xref: /linux/net/ipv4/tcp.c (revision 06b9cce42634a50f2840777a66553b02320db5ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	unsigned long val;
330 
331 	if (READ_ONCE(tcp_memory_pressure))
332 		return;
333 	val = jiffies;
334 
335 	if (!val)
336 		val--;
337 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341 
342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 	unsigned long val;
345 
346 	if (!READ_ONCE(tcp_memory_pressure))
347 		return;
348 	val = xchg(&tcp_memory_pressure, 0);
349 	if (val)
350 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 			      jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354 
355 /* Convert seconds to retransmits based on initial and max timeout */
356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 	u8 res = 0;
359 
360 	if (seconds > 0) {
361 		int period = timeout;
362 
363 		res = 1;
364 		while (seconds > period && res < 255) {
365 			res++;
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return res;
373 }
374 
375 /* Convert retransmits to seconds based on initial and max timeout */
376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 	int period = 0;
379 
380 	if (retrans > 0) {
381 		period = timeout;
382 		while (--retrans) {
383 			timeout <<= 1;
384 			if (timeout > rto_max)
385 				timeout = rto_max;
386 			period += timeout;
387 		}
388 	}
389 	return period;
390 }
391 
392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 	u32 rate = READ_ONCE(tp->rate_delivered);
395 	u32 intv = READ_ONCE(tp->rate_interval_us);
396 	u64 rate64 = 0;
397 
398 	if (rate && intv) {
399 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 		do_div(rate64, intv);
401 	}
402 	return rate64;
403 }
404 
405 /* Address-family independent initialization for a tcp_sock.
406  *
407  * NOTE: A lot of things set to zero explicitly by call to
408  *       sk_alloc() so need not be done here.
409  */
410 void tcp_init_sock(struct sock *sk)
411 {
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 	struct tcp_sock *tp = tcp_sk(sk);
414 
415 	tp->out_of_order_queue = RB_ROOT;
416 	sk->tcp_rtx_queue = RB_ROOT;
417 	tcp_init_xmit_timers(sk);
418 	INIT_LIST_HEAD(&tp->tsq_node);
419 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420 
421 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
422 	icsk->icsk_rto_min = TCP_RTO_MIN;
423 	icsk->icsk_delack_max = TCP_DELACK_MAX;
424 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
425 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
426 
427 	/* So many TCP implementations out there (incorrectly) count the
428 	 * initial SYN frame in their delayed-ACK and congestion control
429 	 * algorithms that we must have the following bandaid to talk
430 	 * efficiently to them.  -DaveM
431 	 */
432 	tp->snd_cwnd = TCP_INIT_CWND;
433 
434 	/* There's a bubble in the pipe until at least the first ACK. */
435 	tp->app_limited = ~0U;
436 
437 	/* See draft-stevens-tcpca-spec-01 for discussion of the
438 	 * initialization of these values.
439 	 */
440 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 	tp->snd_cwnd_clamp = ~0;
442 	tp->mss_cache = TCP_MSS_DEFAULT;
443 
444 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
445 	tcp_assign_congestion_control(sk);
446 
447 	tp->tsoffset = 0;
448 	tp->rack.reo_wnd_steps = 1;
449 
450 	sk->sk_write_space = sk_stream_write_space;
451 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452 
453 	icsk->icsk_sync_mss = tcp_sync_mss;
454 
455 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
456 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
457 
458 	sk_sockets_allocated_inc(sk);
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461 
462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 	struct sk_buff *skb = tcp_write_queue_tail(sk);
465 
466 	if (tsflags && skb) {
467 		struct skb_shared_info *shinfo = skb_shinfo(skb);
468 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469 
470 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 			tcb->txstamp_ack = 1;
473 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 	}
476 }
477 
478 static bool tcp_stream_is_readable(struct sock *sk, int target)
479 {
480 	if (tcp_epollin_ready(sk, target))
481 		return true;
482 	return sk_is_readable(sk);
483 }
484 
485 /*
486  *	Wait for a TCP event.
487  *
488  *	Note that we don't need to lock the socket, as the upper poll layers
489  *	take care of normal races (between the test and the event) and we don't
490  *	go look at any of the socket buffers directly.
491  */
492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 	__poll_t mask;
495 	struct sock *sk = sock->sk;
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	int state;
498 
499 	sock_poll_wait(file, sock, wait);
500 
501 	state = inet_sk_state_load(sk);
502 	if (state == TCP_LISTEN)
503 		return inet_csk_listen_poll(sk);
504 
505 	/* Socket is not locked. We are protected from async events
506 	 * by poll logic and correct handling of state changes
507 	 * made by other threads is impossible in any case.
508 	 */
509 
510 	mask = 0;
511 
512 	/*
513 	 * EPOLLHUP is certainly not done right. But poll() doesn't
514 	 * have a notion of HUP in just one direction, and for a
515 	 * socket the read side is more interesting.
516 	 *
517 	 * Some poll() documentation says that EPOLLHUP is incompatible
518 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 	 * all. But careful, it tends to be safer to return too many
520 	 * bits than too few, and you can easily break real applications
521 	 * if you don't tell them that something has hung up!
522 	 *
523 	 * Check-me.
524 	 *
525 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 	 * our fs/select.c). It means that after we received EOF,
527 	 * poll always returns immediately, making impossible poll() on write()
528 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 	 * if and only if shutdown has been made in both directions.
530 	 * Actually, it is interesting to look how Solaris and DUX
531 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 	 * then we could set it on SND_SHUTDOWN. BTW examples given
533 	 * in Stevens' books assume exactly this behaviour, it explains
534 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
535 	 *
536 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 	 * blocking on fresh not-connected or disconnected socket. --ANK
538 	 */
539 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 		mask |= EPOLLHUP;
541 	if (sk->sk_shutdown & RCV_SHUTDOWN)
542 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543 
544 	/* Connected or passive Fast Open socket? */
545 	if (state != TCP_SYN_SENT &&
546 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 		int target = sock_rcvlowat(sk, 0, INT_MAX);
548 		u16 urg_data = READ_ONCE(tp->urg_data);
549 
550 		if (unlikely(urg_data) &&
551 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
552 		    !sock_flag(sk, SOCK_URGINLINE))
553 			target++;
554 
555 		if (tcp_stream_is_readable(sk, target))
556 			mask |= EPOLLIN | EPOLLRDNORM;
557 
558 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
559 			if (__sk_stream_is_writeable(sk, 1)) {
560 				mask |= EPOLLOUT | EPOLLWRNORM;
561 			} else {  /* send SIGIO later */
562 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
563 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
564 
565 				/* Race breaker. If space is freed after
566 				 * wspace test but before the flags are set,
567 				 * IO signal will be lost. Memory barrier
568 				 * pairs with the input side.
569 				 */
570 				smp_mb__after_atomic();
571 				if (__sk_stream_is_writeable(sk, 1))
572 					mask |= EPOLLOUT | EPOLLWRNORM;
573 			}
574 		} else
575 			mask |= EPOLLOUT | EPOLLWRNORM;
576 
577 		if (urg_data & TCP_URG_VALID)
578 			mask |= EPOLLPRI;
579 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
580 		/* Active TCP fastopen socket with defer_connect
581 		 * Return EPOLLOUT so application can call write()
582 		 * in order for kernel to generate SYN+data
583 		 */
584 		mask |= EPOLLOUT | EPOLLWRNORM;
585 	}
586 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
587 	smp_rmb();
588 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
589 		mask |= EPOLLERR;
590 
591 	return mask;
592 }
593 EXPORT_SYMBOL(tcp_poll);
594 
595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	int answ;
599 	bool slow;
600 
601 	switch (cmd) {
602 	case SIOCINQ:
603 		if (sk->sk_state == TCP_LISTEN)
604 			return -EINVAL;
605 
606 		slow = lock_sock_fast(sk);
607 		answ = tcp_inq(sk);
608 		unlock_sock_fast(sk, slow);
609 		break;
610 	case SIOCATMARK:
611 		answ = READ_ONCE(tp->urg_data) &&
612 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
613 		break;
614 	case SIOCOUTQ:
615 		if (sk->sk_state == TCP_LISTEN)
616 			return -EINVAL;
617 
618 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 			answ = 0;
620 		else
621 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
622 		break;
623 	case SIOCOUTQNSD:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) -
631 			       READ_ONCE(tp->snd_nxt);
632 		break;
633 	default:
634 		return -ENOIOCTLCMD;
635 	}
636 
637 	return put_user(answ, (int __user *)arg);
638 }
639 EXPORT_SYMBOL(tcp_ioctl);
640 
641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
642 {
643 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 	tp->pushed_seq = tp->write_seq;
645 }
646 
647 static inline bool forced_push(const struct tcp_sock *tp)
648 {
649 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 }
651 
652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
656 
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	__skb_header_release(skb);
660 	tcp_add_write_queue_tail(sk, skb);
661 	sk_wmem_queued_add(sk, skb->truesize);
662 	sk_mem_charge(sk, skb->truesize);
663 	if (tp->nonagle & TCP_NAGLE_PUSH)
664 		tp->nonagle &= ~TCP_NAGLE_PUSH;
665 
666 	tcp_slow_start_after_idle_check(sk);
667 }
668 
669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 	if (flags & MSG_OOB)
672 		tp->snd_up = tp->write_seq;
673 }
674 
675 /* If a not yet filled skb is pushed, do not send it if
676  * we have data packets in Qdisc or NIC queues :
677  * Because TX completion will happen shortly, it gives a chance
678  * to coalesce future sendmsg() payload into this skb, without
679  * need for a timer, and with no latency trade off.
680  * As packets containing data payload have a bigger truesize
681  * than pure acks (dataless) packets, the last checks prevent
682  * autocorking if we only have an ACK in Qdisc/NIC queues,
683  * or if TX completion was delayed after we processed ACK packet.
684  */
685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 				int size_goal)
687 {
688 	return skb->len < size_goal &&
689 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
690 	       !tcp_rtx_queue_empty(sk) &&
691 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
692 }
693 
694 void tcp_push(struct sock *sk, int flags, int mss_now,
695 	      int nonagle, int size_goal)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 	struct sk_buff *skb;
699 
700 	skb = tcp_write_queue_tail(sk);
701 	if (!skb)
702 		return;
703 	if (!(flags & MSG_MORE) || forced_push(tp))
704 		tcp_mark_push(tp, skb);
705 
706 	tcp_mark_urg(tp, flags);
707 
708 	if (tcp_should_autocork(sk, skb, size_goal)) {
709 
710 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
711 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
712 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
713 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
714 		}
715 		/* It is possible TX completion already happened
716 		 * before we set TSQ_THROTTLED.
717 		 */
718 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
719 			return;
720 	}
721 
722 	if (flags & MSG_MORE)
723 		nonagle = TCP_NAGLE_CORK;
724 
725 	__tcp_push_pending_frames(sk, mss_now, nonagle);
726 }
727 
728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
729 				unsigned int offset, size_t len)
730 {
731 	struct tcp_splice_state *tss = rd_desc->arg.data;
732 	int ret;
733 
734 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
735 			      min(rd_desc->count, len), tss->flags);
736 	if (ret > 0)
737 		rd_desc->count -= ret;
738 	return ret;
739 }
740 
741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
742 {
743 	/* Store TCP splice context information in read_descriptor_t. */
744 	read_descriptor_t rd_desc = {
745 		.arg.data = tss,
746 		.count	  = tss->len,
747 	};
748 
749 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
750 }
751 
752 /**
753  *  tcp_splice_read - splice data from TCP socket to a pipe
754  * @sock:	socket to splice from
755  * @ppos:	position (not valid)
756  * @pipe:	pipe to splice to
757  * @len:	number of bytes to splice
758  * @flags:	splice modifier flags
759  *
760  * Description:
761  *    Will read pages from given socket and fill them into a pipe.
762  *
763  **/
764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
765 			struct pipe_inode_info *pipe, size_t len,
766 			unsigned int flags)
767 {
768 	struct sock *sk = sock->sk;
769 	struct tcp_splice_state tss = {
770 		.pipe = pipe,
771 		.len = len,
772 		.flags = flags,
773 	};
774 	long timeo;
775 	ssize_t spliced;
776 	int ret;
777 
778 	sock_rps_record_flow(sk);
779 	/*
780 	 * We can't seek on a socket input
781 	 */
782 	if (unlikely(*ppos))
783 		return -ESPIPE;
784 
785 	ret = spliced = 0;
786 
787 	lock_sock(sk);
788 
789 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
790 	while (tss.len) {
791 		ret = __tcp_splice_read(sk, &tss);
792 		if (ret < 0)
793 			break;
794 		else if (!ret) {
795 			if (spliced)
796 				break;
797 			if (sock_flag(sk, SOCK_DONE))
798 				break;
799 			if (sk->sk_err) {
800 				ret = sock_error(sk);
801 				break;
802 			}
803 			if (sk->sk_shutdown & RCV_SHUTDOWN)
804 				break;
805 			if (sk->sk_state == TCP_CLOSE) {
806 				/*
807 				 * This occurs when user tries to read
808 				 * from never connected socket.
809 				 */
810 				ret = -ENOTCONN;
811 				break;
812 			}
813 			if (!timeo) {
814 				ret = -EAGAIN;
815 				break;
816 			}
817 			/* if __tcp_splice_read() got nothing while we have
818 			 * an skb in receive queue, we do not want to loop.
819 			 * This might happen with URG data.
820 			 */
821 			if (!skb_queue_empty(&sk->sk_receive_queue))
822 				break;
823 			sk_wait_data(sk, &timeo, NULL);
824 			if (signal_pending(current)) {
825 				ret = sock_intr_errno(timeo);
826 				break;
827 			}
828 			continue;
829 		}
830 		tss.len -= ret;
831 		spliced += ret;
832 
833 		if (!timeo)
834 			break;
835 		release_sock(sk);
836 		lock_sock(sk);
837 
838 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 		    signal_pending(current))
841 			break;
842 	}
843 
844 	release_sock(sk);
845 	sk_defer_free_flush(sk);
846 
847 	if (spliced)
848 		return spliced;
849 
850 	return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853 
854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 				     bool force_schedule)
856 {
857 	struct sk_buff *skb;
858 
859 	if (unlikely(tcp_under_memory_pressure(sk)))
860 		sk_mem_reclaim_partial(sk);
861 
862 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 	if (likely(skb)) {
864 		bool mem_scheduled;
865 
866 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
867 		if (force_schedule) {
868 			mem_scheduled = true;
869 			sk_forced_mem_schedule(sk, skb->truesize);
870 		} else {
871 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
872 		}
873 		if (likely(mem_scheduled)) {
874 			skb_reserve(skb, MAX_TCP_HEADER);
875 			skb->ip_summed = CHECKSUM_PARTIAL;
876 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 			return skb;
878 		}
879 		__kfree_skb(skb);
880 	} else {
881 		sk->sk_prot->enter_memory_pressure(sk);
882 		sk_stream_moderate_sndbuf(sk);
883 	}
884 	return NULL;
885 }
886 
887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
888 				       int large_allowed)
889 {
890 	struct tcp_sock *tp = tcp_sk(sk);
891 	u32 new_size_goal, size_goal;
892 
893 	if (!large_allowed)
894 		return mss_now;
895 
896 	/* Note : tcp_tso_autosize() will eventually split this later */
897 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
898 
899 	/* We try hard to avoid divides here */
900 	size_goal = tp->gso_segs * mss_now;
901 	if (unlikely(new_size_goal < size_goal ||
902 		     new_size_goal >= size_goal + mss_now)) {
903 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 				     sk->sk_gso_max_segs);
905 		size_goal = tp->gso_segs * mss_now;
906 	}
907 
908 	return max(size_goal, mss_now);
909 }
910 
911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 	int mss_now;
914 
915 	mss_now = tcp_current_mss(sk);
916 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917 
918 	return mss_now;
919 }
920 
921 /* In some cases, both sendpage() and sendmsg() could have added
922  * an skb to the write queue, but failed adding payload on it.
923  * We need to remove it to consume less memory, but more
924  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925  * users.
926  */
927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 	struct sk_buff *skb = tcp_write_queue_tail(sk);
930 
931 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 		tcp_unlink_write_queue(skb, sk);
933 		if (tcp_write_queue_empty(sk))
934 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 		tcp_wmem_free_skb(sk, skb);
936 	}
937 }
938 
939 /* skb changing from pure zc to mixed, must charge zc */
940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
941 {
942 	if (unlikely(skb_zcopy_pure(skb))) {
943 		u32 extra = skb->truesize -
944 			    SKB_TRUESIZE(skb_end_offset(skb));
945 
946 		if (!sk_wmem_schedule(sk, extra))
947 			return -ENOMEM;
948 
949 		sk_mem_charge(sk, extra);
950 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
951 	}
952 	return 0;
953 }
954 
955 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
956 				      struct page *page, int offset, size_t *size)
957 {
958 	struct sk_buff *skb = tcp_write_queue_tail(sk);
959 	struct tcp_sock *tp = tcp_sk(sk);
960 	bool can_coalesce;
961 	int copy, i;
962 
963 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
964 	    !tcp_skb_can_collapse_to(skb)) {
965 new_segment:
966 		if (!sk_stream_memory_free(sk))
967 			return NULL;
968 
969 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
970 					   tcp_rtx_and_write_queues_empty(sk));
971 		if (!skb)
972 			return NULL;
973 
974 #ifdef CONFIG_TLS_DEVICE
975 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
976 #endif
977 		tcp_skb_entail(sk, skb);
978 		copy = size_goal;
979 	}
980 
981 	if (copy > *size)
982 		copy = *size;
983 
984 	i = skb_shinfo(skb)->nr_frags;
985 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
986 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
987 		tcp_mark_push(tp, skb);
988 		goto new_segment;
989 	}
990 	if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy))
991 		return NULL;
992 
993 	if (can_coalesce) {
994 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
995 	} else {
996 		get_page(page);
997 		skb_fill_page_desc(skb, i, page, offset, copy);
998 	}
999 
1000 	if (!(flags & MSG_NO_SHARED_FRAGS))
1001 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1002 
1003 	skb->len += copy;
1004 	skb->data_len += copy;
1005 	skb->truesize += copy;
1006 	sk_wmem_queued_add(sk, copy);
1007 	sk_mem_charge(sk, copy);
1008 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1009 	TCP_SKB_CB(skb)->end_seq += copy;
1010 	tcp_skb_pcount_set(skb, 0);
1011 
1012 	*size = copy;
1013 	return skb;
1014 }
1015 
1016 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1017 			 size_t size, int flags)
1018 {
1019 	struct tcp_sock *tp = tcp_sk(sk);
1020 	int mss_now, size_goal;
1021 	int err;
1022 	ssize_t copied;
1023 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1024 
1025 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1026 	    WARN_ONCE(!sendpage_ok(page),
1027 		      "page must not be a Slab one and have page_count > 0"))
1028 		return -EINVAL;
1029 
1030 	/* Wait for a connection to finish. One exception is TCP Fast Open
1031 	 * (passive side) where data is allowed to be sent before a connection
1032 	 * is fully established.
1033 	 */
1034 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1035 	    !tcp_passive_fastopen(sk)) {
1036 		err = sk_stream_wait_connect(sk, &timeo);
1037 		if (err != 0)
1038 			goto out_err;
1039 	}
1040 
1041 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1042 
1043 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1044 	copied = 0;
1045 
1046 	err = -EPIPE;
1047 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1048 		goto out_err;
1049 
1050 	while (size > 0) {
1051 		struct sk_buff *skb;
1052 		size_t copy = size;
1053 
1054 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1055 		if (!skb)
1056 			goto wait_for_space;
1057 
1058 		if (!copied)
1059 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1060 
1061 		copied += copy;
1062 		offset += copy;
1063 		size -= copy;
1064 		if (!size)
1065 			goto out;
1066 
1067 		if (skb->len < size_goal || (flags & MSG_OOB))
1068 			continue;
1069 
1070 		if (forced_push(tp)) {
1071 			tcp_mark_push(tp, skb);
1072 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1073 		} else if (skb == tcp_send_head(sk))
1074 			tcp_push_one(sk, mss_now);
1075 		continue;
1076 
1077 wait_for_space:
1078 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1079 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1080 			 TCP_NAGLE_PUSH, size_goal);
1081 
1082 		err = sk_stream_wait_memory(sk, &timeo);
1083 		if (err != 0)
1084 			goto do_error;
1085 
1086 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1087 	}
1088 
1089 out:
1090 	if (copied) {
1091 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1092 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1093 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1094 	}
1095 	return copied;
1096 
1097 do_error:
1098 	tcp_remove_empty_skb(sk);
1099 	if (copied)
1100 		goto out;
1101 out_err:
1102 	/* make sure we wake any epoll edge trigger waiter */
1103 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1104 		sk->sk_write_space(sk);
1105 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1106 	}
1107 	return sk_stream_error(sk, flags, err);
1108 }
1109 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1110 
1111 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1112 			size_t size, int flags)
1113 {
1114 	if (!(sk->sk_route_caps & NETIF_F_SG))
1115 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1116 
1117 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1118 
1119 	return do_tcp_sendpages(sk, page, offset, size, flags);
1120 }
1121 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1122 
1123 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1124 		 size_t size, int flags)
1125 {
1126 	int ret;
1127 
1128 	lock_sock(sk);
1129 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1130 	release_sock(sk);
1131 
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(tcp_sendpage);
1135 
1136 void tcp_free_fastopen_req(struct tcp_sock *tp)
1137 {
1138 	if (tp->fastopen_req) {
1139 		kfree(tp->fastopen_req);
1140 		tp->fastopen_req = NULL;
1141 	}
1142 }
1143 
1144 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1145 				int *copied, size_t size,
1146 				struct ubuf_info *uarg)
1147 {
1148 	struct tcp_sock *tp = tcp_sk(sk);
1149 	struct inet_sock *inet = inet_sk(sk);
1150 	struct sockaddr *uaddr = msg->msg_name;
1151 	int err, flags;
1152 
1153 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1154 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1155 	     uaddr->sa_family == AF_UNSPEC))
1156 		return -EOPNOTSUPP;
1157 	if (tp->fastopen_req)
1158 		return -EALREADY; /* Another Fast Open is in progress */
1159 
1160 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1161 				   sk->sk_allocation);
1162 	if (unlikely(!tp->fastopen_req))
1163 		return -ENOBUFS;
1164 	tp->fastopen_req->data = msg;
1165 	tp->fastopen_req->size = size;
1166 	tp->fastopen_req->uarg = uarg;
1167 
1168 	if (inet->defer_connect) {
1169 		err = tcp_connect(sk);
1170 		/* Same failure procedure as in tcp_v4/6_connect */
1171 		if (err) {
1172 			tcp_set_state(sk, TCP_CLOSE);
1173 			inet->inet_dport = 0;
1174 			sk->sk_route_caps = 0;
1175 		}
1176 	}
1177 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1178 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1179 				    msg->msg_namelen, flags, 1);
1180 	/* fastopen_req could already be freed in __inet_stream_connect
1181 	 * if the connection times out or gets rst
1182 	 */
1183 	if (tp->fastopen_req) {
1184 		*copied = tp->fastopen_req->copied;
1185 		tcp_free_fastopen_req(tp);
1186 		inet->defer_connect = 0;
1187 	}
1188 	return err;
1189 }
1190 
1191 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1192 {
1193 	struct tcp_sock *tp = tcp_sk(sk);
1194 	struct ubuf_info *uarg = NULL;
1195 	struct sk_buff *skb;
1196 	struct sockcm_cookie sockc;
1197 	int flags, err, copied = 0;
1198 	int mss_now = 0, size_goal, copied_syn = 0;
1199 	int process_backlog = 0;
1200 	bool zc = false;
1201 	long timeo;
1202 
1203 	flags = msg->msg_flags;
1204 
1205 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1206 		skb = tcp_write_queue_tail(sk);
1207 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1208 		if (!uarg) {
1209 			err = -ENOBUFS;
1210 			goto out_err;
1211 		}
1212 
1213 		zc = sk->sk_route_caps & NETIF_F_SG;
1214 		if (!zc)
1215 			uarg->zerocopy = 0;
1216 	}
1217 
1218 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1219 	    !tp->repair) {
1220 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1221 		if (err == -EINPROGRESS && copied_syn > 0)
1222 			goto out;
1223 		else if (err)
1224 			goto out_err;
1225 	}
1226 
1227 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1228 
1229 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1230 
1231 	/* Wait for a connection to finish. One exception is TCP Fast Open
1232 	 * (passive side) where data is allowed to be sent before a connection
1233 	 * is fully established.
1234 	 */
1235 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1236 	    !tcp_passive_fastopen(sk)) {
1237 		err = sk_stream_wait_connect(sk, &timeo);
1238 		if (err != 0)
1239 			goto do_error;
1240 	}
1241 
1242 	if (unlikely(tp->repair)) {
1243 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1244 			copied = tcp_send_rcvq(sk, msg, size);
1245 			goto out_nopush;
1246 		}
1247 
1248 		err = -EINVAL;
1249 		if (tp->repair_queue == TCP_NO_QUEUE)
1250 			goto out_err;
1251 
1252 		/* 'common' sending to sendq */
1253 	}
1254 
1255 	sockcm_init(&sockc, sk);
1256 	if (msg->msg_controllen) {
1257 		err = sock_cmsg_send(sk, msg, &sockc);
1258 		if (unlikely(err)) {
1259 			err = -EINVAL;
1260 			goto out_err;
1261 		}
1262 	}
1263 
1264 	/* This should be in poll */
1265 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1266 
1267 	/* Ok commence sending. */
1268 	copied = 0;
1269 
1270 restart:
1271 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1272 
1273 	err = -EPIPE;
1274 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1275 		goto do_error;
1276 
1277 	while (msg_data_left(msg)) {
1278 		int copy = 0;
1279 
1280 		skb = tcp_write_queue_tail(sk);
1281 		if (skb)
1282 			copy = size_goal - skb->len;
1283 
1284 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1285 			bool first_skb;
1286 
1287 new_segment:
1288 			if (!sk_stream_memory_free(sk))
1289 				goto wait_for_space;
1290 
1291 			if (unlikely(process_backlog >= 16)) {
1292 				process_backlog = 0;
1293 				if (sk_flush_backlog(sk))
1294 					goto restart;
1295 			}
1296 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1297 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1298 						   first_skb);
1299 			if (!skb)
1300 				goto wait_for_space;
1301 
1302 			process_backlog++;
1303 
1304 			tcp_skb_entail(sk, skb);
1305 			copy = size_goal;
1306 
1307 			/* All packets are restored as if they have
1308 			 * already been sent. skb_mstamp_ns isn't set to
1309 			 * avoid wrong rtt estimation.
1310 			 */
1311 			if (tp->repair)
1312 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1313 		}
1314 
1315 		/* Try to append data to the end of skb. */
1316 		if (copy > msg_data_left(msg))
1317 			copy = msg_data_left(msg);
1318 
1319 		if (!zc) {
1320 			bool merge = true;
1321 			int i = skb_shinfo(skb)->nr_frags;
1322 			struct page_frag *pfrag = sk_page_frag(sk);
1323 
1324 			if (!sk_page_frag_refill(sk, pfrag))
1325 				goto wait_for_space;
1326 
1327 			if (!skb_can_coalesce(skb, i, pfrag->page,
1328 					      pfrag->offset)) {
1329 				if (i >= sysctl_max_skb_frags) {
1330 					tcp_mark_push(tp, skb);
1331 					goto new_segment;
1332 				}
1333 				merge = false;
1334 			}
1335 
1336 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1337 
1338 			if (tcp_downgrade_zcopy_pure(sk, skb) ||
1339 			    !sk_wmem_schedule(sk, copy))
1340 				goto wait_for_space;
1341 
1342 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343 						       pfrag->page,
1344 						       pfrag->offset,
1345 						       copy);
1346 			if (err)
1347 				goto do_error;
1348 
1349 			/* Update the skb. */
1350 			if (merge) {
1351 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352 			} else {
1353 				skb_fill_page_desc(skb, i, pfrag->page,
1354 						   pfrag->offset, copy);
1355 				page_ref_inc(pfrag->page);
1356 			}
1357 			pfrag->offset += copy;
1358 		} else {
1359 			/* First append to a fragless skb builds initial
1360 			 * pure zerocopy skb
1361 			 */
1362 			if (!skb->len)
1363 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1364 
1365 			if (!skb_zcopy_pure(skb)) {
1366 				if (!sk_wmem_schedule(sk, copy))
1367 					goto wait_for_space;
1368 			}
1369 
1370 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1371 			if (err == -EMSGSIZE || err == -EEXIST) {
1372 				tcp_mark_push(tp, skb);
1373 				goto new_segment;
1374 			}
1375 			if (err < 0)
1376 				goto do_error;
1377 			copy = err;
1378 		}
1379 
1380 		if (!copied)
1381 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1382 
1383 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1384 		TCP_SKB_CB(skb)->end_seq += copy;
1385 		tcp_skb_pcount_set(skb, 0);
1386 
1387 		copied += copy;
1388 		if (!msg_data_left(msg)) {
1389 			if (unlikely(flags & MSG_EOR))
1390 				TCP_SKB_CB(skb)->eor = 1;
1391 			goto out;
1392 		}
1393 
1394 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1395 			continue;
1396 
1397 		if (forced_push(tp)) {
1398 			tcp_mark_push(tp, skb);
1399 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1400 		} else if (skb == tcp_send_head(sk))
1401 			tcp_push_one(sk, mss_now);
1402 		continue;
1403 
1404 wait_for_space:
1405 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1406 		if (copied)
1407 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1408 				 TCP_NAGLE_PUSH, size_goal);
1409 
1410 		err = sk_stream_wait_memory(sk, &timeo);
1411 		if (err != 0)
1412 			goto do_error;
1413 
1414 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1415 	}
1416 
1417 out:
1418 	if (copied) {
1419 		tcp_tx_timestamp(sk, sockc.tsflags);
1420 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1421 	}
1422 out_nopush:
1423 	net_zcopy_put(uarg);
1424 	return copied + copied_syn;
1425 
1426 do_error:
1427 	tcp_remove_empty_skb(sk);
1428 
1429 	if (copied + copied_syn)
1430 		goto out;
1431 out_err:
1432 	net_zcopy_put_abort(uarg, true);
1433 	err = sk_stream_error(sk, flags, err);
1434 	/* make sure we wake any epoll edge trigger waiter */
1435 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1436 		sk->sk_write_space(sk);
1437 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1438 	}
1439 	return err;
1440 }
1441 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1442 
1443 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1444 {
1445 	int ret;
1446 
1447 	lock_sock(sk);
1448 	ret = tcp_sendmsg_locked(sk, msg, size);
1449 	release_sock(sk);
1450 
1451 	return ret;
1452 }
1453 EXPORT_SYMBOL(tcp_sendmsg);
1454 
1455 /*
1456  *	Handle reading urgent data. BSD has very simple semantics for
1457  *	this, no blocking and very strange errors 8)
1458  */
1459 
1460 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1461 {
1462 	struct tcp_sock *tp = tcp_sk(sk);
1463 
1464 	/* No URG data to read. */
1465 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1466 	    tp->urg_data == TCP_URG_READ)
1467 		return -EINVAL;	/* Yes this is right ! */
1468 
1469 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1470 		return -ENOTCONN;
1471 
1472 	if (tp->urg_data & TCP_URG_VALID) {
1473 		int err = 0;
1474 		char c = tp->urg_data;
1475 
1476 		if (!(flags & MSG_PEEK))
1477 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1478 
1479 		/* Read urgent data. */
1480 		msg->msg_flags |= MSG_OOB;
1481 
1482 		if (len > 0) {
1483 			if (!(flags & MSG_TRUNC))
1484 				err = memcpy_to_msg(msg, &c, 1);
1485 			len = 1;
1486 		} else
1487 			msg->msg_flags |= MSG_TRUNC;
1488 
1489 		return err ? -EFAULT : len;
1490 	}
1491 
1492 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1493 		return 0;
1494 
1495 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1496 	 * the available implementations agree in this case:
1497 	 * this call should never block, independent of the
1498 	 * blocking state of the socket.
1499 	 * Mike <pall@rz.uni-karlsruhe.de>
1500 	 */
1501 	return -EAGAIN;
1502 }
1503 
1504 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1505 {
1506 	struct sk_buff *skb;
1507 	int copied = 0, err = 0;
1508 
1509 	/* XXX -- need to support SO_PEEK_OFF */
1510 
1511 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1512 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1513 		if (err)
1514 			return err;
1515 		copied += skb->len;
1516 	}
1517 
1518 	skb_queue_walk(&sk->sk_write_queue, skb) {
1519 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1520 		if (err)
1521 			break;
1522 
1523 		copied += skb->len;
1524 	}
1525 
1526 	return err ?: copied;
1527 }
1528 
1529 /* Clean up the receive buffer for full frames taken by the user,
1530  * then send an ACK if necessary.  COPIED is the number of bytes
1531  * tcp_recvmsg has given to the user so far, it speeds up the
1532  * calculation of whether or not we must ACK for the sake of
1533  * a window update.
1534  */
1535 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1536 {
1537 	struct tcp_sock *tp = tcp_sk(sk);
1538 	bool time_to_ack = false;
1539 
1540 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1541 
1542 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1543 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1544 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1545 
1546 	if (inet_csk_ack_scheduled(sk)) {
1547 		const struct inet_connection_sock *icsk = inet_csk(sk);
1548 
1549 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1550 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1551 		    /*
1552 		     * If this read emptied read buffer, we send ACK, if
1553 		     * connection is not bidirectional, user drained
1554 		     * receive buffer and there was a small segment
1555 		     * in queue.
1556 		     */
1557 		    (copied > 0 &&
1558 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1559 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1560 		       !inet_csk_in_pingpong_mode(sk))) &&
1561 		      !atomic_read(&sk->sk_rmem_alloc)))
1562 			time_to_ack = true;
1563 	}
1564 
1565 	/* We send an ACK if we can now advertise a non-zero window
1566 	 * which has been raised "significantly".
1567 	 *
1568 	 * Even if window raised up to infinity, do not send window open ACK
1569 	 * in states, where we will not receive more. It is useless.
1570 	 */
1571 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1572 		__u32 rcv_window_now = tcp_receive_window(tp);
1573 
1574 		/* Optimize, __tcp_select_window() is not cheap. */
1575 		if (2*rcv_window_now <= tp->window_clamp) {
1576 			__u32 new_window = __tcp_select_window(sk);
1577 
1578 			/* Send ACK now, if this read freed lots of space
1579 			 * in our buffer. Certainly, new_window is new window.
1580 			 * We can advertise it now, if it is not less than current one.
1581 			 * "Lots" means "at least twice" here.
1582 			 */
1583 			if (new_window && new_window >= 2 * rcv_window_now)
1584 				time_to_ack = true;
1585 		}
1586 	}
1587 	if (time_to_ack)
1588 		tcp_send_ack(sk);
1589 }
1590 
1591 void __sk_defer_free_flush(struct sock *sk)
1592 {
1593 	struct llist_node *head;
1594 	struct sk_buff *skb, *n;
1595 
1596 	head = llist_del_all(&sk->defer_list);
1597 	llist_for_each_entry_safe(skb, n, head, ll_node) {
1598 		prefetch(n);
1599 		skb_mark_not_on_list(skb);
1600 		__kfree_skb(skb);
1601 	}
1602 }
1603 EXPORT_SYMBOL(__sk_defer_free_flush);
1604 
1605 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1606 {
1607 	__skb_unlink(skb, &sk->sk_receive_queue);
1608 	if (likely(skb->destructor == sock_rfree)) {
1609 		sock_rfree(skb);
1610 		skb->destructor = NULL;
1611 		skb->sk = NULL;
1612 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
1613 		    !llist_empty(&sk->defer_list)) {
1614 			llist_add(&skb->ll_node, &sk->defer_list);
1615 			return;
1616 		}
1617 	}
1618 	__kfree_skb(skb);
1619 }
1620 
1621 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1622 {
1623 	struct sk_buff *skb;
1624 	u32 offset;
1625 
1626 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1627 		offset = seq - TCP_SKB_CB(skb)->seq;
1628 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1629 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1630 			offset--;
1631 		}
1632 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1633 			*off = offset;
1634 			return skb;
1635 		}
1636 		/* This looks weird, but this can happen if TCP collapsing
1637 		 * splitted a fat GRO packet, while we released socket lock
1638 		 * in skb_splice_bits()
1639 		 */
1640 		tcp_eat_recv_skb(sk, skb);
1641 	}
1642 	return NULL;
1643 }
1644 
1645 /*
1646  * This routine provides an alternative to tcp_recvmsg() for routines
1647  * that would like to handle copying from skbuffs directly in 'sendfile'
1648  * fashion.
1649  * Note:
1650  *	- It is assumed that the socket was locked by the caller.
1651  *	- The routine does not block.
1652  *	- At present, there is no support for reading OOB data
1653  *	  or for 'peeking' the socket using this routine
1654  *	  (although both would be easy to implement).
1655  */
1656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1657 		  sk_read_actor_t recv_actor)
1658 {
1659 	struct sk_buff *skb;
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 	u32 seq = tp->copied_seq;
1662 	u32 offset;
1663 	int copied = 0;
1664 
1665 	if (sk->sk_state == TCP_LISTEN)
1666 		return -ENOTCONN;
1667 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1668 		if (offset < skb->len) {
1669 			int used;
1670 			size_t len;
1671 
1672 			len = skb->len - offset;
1673 			/* Stop reading if we hit a patch of urgent data */
1674 			if (unlikely(tp->urg_data)) {
1675 				u32 urg_offset = tp->urg_seq - seq;
1676 				if (urg_offset < len)
1677 					len = urg_offset;
1678 				if (!len)
1679 					break;
1680 			}
1681 			used = recv_actor(desc, skb, offset, len);
1682 			if (used <= 0) {
1683 				if (!copied)
1684 					copied = used;
1685 				break;
1686 			} else if (used <= len) {
1687 				seq += used;
1688 				copied += used;
1689 				offset += used;
1690 			}
1691 			/* If recv_actor drops the lock (e.g. TCP splice
1692 			 * receive) the skb pointer might be invalid when
1693 			 * getting here: tcp_collapse might have deleted it
1694 			 * while aggregating skbs from the socket queue.
1695 			 */
1696 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1697 			if (!skb)
1698 				break;
1699 			/* TCP coalescing might have appended data to the skb.
1700 			 * Try to splice more frags
1701 			 */
1702 			if (offset + 1 != skb->len)
1703 				continue;
1704 		}
1705 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1706 			tcp_eat_recv_skb(sk, skb);
1707 			++seq;
1708 			break;
1709 		}
1710 		tcp_eat_recv_skb(sk, skb);
1711 		if (!desc->count)
1712 			break;
1713 		WRITE_ONCE(tp->copied_seq, seq);
1714 	}
1715 	WRITE_ONCE(tp->copied_seq, seq);
1716 
1717 	tcp_rcv_space_adjust(sk);
1718 
1719 	/* Clean up data we have read: This will do ACK frames. */
1720 	if (copied > 0) {
1721 		tcp_recv_skb(sk, seq, &offset);
1722 		tcp_cleanup_rbuf(sk, copied);
1723 	}
1724 	return copied;
1725 }
1726 EXPORT_SYMBOL(tcp_read_sock);
1727 
1728 int tcp_peek_len(struct socket *sock)
1729 {
1730 	return tcp_inq(sock->sk);
1731 }
1732 EXPORT_SYMBOL(tcp_peek_len);
1733 
1734 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1735 int tcp_set_rcvlowat(struct sock *sk, int val)
1736 {
1737 	int cap;
1738 
1739 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1740 		cap = sk->sk_rcvbuf >> 1;
1741 	else
1742 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1743 	val = min(val, cap);
1744 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1745 
1746 	/* Check if we need to signal EPOLLIN right now */
1747 	tcp_data_ready(sk);
1748 
1749 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1750 		return 0;
1751 
1752 	val <<= 1;
1753 	if (val > sk->sk_rcvbuf) {
1754 		WRITE_ONCE(sk->sk_rcvbuf, val);
1755 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1756 	}
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(tcp_set_rcvlowat);
1760 
1761 void tcp_update_recv_tstamps(struct sk_buff *skb,
1762 			     struct scm_timestamping_internal *tss)
1763 {
1764 	if (skb->tstamp)
1765 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1766 	else
1767 		tss->ts[0] = (struct timespec64) {0};
1768 
1769 	if (skb_hwtstamps(skb)->hwtstamp)
1770 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1771 	else
1772 		tss->ts[2] = (struct timespec64) {0};
1773 }
1774 
1775 #ifdef CONFIG_MMU
1776 static const struct vm_operations_struct tcp_vm_ops = {
1777 };
1778 
1779 int tcp_mmap(struct file *file, struct socket *sock,
1780 	     struct vm_area_struct *vma)
1781 {
1782 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1783 		return -EPERM;
1784 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1785 
1786 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1787 	vma->vm_flags |= VM_MIXEDMAP;
1788 
1789 	vma->vm_ops = &tcp_vm_ops;
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(tcp_mmap);
1793 
1794 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1795 				       u32 *offset_frag)
1796 {
1797 	skb_frag_t *frag;
1798 
1799 	if (unlikely(offset_skb >= skb->len))
1800 		return NULL;
1801 
1802 	offset_skb -= skb_headlen(skb);
1803 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1804 		return NULL;
1805 
1806 	frag = skb_shinfo(skb)->frags;
1807 	while (offset_skb) {
1808 		if (skb_frag_size(frag) > offset_skb) {
1809 			*offset_frag = offset_skb;
1810 			return frag;
1811 		}
1812 		offset_skb -= skb_frag_size(frag);
1813 		++frag;
1814 	}
1815 	*offset_frag = 0;
1816 	return frag;
1817 }
1818 
1819 static bool can_map_frag(const skb_frag_t *frag)
1820 {
1821 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1822 }
1823 
1824 static int find_next_mappable_frag(const skb_frag_t *frag,
1825 				   int remaining_in_skb)
1826 {
1827 	int offset = 0;
1828 
1829 	if (likely(can_map_frag(frag)))
1830 		return 0;
1831 
1832 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1833 		offset += skb_frag_size(frag);
1834 		++frag;
1835 	}
1836 	return offset;
1837 }
1838 
1839 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1840 					  struct tcp_zerocopy_receive *zc,
1841 					  struct sk_buff *skb, u32 offset)
1842 {
1843 	u32 frag_offset, partial_frag_remainder = 0;
1844 	int mappable_offset;
1845 	skb_frag_t *frag;
1846 
1847 	/* worst case: skip to next skb. try to improve on this case below */
1848 	zc->recv_skip_hint = skb->len - offset;
1849 
1850 	/* Find the frag containing this offset (and how far into that frag) */
1851 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1852 	if (!frag)
1853 		return;
1854 
1855 	if (frag_offset) {
1856 		struct skb_shared_info *info = skb_shinfo(skb);
1857 
1858 		/* We read part of the last frag, must recvmsg() rest of skb. */
1859 		if (frag == &info->frags[info->nr_frags - 1])
1860 			return;
1861 
1862 		/* Else, we must at least read the remainder in this frag. */
1863 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1864 		zc->recv_skip_hint -= partial_frag_remainder;
1865 		++frag;
1866 	}
1867 
1868 	/* partial_frag_remainder: If part way through a frag, must read rest.
1869 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1870 	 * in partial_frag_remainder.
1871 	 */
1872 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1873 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1874 }
1875 
1876 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1877 			      int nonblock, int flags,
1878 			      struct scm_timestamping_internal *tss,
1879 			      int *cmsg_flags);
1880 static int receive_fallback_to_copy(struct sock *sk,
1881 				    struct tcp_zerocopy_receive *zc, int inq,
1882 				    struct scm_timestamping_internal *tss)
1883 {
1884 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1885 	struct msghdr msg = {};
1886 	struct iovec iov;
1887 	int err;
1888 
1889 	zc->length = 0;
1890 	zc->recv_skip_hint = 0;
1891 
1892 	if (copy_address != zc->copybuf_address)
1893 		return -EINVAL;
1894 
1895 	err = import_single_range(READ, (void __user *)copy_address,
1896 				  inq, &iov, &msg.msg_iter);
1897 	if (err)
1898 		return err;
1899 
1900 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1901 				 tss, &zc->msg_flags);
1902 	if (err < 0)
1903 		return err;
1904 
1905 	zc->copybuf_len = err;
1906 	if (likely(zc->copybuf_len)) {
1907 		struct sk_buff *skb;
1908 		u32 offset;
1909 
1910 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1911 		if (skb)
1912 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1913 	}
1914 	return 0;
1915 }
1916 
1917 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1918 				   struct sk_buff *skb, u32 copylen,
1919 				   u32 *offset, u32 *seq)
1920 {
1921 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1922 	struct msghdr msg = {};
1923 	struct iovec iov;
1924 	int err;
1925 
1926 	if (copy_address != zc->copybuf_address)
1927 		return -EINVAL;
1928 
1929 	err = import_single_range(READ, (void __user *)copy_address,
1930 				  copylen, &iov, &msg.msg_iter);
1931 	if (err)
1932 		return err;
1933 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1934 	if (err)
1935 		return err;
1936 	zc->recv_skip_hint -= copylen;
1937 	*offset += copylen;
1938 	*seq += copylen;
1939 	return (__s32)copylen;
1940 }
1941 
1942 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1943 				  struct sock *sk,
1944 				  struct sk_buff *skb,
1945 				  u32 *seq,
1946 				  s32 copybuf_len,
1947 				  struct scm_timestamping_internal *tss)
1948 {
1949 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1950 
1951 	if (!copylen)
1952 		return 0;
1953 	/* skb is null if inq < PAGE_SIZE. */
1954 	if (skb) {
1955 		offset = *seq - TCP_SKB_CB(skb)->seq;
1956 	} else {
1957 		skb = tcp_recv_skb(sk, *seq, &offset);
1958 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1959 			tcp_update_recv_tstamps(skb, tss);
1960 			zc->msg_flags |= TCP_CMSG_TS;
1961 		}
1962 	}
1963 
1964 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1965 						  seq);
1966 	return zc->copybuf_len < 0 ? 0 : copylen;
1967 }
1968 
1969 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1970 					      struct page **pending_pages,
1971 					      unsigned long pages_remaining,
1972 					      unsigned long *address,
1973 					      u32 *length,
1974 					      u32 *seq,
1975 					      struct tcp_zerocopy_receive *zc,
1976 					      u32 total_bytes_to_map,
1977 					      int err)
1978 {
1979 	/* At least one page did not map. Try zapping if we skipped earlier. */
1980 	if (err == -EBUSY &&
1981 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1982 		u32 maybe_zap_len;
1983 
1984 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1985 				*length + /* Mapped or pending */
1986 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1987 		zap_page_range(vma, *address, maybe_zap_len);
1988 		err = 0;
1989 	}
1990 
1991 	if (!err) {
1992 		unsigned long leftover_pages = pages_remaining;
1993 		int bytes_mapped;
1994 
1995 		/* We called zap_page_range, try to reinsert. */
1996 		err = vm_insert_pages(vma, *address,
1997 				      pending_pages,
1998 				      &pages_remaining);
1999 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2000 		*seq += bytes_mapped;
2001 		*address += bytes_mapped;
2002 	}
2003 	if (err) {
2004 		/* Either we were unable to zap, OR we zapped, retried an
2005 		 * insert, and still had an issue. Either ways, pages_remaining
2006 		 * is the number of pages we were unable to map, and we unroll
2007 		 * some state we speculatively touched before.
2008 		 */
2009 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2010 
2011 		*length -= bytes_not_mapped;
2012 		zc->recv_skip_hint += bytes_not_mapped;
2013 	}
2014 	return err;
2015 }
2016 
2017 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2018 					struct page **pages,
2019 					unsigned int pages_to_map,
2020 					unsigned long *address,
2021 					u32 *length,
2022 					u32 *seq,
2023 					struct tcp_zerocopy_receive *zc,
2024 					u32 total_bytes_to_map)
2025 {
2026 	unsigned long pages_remaining = pages_to_map;
2027 	unsigned int pages_mapped;
2028 	unsigned int bytes_mapped;
2029 	int err;
2030 
2031 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2032 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2033 	bytes_mapped = PAGE_SIZE * pages_mapped;
2034 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2035 	 * mapping (some but not all of the pages).
2036 	 */
2037 	*seq += bytes_mapped;
2038 	*address += bytes_mapped;
2039 
2040 	if (likely(!err))
2041 		return 0;
2042 
2043 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2044 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2045 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2046 		err);
2047 }
2048 
2049 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2050 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2051 				      struct tcp_zerocopy_receive *zc,
2052 				      struct scm_timestamping_internal *tss)
2053 {
2054 	unsigned long msg_control_addr;
2055 	struct msghdr cmsg_dummy;
2056 
2057 	msg_control_addr = (unsigned long)zc->msg_control;
2058 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2059 	cmsg_dummy.msg_controllen =
2060 		(__kernel_size_t)zc->msg_controllen;
2061 	cmsg_dummy.msg_flags = in_compat_syscall()
2062 		? MSG_CMSG_COMPAT : 0;
2063 	cmsg_dummy.msg_control_is_user = true;
2064 	zc->msg_flags = 0;
2065 	if (zc->msg_control == msg_control_addr &&
2066 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2067 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2068 		zc->msg_control = (__u64)
2069 			((uintptr_t)cmsg_dummy.msg_control);
2070 		zc->msg_controllen =
2071 			(__u64)cmsg_dummy.msg_controllen;
2072 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2073 	}
2074 }
2075 
2076 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2077 static int tcp_zerocopy_receive(struct sock *sk,
2078 				struct tcp_zerocopy_receive *zc,
2079 				struct scm_timestamping_internal *tss)
2080 {
2081 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2082 	unsigned long address = (unsigned long)zc->address;
2083 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2084 	s32 copybuf_len = zc->copybuf_len;
2085 	struct tcp_sock *tp = tcp_sk(sk);
2086 	const skb_frag_t *frags = NULL;
2087 	unsigned int pages_to_map = 0;
2088 	struct vm_area_struct *vma;
2089 	struct sk_buff *skb = NULL;
2090 	u32 seq = tp->copied_seq;
2091 	u32 total_bytes_to_map;
2092 	int inq = tcp_inq(sk);
2093 	int ret;
2094 
2095 	zc->copybuf_len = 0;
2096 	zc->msg_flags = 0;
2097 
2098 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2099 		return -EINVAL;
2100 
2101 	if (sk->sk_state == TCP_LISTEN)
2102 		return -ENOTCONN;
2103 
2104 	sock_rps_record_flow(sk);
2105 
2106 	if (inq && inq <= copybuf_len)
2107 		return receive_fallback_to_copy(sk, zc, inq, tss);
2108 
2109 	if (inq < PAGE_SIZE) {
2110 		zc->length = 0;
2111 		zc->recv_skip_hint = inq;
2112 		if (!inq && sock_flag(sk, SOCK_DONE))
2113 			return -EIO;
2114 		return 0;
2115 	}
2116 
2117 	mmap_read_lock(current->mm);
2118 
2119 	vma = vma_lookup(current->mm, address);
2120 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2121 		mmap_read_unlock(current->mm);
2122 		return -EINVAL;
2123 	}
2124 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2125 	avail_len = min_t(u32, vma_len, inq);
2126 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2127 	if (total_bytes_to_map) {
2128 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2129 			zap_page_range(vma, address, total_bytes_to_map);
2130 		zc->length = total_bytes_to_map;
2131 		zc->recv_skip_hint = 0;
2132 	} else {
2133 		zc->length = avail_len;
2134 		zc->recv_skip_hint = avail_len;
2135 	}
2136 	ret = 0;
2137 	while (length + PAGE_SIZE <= zc->length) {
2138 		int mappable_offset;
2139 		struct page *page;
2140 
2141 		if (zc->recv_skip_hint < PAGE_SIZE) {
2142 			u32 offset_frag;
2143 
2144 			if (skb) {
2145 				if (zc->recv_skip_hint > 0)
2146 					break;
2147 				skb = skb->next;
2148 				offset = seq - TCP_SKB_CB(skb)->seq;
2149 			} else {
2150 				skb = tcp_recv_skb(sk, seq, &offset);
2151 			}
2152 
2153 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2154 				tcp_update_recv_tstamps(skb, tss);
2155 				zc->msg_flags |= TCP_CMSG_TS;
2156 			}
2157 			zc->recv_skip_hint = skb->len - offset;
2158 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2159 			if (!frags || offset_frag)
2160 				break;
2161 		}
2162 
2163 		mappable_offset = find_next_mappable_frag(frags,
2164 							  zc->recv_skip_hint);
2165 		if (mappable_offset) {
2166 			zc->recv_skip_hint = mappable_offset;
2167 			break;
2168 		}
2169 		page = skb_frag_page(frags);
2170 		prefetchw(page);
2171 		pages[pages_to_map++] = page;
2172 		length += PAGE_SIZE;
2173 		zc->recv_skip_hint -= PAGE_SIZE;
2174 		frags++;
2175 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2176 		    zc->recv_skip_hint < PAGE_SIZE) {
2177 			/* Either full batch, or we're about to go to next skb
2178 			 * (and we cannot unroll failed ops across skbs).
2179 			 */
2180 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2181 							   pages_to_map,
2182 							   &address, &length,
2183 							   &seq, zc,
2184 							   total_bytes_to_map);
2185 			if (ret)
2186 				goto out;
2187 			pages_to_map = 0;
2188 		}
2189 	}
2190 	if (pages_to_map) {
2191 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2192 						   &address, &length, &seq,
2193 						   zc, total_bytes_to_map);
2194 	}
2195 out:
2196 	mmap_read_unlock(current->mm);
2197 	/* Try to copy straggler data. */
2198 	if (!ret)
2199 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2200 
2201 	if (length + copylen) {
2202 		WRITE_ONCE(tp->copied_seq, seq);
2203 		tcp_rcv_space_adjust(sk);
2204 
2205 		/* Clean up data we have read: This will do ACK frames. */
2206 		tcp_recv_skb(sk, seq, &offset);
2207 		tcp_cleanup_rbuf(sk, length + copylen);
2208 		ret = 0;
2209 		if (length == zc->length)
2210 			zc->recv_skip_hint = 0;
2211 	} else {
2212 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2213 			ret = -EIO;
2214 	}
2215 	zc->length = length;
2216 	return ret;
2217 }
2218 #endif
2219 
2220 /* Similar to __sock_recv_timestamp, but does not require an skb */
2221 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2222 			struct scm_timestamping_internal *tss)
2223 {
2224 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2225 	bool has_timestamping = false;
2226 
2227 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2228 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2229 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2230 				if (new_tstamp) {
2231 					struct __kernel_timespec kts = {
2232 						.tv_sec = tss->ts[0].tv_sec,
2233 						.tv_nsec = tss->ts[0].tv_nsec,
2234 					};
2235 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2236 						 sizeof(kts), &kts);
2237 				} else {
2238 					struct __kernel_old_timespec ts_old = {
2239 						.tv_sec = tss->ts[0].tv_sec,
2240 						.tv_nsec = tss->ts[0].tv_nsec,
2241 					};
2242 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2243 						 sizeof(ts_old), &ts_old);
2244 				}
2245 			} else {
2246 				if (new_tstamp) {
2247 					struct __kernel_sock_timeval stv = {
2248 						.tv_sec = tss->ts[0].tv_sec,
2249 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2250 					};
2251 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2252 						 sizeof(stv), &stv);
2253 				} else {
2254 					struct __kernel_old_timeval tv = {
2255 						.tv_sec = tss->ts[0].tv_sec,
2256 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2257 					};
2258 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2259 						 sizeof(tv), &tv);
2260 				}
2261 			}
2262 		}
2263 
2264 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2265 			has_timestamping = true;
2266 		else
2267 			tss->ts[0] = (struct timespec64) {0};
2268 	}
2269 
2270 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2271 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2272 			has_timestamping = true;
2273 		else
2274 			tss->ts[2] = (struct timespec64) {0};
2275 	}
2276 
2277 	if (has_timestamping) {
2278 		tss->ts[1] = (struct timespec64) {0};
2279 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2280 			put_cmsg_scm_timestamping64(msg, tss);
2281 		else
2282 			put_cmsg_scm_timestamping(msg, tss);
2283 	}
2284 }
2285 
2286 static int tcp_inq_hint(struct sock *sk)
2287 {
2288 	const struct tcp_sock *tp = tcp_sk(sk);
2289 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2290 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2291 	int inq;
2292 
2293 	inq = rcv_nxt - copied_seq;
2294 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2295 		lock_sock(sk);
2296 		inq = tp->rcv_nxt - tp->copied_seq;
2297 		release_sock(sk);
2298 	}
2299 	/* After receiving a FIN, tell the user-space to continue reading
2300 	 * by returning a non-zero inq.
2301 	 */
2302 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2303 		inq = 1;
2304 	return inq;
2305 }
2306 
2307 /*
2308  *	This routine copies from a sock struct into the user buffer.
2309  *
2310  *	Technical note: in 2.3 we work on _locked_ socket, so that
2311  *	tricks with *seq access order and skb->users are not required.
2312  *	Probably, code can be easily improved even more.
2313  */
2314 
2315 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2316 			      int nonblock, int flags,
2317 			      struct scm_timestamping_internal *tss,
2318 			      int *cmsg_flags)
2319 {
2320 	struct tcp_sock *tp = tcp_sk(sk);
2321 	int copied = 0;
2322 	u32 peek_seq;
2323 	u32 *seq;
2324 	unsigned long used;
2325 	int err;
2326 	int target;		/* Read at least this many bytes */
2327 	long timeo;
2328 	struct sk_buff *skb, *last;
2329 	u32 urg_hole = 0;
2330 
2331 	err = -ENOTCONN;
2332 	if (sk->sk_state == TCP_LISTEN)
2333 		goto out;
2334 
2335 	if (tp->recvmsg_inq)
2336 		*cmsg_flags = TCP_CMSG_INQ;
2337 	timeo = sock_rcvtimeo(sk, nonblock);
2338 
2339 	/* Urgent data needs to be handled specially. */
2340 	if (flags & MSG_OOB)
2341 		goto recv_urg;
2342 
2343 	if (unlikely(tp->repair)) {
2344 		err = -EPERM;
2345 		if (!(flags & MSG_PEEK))
2346 			goto out;
2347 
2348 		if (tp->repair_queue == TCP_SEND_QUEUE)
2349 			goto recv_sndq;
2350 
2351 		err = -EINVAL;
2352 		if (tp->repair_queue == TCP_NO_QUEUE)
2353 			goto out;
2354 
2355 		/* 'common' recv queue MSG_PEEK-ing */
2356 	}
2357 
2358 	seq = &tp->copied_seq;
2359 	if (flags & MSG_PEEK) {
2360 		peek_seq = tp->copied_seq;
2361 		seq = &peek_seq;
2362 	}
2363 
2364 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2365 
2366 	do {
2367 		u32 offset;
2368 
2369 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2370 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2371 			if (copied)
2372 				break;
2373 			if (signal_pending(current)) {
2374 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2375 				break;
2376 			}
2377 		}
2378 
2379 		/* Next get a buffer. */
2380 
2381 		last = skb_peek_tail(&sk->sk_receive_queue);
2382 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2383 			last = skb;
2384 			/* Now that we have two receive queues this
2385 			 * shouldn't happen.
2386 			 */
2387 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2388 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2389 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2390 				 flags))
2391 				break;
2392 
2393 			offset = *seq - TCP_SKB_CB(skb)->seq;
2394 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2395 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2396 				offset--;
2397 			}
2398 			if (offset < skb->len)
2399 				goto found_ok_skb;
2400 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2401 				goto found_fin_ok;
2402 			WARN(!(flags & MSG_PEEK),
2403 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2404 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2405 		}
2406 
2407 		/* Well, if we have backlog, try to process it now yet. */
2408 
2409 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2410 			break;
2411 
2412 		if (copied) {
2413 			if (!timeo ||
2414 			    sk->sk_err ||
2415 			    sk->sk_state == TCP_CLOSE ||
2416 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2417 			    signal_pending(current))
2418 				break;
2419 		} else {
2420 			if (sock_flag(sk, SOCK_DONE))
2421 				break;
2422 
2423 			if (sk->sk_err) {
2424 				copied = sock_error(sk);
2425 				break;
2426 			}
2427 
2428 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2429 				break;
2430 
2431 			if (sk->sk_state == TCP_CLOSE) {
2432 				/* This occurs when user tries to read
2433 				 * from never connected socket.
2434 				 */
2435 				copied = -ENOTCONN;
2436 				break;
2437 			}
2438 
2439 			if (!timeo) {
2440 				copied = -EAGAIN;
2441 				break;
2442 			}
2443 
2444 			if (signal_pending(current)) {
2445 				copied = sock_intr_errno(timeo);
2446 				break;
2447 			}
2448 		}
2449 
2450 		if (copied >= target) {
2451 			/* Do not sleep, just process backlog. */
2452 			__sk_flush_backlog(sk);
2453 		} else {
2454 			tcp_cleanup_rbuf(sk, copied);
2455 			sk_defer_free_flush(sk);
2456 			sk_wait_data(sk, &timeo, last);
2457 		}
2458 
2459 		if ((flags & MSG_PEEK) &&
2460 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2461 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2462 					    current->comm,
2463 					    task_pid_nr(current));
2464 			peek_seq = tp->copied_seq;
2465 		}
2466 		continue;
2467 
2468 found_ok_skb:
2469 		/* Ok so how much can we use? */
2470 		used = skb->len - offset;
2471 		if (len < used)
2472 			used = len;
2473 
2474 		/* Do we have urgent data here? */
2475 		if (unlikely(tp->urg_data)) {
2476 			u32 urg_offset = tp->urg_seq - *seq;
2477 			if (urg_offset < used) {
2478 				if (!urg_offset) {
2479 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2480 						WRITE_ONCE(*seq, *seq + 1);
2481 						urg_hole++;
2482 						offset++;
2483 						used--;
2484 						if (!used)
2485 							goto skip_copy;
2486 					}
2487 				} else
2488 					used = urg_offset;
2489 			}
2490 		}
2491 
2492 		if (!(flags & MSG_TRUNC)) {
2493 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2494 			if (err) {
2495 				/* Exception. Bailout! */
2496 				if (!copied)
2497 					copied = -EFAULT;
2498 				break;
2499 			}
2500 		}
2501 
2502 		WRITE_ONCE(*seq, *seq + used);
2503 		copied += used;
2504 		len -= used;
2505 
2506 		tcp_rcv_space_adjust(sk);
2507 
2508 skip_copy:
2509 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2510 			WRITE_ONCE(tp->urg_data, 0);
2511 			tcp_fast_path_check(sk);
2512 		}
2513 
2514 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2515 			tcp_update_recv_tstamps(skb, tss);
2516 			*cmsg_flags |= TCP_CMSG_TS;
2517 		}
2518 
2519 		if (used + offset < skb->len)
2520 			continue;
2521 
2522 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2523 			goto found_fin_ok;
2524 		if (!(flags & MSG_PEEK))
2525 			tcp_eat_recv_skb(sk, skb);
2526 		continue;
2527 
2528 found_fin_ok:
2529 		/* Process the FIN. */
2530 		WRITE_ONCE(*seq, *seq + 1);
2531 		if (!(flags & MSG_PEEK))
2532 			tcp_eat_recv_skb(sk, skb);
2533 		break;
2534 	} while (len > 0);
2535 
2536 	/* According to UNIX98, msg_name/msg_namelen are ignored
2537 	 * on connected socket. I was just happy when found this 8) --ANK
2538 	 */
2539 
2540 	/* Clean up data we have read: This will do ACK frames. */
2541 	tcp_cleanup_rbuf(sk, copied);
2542 	return copied;
2543 
2544 out:
2545 	return err;
2546 
2547 recv_urg:
2548 	err = tcp_recv_urg(sk, msg, len, flags);
2549 	goto out;
2550 
2551 recv_sndq:
2552 	err = tcp_peek_sndq(sk, msg, len);
2553 	goto out;
2554 }
2555 
2556 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2557 		int flags, int *addr_len)
2558 {
2559 	int cmsg_flags = 0, ret, inq;
2560 	struct scm_timestamping_internal tss;
2561 
2562 	if (unlikely(flags & MSG_ERRQUEUE))
2563 		return inet_recv_error(sk, msg, len, addr_len);
2564 
2565 	if (sk_can_busy_loop(sk) &&
2566 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2567 	    sk->sk_state == TCP_ESTABLISHED)
2568 		sk_busy_loop(sk, nonblock);
2569 
2570 	lock_sock(sk);
2571 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2572 				 &cmsg_flags);
2573 	release_sock(sk);
2574 	sk_defer_free_flush(sk);
2575 
2576 	if (cmsg_flags && ret >= 0) {
2577 		if (cmsg_flags & TCP_CMSG_TS)
2578 			tcp_recv_timestamp(msg, sk, &tss);
2579 		if (cmsg_flags & TCP_CMSG_INQ) {
2580 			inq = tcp_inq_hint(sk);
2581 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2582 		}
2583 	}
2584 	return ret;
2585 }
2586 EXPORT_SYMBOL(tcp_recvmsg);
2587 
2588 void tcp_set_state(struct sock *sk, int state)
2589 {
2590 	int oldstate = sk->sk_state;
2591 
2592 	/* We defined a new enum for TCP states that are exported in BPF
2593 	 * so as not force the internal TCP states to be frozen. The
2594 	 * following checks will detect if an internal state value ever
2595 	 * differs from the BPF value. If this ever happens, then we will
2596 	 * need to remap the internal value to the BPF value before calling
2597 	 * tcp_call_bpf_2arg.
2598 	 */
2599 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2600 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2601 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2602 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2603 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2604 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2605 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2606 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2607 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2608 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2609 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2610 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2611 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2612 
2613 	/* bpf uapi header bpf.h defines an anonymous enum with values
2614 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2615 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2616 	 * But clang built vmlinux does not have this enum in DWARF
2617 	 * since clang removes the above code before generating IR/debuginfo.
2618 	 * Let us explicitly emit the type debuginfo to ensure the
2619 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2620 	 * regardless of which compiler is used.
2621 	 */
2622 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2623 
2624 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2625 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2626 
2627 	switch (state) {
2628 	case TCP_ESTABLISHED:
2629 		if (oldstate != TCP_ESTABLISHED)
2630 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2631 		break;
2632 
2633 	case TCP_CLOSE:
2634 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2635 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2636 
2637 		sk->sk_prot->unhash(sk);
2638 		if (inet_csk(sk)->icsk_bind_hash &&
2639 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2640 			inet_put_port(sk);
2641 		fallthrough;
2642 	default:
2643 		if (oldstate == TCP_ESTABLISHED)
2644 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2645 	}
2646 
2647 	/* Change state AFTER socket is unhashed to avoid closed
2648 	 * socket sitting in hash tables.
2649 	 */
2650 	inet_sk_state_store(sk, state);
2651 }
2652 EXPORT_SYMBOL_GPL(tcp_set_state);
2653 
2654 /*
2655  *	State processing on a close. This implements the state shift for
2656  *	sending our FIN frame. Note that we only send a FIN for some
2657  *	states. A shutdown() may have already sent the FIN, or we may be
2658  *	closed.
2659  */
2660 
2661 static const unsigned char new_state[16] = {
2662   /* current state:        new state:      action:	*/
2663   [0 /* (Invalid) */]	= TCP_CLOSE,
2664   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2665   [TCP_SYN_SENT]	= TCP_CLOSE,
2666   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2667   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2668   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2669   [TCP_TIME_WAIT]	= TCP_CLOSE,
2670   [TCP_CLOSE]		= TCP_CLOSE,
2671   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2672   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2673   [TCP_LISTEN]		= TCP_CLOSE,
2674   [TCP_CLOSING]		= TCP_CLOSING,
2675   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2676 };
2677 
2678 static int tcp_close_state(struct sock *sk)
2679 {
2680 	int next = (int)new_state[sk->sk_state];
2681 	int ns = next & TCP_STATE_MASK;
2682 
2683 	tcp_set_state(sk, ns);
2684 
2685 	return next & TCP_ACTION_FIN;
2686 }
2687 
2688 /*
2689  *	Shutdown the sending side of a connection. Much like close except
2690  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2691  */
2692 
2693 void tcp_shutdown(struct sock *sk, int how)
2694 {
2695 	/*	We need to grab some memory, and put together a FIN,
2696 	 *	and then put it into the queue to be sent.
2697 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2698 	 */
2699 	if (!(how & SEND_SHUTDOWN))
2700 		return;
2701 
2702 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2703 	if ((1 << sk->sk_state) &
2704 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2705 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2706 		/* Clear out any half completed packets.  FIN if needed. */
2707 		if (tcp_close_state(sk))
2708 			tcp_send_fin(sk);
2709 	}
2710 }
2711 EXPORT_SYMBOL(tcp_shutdown);
2712 
2713 int tcp_orphan_count_sum(void)
2714 {
2715 	int i, total = 0;
2716 
2717 	for_each_possible_cpu(i)
2718 		total += per_cpu(tcp_orphan_count, i);
2719 
2720 	return max(total, 0);
2721 }
2722 
2723 static int tcp_orphan_cache;
2724 static struct timer_list tcp_orphan_timer;
2725 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2726 
2727 static void tcp_orphan_update(struct timer_list *unused)
2728 {
2729 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2730 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2731 }
2732 
2733 static bool tcp_too_many_orphans(int shift)
2734 {
2735 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2736 }
2737 
2738 bool tcp_check_oom(struct sock *sk, int shift)
2739 {
2740 	bool too_many_orphans, out_of_socket_memory;
2741 
2742 	too_many_orphans = tcp_too_many_orphans(shift);
2743 	out_of_socket_memory = tcp_out_of_memory(sk);
2744 
2745 	if (too_many_orphans)
2746 		net_info_ratelimited("too many orphaned sockets\n");
2747 	if (out_of_socket_memory)
2748 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2749 	return too_many_orphans || out_of_socket_memory;
2750 }
2751 
2752 void __tcp_close(struct sock *sk, long timeout)
2753 {
2754 	struct sk_buff *skb;
2755 	int data_was_unread = 0;
2756 	int state;
2757 
2758 	sk->sk_shutdown = SHUTDOWN_MASK;
2759 
2760 	if (sk->sk_state == TCP_LISTEN) {
2761 		tcp_set_state(sk, TCP_CLOSE);
2762 
2763 		/* Special case. */
2764 		inet_csk_listen_stop(sk);
2765 
2766 		goto adjudge_to_death;
2767 	}
2768 
2769 	/*  We need to flush the recv. buffs.  We do this only on the
2770 	 *  descriptor close, not protocol-sourced closes, because the
2771 	 *  reader process may not have drained the data yet!
2772 	 */
2773 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2774 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2775 
2776 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2777 			len--;
2778 		data_was_unread += len;
2779 		__kfree_skb(skb);
2780 	}
2781 
2782 	sk_mem_reclaim(sk);
2783 
2784 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2785 	if (sk->sk_state == TCP_CLOSE)
2786 		goto adjudge_to_death;
2787 
2788 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2789 	 * data was lost. To witness the awful effects of the old behavior of
2790 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2791 	 * GET in an FTP client, suspend the process, wait for the client to
2792 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2793 	 * Note: timeout is always zero in such a case.
2794 	 */
2795 	if (unlikely(tcp_sk(sk)->repair)) {
2796 		sk->sk_prot->disconnect(sk, 0);
2797 	} else if (data_was_unread) {
2798 		/* Unread data was tossed, zap the connection. */
2799 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2800 		tcp_set_state(sk, TCP_CLOSE);
2801 		tcp_send_active_reset(sk, sk->sk_allocation);
2802 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2803 		/* Check zero linger _after_ checking for unread data. */
2804 		sk->sk_prot->disconnect(sk, 0);
2805 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2806 	} else if (tcp_close_state(sk)) {
2807 		/* We FIN if the application ate all the data before
2808 		 * zapping the connection.
2809 		 */
2810 
2811 		/* RED-PEN. Formally speaking, we have broken TCP state
2812 		 * machine. State transitions:
2813 		 *
2814 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2815 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2816 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2817 		 *
2818 		 * are legal only when FIN has been sent (i.e. in window),
2819 		 * rather than queued out of window. Purists blame.
2820 		 *
2821 		 * F.e. "RFC state" is ESTABLISHED,
2822 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2823 		 *
2824 		 * The visible declinations are that sometimes
2825 		 * we enter time-wait state, when it is not required really
2826 		 * (harmless), do not send active resets, when they are
2827 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2828 		 * they look as CLOSING or LAST_ACK for Linux)
2829 		 * Probably, I missed some more holelets.
2830 		 * 						--ANK
2831 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2832 		 * in a single packet! (May consider it later but will
2833 		 * probably need API support or TCP_CORK SYN-ACK until
2834 		 * data is written and socket is closed.)
2835 		 */
2836 		tcp_send_fin(sk);
2837 	}
2838 
2839 	sk_stream_wait_close(sk, timeout);
2840 
2841 adjudge_to_death:
2842 	state = sk->sk_state;
2843 	sock_hold(sk);
2844 	sock_orphan(sk);
2845 
2846 	local_bh_disable();
2847 	bh_lock_sock(sk);
2848 	/* remove backlog if any, without releasing ownership. */
2849 	__release_sock(sk);
2850 
2851 	this_cpu_inc(tcp_orphan_count);
2852 
2853 	/* Have we already been destroyed by a softirq or backlog? */
2854 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2855 		goto out;
2856 
2857 	/*	This is a (useful) BSD violating of the RFC. There is a
2858 	 *	problem with TCP as specified in that the other end could
2859 	 *	keep a socket open forever with no application left this end.
2860 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2861 	 *	our end. If they send after that then tough - BUT: long enough
2862 	 *	that we won't make the old 4*rto = almost no time - whoops
2863 	 *	reset mistake.
2864 	 *
2865 	 *	Nope, it was not mistake. It is really desired behaviour
2866 	 *	f.e. on http servers, when such sockets are useless, but
2867 	 *	consume significant resources. Let's do it with special
2868 	 *	linger2	option.					--ANK
2869 	 */
2870 
2871 	if (sk->sk_state == TCP_FIN_WAIT2) {
2872 		struct tcp_sock *tp = tcp_sk(sk);
2873 		if (tp->linger2 < 0) {
2874 			tcp_set_state(sk, TCP_CLOSE);
2875 			tcp_send_active_reset(sk, GFP_ATOMIC);
2876 			__NET_INC_STATS(sock_net(sk),
2877 					LINUX_MIB_TCPABORTONLINGER);
2878 		} else {
2879 			const int tmo = tcp_fin_time(sk);
2880 
2881 			if (tmo > TCP_TIMEWAIT_LEN) {
2882 				inet_csk_reset_keepalive_timer(sk,
2883 						tmo - TCP_TIMEWAIT_LEN);
2884 			} else {
2885 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2886 				goto out;
2887 			}
2888 		}
2889 	}
2890 	if (sk->sk_state != TCP_CLOSE) {
2891 		sk_mem_reclaim(sk);
2892 		if (tcp_check_oom(sk, 0)) {
2893 			tcp_set_state(sk, TCP_CLOSE);
2894 			tcp_send_active_reset(sk, GFP_ATOMIC);
2895 			__NET_INC_STATS(sock_net(sk),
2896 					LINUX_MIB_TCPABORTONMEMORY);
2897 		} else if (!check_net(sock_net(sk))) {
2898 			/* Not possible to send reset; just close */
2899 			tcp_set_state(sk, TCP_CLOSE);
2900 		}
2901 	}
2902 
2903 	if (sk->sk_state == TCP_CLOSE) {
2904 		struct request_sock *req;
2905 
2906 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2907 						lockdep_sock_is_held(sk));
2908 		/* We could get here with a non-NULL req if the socket is
2909 		 * aborted (e.g., closed with unread data) before 3WHS
2910 		 * finishes.
2911 		 */
2912 		if (req)
2913 			reqsk_fastopen_remove(sk, req, false);
2914 		inet_csk_destroy_sock(sk);
2915 	}
2916 	/* Otherwise, socket is reprieved until protocol close. */
2917 
2918 out:
2919 	bh_unlock_sock(sk);
2920 	local_bh_enable();
2921 }
2922 
2923 void tcp_close(struct sock *sk, long timeout)
2924 {
2925 	lock_sock(sk);
2926 	__tcp_close(sk, timeout);
2927 	release_sock(sk);
2928 	sock_put(sk);
2929 }
2930 EXPORT_SYMBOL(tcp_close);
2931 
2932 /* These states need RST on ABORT according to RFC793 */
2933 
2934 static inline bool tcp_need_reset(int state)
2935 {
2936 	return (1 << state) &
2937 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2938 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2939 }
2940 
2941 static void tcp_rtx_queue_purge(struct sock *sk)
2942 {
2943 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2944 
2945 	tcp_sk(sk)->highest_sack = NULL;
2946 	while (p) {
2947 		struct sk_buff *skb = rb_to_skb(p);
2948 
2949 		p = rb_next(p);
2950 		/* Since we are deleting whole queue, no need to
2951 		 * list_del(&skb->tcp_tsorted_anchor)
2952 		 */
2953 		tcp_rtx_queue_unlink(skb, sk);
2954 		tcp_wmem_free_skb(sk, skb);
2955 	}
2956 }
2957 
2958 void tcp_write_queue_purge(struct sock *sk)
2959 {
2960 	struct sk_buff *skb;
2961 
2962 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2963 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2964 		tcp_skb_tsorted_anchor_cleanup(skb);
2965 		tcp_wmem_free_skb(sk, skb);
2966 	}
2967 	tcp_rtx_queue_purge(sk);
2968 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2969 	sk_mem_reclaim(sk);
2970 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2971 	tcp_sk(sk)->packets_out = 0;
2972 	inet_csk(sk)->icsk_backoff = 0;
2973 }
2974 
2975 int tcp_disconnect(struct sock *sk, int flags)
2976 {
2977 	struct inet_sock *inet = inet_sk(sk);
2978 	struct inet_connection_sock *icsk = inet_csk(sk);
2979 	struct tcp_sock *tp = tcp_sk(sk);
2980 	int old_state = sk->sk_state;
2981 	u32 seq;
2982 
2983 	if (old_state != TCP_CLOSE)
2984 		tcp_set_state(sk, TCP_CLOSE);
2985 
2986 	/* ABORT function of RFC793 */
2987 	if (old_state == TCP_LISTEN) {
2988 		inet_csk_listen_stop(sk);
2989 	} else if (unlikely(tp->repair)) {
2990 		sk->sk_err = ECONNABORTED;
2991 	} else if (tcp_need_reset(old_state) ||
2992 		   (tp->snd_nxt != tp->write_seq &&
2993 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2994 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2995 		 * states
2996 		 */
2997 		tcp_send_active_reset(sk, gfp_any());
2998 		sk->sk_err = ECONNRESET;
2999 	} else if (old_state == TCP_SYN_SENT)
3000 		sk->sk_err = ECONNRESET;
3001 
3002 	tcp_clear_xmit_timers(sk);
3003 	__skb_queue_purge(&sk->sk_receive_queue);
3004 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3005 	WRITE_ONCE(tp->urg_data, 0);
3006 	tcp_write_queue_purge(sk);
3007 	tcp_fastopen_active_disable_ofo_check(sk);
3008 	skb_rbtree_purge(&tp->out_of_order_queue);
3009 
3010 	inet->inet_dport = 0;
3011 
3012 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3013 		inet_reset_saddr(sk);
3014 
3015 	sk->sk_shutdown = 0;
3016 	sock_reset_flag(sk, SOCK_DONE);
3017 	tp->srtt_us = 0;
3018 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3019 	tp->rcv_rtt_last_tsecr = 0;
3020 
3021 	seq = tp->write_seq + tp->max_window + 2;
3022 	if (!seq)
3023 		seq = 1;
3024 	WRITE_ONCE(tp->write_seq, seq);
3025 
3026 	icsk->icsk_backoff = 0;
3027 	icsk->icsk_probes_out = 0;
3028 	icsk->icsk_probes_tstamp = 0;
3029 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3030 	icsk->icsk_rto_min = TCP_RTO_MIN;
3031 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3032 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3033 	tp->snd_cwnd = TCP_INIT_CWND;
3034 	tp->snd_cwnd_cnt = 0;
3035 	tp->window_clamp = 0;
3036 	tp->delivered = 0;
3037 	tp->delivered_ce = 0;
3038 	if (icsk->icsk_ca_ops->release)
3039 		icsk->icsk_ca_ops->release(sk);
3040 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3041 	icsk->icsk_ca_initialized = 0;
3042 	tcp_set_ca_state(sk, TCP_CA_Open);
3043 	tp->is_sack_reneg = 0;
3044 	tcp_clear_retrans(tp);
3045 	tp->total_retrans = 0;
3046 	inet_csk_delack_init(sk);
3047 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3048 	 * issue in __tcp_select_window()
3049 	 */
3050 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3051 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3052 	__sk_dst_reset(sk);
3053 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3054 	tcp_saved_syn_free(tp);
3055 	tp->compressed_ack = 0;
3056 	tp->segs_in = 0;
3057 	tp->segs_out = 0;
3058 	tp->bytes_sent = 0;
3059 	tp->bytes_acked = 0;
3060 	tp->bytes_received = 0;
3061 	tp->bytes_retrans = 0;
3062 	tp->data_segs_in = 0;
3063 	tp->data_segs_out = 0;
3064 	tp->duplicate_sack[0].start_seq = 0;
3065 	tp->duplicate_sack[0].end_seq = 0;
3066 	tp->dsack_dups = 0;
3067 	tp->reord_seen = 0;
3068 	tp->retrans_out = 0;
3069 	tp->sacked_out = 0;
3070 	tp->tlp_high_seq = 0;
3071 	tp->last_oow_ack_time = 0;
3072 	/* There's a bubble in the pipe until at least the first ACK. */
3073 	tp->app_limited = ~0U;
3074 	tp->rack.mstamp = 0;
3075 	tp->rack.advanced = 0;
3076 	tp->rack.reo_wnd_steps = 1;
3077 	tp->rack.last_delivered = 0;
3078 	tp->rack.reo_wnd_persist = 0;
3079 	tp->rack.dsack_seen = 0;
3080 	tp->syn_data_acked = 0;
3081 	tp->rx_opt.saw_tstamp = 0;
3082 	tp->rx_opt.dsack = 0;
3083 	tp->rx_opt.num_sacks = 0;
3084 	tp->rcv_ooopack = 0;
3085 
3086 
3087 	/* Clean up fastopen related fields */
3088 	tcp_free_fastopen_req(tp);
3089 	inet->defer_connect = 0;
3090 	tp->fastopen_client_fail = 0;
3091 
3092 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3093 
3094 	if (sk->sk_frag.page) {
3095 		put_page(sk->sk_frag.page);
3096 		sk->sk_frag.page = NULL;
3097 		sk->sk_frag.offset = 0;
3098 	}
3099 	sk_defer_free_flush(sk);
3100 	sk_error_report(sk);
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL(tcp_disconnect);
3104 
3105 static inline bool tcp_can_repair_sock(const struct sock *sk)
3106 {
3107 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3108 		(sk->sk_state != TCP_LISTEN);
3109 }
3110 
3111 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3112 {
3113 	struct tcp_repair_window opt;
3114 
3115 	if (!tp->repair)
3116 		return -EPERM;
3117 
3118 	if (len != sizeof(opt))
3119 		return -EINVAL;
3120 
3121 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3122 		return -EFAULT;
3123 
3124 	if (opt.max_window < opt.snd_wnd)
3125 		return -EINVAL;
3126 
3127 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3128 		return -EINVAL;
3129 
3130 	if (after(opt.rcv_wup, tp->rcv_nxt))
3131 		return -EINVAL;
3132 
3133 	tp->snd_wl1	= opt.snd_wl1;
3134 	tp->snd_wnd	= opt.snd_wnd;
3135 	tp->max_window	= opt.max_window;
3136 
3137 	tp->rcv_wnd	= opt.rcv_wnd;
3138 	tp->rcv_wup	= opt.rcv_wup;
3139 
3140 	return 0;
3141 }
3142 
3143 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3144 		unsigned int len)
3145 {
3146 	struct tcp_sock *tp = tcp_sk(sk);
3147 	struct tcp_repair_opt opt;
3148 	size_t offset = 0;
3149 
3150 	while (len >= sizeof(opt)) {
3151 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3152 			return -EFAULT;
3153 
3154 		offset += sizeof(opt);
3155 		len -= sizeof(opt);
3156 
3157 		switch (opt.opt_code) {
3158 		case TCPOPT_MSS:
3159 			tp->rx_opt.mss_clamp = opt.opt_val;
3160 			tcp_mtup_init(sk);
3161 			break;
3162 		case TCPOPT_WINDOW:
3163 			{
3164 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3165 				u16 rcv_wscale = opt.opt_val >> 16;
3166 
3167 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3168 					return -EFBIG;
3169 
3170 				tp->rx_opt.snd_wscale = snd_wscale;
3171 				tp->rx_opt.rcv_wscale = rcv_wscale;
3172 				tp->rx_opt.wscale_ok = 1;
3173 			}
3174 			break;
3175 		case TCPOPT_SACK_PERM:
3176 			if (opt.opt_val != 0)
3177 				return -EINVAL;
3178 
3179 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3180 			break;
3181 		case TCPOPT_TIMESTAMP:
3182 			if (opt.opt_val != 0)
3183 				return -EINVAL;
3184 
3185 			tp->rx_opt.tstamp_ok = 1;
3186 			break;
3187 		}
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3194 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3195 
3196 static void tcp_enable_tx_delay(void)
3197 {
3198 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3199 		static int __tcp_tx_delay_enabled = 0;
3200 
3201 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3202 			static_branch_enable(&tcp_tx_delay_enabled);
3203 			pr_info("TCP_TX_DELAY enabled\n");
3204 		}
3205 	}
3206 }
3207 
3208 /* When set indicates to always queue non-full frames.  Later the user clears
3209  * this option and we transmit any pending partial frames in the queue.  This is
3210  * meant to be used alongside sendfile() to get properly filled frames when the
3211  * user (for example) must write out headers with a write() call first and then
3212  * use sendfile to send out the data parts.
3213  *
3214  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3215  * TCP_NODELAY.
3216  */
3217 void __tcp_sock_set_cork(struct sock *sk, bool on)
3218 {
3219 	struct tcp_sock *tp = tcp_sk(sk);
3220 
3221 	if (on) {
3222 		tp->nonagle |= TCP_NAGLE_CORK;
3223 	} else {
3224 		tp->nonagle &= ~TCP_NAGLE_CORK;
3225 		if (tp->nonagle & TCP_NAGLE_OFF)
3226 			tp->nonagle |= TCP_NAGLE_PUSH;
3227 		tcp_push_pending_frames(sk);
3228 	}
3229 }
3230 
3231 void tcp_sock_set_cork(struct sock *sk, bool on)
3232 {
3233 	lock_sock(sk);
3234 	__tcp_sock_set_cork(sk, on);
3235 	release_sock(sk);
3236 }
3237 EXPORT_SYMBOL(tcp_sock_set_cork);
3238 
3239 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3240  * remembered, but it is not activated until cork is cleared.
3241  *
3242  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3243  * even TCP_CORK for currently queued segments.
3244  */
3245 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3246 {
3247 	if (on) {
3248 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3249 		tcp_push_pending_frames(sk);
3250 	} else {
3251 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3252 	}
3253 }
3254 
3255 void tcp_sock_set_nodelay(struct sock *sk)
3256 {
3257 	lock_sock(sk);
3258 	__tcp_sock_set_nodelay(sk, true);
3259 	release_sock(sk);
3260 }
3261 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3262 
3263 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3264 {
3265 	if (!val) {
3266 		inet_csk_enter_pingpong_mode(sk);
3267 		return;
3268 	}
3269 
3270 	inet_csk_exit_pingpong_mode(sk);
3271 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3272 	    inet_csk_ack_scheduled(sk)) {
3273 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3274 		tcp_cleanup_rbuf(sk, 1);
3275 		if (!(val & 1))
3276 			inet_csk_enter_pingpong_mode(sk);
3277 	}
3278 }
3279 
3280 void tcp_sock_set_quickack(struct sock *sk, int val)
3281 {
3282 	lock_sock(sk);
3283 	__tcp_sock_set_quickack(sk, val);
3284 	release_sock(sk);
3285 }
3286 EXPORT_SYMBOL(tcp_sock_set_quickack);
3287 
3288 int tcp_sock_set_syncnt(struct sock *sk, int val)
3289 {
3290 	if (val < 1 || val > MAX_TCP_SYNCNT)
3291 		return -EINVAL;
3292 
3293 	lock_sock(sk);
3294 	inet_csk(sk)->icsk_syn_retries = val;
3295 	release_sock(sk);
3296 	return 0;
3297 }
3298 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3299 
3300 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3301 {
3302 	lock_sock(sk);
3303 	inet_csk(sk)->icsk_user_timeout = val;
3304 	release_sock(sk);
3305 }
3306 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3307 
3308 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3309 {
3310 	struct tcp_sock *tp = tcp_sk(sk);
3311 
3312 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3313 		return -EINVAL;
3314 
3315 	tp->keepalive_time = val * HZ;
3316 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3317 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3318 		u32 elapsed = keepalive_time_elapsed(tp);
3319 
3320 		if (tp->keepalive_time > elapsed)
3321 			elapsed = tp->keepalive_time - elapsed;
3322 		else
3323 			elapsed = 0;
3324 		inet_csk_reset_keepalive_timer(sk, elapsed);
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 int tcp_sock_set_keepidle(struct sock *sk, int val)
3331 {
3332 	int err;
3333 
3334 	lock_sock(sk);
3335 	err = tcp_sock_set_keepidle_locked(sk, val);
3336 	release_sock(sk);
3337 	return err;
3338 }
3339 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3340 
3341 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3342 {
3343 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3344 		return -EINVAL;
3345 
3346 	lock_sock(sk);
3347 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3348 	release_sock(sk);
3349 	return 0;
3350 }
3351 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3352 
3353 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3354 {
3355 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3356 		return -EINVAL;
3357 
3358 	lock_sock(sk);
3359 	tcp_sk(sk)->keepalive_probes = val;
3360 	release_sock(sk);
3361 	return 0;
3362 }
3363 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3364 
3365 int tcp_set_window_clamp(struct sock *sk, int val)
3366 {
3367 	struct tcp_sock *tp = tcp_sk(sk);
3368 
3369 	if (!val) {
3370 		if (sk->sk_state != TCP_CLOSE)
3371 			return -EINVAL;
3372 		tp->window_clamp = 0;
3373 	} else {
3374 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3375 			SOCK_MIN_RCVBUF / 2 : val;
3376 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3377 	}
3378 	return 0;
3379 }
3380 
3381 /*
3382  *	Socket option code for TCP.
3383  */
3384 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3385 		sockptr_t optval, unsigned int optlen)
3386 {
3387 	struct tcp_sock *tp = tcp_sk(sk);
3388 	struct inet_connection_sock *icsk = inet_csk(sk);
3389 	struct net *net = sock_net(sk);
3390 	int val;
3391 	int err = 0;
3392 
3393 	/* These are data/string values, all the others are ints */
3394 	switch (optname) {
3395 	case TCP_CONGESTION: {
3396 		char name[TCP_CA_NAME_MAX];
3397 
3398 		if (optlen < 1)
3399 			return -EINVAL;
3400 
3401 		val = strncpy_from_sockptr(name, optval,
3402 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3403 		if (val < 0)
3404 			return -EFAULT;
3405 		name[val] = 0;
3406 
3407 		lock_sock(sk);
3408 		err = tcp_set_congestion_control(sk, name, true,
3409 						 ns_capable(sock_net(sk)->user_ns,
3410 							    CAP_NET_ADMIN));
3411 		release_sock(sk);
3412 		return err;
3413 	}
3414 	case TCP_ULP: {
3415 		char name[TCP_ULP_NAME_MAX];
3416 
3417 		if (optlen < 1)
3418 			return -EINVAL;
3419 
3420 		val = strncpy_from_sockptr(name, optval,
3421 					min_t(long, TCP_ULP_NAME_MAX - 1,
3422 					      optlen));
3423 		if (val < 0)
3424 			return -EFAULT;
3425 		name[val] = 0;
3426 
3427 		lock_sock(sk);
3428 		err = tcp_set_ulp(sk, name);
3429 		release_sock(sk);
3430 		return err;
3431 	}
3432 	case TCP_FASTOPEN_KEY: {
3433 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3434 		__u8 *backup_key = NULL;
3435 
3436 		/* Allow a backup key as well to facilitate key rotation
3437 		 * First key is the active one.
3438 		 */
3439 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3440 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3441 			return -EINVAL;
3442 
3443 		if (copy_from_sockptr(key, optval, optlen))
3444 			return -EFAULT;
3445 
3446 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3447 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3448 
3449 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3450 	}
3451 	default:
3452 		/* fallthru */
3453 		break;
3454 	}
3455 
3456 	if (optlen < sizeof(int))
3457 		return -EINVAL;
3458 
3459 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3460 		return -EFAULT;
3461 
3462 	lock_sock(sk);
3463 
3464 	switch (optname) {
3465 	case TCP_MAXSEG:
3466 		/* Values greater than interface MTU won't take effect. However
3467 		 * at the point when this call is done we typically don't yet
3468 		 * know which interface is going to be used
3469 		 */
3470 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3471 			err = -EINVAL;
3472 			break;
3473 		}
3474 		tp->rx_opt.user_mss = val;
3475 		break;
3476 
3477 	case TCP_NODELAY:
3478 		__tcp_sock_set_nodelay(sk, val);
3479 		break;
3480 
3481 	case TCP_THIN_LINEAR_TIMEOUTS:
3482 		if (val < 0 || val > 1)
3483 			err = -EINVAL;
3484 		else
3485 			tp->thin_lto = val;
3486 		break;
3487 
3488 	case TCP_THIN_DUPACK:
3489 		if (val < 0 || val > 1)
3490 			err = -EINVAL;
3491 		break;
3492 
3493 	case TCP_REPAIR:
3494 		if (!tcp_can_repair_sock(sk))
3495 			err = -EPERM;
3496 		else if (val == TCP_REPAIR_ON) {
3497 			tp->repair = 1;
3498 			sk->sk_reuse = SK_FORCE_REUSE;
3499 			tp->repair_queue = TCP_NO_QUEUE;
3500 		} else if (val == TCP_REPAIR_OFF) {
3501 			tp->repair = 0;
3502 			sk->sk_reuse = SK_NO_REUSE;
3503 			tcp_send_window_probe(sk);
3504 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3505 			tp->repair = 0;
3506 			sk->sk_reuse = SK_NO_REUSE;
3507 		} else
3508 			err = -EINVAL;
3509 
3510 		break;
3511 
3512 	case TCP_REPAIR_QUEUE:
3513 		if (!tp->repair)
3514 			err = -EPERM;
3515 		else if ((unsigned int)val < TCP_QUEUES_NR)
3516 			tp->repair_queue = val;
3517 		else
3518 			err = -EINVAL;
3519 		break;
3520 
3521 	case TCP_QUEUE_SEQ:
3522 		if (sk->sk_state != TCP_CLOSE) {
3523 			err = -EPERM;
3524 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3525 			if (!tcp_rtx_queue_empty(sk))
3526 				err = -EPERM;
3527 			else
3528 				WRITE_ONCE(tp->write_seq, val);
3529 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3530 			if (tp->rcv_nxt != tp->copied_seq) {
3531 				err = -EPERM;
3532 			} else {
3533 				WRITE_ONCE(tp->rcv_nxt, val);
3534 				WRITE_ONCE(tp->copied_seq, val);
3535 			}
3536 		} else {
3537 			err = -EINVAL;
3538 		}
3539 		break;
3540 
3541 	case TCP_REPAIR_OPTIONS:
3542 		if (!tp->repair)
3543 			err = -EINVAL;
3544 		else if (sk->sk_state == TCP_ESTABLISHED)
3545 			err = tcp_repair_options_est(sk, optval, optlen);
3546 		else
3547 			err = -EPERM;
3548 		break;
3549 
3550 	case TCP_CORK:
3551 		__tcp_sock_set_cork(sk, val);
3552 		break;
3553 
3554 	case TCP_KEEPIDLE:
3555 		err = tcp_sock_set_keepidle_locked(sk, val);
3556 		break;
3557 	case TCP_KEEPINTVL:
3558 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3559 			err = -EINVAL;
3560 		else
3561 			tp->keepalive_intvl = val * HZ;
3562 		break;
3563 	case TCP_KEEPCNT:
3564 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3565 			err = -EINVAL;
3566 		else
3567 			tp->keepalive_probes = val;
3568 		break;
3569 	case TCP_SYNCNT:
3570 		if (val < 1 || val > MAX_TCP_SYNCNT)
3571 			err = -EINVAL;
3572 		else
3573 			icsk->icsk_syn_retries = val;
3574 		break;
3575 
3576 	case TCP_SAVE_SYN:
3577 		/* 0: disable, 1: enable, 2: start from ether_header */
3578 		if (val < 0 || val > 2)
3579 			err = -EINVAL;
3580 		else
3581 			tp->save_syn = val;
3582 		break;
3583 
3584 	case TCP_LINGER2:
3585 		if (val < 0)
3586 			tp->linger2 = -1;
3587 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3588 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3589 		else
3590 			tp->linger2 = val * HZ;
3591 		break;
3592 
3593 	case TCP_DEFER_ACCEPT:
3594 		/* Translate value in seconds to number of retransmits */
3595 		icsk->icsk_accept_queue.rskq_defer_accept =
3596 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3597 					TCP_RTO_MAX / HZ);
3598 		break;
3599 
3600 	case TCP_WINDOW_CLAMP:
3601 		err = tcp_set_window_clamp(sk, val);
3602 		break;
3603 
3604 	case TCP_QUICKACK:
3605 		__tcp_sock_set_quickack(sk, val);
3606 		break;
3607 
3608 #ifdef CONFIG_TCP_MD5SIG
3609 	case TCP_MD5SIG:
3610 	case TCP_MD5SIG_EXT:
3611 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3612 		break;
3613 #endif
3614 	case TCP_USER_TIMEOUT:
3615 		/* Cap the max time in ms TCP will retry or probe the window
3616 		 * before giving up and aborting (ETIMEDOUT) a connection.
3617 		 */
3618 		if (val < 0)
3619 			err = -EINVAL;
3620 		else
3621 			icsk->icsk_user_timeout = val;
3622 		break;
3623 
3624 	case TCP_FASTOPEN:
3625 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3626 		    TCPF_LISTEN))) {
3627 			tcp_fastopen_init_key_once(net);
3628 
3629 			fastopen_queue_tune(sk, val);
3630 		} else {
3631 			err = -EINVAL;
3632 		}
3633 		break;
3634 	case TCP_FASTOPEN_CONNECT:
3635 		if (val > 1 || val < 0) {
3636 			err = -EINVAL;
3637 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3638 			if (sk->sk_state == TCP_CLOSE)
3639 				tp->fastopen_connect = val;
3640 			else
3641 				err = -EINVAL;
3642 		} else {
3643 			err = -EOPNOTSUPP;
3644 		}
3645 		break;
3646 	case TCP_FASTOPEN_NO_COOKIE:
3647 		if (val > 1 || val < 0)
3648 			err = -EINVAL;
3649 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3650 			err = -EINVAL;
3651 		else
3652 			tp->fastopen_no_cookie = val;
3653 		break;
3654 	case TCP_TIMESTAMP:
3655 		if (!tp->repair)
3656 			err = -EPERM;
3657 		else
3658 			tp->tsoffset = val - tcp_time_stamp_raw();
3659 		break;
3660 	case TCP_REPAIR_WINDOW:
3661 		err = tcp_repair_set_window(tp, optval, optlen);
3662 		break;
3663 	case TCP_NOTSENT_LOWAT:
3664 		tp->notsent_lowat = val;
3665 		sk->sk_write_space(sk);
3666 		break;
3667 	case TCP_INQ:
3668 		if (val > 1 || val < 0)
3669 			err = -EINVAL;
3670 		else
3671 			tp->recvmsg_inq = val;
3672 		break;
3673 	case TCP_TX_DELAY:
3674 		if (val)
3675 			tcp_enable_tx_delay();
3676 		tp->tcp_tx_delay = val;
3677 		break;
3678 	default:
3679 		err = -ENOPROTOOPT;
3680 		break;
3681 	}
3682 
3683 	release_sock(sk);
3684 	return err;
3685 }
3686 
3687 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3688 		   unsigned int optlen)
3689 {
3690 	const struct inet_connection_sock *icsk = inet_csk(sk);
3691 
3692 	if (level != SOL_TCP)
3693 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3694 						     optval, optlen);
3695 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3696 }
3697 EXPORT_SYMBOL(tcp_setsockopt);
3698 
3699 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3700 				      struct tcp_info *info)
3701 {
3702 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3703 	enum tcp_chrono i;
3704 
3705 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3706 		stats[i] = tp->chrono_stat[i - 1];
3707 		if (i == tp->chrono_type)
3708 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3709 		stats[i] *= USEC_PER_SEC / HZ;
3710 		total += stats[i];
3711 	}
3712 
3713 	info->tcpi_busy_time = total;
3714 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3715 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3716 }
3717 
3718 /* Return information about state of tcp endpoint in API format. */
3719 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3720 {
3721 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3722 	const struct inet_connection_sock *icsk = inet_csk(sk);
3723 	unsigned long rate;
3724 	u32 now;
3725 	u64 rate64;
3726 	bool slow;
3727 
3728 	memset(info, 0, sizeof(*info));
3729 	if (sk->sk_type != SOCK_STREAM)
3730 		return;
3731 
3732 	info->tcpi_state = inet_sk_state_load(sk);
3733 
3734 	/* Report meaningful fields for all TCP states, including listeners */
3735 	rate = READ_ONCE(sk->sk_pacing_rate);
3736 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3737 	info->tcpi_pacing_rate = rate64;
3738 
3739 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3740 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3741 	info->tcpi_max_pacing_rate = rate64;
3742 
3743 	info->tcpi_reordering = tp->reordering;
3744 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3745 
3746 	if (info->tcpi_state == TCP_LISTEN) {
3747 		/* listeners aliased fields :
3748 		 * tcpi_unacked -> Number of children ready for accept()
3749 		 * tcpi_sacked  -> max backlog
3750 		 */
3751 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3752 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3753 		return;
3754 	}
3755 
3756 	slow = lock_sock_fast(sk);
3757 
3758 	info->tcpi_ca_state = icsk->icsk_ca_state;
3759 	info->tcpi_retransmits = icsk->icsk_retransmits;
3760 	info->tcpi_probes = icsk->icsk_probes_out;
3761 	info->tcpi_backoff = icsk->icsk_backoff;
3762 
3763 	if (tp->rx_opt.tstamp_ok)
3764 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3765 	if (tcp_is_sack(tp))
3766 		info->tcpi_options |= TCPI_OPT_SACK;
3767 	if (tp->rx_opt.wscale_ok) {
3768 		info->tcpi_options |= TCPI_OPT_WSCALE;
3769 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3770 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3771 	}
3772 
3773 	if (tp->ecn_flags & TCP_ECN_OK)
3774 		info->tcpi_options |= TCPI_OPT_ECN;
3775 	if (tp->ecn_flags & TCP_ECN_SEEN)
3776 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3777 	if (tp->syn_data_acked)
3778 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3779 
3780 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3781 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3782 	info->tcpi_snd_mss = tp->mss_cache;
3783 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3784 
3785 	info->tcpi_unacked = tp->packets_out;
3786 	info->tcpi_sacked = tp->sacked_out;
3787 
3788 	info->tcpi_lost = tp->lost_out;
3789 	info->tcpi_retrans = tp->retrans_out;
3790 
3791 	now = tcp_jiffies32;
3792 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3793 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3794 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3795 
3796 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3797 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3798 	info->tcpi_rtt = tp->srtt_us >> 3;
3799 	info->tcpi_rttvar = tp->mdev_us >> 2;
3800 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3801 	info->tcpi_advmss = tp->advmss;
3802 
3803 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3804 	info->tcpi_rcv_space = tp->rcvq_space.space;
3805 
3806 	info->tcpi_total_retrans = tp->total_retrans;
3807 
3808 	info->tcpi_bytes_acked = tp->bytes_acked;
3809 	info->tcpi_bytes_received = tp->bytes_received;
3810 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3811 	tcp_get_info_chrono_stats(tp, info);
3812 
3813 	info->tcpi_segs_out = tp->segs_out;
3814 
3815 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3816 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3817 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3818 
3819 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3820 	info->tcpi_data_segs_out = tp->data_segs_out;
3821 
3822 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3823 	rate64 = tcp_compute_delivery_rate(tp);
3824 	if (rate64)
3825 		info->tcpi_delivery_rate = rate64;
3826 	info->tcpi_delivered = tp->delivered;
3827 	info->tcpi_delivered_ce = tp->delivered_ce;
3828 	info->tcpi_bytes_sent = tp->bytes_sent;
3829 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3830 	info->tcpi_dsack_dups = tp->dsack_dups;
3831 	info->tcpi_reord_seen = tp->reord_seen;
3832 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3833 	info->tcpi_snd_wnd = tp->snd_wnd;
3834 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3835 	unlock_sock_fast(sk, slow);
3836 }
3837 EXPORT_SYMBOL_GPL(tcp_get_info);
3838 
3839 static size_t tcp_opt_stats_get_size(void)
3840 {
3841 	return
3842 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3843 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3844 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3845 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3846 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3847 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3848 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3849 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3850 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3851 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3852 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3853 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3854 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3855 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3856 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3858 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3859 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3860 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3862 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3863 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3864 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3865 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3866 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3867 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3868 		0;
3869 }
3870 
3871 /* Returns TTL or hop limit of an incoming packet from skb. */
3872 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3873 {
3874 	if (skb->protocol == htons(ETH_P_IP))
3875 		return ip_hdr(skb)->ttl;
3876 	else if (skb->protocol == htons(ETH_P_IPV6))
3877 		return ipv6_hdr(skb)->hop_limit;
3878 	else
3879 		return 0;
3880 }
3881 
3882 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3883 					       const struct sk_buff *orig_skb,
3884 					       const struct sk_buff *ack_skb)
3885 {
3886 	const struct tcp_sock *tp = tcp_sk(sk);
3887 	struct sk_buff *stats;
3888 	struct tcp_info info;
3889 	unsigned long rate;
3890 	u64 rate64;
3891 
3892 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3893 	if (!stats)
3894 		return NULL;
3895 
3896 	tcp_get_info_chrono_stats(tp, &info);
3897 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3898 			  info.tcpi_busy_time, TCP_NLA_PAD);
3899 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3900 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3901 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3902 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3903 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3904 			  tp->data_segs_out, TCP_NLA_PAD);
3905 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3906 			  tp->total_retrans, TCP_NLA_PAD);
3907 
3908 	rate = READ_ONCE(sk->sk_pacing_rate);
3909 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3910 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3911 
3912 	rate64 = tcp_compute_delivery_rate(tp);
3913 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3914 
3915 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3916 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3917 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3918 
3919 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3920 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3921 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3922 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3923 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3924 
3925 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3926 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3927 
3928 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3929 			  TCP_NLA_PAD);
3930 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3931 			  TCP_NLA_PAD);
3932 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3933 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3934 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3935 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3936 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3937 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3938 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3939 			  TCP_NLA_PAD);
3940 	if (ack_skb)
3941 		nla_put_u8(stats, TCP_NLA_TTL,
3942 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3943 
3944 	return stats;
3945 }
3946 
3947 static int do_tcp_getsockopt(struct sock *sk, int level,
3948 		int optname, char __user *optval, int __user *optlen)
3949 {
3950 	struct inet_connection_sock *icsk = inet_csk(sk);
3951 	struct tcp_sock *tp = tcp_sk(sk);
3952 	struct net *net = sock_net(sk);
3953 	int val, len;
3954 
3955 	if (get_user(len, optlen))
3956 		return -EFAULT;
3957 
3958 	len = min_t(unsigned int, len, sizeof(int));
3959 
3960 	if (len < 0)
3961 		return -EINVAL;
3962 
3963 	switch (optname) {
3964 	case TCP_MAXSEG:
3965 		val = tp->mss_cache;
3966 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3967 			val = tp->rx_opt.user_mss;
3968 		if (tp->repair)
3969 			val = tp->rx_opt.mss_clamp;
3970 		break;
3971 	case TCP_NODELAY:
3972 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3973 		break;
3974 	case TCP_CORK:
3975 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3976 		break;
3977 	case TCP_KEEPIDLE:
3978 		val = keepalive_time_when(tp) / HZ;
3979 		break;
3980 	case TCP_KEEPINTVL:
3981 		val = keepalive_intvl_when(tp) / HZ;
3982 		break;
3983 	case TCP_KEEPCNT:
3984 		val = keepalive_probes(tp);
3985 		break;
3986 	case TCP_SYNCNT:
3987 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3988 		break;
3989 	case TCP_LINGER2:
3990 		val = tp->linger2;
3991 		if (val >= 0)
3992 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3993 		break;
3994 	case TCP_DEFER_ACCEPT:
3995 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3996 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3997 		break;
3998 	case TCP_WINDOW_CLAMP:
3999 		val = tp->window_clamp;
4000 		break;
4001 	case TCP_INFO: {
4002 		struct tcp_info info;
4003 
4004 		if (get_user(len, optlen))
4005 			return -EFAULT;
4006 
4007 		tcp_get_info(sk, &info);
4008 
4009 		len = min_t(unsigned int, len, sizeof(info));
4010 		if (put_user(len, optlen))
4011 			return -EFAULT;
4012 		if (copy_to_user(optval, &info, len))
4013 			return -EFAULT;
4014 		return 0;
4015 	}
4016 	case TCP_CC_INFO: {
4017 		const struct tcp_congestion_ops *ca_ops;
4018 		union tcp_cc_info info;
4019 		size_t sz = 0;
4020 		int attr;
4021 
4022 		if (get_user(len, optlen))
4023 			return -EFAULT;
4024 
4025 		ca_ops = icsk->icsk_ca_ops;
4026 		if (ca_ops && ca_ops->get_info)
4027 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4028 
4029 		len = min_t(unsigned int, len, sz);
4030 		if (put_user(len, optlen))
4031 			return -EFAULT;
4032 		if (copy_to_user(optval, &info, len))
4033 			return -EFAULT;
4034 		return 0;
4035 	}
4036 	case TCP_QUICKACK:
4037 		val = !inet_csk_in_pingpong_mode(sk);
4038 		break;
4039 
4040 	case TCP_CONGESTION:
4041 		if (get_user(len, optlen))
4042 			return -EFAULT;
4043 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4044 		if (put_user(len, optlen))
4045 			return -EFAULT;
4046 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4047 			return -EFAULT;
4048 		return 0;
4049 
4050 	case TCP_ULP:
4051 		if (get_user(len, optlen))
4052 			return -EFAULT;
4053 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4054 		if (!icsk->icsk_ulp_ops) {
4055 			if (put_user(0, optlen))
4056 				return -EFAULT;
4057 			return 0;
4058 		}
4059 		if (put_user(len, optlen))
4060 			return -EFAULT;
4061 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4062 			return -EFAULT;
4063 		return 0;
4064 
4065 	case TCP_FASTOPEN_KEY: {
4066 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4067 		unsigned int key_len;
4068 
4069 		if (get_user(len, optlen))
4070 			return -EFAULT;
4071 
4072 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4073 				TCP_FASTOPEN_KEY_LENGTH;
4074 		len = min_t(unsigned int, len, key_len);
4075 		if (put_user(len, optlen))
4076 			return -EFAULT;
4077 		if (copy_to_user(optval, key, len))
4078 			return -EFAULT;
4079 		return 0;
4080 	}
4081 	case TCP_THIN_LINEAR_TIMEOUTS:
4082 		val = tp->thin_lto;
4083 		break;
4084 
4085 	case TCP_THIN_DUPACK:
4086 		val = 0;
4087 		break;
4088 
4089 	case TCP_REPAIR:
4090 		val = tp->repair;
4091 		break;
4092 
4093 	case TCP_REPAIR_QUEUE:
4094 		if (tp->repair)
4095 			val = tp->repair_queue;
4096 		else
4097 			return -EINVAL;
4098 		break;
4099 
4100 	case TCP_REPAIR_WINDOW: {
4101 		struct tcp_repair_window opt;
4102 
4103 		if (get_user(len, optlen))
4104 			return -EFAULT;
4105 
4106 		if (len != sizeof(opt))
4107 			return -EINVAL;
4108 
4109 		if (!tp->repair)
4110 			return -EPERM;
4111 
4112 		opt.snd_wl1	= tp->snd_wl1;
4113 		opt.snd_wnd	= tp->snd_wnd;
4114 		opt.max_window	= tp->max_window;
4115 		opt.rcv_wnd	= tp->rcv_wnd;
4116 		opt.rcv_wup	= tp->rcv_wup;
4117 
4118 		if (copy_to_user(optval, &opt, len))
4119 			return -EFAULT;
4120 		return 0;
4121 	}
4122 	case TCP_QUEUE_SEQ:
4123 		if (tp->repair_queue == TCP_SEND_QUEUE)
4124 			val = tp->write_seq;
4125 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4126 			val = tp->rcv_nxt;
4127 		else
4128 			return -EINVAL;
4129 		break;
4130 
4131 	case TCP_USER_TIMEOUT:
4132 		val = icsk->icsk_user_timeout;
4133 		break;
4134 
4135 	case TCP_FASTOPEN:
4136 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4137 		break;
4138 
4139 	case TCP_FASTOPEN_CONNECT:
4140 		val = tp->fastopen_connect;
4141 		break;
4142 
4143 	case TCP_FASTOPEN_NO_COOKIE:
4144 		val = tp->fastopen_no_cookie;
4145 		break;
4146 
4147 	case TCP_TX_DELAY:
4148 		val = tp->tcp_tx_delay;
4149 		break;
4150 
4151 	case TCP_TIMESTAMP:
4152 		val = tcp_time_stamp_raw() + tp->tsoffset;
4153 		break;
4154 	case TCP_NOTSENT_LOWAT:
4155 		val = tp->notsent_lowat;
4156 		break;
4157 	case TCP_INQ:
4158 		val = tp->recvmsg_inq;
4159 		break;
4160 	case TCP_SAVE_SYN:
4161 		val = tp->save_syn;
4162 		break;
4163 	case TCP_SAVED_SYN: {
4164 		if (get_user(len, optlen))
4165 			return -EFAULT;
4166 
4167 		lock_sock(sk);
4168 		if (tp->saved_syn) {
4169 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4170 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4171 					     optlen)) {
4172 					release_sock(sk);
4173 					return -EFAULT;
4174 				}
4175 				release_sock(sk);
4176 				return -EINVAL;
4177 			}
4178 			len = tcp_saved_syn_len(tp->saved_syn);
4179 			if (put_user(len, optlen)) {
4180 				release_sock(sk);
4181 				return -EFAULT;
4182 			}
4183 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4184 				release_sock(sk);
4185 				return -EFAULT;
4186 			}
4187 			tcp_saved_syn_free(tp);
4188 			release_sock(sk);
4189 		} else {
4190 			release_sock(sk);
4191 			len = 0;
4192 			if (put_user(len, optlen))
4193 				return -EFAULT;
4194 		}
4195 		return 0;
4196 	}
4197 #ifdef CONFIG_MMU
4198 	case TCP_ZEROCOPY_RECEIVE: {
4199 		struct scm_timestamping_internal tss;
4200 		struct tcp_zerocopy_receive zc = {};
4201 		int err;
4202 
4203 		if (get_user(len, optlen))
4204 			return -EFAULT;
4205 		if (len < 0 ||
4206 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4207 			return -EINVAL;
4208 		if (unlikely(len > sizeof(zc))) {
4209 			err = check_zeroed_user(optval + sizeof(zc),
4210 						len - sizeof(zc));
4211 			if (err < 1)
4212 				return err == 0 ? -EINVAL : err;
4213 			len = sizeof(zc);
4214 			if (put_user(len, optlen))
4215 				return -EFAULT;
4216 		}
4217 		if (copy_from_user(&zc, optval, len))
4218 			return -EFAULT;
4219 		if (zc.reserved)
4220 			return -EINVAL;
4221 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4222 			return -EINVAL;
4223 		lock_sock(sk);
4224 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4225 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4226 							  &zc, &len, err);
4227 		release_sock(sk);
4228 		sk_defer_free_flush(sk);
4229 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4230 			goto zerocopy_rcv_cmsg;
4231 		switch (len) {
4232 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4233 			goto zerocopy_rcv_cmsg;
4234 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4235 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4236 		case offsetofend(struct tcp_zerocopy_receive, flags):
4237 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4238 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4239 		case offsetofend(struct tcp_zerocopy_receive, err):
4240 			goto zerocopy_rcv_sk_err;
4241 		case offsetofend(struct tcp_zerocopy_receive, inq):
4242 			goto zerocopy_rcv_inq;
4243 		case offsetofend(struct tcp_zerocopy_receive, length):
4244 		default:
4245 			goto zerocopy_rcv_out;
4246 		}
4247 zerocopy_rcv_cmsg:
4248 		if (zc.msg_flags & TCP_CMSG_TS)
4249 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4250 		else
4251 			zc.msg_flags = 0;
4252 zerocopy_rcv_sk_err:
4253 		if (!err)
4254 			zc.err = sock_error(sk);
4255 zerocopy_rcv_inq:
4256 		zc.inq = tcp_inq_hint(sk);
4257 zerocopy_rcv_out:
4258 		if (!err && copy_to_user(optval, &zc, len))
4259 			err = -EFAULT;
4260 		return err;
4261 	}
4262 #endif
4263 	default:
4264 		return -ENOPROTOOPT;
4265 	}
4266 
4267 	if (put_user(len, optlen))
4268 		return -EFAULT;
4269 	if (copy_to_user(optval, &val, len))
4270 		return -EFAULT;
4271 	return 0;
4272 }
4273 
4274 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4275 {
4276 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4277 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4278 	 */
4279 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4280 		return true;
4281 
4282 	return false;
4283 }
4284 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4285 
4286 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4287 		   int __user *optlen)
4288 {
4289 	struct inet_connection_sock *icsk = inet_csk(sk);
4290 
4291 	if (level != SOL_TCP)
4292 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4293 						     optval, optlen);
4294 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4295 }
4296 EXPORT_SYMBOL(tcp_getsockopt);
4297 
4298 #ifdef CONFIG_TCP_MD5SIG
4299 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4300 static DEFINE_MUTEX(tcp_md5sig_mutex);
4301 static bool tcp_md5sig_pool_populated = false;
4302 
4303 static void __tcp_alloc_md5sig_pool(void)
4304 {
4305 	struct crypto_ahash *hash;
4306 	int cpu;
4307 
4308 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4309 	if (IS_ERR(hash))
4310 		return;
4311 
4312 	for_each_possible_cpu(cpu) {
4313 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4314 		struct ahash_request *req;
4315 
4316 		if (!scratch) {
4317 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4318 					       sizeof(struct tcphdr),
4319 					       GFP_KERNEL,
4320 					       cpu_to_node(cpu));
4321 			if (!scratch)
4322 				return;
4323 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4324 		}
4325 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4326 			continue;
4327 
4328 		req = ahash_request_alloc(hash, GFP_KERNEL);
4329 		if (!req)
4330 			return;
4331 
4332 		ahash_request_set_callback(req, 0, NULL, NULL);
4333 
4334 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4335 	}
4336 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4337 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4338 	 */
4339 	smp_wmb();
4340 	tcp_md5sig_pool_populated = true;
4341 }
4342 
4343 bool tcp_alloc_md5sig_pool(void)
4344 {
4345 	if (unlikely(!tcp_md5sig_pool_populated)) {
4346 		mutex_lock(&tcp_md5sig_mutex);
4347 
4348 		if (!tcp_md5sig_pool_populated) {
4349 			__tcp_alloc_md5sig_pool();
4350 			if (tcp_md5sig_pool_populated)
4351 				static_branch_inc(&tcp_md5_needed);
4352 		}
4353 
4354 		mutex_unlock(&tcp_md5sig_mutex);
4355 	}
4356 	return tcp_md5sig_pool_populated;
4357 }
4358 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4359 
4360 
4361 /**
4362  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4363  *
4364  *	We use percpu structure, so if we succeed, we exit with preemption
4365  *	and BH disabled, to make sure another thread or softirq handling
4366  *	wont try to get same context.
4367  */
4368 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4369 {
4370 	local_bh_disable();
4371 
4372 	if (tcp_md5sig_pool_populated) {
4373 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4374 		smp_rmb();
4375 		return this_cpu_ptr(&tcp_md5sig_pool);
4376 	}
4377 	local_bh_enable();
4378 	return NULL;
4379 }
4380 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4381 
4382 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4383 			  const struct sk_buff *skb, unsigned int header_len)
4384 {
4385 	struct scatterlist sg;
4386 	const struct tcphdr *tp = tcp_hdr(skb);
4387 	struct ahash_request *req = hp->md5_req;
4388 	unsigned int i;
4389 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4390 					   skb_headlen(skb) - header_len : 0;
4391 	const struct skb_shared_info *shi = skb_shinfo(skb);
4392 	struct sk_buff *frag_iter;
4393 
4394 	sg_init_table(&sg, 1);
4395 
4396 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4397 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4398 	if (crypto_ahash_update(req))
4399 		return 1;
4400 
4401 	for (i = 0; i < shi->nr_frags; ++i) {
4402 		const skb_frag_t *f = &shi->frags[i];
4403 		unsigned int offset = skb_frag_off(f);
4404 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4405 
4406 		sg_set_page(&sg, page, skb_frag_size(f),
4407 			    offset_in_page(offset));
4408 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4409 		if (crypto_ahash_update(req))
4410 			return 1;
4411 	}
4412 
4413 	skb_walk_frags(skb, frag_iter)
4414 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4415 			return 1;
4416 
4417 	return 0;
4418 }
4419 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4420 
4421 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4422 {
4423 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4424 	struct scatterlist sg;
4425 
4426 	sg_init_one(&sg, key->key, keylen);
4427 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4428 
4429 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4430 	return data_race(crypto_ahash_update(hp->md5_req));
4431 }
4432 EXPORT_SYMBOL(tcp_md5_hash_key);
4433 
4434 /* Called with rcu_read_lock() */
4435 bool tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4436 			  enum skb_drop_reason *reason,
4437 			  const void *saddr, const void *daddr,
4438 			  int family, int dif, int sdif)
4439 {
4440 	/*
4441 	 * This gets called for each TCP segment that arrives
4442 	 * so we want to be efficient.
4443 	 * We have 3 drop cases:
4444 	 * o No MD5 hash and one expected.
4445 	 * o MD5 hash and we're not expecting one.
4446 	 * o MD5 hash and its wrong.
4447 	 */
4448 	const __u8 *hash_location = NULL;
4449 	struct tcp_md5sig_key *hash_expected;
4450 	const struct tcphdr *th = tcp_hdr(skb);
4451 	struct tcp_sock *tp = tcp_sk(sk);
4452 	int genhash, l3index;
4453 	u8 newhash[16];
4454 
4455 	/* sdif set, means packet ingressed via a device
4456 	 * in an L3 domain and dif is set to the l3mdev
4457 	 */
4458 	l3index = sdif ? dif : 0;
4459 
4460 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4461 	hash_location = tcp_parse_md5sig_option(th);
4462 
4463 	/* We've parsed the options - do we have a hash? */
4464 	if (!hash_expected && !hash_location)
4465 		return false;
4466 
4467 	if (hash_expected && !hash_location) {
4468 		*reason = SKB_DROP_REASON_TCP_MD5NOTFOUND;
4469 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4470 		return true;
4471 	}
4472 
4473 	if (!hash_expected && hash_location) {
4474 		*reason = SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4475 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4476 		return true;
4477 	}
4478 
4479 	/* check the signature */
4480 	genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected,
4481 						 NULL, skb);
4482 
4483 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4484 		*reason = SKB_DROP_REASON_TCP_MD5FAILURE;
4485 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4486 		if (family == AF_INET) {
4487 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4488 					saddr, ntohs(th->source),
4489 					daddr, ntohs(th->dest),
4490 					genhash ? " tcp_v4_calc_md5_hash failed"
4491 					: "", l3index);
4492 		} else {
4493 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4494 					genhash ? "failed" : "mismatch",
4495 					saddr, ntohs(th->source),
4496 					daddr, ntohs(th->dest), l3index);
4497 		}
4498 		return true;
4499 	}
4500 	return false;
4501 }
4502 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4503 
4504 #endif
4505 
4506 void tcp_done(struct sock *sk)
4507 {
4508 	struct request_sock *req;
4509 
4510 	/* We might be called with a new socket, after
4511 	 * inet_csk_prepare_forced_close() has been called
4512 	 * so we can not use lockdep_sock_is_held(sk)
4513 	 */
4514 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4515 
4516 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4517 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4518 
4519 	tcp_set_state(sk, TCP_CLOSE);
4520 	tcp_clear_xmit_timers(sk);
4521 	if (req)
4522 		reqsk_fastopen_remove(sk, req, false);
4523 
4524 	sk->sk_shutdown = SHUTDOWN_MASK;
4525 
4526 	if (!sock_flag(sk, SOCK_DEAD))
4527 		sk->sk_state_change(sk);
4528 	else
4529 		inet_csk_destroy_sock(sk);
4530 }
4531 EXPORT_SYMBOL_GPL(tcp_done);
4532 
4533 int tcp_abort(struct sock *sk, int err)
4534 {
4535 	if (!sk_fullsock(sk)) {
4536 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4537 			struct request_sock *req = inet_reqsk(sk);
4538 
4539 			local_bh_disable();
4540 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4541 			local_bh_enable();
4542 			return 0;
4543 		}
4544 		return -EOPNOTSUPP;
4545 	}
4546 
4547 	/* Don't race with userspace socket closes such as tcp_close. */
4548 	lock_sock(sk);
4549 
4550 	if (sk->sk_state == TCP_LISTEN) {
4551 		tcp_set_state(sk, TCP_CLOSE);
4552 		inet_csk_listen_stop(sk);
4553 	}
4554 
4555 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4556 	local_bh_disable();
4557 	bh_lock_sock(sk);
4558 
4559 	if (!sock_flag(sk, SOCK_DEAD)) {
4560 		sk->sk_err = err;
4561 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4562 		smp_wmb();
4563 		sk_error_report(sk);
4564 		if (tcp_need_reset(sk->sk_state))
4565 			tcp_send_active_reset(sk, GFP_ATOMIC);
4566 		tcp_done(sk);
4567 	}
4568 
4569 	bh_unlock_sock(sk);
4570 	local_bh_enable();
4571 	tcp_write_queue_purge(sk);
4572 	release_sock(sk);
4573 	return 0;
4574 }
4575 EXPORT_SYMBOL_GPL(tcp_abort);
4576 
4577 extern struct tcp_congestion_ops tcp_reno;
4578 
4579 static __initdata unsigned long thash_entries;
4580 static int __init set_thash_entries(char *str)
4581 {
4582 	ssize_t ret;
4583 
4584 	if (!str)
4585 		return 0;
4586 
4587 	ret = kstrtoul(str, 0, &thash_entries);
4588 	if (ret)
4589 		return 0;
4590 
4591 	return 1;
4592 }
4593 __setup("thash_entries=", set_thash_entries);
4594 
4595 static void __init tcp_init_mem(void)
4596 {
4597 	unsigned long limit = nr_free_buffer_pages() / 16;
4598 
4599 	limit = max(limit, 128UL);
4600 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4601 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4602 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4603 }
4604 
4605 void __init tcp_init(void)
4606 {
4607 	int max_rshare, max_wshare, cnt;
4608 	unsigned long limit;
4609 	unsigned int i;
4610 
4611 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4612 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4613 		     sizeof_field(struct sk_buff, cb));
4614 
4615 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4616 
4617 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4618 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4619 
4620 	inet_hashinfo_init(&tcp_hashinfo);
4621 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4622 			    thash_entries, 21,  /* one slot per 2 MB*/
4623 			    0, 64 * 1024);
4624 	tcp_hashinfo.bind_bucket_cachep =
4625 		kmem_cache_create("tcp_bind_bucket",
4626 				  sizeof(struct inet_bind_bucket), 0,
4627 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4628 				  SLAB_ACCOUNT,
4629 				  NULL);
4630 
4631 	/* Size and allocate the main established and bind bucket
4632 	 * hash tables.
4633 	 *
4634 	 * The methodology is similar to that of the buffer cache.
4635 	 */
4636 	tcp_hashinfo.ehash =
4637 		alloc_large_system_hash("TCP established",
4638 					sizeof(struct inet_ehash_bucket),
4639 					thash_entries,
4640 					17, /* one slot per 128 KB of memory */
4641 					0,
4642 					NULL,
4643 					&tcp_hashinfo.ehash_mask,
4644 					0,
4645 					thash_entries ? 0 : 512 * 1024);
4646 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4647 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4648 
4649 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4650 		panic("TCP: failed to alloc ehash_locks");
4651 	tcp_hashinfo.bhash =
4652 		alloc_large_system_hash("TCP bind",
4653 					sizeof(struct inet_bind_hashbucket),
4654 					tcp_hashinfo.ehash_mask + 1,
4655 					17, /* one slot per 128 KB of memory */
4656 					0,
4657 					&tcp_hashinfo.bhash_size,
4658 					NULL,
4659 					0,
4660 					64 * 1024);
4661 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4662 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4663 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4664 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4665 	}
4666 
4667 
4668 	cnt = tcp_hashinfo.ehash_mask + 1;
4669 	sysctl_tcp_max_orphans = cnt / 2;
4670 
4671 	tcp_init_mem();
4672 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4673 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4674 	max_wshare = min(4UL*1024*1024, limit);
4675 	max_rshare = min(6UL*1024*1024, limit);
4676 
4677 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4678 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4679 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4680 
4681 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4682 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4683 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4684 
4685 	pr_info("Hash tables configured (established %u bind %u)\n",
4686 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4687 
4688 	tcp_v4_init();
4689 	tcp_metrics_init();
4690 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4691 	tcp_tasklet_init();
4692 	mptcp_init();
4693 }
4694