2540 			sk->sk_reuse = SK_FORCE_REUSE;
2541 			tp->repair_queue = TCP_NO_QUEUE;
2542 		} else if (val == 0) {
2543 			tp->repair = 0;
2544 			sk->sk_reuse = SK_NO_REUSE;
2545 			tcp_send_window_probe(sk);
2546 		} else
2547 			err = -EINVAL;
2548 
2549 		break;
2550 
2551 	case TCP_REPAIR_QUEUE:
2552 		if (!tp->repair)
2553 			err = -EPERM;
2554 		else if (val < TCP_QUEUES_NR)
2555 			tp->repair_queue = val;
2556 		else
2557 			err = -EINVAL;
2558 		break;
2559 
2560 	case TCP_QUEUE_SEQ:
2561 		if (sk->sk_state != TCP_CLOSE)
2562 			err = -EPERM;
2563 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2564 			tp->write_seq = val;
2565 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2566 			tp->rcv_nxt = val;
2567 		else
2568 			err = -EINVAL;
2569 		break;
2570 
2571 	case TCP_REPAIR_OPTIONS:
2572 		if (!tp->repair)
2573 			err = -EINVAL;
2574 		else if (sk->sk_state == TCP_ESTABLISHED)
2575 			err = tcp_repair_options_est(tp,
2576 					(struct tcp_repair_opt __user *)optval,
2577 					optlen);
2578 		else
2579 			err = -EPERM;
2580 		break;
2581 
2582 	case TCP_CORK:
2583 		/* When set indicates to always queue non-full frames.
2584 		 * Later the user clears this option and we transmit
2585 		 * any pending partial frames in the queue.  This is
2586 		 * meant to be used alongside sendfile() to get properly
2587 		 * filled frames when the user (for example) must write
2588 		 * out headers with a write() call first and then use
2589 		 * sendfile to send out the data parts.
2590 		 *
2591 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2592 		 * stronger than TCP_NODELAY.
2593 		 */
2594 		if (val) {
2595 			tp->nonagle |= TCP_NAGLE_CORK;
2596 		} else {
2597 			tp->nonagle &= ~TCP_NAGLE_CORK;
2598 			if (tp->nonagle&TCP_NAGLE_OFF)
2599 				tp->nonagle |= TCP_NAGLE_PUSH;
2600 			tcp_push_pending_frames(sk);
2601 		}
2602 		break;
2603 
2604 	case TCP_KEEPIDLE:
2605 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2606 			err = -EINVAL;
2607 		else {
2608 			tp->keepalive_time = val * HZ;
2609 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2610 			    !((1 << sk->sk_state) &
2611 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2612 				u32 elapsed = keepalive_time_elapsed(tp);
2613 				if (tp->keepalive_time > elapsed)
2614 					elapsed = tp->keepalive_time - elapsed;
2615 				else
2616 					elapsed = 0;
2617 				inet_csk_reset_keepalive_timer(sk, elapsed);
2618 			}
2619 		}
2620 		break;
2621 	case TCP_KEEPINTVL:
2622 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2623 			err = -EINVAL;
2624 		else
2625 			tp->keepalive_intvl = val * HZ;
2626 		break;
2627 	case TCP_KEEPCNT:
2628 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2629 			err = -EINVAL;
2630 		else
2631 			tp->keepalive_probes = val;
2632 		break;
2633 	case TCP_SYNCNT:
2634 		if (val < 1 || val > MAX_TCP_SYNCNT)
2635 			err = -EINVAL;
2636 		else
2637 			icsk->icsk_syn_retries = val;
2638 		break;
2639 
2640 	case TCP_LINGER2:
2641 		if (val < 0)
2642 			tp->linger2 = -1;
2643 		else if (val > sysctl_tcp_fin_timeout / HZ)
2644 			tp->linger2 = 0;
2645 		else
2646 			tp->linger2 = val * HZ;
2647 		break;
2648 
2649 	case TCP_DEFER_ACCEPT:
2650 		/* Translate value in seconds to number of retransmits */
2651 		icsk->icsk_accept_queue.rskq_defer_accept =
2652 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2653 					TCP_RTO_MAX / HZ);
2654 		break;
2655 
2656 	case TCP_WINDOW_CLAMP:
2657 		if (!val) {
2658 			if (sk->sk_state != TCP_CLOSE) {
2659 				err = -EINVAL;
2660 				break;
2661 			}
2662 			tp->window_clamp = 0;
2663 		} else
2664 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2665 						SOCK_MIN_RCVBUF / 2 : val;
2666 		break;
2667 
2668 	case TCP_QUICKACK:
2669 		if (!val) {
2670 			icsk->icsk_ack.pingpong = 1;
2671 		} else {
2672 			icsk->icsk_ack.pingpong = 0;
2673 			if ((1 << sk->sk_state) &
2674 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2675 			    inet_csk_ack_scheduled(sk)) {
2676 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2677 				tcp_cleanup_rbuf(sk, 1);
2678 				if (!(val & 1))
2679 					icsk->icsk_ack.pingpong = 1;
2680 			}
2681 		}
2682 		break;
2683 
2684 #ifdef CONFIG_TCP_MD5SIG
2685 	case TCP_MD5SIG:
2686 		/* Read the IP->Key mappings from userspace */
2687 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2688 		break;
2689 #endif
2690 	case TCP_USER_TIMEOUT:
2691 		/* Cap the max timeout in ms TCP will retry/retrans
2692 		 * before giving up and aborting (ETIMEDOUT) a connection.
2693 		 */
2694 		if (val < 0)
2695 			err = -EINVAL;
2696 		else
2697 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2698 		break;
2699 
2700 	case TCP_FASTOPEN:
2701 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2702 		    TCPF_LISTEN)))
2703 			err = fastopen_init_queue(sk, val);
2704 		else
2705 			err = -EINVAL;
2706 		break;
2707 	default:
2708 		err = -ENOPROTOOPT;
2709 		break;
2710 	}
2711 
2712 	release_sock(sk);
2713 	return err;
2714 }
2715 
2716 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2717 		   unsigned int optlen)
2718 {
2719 	const struct inet_connection_sock *icsk = inet_csk(sk);
2720 
2721 	if (level != SOL_TCP)
2722 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2723 						     optval, optlen);
2724 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2725 }
2726 EXPORT_SYMBOL(tcp_setsockopt);
2727 
2728 #ifdef CONFIG_COMPAT
2729 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2730 			  char __user *optval, unsigned int optlen)
2731 {
2732 	if (level != SOL_TCP)
2733 		return inet_csk_compat_setsockopt(sk, level, optname,
2734 						  optval, optlen);
2735 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2736 }
2737 EXPORT_SYMBOL(compat_tcp_setsockopt);
2738 #endif
2739 
2740 /* Return information about state of tcp endpoint in API format. */
2741 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2742 {
2743 	const struct tcp_sock *tp = tcp_sk(sk);
2744 	const struct inet_connection_sock *icsk = inet_csk(sk);
2745 	u32 now = tcp_time_stamp;
2746 
2747 	memset(info, 0, sizeof(*info));
2748 
2749 	info->tcpi_state = sk->sk_state;
2750 	info->tcpi_ca_state = icsk->icsk_ca_state;
2751 	info->tcpi_retransmits = icsk->icsk_retransmits;
2752 	info->tcpi_probes = icsk->icsk_probes_out;
2753 	info->tcpi_backoff = icsk->icsk_backoff;
2754 
2755 	if (tp->rx_opt.tstamp_ok)
2756 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2757 	if (tcp_is_sack(tp))
2758 		info->tcpi_options |= TCPI_OPT_SACK;
2759 	if (tp->rx_opt.wscale_ok) {
2760 		info->tcpi_options |= TCPI_OPT_WSCALE;
2761 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2762 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2763 	}
2764 
2765 	if (tp->ecn_flags & TCP_ECN_OK)
2766 		info->tcpi_options |= TCPI_OPT_ECN;
2767 	if (tp->ecn_flags & TCP_ECN_SEEN)
2768 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2769 
2770 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2771 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2772 	info->tcpi_snd_mss = tp->mss_cache;
2773 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2774 
2775 	if (sk->sk_state == TCP_LISTEN) {
2776 		info->tcpi_unacked = sk->sk_ack_backlog;
2777 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2778 	} else {
2779 		info->tcpi_unacked = tp->packets_out;
2780 		info->tcpi_sacked = tp->sacked_out;
2781 	}
2782 	info->tcpi_lost = tp->lost_out;
2783 	info->tcpi_retrans = tp->retrans_out;
2784 	info->tcpi_fackets = tp->fackets_out;
2785 
2786 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2787 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2788 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2789 
2790 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2791 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2792 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2793 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2794 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2795 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2796 	info->tcpi_advmss = tp->advmss;
2797 	info->tcpi_reordering = tp->reordering;
2798 
2799 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2800 	info->tcpi_rcv_space = tp->rcvq_space.space;
2801 
2802 	info->tcpi_total_retrans = tp->total_retrans;
2803 }
2804 EXPORT_SYMBOL_GPL(tcp_get_info);
2805 
2806 static int do_tcp_getsockopt(struct sock *sk, int level,
2807 		int optname, char __user *optval, int __user *optlen)
2808 {
2809 	struct inet_connection_sock *icsk = inet_csk(sk);
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 	int val, len;
2812 
2813 	if (get_user(len, optlen))
2814 		return -EFAULT;
2815 
2816 	len = min_t(unsigned int, len, sizeof(int));
2817 
2818 	if (len < 0)
2819 		return -EINVAL;
2820 
2821 	switch (optname) {
2822 	case TCP_MAXSEG:
2823 		val = tp->mss_cache;
2824 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2825 			val = tp->rx_opt.user_mss;
2826 		if (tp->repair)
2827 			val = tp->rx_opt.mss_clamp;
2828 		break;
2829 	case TCP_NODELAY:
2830 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2831 		break;
2832 	case TCP_CORK:
2833 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2834 		break;
2835 	case TCP_KEEPIDLE:
2836 		val = keepalive_time_when(tp) / HZ;
2837 		break;
2838 	case TCP_KEEPINTVL:
2839 		val = keepalive_intvl_when(tp) / HZ;
2840 		break;
2841 	case TCP_KEEPCNT:
2842 		val = keepalive_probes(tp);
2843 		break;
2844 	case TCP_SYNCNT:
2845 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2846 		break;
2847 	case TCP_LINGER2:
2848 		val = tp->linger2;
2849 		if (val >= 0)
2850 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2851 		break;
2852 	case TCP_DEFER_ACCEPT:
2853 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2854 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2855 		break;
2856 	case TCP_WINDOW_CLAMP:
2857 		val = tp->window_clamp;
2858 		break;
2859 	case TCP_INFO: {
2860 		struct tcp_info info;
2861 
2862 		if (get_user(len, optlen))
2863 			return -EFAULT;
2864 
2865 		tcp_get_info(sk, &info);
2866 
2867 		len = min_t(unsigned int, len, sizeof(info));
2868 		if (put_user(len, optlen))
2869 			return -EFAULT;
2870 		if (copy_to_user(optval, &info, len))
2871 			return -EFAULT;
2872 		return 0;
2873 	}
2874 	case TCP_QUICKACK:
2875 		val = !icsk->icsk_ack.pingpong;
2876 		break;
2877 
2878 	case TCP_CONGESTION:
2879 		if (get_user(len, optlen))
2880 			return -EFAULT;
2881 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2882 		if (put_user(len, optlen))
2883 			return -EFAULT;
2884 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2885 			return -EFAULT;
2886 		return 0;
2887 
2888 	case TCP_COOKIE_TRANSACTIONS: {
2889 		struct tcp_cookie_transactions ctd;
2890 		struct tcp_cookie_values *cvp = tp->cookie_values;
2891 
2892 		if (get_user(len, optlen))
2893 			return -EFAULT;
2894 		if (len < sizeof(ctd))
2895 			return -EINVAL;
2896 
2897 		memset(&ctd, 0, sizeof(ctd));
2898 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2899 				   TCP_COOKIE_IN_ALWAYS : 0)
2900 				| (tp->rx_opt.cookie_out_never ?
2901 				   TCP_COOKIE_OUT_NEVER : 0);
2902 
2903 		if (cvp != NULL) {
2904 			ctd.tcpct_flags |= (cvp->s_data_in ?
2905 					    TCP_S_DATA_IN : 0)
2906 					 | (cvp->s_data_out ?
2907 					    TCP_S_DATA_OUT : 0);
2908 
2909 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2910 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2911 
2912 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2913 			       cvp->cookie_pair_size);
2914 			ctd.tcpct_used = cvp->cookie_pair_size;
2915 		}
2916 
2917 		if (put_user(sizeof(ctd), optlen))
2918 			return -EFAULT;
2919 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2920 			return -EFAULT;
2921 		return 0;
2922 	}
2923 	case TCP_THIN_LINEAR_TIMEOUTS:
2924 		val = tp->thin_lto;
2925 		break;
2926 	case TCP_THIN_DUPACK:
2927 		val = tp->thin_dupack;
2928 		break;
2929 
2930 	case TCP_REPAIR:
2931 		val = tp->repair;
2932 		break;
2933 
2934 	case TCP_REPAIR_QUEUE:
2935 		if (tp->repair)
2936 			val = tp->repair_queue;
2937 		else
2938 			return -EINVAL;
2939 		break;
2940 
2941 	case TCP_QUEUE_SEQ:
2942 		if (tp->repair_queue == TCP_SEND_QUEUE)
2943 			val = tp->write_seq;
2944 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2945 			val = tp->rcv_nxt;
2946 		else
2947 			return -EINVAL;
2948 		break;
2949 
2950 	case TCP_USER_TIMEOUT:
2951 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2952 		break;
2953 	default:
2954 		return -ENOPROTOOPT;
2955 	}
2956 
2957 	if (put_user(len, optlen))
2958 		return -EFAULT;
2959 	if (copy_to_user(optval, &val, len))
2960 		return -EFAULT;
2961 	return 0;
2962 }
2963 
2964 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2965 		   int __user *optlen)
2966 {
2967 	struct inet_connection_sock *icsk = inet_csk(sk);
2968 
2969 	if (level != SOL_TCP)
2970 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2971 						     optval, optlen);
2972 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2973 }
2974 EXPORT_SYMBOL(tcp_getsockopt);
2975 
2976 #ifdef CONFIG_COMPAT
2977 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2978 			  char __user *optval, int __user *optlen)
2979 {
2980 	if (level != SOL_TCP)
2981 		return inet_csk_compat_getsockopt(sk, level, optname,
2982 						  optval, optlen);
2983 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2984 }
2985 EXPORT_SYMBOL(compat_tcp_getsockopt);
2986 #endif
2987 
2988 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2989 	netdev_features_t features)
2990 {
2991 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2992 	struct tcphdr *th;
2993 	unsigned int thlen;
2994 	unsigned int seq;
2995 	__be32 delta;
2996 	unsigned int oldlen;
2997 	unsigned int mss;
2998 
2999 	if (!pskb_may_pull(skb, sizeof(*th)))
3000 		goto out;
3001 
3002 	th = tcp_hdr(skb);
3003 	thlen = th->doff * 4;
3004 	if (thlen < sizeof(*th))
3005 		goto out;
3006 
3007 	if (!pskb_may_pull(skb, thlen))
3008 		goto out;
3009 
3010 	oldlen = (u16)~skb->len;
3011 	__skb_pull(skb, thlen);
3012 
3013 	mss = skb_shinfo(skb)->gso_size;
3014 	if (unlikely(skb->len <= mss))
3015 		goto out;
3016 
3017 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3018 		/* Packet is from an untrusted source, reset gso_segs. */
3019 		int type = skb_shinfo(skb)->gso_type;
3020 
3021 		if (unlikely(type &
3022 			     ~(SKB_GSO_TCPV4 |
3023 			       SKB_GSO_DODGY |
3024 			       SKB_GSO_TCP_ECN |
3025 			       SKB_GSO_TCPV6 |
3026 			       0) ||
3027 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3028 			goto out;
3029 
3030 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3031 
3032 		segs = NULL;
3033 		goto out;
3034 	}
3035 
3036 	segs = skb_segment(skb, features);
3037 	if (IS_ERR(segs))
3038 		goto out;
3039 
3040 	delta = htonl(oldlen + (thlen + mss));
3041 
3042 	skb = segs;
3043 	th = tcp_hdr(skb);
3044 	seq = ntohl(th->seq);
3045 
3046 	do {
3047 		th->fin = th->psh = 0;
3048 
3049 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3050 				       (__force u32)delta));
3051 		if (skb->ip_summed != CHECKSUM_PARTIAL)
3052 			th->check =
3053 			     csum_fold(csum_partial(skb_transport_header(skb),
3054 						    thlen, skb->csum));
3055 
3056 		seq += mss;
3057 		skb = skb->next;
3058 		th = tcp_hdr(skb);
3059 
3060 		th->seq = htonl(seq);
3061 		th->cwr = 0;
3062 	} while (skb->next);
3063 
3064 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3065 		      skb->data_len);
3066 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3067 				(__force u32)delta));
3068 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3069 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3070 						   thlen, skb->csum));
3071 
3072 out:
3073 	return segs;
3074 }
3075 EXPORT_SYMBOL(tcp_tso_segment);
3076 
3077 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3078 {
3079 	struct sk_buff **pp = NULL;
3080 	struct sk_buff *p;
3081 	struct tcphdr *th;
3082 	struct tcphdr *th2;
3083 	unsigned int len;
3084 	unsigned int thlen;
3085 	__be32 flags;
3086 	unsigned int mss = 1;
3087 	unsigned int hlen;
3088 	unsigned int off;
3089 	int flush = 1;
3090 	int i;
3091 
3092 	off = skb_gro_offset(skb);
3093 	hlen = off + sizeof(*th);
3094 	th = skb_gro_header_fast(skb, off);
3095 	if (skb_gro_header_hard(skb, hlen)) {
3096 		th = skb_gro_header_slow(skb, hlen, off);
3097 		if (unlikely(!th))
3098 			goto out;
3099 	}
3100 
3101 	thlen = th->doff * 4;
3102 	if (thlen < sizeof(*th))
3103 		goto out;
3104 
3105 	hlen = off + thlen;
3106 	if (skb_gro_header_hard(skb, hlen)) {
3107 		th = skb_gro_header_slow(skb, hlen, off);
3108 		if (unlikely(!th))
3109 			goto out;
3110 	}
3111 
3112 	skb_gro_pull(skb, thlen);
3113 
3114 	len = skb_gro_len(skb);
3115 	flags = tcp_flag_word(th);
3116 
3117 	for (; (p = *head); head = &p->next) {
3118 		if (!NAPI_GRO_CB(p)->same_flow)
3119 			continue;
3120 
3121 		th2 = tcp_hdr(p);
3122 
3123 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3124 			NAPI_GRO_CB(p)->same_flow = 0;
3125 			continue;
3126 		}
3127 
3128 		goto found;
3129 	}
3130 
3131 	goto out_check_final;
3132 
3133 found:
3134 	flush = NAPI_GRO_CB(p)->flush;
3135 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3136 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3137 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3138 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3139 	for (i = sizeof(*th); i < thlen; i += 4)
3140 		flush |= *(u32 *)((u8 *)th + i) ^
3141 			 *(u32 *)((u8 *)th2 + i);
3142 
3143 	mss = skb_shinfo(p)->gso_size;
3144 
3145 	flush |= (len - 1) >= mss;
3146 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3147 
3148 	if (flush || skb_gro_receive(head, skb)) {
3149 		mss = 1;
3150 		goto out_check_final;
3151 	}
3152 
3153 	p = *head;
3154 	th2 = tcp_hdr(p);
3155 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3156 
3157 out_check_final:
3158 	flush = len < mss;
3159 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3160 					TCP_FLAG_RST | TCP_FLAG_SYN |
3161 					TCP_FLAG_FIN));
3162 
3163 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3164 		pp = head;
3165 
3166 out:
3167 	NAPI_GRO_CB(skb)->flush |= flush;
3168 
3169 	return pp;
3170 }
3171 EXPORT_SYMBOL(tcp_gro_receive);
3172 
3173 int tcp_gro_complete(struct sk_buff *skb)
3174 {
3175 	struct tcphdr *th = tcp_hdr(skb);
3176 
3177 	skb->csum_start = skb_transport_header(skb) - skb->head;
3178 	skb->csum_offset = offsetof(struct tcphdr, check);
3179 	skb->ip_summed = CHECKSUM_PARTIAL;
3180 
3181 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3182 
3183 	if (th->cwr)
3184 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3185 
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL(tcp_gro_complete);
3189 
3190 #ifdef CONFIG_TCP_MD5SIG
3191 static unsigned long tcp_md5sig_users;
3192 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3193 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3194 
3195 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3196 {
3197 	int cpu;
3198 
3199 	for_each_possible_cpu(cpu) {
3200 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3201 
3202 		if (p->md5_desc.tfm)
3203 			crypto_free_hash(p->md5_desc.tfm);
3204 	}
3205 	free_percpu(pool);
3206 }
3207 
3208 void tcp_free_md5sig_pool(void)
3209 {
3210 	struct tcp_md5sig_pool __percpu *pool = NULL;
3211 
3212 	spin_lock_bh(&tcp_md5sig_pool_lock);
3213 	if (--tcp_md5sig_users == 0) {
3214 		pool = tcp_md5sig_pool;
3215 		tcp_md5sig_pool = NULL;
3216 	}
3217 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3218 	if (pool)
3219 		__tcp_free_md5sig_pool(pool);
3220 }
3221 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3222 
3223 static struct tcp_md5sig_pool __percpu *
3224 __tcp_alloc_md5sig_pool(struct sock *sk)
3225 {
3226 	int cpu;
3227 	struct tcp_md5sig_pool __percpu *pool;
3228 
3229 	pool = alloc_percpu(struct tcp_md5sig_pool);
3230 	if (!pool)
3231 		return NULL;
3232 
3233 	for_each_possible_cpu(cpu) {
3234 		struct crypto_hash *hash;
3235 
3236 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3237 		if (!hash || IS_ERR(hash))
3238 			goto out_free;
3239 
3240 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3241 	}
3242 	return pool;
3243 out_free:
3244 	__tcp_free_md5sig_pool(pool);
3245 	return NULL;
3246 }
3247 
3248 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3249 {
3250 	struct tcp_md5sig_pool __percpu *pool;
3251 	bool alloc = false;
3252 
3253 retry:
3254 	spin_lock_bh(&tcp_md5sig_pool_lock);
3255 	pool = tcp_md5sig_pool;
3256 	if (tcp_md5sig_users++ == 0) {
3257 		alloc = true;
3258 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3259 	} else if (!pool) {
3260 		tcp_md5sig_users--;
3261 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3262 		cpu_relax();
3263 		goto retry;
3264 	} else
3265 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3266 
3267 	if (alloc) {
3268 		/* we cannot hold spinlock here because this may sleep. */
3269 		struct tcp_md5sig_pool __percpu *p;
3270 
3271 		p = __tcp_alloc_md5sig_pool(sk);
3272 		spin_lock_bh(&tcp_md5sig_pool_lock);
3273 		if (!p) {
3274 			tcp_md5sig_users--;
3275 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3276 			return NULL;
3277 		}
3278 		pool = tcp_md5sig_pool;
3279 		if (pool) {
3280 			/* oops, it has already been assigned. */
3281 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3282 			__tcp_free_md5sig_pool(p);
3283 		} else {
3284 			tcp_md5sig_pool = pool = p;
3285 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3286 		}
3287 	}
3288 	return pool;
3289 }
3290 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3291 
3292 
3293 /**
3294  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3295  *
3296  *	We use percpu structure, so if we succeed, we exit with preemption
3297  *	and BH disabled, to make sure another thread or softirq handling
3298  *	wont try to get same context.
3299  */
3300 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3301 {
3302 	struct tcp_md5sig_pool __percpu *p;
3303 
3304 	local_bh_disable();
3305 
3306 	spin_lock(&tcp_md5sig_pool_lock);
3307 	p = tcp_md5sig_pool;
3308 	if (p)
3309 		tcp_md5sig_users++;
3310 	spin_unlock(&tcp_md5sig_pool_lock);
3311 
3312 	if (p)
3313 		return this_cpu_ptr(p);
3314 
3315 	local_bh_enable();
3316 	return NULL;
3317 }
3318 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3319 
3320 void tcp_put_md5sig_pool(void)
3321 {
3322 	local_bh_enable();
3323 	tcp_free_md5sig_pool();
3324 }
3325 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3326 
3327 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3328 			const struct tcphdr *th)
3329 {
3330 	struct scatterlist sg;
3331 	struct tcphdr hdr;
3332 	int err;
3333 
3334 	/* We are not allowed to change tcphdr, make a local copy */
3335 	memcpy(&hdr, th, sizeof(hdr));
3336 	hdr.check = 0;
3337 
3338 	/* options aren't included in the hash */
3339 	sg_init_one(&sg, &hdr, sizeof(hdr));
3340 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3341 	return err;
3342 }
3343 EXPORT_SYMBOL(tcp_md5_hash_header);
3344 
3345 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3346 			  const struct sk_buff *skb, unsigned int header_len)
3347 {
3348 	struct scatterlist sg;
3349 	const struct tcphdr *tp = tcp_hdr(skb);
3350 	struct hash_desc *desc = &hp->md5_desc;
3351 	unsigned int i;
3352 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3353 					   skb_headlen(skb) - header_len : 0;
3354 	const struct skb_shared_info *shi = skb_shinfo(skb);
3355 	struct sk_buff *frag_iter;
3356 
3357 	sg_init_table(&sg, 1);
3358 
3359 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3360 	if (crypto_hash_update(desc, &sg, head_data_len))
3361 		return 1;
3362 
3363 	for (i = 0; i < shi->nr_frags; ++i) {
3364 		const struct skb_frag_struct *f = &shi->frags[i];
3365 		struct page *page = skb_frag_page(f);
3366 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3367 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3368 			return 1;
3369 	}
3370 
3371 	skb_walk_frags(skb, frag_iter)
3372 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3373 			return 1;
3374 
3375 	return 0;
3376 }
3377 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3378 
3379 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3380 {
3381 	struct scatterlist sg;
3382 
3383 	sg_init_one(&sg, key->key, key->keylen);
3384 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3385 }
3386 EXPORT_SYMBOL(tcp_md5_hash_key);
3387 
3388 #endif
3389 
3390 /* Each Responder maintains up to two secret values concurrently for
3391  * efficient secret rollover.  Each secret value has 4 states:
3392  *
3393  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3394  *    Generates new Responder-Cookies, but not yet used for primary
3395  *    verification.  This is a short-term state, typically lasting only
3396  *    one round trip time (RTT).
3397  *
3398  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3399  *    Used both for generation and primary verification.
3400  *
3401  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3402  *    Used for verification, until the first failure that can be
3403  *    verified by the newer Generating secret.  At that time, this
3404  *    cookie's state is changed to Secondary, and the Generating
3405  *    cookie's state is changed to Primary.  This is a short-term state,
3406  *    typically lasting only one round trip time (RTT).
3407  *
3408  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3409  *    Used for secondary verification, after primary verification
3410  *    failures.  This state lasts no more than twice the Maximum Segment
3411  *    Lifetime (2MSL).  Then, the secret is discarded.
3412  */
3413 struct tcp_cookie_secret {
3414 	/* The secret is divided into two parts.  The digest part is the
3415 	 * equivalent of previously hashing a secret and saving the state,
3416 	 * and serves as an initialization vector (IV).  The message part
3417 	 * serves as the trailing secret.
3418 	 */
3419 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3420 	unsigned long			expires;
3421 };
3422 
3423 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3424 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3425 #define TCP_SECRET_LIFE (HZ * 600)
3426 
3427 static struct tcp_cookie_secret tcp_secret_one;
3428 static struct tcp_cookie_secret tcp_secret_two;
3429 
3430 /* Essentially a circular list, without dynamic allocation. */
3431 static struct tcp_cookie_secret *tcp_secret_generating;
3432 static struct tcp_cookie_secret *tcp_secret_primary;
3433 static struct tcp_cookie_secret *tcp_secret_retiring;
3434 static struct tcp_cookie_secret *tcp_secret_secondary;
3435 
3436 static DEFINE_SPINLOCK(tcp_secret_locker);
3437 
3438 /* Select a pseudo-random word in the cookie workspace.
3439  */
3440 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3441 {
3442 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3443 }
3444 
3445 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3446  * Called in softirq context.
3447  * Returns: 0 for success.
3448  */
3449 int tcp_cookie_generator(u32 *bakery)
3450 {
3451 	unsigned long jiffy = jiffies;
3452 
3453 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3454 		spin_lock_bh(&tcp_secret_locker);
3455 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3456 			/* refreshed by another */
3457 			memcpy(bakery,
3458 			       &tcp_secret_generating->secrets[0],
3459 			       COOKIE_WORKSPACE_WORDS);
3460 		} else {
3461 			/* still needs refreshing */
3462 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3463 
3464 			/* The first time, paranoia assumes that the
3465 			 * randomization function isn't as strong.  But,
3466 			 * this secret initialization is delayed until
3467 			 * the last possible moment (packet arrival).
3468 			 * Although that time is observable, it is
3469 			 * unpredictably variable.  Mash in the most
3470 			 * volatile clock bits available, and expire the
3471 			 * secret extra quickly.
3472 			 */
3473 			if (unlikely(tcp_secret_primary->expires ==
3474 				     tcp_secret_secondary->expires)) {
3475 				struct timespec tv;
3476 
3477 				getnstimeofday(&tv);
3478 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3479 					(u32)tv.tv_nsec;
3480 
3481 				tcp_secret_secondary->expires = jiffy
3482 					+ TCP_SECRET_1MSL
3483 					+ (0x0f & tcp_cookie_work(bakery, 0));
3484 			} else {
3485 				tcp_secret_secondary->expires = jiffy
3486 					+ TCP_SECRET_LIFE
3487 					+ (0xff & tcp_cookie_work(bakery, 1));
3488 				tcp_secret_primary->expires = jiffy
3489 					+ TCP_SECRET_2MSL
3490 					+ (0x1f & tcp_cookie_work(bakery, 2));
3491 			}
3492 			memcpy(&tcp_secret_secondary->secrets[0],
3493 			       bakery, COOKIE_WORKSPACE_WORDS);
3494 
3495 			rcu_assign_pointer(tcp_secret_generating,
3496 					   tcp_secret_secondary);
3497 			rcu_assign_pointer(tcp_secret_retiring,
3498 					   tcp_secret_primary);
3499 			/*
3500 			 * Neither call_rcu() nor synchronize_rcu() needed.
3501 			 * Retiring data is not freed.  It is replaced after
3502 			 * further (locked) pointer updates, and a quiet time
3503 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3504 			 */
3505 		}
3506 		spin_unlock_bh(&tcp_secret_locker);
3507 	} else {
3508 		rcu_read_lock_bh();
3509 		memcpy(bakery,
3510 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3511 		       COOKIE_WORKSPACE_WORDS);
3512 		rcu_read_unlock_bh();
3513 	}
3514 	return 0;
3515 }
3516 EXPORT_SYMBOL(tcp_cookie_generator);
3517 
3518 void tcp_done(struct sock *sk)
3519 {
3520 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3521 
3522 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3523 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3524 
3525 	tcp_set_state(sk, TCP_CLOSE);
3526 	tcp_clear_xmit_timers(sk);
3527 	if (req != NULL)
3528 		reqsk_fastopen_remove(sk, req, false);
3529 
3530 	sk->sk_shutdown = SHUTDOWN_MASK;
3531 
3532 	if (!sock_flag(sk, SOCK_DEAD))
3533 		sk->sk_state_change(sk);
3534 	else
3535 		inet_csk_destroy_sock(sk);
3536 }
3537 EXPORT_SYMBOL_GPL(tcp_done);
3538 
3539 extern struct tcp_congestion_ops tcp_reno;
3540 
3541 static __initdata unsigned long thash_entries;
3542 static int __init set_thash_entries(char *str)
3543 {
3544 	ssize_t ret;
3545 
3546 	if (!str)
3547 		return 0;
3548 
3549 	ret = kstrtoul(str, 0, &thash_entries);
3550 	if (ret)
3551 		return 0;
3552 
3553 	return 1;
3554 }
3555 __setup("thash_entries=", set_thash_entries);
3556 
3557 void tcp_init_mem(struct net *net)
3558 {
3559 	unsigned long limit = nr_free_buffer_pages() / 8;
3560 	limit = max(limit, 128UL);
3561 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3562 	net->ipv4.sysctl_tcp_mem[1] = limit;
3563 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3564 }
3565 
3566 void __init tcp_init(void)
3567 {
3568 	struct sk_buff *skb = NULL;
3569 	unsigned long limit;
3570 	int max_rshare, max_wshare, cnt;
3571 	unsigned int i;
3572 	unsigned long jiffy = jiffies;
3573 
3574 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3575 
3576 	percpu_counter_init(&tcp_sockets_allocated, 0);
3577 	percpu_counter_init(&tcp_orphan_count, 0);
3578 	tcp_hashinfo.bind_bucket_cachep =
3579 		kmem_cache_create("tcp_bind_bucket",
3580 				  sizeof(struct inet_bind_bucket), 0,
3581 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3582 
3583 	/* Size and allocate the main established and bind bucket
3584 	 * hash tables.
3585 	 *
3586 	 * The methodology is similar to that of the buffer cache.
3587 	 */
3588 	tcp_hashinfo.ehash =
3589 		alloc_large_system_hash("TCP established",
3590 					sizeof(struct inet_ehash_bucket),
3591 					thash_entries,
3592 					(totalram_pages >= 128 * 1024) ?
3593 					13 : 15,
3594 					0,
3595 					NULL,
3596 					&tcp_hashinfo.ehash_mask,
3597 					0,
3598 					thash_entries ? 0 : 512 * 1024);
3599 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3600 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3601 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3602 	}
3603 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3604 		panic("TCP: failed to alloc ehash_locks");
3605 	tcp_hashinfo.bhash =
3606 		alloc_large_system_hash("TCP bind",
3607 					sizeof(struct inet_bind_hashbucket),
3608 					tcp_hashinfo.ehash_mask + 1,
3609 					(totalram_pages >= 128 * 1024) ?
3610 					13 : 15,
3611 					0,
3612 					&tcp_hashinfo.bhash_size,
3613 					NULL,
3614 					0,
3615 					64 * 1024);
3616 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3617 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3618 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3619 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3620 	}
3621 
3622 
3623 	cnt = tcp_hashinfo.ehash_mask + 1;
3624 
3625 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3626 	sysctl_tcp_max_orphans = cnt / 2;
3627 	sysctl_max_syn_backlog = max(128, cnt / 256);
3628 
3629 	tcp_init_mem(&init_net);
3630 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3631 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3632 	max_wshare = min(4UL*1024*1024, limit);
3633 	max_rshare = min(6UL*1024*1024, limit);
3634 
3635 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3636 	sysctl_tcp_wmem[1] = 16*1024;
3637 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3638 
3639 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3640 	sysctl_tcp_rmem[1] = 87380;
3641 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3642 
3643 	pr_info("Hash tables configured (established %u bind %u)\n",
3644 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3645 
3646 	tcp_metrics_init();
3647 
3648 	tcp_register_congestion_control(&tcp_reno);
3649 
3650 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3651 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3652 	tcp_secret_one.expires = jiffy; /* past due */
3653 	tcp_secret_two.expires = jiffy; /* past due */
3654 	tcp_secret_generating = &tcp_secret_one;
3655 	tcp_secret_primary = &tcp_secret_one;
3656 	tcp_secret_retiring = &tcp_secret_two;
3657 	tcp_secret_secondary = &tcp_secret_two;
3658 	tcp_tasklet_init();
3659 }
3660