1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_IPV6_MOD(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_IPV6_MOD(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_IPV6_MOD(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us, rto_max_ms; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 438 439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 441 icsk->icsk_delack_max = TCP_DELACK_MAX; 442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 444 445 /* So many TCP implementations out there (incorrectly) count the 446 * initial SYN frame in their delayed-ACK and congestion control 447 * algorithms that we must have the following bandaid to talk 448 * efficiently to them. -DaveM 449 */ 450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 451 452 /* There's a bubble in the pipe until at least the first ACK. */ 453 tp->app_limited = ~0U; 454 tp->rate_app_limited = 1; 455 456 /* See draft-stevens-tcpca-spec-01 for discussion of the 457 * initialization of these values. 458 */ 459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 460 tp->snd_cwnd_clamp = ~0; 461 tp->mss_cache = TCP_MSS_DEFAULT; 462 463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 464 tcp_assign_congestion_control(sk); 465 466 tp->tsoffset = 0; 467 tp->rack.reo_wnd_steps = 1; 468 469 sk->sk_write_space = sk_stream_write_space; 470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 471 472 icsk->icsk_sync_mss = tcp_sync_mss; 473 474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 476 tcp_scaling_ratio_init(sk); 477 478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 479 sk_sockets_allocated_inc(sk); 480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 481 } 482 EXPORT_IPV6_MOD(tcp_init_sock); 483 484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 485 { 486 struct sk_buff *skb = tcp_write_queue_tail(sk); 487 u32 tsflags = sockc->tsflags; 488 489 if (tsflags && skb) { 490 struct skb_shared_info *shinfo = skb_shinfo(skb); 491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 492 493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 494 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 495 tcb->txstamp_ack |= TSTAMP_ACK_SK; 496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 498 } 499 500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 503 } 504 505 static bool tcp_stream_is_readable(struct sock *sk, int target) 506 { 507 if (tcp_epollin_ready(sk, target)) 508 return true; 509 return sk_is_readable(sk); 510 } 511 512 /* 513 * Wait for a TCP event. 514 * 515 * Note that we don't need to lock the socket, as the upper poll layers 516 * take care of normal races (between the test and the event) and we don't 517 * go look at any of the socket buffers directly. 518 */ 519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 520 { 521 __poll_t mask; 522 struct sock *sk = sock->sk; 523 const struct tcp_sock *tp = tcp_sk(sk); 524 u8 shutdown; 525 int state; 526 527 sock_poll_wait(file, sock, wait); 528 529 state = inet_sk_state_load(sk); 530 if (state == TCP_LISTEN) 531 return inet_csk_listen_poll(sk); 532 533 /* Socket is not locked. We are protected from async events 534 * by poll logic and correct handling of state changes 535 * made by other threads is impossible in any case. 536 */ 537 538 mask = 0; 539 540 /* 541 * EPOLLHUP is certainly not done right. But poll() doesn't 542 * have a notion of HUP in just one direction, and for a 543 * socket the read side is more interesting. 544 * 545 * Some poll() documentation says that EPOLLHUP is incompatible 546 * with the EPOLLOUT/POLLWR flags, so somebody should check this 547 * all. But careful, it tends to be safer to return too many 548 * bits than too few, and you can easily break real applications 549 * if you don't tell them that something has hung up! 550 * 551 * Check-me. 552 * 553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 554 * our fs/select.c). It means that after we received EOF, 555 * poll always returns immediately, making impossible poll() on write() 556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 557 * if and only if shutdown has been made in both directions. 558 * Actually, it is interesting to look how Solaris and DUX 559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 560 * then we could set it on SND_SHUTDOWN. BTW examples given 561 * in Stevens' books assume exactly this behaviour, it explains 562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 563 * 564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 565 * blocking on fresh not-connected or disconnected socket. --ANK 566 */ 567 shutdown = READ_ONCE(sk->sk_shutdown); 568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 569 mask |= EPOLLHUP; 570 if (shutdown & RCV_SHUTDOWN) 571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 572 573 /* Connected or passive Fast Open socket? */ 574 if (state != TCP_SYN_SENT && 575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 576 int target = sock_rcvlowat(sk, 0, INT_MAX); 577 u16 urg_data = READ_ONCE(tp->urg_data); 578 579 if (unlikely(urg_data) && 580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 581 !sock_flag(sk, SOCK_URGINLINE)) 582 target++; 583 584 if (tcp_stream_is_readable(sk, target)) 585 mask |= EPOLLIN | EPOLLRDNORM; 586 587 if (!(shutdown & SEND_SHUTDOWN)) { 588 if (__sk_stream_is_writeable(sk, 1)) { 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 } else { /* send SIGIO later */ 591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 593 594 /* Race breaker. If space is freed after 595 * wspace test but before the flags are set, 596 * IO signal will be lost. Memory barrier 597 * pairs with the input side. 598 */ 599 smp_mb__after_atomic(); 600 if (__sk_stream_is_writeable(sk, 1)) 601 mask |= EPOLLOUT | EPOLLWRNORM; 602 } 603 } else 604 mask |= EPOLLOUT | EPOLLWRNORM; 605 606 if (urg_data & TCP_URG_VALID) 607 mask |= EPOLLPRI; 608 } else if (state == TCP_SYN_SENT && 609 inet_test_bit(DEFER_CONNECT, sk)) { 610 /* Active TCP fastopen socket with defer_connect 611 * Return EPOLLOUT so application can call write() 612 * in order for kernel to generate SYN+data 613 */ 614 mask |= EPOLLOUT | EPOLLWRNORM; 615 } 616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 617 smp_rmb(); 618 if (READ_ONCE(sk->sk_err) || 619 !skb_queue_empty_lockless(&sk->sk_error_queue)) 620 mask |= EPOLLERR; 621 622 return mask; 623 } 624 EXPORT_SYMBOL(tcp_poll); 625 626 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 627 { 628 struct tcp_sock *tp = tcp_sk(sk); 629 int answ; 630 bool slow; 631 632 switch (cmd) { 633 case SIOCINQ: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 slow = lock_sock_fast(sk); 638 answ = tcp_inq(sk); 639 unlock_sock_fast(sk, slow); 640 break; 641 case SIOCATMARK: 642 answ = READ_ONCE(tp->urg_data) && 643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 644 break; 645 case SIOCOUTQ: 646 if (sk->sk_state == TCP_LISTEN) 647 return -EINVAL; 648 649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 650 answ = 0; 651 else 652 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 653 break; 654 case SIOCOUTQNSD: 655 if (sk->sk_state == TCP_LISTEN) 656 return -EINVAL; 657 658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 659 answ = 0; 660 else 661 answ = READ_ONCE(tp->write_seq) - 662 READ_ONCE(tp->snd_nxt); 663 break; 664 default: 665 return -ENOIOCTLCMD; 666 } 667 668 *karg = answ; 669 return 0; 670 } 671 EXPORT_IPV6_MOD(tcp_ioctl); 672 673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 674 { 675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 676 tp->pushed_seq = tp->write_seq; 677 } 678 679 static inline bool forced_push(const struct tcp_sock *tp) 680 { 681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 682 } 683 684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 688 689 tcb->seq = tcb->end_seq = tp->write_seq; 690 tcb->tcp_flags = TCPHDR_ACK; 691 __skb_header_release(skb); 692 tcp_add_write_queue_tail(sk, skb); 693 sk_wmem_queued_add(sk, skb->truesize); 694 sk_mem_charge(sk, skb->truesize); 695 if (tp->nonagle & TCP_NAGLE_PUSH) 696 tp->nonagle &= ~TCP_NAGLE_PUSH; 697 698 tcp_slow_start_after_idle_check(sk); 699 } 700 701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 702 { 703 if (flags & MSG_OOB) 704 tp->snd_up = tp->write_seq; 705 } 706 707 /* If a not yet filled skb is pushed, do not send it if 708 * we have data packets in Qdisc or NIC queues : 709 * Because TX completion will happen shortly, it gives a chance 710 * to coalesce future sendmsg() payload into this skb, without 711 * need for a timer, and with no latency trade off. 712 * As packets containing data payload have a bigger truesize 713 * than pure acks (dataless) packets, the last checks prevent 714 * autocorking if we only have an ACK in Qdisc/NIC queues, 715 * or if TX completion was delayed after we processed ACK packet. 716 */ 717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 718 int size_goal) 719 { 720 return skb->len < size_goal && 721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 722 !tcp_rtx_queue_empty(sk) && 723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 724 tcp_skb_can_collapse_to(skb); 725 } 726 727 void tcp_push(struct sock *sk, int flags, int mss_now, 728 int nonagle, int size_goal) 729 { 730 struct tcp_sock *tp = tcp_sk(sk); 731 struct sk_buff *skb; 732 733 skb = tcp_write_queue_tail(sk); 734 if (!skb) 735 return; 736 if (!(flags & MSG_MORE) || forced_push(tp)) 737 tcp_mark_push(tp, skb); 738 739 tcp_mark_urg(tp, flags); 740 741 if (tcp_should_autocork(sk, skb, size_goal)) { 742 743 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 747 smp_mb__after_atomic(); 748 } 749 /* It is possible TX completion already happened 750 * before we set TSQ_THROTTLED. 751 */ 752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 753 return; 754 } 755 756 if (flags & MSG_MORE) 757 nonagle = TCP_NAGLE_CORK; 758 759 __tcp_push_pending_frames(sk, mss_now, nonagle); 760 } 761 762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 763 unsigned int offset, size_t len) 764 { 765 struct tcp_splice_state *tss = rd_desc->arg.data; 766 int ret; 767 768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 769 min(rd_desc->count, len), tss->flags); 770 if (ret > 0) 771 rd_desc->count -= ret; 772 return ret; 773 } 774 775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 776 { 777 /* Store TCP splice context information in read_descriptor_t. */ 778 read_descriptor_t rd_desc = { 779 .arg.data = tss, 780 .count = tss->len, 781 }; 782 783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 784 } 785 786 /** 787 * tcp_splice_read - splice data from TCP socket to a pipe 788 * @sock: socket to splice from 789 * @ppos: position (not valid) 790 * @pipe: pipe to splice to 791 * @len: number of bytes to splice 792 * @flags: splice modifier flags 793 * 794 * Description: 795 * Will read pages from given socket and fill them into a pipe. 796 * 797 **/ 798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 799 struct pipe_inode_info *pipe, size_t len, 800 unsigned int flags) 801 { 802 struct sock *sk = sock->sk; 803 struct tcp_splice_state tss = { 804 .pipe = pipe, 805 .len = len, 806 .flags = flags, 807 }; 808 long timeo; 809 ssize_t spliced; 810 int ret; 811 812 sock_rps_record_flow(sk); 813 /* 814 * We can't seek on a socket input 815 */ 816 if (unlikely(*ppos)) 817 return -ESPIPE; 818 819 ret = spliced = 0; 820 821 lock_sock(sk); 822 823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 824 while (tss.len) { 825 ret = __tcp_splice_read(sk, &tss); 826 if (ret < 0) 827 break; 828 else if (!ret) { 829 if (spliced) 830 break; 831 if (sock_flag(sk, SOCK_DONE)) 832 break; 833 if (sk->sk_err) { 834 ret = sock_error(sk); 835 break; 836 } 837 if (sk->sk_shutdown & RCV_SHUTDOWN) 838 break; 839 if (sk->sk_state == TCP_CLOSE) { 840 /* 841 * This occurs when user tries to read 842 * from never connected socket. 843 */ 844 ret = -ENOTCONN; 845 break; 846 } 847 if (!timeo) { 848 ret = -EAGAIN; 849 break; 850 } 851 /* if __tcp_splice_read() got nothing while we have 852 * an skb in receive queue, we do not want to loop. 853 * This might happen with URG data. 854 */ 855 if (!skb_queue_empty(&sk->sk_receive_queue)) 856 break; 857 ret = sk_wait_data(sk, &timeo, NULL); 858 if (ret < 0) 859 break; 860 if (signal_pending(current)) { 861 ret = sock_intr_errno(timeo); 862 break; 863 } 864 continue; 865 } 866 tss.len -= ret; 867 spliced += ret; 868 869 if (!tss.len || !timeo) 870 break; 871 release_sock(sk); 872 lock_sock(sk); 873 874 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 875 (sk->sk_shutdown & RCV_SHUTDOWN) || 876 signal_pending(current)) 877 break; 878 } 879 880 release_sock(sk); 881 882 if (spliced) 883 return spliced; 884 885 return ret; 886 } 887 EXPORT_IPV6_MOD(tcp_splice_read); 888 889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 890 bool force_schedule) 891 { 892 struct sk_buff *skb; 893 894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 895 if (likely(skb)) { 896 bool mem_scheduled; 897 898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 899 if (force_schedule) { 900 mem_scheduled = true; 901 sk_forced_mem_schedule(sk, skb->truesize); 902 } else { 903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 904 } 905 if (likely(mem_scheduled)) { 906 skb_reserve(skb, MAX_TCP_HEADER); 907 skb->ip_summed = CHECKSUM_PARTIAL; 908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 909 return skb; 910 } 911 __kfree_skb(skb); 912 } else { 913 sk->sk_prot->enter_memory_pressure(sk); 914 sk_stream_moderate_sndbuf(sk); 915 } 916 return NULL; 917 } 918 919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 920 int large_allowed) 921 { 922 struct tcp_sock *tp = tcp_sk(sk); 923 u32 new_size_goal, size_goal; 924 925 if (!large_allowed) 926 return mss_now; 927 928 /* Note : tcp_tso_autosize() will eventually split this later */ 929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 930 931 /* We try hard to avoid divides here */ 932 size_goal = tp->gso_segs * mss_now; 933 if (unlikely(new_size_goal < size_goal || 934 new_size_goal >= size_goal + mss_now)) { 935 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 936 sk->sk_gso_max_segs); 937 size_goal = tp->gso_segs * mss_now; 938 } 939 940 return max(size_goal, mss_now); 941 } 942 943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 944 { 945 int mss_now; 946 947 mss_now = tcp_current_mss(sk); 948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 949 950 return mss_now; 951 } 952 953 /* In some cases, sendmsg() could have added an skb to the write queue, 954 * but failed adding payload on it. We need to remove it to consume less 955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 956 * epoll() users. Another reason is that tcp_write_xmit() does not like 957 * finding an empty skb in the write queue. 958 */ 959 void tcp_remove_empty_skb(struct sock *sk) 960 { 961 struct sk_buff *skb = tcp_write_queue_tail(sk); 962 963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 964 tcp_unlink_write_queue(skb, sk); 965 if (tcp_write_queue_empty(sk)) 966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 967 tcp_wmem_free_skb(sk, skb); 968 } 969 } 970 971 /* skb changing from pure zc to mixed, must charge zc */ 972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 973 { 974 if (unlikely(skb_zcopy_pure(skb))) { 975 u32 extra = skb->truesize - 976 SKB_TRUESIZE(skb_end_offset(skb)); 977 978 if (!sk_wmem_schedule(sk, extra)) 979 return -ENOMEM; 980 981 sk_mem_charge(sk, extra); 982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 983 } 984 return 0; 985 } 986 987 988 int tcp_wmem_schedule(struct sock *sk, int copy) 989 { 990 int left; 991 992 if (likely(sk_wmem_schedule(sk, copy))) 993 return copy; 994 995 /* We could be in trouble if we have nothing queued. 996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 997 * to guarantee some progress. 998 */ 999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 1000 if (left > 0) 1001 sk_forced_mem_schedule(sk, min(left, copy)); 1002 return min(copy, sk->sk_forward_alloc); 1003 } 1004 1005 void tcp_free_fastopen_req(struct tcp_sock *tp) 1006 { 1007 if (tp->fastopen_req) { 1008 kfree(tp->fastopen_req); 1009 tp->fastopen_req = NULL; 1010 } 1011 } 1012 1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1014 size_t size, struct ubuf_info *uarg) 1015 { 1016 struct tcp_sock *tp = tcp_sk(sk); 1017 struct inet_sock *inet = inet_sk(sk); 1018 struct sockaddr *uaddr = msg->msg_name; 1019 int err, flags; 1020 1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1022 TFO_CLIENT_ENABLE) || 1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1024 uaddr->sa_family == AF_UNSPEC)) 1025 return -EOPNOTSUPP; 1026 if (tp->fastopen_req) 1027 return -EALREADY; /* Another Fast Open is in progress */ 1028 1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1030 sk->sk_allocation); 1031 if (unlikely(!tp->fastopen_req)) 1032 return -ENOBUFS; 1033 tp->fastopen_req->data = msg; 1034 tp->fastopen_req->size = size; 1035 tp->fastopen_req->uarg = uarg; 1036 1037 if (inet_test_bit(DEFER_CONNECT, sk)) { 1038 err = tcp_connect(sk); 1039 /* Same failure procedure as in tcp_v4/6_connect */ 1040 if (err) { 1041 tcp_set_state(sk, TCP_CLOSE); 1042 inet->inet_dport = 0; 1043 sk->sk_route_caps = 0; 1044 } 1045 } 1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1047 err = __inet_stream_connect(sk->sk_socket, uaddr, 1048 msg->msg_namelen, flags, 1); 1049 /* fastopen_req could already be freed in __inet_stream_connect 1050 * if the connection times out or gets rst 1051 */ 1052 if (tp->fastopen_req) { 1053 *copied = tp->fastopen_req->copied; 1054 tcp_free_fastopen_req(tp); 1055 inet_clear_bit(DEFER_CONNECT, sk); 1056 } 1057 return err; 1058 } 1059 1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1061 { 1062 struct tcp_sock *tp = tcp_sk(sk); 1063 struct ubuf_info *uarg = NULL; 1064 struct sk_buff *skb; 1065 struct sockcm_cookie sockc; 1066 int flags, err, copied = 0; 1067 int mss_now = 0, size_goal, copied_syn = 0; 1068 int process_backlog = 0; 1069 int zc = 0; 1070 long timeo; 1071 1072 flags = msg->msg_flags; 1073 1074 if ((flags & MSG_ZEROCOPY) && size) { 1075 if (msg->msg_ubuf) { 1076 uarg = msg->msg_ubuf; 1077 if (sk->sk_route_caps & NETIF_F_SG) 1078 zc = MSG_ZEROCOPY; 1079 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1080 skb = tcp_write_queue_tail(sk); 1081 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1082 if (!uarg) { 1083 err = -ENOBUFS; 1084 goto out_err; 1085 } 1086 if (sk->sk_route_caps & NETIF_F_SG) 1087 zc = MSG_ZEROCOPY; 1088 else 1089 uarg_to_msgzc(uarg)->zerocopy = 0; 1090 } 1091 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1092 if (sk->sk_route_caps & NETIF_F_SG) 1093 zc = MSG_SPLICE_PAGES; 1094 } 1095 1096 if (unlikely(flags & MSG_FASTOPEN || 1097 inet_test_bit(DEFER_CONNECT, sk)) && 1098 !tp->repair) { 1099 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1100 if (err == -EINPROGRESS && copied_syn > 0) 1101 goto out; 1102 else if (err) 1103 goto out_err; 1104 } 1105 1106 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1107 1108 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1109 1110 /* Wait for a connection to finish. One exception is TCP Fast Open 1111 * (passive side) where data is allowed to be sent before a connection 1112 * is fully established. 1113 */ 1114 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1115 !tcp_passive_fastopen(sk)) { 1116 err = sk_stream_wait_connect(sk, &timeo); 1117 if (err != 0) 1118 goto do_error; 1119 } 1120 1121 if (unlikely(tp->repair)) { 1122 if (tp->repair_queue == TCP_RECV_QUEUE) { 1123 copied = tcp_send_rcvq(sk, msg, size); 1124 goto out_nopush; 1125 } 1126 1127 err = -EINVAL; 1128 if (tp->repair_queue == TCP_NO_QUEUE) 1129 goto out_err; 1130 1131 /* 'common' sending to sendq */ 1132 } 1133 1134 sockc = (struct sockcm_cookie) { .tsflags = READ_ONCE(sk->sk_tsflags)}; 1135 if (msg->msg_controllen) { 1136 err = sock_cmsg_send(sk, msg, &sockc); 1137 if (unlikely(err)) { 1138 err = -EINVAL; 1139 goto out_err; 1140 } 1141 } 1142 1143 /* This should be in poll */ 1144 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1145 1146 /* Ok commence sending. */ 1147 copied = 0; 1148 1149 restart: 1150 mss_now = tcp_send_mss(sk, &size_goal, flags); 1151 1152 err = -EPIPE; 1153 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1154 goto do_error; 1155 1156 while (msg_data_left(msg)) { 1157 ssize_t copy = 0; 1158 1159 skb = tcp_write_queue_tail(sk); 1160 if (skb) 1161 copy = size_goal - skb->len; 1162 1163 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1164 bool first_skb; 1165 1166 new_segment: 1167 if (!sk_stream_memory_free(sk)) 1168 goto wait_for_space; 1169 1170 if (unlikely(process_backlog >= 16)) { 1171 process_backlog = 0; 1172 if (sk_flush_backlog(sk)) 1173 goto restart; 1174 } 1175 first_skb = tcp_rtx_and_write_queues_empty(sk); 1176 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1177 first_skb); 1178 if (!skb) 1179 goto wait_for_space; 1180 1181 process_backlog++; 1182 1183 #ifdef CONFIG_SKB_DECRYPTED 1184 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1185 #endif 1186 tcp_skb_entail(sk, skb); 1187 copy = size_goal; 1188 1189 /* All packets are restored as if they have 1190 * already been sent. skb_mstamp_ns isn't set to 1191 * avoid wrong rtt estimation. 1192 */ 1193 if (tp->repair) 1194 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1195 } 1196 1197 /* Try to append data to the end of skb. */ 1198 if (copy > msg_data_left(msg)) 1199 copy = msg_data_left(msg); 1200 1201 if (zc == 0) { 1202 bool merge = true; 1203 int i = skb_shinfo(skb)->nr_frags; 1204 struct page_frag *pfrag = sk_page_frag(sk); 1205 1206 if (!sk_page_frag_refill(sk, pfrag)) 1207 goto wait_for_space; 1208 1209 if (!skb_can_coalesce(skb, i, pfrag->page, 1210 pfrag->offset)) { 1211 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1212 tcp_mark_push(tp, skb); 1213 goto new_segment; 1214 } 1215 merge = false; 1216 } 1217 1218 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1219 1220 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1221 if (tcp_downgrade_zcopy_pure(sk, skb)) 1222 goto wait_for_space; 1223 skb_zcopy_downgrade_managed(skb); 1224 } 1225 1226 copy = tcp_wmem_schedule(sk, copy); 1227 if (!copy) 1228 goto wait_for_space; 1229 1230 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1231 pfrag->page, 1232 pfrag->offset, 1233 copy); 1234 if (err) 1235 goto do_error; 1236 1237 /* Update the skb. */ 1238 if (merge) { 1239 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1240 } else { 1241 skb_fill_page_desc(skb, i, pfrag->page, 1242 pfrag->offset, copy); 1243 page_ref_inc(pfrag->page); 1244 } 1245 pfrag->offset += copy; 1246 } else if (zc == MSG_ZEROCOPY) { 1247 /* First append to a fragless skb builds initial 1248 * pure zerocopy skb 1249 */ 1250 if (!skb->len) 1251 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1252 1253 if (!skb_zcopy_pure(skb)) { 1254 copy = tcp_wmem_schedule(sk, copy); 1255 if (!copy) 1256 goto wait_for_space; 1257 } 1258 1259 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1260 if (err == -EMSGSIZE || err == -EEXIST) { 1261 tcp_mark_push(tp, skb); 1262 goto new_segment; 1263 } 1264 if (err < 0) 1265 goto do_error; 1266 copy = err; 1267 } else if (zc == MSG_SPLICE_PAGES) { 1268 /* Splice in data if we can; copy if we can't. */ 1269 if (tcp_downgrade_zcopy_pure(sk, skb)) 1270 goto wait_for_space; 1271 copy = tcp_wmem_schedule(sk, copy); 1272 if (!copy) 1273 goto wait_for_space; 1274 1275 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1276 sk->sk_allocation); 1277 if (err < 0) { 1278 if (err == -EMSGSIZE) { 1279 tcp_mark_push(tp, skb); 1280 goto new_segment; 1281 } 1282 goto do_error; 1283 } 1284 copy = err; 1285 1286 if (!(flags & MSG_NO_SHARED_FRAGS)) 1287 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1288 1289 sk_wmem_queued_add(sk, copy); 1290 sk_mem_charge(sk, copy); 1291 } 1292 1293 if (!copied) 1294 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1295 1296 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1297 TCP_SKB_CB(skb)->end_seq += copy; 1298 tcp_skb_pcount_set(skb, 0); 1299 1300 copied += copy; 1301 if (!msg_data_left(msg)) { 1302 if (unlikely(flags & MSG_EOR)) 1303 TCP_SKB_CB(skb)->eor = 1; 1304 goto out; 1305 } 1306 1307 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1308 continue; 1309 1310 if (forced_push(tp)) { 1311 tcp_mark_push(tp, skb); 1312 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1313 } else if (skb == tcp_send_head(sk)) 1314 tcp_push_one(sk, mss_now); 1315 continue; 1316 1317 wait_for_space: 1318 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1319 tcp_remove_empty_skb(sk); 1320 if (copied) 1321 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1322 TCP_NAGLE_PUSH, size_goal); 1323 1324 err = sk_stream_wait_memory(sk, &timeo); 1325 if (err != 0) 1326 goto do_error; 1327 1328 mss_now = tcp_send_mss(sk, &size_goal, flags); 1329 } 1330 1331 out: 1332 if (copied) { 1333 tcp_tx_timestamp(sk, &sockc); 1334 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1335 } 1336 out_nopush: 1337 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1338 if (uarg && !msg->msg_ubuf) 1339 net_zcopy_put(uarg); 1340 return copied + copied_syn; 1341 1342 do_error: 1343 tcp_remove_empty_skb(sk); 1344 1345 if (copied + copied_syn) 1346 goto out; 1347 out_err: 1348 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1349 if (uarg && !msg->msg_ubuf) 1350 net_zcopy_put_abort(uarg, true); 1351 err = sk_stream_error(sk, flags, err); 1352 /* make sure we wake any epoll edge trigger waiter */ 1353 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1354 sk->sk_write_space(sk); 1355 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1356 } 1357 return err; 1358 } 1359 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1360 1361 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1362 { 1363 int ret; 1364 1365 lock_sock(sk); 1366 ret = tcp_sendmsg_locked(sk, msg, size); 1367 release_sock(sk); 1368 1369 return ret; 1370 } 1371 EXPORT_SYMBOL(tcp_sendmsg); 1372 1373 void tcp_splice_eof(struct socket *sock) 1374 { 1375 struct sock *sk = sock->sk; 1376 struct tcp_sock *tp = tcp_sk(sk); 1377 int mss_now, size_goal; 1378 1379 if (!tcp_write_queue_tail(sk)) 1380 return; 1381 1382 lock_sock(sk); 1383 mss_now = tcp_send_mss(sk, &size_goal, 0); 1384 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1385 release_sock(sk); 1386 } 1387 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1388 1389 /* 1390 * Handle reading urgent data. BSD has very simple semantics for 1391 * this, no blocking and very strange errors 8) 1392 */ 1393 1394 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1395 { 1396 struct tcp_sock *tp = tcp_sk(sk); 1397 1398 /* No URG data to read. */ 1399 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1400 tp->urg_data == TCP_URG_READ) 1401 return -EINVAL; /* Yes this is right ! */ 1402 1403 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1404 return -ENOTCONN; 1405 1406 if (tp->urg_data & TCP_URG_VALID) { 1407 int err = 0; 1408 char c = tp->urg_data; 1409 1410 if (!(flags & MSG_PEEK)) 1411 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1412 1413 /* Read urgent data. */ 1414 msg->msg_flags |= MSG_OOB; 1415 1416 if (len > 0) { 1417 if (!(flags & MSG_TRUNC)) 1418 err = memcpy_to_msg(msg, &c, 1); 1419 len = 1; 1420 } else 1421 msg->msg_flags |= MSG_TRUNC; 1422 1423 return err ? -EFAULT : len; 1424 } 1425 1426 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1427 return 0; 1428 1429 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1430 * the available implementations agree in this case: 1431 * this call should never block, independent of the 1432 * blocking state of the socket. 1433 * Mike <pall@rz.uni-karlsruhe.de> 1434 */ 1435 return -EAGAIN; 1436 } 1437 1438 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1439 { 1440 struct sk_buff *skb; 1441 int copied = 0, err = 0; 1442 1443 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1444 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1445 if (err) 1446 return err; 1447 copied += skb->len; 1448 } 1449 1450 skb_queue_walk(&sk->sk_write_queue, skb) { 1451 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1452 if (err) 1453 break; 1454 1455 copied += skb->len; 1456 } 1457 1458 return err ?: copied; 1459 } 1460 1461 /* Clean up the receive buffer for full frames taken by the user, 1462 * then send an ACK if necessary. COPIED is the number of bytes 1463 * tcp_recvmsg has given to the user so far, it speeds up the 1464 * calculation of whether or not we must ACK for the sake of 1465 * a window update. 1466 */ 1467 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1468 { 1469 struct tcp_sock *tp = tcp_sk(sk); 1470 bool time_to_ack = false; 1471 1472 if (inet_csk_ack_scheduled(sk)) { 1473 const struct inet_connection_sock *icsk = inet_csk(sk); 1474 1475 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1476 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1477 /* 1478 * If this read emptied read buffer, we send ACK, if 1479 * connection is not bidirectional, user drained 1480 * receive buffer and there was a small segment 1481 * in queue. 1482 */ 1483 (copied > 0 && 1484 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1485 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1486 !inet_csk_in_pingpong_mode(sk))) && 1487 !atomic_read(&sk->sk_rmem_alloc))) 1488 time_to_ack = true; 1489 } 1490 1491 /* We send an ACK if we can now advertise a non-zero window 1492 * which has been raised "significantly". 1493 * 1494 * Even if window raised up to infinity, do not send window open ACK 1495 * in states, where we will not receive more. It is useless. 1496 */ 1497 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1498 __u32 rcv_window_now = tcp_receive_window(tp); 1499 1500 /* Optimize, __tcp_select_window() is not cheap. */ 1501 if (2*rcv_window_now <= tp->window_clamp) { 1502 __u32 new_window = __tcp_select_window(sk); 1503 1504 /* Send ACK now, if this read freed lots of space 1505 * in our buffer. Certainly, new_window is new window. 1506 * We can advertise it now, if it is not less than current one. 1507 * "Lots" means "at least twice" here. 1508 */ 1509 if (new_window && new_window >= 2 * rcv_window_now) 1510 time_to_ack = true; 1511 } 1512 } 1513 if (time_to_ack) 1514 tcp_send_ack(sk); 1515 } 1516 1517 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1518 { 1519 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1520 struct tcp_sock *tp = tcp_sk(sk); 1521 1522 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1523 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1524 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1525 __tcp_cleanup_rbuf(sk, copied); 1526 } 1527 1528 /* private version of sock_rfree() avoiding one atomic_sub() */ 1529 void tcp_sock_rfree(struct sk_buff *skb) 1530 { 1531 struct sock *sk = skb->sk; 1532 unsigned int len = skb->truesize; 1533 1534 sock_owned_by_me(sk); 1535 atomic_set(&sk->sk_rmem_alloc, 1536 atomic_read(&sk->sk_rmem_alloc) - len); 1537 1538 sk_forward_alloc_add(sk, len); 1539 sk_mem_reclaim(sk); 1540 } 1541 1542 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1543 { 1544 __skb_unlink(skb, &sk->sk_receive_queue); 1545 if (likely(skb->destructor == tcp_sock_rfree)) { 1546 tcp_sock_rfree(skb); 1547 skb->destructor = NULL; 1548 skb->sk = NULL; 1549 return skb_attempt_defer_free(skb); 1550 } 1551 __kfree_skb(skb); 1552 } 1553 1554 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1555 { 1556 struct sk_buff *skb; 1557 u32 offset; 1558 1559 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1560 offset = seq - TCP_SKB_CB(skb)->seq; 1561 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1562 pr_err_once("%s: found a SYN, please report !\n", __func__); 1563 offset--; 1564 } 1565 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1566 *off = offset; 1567 return skb; 1568 } 1569 /* This looks weird, but this can happen if TCP collapsing 1570 * splitted a fat GRO packet, while we released socket lock 1571 * in skb_splice_bits() 1572 */ 1573 tcp_eat_recv_skb(sk, skb); 1574 } 1575 return NULL; 1576 } 1577 EXPORT_SYMBOL(tcp_recv_skb); 1578 1579 /* 1580 * This routine provides an alternative to tcp_recvmsg() for routines 1581 * that would like to handle copying from skbuffs directly in 'sendfile' 1582 * fashion. 1583 * Note: 1584 * - It is assumed that the socket was locked by the caller. 1585 * - The routine does not block. 1586 * - At present, there is no support for reading OOB data 1587 * or for 'peeking' the socket using this routine 1588 * (although both would be easy to implement). 1589 */ 1590 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1591 sk_read_actor_t recv_actor, bool noack, 1592 u32 *copied_seq) 1593 { 1594 struct sk_buff *skb; 1595 struct tcp_sock *tp = tcp_sk(sk); 1596 u32 seq = *copied_seq; 1597 u32 offset; 1598 int copied = 0; 1599 1600 if (sk->sk_state == TCP_LISTEN) 1601 return -ENOTCONN; 1602 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1603 if (offset < skb->len) { 1604 int used; 1605 size_t len; 1606 1607 len = skb->len - offset; 1608 /* Stop reading if we hit a patch of urgent data */ 1609 if (unlikely(tp->urg_data)) { 1610 u32 urg_offset = tp->urg_seq - seq; 1611 if (urg_offset < len) 1612 len = urg_offset; 1613 if (!len) 1614 break; 1615 } 1616 used = recv_actor(desc, skb, offset, len); 1617 if (used <= 0) { 1618 if (!copied) 1619 copied = used; 1620 break; 1621 } 1622 if (WARN_ON_ONCE(used > len)) 1623 used = len; 1624 seq += used; 1625 copied += used; 1626 offset += used; 1627 1628 /* If recv_actor drops the lock (e.g. TCP splice 1629 * receive) the skb pointer might be invalid when 1630 * getting here: tcp_collapse might have deleted it 1631 * while aggregating skbs from the socket queue. 1632 */ 1633 skb = tcp_recv_skb(sk, seq - 1, &offset); 1634 if (!skb) 1635 break; 1636 /* TCP coalescing might have appended data to the skb. 1637 * Try to splice more frags 1638 */ 1639 if (offset + 1 != skb->len) 1640 continue; 1641 } 1642 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1643 tcp_eat_recv_skb(sk, skb); 1644 ++seq; 1645 break; 1646 } 1647 tcp_eat_recv_skb(sk, skb); 1648 if (!desc->count) 1649 break; 1650 WRITE_ONCE(*copied_seq, seq); 1651 } 1652 WRITE_ONCE(*copied_seq, seq); 1653 1654 if (noack) 1655 goto out; 1656 1657 tcp_rcv_space_adjust(sk); 1658 1659 /* Clean up data we have read: This will do ACK frames. */ 1660 if (copied > 0) { 1661 tcp_recv_skb(sk, seq, &offset); 1662 tcp_cleanup_rbuf(sk, copied); 1663 } 1664 out: 1665 return copied; 1666 } 1667 1668 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1669 sk_read_actor_t recv_actor) 1670 { 1671 return __tcp_read_sock(sk, desc, recv_actor, false, 1672 &tcp_sk(sk)->copied_seq); 1673 } 1674 EXPORT_SYMBOL(tcp_read_sock); 1675 1676 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1677 sk_read_actor_t recv_actor, bool noack, 1678 u32 *copied_seq) 1679 { 1680 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1681 } 1682 1683 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1684 { 1685 struct sk_buff *skb; 1686 int copied = 0; 1687 1688 if (sk->sk_state == TCP_LISTEN) 1689 return -ENOTCONN; 1690 1691 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1692 u8 tcp_flags; 1693 int used; 1694 1695 __skb_unlink(skb, &sk->sk_receive_queue); 1696 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1697 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1698 used = recv_actor(sk, skb); 1699 if (used < 0) { 1700 if (!copied) 1701 copied = used; 1702 break; 1703 } 1704 copied += used; 1705 1706 if (tcp_flags & TCPHDR_FIN) 1707 break; 1708 } 1709 return copied; 1710 } 1711 EXPORT_IPV6_MOD(tcp_read_skb); 1712 1713 void tcp_read_done(struct sock *sk, size_t len) 1714 { 1715 struct tcp_sock *tp = tcp_sk(sk); 1716 u32 seq = tp->copied_seq; 1717 struct sk_buff *skb; 1718 size_t left; 1719 u32 offset; 1720 1721 if (sk->sk_state == TCP_LISTEN) 1722 return; 1723 1724 left = len; 1725 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1726 int used; 1727 1728 used = min_t(size_t, skb->len - offset, left); 1729 seq += used; 1730 left -= used; 1731 1732 if (skb->len > offset + used) 1733 break; 1734 1735 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1736 tcp_eat_recv_skb(sk, skb); 1737 ++seq; 1738 break; 1739 } 1740 tcp_eat_recv_skb(sk, skb); 1741 } 1742 WRITE_ONCE(tp->copied_seq, seq); 1743 1744 tcp_rcv_space_adjust(sk); 1745 1746 /* Clean up data we have read: This will do ACK frames. */ 1747 if (left != len) 1748 tcp_cleanup_rbuf(sk, len - left); 1749 } 1750 EXPORT_SYMBOL(tcp_read_done); 1751 1752 int tcp_peek_len(struct socket *sock) 1753 { 1754 return tcp_inq(sock->sk); 1755 } 1756 EXPORT_IPV6_MOD(tcp_peek_len); 1757 1758 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1759 int tcp_set_rcvlowat(struct sock *sk, int val) 1760 { 1761 int space, cap; 1762 1763 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1764 cap = sk->sk_rcvbuf >> 1; 1765 else 1766 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1767 val = min(val, cap); 1768 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1769 1770 /* Check if we need to signal EPOLLIN right now */ 1771 tcp_data_ready(sk); 1772 1773 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1774 return 0; 1775 1776 space = tcp_space_from_win(sk, val); 1777 if (space > sk->sk_rcvbuf) { 1778 WRITE_ONCE(sk->sk_rcvbuf, space); 1779 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1780 } 1781 return 0; 1782 } 1783 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1784 1785 void tcp_update_recv_tstamps(struct sk_buff *skb, 1786 struct scm_timestamping_internal *tss) 1787 { 1788 if (skb->tstamp) 1789 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1790 else 1791 tss->ts[0] = (struct timespec64) {0}; 1792 1793 if (skb_hwtstamps(skb)->hwtstamp) 1794 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1795 else 1796 tss->ts[2] = (struct timespec64) {0}; 1797 } 1798 1799 #ifdef CONFIG_MMU 1800 static const struct vm_operations_struct tcp_vm_ops = { 1801 }; 1802 1803 int tcp_mmap(struct file *file, struct socket *sock, 1804 struct vm_area_struct *vma) 1805 { 1806 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1807 return -EPERM; 1808 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1809 1810 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1811 vm_flags_set(vma, VM_MIXEDMAP); 1812 1813 vma->vm_ops = &tcp_vm_ops; 1814 return 0; 1815 } 1816 EXPORT_IPV6_MOD(tcp_mmap); 1817 1818 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1819 u32 *offset_frag) 1820 { 1821 skb_frag_t *frag; 1822 1823 if (unlikely(offset_skb >= skb->len)) 1824 return NULL; 1825 1826 offset_skb -= skb_headlen(skb); 1827 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1828 return NULL; 1829 1830 frag = skb_shinfo(skb)->frags; 1831 while (offset_skb) { 1832 if (skb_frag_size(frag) > offset_skb) { 1833 *offset_frag = offset_skb; 1834 return frag; 1835 } 1836 offset_skb -= skb_frag_size(frag); 1837 ++frag; 1838 } 1839 *offset_frag = 0; 1840 return frag; 1841 } 1842 1843 static bool can_map_frag(const skb_frag_t *frag) 1844 { 1845 struct page *page; 1846 1847 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1848 return false; 1849 1850 page = skb_frag_page(frag); 1851 1852 if (PageCompound(page) || page->mapping) 1853 return false; 1854 1855 return true; 1856 } 1857 1858 static int find_next_mappable_frag(const skb_frag_t *frag, 1859 int remaining_in_skb) 1860 { 1861 int offset = 0; 1862 1863 if (likely(can_map_frag(frag))) 1864 return 0; 1865 1866 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1867 offset += skb_frag_size(frag); 1868 ++frag; 1869 } 1870 return offset; 1871 } 1872 1873 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1874 struct tcp_zerocopy_receive *zc, 1875 struct sk_buff *skb, u32 offset) 1876 { 1877 u32 frag_offset, partial_frag_remainder = 0; 1878 int mappable_offset; 1879 skb_frag_t *frag; 1880 1881 /* worst case: skip to next skb. try to improve on this case below */ 1882 zc->recv_skip_hint = skb->len - offset; 1883 1884 /* Find the frag containing this offset (and how far into that frag) */ 1885 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1886 if (!frag) 1887 return; 1888 1889 if (frag_offset) { 1890 struct skb_shared_info *info = skb_shinfo(skb); 1891 1892 /* We read part of the last frag, must recvmsg() rest of skb. */ 1893 if (frag == &info->frags[info->nr_frags - 1]) 1894 return; 1895 1896 /* Else, we must at least read the remainder in this frag. */ 1897 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1898 zc->recv_skip_hint -= partial_frag_remainder; 1899 ++frag; 1900 } 1901 1902 /* partial_frag_remainder: If part way through a frag, must read rest. 1903 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1904 * in partial_frag_remainder. 1905 */ 1906 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1907 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1908 } 1909 1910 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1911 int flags, struct scm_timestamping_internal *tss, 1912 int *cmsg_flags); 1913 static int receive_fallback_to_copy(struct sock *sk, 1914 struct tcp_zerocopy_receive *zc, int inq, 1915 struct scm_timestamping_internal *tss) 1916 { 1917 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1918 struct msghdr msg = {}; 1919 int err; 1920 1921 zc->length = 0; 1922 zc->recv_skip_hint = 0; 1923 1924 if (copy_address != zc->copybuf_address) 1925 return -EINVAL; 1926 1927 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1928 &msg.msg_iter); 1929 if (err) 1930 return err; 1931 1932 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1933 tss, &zc->msg_flags); 1934 if (err < 0) 1935 return err; 1936 1937 zc->copybuf_len = err; 1938 if (likely(zc->copybuf_len)) { 1939 struct sk_buff *skb; 1940 u32 offset; 1941 1942 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1943 if (skb) 1944 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1945 } 1946 return 0; 1947 } 1948 1949 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1950 struct sk_buff *skb, u32 copylen, 1951 u32 *offset, u32 *seq) 1952 { 1953 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1954 struct msghdr msg = {}; 1955 int err; 1956 1957 if (copy_address != zc->copybuf_address) 1958 return -EINVAL; 1959 1960 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1961 &msg.msg_iter); 1962 if (err) 1963 return err; 1964 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1965 if (err) 1966 return err; 1967 zc->recv_skip_hint -= copylen; 1968 *offset += copylen; 1969 *seq += copylen; 1970 return (__s32)copylen; 1971 } 1972 1973 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1974 struct sock *sk, 1975 struct sk_buff *skb, 1976 u32 *seq, 1977 s32 copybuf_len, 1978 struct scm_timestamping_internal *tss) 1979 { 1980 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1981 1982 if (!copylen) 1983 return 0; 1984 /* skb is null if inq < PAGE_SIZE. */ 1985 if (skb) { 1986 offset = *seq - TCP_SKB_CB(skb)->seq; 1987 } else { 1988 skb = tcp_recv_skb(sk, *seq, &offset); 1989 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1990 tcp_update_recv_tstamps(skb, tss); 1991 zc->msg_flags |= TCP_CMSG_TS; 1992 } 1993 } 1994 1995 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1996 seq); 1997 return zc->copybuf_len < 0 ? 0 : copylen; 1998 } 1999 2000 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2001 struct page **pending_pages, 2002 unsigned long pages_remaining, 2003 unsigned long *address, 2004 u32 *length, 2005 u32 *seq, 2006 struct tcp_zerocopy_receive *zc, 2007 u32 total_bytes_to_map, 2008 int err) 2009 { 2010 /* At least one page did not map. Try zapping if we skipped earlier. */ 2011 if (err == -EBUSY && 2012 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2013 u32 maybe_zap_len; 2014 2015 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2016 *length + /* Mapped or pending */ 2017 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2018 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2019 err = 0; 2020 } 2021 2022 if (!err) { 2023 unsigned long leftover_pages = pages_remaining; 2024 int bytes_mapped; 2025 2026 /* We called zap_page_range_single, try to reinsert. */ 2027 err = vm_insert_pages(vma, *address, 2028 pending_pages, 2029 &pages_remaining); 2030 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2031 *seq += bytes_mapped; 2032 *address += bytes_mapped; 2033 } 2034 if (err) { 2035 /* Either we were unable to zap, OR we zapped, retried an 2036 * insert, and still had an issue. Either ways, pages_remaining 2037 * is the number of pages we were unable to map, and we unroll 2038 * some state we speculatively touched before. 2039 */ 2040 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2041 2042 *length -= bytes_not_mapped; 2043 zc->recv_skip_hint += bytes_not_mapped; 2044 } 2045 return err; 2046 } 2047 2048 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2049 struct page **pages, 2050 unsigned int pages_to_map, 2051 unsigned long *address, 2052 u32 *length, 2053 u32 *seq, 2054 struct tcp_zerocopy_receive *zc, 2055 u32 total_bytes_to_map) 2056 { 2057 unsigned long pages_remaining = pages_to_map; 2058 unsigned int pages_mapped; 2059 unsigned int bytes_mapped; 2060 int err; 2061 2062 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2063 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2064 bytes_mapped = PAGE_SIZE * pages_mapped; 2065 /* Even if vm_insert_pages fails, it may have partially succeeded in 2066 * mapping (some but not all of the pages). 2067 */ 2068 *seq += bytes_mapped; 2069 *address += bytes_mapped; 2070 2071 if (likely(!err)) 2072 return 0; 2073 2074 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2075 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2076 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2077 err); 2078 } 2079 2080 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2081 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2082 struct tcp_zerocopy_receive *zc, 2083 struct scm_timestamping_internal *tss) 2084 { 2085 unsigned long msg_control_addr; 2086 struct msghdr cmsg_dummy; 2087 2088 msg_control_addr = (unsigned long)zc->msg_control; 2089 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2090 cmsg_dummy.msg_controllen = 2091 (__kernel_size_t)zc->msg_controllen; 2092 cmsg_dummy.msg_flags = in_compat_syscall() 2093 ? MSG_CMSG_COMPAT : 0; 2094 cmsg_dummy.msg_control_is_user = true; 2095 zc->msg_flags = 0; 2096 if (zc->msg_control == msg_control_addr && 2097 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2098 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2099 zc->msg_control = (__u64) 2100 ((uintptr_t)cmsg_dummy.msg_control_user); 2101 zc->msg_controllen = 2102 (__u64)cmsg_dummy.msg_controllen; 2103 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2104 } 2105 } 2106 2107 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2108 unsigned long address, 2109 bool *mmap_locked) 2110 { 2111 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2112 2113 if (vma) { 2114 if (vma->vm_ops != &tcp_vm_ops) { 2115 vma_end_read(vma); 2116 return NULL; 2117 } 2118 *mmap_locked = false; 2119 return vma; 2120 } 2121 2122 mmap_read_lock(mm); 2123 vma = vma_lookup(mm, address); 2124 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2125 mmap_read_unlock(mm); 2126 return NULL; 2127 } 2128 *mmap_locked = true; 2129 return vma; 2130 } 2131 2132 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2133 static int tcp_zerocopy_receive(struct sock *sk, 2134 struct tcp_zerocopy_receive *zc, 2135 struct scm_timestamping_internal *tss) 2136 { 2137 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2138 unsigned long address = (unsigned long)zc->address; 2139 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2140 s32 copybuf_len = zc->copybuf_len; 2141 struct tcp_sock *tp = tcp_sk(sk); 2142 const skb_frag_t *frags = NULL; 2143 unsigned int pages_to_map = 0; 2144 struct vm_area_struct *vma; 2145 struct sk_buff *skb = NULL; 2146 u32 seq = tp->copied_seq; 2147 u32 total_bytes_to_map; 2148 int inq = tcp_inq(sk); 2149 bool mmap_locked; 2150 int ret; 2151 2152 zc->copybuf_len = 0; 2153 zc->msg_flags = 0; 2154 2155 if (address & (PAGE_SIZE - 1) || address != zc->address) 2156 return -EINVAL; 2157 2158 if (sk->sk_state == TCP_LISTEN) 2159 return -ENOTCONN; 2160 2161 sock_rps_record_flow(sk); 2162 2163 if (inq && inq <= copybuf_len) 2164 return receive_fallback_to_copy(sk, zc, inq, tss); 2165 2166 if (inq < PAGE_SIZE) { 2167 zc->length = 0; 2168 zc->recv_skip_hint = inq; 2169 if (!inq && sock_flag(sk, SOCK_DONE)) 2170 return -EIO; 2171 return 0; 2172 } 2173 2174 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2175 if (!vma) 2176 return -EINVAL; 2177 2178 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2179 avail_len = min_t(u32, vma_len, inq); 2180 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2181 if (total_bytes_to_map) { 2182 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2183 zap_page_range_single(vma, address, total_bytes_to_map, 2184 NULL); 2185 zc->length = total_bytes_to_map; 2186 zc->recv_skip_hint = 0; 2187 } else { 2188 zc->length = avail_len; 2189 zc->recv_skip_hint = avail_len; 2190 } 2191 ret = 0; 2192 while (length + PAGE_SIZE <= zc->length) { 2193 int mappable_offset; 2194 struct page *page; 2195 2196 if (zc->recv_skip_hint < PAGE_SIZE) { 2197 u32 offset_frag; 2198 2199 if (skb) { 2200 if (zc->recv_skip_hint > 0) 2201 break; 2202 skb = skb->next; 2203 offset = seq - TCP_SKB_CB(skb)->seq; 2204 } else { 2205 skb = tcp_recv_skb(sk, seq, &offset); 2206 } 2207 2208 if (!skb_frags_readable(skb)) 2209 break; 2210 2211 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2212 tcp_update_recv_tstamps(skb, tss); 2213 zc->msg_flags |= TCP_CMSG_TS; 2214 } 2215 zc->recv_skip_hint = skb->len - offset; 2216 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2217 if (!frags || offset_frag) 2218 break; 2219 } 2220 2221 mappable_offset = find_next_mappable_frag(frags, 2222 zc->recv_skip_hint); 2223 if (mappable_offset) { 2224 zc->recv_skip_hint = mappable_offset; 2225 break; 2226 } 2227 page = skb_frag_page(frags); 2228 if (WARN_ON_ONCE(!page)) 2229 break; 2230 2231 prefetchw(page); 2232 pages[pages_to_map++] = page; 2233 length += PAGE_SIZE; 2234 zc->recv_skip_hint -= PAGE_SIZE; 2235 frags++; 2236 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2237 zc->recv_skip_hint < PAGE_SIZE) { 2238 /* Either full batch, or we're about to go to next skb 2239 * (and we cannot unroll failed ops across skbs). 2240 */ 2241 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2242 pages_to_map, 2243 &address, &length, 2244 &seq, zc, 2245 total_bytes_to_map); 2246 if (ret) 2247 goto out; 2248 pages_to_map = 0; 2249 } 2250 } 2251 if (pages_to_map) { 2252 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2253 &address, &length, &seq, 2254 zc, total_bytes_to_map); 2255 } 2256 out: 2257 if (mmap_locked) 2258 mmap_read_unlock(current->mm); 2259 else 2260 vma_end_read(vma); 2261 /* Try to copy straggler data. */ 2262 if (!ret) 2263 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2264 2265 if (length + copylen) { 2266 WRITE_ONCE(tp->copied_seq, seq); 2267 tcp_rcv_space_adjust(sk); 2268 2269 /* Clean up data we have read: This will do ACK frames. */ 2270 tcp_recv_skb(sk, seq, &offset); 2271 tcp_cleanup_rbuf(sk, length + copylen); 2272 ret = 0; 2273 if (length == zc->length) 2274 zc->recv_skip_hint = 0; 2275 } else { 2276 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2277 ret = -EIO; 2278 } 2279 zc->length = length; 2280 return ret; 2281 } 2282 #endif 2283 2284 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2285 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2286 struct scm_timestamping_internal *tss) 2287 { 2288 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2289 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2290 bool has_timestamping = false; 2291 2292 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2293 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2294 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2295 if (new_tstamp) { 2296 struct __kernel_timespec kts = { 2297 .tv_sec = tss->ts[0].tv_sec, 2298 .tv_nsec = tss->ts[0].tv_nsec, 2299 }; 2300 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2301 sizeof(kts), &kts); 2302 } else { 2303 struct __kernel_old_timespec ts_old = { 2304 .tv_sec = tss->ts[0].tv_sec, 2305 .tv_nsec = tss->ts[0].tv_nsec, 2306 }; 2307 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2308 sizeof(ts_old), &ts_old); 2309 } 2310 } else { 2311 if (new_tstamp) { 2312 struct __kernel_sock_timeval stv = { 2313 .tv_sec = tss->ts[0].tv_sec, 2314 .tv_usec = tss->ts[0].tv_nsec / 1000, 2315 }; 2316 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2317 sizeof(stv), &stv); 2318 } else { 2319 struct __kernel_old_timeval tv = { 2320 .tv_sec = tss->ts[0].tv_sec, 2321 .tv_usec = tss->ts[0].tv_nsec / 1000, 2322 }; 2323 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2324 sizeof(tv), &tv); 2325 } 2326 } 2327 } 2328 2329 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2330 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2331 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2332 has_timestamping = true; 2333 else 2334 tss->ts[0] = (struct timespec64) {0}; 2335 } 2336 2337 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2338 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2339 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2340 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2341 has_timestamping = true; 2342 else 2343 tss->ts[2] = (struct timespec64) {0}; 2344 } 2345 2346 if (has_timestamping) { 2347 tss->ts[1] = (struct timespec64) {0}; 2348 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2349 put_cmsg_scm_timestamping64(msg, tss); 2350 else 2351 put_cmsg_scm_timestamping(msg, tss); 2352 } 2353 } 2354 2355 static int tcp_inq_hint(struct sock *sk) 2356 { 2357 const struct tcp_sock *tp = tcp_sk(sk); 2358 u32 copied_seq = READ_ONCE(tp->copied_seq); 2359 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2360 int inq; 2361 2362 inq = rcv_nxt - copied_seq; 2363 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2364 lock_sock(sk); 2365 inq = tp->rcv_nxt - tp->copied_seq; 2366 release_sock(sk); 2367 } 2368 /* After receiving a FIN, tell the user-space to continue reading 2369 * by returning a non-zero inq. 2370 */ 2371 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2372 inq = 1; 2373 return inq; 2374 } 2375 2376 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2377 struct tcp_xa_pool { 2378 u8 max; /* max <= MAX_SKB_FRAGS */ 2379 u8 idx; /* idx <= max */ 2380 __u32 tokens[MAX_SKB_FRAGS]; 2381 netmem_ref netmems[MAX_SKB_FRAGS]; 2382 }; 2383 2384 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2385 { 2386 int i; 2387 2388 /* Commit part that has been copied to user space. */ 2389 for (i = 0; i < p->idx; i++) 2390 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2391 (__force void *)p->netmems[i], GFP_KERNEL); 2392 /* Rollback what has been pre-allocated and is no longer needed. */ 2393 for (; i < p->max; i++) 2394 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2395 2396 p->max = 0; 2397 p->idx = 0; 2398 } 2399 2400 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2401 { 2402 if (!p->max) 2403 return; 2404 2405 xa_lock_bh(&sk->sk_user_frags); 2406 2407 tcp_xa_pool_commit_locked(sk, p); 2408 2409 xa_unlock_bh(&sk->sk_user_frags); 2410 } 2411 2412 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2413 unsigned int max_frags) 2414 { 2415 int err, k; 2416 2417 if (p->idx < p->max) 2418 return 0; 2419 2420 xa_lock_bh(&sk->sk_user_frags); 2421 2422 tcp_xa_pool_commit_locked(sk, p); 2423 2424 for (k = 0; k < max_frags; k++) { 2425 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2426 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2427 if (err) 2428 break; 2429 } 2430 2431 xa_unlock_bh(&sk->sk_user_frags); 2432 2433 p->max = k; 2434 p->idx = 0; 2435 return k ? 0 : err; 2436 } 2437 2438 /* On error, returns the -errno. On success, returns number of bytes sent to the 2439 * user. May not consume all of @remaining_len. 2440 */ 2441 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2442 unsigned int offset, struct msghdr *msg, 2443 int remaining_len) 2444 { 2445 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2446 struct tcp_xa_pool tcp_xa_pool; 2447 unsigned int start; 2448 int i, copy, n; 2449 int sent = 0; 2450 int err = 0; 2451 2452 tcp_xa_pool.max = 0; 2453 tcp_xa_pool.idx = 0; 2454 do { 2455 start = skb_headlen(skb); 2456 2457 if (skb_frags_readable(skb)) { 2458 err = -ENODEV; 2459 goto out; 2460 } 2461 2462 /* Copy header. */ 2463 copy = start - offset; 2464 if (copy > 0) { 2465 copy = min(copy, remaining_len); 2466 2467 n = copy_to_iter(skb->data + offset, copy, 2468 &msg->msg_iter); 2469 if (n != copy) { 2470 err = -EFAULT; 2471 goto out; 2472 } 2473 2474 offset += copy; 2475 remaining_len -= copy; 2476 2477 /* First a dmabuf_cmsg for # bytes copied to user 2478 * buffer. 2479 */ 2480 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2481 dmabuf_cmsg.frag_size = copy; 2482 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2483 SO_DEVMEM_LINEAR, 2484 sizeof(dmabuf_cmsg), 2485 &dmabuf_cmsg); 2486 if (err) 2487 goto out; 2488 2489 sent += copy; 2490 2491 if (remaining_len == 0) 2492 goto out; 2493 } 2494 2495 /* after that, send information of dmabuf pages through a 2496 * sequence of cmsg 2497 */ 2498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2500 struct net_iov *niov; 2501 u64 frag_offset; 2502 int end; 2503 2504 /* !skb_frags_readable() should indicate that ALL the 2505 * frags in this skb are dmabuf net_iovs. We're checking 2506 * for that flag above, but also check individual frags 2507 * here. If the tcp stack is not setting 2508 * skb_frags_readable() correctly, we still don't want 2509 * to crash here. 2510 */ 2511 if (!skb_frag_net_iov(frag)) { 2512 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2513 err = -ENODEV; 2514 goto out; 2515 } 2516 2517 niov = skb_frag_net_iov(frag); 2518 if (!net_is_devmem_iov(niov)) { 2519 err = -ENODEV; 2520 goto out; 2521 } 2522 2523 end = start + skb_frag_size(frag); 2524 copy = end - offset; 2525 2526 if (copy > 0) { 2527 copy = min(copy, remaining_len); 2528 2529 frag_offset = net_iov_virtual_addr(niov) + 2530 skb_frag_off(frag) + offset - 2531 start; 2532 dmabuf_cmsg.frag_offset = frag_offset; 2533 dmabuf_cmsg.frag_size = copy; 2534 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2535 skb_shinfo(skb)->nr_frags - i); 2536 if (err) 2537 goto out; 2538 2539 /* Will perform the exchange later */ 2540 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2541 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2542 2543 offset += copy; 2544 remaining_len -= copy; 2545 2546 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2547 SO_DEVMEM_DMABUF, 2548 sizeof(dmabuf_cmsg), 2549 &dmabuf_cmsg); 2550 if (err) 2551 goto out; 2552 2553 atomic_long_inc(&niov->pp_ref_count); 2554 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2555 2556 sent += copy; 2557 2558 if (remaining_len == 0) 2559 goto out; 2560 } 2561 start = end; 2562 } 2563 2564 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2565 if (!remaining_len) 2566 goto out; 2567 2568 /* if remaining_len is not satisfied yet, we need to go to the 2569 * next frag in the frag_list to satisfy remaining_len. 2570 */ 2571 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2572 2573 offset = offset - start; 2574 } while (skb); 2575 2576 if (remaining_len) { 2577 err = -EFAULT; 2578 goto out; 2579 } 2580 2581 out: 2582 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2583 if (!sent) 2584 sent = err; 2585 2586 return sent; 2587 } 2588 2589 /* 2590 * This routine copies from a sock struct into the user buffer. 2591 * 2592 * Technical note: in 2.3 we work on _locked_ socket, so that 2593 * tricks with *seq access order and skb->users are not required. 2594 * Probably, code can be easily improved even more. 2595 */ 2596 2597 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2598 int flags, struct scm_timestamping_internal *tss, 2599 int *cmsg_flags) 2600 { 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 int last_copied_dmabuf = -1; /* uninitialized */ 2603 int copied = 0; 2604 u32 peek_seq; 2605 u32 *seq; 2606 unsigned long used; 2607 int err; 2608 int target; /* Read at least this many bytes */ 2609 long timeo; 2610 struct sk_buff *skb, *last; 2611 u32 peek_offset = 0; 2612 u32 urg_hole = 0; 2613 2614 err = -ENOTCONN; 2615 if (sk->sk_state == TCP_LISTEN) 2616 goto out; 2617 2618 if (tp->recvmsg_inq) { 2619 *cmsg_flags = TCP_CMSG_INQ; 2620 msg->msg_get_inq = 1; 2621 } 2622 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2623 2624 /* Urgent data needs to be handled specially. */ 2625 if (flags & MSG_OOB) 2626 goto recv_urg; 2627 2628 if (unlikely(tp->repair)) { 2629 err = -EPERM; 2630 if (!(flags & MSG_PEEK)) 2631 goto out; 2632 2633 if (tp->repair_queue == TCP_SEND_QUEUE) 2634 goto recv_sndq; 2635 2636 err = -EINVAL; 2637 if (tp->repair_queue == TCP_NO_QUEUE) 2638 goto out; 2639 2640 /* 'common' recv queue MSG_PEEK-ing */ 2641 } 2642 2643 seq = &tp->copied_seq; 2644 if (flags & MSG_PEEK) { 2645 peek_offset = max(sk_peek_offset(sk, flags), 0); 2646 peek_seq = tp->copied_seq + peek_offset; 2647 seq = &peek_seq; 2648 } 2649 2650 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2651 2652 do { 2653 u32 offset; 2654 2655 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2656 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2657 if (copied) 2658 break; 2659 if (signal_pending(current)) { 2660 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2661 break; 2662 } 2663 } 2664 2665 /* Next get a buffer. */ 2666 2667 last = skb_peek_tail(&sk->sk_receive_queue); 2668 skb_queue_walk(&sk->sk_receive_queue, skb) { 2669 last = skb; 2670 /* Now that we have two receive queues this 2671 * shouldn't happen. 2672 */ 2673 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2674 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2675 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2676 flags)) 2677 break; 2678 2679 offset = *seq - TCP_SKB_CB(skb)->seq; 2680 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2681 pr_err_once("%s: found a SYN, please report !\n", __func__); 2682 offset--; 2683 } 2684 if (offset < skb->len) 2685 goto found_ok_skb; 2686 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2687 goto found_fin_ok; 2688 WARN(!(flags & MSG_PEEK), 2689 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2690 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2691 } 2692 2693 /* Well, if we have backlog, try to process it now yet. */ 2694 2695 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2696 break; 2697 2698 if (copied) { 2699 if (!timeo || 2700 sk->sk_err || 2701 sk->sk_state == TCP_CLOSE || 2702 (sk->sk_shutdown & RCV_SHUTDOWN) || 2703 signal_pending(current)) 2704 break; 2705 } else { 2706 if (sock_flag(sk, SOCK_DONE)) 2707 break; 2708 2709 if (sk->sk_err) { 2710 copied = sock_error(sk); 2711 break; 2712 } 2713 2714 if (sk->sk_shutdown & RCV_SHUTDOWN) 2715 break; 2716 2717 if (sk->sk_state == TCP_CLOSE) { 2718 /* This occurs when user tries to read 2719 * from never connected socket. 2720 */ 2721 copied = -ENOTCONN; 2722 break; 2723 } 2724 2725 if (!timeo) { 2726 copied = -EAGAIN; 2727 break; 2728 } 2729 2730 if (signal_pending(current)) { 2731 copied = sock_intr_errno(timeo); 2732 break; 2733 } 2734 } 2735 2736 if (copied >= target) { 2737 /* Do not sleep, just process backlog. */ 2738 __sk_flush_backlog(sk); 2739 } else { 2740 tcp_cleanup_rbuf(sk, copied); 2741 err = sk_wait_data(sk, &timeo, last); 2742 if (err < 0) { 2743 err = copied ? : err; 2744 goto out; 2745 } 2746 } 2747 2748 if ((flags & MSG_PEEK) && 2749 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2750 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2751 current->comm, 2752 task_pid_nr(current)); 2753 peek_seq = tp->copied_seq + peek_offset; 2754 } 2755 continue; 2756 2757 found_ok_skb: 2758 /* Ok so how much can we use? */ 2759 used = skb->len - offset; 2760 if (len < used) 2761 used = len; 2762 2763 /* Do we have urgent data here? */ 2764 if (unlikely(tp->urg_data)) { 2765 u32 urg_offset = tp->urg_seq - *seq; 2766 if (urg_offset < used) { 2767 if (!urg_offset) { 2768 if (!sock_flag(sk, SOCK_URGINLINE)) { 2769 WRITE_ONCE(*seq, *seq + 1); 2770 urg_hole++; 2771 offset++; 2772 used--; 2773 if (!used) 2774 goto skip_copy; 2775 } 2776 } else 2777 used = urg_offset; 2778 } 2779 } 2780 2781 if (!(flags & MSG_TRUNC)) { 2782 if (last_copied_dmabuf != -1 && 2783 last_copied_dmabuf != !skb_frags_readable(skb)) 2784 break; 2785 2786 if (skb_frags_readable(skb)) { 2787 err = skb_copy_datagram_msg(skb, offset, msg, 2788 used); 2789 if (err) { 2790 /* Exception. Bailout! */ 2791 if (!copied) 2792 copied = -EFAULT; 2793 break; 2794 } 2795 } else { 2796 if (!(flags & MSG_SOCK_DEVMEM)) { 2797 /* dmabuf skbs can only be received 2798 * with the MSG_SOCK_DEVMEM flag. 2799 */ 2800 if (!copied) 2801 copied = -EFAULT; 2802 2803 break; 2804 } 2805 2806 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2807 used); 2808 if (err <= 0) { 2809 if (!copied) 2810 copied = -EFAULT; 2811 2812 break; 2813 } 2814 used = err; 2815 } 2816 } 2817 2818 last_copied_dmabuf = !skb_frags_readable(skb); 2819 2820 WRITE_ONCE(*seq, *seq + used); 2821 copied += used; 2822 len -= used; 2823 if (flags & MSG_PEEK) 2824 sk_peek_offset_fwd(sk, used); 2825 else 2826 sk_peek_offset_bwd(sk, used); 2827 tcp_rcv_space_adjust(sk); 2828 2829 skip_copy: 2830 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2831 WRITE_ONCE(tp->urg_data, 0); 2832 tcp_fast_path_check(sk); 2833 } 2834 2835 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2836 tcp_update_recv_tstamps(skb, tss); 2837 *cmsg_flags |= TCP_CMSG_TS; 2838 } 2839 2840 if (used + offset < skb->len) 2841 continue; 2842 2843 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2844 goto found_fin_ok; 2845 if (!(flags & MSG_PEEK)) 2846 tcp_eat_recv_skb(sk, skb); 2847 continue; 2848 2849 found_fin_ok: 2850 /* Process the FIN. */ 2851 WRITE_ONCE(*seq, *seq + 1); 2852 if (!(flags & MSG_PEEK)) 2853 tcp_eat_recv_skb(sk, skb); 2854 break; 2855 } while (len > 0); 2856 2857 /* According to UNIX98, msg_name/msg_namelen are ignored 2858 * on connected socket. I was just happy when found this 8) --ANK 2859 */ 2860 2861 /* Clean up data we have read: This will do ACK frames. */ 2862 tcp_cleanup_rbuf(sk, copied); 2863 return copied; 2864 2865 out: 2866 return err; 2867 2868 recv_urg: 2869 err = tcp_recv_urg(sk, msg, len, flags); 2870 goto out; 2871 2872 recv_sndq: 2873 err = tcp_peek_sndq(sk, msg, len); 2874 goto out; 2875 } 2876 2877 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2878 int *addr_len) 2879 { 2880 int cmsg_flags = 0, ret; 2881 struct scm_timestamping_internal tss; 2882 2883 if (unlikely(flags & MSG_ERRQUEUE)) 2884 return inet_recv_error(sk, msg, len, addr_len); 2885 2886 if (sk_can_busy_loop(sk) && 2887 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2888 sk->sk_state == TCP_ESTABLISHED) 2889 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2890 2891 lock_sock(sk); 2892 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2893 release_sock(sk); 2894 2895 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2896 if (cmsg_flags & TCP_CMSG_TS) 2897 tcp_recv_timestamp(msg, sk, &tss); 2898 if (msg->msg_get_inq) { 2899 msg->msg_inq = tcp_inq_hint(sk); 2900 if (cmsg_flags & TCP_CMSG_INQ) 2901 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2902 sizeof(msg->msg_inq), &msg->msg_inq); 2903 } 2904 } 2905 return ret; 2906 } 2907 EXPORT_IPV6_MOD(tcp_recvmsg); 2908 2909 void tcp_set_state(struct sock *sk, int state) 2910 { 2911 int oldstate = sk->sk_state; 2912 2913 /* We defined a new enum for TCP states that are exported in BPF 2914 * so as not force the internal TCP states to be frozen. The 2915 * following checks will detect if an internal state value ever 2916 * differs from the BPF value. If this ever happens, then we will 2917 * need to remap the internal value to the BPF value before calling 2918 * tcp_call_bpf_2arg. 2919 */ 2920 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2921 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2922 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2923 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2924 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2925 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2926 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2927 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2928 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2929 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2930 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2931 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2932 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2933 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2934 2935 /* bpf uapi header bpf.h defines an anonymous enum with values 2936 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2937 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2938 * But clang built vmlinux does not have this enum in DWARF 2939 * since clang removes the above code before generating IR/debuginfo. 2940 * Let us explicitly emit the type debuginfo to ensure the 2941 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2942 * regardless of which compiler is used. 2943 */ 2944 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2945 2946 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2947 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2948 2949 switch (state) { 2950 case TCP_ESTABLISHED: 2951 if (oldstate != TCP_ESTABLISHED) 2952 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2953 break; 2954 case TCP_CLOSE_WAIT: 2955 if (oldstate == TCP_SYN_RECV) 2956 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2957 break; 2958 2959 case TCP_CLOSE: 2960 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2961 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2962 2963 sk->sk_prot->unhash(sk); 2964 if (inet_csk(sk)->icsk_bind_hash && 2965 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2966 inet_put_port(sk); 2967 fallthrough; 2968 default: 2969 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2970 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2971 } 2972 2973 /* Change state AFTER socket is unhashed to avoid closed 2974 * socket sitting in hash tables. 2975 */ 2976 inet_sk_state_store(sk, state); 2977 } 2978 EXPORT_SYMBOL_GPL(tcp_set_state); 2979 2980 /* 2981 * State processing on a close. This implements the state shift for 2982 * sending our FIN frame. Note that we only send a FIN for some 2983 * states. A shutdown() may have already sent the FIN, or we may be 2984 * closed. 2985 */ 2986 2987 static const unsigned char new_state[16] = { 2988 /* current state: new state: action: */ 2989 [0 /* (Invalid) */] = TCP_CLOSE, 2990 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2991 [TCP_SYN_SENT] = TCP_CLOSE, 2992 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2993 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2994 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2995 [TCP_TIME_WAIT] = TCP_CLOSE, 2996 [TCP_CLOSE] = TCP_CLOSE, 2997 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2998 [TCP_LAST_ACK] = TCP_LAST_ACK, 2999 [TCP_LISTEN] = TCP_CLOSE, 3000 [TCP_CLOSING] = TCP_CLOSING, 3001 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3002 }; 3003 3004 static int tcp_close_state(struct sock *sk) 3005 { 3006 int next = (int)new_state[sk->sk_state]; 3007 int ns = next & TCP_STATE_MASK; 3008 3009 tcp_set_state(sk, ns); 3010 3011 return next & TCP_ACTION_FIN; 3012 } 3013 3014 /* 3015 * Shutdown the sending side of a connection. Much like close except 3016 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3017 */ 3018 3019 void tcp_shutdown(struct sock *sk, int how) 3020 { 3021 /* We need to grab some memory, and put together a FIN, 3022 * and then put it into the queue to be sent. 3023 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3024 */ 3025 if (!(how & SEND_SHUTDOWN)) 3026 return; 3027 3028 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3029 if ((1 << sk->sk_state) & 3030 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3031 TCPF_CLOSE_WAIT)) { 3032 /* Clear out any half completed packets. FIN if needed. */ 3033 if (tcp_close_state(sk)) 3034 tcp_send_fin(sk); 3035 } 3036 } 3037 EXPORT_IPV6_MOD(tcp_shutdown); 3038 3039 int tcp_orphan_count_sum(void) 3040 { 3041 int i, total = 0; 3042 3043 for_each_possible_cpu(i) 3044 total += per_cpu(tcp_orphan_count, i); 3045 3046 return max(total, 0); 3047 } 3048 3049 static int tcp_orphan_cache; 3050 static struct timer_list tcp_orphan_timer; 3051 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3052 3053 static void tcp_orphan_update(struct timer_list *unused) 3054 { 3055 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3056 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3057 } 3058 3059 static bool tcp_too_many_orphans(int shift) 3060 { 3061 return READ_ONCE(tcp_orphan_cache) << shift > 3062 READ_ONCE(sysctl_tcp_max_orphans); 3063 } 3064 3065 static bool tcp_out_of_memory(const struct sock *sk) 3066 { 3067 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3068 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3069 return true; 3070 return false; 3071 } 3072 3073 bool tcp_check_oom(const struct sock *sk, int shift) 3074 { 3075 bool too_many_orphans, out_of_socket_memory; 3076 3077 too_many_orphans = tcp_too_many_orphans(shift); 3078 out_of_socket_memory = tcp_out_of_memory(sk); 3079 3080 if (too_many_orphans) 3081 net_info_ratelimited("too many orphaned sockets\n"); 3082 if (out_of_socket_memory) 3083 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3084 return too_many_orphans || out_of_socket_memory; 3085 } 3086 3087 void __tcp_close(struct sock *sk, long timeout) 3088 { 3089 struct sk_buff *skb; 3090 int data_was_unread = 0; 3091 int state; 3092 3093 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3094 3095 if (sk->sk_state == TCP_LISTEN) { 3096 tcp_set_state(sk, TCP_CLOSE); 3097 3098 /* Special case. */ 3099 inet_csk_listen_stop(sk); 3100 3101 goto adjudge_to_death; 3102 } 3103 3104 /* We need to flush the recv. buffs. We do this only on the 3105 * descriptor close, not protocol-sourced closes, because the 3106 * reader process may not have drained the data yet! 3107 */ 3108 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3109 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3110 3111 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3112 len--; 3113 data_was_unread += len; 3114 __kfree_skb(skb); 3115 } 3116 3117 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3118 if (sk->sk_state == TCP_CLOSE) 3119 goto adjudge_to_death; 3120 3121 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3122 * data was lost. To witness the awful effects of the old behavior of 3123 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3124 * GET in an FTP client, suspend the process, wait for the client to 3125 * advertise a zero window, then kill -9 the FTP client, wheee... 3126 * Note: timeout is always zero in such a case. 3127 */ 3128 if (unlikely(tcp_sk(sk)->repair)) { 3129 sk->sk_prot->disconnect(sk, 0); 3130 } else if (data_was_unread) { 3131 /* Unread data was tossed, zap the connection. */ 3132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3133 tcp_set_state(sk, TCP_CLOSE); 3134 tcp_send_active_reset(sk, sk->sk_allocation, 3135 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3136 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3137 /* Check zero linger _after_ checking for unread data. */ 3138 sk->sk_prot->disconnect(sk, 0); 3139 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3140 } else if (tcp_close_state(sk)) { 3141 /* We FIN if the application ate all the data before 3142 * zapping the connection. 3143 */ 3144 3145 /* RED-PEN. Formally speaking, we have broken TCP state 3146 * machine. State transitions: 3147 * 3148 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3149 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3150 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3151 * 3152 * are legal only when FIN has been sent (i.e. in window), 3153 * rather than queued out of window. Purists blame. 3154 * 3155 * F.e. "RFC state" is ESTABLISHED, 3156 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3157 * 3158 * The visible declinations are that sometimes 3159 * we enter time-wait state, when it is not required really 3160 * (harmless), do not send active resets, when they are 3161 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3162 * they look as CLOSING or LAST_ACK for Linux) 3163 * Probably, I missed some more holelets. 3164 * --ANK 3165 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3166 * in a single packet! (May consider it later but will 3167 * probably need API support or TCP_CORK SYN-ACK until 3168 * data is written and socket is closed.) 3169 */ 3170 tcp_send_fin(sk); 3171 } 3172 3173 sk_stream_wait_close(sk, timeout); 3174 3175 adjudge_to_death: 3176 state = sk->sk_state; 3177 sock_hold(sk); 3178 sock_orphan(sk); 3179 3180 local_bh_disable(); 3181 bh_lock_sock(sk); 3182 /* remove backlog if any, without releasing ownership. */ 3183 __release_sock(sk); 3184 3185 this_cpu_inc(tcp_orphan_count); 3186 3187 /* Have we already been destroyed by a softirq or backlog? */ 3188 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3189 goto out; 3190 3191 /* This is a (useful) BSD violating of the RFC. There is a 3192 * problem with TCP as specified in that the other end could 3193 * keep a socket open forever with no application left this end. 3194 * We use a 1 minute timeout (about the same as BSD) then kill 3195 * our end. If they send after that then tough - BUT: long enough 3196 * that we won't make the old 4*rto = almost no time - whoops 3197 * reset mistake. 3198 * 3199 * Nope, it was not mistake. It is really desired behaviour 3200 * f.e. on http servers, when such sockets are useless, but 3201 * consume significant resources. Let's do it with special 3202 * linger2 option. --ANK 3203 */ 3204 3205 if (sk->sk_state == TCP_FIN_WAIT2) { 3206 struct tcp_sock *tp = tcp_sk(sk); 3207 if (READ_ONCE(tp->linger2) < 0) { 3208 tcp_set_state(sk, TCP_CLOSE); 3209 tcp_send_active_reset(sk, GFP_ATOMIC, 3210 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3211 __NET_INC_STATS(sock_net(sk), 3212 LINUX_MIB_TCPABORTONLINGER); 3213 } else { 3214 const int tmo = tcp_fin_time(sk); 3215 3216 if (tmo > TCP_TIMEWAIT_LEN) { 3217 tcp_reset_keepalive_timer(sk, 3218 tmo - TCP_TIMEWAIT_LEN); 3219 } else { 3220 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3221 goto out; 3222 } 3223 } 3224 } 3225 if (sk->sk_state != TCP_CLOSE) { 3226 if (tcp_check_oom(sk, 0)) { 3227 tcp_set_state(sk, TCP_CLOSE); 3228 tcp_send_active_reset(sk, GFP_ATOMIC, 3229 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3230 __NET_INC_STATS(sock_net(sk), 3231 LINUX_MIB_TCPABORTONMEMORY); 3232 } else if (!check_net(sock_net(sk))) { 3233 /* Not possible to send reset; just close */ 3234 tcp_set_state(sk, TCP_CLOSE); 3235 } 3236 } 3237 3238 if (sk->sk_state == TCP_CLOSE) { 3239 struct request_sock *req; 3240 3241 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3242 lockdep_sock_is_held(sk)); 3243 /* We could get here with a non-NULL req if the socket is 3244 * aborted (e.g., closed with unread data) before 3WHS 3245 * finishes. 3246 */ 3247 if (req) 3248 reqsk_fastopen_remove(sk, req, false); 3249 inet_csk_destroy_sock(sk); 3250 } 3251 /* Otherwise, socket is reprieved until protocol close. */ 3252 3253 out: 3254 bh_unlock_sock(sk); 3255 local_bh_enable(); 3256 } 3257 3258 void tcp_close(struct sock *sk, long timeout) 3259 { 3260 lock_sock(sk); 3261 __tcp_close(sk, timeout); 3262 release_sock(sk); 3263 if (!sk->sk_net_refcnt) 3264 inet_csk_clear_xmit_timers_sync(sk); 3265 sock_put(sk); 3266 } 3267 EXPORT_SYMBOL(tcp_close); 3268 3269 /* These states need RST on ABORT according to RFC793 */ 3270 3271 static inline bool tcp_need_reset(int state) 3272 { 3273 return (1 << state) & 3274 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3275 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3276 } 3277 3278 static void tcp_rtx_queue_purge(struct sock *sk) 3279 { 3280 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3281 3282 tcp_sk(sk)->highest_sack = NULL; 3283 while (p) { 3284 struct sk_buff *skb = rb_to_skb(p); 3285 3286 p = rb_next(p); 3287 /* Since we are deleting whole queue, no need to 3288 * list_del(&skb->tcp_tsorted_anchor) 3289 */ 3290 tcp_rtx_queue_unlink(skb, sk); 3291 tcp_wmem_free_skb(sk, skb); 3292 } 3293 } 3294 3295 void tcp_write_queue_purge(struct sock *sk) 3296 { 3297 struct sk_buff *skb; 3298 3299 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3300 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3301 tcp_skb_tsorted_anchor_cleanup(skb); 3302 tcp_wmem_free_skb(sk, skb); 3303 } 3304 tcp_rtx_queue_purge(sk); 3305 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3306 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3307 tcp_sk(sk)->packets_out = 0; 3308 inet_csk(sk)->icsk_backoff = 0; 3309 } 3310 3311 int tcp_disconnect(struct sock *sk, int flags) 3312 { 3313 struct inet_sock *inet = inet_sk(sk); 3314 struct inet_connection_sock *icsk = inet_csk(sk); 3315 struct tcp_sock *tp = tcp_sk(sk); 3316 int old_state = sk->sk_state; 3317 u32 seq; 3318 3319 if (old_state != TCP_CLOSE) 3320 tcp_set_state(sk, TCP_CLOSE); 3321 3322 /* ABORT function of RFC793 */ 3323 if (old_state == TCP_LISTEN) { 3324 inet_csk_listen_stop(sk); 3325 } else if (unlikely(tp->repair)) { 3326 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3327 } else if (tcp_need_reset(old_state)) { 3328 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3329 WRITE_ONCE(sk->sk_err, ECONNRESET); 3330 } else if (tp->snd_nxt != tp->write_seq && 3331 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3332 /* The last check adjusts for discrepancy of Linux wrt. RFC 3333 * states 3334 */ 3335 tcp_send_active_reset(sk, gfp_any(), 3336 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3337 WRITE_ONCE(sk->sk_err, ECONNRESET); 3338 } else if (old_state == TCP_SYN_SENT) 3339 WRITE_ONCE(sk->sk_err, ECONNRESET); 3340 3341 tcp_clear_xmit_timers(sk); 3342 __skb_queue_purge(&sk->sk_receive_queue); 3343 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3344 WRITE_ONCE(tp->urg_data, 0); 3345 sk_set_peek_off(sk, -1); 3346 tcp_write_queue_purge(sk); 3347 tcp_fastopen_active_disable_ofo_check(sk); 3348 skb_rbtree_purge(&tp->out_of_order_queue); 3349 3350 inet->inet_dport = 0; 3351 3352 inet_bhash2_reset_saddr(sk); 3353 3354 WRITE_ONCE(sk->sk_shutdown, 0); 3355 sock_reset_flag(sk, SOCK_DONE); 3356 tp->srtt_us = 0; 3357 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3358 tp->rcv_rtt_last_tsecr = 0; 3359 3360 seq = tp->write_seq + tp->max_window + 2; 3361 if (!seq) 3362 seq = 1; 3363 WRITE_ONCE(tp->write_seq, seq); 3364 3365 icsk->icsk_backoff = 0; 3366 icsk->icsk_probes_out = 0; 3367 icsk->icsk_probes_tstamp = 0; 3368 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3369 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3370 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3371 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3372 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3373 tp->snd_cwnd_cnt = 0; 3374 tp->is_cwnd_limited = 0; 3375 tp->max_packets_out = 0; 3376 tp->window_clamp = 0; 3377 tp->delivered = 0; 3378 tp->delivered_ce = 0; 3379 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3380 icsk->icsk_ca_ops->release(sk); 3381 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3382 icsk->icsk_ca_initialized = 0; 3383 tcp_set_ca_state(sk, TCP_CA_Open); 3384 tp->is_sack_reneg = 0; 3385 tcp_clear_retrans(tp); 3386 tp->total_retrans = 0; 3387 inet_csk_delack_init(sk); 3388 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3389 * issue in __tcp_select_window() 3390 */ 3391 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3392 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3393 __sk_dst_reset(sk); 3394 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3395 tcp_saved_syn_free(tp); 3396 tp->compressed_ack = 0; 3397 tp->segs_in = 0; 3398 tp->segs_out = 0; 3399 tp->bytes_sent = 0; 3400 tp->bytes_acked = 0; 3401 tp->bytes_received = 0; 3402 tp->bytes_retrans = 0; 3403 tp->data_segs_in = 0; 3404 tp->data_segs_out = 0; 3405 tp->duplicate_sack[0].start_seq = 0; 3406 tp->duplicate_sack[0].end_seq = 0; 3407 tp->dsack_dups = 0; 3408 tp->reord_seen = 0; 3409 tp->retrans_out = 0; 3410 tp->sacked_out = 0; 3411 tp->tlp_high_seq = 0; 3412 tp->last_oow_ack_time = 0; 3413 tp->plb_rehash = 0; 3414 /* There's a bubble in the pipe until at least the first ACK. */ 3415 tp->app_limited = ~0U; 3416 tp->rate_app_limited = 1; 3417 tp->rack.mstamp = 0; 3418 tp->rack.advanced = 0; 3419 tp->rack.reo_wnd_steps = 1; 3420 tp->rack.last_delivered = 0; 3421 tp->rack.reo_wnd_persist = 0; 3422 tp->rack.dsack_seen = 0; 3423 tp->syn_data_acked = 0; 3424 tp->rx_opt.saw_tstamp = 0; 3425 tp->rx_opt.dsack = 0; 3426 tp->rx_opt.num_sacks = 0; 3427 tp->rcv_ooopack = 0; 3428 3429 3430 /* Clean up fastopen related fields */ 3431 tcp_free_fastopen_req(tp); 3432 inet_clear_bit(DEFER_CONNECT, sk); 3433 tp->fastopen_client_fail = 0; 3434 3435 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3436 3437 if (sk->sk_frag.page) { 3438 put_page(sk->sk_frag.page); 3439 sk->sk_frag.page = NULL; 3440 sk->sk_frag.offset = 0; 3441 } 3442 sk_error_report(sk); 3443 return 0; 3444 } 3445 EXPORT_SYMBOL(tcp_disconnect); 3446 3447 static inline bool tcp_can_repair_sock(const struct sock *sk) 3448 { 3449 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3450 (sk->sk_state != TCP_LISTEN); 3451 } 3452 3453 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3454 { 3455 struct tcp_repair_window opt; 3456 3457 if (!tp->repair) 3458 return -EPERM; 3459 3460 if (len != sizeof(opt)) 3461 return -EINVAL; 3462 3463 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3464 return -EFAULT; 3465 3466 if (opt.max_window < opt.snd_wnd) 3467 return -EINVAL; 3468 3469 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3470 return -EINVAL; 3471 3472 if (after(opt.rcv_wup, tp->rcv_nxt)) 3473 return -EINVAL; 3474 3475 tp->snd_wl1 = opt.snd_wl1; 3476 tp->snd_wnd = opt.snd_wnd; 3477 tp->max_window = opt.max_window; 3478 3479 tp->rcv_wnd = opt.rcv_wnd; 3480 tp->rcv_wup = opt.rcv_wup; 3481 3482 return 0; 3483 } 3484 3485 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3486 unsigned int len) 3487 { 3488 struct tcp_sock *tp = tcp_sk(sk); 3489 struct tcp_repair_opt opt; 3490 size_t offset = 0; 3491 3492 while (len >= sizeof(opt)) { 3493 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3494 return -EFAULT; 3495 3496 offset += sizeof(opt); 3497 len -= sizeof(opt); 3498 3499 switch (opt.opt_code) { 3500 case TCPOPT_MSS: 3501 tp->rx_opt.mss_clamp = opt.opt_val; 3502 tcp_mtup_init(sk); 3503 break; 3504 case TCPOPT_WINDOW: 3505 { 3506 u16 snd_wscale = opt.opt_val & 0xFFFF; 3507 u16 rcv_wscale = opt.opt_val >> 16; 3508 3509 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3510 return -EFBIG; 3511 3512 tp->rx_opt.snd_wscale = snd_wscale; 3513 tp->rx_opt.rcv_wscale = rcv_wscale; 3514 tp->rx_opt.wscale_ok = 1; 3515 } 3516 break; 3517 case TCPOPT_SACK_PERM: 3518 if (opt.opt_val != 0) 3519 return -EINVAL; 3520 3521 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3522 break; 3523 case TCPOPT_TIMESTAMP: 3524 if (opt.opt_val != 0) 3525 return -EINVAL; 3526 3527 tp->rx_opt.tstamp_ok = 1; 3528 break; 3529 } 3530 } 3531 3532 return 0; 3533 } 3534 3535 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3536 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3537 3538 static void tcp_enable_tx_delay(void) 3539 { 3540 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3541 static int __tcp_tx_delay_enabled = 0; 3542 3543 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3544 static_branch_enable(&tcp_tx_delay_enabled); 3545 pr_info("TCP_TX_DELAY enabled\n"); 3546 } 3547 } 3548 } 3549 3550 /* When set indicates to always queue non-full frames. Later the user clears 3551 * this option and we transmit any pending partial frames in the queue. This is 3552 * meant to be used alongside sendfile() to get properly filled frames when the 3553 * user (for example) must write out headers with a write() call first and then 3554 * use sendfile to send out the data parts. 3555 * 3556 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3557 * TCP_NODELAY. 3558 */ 3559 void __tcp_sock_set_cork(struct sock *sk, bool on) 3560 { 3561 struct tcp_sock *tp = tcp_sk(sk); 3562 3563 if (on) { 3564 tp->nonagle |= TCP_NAGLE_CORK; 3565 } else { 3566 tp->nonagle &= ~TCP_NAGLE_CORK; 3567 if (tp->nonagle & TCP_NAGLE_OFF) 3568 tp->nonagle |= TCP_NAGLE_PUSH; 3569 tcp_push_pending_frames(sk); 3570 } 3571 } 3572 3573 void tcp_sock_set_cork(struct sock *sk, bool on) 3574 { 3575 lock_sock(sk); 3576 __tcp_sock_set_cork(sk, on); 3577 release_sock(sk); 3578 } 3579 EXPORT_SYMBOL(tcp_sock_set_cork); 3580 3581 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3582 * remembered, but it is not activated until cork is cleared. 3583 * 3584 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3585 * even TCP_CORK for currently queued segments. 3586 */ 3587 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3588 { 3589 if (on) { 3590 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3591 tcp_push_pending_frames(sk); 3592 } else { 3593 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3594 } 3595 } 3596 3597 void tcp_sock_set_nodelay(struct sock *sk) 3598 { 3599 lock_sock(sk); 3600 __tcp_sock_set_nodelay(sk, true); 3601 release_sock(sk); 3602 } 3603 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3604 3605 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3606 { 3607 if (!val) { 3608 inet_csk_enter_pingpong_mode(sk); 3609 return; 3610 } 3611 3612 inet_csk_exit_pingpong_mode(sk); 3613 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3614 inet_csk_ack_scheduled(sk)) { 3615 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3616 tcp_cleanup_rbuf(sk, 1); 3617 if (!(val & 1)) 3618 inet_csk_enter_pingpong_mode(sk); 3619 } 3620 } 3621 3622 void tcp_sock_set_quickack(struct sock *sk, int val) 3623 { 3624 lock_sock(sk); 3625 __tcp_sock_set_quickack(sk, val); 3626 release_sock(sk); 3627 } 3628 EXPORT_SYMBOL(tcp_sock_set_quickack); 3629 3630 int tcp_sock_set_syncnt(struct sock *sk, int val) 3631 { 3632 if (val < 1 || val > MAX_TCP_SYNCNT) 3633 return -EINVAL; 3634 3635 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3636 return 0; 3637 } 3638 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3639 3640 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3641 { 3642 /* Cap the max time in ms TCP will retry or probe the window 3643 * before giving up and aborting (ETIMEDOUT) a connection. 3644 */ 3645 if (val < 0) 3646 return -EINVAL; 3647 3648 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3649 return 0; 3650 } 3651 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3652 3653 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3654 { 3655 struct tcp_sock *tp = tcp_sk(sk); 3656 3657 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3658 return -EINVAL; 3659 3660 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3661 WRITE_ONCE(tp->keepalive_time, val * HZ); 3662 if (sock_flag(sk, SOCK_KEEPOPEN) && 3663 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3664 u32 elapsed = keepalive_time_elapsed(tp); 3665 3666 if (tp->keepalive_time > elapsed) 3667 elapsed = tp->keepalive_time - elapsed; 3668 else 3669 elapsed = 0; 3670 tcp_reset_keepalive_timer(sk, elapsed); 3671 } 3672 3673 return 0; 3674 } 3675 3676 int tcp_sock_set_keepidle(struct sock *sk, int val) 3677 { 3678 int err; 3679 3680 lock_sock(sk); 3681 err = tcp_sock_set_keepidle_locked(sk, val); 3682 release_sock(sk); 3683 return err; 3684 } 3685 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3686 3687 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3688 { 3689 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3690 return -EINVAL; 3691 3692 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3693 return 0; 3694 } 3695 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3696 3697 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3698 { 3699 if (val < 1 || val > MAX_TCP_KEEPCNT) 3700 return -EINVAL; 3701 3702 /* Paired with READ_ONCE() in keepalive_probes() */ 3703 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3704 return 0; 3705 } 3706 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3707 3708 int tcp_set_window_clamp(struct sock *sk, int val) 3709 { 3710 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3711 struct tcp_sock *tp = tcp_sk(sk); 3712 3713 if (!val) { 3714 if (sk->sk_state != TCP_CLOSE) 3715 return -EINVAL; 3716 WRITE_ONCE(tp->window_clamp, 0); 3717 return 0; 3718 } 3719 3720 old_window_clamp = tp->window_clamp; 3721 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3722 3723 if (new_window_clamp == old_window_clamp) 3724 return 0; 3725 3726 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3727 3728 /* Need to apply the reserved mem provisioning only 3729 * when shrinking the window clamp. 3730 */ 3731 if (new_window_clamp < old_window_clamp) { 3732 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3733 } else { 3734 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3735 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3736 } 3737 return 0; 3738 } 3739 3740 /* 3741 * Socket option code for TCP. 3742 */ 3743 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3744 sockptr_t optval, unsigned int optlen) 3745 { 3746 struct tcp_sock *tp = tcp_sk(sk); 3747 struct inet_connection_sock *icsk = inet_csk(sk); 3748 struct net *net = sock_net(sk); 3749 int val; 3750 int err = 0; 3751 3752 /* These are data/string values, all the others are ints */ 3753 switch (optname) { 3754 case TCP_CONGESTION: { 3755 char name[TCP_CA_NAME_MAX]; 3756 3757 if (optlen < 1) 3758 return -EINVAL; 3759 3760 val = strncpy_from_sockptr(name, optval, 3761 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3762 if (val < 0) 3763 return -EFAULT; 3764 name[val] = 0; 3765 3766 sockopt_lock_sock(sk); 3767 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3768 sockopt_ns_capable(sock_net(sk)->user_ns, 3769 CAP_NET_ADMIN)); 3770 sockopt_release_sock(sk); 3771 return err; 3772 } 3773 case TCP_ULP: { 3774 char name[TCP_ULP_NAME_MAX]; 3775 3776 if (optlen < 1) 3777 return -EINVAL; 3778 3779 val = strncpy_from_sockptr(name, optval, 3780 min_t(long, TCP_ULP_NAME_MAX - 1, 3781 optlen)); 3782 if (val < 0) 3783 return -EFAULT; 3784 name[val] = 0; 3785 3786 sockopt_lock_sock(sk); 3787 err = tcp_set_ulp(sk, name); 3788 sockopt_release_sock(sk); 3789 return err; 3790 } 3791 case TCP_FASTOPEN_KEY: { 3792 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3793 __u8 *backup_key = NULL; 3794 3795 /* Allow a backup key as well to facilitate key rotation 3796 * First key is the active one. 3797 */ 3798 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3799 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3800 return -EINVAL; 3801 3802 if (copy_from_sockptr(key, optval, optlen)) 3803 return -EFAULT; 3804 3805 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3806 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3807 3808 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3809 } 3810 default: 3811 /* fallthru */ 3812 break; 3813 } 3814 3815 if (optlen < sizeof(int)) 3816 return -EINVAL; 3817 3818 if (copy_from_sockptr(&val, optval, sizeof(val))) 3819 return -EFAULT; 3820 3821 /* Handle options that can be set without locking the socket. */ 3822 switch (optname) { 3823 case TCP_SYNCNT: 3824 return tcp_sock_set_syncnt(sk, val); 3825 case TCP_USER_TIMEOUT: 3826 return tcp_sock_set_user_timeout(sk, val); 3827 case TCP_KEEPINTVL: 3828 return tcp_sock_set_keepintvl(sk, val); 3829 case TCP_KEEPCNT: 3830 return tcp_sock_set_keepcnt(sk, val); 3831 case TCP_LINGER2: 3832 if (val < 0) 3833 WRITE_ONCE(tp->linger2, -1); 3834 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3835 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3836 else 3837 WRITE_ONCE(tp->linger2, val * HZ); 3838 return 0; 3839 case TCP_DEFER_ACCEPT: 3840 /* Translate value in seconds to number of retransmits */ 3841 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3842 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3843 TCP_RTO_MAX / HZ)); 3844 return 0; 3845 case TCP_RTO_MAX_MS: 3846 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3847 return -EINVAL; 3848 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3849 return 0; 3850 case TCP_RTO_MIN_US: { 3851 int rto_min = usecs_to_jiffies(val); 3852 3853 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3854 return -EINVAL; 3855 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3856 return 0; 3857 } 3858 case TCP_DELACK_MAX_US: { 3859 int delack_max = usecs_to_jiffies(val); 3860 3861 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3862 return -EINVAL; 3863 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3864 return 0; 3865 } 3866 } 3867 3868 sockopt_lock_sock(sk); 3869 3870 switch (optname) { 3871 case TCP_MAXSEG: 3872 /* Values greater than interface MTU won't take effect. However 3873 * at the point when this call is done we typically don't yet 3874 * know which interface is going to be used 3875 */ 3876 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3877 err = -EINVAL; 3878 break; 3879 } 3880 tp->rx_opt.user_mss = val; 3881 break; 3882 3883 case TCP_NODELAY: 3884 __tcp_sock_set_nodelay(sk, val); 3885 break; 3886 3887 case TCP_THIN_LINEAR_TIMEOUTS: 3888 if (val < 0 || val > 1) 3889 err = -EINVAL; 3890 else 3891 tp->thin_lto = val; 3892 break; 3893 3894 case TCP_THIN_DUPACK: 3895 if (val < 0 || val > 1) 3896 err = -EINVAL; 3897 break; 3898 3899 case TCP_REPAIR: 3900 if (!tcp_can_repair_sock(sk)) 3901 err = -EPERM; 3902 else if (val == TCP_REPAIR_ON) { 3903 tp->repair = 1; 3904 sk->sk_reuse = SK_FORCE_REUSE; 3905 tp->repair_queue = TCP_NO_QUEUE; 3906 } else if (val == TCP_REPAIR_OFF) { 3907 tp->repair = 0; 3908 sk->sk_reuse = SK_NO_REUSE; 3909 tcp_send_window_probe(sk); 3910 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3911 tp->repair = 0; 3912 sk->sk_reuse = SK_NO_REUSE; 3913 } else 3914 err = -EINVAL; 3915 3916 break; 3917 3918 case TCP_REPAIR_QUEUE: 3919 if (!tp->repair) 3920 err = -EPERM; 3921 else if ((unsigned int)val < TCP_QUEUES_NR) 3922 tp->repair_queue = val; 3923 else 3924 err = -EINVAL; 3925 break; 3926 3927 case TCP_QUEUE_SEQ: 3928 if (sk->sk_state != TCP_CLOSE) { 3929 err = -EPERM; 3930 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3931 if (!tcp_rtx_queue_empty(sk)) 3932 err = -EPERM; 3933 else 3934 WRITE_ONCE(tp->write_seq, val); 3935 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3936 if (tp->rcv_nxt != tp->copied_seq) { 3937 err = -EPERM; 3938 } else { 3939 WRITE_ONCE(tp->rcv_nxt, val); 3940 WRITE_ONCE(tp->copied_seq, val); 3941 } 3942 } else { 3943 err = -EINVAL; 3944 } 3945 break; 3946 3947 case TCP_REPAIR_OPTIONS: 3948 if (!tp->repair) 3949 err = -EINVAL; 3950 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3951 err = tcp_repair_options_est(sk, optval, optlen); 3952 else 3953 err = -EPERM; 3954 break; 3955 3956 case TCP_CORK: 3957 __tcp_sock_set_cork(sk, val); 3958 break; 3959 3960 case TCP_KEEPIDLE: 3961 err = tcp_sock_set_keepidle_locked(sk, val); 3962 break; 3963 case TCP_SAVE_SYN: 3964 /* 0: disable, 1: enable, 2: start from ether_header */ 3965 if (val < 0 || val > 2) 3966 err = -EINVAL; 3967 else 3968 tp->save_syn = val; 3969 break; 3970 3971 case TCP_WINDOW_CLAMP: 3972 err = tcp_set_window_clamp(sk, val); 3973 break; 3974 3975 case TCP_QUICKACK: 3976 __tcp_sock_set_quickack(sk, val); 3977 break; 3978 3979 case TCP_AO_REPAIR: 3980 if (!tcp_can_repair_sock(sk)) { 3981 err = -EPERM; 3982 break; 3983 } 3984 err = tcp_ao_set_repair(sk, optval, optlen); 3985 break; 3986 #ifdef CONFIG_TCP_AO 3987 case TCP_AO_ADD_KEY: 3988 case TCP_AO_DEL_KEY: 3989 case TCP_AO_INFO: { 3990 /* If this is the first TCP-AO setsockopt() on the socket, 3991 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3992 * in any state. 3993 */ 3994 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3995 goto ao_parse; 3996 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3997 lockdep_sock_is_held(sk))) 3998 goto ao_parse; 3999 if (tp->repair) 4000 goto ao_parse; 4001 err = -EISCONN; 4002 break; 4003 ao_parse: 4004 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 4005 break; 4006 } 4007 #endif 4008 #ifdef CONFIG_TCP_MD5SIG 4009 case TCP_MD5SIG: 4010 case TCP_MD5SIG_EXT: 4011 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4012 break; 4013 #endif 4014 case TCP_FASTOPEN: 4015 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4016 TCPF_LISTEN))) { 4017 tcp_fastopen_init_key_once(net); 4018 4019 fastopen_queue_tune(sk, val); 4020 } else { 4021 err = -EINVAL; 4022 } 4023 break; 4024 case TCP_FASTOPEN_CONNECT: 4025 if (val > 1 || val < 0) { 4026 err = -EINVAL; 4027 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4028 TFO_CLIENT_ENABLE) { 4029 if (sk->sk_state == TCP_CLOSE) 4030 tp->fastopen_connect = val; 4031 else 4032 err = -EINVAL; 4033 } else { 4034 err = -EOPNOTSUPP; 4035 } 4036 break; 4037 case TCP_FASTOPEN_NO_COOKIE: 4038 if (val > 1 || val < 0) 4039 err = -EINVAL; 4040 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4041 err = -EINVAL; 4042 else 4043 tp->fastopen_no_cookie = val; 4044 break; 4045 case TCP_TIMESTAMP: 4046 if (!tp->repair) { 4047 err = -EPERM; 4048 break; 4049 } 4050 /* val is an opaque field, 4051 * and low order bit contains usec_ts enable bit. 4052 * Its a best effort, and we do not care if user makes an error. 4053 */ 4054 tp->tcp_usec_ts = val & 1; 4055 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4056 break; 4057 case TCP_REPAIR_WINDOW: 4058 err = tcp_repair_set_window(tp, optval, optlen); 4059 break; 4060 case TCP_NOTSENT_LOWAT: 4061 WRITE_ONCE(tp->notsent_lowat, val); 4062 sk->sk_write_space(sk); 4063 break; 4064 case TCP_INQ: 4065 if (val > 1 || val < 0) 4066 err = -EINVAL; 4067 else 4068 tp->recvmsg_inq = val; 4069 break; 4070 case TCP_TX_DELAY: 4071 if (val) 4072 tcp_enable_tx_delay(); 4073 WRITE_ONCE(tp->tcp_tx_delay, val); 4074 break; 4075 default: 4076 err = -ENOPROTOOPT; 4077 break; 4078 } 4079 4080 sockopt_release_sock(sk); 4081 return err; 4082 } 4083 4084 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4085 unsigned int optlen) 4086 { 4087 const struct inet_connection_sock *icsk = inet_csk(sk); 4088 4089 if (level != SOL_TCP) 4090 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4091 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4092 optval, optlen); 4093 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4094 } 4095 EXPORT_IPV6_MOD(tcp_setsockopt); 4096 4097 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4098 struct tcp_info *info) 4099 { 4100 u64 stats[__TCP_CHRONO_MAX], total = 0; 4101 enum tcp_chrono i; 4102 4103 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4104 stats[i] = tp->chrono_stat[i - 1]; 4105 if (i == tp->chrono_type) 4106 stats[i] += tcp_jiffies32 - tp->chrono_start; 4107 stats[i] *= USEC_PER_SEC / HZ; 4108 total += stats[i]; 4109 } 4110 4111 info->tcpi_busy_time = total; 4112 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4113 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4114 } 4115 4116 /* Return information about state of tcp endpoint in API format. */ 4117 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4118 { 4119 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4120 const struct inet_connection_sock *icsk = inet_csk(sk); 4121 unsigned long rate; 4122 u32 now; 4123 u64 rate64; 4124 bool slow; 4125 4126 memset(info, 0, sizeof(*info)); 4127 if (sk->sk_type != SOCK_STREAM) 4128 return; 4129 4130 info->tcpi_state = inet_sk_state_load(sk); 4131 4132 /* Report meaningful fields for all TCP states, including listeners */ 4133 rate = READ_ONCE(sk->sk_pacing_rate); 4134 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4135 info->tcpi_pacing_rate = rate64; 4136 4137 rate = READ_ONCE(sk->sk_max_pacing_rate); 4138 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4139 info->tcpi_max_pacing_rate = rate64; 4140 4141 info->tcpi_reordering = tp->reordering; 4142 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4143 4144 if (info->tcpi_state == TCP_LISTEN) { 4145 /* listeners aliased fields : 4146 * tcpi_unacked -> Number of children ready for accept() 4147 * tcpi_sacked -> max backlog 4148 */ 4149 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4150 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4151 return; 4152 } 4153 4154 slow = lock_sock_fast(sk); 4155 4156 info->tcpi_ca_state = icsk->icsk_ca_state; 4157 info->tcpi_retransmits = icsk->icsk_retransmits; 4158 info->tcpi_probes = icsk->icsk_probes_out; 4159 info->tcpi_backoff = icsk->icsk_backoff; 4160 4161 if (tp->rx_opt.tstamp_ok) 4162 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4163 if (tcp_is_sack(tp)) 4164 info->tcpi_options |= TCPI_OPT_SACK; 4165 if (tp->rx_opt.wscale_ok) { 4166 info->tcpi_options |= TCPI_OPT_WSCALE; 4167 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4168 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4169 } 4170 4171 if (tcp_ecn_mode_any(tp)) 4172 info->tcpi_options |= TCPI_OPT_ECN; 4173 if (tp->ecn_flags & TCP_ECN_SEEN) 4174 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4175 if (tp->syn_data_acked) 4176 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4177 if (tp->tcp_usec_ts) 4178 info->tcpi_options |= TCPI_OPT_USEC_TS; 4179 4180 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4181 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4182 tcp_delack_max(sk))); 4183 info->tcpi_snd_mss = tp->mss_cache; 4184 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4185 4186 info->tcpi_unacked = tp->packets_out; 4187 info->tcpi_sacked = tp->sacked_out; 4188 4189 info->tcpi_lost = tp->lost_out; 4190 info->tcpi_retrans = tp->retrans_out; 4191 4192 now = tcp_jiffies32; 4193 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4194 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4195 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4196 4197 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4198 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4199 info->tcpi_rtt = tp->srtt_us >> 3; 4200 info->tcpi_rttvar = tp->mdev_us >> 2; 4201 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4202 info->tcpi_advmss = tp->advmss; 4203 4204 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4205 info->tcpi_rcv_space = tp->rcvq_space.space; 4206 4207 info->tcpi_total_retrans = tp->total_retrans; 4208 4209 info->tcpi_bytes_acked = tp->bytes_acked; 4210 info->tcpi_bytes_received = tp->bytes_received; 4211 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4212 tcp_get_info_chrono_stats(tp, info); 4213 4214 info->tcpi_segs_out = tp->segs_out; 4215 4216 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4217 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4218 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4219 4220 info->tcpi_min_rtt = tcp_min_rtt(tp); 4221 info->tcpi_data_segs_out = tp->data_segs_out; 4222 4223 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4224 rate64 = tcp_compute_delivery_rate(tp); 4225 if (rate64) 4226 info->tcpi_delivery_rate = rate64; 4227 info->tcpi_delivered = tp->delivered; 4228 info->tcpi_delivered_ce = tp->delivered_ce; 4229 info->tcpi_bytes_sent = tp->bytes_sent; 4230 info->tcpi_bytes_retrans = tp->bytes_retrans; 4231 info->tcpi_dsack_dups = tp->dsack_dups; 4232 info->tcpi_reord_seen = tp->reord_seen; 4233 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4234 info->tcpi_snd_wnd = tp->snd_wnd; 4235 info->tcpi_rcv_wnd = tp->rcv_wnd; 4236 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4237 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4238 4239 info->tcpi_total_rto = tp->total_rto; 4240 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4241 info->tcpi_total_rto_time = tp->total_rto_time; 4242 if (tp->rto_stamp) 4243 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4244 4245 unlock_sock_fast(sk, slow); 4246 } 4247 EXPORT_SYMBOL_GPL(tcp_get_info); 4248 4249 static size_t tcp_opt_stats_get_size(void) 4250 { 4251 return 4252 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4253 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4254 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4255 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4256 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4257 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4258 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4259 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4260 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4261 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4262 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4263 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4264 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4265 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4266 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4267 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4268 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4271 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4272 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4273 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4274 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4275 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4277 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4278 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4279 0; 4280 } 4281 4282 /* Returns TTL or hop limit of an incoming packet from skb. */ 4283 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4284 { 4285 if (skb->protocol == htons(ETH_P_IP)) 4286 return ip_hdr(skb)->ttl; 4287 else if (skb->protocol == htons(ETH_P_IPV6)) 4288 return ipv6_hdr(skb)->hop_limit; 4289 else 4290 return 0; 4291 } 4292 4293 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4294 const struct sk_buff *orig_skb, 4295 const struct sk_buff *ack_skb) 4296 { 4297 const struct tcp_sock *tp = tcp_sk(sk); 4298 struct sk_buff *stats; 4299 struct tcp_info info; 4300 unsigned long rate; 4301 u64 rate64; 4302 4303 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4304 if (!stats) 4305 return NULL; 4306 4307 tcp_get_info_chrono_stats(tp, &info); 4308 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4309 info.tcpi_busy_time, TCP_NLA_PAD); 4310 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4311 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4312 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4313 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4314 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4315 tp->data_segs_out, TCP_NLA_PAD); 4316 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4317 tp->total_retrans, TCP_NLA_PAD); 4318 4319 rate = READ_ONCE(sk->sk_pacing_rate); 4320 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4321 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4322 4323 rate64 = tcp_compute_delivery_rate(tp); 4324 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4325 4326 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4327 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4328 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4329 4330 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4331 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4332 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4333 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4334 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4335 4336 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4337 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4338 4339 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4340 TCP_NLA_PAD); 4341 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4342 TCP_NLA_PAD); 4343 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4344 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4345 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4346 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4347 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4348 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4349 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4350 TCP_NLA_PAD); 4351 if (ack_skb) 4352 nla_put_u8(stats, TCP_NLA_TTL, 4353 tcp_skb_ttl_or_hop_limit(ack_skb)); 4354 4355 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4356 return stats; 4357 } 4358 4359 int do_tcp_getsockopt(struct sock *sk, int level, 4360 int optname, sockptr_t optval, sockptr_t optlen) 4361 { 4362 struct inet_connection_sock *icsk = inet_csk(sk); 4363 struct tcp_sock *tp = tcp_sk(sk); 4364 struct net *net = sock_net(sk); 4365 int val, len; 4366 4367 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4368 return -EFAULT; 4369 4370 if (len < 0) 4371 return -EINVAL; 4372 4373 len = min_t(unsigned int, len, sizeof(int)); 4374 4375 switch (optname) { 4376 case TCP_MAXSEG: 4377 val = tp->mss_cache; 4378 if (tp->rx_opt.user_mss && 4379 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4380 val = tp->rx_opt.user_mss; 4381 if (tp->repair) 4382 val = tp->rx_opt.mss_clamp; 4383 break; 4384 case TCP_NODELAY: 4385 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4386 break; 4387 case TCP_CORK: 4388 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4389 break; 4390 case TCP_KEEPIDLE: 4391 val = keepalive_time_when(tp) / HZ; 4392 break; 4393 case TCP_KEEPINTVL: 4394 val = keepalive_intvl_when(tp) / HZ; 4395 break; 4396 case TCP_KEEPCNT: 4397 val = keepalive_probes(tp); 4398 break; 4399 case TCP_SYNCNT: 4400 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4401 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4402 break; 4403 case TCP_LINGER2: 4404 val = READ_ONCE(tp->linger2); 4405 if (val >= 0) 4406 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4407 break; 4408 case TCP_DEFER_ACCEPT: 4409 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4410 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4411 TCP_RTO_MAX / HZ); 4412 break; 4413 case TCP_WINDOW_CLAMP: 4414 val = READ_ONCE(tp->window_clamp); 4415 break; 4416 case TCP_INFO: { 4417 struct tcp_info info; 4418 4419 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4420 return -EFAULT; 4421 4422 tcp_get_info(sk, &info); 4423 4424 len = min_t(unsigned int, len, sizeof(info)); 4425 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4426 return -EFAULT; 4427 if (copy_to_sockptr(optval, &info, len)) 4428 return -EFAULT; 4429 return 0; 4430 } 4431 case TCP_CC_INFO: { 4432 const struct tcp_congestion_ops *ca_ops; 4433 union tcp_cc_info info; 4434 size_t sz = 0; 4435 int attr; 4436 4437 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4438 return -EFAULT; 4439 4440 ca_ops = icsk->icsk_ca_ops; 4441 if (ca_ops && ca_ops->get_info) 4442 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4443 4444 len = min_t(unsigned int, len, sz); 4445 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4446 return -EFAULT; 4447 if (copy_to_sockptr(optval, &info, len)) 4448 return -EFAULT; 4449 return 0; 4450 } 4451 case TCP_QUICKACK: 4452 val = !inet_csk_in_pingpong_mode(sk); 4453 break; 4454 4455 case TCP_CONGESTION: 4456 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4457 return -EFAULT; 4458 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4459 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4460 return -EFAULT; 4461 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4462 return -EFAULT; 4463 return 0; 4464 4465 case TCP_ULP: 4466 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4467 return -EFAULT; 4468 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4469 if (!icsk->icsk_ulp_ops) { 4470 len = 0; 4471 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4472 return -EFAULT; 4473 return 0; 4474 } 4475 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4476 return -EFAULT; 4477 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4478 return -EFAULT; 4479 return 0; 4480 4481 case TCP_FASTOPEN_KEY: { 4482 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4483 unsigned int key_len; 4484 4485 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4486 return -EFAULT; 4487 4488 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4489 TCP_FASTOPEN_KEY_LENGTH; 4490 len = min_t(unsigned int, len, key_len); 4491 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4492 return -EFAULT; 4493 if (copy_to_sockptr(optval, key, len)) 4494 return -EFAULT; 4495 return 0; 4496 } 4497 case TCP_THIN_LINEAR_TIMEOUTS: 4498 val = tp->thin_lto; 4499 break; 4500 4501 case TCP_THIN_DUPACK: 4502 val = 0; 4503 break; 4504 4505 case TCP_REPAIR: 4506 val = tp->repair; 4507 break; 4508 4509 case TCP_REPAIR_QUEUE: 4510 if (tp->repair) 4511 val = tp->repair_queue; 4512 else 4513 return -EINVAL; 4514 break; 4515 4516 case TCP_REPAIR_WINDOW: { 4517 struct tcp_repair_window opt; 4518 4519 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4520 return -EFAULT; 4521 4522 if (len != sizeof(opt)) 4523 return -EINVAL; 4524 4525 if (!tp->repair) 4526 return -EPERM; 4527 4528 opt.snd_wl1 = tp->snd_wl1; 4529 opt.snd_wnd = tp->snd_wnd; 4530 opt.max_window = tp->max_window; 4531 opt.rcv_wnd = tp->rcv_wnd; 4532 opt.rcv_wup = tp->rcv_wup; 4533 4534 if (copy_to_sockptr(optval, &opt, len)) 4535 return -EFAULT; 4536 return 0; 4537 } 4538 case TCP_QUEUE_SEQ: 4539 if (tp->repair_queue == TCP_SEND_QUEUE) 4540 val = tp->write_seq; 4541 else if (tp->repair_queue == TCP_RECV_QUEUE) 4542 val = tp->rcv_nxt; 4543 else 4544 return -EINVAL; 4545 break; 4546 4547 case TCP_USER_TIMEOUT: 4548 val = READ_ONCE(icsk->icsk_user_timeout); 4549 break; 4550 4551 case TCP_FASTOPEN: 4552 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4553 break; 4554 4555 case TCP_FASTOPEN_CONNECT: 4556 val = tp->fastopen_connect; 4557 break; 4558 4559 case TCP_FASTOPEN_NO_COOKIE: 4560 val = tp->fastopen_no_cookie; 4561 break; 4562 4563 case TCP_TX_DELAY: 4564 val = READ_ONCE(tp->tcp_tx_delay); 4565 break; 4566 4567 case TCP_TIMESTAMP: 4568 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4569 if (tp->tcp_usec_ts) 4570 val |= 1; 4571 else 4572 val &= ~1; 4573 break; 4574 case TCP_NOTSENT_LOWAT: 4575 val = READ_ONCE(tp->notsent_lowat); 4576 break; 4577 case TCP_INQ: 4578 val = tp->recvmsg_inq; 4579 break; 4580 case TCP_SAVE_SYN: 4581 val = tp->save_syn; 4582 break; 4583 case TCP_SAVED_SYN: { 4584 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4585 return -EFAULT; 4586 4587 sockopt_lock_sock(sk); 4588 if (tp->saved_syn) { 4589 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4590 len = tcp_saved_syn_len(tp->saved_syn); 4591 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4592 sockopt_release_sock(sk); 4593 return -EFAULT; 4594 } 4595 sockopt_release_sock(sk); 4596 return -EINVAL; 4597 } 4598 len = tcp_saved_syn_len(tp->saved_syn); 4599 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4600 sockopt_release_sock(sk); 4601 return -EFAULT; 4602 } 4603 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4604 sockopt_release_sock(sk); 4605 return -EFAULT; 4606 } 4607 tcp_saved_syn_free(tp); 4608 sockopt_release_sock(sk); 4609 } else { 4610 sockopt_release_sock(sk); 4611 len = 0; 4612 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4613 return -EFAULT; 4614 } 4615 return 0; 4616 } 4617 #ifdef CONFIG_MMU 4618 case TCP_ZEROCOPY_RECEIVE: { 4619 struct scm_timestamping_internal tss; 4620 struct tcp_zerocopy_receive zc = {}; 4621 int err; 4622 4623 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4624 return -EFAULT; 4625 if (len < 0 || 4626 len < offsetofend(struct tcp_zerocopy_receive, length)) 4627 return -EINVAL; 4628 if (unlikely(len > sizeof(zc))) { 4629 err = check_zeroed_sockptr(optval, sizeof(zc), 4630 len - sizeof(zc)); 4631 if (err < 1) 4632 return err == 0 ? -EINVAL : err; 4633 len = sizeof(zc); 4634 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4635 return -EFAULT; 4636 } 4637 if (copy_from_sockptr(&zc, optval, len)) 4638 return -EFAULT; 4639 if (zc.reserved) 4640 return -EINVAL; 4641 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4642 return -EINVAL; 4643 sockopt_lock_sock(sk); 4644 err = tcp_zerocopy_receive(sk, &zc, &tss); 4645 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4646 &zc, &len, err); 4647 sockopt_release_sock(sk); 4648 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4649 goto zerocopy_rcv_cmsg; 4650 switch (len) { 4651 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4652 goto zerocopy_rcv_cmsg; 4653 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4654 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4655 case offsetofend(struct tcp_zerocopy_receive, flags): 4656 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4657 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4658 case offsetofend(struct tcp_zerocopy_receive, err): 4659 goto zerocopy_rcv_sk_err; 4660 case offsetofend(struct tcp_zerocopy_receive, inq): 4661 goto zerocopy_rcv_inq; 4662 case offsetofend(struct tcp_zerocopy_receive, length): 4663 default: 4664 goto zerocopy_rcv_out; 4665 } 4666 zerocopy_rcv_cmsg: 4667 if (zc.msg_flags & TCP_CMSG_TS) 4668 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4669 else 4670 zc.msg_flags = 0; 4671 zerocopy_rcv_sk_err: 4672 if (!err) 4673 zc.err = sock_error(sk); 4674 zerocopy_rcv_inq: 4675 zc.inq = tcp_inq_hint(sk); 4676 zerocopy_rcv_out: 4677 if (!err && copy_to_sockptr(optval, &zc, len)) 4678 err = -EFAULT; 4679 return err; 4680 } 4681 #endif 4682 case TCP_AO_REPAIR: 4683 if (!tcp_can_repair_sock(sk)) 4684 return -EPERM; 4685 return tcp_ao_get_repair(sk, optval, optlen); 4686 case TCP_AO_GET_KEYS: 4687 case TCP_AO_INFO: { 4688 int err; 4689 4690 sockopt_lock_sock(sk); 4691 if (optname == TCP_AO_GET_KEYS) 4692 err = tcp_ao_get_mkts(sk, optval, optlen); 4693 else 4694 err = tcp_ao_get_sock_info(sk, optval, optlen); 4695 sockopt_release_sock(sk); 4696 4697 return err; 4698 } 4699 case TCP_IS_MPTCP: 4700 val = 0; 4701 break; 4702 case TCP_RTO_MAX_MS: 4703 val = jiffies_to_msecs(tcp_rto_max(sk)); 4704 break; 4705 case TCP_RTO_MIN_US: 4706 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4707 break; 4708 case TCP_DELACK_MAX_US: 4709 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4710 break; 4711 default: 4712 return -ENOPROTOOPT; 4713 } 4714 4715 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4716 return -EFAULT; 4717 if (copy_to_sockptr(optval, &val, len)) 4718 return -EFAULT; 4719 return 0; 4720 } 4721 4722 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4723 { 4724 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4725 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4726 */ 4727 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4728 return true; 4729 4730 return false; 4731 } 4732 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4733 4734 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4735 int __user *optlen) 4736 { 4737 struct inet_connection_sock *icsk = inet_csk(sk); 4738 4739 if (level != SOL_TCP) 4740 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4741 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4742 optval, optlen); 4743 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4744 USER_SOCKPTR(optlen)); 4745 } 4746 EXPORT_IPV6_MOD(tcp_getsockopt); 4747 4748 #ifdef CONFIG_TCP_MD5SIG 4749 int tcp_md5_sigpool_id = -1; 4750 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); 4751 4752 int tcp_md5_alloc_sigpool(void) 4753 { 4754 size_t scratch_size; 4755 int ret; 4756 4757 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4758 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4759 if (ret >= 0) { 4760 /* As long as any md5 sigpool was allocated, the return 4761 * id would stay the same. Re-write the id only for the case 4762 * when previously all MD5 keys were deleted and this call 4763 * allocates the first MD5 key, which may return a different 4764 * sigpool id than was used previously. 4765 */ 4766 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4767 return 0; 4768 } 4769 return ret; 4770 } 4771 4772 void tcp_md5_release_sigpool(void) 4773 { 4774 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4775 } 4776 4777 void tcp_md5_add_sigpool(void) 4778 { 4779 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4780 } 4781 4782 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4783 const struct tcp_md5sig_key *key) 4784 { 4785 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4786 struct scatterlist sg; 4787 4788 sg_init_one(&sg, key->key, keylen); 4789 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4790 4791 /* We use data_race() because tcp_md5_do_add() might change 4792 * key->key under us 4793 */ 4794 return data_race(crypto_ahash_update(hp->req)); 4795 } 4796 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4797 4798 /* Called with rcu_read_lock() */ 4799 static enum skb_drop_reason 4800 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4801 const void *saddr, const void *daddr, 4802 int family, int l3index, const __u8 *hash_location) 4803 { 4804 /* This gets called for each TCP segment that has TCP-MD5 option. 4805 * We have 3 drop cases: 4806 * o No MD5 hash and one expected. 4807 * o MD5 hash and we're not expecting one. 4808 * o MD5 hash and its wrong. 4809 */ 4810 const struct tcp_sock *tp = tcp_sk(sk); 4811 struct tcp_md5sig_key *key; 4812 u8 newhash[16]; 4813 int genhash; 4814 4815 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4816 4817 if (!key && hash_location) { 4818 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4819 trace_tcp_hash_md5_unexpected(sk, skb); 4820 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4821 } 4822 4823 /* Check the signature. 4824 * To support dual stack listeners, we need to handle 4825 * IPv4-mapped case. 4826 */ 4827 if (family == AF_INET) 4828 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4829 else 4830 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4831 NULL, skb); 4832 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4834 trace_tcp_hash_md5_mismatch(sk, skb); 4835 return SKB_DROP_REASON_TCP_MD5FAILURE; 4836 } 4837 return SKB_NOT_DROPPED_YET; 4838 } 4839 #else 4840 static inline enum skb_drop_reason 4841 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4842 const void *saddr, const void *daddr, 4843 int family, int l3index, const __u8 *hash_location) 4844 { 4845 return SKB_NOT_DROPPED_YET; 4846 } 4847 4848 #endif 4849 4850 /* Called with rcu_read_lock() */ 4851 enum skb_drop_reason 4852 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4853 const struct sk_buff *skb, 4854 const void *saddr, const void *daddr, 4855 int family, int dif, int sdif) 4856 { 4857 const struct tcphdr *th = tcp_hdr(skb); 4858 const struct tcp_ao_hdr *aoh; 4859 const __u8 *md5_location; 4860 int l3index; 4861 4862 /* Invalid option or two times meet any of auth options */ 4863 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4864 trace_tcp_hash_bad_header(sk, skb); 4865 return SKB_DROP_REASON_TCP_AUTH_HDR; 4866 } 4867 4868 if (req) { 4869 if (tcp_rsk_used_ao(req) != !!aoh) { 4870 u8 keyid, rnext, maclen; 4871 4872 if (aoh) { 4873 keyid = aoh->keyid; 4874 rnext = aoh->rnext_keyid; 4875 maclen = tcp_ao_hdr_maclen(aoh); 4876 } else { 4877 keyid = rnext = maclen = 0; 4878 } 4879 4880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4881 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4882 return SKB_DROP_REASON_TCP_AOFAILURE; 4883 } 4884 } 4885 4886 /* sdif set, means packet ingressed via a device 4887 * in an L3 domain and dif is set to the l3mdev 4888 */ 4889 l3index = sdif ? dif : 0; 4890 4891 /* Fast path: unsigned segments */ 4892 if (likely(!md5_location && !aoh)) { 4893 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4894 * for the remote peer. On TCP-AO established connection 4895 * the last key is impossible to remove, so there's 4896 * always at least one current_key. 4897 */ 4898 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4899 trace_tcp_hash_ao_required(sk, skb); 4900 return SKB_DROP_REASON_TCP_AONOTFOUND; 4901 } 4902 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4904 trace_tcp_hash_md5_required(sk, skb); 4905 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4906 } 4907 return SKB_NOT_DROPPED_YET; 4908 } 4909 4910 if (aoh) 4911 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4912 4913 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4914 l3index, md5_location); 4915 } 4916 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 4917 4918 void tcp_done(struct sock *sk) 4919 { 4920 struct request_sock *req; 4921 4922 /* We might be called with a new socket, after 4923 * inet_csk_prepare_forced_close() has been called 4924 * so we can not use lockdep_sock_is_held(sk) 4925 */ 4926 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4927 4928 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4929 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4930 4931 tcp_set_state(sk, TCP_CLOSE); 4932 tcp_clear_xmit_timers(sk); 4933 if (req) 4934 reqsk_fastopen_remove(sk, req, false); 4935 4936 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4937 4938 if (!sock_flag(sk, SOCK_DEAD)) 4939 sk->sk_state_change(sk); 4940 else 4941 inet_csk_destroy_sock(sk); 4942 } 4943 EXPORT_SYMBOL_GPL(tcp_done); 4944 4945 int tcp_abort(struct sock *sk, int err) 4946 { 4947 int state = inet_sk_state_load(sk); 4948 4949 if (state == TCP_NEW_SYN_RECV) { 4950 struct request_sock *req = inet_reqsk(sk); 4951 4952 local_bh_disable(); 4953 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4954 local_bh_enable(); 4955 return 0; 4956 } 4957 if (state == TCP_TIME_WAIT) { 4958 struct inet_timewait_sock *tw = inet_twsk(sk); 4959 4960 refcount_inc(&tw->tw_refcnt); 4961 local_bh_disable(); 4962 inet_twsk_deschedule_put(tw); 4963 local_bh_enable(); 4964 return 0; 4965 } 4966 4967 /* BPF context ensures sock locking. */ 4968 if (!has_current_bpf_ctx()) 4969 /* Don't race with userspace socket closes such as tcp_close. */ 4970 lock_sock(sk); 4971 4972 /* Avoid closing the same socket twice. */ 4973 if (sk->sk_state == TCP_CLOSE) { 4974 if (!has_current_bpf_ctx()) 4975 release_sock(sk); 4976 return -ENOENT; 4977 } 4978 4979 if (sk->sk_state == TCP_LISTEN) { 4980 tcp_set_state(sk, TCP_CLOSE); 4981 inet_csk_listen_stop(sk); 4982 } 4983 4984 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4985 local_bh_disable(); 4986 bh_lock_sock(sk); 4987 4988 if (tcp_need_reset(sk->sk_state)) 4989 tcp_send_active_reset(sk, GFP_ATOMIC, 4990 SK_RST_REASON_TCP_STATE); 4991 tcp_done_with_error(sk, err); 4992 4993 bh_unlock_sock(sk); 4994 local_bh_enable(); 4995 if (!has_current_bpf_ctx()) 4996 release_sock(sk); 4997 return 0; 4998 } 4999 EXPORT_SYMBOL_GPL(tcp_abort); 5000 5001 extern struct tcp_congestion_ops tcp_reno; 5002 5003 static __initdata unsigned long thash_entries; 5004 static int __init set_thash_entries(char *str) 5005 { 5006 ssize_t ret; 5007 5008 if (!str) 5009 return 0; 5010 5011 ret = kstrtoul(str, 0, &thash_entries); 5012 if (ret) 5013 return 0; 5014 5015 return 1; 5016 } 5017 __setup("thash_entries=", set_thash_entries); 5018 5019 static void __init tcp_init_mem(void) 5020 { 5021 unsigned long limit = nr_free_buffer_pages() / 16; 5022 5023 limit = max(limit, 128UL); 5024 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5025 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5026 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5027 } 5028 5029 static void __init tcp_struct_check(void) 5030 { 5031 /* TX read-mostly hotpath cache lines */ 5032 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5033 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5034 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5036 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5039 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 5040 5041 /* TXRX read-mostly hotpath cache lines */ 5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5050 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5051 5052 /* RX read-mostly hotpath cache lines */ 5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5065 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); 5067 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); 5068 #else 5069 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5070 #endif 5071 5072 /* TX read-write hotpath cache lines */ 5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5087 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5088 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5089 5090 /* TXRX read-write hotpath cache lines */ 5091 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5106 5107 /* 32bit arches with 8byte alignment on u64 fields might need padding 5108 * before tcp_clock_cache. 5109 */ 5110 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5111 5112 /* RX read-write hotpath cache lines */ 5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5125 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5126 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5127 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5128 } 5129 5130 void __init tcp_init(void) 5131 { 5132 int max_rshare, max_wshare, cnt; 5133 unsigned long limit; 5134 unsigned int i; 5135 5136 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5137 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5138 sizeof_field(struct sk_buff, cb)); 5139 5140 tcp_struct_check(); 5141 5142 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5143 5144 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5145 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5146 5147 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5148 thash_entries, 21, /* one slot per 2 MB*/ 5149 0, 64 * 1024); 5150 tcp_hashinfo.bind_bucket_cachep = 5151 kmem_cache_create("tcp_bind_bucket", 5152 sizeof(struct inet_bind_bucket), 0, 5153 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5154 SLAB_ACCOUNT, 5155 NULL); 5156 tcp_hashinfo.bind2_bucket_cachep = 5157 kmem_cache_create("tcp_bind2_bucket", 5158 sizeof(struct inet_bind2_bucket), 0, 5159 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5160 SLAB_ACCOUNT, 5161 NULL); 5162 5163 /* Size and allocate the main established and bind bucket 5164 * hash tables. 5165 * 5166 * The methodology is similar to that of the buffer cache. 5167 */ 5168 tcp_hashinfo.ehash = 5169 alloc_large_system_hash("TCP established", 5170 sizeof(struct inet_ehash_bucket), 5171 thash_entries, 5172 17, /* one slot per 128 KB of memory */ 5173 0, 5174 NULL, 5175 &tcp_hashinfo.ehash_mask, 5176 0, 5177 thash_entries ? 0 : 512 * 1024); 5178 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5179 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5180 5181 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5182 panic("TCP: failed to alloc ehash_locks"); 5183 tcp_hashinfo.bhash = 5184 alloc_large_system_hash("TCP bind", 5185 2 * sizeof(struct inet_bind_hashbucket), 5186 tcp_hashinfo.ehash_mask + 1, 5187 17, /* one slot per 128 KB of memory */ 5188 0, 5189 &tcp_hashinfo.bhash_size, 5190 NULL, 5191 0, 5192 64 * 1024); 5193 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5194 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5195 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5196 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5197 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5198 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5199 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5200 } 5201 5202 tcp_hashinfo.pernet = false; 5203 5204 cnt = tcp_hashinfo.ehash_mask + 1; 5205 sysctl_tcp_max_orphans = cnt / 2; 5206 5207 tcp_init_mem(); 5208 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5209 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5210 max_wshare = min(4UL*1024*1024, limit); 5211 max_rshare = min(6UL*1024*1024, limit); 5212 5213 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5214 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5215 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5216 5217 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5218 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5219 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5220 5221 pr_info("Hash tables configured (established %u bind %u)\n", 5222 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5223 5224 tcp_v4_init(); 5225 tcp_metrics_init(); 5226 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5227 tcp_tasklet_init(); 5228 mptcp_init(); 5229 } 5230