xref: /linux/net/ipv4/tcp.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/md5.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/splice.h>
257 #include <linux/net.h>
258 #include <linux/socket.h>
259 #include <linux/random.h>
260 #include <linux/memblock.h>
261 #include <linux/highmem.h>
262 #include <linux/cache.h>
263 #include <linux/err.h>
264 #include <linux/time.h>
265 #include <linux/slab.h>
266 #include <linux/errqueue.h>
267 #include <linux/static_key.h>
268 #include <linux/btf.h>
269 
270 #include <net/icmp.h>
271 #include <net/inet_common.h>
272 #include <net/inet_ecn.h>
273 #include <net/tcp.h>
274 #include <net/tcp_ecn.h>
275 #include <net/mptcp.h>
276 #include <net/proto_memory.h>
277 #include <net/xfrm.h>
278 #include <net/ip.h>
279 #include <net/psp.h>
280 #include <net/sock.h>
281 #include <net/rstreason.h>
282 
283 #include <linux/uaccess.h>
284 #include <asm/ioctls.h>
285 #include <net/busy_poll.h>
286 #include <net/hotdata.h>
287 #include <trace/events/tcp.h>
288 #include <net/rps.h>
289 
290 #include "../core/devmem.h"
291 
292 /* Track pending CMSGs. */
293 enum {
294 	TCP_CMSG_INQ = 1,
295 	TCP_CMSG_TS = 2
296 };
297 
298 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
300 
301 DEFINE_PER_CPU(u32, tcp_tw_isn);
302 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
303 
304 long sysctl_tcp_mem[3] __read_mostly;
305 EXPORT_IPV6_MOD(sysctl_tcp_mem);
306 
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 #ifdef CONFIG_TCP_MD5SIG
418 void tcp_md5_destruct_sock(struct sock *sk)
419 {
420 	struct tcp_sock *tp = tcp_sk(sk);
421 
422 	if (tp->md5sig_info) {
423 
424 		tcp_clear_md5_list(sk);
425 		kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 1));
426 		static_branch_slow_dec_deferred(&tcp_md5_needed);
427 	}
428 }
429 EXPORT_IPV6_MOD_GPL(tcp_md5_destruct_sock);
430 #endif
431 
432 /* Address-family independent initialization for a tcp_sock.
433  *
434  * NOTE: A lot of things set to zero explicitly by call to
435  *       sk_alloc() so need not be done here.
436  */
437 void tcp_init_sock(struct sock *sk)
438 {
439 	struct inet_connection_sock *icsk = inet_csk(sk);
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	int rto_min_us, rto_max_ms;
442 
443 	tp->out_of_order_queue = RB_ROOT;
444 	sk->tcp_rtx_queue = RB_ROOT;
445 	tcp_init_xmit_timers(sk);
446 	INIT_LIST_HEAD(&tp->tsq_node);
447 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
448 
449 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
450 
451 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
452 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
453 
454 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
455 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
456 	icsk->icsk_delack_max = TCP_DELACK_MAX;
457 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
458 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
459 
460 	/* So many TCP implementations out there (incorrectly) count the
461 	 * initial SYN frame in their delayed-ACK and congestion control
462 	 * algorithms that we must have the following bandaid to talk
463 	 * efficiently to them.  -DaveM
464 	 */
465 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
466 
467 	/* There's a bubble in the pipe until at least the first ACK. */
468 	tp->app_limited = ~0U;
469 	tp->rate_app_limited = 1;
470 
471 	/* See draft-stevens-tcpca-spec-01 for discussion of the
472 	 * initialization of these values.
473 	 */
474 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475 	tp->snd_cwnd_clamp = ~0;
476 	tp->mss_cache = TCP_MSS_DEFAULT;
477 
478 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
479 	tcp_assign_congestion_control(sk);
480 
481 	tp->tsoffset = 0;
482 	tp->rack.reo_wnd_steps = 1;
483 
484 	sk->sk_write_space = sk_stream_write_space;
485 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
486 
487 	icsk->icsk_sync_mss = tcp_sync_mss;
488 
489 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
490 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
491 	tcp_scaling_ratio_init(sk);
492 
493 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
494 	sk_sockets_allocated_inc(sk);
495 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
496 }
497 EXPORT_IPV6_MOD(tcp_init_sock);
498 
499 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
500 {
501 	struct sk_buff *skb = tcp_write_queue_tail(sk);
502 	u32 tsflags = sockc->tsflags;
503 
504 	if (tsflags && skb) {
505 		struct skb_shared_info *shinfo = skb_shinfo(skb);
506 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
507 
508 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
509 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
510 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
511 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
512 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
513 	}
514 
515 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
516 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
517 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
518 }
519 
520 static bool tcp_stream_is_readable(struct sock *sk, int target)
521 {
522 	if (tcp_epollin_ready(sk, target))
523 		return true;
524 	return sk_is_readable(sk);
525 }
526 
527 /*
528  *	Wait for a TCP event.
529  *
530  *	Note that we don't need to lock the socket, as the upper poll layers
531  *	take care of normal races (between the test and the event) and we don't
532  *	go look at any of the socket buffers directly.
533  */
534 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
535 {
536 	__poll_t mask;
537 	struct sock *sk = sock->sk;
538 	const struct tcp_sock *tp = tcp_sk(sk);
539 	u8 shutdown;
540 	int state;
541 
542 	sock_poll_wait(file, sock, wait);
543 
544 	state = inet_sk_state_load(sk);
545 	if (state == TCP_LISTEN)
546 		return inet_csk_listen_poll(sk);
547 
548 	/* Socket is not locked. We are protected from async events
549 	 * by poll logic and correct handling of state changes
550 	 * made by other threads is impossible in any case.
551 	 */
552 
553 	mask = 0;
554 
555 	/*
556 	 * EPOLLHUP is certainly not done right. But poll() doesn't
557 	 * have a notion of HUP in just one direction, and for a
558 	 * socket the read side is more interesting.
559 	 *
560 	 * Some poll() documentation says that EPOLLHUP is incompatible
561 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
562 	 * all. But careful, it tends to be safer to return too many
563 	 * bits than too few, and you can easily break real applications
564 	 * if you don't tell them that something has hung up!
565 	 *
566 	 * Check-me.
567 	 *
568 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
569 	 * our fs/select.c). It means that after we received EOF,
570 	 * poll always returns immediately, making impossible poll() on write()
571 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
572 	 * if and only if shutdown has been made in both directions.
573 	 * Actually, it is interesting to look how Solaris and DUX
574 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
575 	 * then we could set it on SND_SHUTDOWN. BTW examples given
576 	 * in Stevens' books assume exactly this behaviour, it explains
577 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
578 	 *
579 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
580 	 * blocking on fresh not-connected or disconnected socket. --ANK
581 	 */
582 	shutdown = READ_ONCE(sk->sk_shutdown);
583 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
584 		mask |= EPOLLHUP;
585 	if (shutdown & RCV_SHUTDOWN)
586 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
587 
588 	/* Connected or passive Fast Open socket? */
589 	if (state != TCP_SYN_SENT &&
590 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
591 		int target = sock_rcvlowat(sk, 0, INT_MAX);
592 		u16 urg_data = READ_ONCE(tp->urg_data);
593 
594 		if (unlikely(urg_data) &&
595 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
596 		    !sock_flag(sk, SOCK_URGINLINE))
597 			target++;
598 
599 		if (tcp_stream_is_readable(sk, target))
600 			mask |= EPOLLIN | EPOLLRDNORM;
601 
602 		if (!(shutdown & SEND_SHUTDOWN)) {
603 			if (__sk_stream_is_writeable(sk, 1)) {
604 				mask |= EPOLLOUT | EPOLLWRNORM;
605 			} else {  /* send SIGIO later */
606 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
607 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
608 
609 				/* Race breaker. If space is freed after
610 				 * wspace test but before the flags are set,
611 				 * IO signal will be lost. Memory barrier
612 				 * pairs with the input side.
613 				 */
614 				smp_mb__after_atomic();
615 				if (__sk_stream_is_writeable(sk, 1))
616 					mask |= EPOLLOUT | EPOLLWRNORM;
617 			}
618 		} else
619 			mask |= EPOLLOUT | EPOLLWRNORM;
620 
621 		if (urg_data & TCP_URG_VALID)
622 			mask |= EPOLLPRI;
623 	} else if (state == TCP_SYN_SENT &&
624 		   inet_test_bit(DEFER_CONNECT, sk)) {
625 		/* Active TCP fastopen socket with defer_connect
626 		 * Return EPOLLOUT so application can call write()
627 		 * in order for kernel to generate SYN+data
628 		 */
629 		mask |= EPOLLOUT | EPOLLWRNORM;
630 	}
631 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
632 	smp_rmb();
633 	if (READ_ONCE(sk->sk_err) ||
634 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
635 		mask |= EPOLLERR;
636 
637 	return mask;
638 }
639 EXPORT_SYMBOL(tcp_poll);
640 
641 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
642 {
643 	struct tcp_sock *tp = tcp_sk(sk);
644 	int answ;
645 	bool slow;
646 
647 	switch (cmd) {
648 	case SIOCINQ:
649 		if (sk->sk_state == TCP_LISTEN)
650 			return -EINVAL;
651 
652 		slow = lock_sock_fast(sk);
653 		answ = tcp_inq(sk);
654 		unlock_sock_fast(sk, slow);
655 		break;
656 	case SIOCATMARK:
657 		answ = READ_ONCE(tp->urg_data) &&
658 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
659 		break;
660 	case SIOCOUTQ:
661 		if (sk->sk_state == TCP_LISTEN)
662 			return -EINVAL;
663 
664 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
665 			answ = 0;
666 		else
667 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
668 		break;
669 	case SIOCOUTQNSD:
670 		if (sk->sk_state == TCP_LISTEN)
671 			return -EINVAL;
672 
673 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
674 			answ = 0;
675 		else
676 			answ = READ_ONCE(tp->write_seq) -
677 			       READ_ONCE(tp->snd_nxt);
678 		break;
679 	default:
680 		return -ENOIOCTLCMD;
681 	}
682 
683 	*karg = answ;
684 	return 0;
685 }
686 EXPORT_IPV6_MOD(tcp_ioctl);
687 
688 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
689 {
690 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
691 	tp->pushed_seq = tp->write_seq;
692 }
693 
694 static inline bool forced_push(const struct tcp_sock *tp)
695 {
696 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
697 }
698 
699 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
700 {
701 	struct tcp_sock *tp = tcp_sk(sk);
702 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
703 
704 	tcb->seq     = tcb->end_seq = tp->write_seq;
705 	tcb->tcp_flags = TCPHDR_ACK;
706 	__skb_header_release(skb);
707 	psp_enqueue_set_decrypted(sk, skb);
708 	tcp_add_write_queue_tail(sk, skb);
709 	sk_wmem_queued_add(sk, skb->truesize);
710 	sk_mem_charge(sk, skb->truesize);
711 	if (tp->nonagle & TCP_NAGLE_PUSH)
712 		tp->nonagle &= ~TCP_NAGLE_PUSH;
713 
714 	tcp_slow_start_after_idle_check(sk);
715 }
716 
717 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
718 {
719 	if (flags & MSG_OOB)
720 		tp->snd_up = tp->write_seq;
721 }
722 
723 /* If a not yet filled skb is pushed, do not send it if
724  * we have data packets in Qdisc or NIC queues :
725  * Because TX completion will happen shortly, it gives a chance
726  * to coalesce future sendmsg() payload into this skb, without
727  * need for a timer, and with no latency trade off.
728  * As packets containing data payload have a bigger truesize
729  * than pure acks (dataless) packets, the last checks prevent
730  * autocorking if we only have an ACK in Qdisc/NIC queues,
731  * or if TX completion was delayed after we processed ACK packet.
732  */
733 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
734 				int size_goal)
735 {
736 	return skb->len < size_goal &&
737 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
738 	       !tcp_rtx_queue_empty(sk) &&
739 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
740 	       tcp_skb_can_collapse_to(skb);
741 }
742 
743 void tcp_push(struct sock *sk, int flags, int mss_now,
744 	      int nonagle, int size_goal)
745 {
746 	struct tcp_sock *tp = tcp_sk(sk);
747 	struct sk_buff *skb;
748 
749 	skb = tcp_write_queue_tail(sk);
750 	if (!skb)
751 		return;
752 	if (!(flags & MSG_MORE) || forced_push(tp))
753 		tcp_mark_push(tp, skb);
754 
755 	tcp_mark_urg(tp, flags);
756 
757 	if (tcp_should_autocork(sk, skb, size_goal)) {
758 
759 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
760 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
761 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
762 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
763 			smp_mb__after_atomic();
764 		}
765 		/* It is possible TX completion already happened
766 		 * before we set TSQ_THROTTLED.
767 		 */
768 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
769 			return;
770 	}
771 
772 	if (flags & MSG_MORE)
773 		nonagle = TCP_NAGLE_CORK;
774 
775 	__tcp_push_pending_frames(sk, mss_now, nonagle);
776 }
777 
778 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
779 				unsigned int offset, size_t len)
780 {
781 	struct tcp_splice_state *tss = rd_desc->arg.data;
782 	int ret;
783 
784 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
785 			      min(rd_desc->count, len), tss->flags);
786 	if (ret > 0)
787 		rd_desc->count -= ret;
788 	return ret;
789 }
790 
791 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
792 {
793 	/* Store TCP splice context information in read_descriptor_t. */
794 	read_descriptor_t rd_desc = {
795 		.arg.data = tss,
796 		.count	  = tss->len,
797 	};
798 
799 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
800 }
801 
802 /**
803  *  tcp_splice_read - splice data from TCP socket to a pipe
804  * @sock:	socket to splice from
805  * @ppos:	position (not valid)
806  * @pipe:	pipe to splice to
807  * @len:	number of bytes to splice
808  * @flags:	splice modifier flags
809  *
810  * Description:
811  *    Will read pages from given socket and fill them into a pipe.
812  *
813  **/
814 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
815 			struct pipe_inode_info *pipe, size_t len,
816 			unsigned int flags)
817 {
818 	struct sock *sk = sock->sk;
819 	struct tcp_splice_state tss = {
820 		.pipe = pipe,
821 		.len = len,
822 		.flags = flags,
823 	};
824 	long timeo;
825 	ssize_t spliced;
826 	int ret;
827 
828 	sock_rps_record_flow(sk);
829 	/*
830 	 * We can't seek on a socket input
831 	 */
832 	if (unlikely(*ppos))
833 		return -ESPIPE;
834 
835 	ret = spliced = 0;
836 
837 	lock_sock(sk);
838 
839 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
840 	while (tss.len) {
841 		ret = __tcp_splice_read(sk, &tss);
842 		if (ret < 0)
843 			break;
844 		else if (!ret) {
845 			if (spliced)
846 				break;
847 			if (sock_flag(sk, SOCK_DONE))
848 				break;
849 			if (sk->sk_err) {
850 				ret = sock_error(sk);
851 				break;
852 			}
853 			if (sk->sk_shutdown & RCV_SHUTDOWN)
854 				break;
855 			if (sk->sk_state == TCP_CLOSE) {
856 				/*
857 				 * This occurs when user tries to read
858 				 * from never connected socket.
859 				 */
860 				ret = -ENOTCONN;
861 				break;
862 			}
863 			if (!timeo) {
864 				ret = -EAGAIN;
865 				break;
866 			}
867 			/* if __tcp_splice_read() got nothing while we have
868 			 * an skb in receive queue, we do not want to loop.
869 			 * This might happen with URG data.
870 			 */
871 			if (!skb_queue_empty(&sk->sk_receive_queue))
872 				break;
873 			ret = sk_wait_data(sk, &timeo, NULL);
874 			if (ret < 0)
875 				break;
876 			if (signal_pending(current)) {
877 				ret = sock_intr_errno(timeo);
878 				break;
879 			}
880 			continue;
881 		}
882 		tss.len -= ret;
883 		spliced += ret;
884 
885 		if (!tss.len || !timeo)
886 			break;
887 		release_sock(sk);
888 		lock_sock(sk);
889 
890 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
891 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
892 		    signal_pending(current))
893 			break;
894 	}
895 
896 	release_sock(sk);
897 
898 	if (spliced)
899 		return spliced;
900 
901 	return ret;
902 }
903 EXPORT_IPV6_MOD(tcp_splice_read);
904 
905 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
906 				     bool force_schedule)
907 {
908 	struct sk_buff *skb;
909 
910 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
911 	if (likely(skb)) {
912 		bool mem_scheduled;
913 
914 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
915 		if (force_schedule) {
916 			mem_scheduled = true;
917 			sk_forced_mem_schedule(sk, skb->truesize);
918 		} else {
919 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
920 		}
921 		if (likely(mem_scheduled)) {
922 			skb_reserve(skb, MAX_TCP_HEADER);
923 			skb->ip_summed = CHECKSUM_PARTIAL;
924 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
925 			return skb;
926 		}
927 		__kfree_skb(skb);
928 	} else {
929 		if (!sk->sk_bypass_prot_mem)
930 			tcp_enter_memory_pressure(sk);
931 		sk_stream_moderate_sndbuf(sk);
932 	}
933 	return NULL;
934 }
935 
936 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
937 				       int large_allowed)
938 {
939 	struct tcp_sock *tp = tcp_sk(sk);
940 	u32 new_size_goal, size_goal;
941 
942 	if (!large_allowed)
943 		return mss_now;
944 
945 	/* Note : tcp_tso_autosize() will eventually split this later */
946 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
947 
948 	/* We try hard to avoid divides here */
949 	size_goal = tp->gso_segs * mss_now;
950 	if (unlikely(new_size_goal < size_goal ||
951 		     new_size_goal >= size_goal + mss_now)) {
952 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
953 				     sk->sk_gso_max_segs);
954 		size_goal = tp->gso_segs * mss_now;
955 	}
956 
957 	return max(size_goal, mss_now);
958 }
959 
960 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
961 {
962 	int mss_now;
963 
964 	mss_now = tcp_current_mss(sk);
965 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
966 
967 	return mss_now;
968 }
969 
970 /* In some cases, sendmsg() could have added an skb to the write queue,
971  * but failed adding payload on it. We need to remove it to consume less
972  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
973  * epoll() users. Another reason is that tcp_write_xmit() does not like
974  * finding an empty skb in the write queue.
975  */
976 void tcp_remove_empty_skb(struct sock *sk)
977 {
978 	struct sk_buff *skb = tcp_write_queue_tail(sk);
979 
980 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
981 		tcp_unlink_write_queue(skb, sk);
982 		if (tcp_write_queue_empty(sk))
983 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
984 		tcp_wmem_free_skb(sk, skb);
985 	}
986 }
987 
988 /* skb changing from pure zc to mixed, must charge zc */
989 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
990 {
991 	if (unlikely(skb_zcopy_pure(skb))) {
992 		u32 extra = skb->truesize -
993 			    SKB_TRUESIZE(skb_end_offset(skb));
994 
995 		if (!sk_wmem_schedule(sk, extra))
996 			return -ENOMEM;
997 
998 		sk_mem_charge(sk, extra);
999 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1000 	}
1001 	return 0;
1002 }
1003 
1004 
1005 int tcp_wmem_schedule(struct sock *sk, int copy)
1006 {
1007 	int left;
1008 
1009 	if (likely(sk_wmem_schedule(sk, copy)))
1010 		return copy;
1011 
1012 	/* We could be in trouble if we have nothing queued.
1013 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
1014 	 * to guarantee some progress.
1015 	 */
1016 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1017 	if (left > 0)
1018 		sk_forced_mem_schedule(sk, min(left, copy));
1019 	return min(copy, sk->sk_forward_alloc);
1020 }
1021 
1022 void tcp_free_fastopen_req(struct tcp_sock *tp)
1023 {
1024 	if (tp->fastopen_req) {
1025 		kfree(tp->fastopen_req);
1026 		tp->fastopen_req = NULL;
1027 	}
1028 }
1029 
1030 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1031 			 size_t size, struct ubuf_info *uarg)
1032 {
1033 	struct tcp_sock *tp = tcp_sk(sk);
1034 	struct inet_sock *inet = inet_sk(sk);
1035 	struct sockaddr *uaddr = msg->msg_name;
1036 	int err, flags;
1037 
1038 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1039 	      TFO_CLIENT_ENABLE) ||
1040 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1041 	     uaddr->sa_family == AF_UNSPEC))
1042 		return -EOPNOTSUPP;
1043 	if (tp->fastopen_req)
1044 		return -EALREADY; /* Another Fast Open is in progress */
1045 
1046 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1047 				   sk->sk_allocation);
1048 	if (unlikely(!tp->fastopen_req))
1049 		return -ENOBUFS;
1050 	tp->fastopen_req->data = msg;
1051 	tp->fastopen_req->size = size;
1052 	tp->fastopen_req->uarg = uarg;
1053 
1054 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1055 		err = tcp_connect(sk);
1056 		/* Same failure procedure as in tcp_v4/6_connect */
1057 		if (err) {
1058 			tcp_set_state(sk, TCP_CLOSE);
1059 			inet->inet_dport = 0;
1060 			sk->sk_route_caps = 0;
1061 		}
1062 	}
1063 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1064 	err = __inet_stream_connect(sk->sk_socket, (struct sockaddr_unsized *)uaddr,
1065 				    msg->msg_namelen, flags, 1);
1066 	/* fastopen_req could already be freed in __inet_stream_connect
1067 	 * if the connection times out or gets rst
1068 	 */
1069 	if (tp->fastopen_req) {
1070 		*copied = tp->fastopen_req->copied;
1071 		tcp_free_fastopen_req(tp);
1072 		inet_clear_bit(DEFER_CONNECT, sk);
1073 	}
1074 	return err;
1075 }
1076 
1077 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1078 {
1079 	struct net_devmem_dmabuf_binding *binding = NULL;
1080 	struct tcp_sock *tp = tcp_sk(sk);
1081 	struct ubuf_info *uarg = NULL;
1082 	struct sk_buff *skb;
1083 	struct sockcm_cookie sockc;
1084 	int flags, err, copied = 0;
1085 	int mss_now = 0, size_goal, copied_syn = 0;
1086 	int process_backlog = 0;
1087 	int sockc_err = 0;
1088 	int zc = 0;
1089 	long timeo;
1090 
1091 	flags = msg->msg_flags;
1092 
1093 	sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1094 	if (msg->msg_controllen) {
1095 		sockc_err = sock_cmsg_send(sk, msg, &sockc);
1096 		/* Don't return error until MSG_FASTOPEN has been processed;
1097 		 * that may succeed even if the cmsg is invalid.
1098 		 */
1099 	}
1100 
1101 	if ((flags & MSG_ZEROCOPY) && size) {
1102 		if (msg->msg_ubuf) {
1103 			uarg = msg->msg_ubuf;
1104 			if (sk->sk_route_caps & NETIF_F_SG)
1105 				zc = MSG_ZEROCOPY;
1106 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1107 			skb = tcp_write_queue_tail(sk);
1108 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1109 						    !sockc_err && sockc.dmabuf_id);
1110 			if (!uarg) {
1111 				err = -ENOBUFS;
1112 				goto out_err;
1113 			}
1114 			if (sk->sk_route_caps & NETIF_F_SG)
1115 				zc = MSG_ZEROCOPY;
1116 			else
1117 				uarg_to_msgzc(uarg)->zerocopy = 0;
1118 
1119 			if (!sockc_err && sockc.dmabuf_id) {
1120 				binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1121 				if (IS_ERR(binding)) {
1122 					err = PTR_ERR(binding);
1123 					binding = NULL;
1124 					goto out_err;
1125 				}
1126 			}
1127 		}
1128 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1129 		if (sk->sk_route_caps & NETIF_F_SG)
1130 			zc = MSG_SPLICE_PAGES;
1131 	}
1132 
1133 	if (!sockc_err && sockc.dmabuf_id &&
1134 	    (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1135 		err = -EINVAL;
1136 		goto out_err;
1137 	}
1138 
1139 	if (unlikely(flags & MSG_FASTOPEN ||
1140 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1141 	    !tp->repair) {
1142 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1143 		if (err == -EINPROGRESS && copied_syn > 0)
1144 			goto out;
1145 		else if (err)
1146 			goto out_err;
1147 	}
1148 
1149 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1150 
1151 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1152 
1153 	/* Wait for a connection to finish. One exception is TCP Fast Open
1154 	 * (passive side) where data is allowed to be sent before a connection
1155 	 * is fully established.
1156 	 */
1157 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1158 	    !tcp_passive_fastopen(sk)) {
1159 		err = sk_stream_wait_connect(sk, &timeo);
1160 		if (err != 0)
1161 			goto do_error;
1162 	}
1163 
1164 	if (unlikely(tp->repair)) {
1165 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1166 			copied = tcp_send_rcvq(sk, msg, size);
1167 			goto out_nopush;
1168 		}
1169 
1170 		err = -EINVAL;
1171 		if (tp->repair_queue == TCP_NO_QUEUE)
1172 			goto out_err;
1173 
1174 		/* 'common' sending to sendq */
1175 	}
1176 
1177 	if (sockc_err) {
1178 		err = sockc_err;
1179 		goto out_err;
1180 	}
1181 
1182 	/* This should be in poll */
1183 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1184 
1185 	/* Ok commence sending. */
1186 	copied = 0;
1187 
1188 restart:
1189 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1190 
1191 	err = -EPIPE;
1192 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1193 		goto do_error;
1194 
1195 	while (msg_data_left(msg)) {
1196 		int copy = 0;
1197 
1198 		skb = tcp_write_queue_tail(sk);
1199 		if (skb)
1200 			copy = size_goal - skb->len;
1201 
1202 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1203 
1204 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1205 			bool first_skb;
1206 
1207 new_segment:
1208 			if (!sk_stream_memory_free(sk))
1209 				goto wait_for_space;
1210 
1211 			if (unlikely(process_backlog >= 16)) {
1212 				process_backlog = 0;
1213 				if (sk_flush_backlog(sk))
1214 					goto restart;
1215 			}
1216 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1217 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1218 						   first_skb);
1219 			if (!skb)
1220 				goto wait_for_space;
1221 
1222 			process_backlog++;
1223 
1224 #ifdef CONFIG_SKB_DECRYPTED
1225 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1226 #endif
1227 			tcp_skb_entail(sk, skb);
1228 			copy = size_goal;
1229 
1230 			/* All packets are restored as if they have
1231 			 * already been sent. skb_mstamp_ns isn't set to
1232 			 * avoid wrong rtt estimation.
1233 			 */
1234 			if (tp->repair)
1235 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1236 		}
1237 
1238 		/* Try to append data to the end of skb. */
1239 		if (copy > msg_data_left(msg))
1240 			copy = msg_data_left(msg);
1241 
1242 		if (zc == 0) {
1243 			bool merge = true;
1244 			int i = skb_shinfo(skb)->nr_frags;
1245 			struct page_frag *pfrag = sk_page_frag(sk);
1246 
1247 			if (!sk_page_frag_refill(sk, pfrag))
1248 				goto wait_for_space;
1249 
1250 			if (!skb_can_coalesce(skb, i, pfrag->page,
1251 					      pfrag->offset)) {
1252 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1253 					tcp_mark_push(tp, skb);
1254 					goto new_segment;
1255 				}
1256 				merge = false;
1257 			}
1258 
1259 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1260 
1261 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1262 				if (tcp_downgrade_zcopy_pure(sk, skb))
1263 					goto wait_for_space;
1264 				skb_zcopy_downgrade_managed(skb);
1265 			}
1266 
1267 			copy = tcp_wmem_schedule(sk, copy);
1268 			if (!copy)
1269 				goto wait_for_space;
1270 
1271 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1272 						       pfrag->page,
1273 						       pfrag->offset,
1274 						       copy);
1275 			if (err)
1276 				goto do_error;
1277 
1278 			/* Update the skb. */
1279 			if (merge) {
1280 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1281 			} else {
1282 				skb_fill_page_desc(skb, i, pfrag->page,
1283 						   pfrag->offset, copy);
1284 				page_ref_inc(pfrag->page);
1285 			}
1286 			pfrag->offset += copy;
1287 		} else if (zc == MSG_ZEROCOPY)  {
1288 			/* First append to a fragless skb builds initial
1289 			 * pure zerocopy skb
1290 			 */
1291 			if (!skb->len)
1292 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1293 
1294 			if (!skb_zcopy_pure(skb)) {
1295 				copy = tcp_wmem_schedule(sk, copy);
1296 				if (!copy)
1297 					goto wait_for_space;
1298 			}
1299 
1300 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1301 						       binding);
1302 			if (err == -EMSGSIZE || err == -EEXIST) {
1303 				tcp_mark_push(tp, skb);
1304 				goto new_segment;
1305 			}
1306 			if (err < 0)
1307 				goto do_error;
1308 			copy = err;
1309 		} else if (zc == MSG_SPLICE_PAGES) {
1310 			/* Splice in data if we can; copy if we can't. */
1311 			if (tcp_downgrade_zcopy_pure(sk, skb))
1312 				goto wait_for_space;
1313 			copy = tcp_wmem_schedule(sk, copy);
1314 			if (!copy)
1315 				goto wait_for_space;
1316 
1317 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1318 			if (err < 0) {
1319 				if (err == -EMSGSIZE) {
1320 					tcp_mark_push(tp, skb);
1321 					goto new_segment;
1322 				}
1323 				goto do_error;
1324 			}
1325 			copy = err;
1326 
1327 			if (!(flags & MSG_NO_SHARED_FRAGS))
1328 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1329 
1330 			sk_wmem_queued_add(sk, copy);
1331 			sk_mem_charge(sk, copy);
1332 		}
1333 
1334 		if (!copied)
1335 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1336 
1337 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1338 		TCP_SKB_CB(skb)->end_seq += copy;
1339 		tcp_skb_pcount_set(skb, 0);
1340 
1341 		copied += copy;
1342 		if (!msg_data_left(msg)) {
1343 			if (unlikely(flags & MSG_EOR))
1344 				TCP_SKB_CB(skb)->eor = 1;
1345 			goto out;
1346 		}
1347 
1348 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1349 			continue;
1350 
1351 		if (forced_push(tp)) {
1352 			tcp_mark_push(tp, skb);
1353 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1354 		} else if (skb == tcp_send_head(sk))
1355 			tcp_push_one(sk, mss_now);
1356 		continue;
1357 
1358 wait_for_space:
1359 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1360 		tcp_remove_empty_skb(sk);
1361 		if (copied)
1362 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1363 				 TCP_NAGLE_PUSH, size_goal);
1364 
1365 		err = sk_stream_wait_memory(sk, &timeo);
1366 		if (err != 0)
1367 			goto do_error;
1368 
1369 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1370 	}
1371 
1372 out:
1373 	if (copied) {
1374 		tcp_tx_timestamp(sk, &sockc);
1375 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1376 	}
1377 out_nopush:
1378 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1379 	if (uarg && !msg->msg_ubuf)
1380 		net_zcopy_put(uarg);
1381 	if (binding)
1382 		net_devmem_dmabuf_binding_put(binding);
1383 	return copied + copied_syn;
1384 
1385 do_error:
1386 	tcp_remove_empty_skb(sk);
1387 
1388 	if (copied + copied_syn)
1389 		goto out;
1390 out_err:
1391 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1392 	if (uarg && !msg->msg_ubuf)
1393 		net_zcopy_put_abort(uarg, true);
1394 	err = sk_stream_error(sk, flags, err);
1395 	/* make sure we wake any epoll edge trigger waiter */
1396 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1397 		sk->sk_write_space(sk);
1398 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1399 	}
1400 	if (binding)
1401 		net_devmem_dmabuf_binding_put(binding);
1402 
1403 	return err;
1404 }
1405 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1406 
1407 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1408 {
1409 	int ret;
1410 
1411 	lock_sock(sk);
1412 	ret = tcp_sendmsg_locked(sk, msg, size);
1413 	release_sock(sk);
1414 
1415 	return ret;
1416 }
1417 EXPORT_SYMBOL(tcp_sendmsg);
1418 
1419 void tcp_splice_eof(struct socket *sock)
1420 {
1421 	struct sock *sk = sock->sk;
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 	int mss_now, size_goal;
1424 
1425 	if (!tcp_write_queue_tail(sk))
1426 		return;
1427 
1428 	lock_sock(sk);
1429 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1430 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1431 	release_sock(sk);
1432 }
1433 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1434 
1435 /*
1436  *	Handle reading urgent data. BSD has very simple semantics for
1437  *	this, no blocking and very strange errors 8)
1438  */
1439 
1440 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1441 {
1442 	struct tcp_sock *tp = tcp_sk(sk);
1443 
1444 	/* No URG data to read. */
1445 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1446 	    tp->urg_data == TCP_URG_READ)
1447 		return -EINVAL;	/* Yes this is right ! */
1448 
1449 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1450 		return -ENOTCONN;
1451 
1452 	if (tp->urg_data & TCP_URG_VALID) {
1453 		int err = 0;
1454 		char c = tp->urg_data;
1455 
1456 		if (!(flags & MSG_PEEK))
1457 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1458 
1459 		/* Read urgent data. */
1460 		msg->msg_flags |= MSG_OOB;
1461 
1462 		if (len > 0) {
1463 			if (!(flags & MSG_TRUNC))
1464 				err = memcpy_to_msg(msg, &c, 1);
1465 			len = 1;
1466 		} else
1467 			msg->msg_flags |= MSG_TRUNC;
1468 
1469 		return err ? -EFAULT : len;
1470 	}
1471 
1472 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1473 		return 0;
1474 
1475 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1476 	 * the available implementations agree in this case:
1477 	 * this call should never block, independent of the
1478 	 * blocking state of the socket.
1479 	 * Mike <pall@rz.uni-karlsruhe.de>
1480 	 */
1481 	return -EAGAIN;
1482 }
1483 
1484 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1485 {
1486 	struct sk_buff *skb;
1487 	int copied = 0, err = 0;
1488 
1489 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1490 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1491 		if (err)
1492 			return err;
1493 		copied += skb->len;
1494 	}
1495 
1496 	skb_queue_walk(&sk->sk_write_queue, skb) {
1497 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1498 		if (err)
1499 			break;
1500 
1501 		copied += skb->len;
1502 	}
1503 
1504 	return err ?: copied;
1505 }
1506 
1507 /* Clean up the receive buffer for full frames taken by the user,
1508  * then send an ACK if necessary.  COPIED is the number of bytes
1509  * tcp_recvmsg has given to the user so far, it speeds up the
1510  * calculation of whether or not we must ACK for the sake of
1511  * a window update.
1512  */
1513 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1514 {
1515 	struct tcp_sock *tp = tcp_sk(sk);
1516 	bool time_to_ack = false;
1517 
1518 	if (inet_csk_ack_scheduled(sk)) {
1519 		const struct inet_connection_sock *icsk = inet_csk(sk);
1520 
1521 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1522 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1523 		    /*
1524 		     * If this read emptied read buffer, we send ACK, if
1525 		     * connection is not bidirectional, user drained
1526 		     * receive buffer and there was a small segment
1527 		     * in queue.
1528 		     */
1529 		    (copied > 0 &&
1530 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1531 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1532 		       !inet_csk_in_pingpong_mode(sk))) &&
1533 		      !atomic_read(&sk->sk_rmem_alloc)))
1534 			time_to_ack = true;
1535 	}
1536 
1537 	/* We send an ACK if we can now advertise a non-zero window
1538 	 * which has been raised "significantly".
1539 	 *
1540 	 * Even if window raised up to infinity, do not send window open ACK
1541 	 * in states, where we will not receive more. It is useless.
1542 	 */
1543 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1544 		__u32 rcv_window_now = tcp_receive_window(tp);
1545 
1546 		/* Optimize, __tcp_select_window() is not cheap. */
1547 		if (2*rcv_window_now <= tp->window_clamp) {
1548 			__u32 new_window = __tcp_select_window(sk);
1549 
1550 			/* Send ACK now, if this read freed lots of space
1551 			 * in our buffer. Certainly, new_window is new window.
1552 			 * We can advertise it now, if it is not less than current one.
1553 			 * "Lots" means "at least twice" here.
1554 			 */
1555 			if (new_window && new_window >= 2 * rcv_window_now)
1556 				time_to_ack = true;
1557 		}
1558 	}
1559 	if (time_to_ack) {
1560 		tcp_mstamp_refresh(tp);
1561 		tcp_send_ack(sk);
1562 	}
1563 }
1564 
1565 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1566 {
1567 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 
1570 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1571 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1572 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1573 	__tcp_cleanup_rbuf(sk, copied);
1574 }
1575 
1576 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1577 {
1578 	__skb_unlink(skb, &sk->sk_receive_queue);
1579 	if (likely(skb->destructor == sock_rfree)) {
1580 		sock_rfree(skb);
1581 		skb->destructor = NULL;
1582 		skb->sk = NULL;
1583 		return skb_attempt_defer_free(skb);
1584 	}
1585 	__kfree_skb(skb);
1586 }
1587 
1588 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1589 {
1590 	struct sk_buff *skb;
1591 	u32 offset;
1592 
1593 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1594 		offset = seq - TCP_SKB_CB(skb)->seq;
1595 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1596 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1597 			offset--;
1598 		}
1599 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1600 			*off = offset;
1601 			return skb;
1602 		}
1603 		/* This looks weird, but this can happen if TCP collapsing
1604 		 * splitted a fat GRO packet, while we released socket lock
1605 		 * in skb_splice_bits()
1606 		 */
1607 		tcp_eat_recv_skb(sk, skb);
1608 	}
1609 	return NULL;
1610 }
1611 EXPORT_SYMBOL(tcp_recv_skb);
1612 
1613 /*
1614  * This routine provides an alternative to tcp_recvmsg() for routines
1615  * that would like to handle copying from skbuffs directly in 'sendfile'
1616  * fashion.
1617  * Note:
1618  *	- It is assumed that the socket was locked by the caller.
1619  *	- The routine does not block.
1620  *	- At present, there is no support for reading OOB data
1621  *	  or for 'peeking' the socket using this routine
1622  *	  (although both would be easy to implement).
1623  */
1624 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1625 			   sk_read_actor_t recv_actor, bool noack,
1626 			   u32 *copied_seq)
1627 {
1628 	struct sk_buff *skb;
1629 	struct tcp_sock *tp = tcp_sk(sk);
1630 	u32 seq = *copied_seq;
1631 	u32 offset;
1632 	int copied = 0;
1633 
1634 	if (sk->sk_state == TCP_LISTEN)
1635 		return -ENOTCONN;
1636 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1637 		if (offset < skb->len) {
1638 			int used;
1639 			size_t len;
1640 
1641 			len = skb->len - offset;
1642 			/* Stop reading if we hit a patch of urgent data */
1643 			if (unlikely(tp->urg_data)) {
1644 				u32 urg_offset = tp->urg_seq - seq;
1645 				if (urg_offset < len)
1646 					len = urg_offset;
1647 				if (!len)
1648 					break;
1649 			}
1650 			used = recv_actor(desc, skb, offset, len);
1651 			if (used <= 0) {
1652 				if (!copied)
1653 					copied = used;
1654 				break;
1655 			}
1656 			if (WARN_ON_ONCE(used > len))
1657 				used = len;
1658 			seq += used;
1659 			copied += used;
1660 			offset += used;
1661 
1662 			/* If recv_actor drops the lock (e.g. TCP splice
1663 			 * receive) the skb pointer might be invalid when
1664 			 * getting here: tcp_collapse might have deleted it
1665 			 * while aggregating skbs from the socket queue.
1666 			 */
1667 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1668 			if (!skb)
1669 				break;
1670 			/* TCP coalescing might have appended data to the skb.
1671 			 * Try to splice more frags
1672 			 */
1673 			if (offset + 1 != skb->len)
1674 				continue;
1675 		}
1676 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677 			tcp_eat_recv_skb(sk, skb);
1678 			++seq;
1679 			break;
1680 		}
1681 		tcp_eat_recv_skb(sk, skb);
1682 		if (!desc->count)
1683 			break;
1684 		WRITE_ONCE(*copied_seq, seq);
1685 	}
1686 	WRITE_ONCE(*copied_seq, seq);
1687 
1688 	if (noack)
1689 		goto out;
1690 
1691 	tcp_rcv_space_adjust(sk);
1692 
1693 	/* Clean up data we have read: This will do ACK frames. */
1694 	if (copied > 0) {
1695 		tcp_recv_skb(sk, seq, &offset);
1696 		tcp_cleanup_rbuf(sk, copied);
1697 	}
1698 out:
1699 	return copied;
1700 }
1701 
1702 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1703 		  sk_read_actor_t recv_actor)
1704 {
1705 	return __tcp_read_sock(sk, desc, recv_actor, false,
1706 			       &tcp_sk(sk)->copied_seq);
1707 }
1708 EXPORT_SYMBOL(tcp_read_sock);
1709 
1710 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1711 			sk_read_actor_t recv_actor, bool noack,
1712 			u32 *copied_seq)
1713 {
1714 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1715 }
1716 
1717 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1718 {
1719 	struct sk_buff *skb;
1720 	int copied = 0;
1721 
1722 	if (sk->sk_state == TCP_LISTEN)
1723 		return -ENOTCONN;
1724 
1725 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1726 		u8 tcp_flags;
1727 		int used;
1728 
1729 		__skb_unlink(skb, &sk->sk_receive_queue);
1730 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1731 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1732 		used = recv_actor(sk, skb);
1733 		if (used < 0) {
1734 			if (!copied)
1735 				copied = used;
1736 			break;
1737 		}
1738 		copied += used;
1739 
1740 		if (tcp_flags & TCPHDR_FIN)
1741 			break;
1742 	}
1743 	return copied;
1744 }
1745 EXPORT_IPV6_MOD(tcp_read_skb);
1746 
1747 void tcp_read_done(struct sock *sk, size_t len)
1748 {
1749 	struct tcp_sock *tp = tcp_sk(sk);
1750 	u32 seq = tp->copied_seq;
1751 	struct sk_buff *skb;
1752 	size_t left;
1753 	u32 offset;
1754 
1755 	if (sk->sk_state == TCP_LISTEN)
1756 		return;
1757 
1758 	left = len;
1759 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1760 		int used;
1761 
1762 		used = min_t(size_t, skb->len - offset, left);
1763 		seq += used;
1764 		left -= used;
1765 
1766 		if (skb->len > offset + used)
1767 			break;
1768 
1769 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1770 			tcp_eat_recv_skb(sk, skb);
1771 			++seq;
1772 			break;
1773 		}
1774 		tcp_eat_recv_skb(sk, skb);
1775 	}
1776 	WRITE_ONCE(tp->copied_seq, seq);
1777 
1778 	tcp_rcv_space_adjust(sk);
1779 
1780 	/* Clean up data we have read: This will do ACK frames. */
1781 	if (left != len)
1782 		tcp_cleanup_rbuf(sk, len - left);
1783 }
1784 EXPORT_SYMBOL(tcp_read_done);
1785 
1786 int tcp_peek_len(struct socket *sock)
1787 {
1788 	return tcp_inq(sock->sk);
1789 }
1790 EXPORT_IPV6_MOD(tcp_peek_len);
1791 
1792 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1793 int tcp_set_rcvlowat(struct sock *sk, int val)
1794 {
1795 	struct tcp_sock *tp = tcp_sk(sk);
1796 	int space, cap;
1797 
1798 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1799 		cap = sk->sk_rcvbuf >> 1;
1800 	else
1801 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1802 	val = min(val, cap);
1803 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1804 
1805 	/* Check if we need to signal EPOLLIN right now */
1806 	tcp_data_ready(sk);
1807 
1808 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1809 		return 0;
1810 
1811 	space = tcp_space_from_win(sk, val);
1812 	if (space > sk->sk_rcvbuf) {
1813 		WRITE_ONCE(sk->sk_rcvbuf, space);
1814 
1815 		if (tp->window_clamp && tp->window_clamp < val)
1816 			WRITE_ONCE(tp->window_clamp, val);
1817 	}
1818 	return 0;
1819 }
1820 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1821 
1822 void tcp_update_recv_tstamps(struct sk_buff *skb,
1823 			     struct scm_timestamping_internal *tss)
1824 {
1825 	if (skb->tstamp)
1826 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1827 	else
1828 		tss->ts[0] = (struct timespec64) {0};
1829 
1830 	if (skb_hwtstamps(skb)->hwtstamp)
1831 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1832 	else
1833 		tss->ts[2] = (struct timespec64) {0};
1834 }
1835 
1836 #ifdef CONFIG_MMU
1837 static const struct vm_operations_struct tcp_vm_ops = {
1838 };
1839 
1840 int tcp_mmap(struct file *file, struct socket *sock,
1841 	     struct vm_area_struct *vma)
1842 {
1843 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1844 		return -EPERM;
1845 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1846 
1847 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1848 	vm_flags_set(vma, VM_MIXEDMAP);
1849 
1850 	vma->vm_ops = &tcp_vm_ops;
1851 	return 0;
1852 }
1853 EXPORT_IPV6_MOD(tcp_mmap);
1854 
1855 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1856 				       u32 *offset_frag)
1857 {
1858 	skb_frag_t *frag;
1859 
1860 	if (unlikely(offset_skb >= skb->len))
1861 		return NULL;
1862 
1863 	offset_skb -= skb_headlen(skb);
1864 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1865 		return NULL;
1866 
1867 	frag = skb_shinfo(skb)->frags;
1868 	while (offset_skb) {
1869 		if (skb_frag_size(frag) > offset_skb) {
1870 			*offset_frag = offset_skb;
1871 			return frag;
1872 		}
1873 		offset_skb -= skb_frag_size(frag);
1874 		++frag;
1875 	}
1876 	*offset_frag = 0;
1877 	return frag;
1878 }
1879 
1880 static bool can_map_frag(const skb_frag_t *frag)
1881 {
1882 	struct page *page;
1883 
1884 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1885 		return false;
1886 
1887 	page = skb_frag_page(frag);
1888 
1889 	if (PageCompound(page) || page->mapping)
1890 		return false;
1891 
1892 	return true;
1893 }
1894 
1895 static int find_next_mappable_frag(const skb_frag_t *frag,
1896 				   int remaining_in_skb)
1897 {
1898 	int offset = 0;
1899 
1900 	if (likely(can_map_frag(frag)))
1901 		return 0;
1902 
1903 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1904 		offset += skb_frag_size(frag);
1905 		++frag;
1906 	}
1907 	return offset;
1908 }
1909 
1910 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1911 					  struct tcp_zerocopy_receive *zc,
1912 					  struct sk_buff *skb, u32 offset)
1913 {
1914 	u32 frag_offset, partial_frag_remainder = 0;
1915 	int mappable_offset;
1916 	skb_frag_t *frag;
1917 
1918 	/* worst case: skip to next skb. try to improve on this case below */
1919 	zc->recv_skip_hint = skb->len - offset;
1920 
1921 	/* Find the frag containing this offset (and how far into that frag) */
1922 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1923 	if (!frag)
1924 		return;
1925 
1926 	if (frag_offset) {
1927 		struct skb_shared_info *info = skb_shinfo(skb);
1928 
1929 		/* We read part of the last frag, must recvmsg() rest of skb. */
1930 		if (frag == &info->frags[info->nr_frags - 1])
1931 			return;
1932 
1933 		/* Else, we must at least read the remainder in this frag. */
1934 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1935 		zc->recv_skip_hint -= partial_frag_remainder;
1936 		++frag;
1937 	}
1938 
1939 	/* partial_frag_remainder: If part way through a frag, must read rest.
1940 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1941 	 * in partial_frag_remainder.
1942 	 */
1943 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1944 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1945 }
1946 
1947 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1948 			      int flags, struct scm_timestamping_internal *tss,
1949 			      int *cmsg_flags);
1950 static int receive_fallback_to_copy(struct sock *sk,
1951 				    struct tcp_zerocopy_receive *zc, int inq,
1952 				    struct scm_timestamping_internal *tss)
1953 {
1954 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1955 	struct msghdr msg = {};
1956 	int err;
1957 
1958 	zc->length = 0;
1959 	zc->recv_skip_hint = 0;
1960 
1961 	if (copy_address != zc->copybuf_address)
1962 		return -EINVAL;
1963 
1964 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1965 			  &msg.msg_iter);
1966 	if (err)
1967 		return err;
1968 
1969 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1970 				 tss, &zc->msg_flags);
1971 	if (err < 0)
1972 		return err;
1973 
1974 	zc->copybuf_len = err;
1975 	if (likely(zc->copybuf_len)) {
1976 		struct sk_buff *skb;
1977 		u32 offset;
1978 
1979 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1980 		if (skb)
1981 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1982 	}
1983 	return 0;
1984 }
1985 
1986 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1987 				   struct sk_buff *skb, u32 copylen,
1988 				   u32 *offset, u32 *seq)
1989 {
1990 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1991 	struct msghdr msg = {};
1992 	int err;
1993 
1994 	if (copy_address != zc->copybuf_address)
1995 		return -EINVAL;
1996 
1997 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1998 			  &msg.msg_iter);
1999 	if (err)
2000 		return err;
2001 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2002 	if (err)
2003 		return err;
2004 	zc->recv_skip_hint -= copylen;
2005 	*offset += copylen;
2006 	*seq += copylen;
2007 	return (__s32)copylen;
2008 }
2009 
2010 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2011 				  struct sock *sk,
2012 				  struct sk_buff *skb,
2013 				  u32 *seq,
2014 				  s32 copybuf_len,
2015 				  struct scm_timestamping_internal *tss)
2016 {
2017 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2018 
2019 	if (!copylen)
2020 		return 0;
2021 	/* skb is null if inq < PAGE_SIZE. */
2022 	if (skb) {
2023 		offset = *seq - TCP_SKB_CB(skb)->seq;
2024 	} else {
2025 		skb = tcp_recv_skb(sk, *seq, &offset);
2026 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2027 			tcp_update_recv_tstamps(skb, tss);
2028 			zc->msg_flags |= TCP_CMSG_TS;
2029 		}
2030 	}
2031 
2032 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2033 						  seq);
2034 	return zc->copybuf_len < 0 ? 0 : copylen;
2035 }
2036 
2037 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2038 					      struct page **pending_pages,
2039 					      unsigned long pages_remaining,
2040 					      unsigned long *address,
2041 					      u32 *length,
2042 					      u32 *seq,
2043 					      struct tcp_zerocopy_receive *zc,
2044 					      u32 total_bytes_to_map,
2045 					      int err)
2046 {
2047 	/* At least one page did not map. Try zapping if we skipped earlier. */
2048 	if (err == -EBUSY &&
2049 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2050 		u32 maybe_zap_len;
2051 
2052 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2053 				*length + /* Mapped or pending */
2054 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2055 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2056 		err = 0;
2057 	}
2058 
2059 	if (!err) {
2060 		unsigned long leftover_pages = pages_remaining;
2061 		int bytes_mapped;
2062 
2063 		/* We called zap_page_range_single, try to reinsert. */
2064 		err = vm_insert_pages(vma, *address,
2065 				      pending_pages,
2066 				      &pages_remaining);
2067 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2068 		*seq += bytes_mapped;
2069 		*address += bytes_mapped;
2070 	}
2071 	if (err) {
2072 		/* Either we were unable to zap, OR we zapped, retried an
2073 		 * insert, and still had an issue. Either ways, pages_remaining
2074 		 * is the number of pages we were unable to map, and we unroll
2075 		 * some state we speculatively touched before.
2076 		 */
2077 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2078 
2079 		*length -= bytes_not_mapped;
2080 		zc->recv_skip_hint += bytes_not_mapped;
2081 	}
2082 	return err;
2083 }
2084 
2085 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2086 					struct page **pages,
2087 					unsigned int pages_to_map,
2088 					unsigned long *address,
2089 					u32 *length,
2090 					u32 *seq,
2091 					struct tcp_zerocopy_receive *zc,
2092 					u32 total_bytes_to_map)
2093 {
2094 	unsigned long pages_remaining = pages_to_map;
2095 	unsigned int pages_mapped;
2096 	unsigned int bytes_mapped;
2097 	int err;
2098 
2099 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2100 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2101 	bytes_mapped = PAGE_SIZE * pages_mapped;
2102 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2103 	 * mapping (some but not all of the pages).
2104 	 */
2105 	*seq += bytes_mapped;
2106 	*address += bytes_mapped;
2107 
2108 	if (likely(!err))
2109 		return 0;
2110 
2111 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2112 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2113 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2114 		err);
2115 }
2116 
2117 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2118 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2119 				      struct tcp_zerocopy_receive *zc,
2120 				      struct scm_timestamping_internal *tss)
2121 {
2122 	unsigned long msg_control_addr;
2123 	struct msghdr cmsg_dummy;
2124 
2125 	msg_control_addr = (unsigned long)zc->msg_control;
2126 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2127 	cmsg_dummy.msg_controllen =
2128 		(__kernel_size_t)zc->msg_controllen;
2129 	cmsg_dummy.msg_flags = in_compat_syscall()
2130 		? MSG_CMSG_COMPAT : 0;
2131 	cmsg_dummy.msg_control_is_user = true;
2132 	zc->msg_flags = 0;
2133 	if (zc->msg_control == msg_control_addr &&
2134 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2135 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2136 		zc->msg_control = (__u64)
2137 			((uintptr_t)cmsg_dummy.msg_control_user);
2138 		zc->msg_controllen =
2139 			(__u64)cmsg_dummy.msg_controllen;
2140 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2141 	}
2142 }
2143 
2144 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2145 					   unsigned long address,
2146 					   bool *mmap_locked)
2147 {
2148 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2149 
2150 	if (vma) {
2151 		if (vma->vm_ops != &tcp_vm_ops) {
2152 			vma_end_read(vma);
2153 			return NULL;
2154 		}
2155 		*mmap_locked = false;
2156 		return vma;
2157 	}
2158 
2159 	mmap_read_lock(mm);
2160 	vma = vma_lookup(mm, address);
2161 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2162 		mmap_read_unlock(mm);
2163 		return NULL;
2164 	}
2165 	*mmap_locked = true;
2166 	return vma;
2167 }
2168 
2169 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2170 static int tcp_zerocopy_receive(struct sock *sk,
2171 				struct tcp_zerocopy_receive *zc,
2172 				struct scm_timestamping_internal *tss)
2173 {
2174 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2175 	unsigned long address = (unsigned long)zc->address;
2176 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2177 	s32 copybuf_len = zc->copybuf_len;
2178 	struct tcp_sock *tp = tcp_sk(sk);
2179 	const skb_frag_t *frags = NULL;
2180 	unsigned int pages_to_map = 0;
2181 	struct vm_area_struct *vma;
2182 	struct sk_buff *skb = NULL;
2183 	u32 seq = tp->copied_seq;
2184 	u32 total_bytes_to_map;
2185 	int inq = tcp_inq(sk);
2186 	bool mmap_locked;
2187 	int ret;
2188 
2189 	zc->copybuf_len = 0;
2190 	zc->msg_flags = 0;
2191 
2192 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2193 		return -EINVAL;
2194 
2195 	if (sk->sk_state == TCP_LISTEN)
2196 		return -ENOTCONN;
2197 
2198 	sock_rps_record_flow(sk);
2199 
2200 	if (inq && inq <= copybuf_len)
2201 		return receive_fallback_to_copy(sk, zc, inq, tss);
2202 
2203 	if (inq < PAGE_SIZE) {
2204 		zc->length = 0;
2205 		zc->recv_skip_hint = inq;
2206 		if (!inq && sock_flag(sk, SOCK_DONE))
2207 			return -EIO;
2208 		return 0;
2209 	}
2210 
2211 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2212 	if (!vma)
2213 		return -EINVAL;
2214 
2215 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2216 	avail_len = min_t(u32, vma_len, inq);
2217 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2218 	if (total_bytes_to_map) {
2219 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2220 			zap_page_range_single(vma, address, total_bytes_to_map,
2221 					      NULL);
2222 		zc->length = total_bytes_to_map;
2223 		zc->recv_skip_hint = 0;
2224 	} else {
2225 		zc->length = avail_len;
2226 		zc->recv_skip_hint = avail_len;
2227 	}
2228 	ret = 0;
2229 	while (length + PAGE_SIZE <= zc->length) {
2230 		int mappable_offset;
2231 		struct page *page;
2232 
2233 		if (zc->recv_skip_hint < PAGE_SIZE) {
2234 			u32 offset_frag;
2235 
2236 			if (skb) {
2237 				if (zc->recv_skip_hint > 0)
2238 					break;
2239 				skb = skb->next;
2240 				offset = seq - TCP_SKB_CB(skb)->seq;
2241 			} else {
2242 				skb = tcp_recv_skb(sk, seq, &offset);
2243 			}
2244 
2245 			if (!skb_frags_readable(skb))
2246 				break;
2247 
2248 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2249 				tcp_update_recv_tstamps(skb, tss);
2250 				zc->msg_flags |= TCP_CMSG_TS;
2251 			}
2252 			zc->recv_skip_hint = skb->len - offset;
2253 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2254 			if (!frags || offset_frag)
2255 				break;
2256 		}
2257 
2258 		mappable_offset = find_next_mappable_frag(frags,
2259 							  zc->recv_skip_hint);
2260 		if (mappable_offset) {
2261 			zc->recv_skip_hint = mappable_offset;
2262 			break;
2263 		}
2264 		page = skb_frag_page(frags);
2265 		if (WARN_ON_ONCE(!page))
2266 			break;
2267 
2268 		prefetchw(page);
2269 		pages[pages_to_map++] = page;
2270 		length += PAGE_SIZE;
2271 		zc->recv_skip_hint -= PAGE_SIZE;
2272 		frags++;
2273 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2274 		    zc->recv_skip_hint < PAGE_SIZE) {
2275 			/* Either full batch, or we're about to go to next skb
2276 			 * (and we cannot unroll failed ops across skbs).
2277 			 */
2278 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2279 							   pages_to_map,
2280 							   &address, &length,
2281 							   &seq, zc,
2282 							   total_bytes_to_map);
2283 			if (ret)
2284 				goto out;
2285 			pages_to_map = 0;
2286 		}
2287 	}
2288 	if (pages_to_map) {
2289 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2290 						   &address, &length, &seq,
2291 						   zc, total_bytes_to_map);
2292 	}
2293 out:
2294 	if (mmap_locked)
2295 		mmap_read_unlock(current->mm);
2296 	else
2297 		vma_end_read(vma);
2298 	/* Try to copy straggler data. */
2299 	if (!ret)
2300 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2301 
2302 	if (length + copylen) {
2303 		WRITE_ONCE(tp->copied_seq, seq);
2304 		tcp_rcv_space_adjust(sk);
2305 
2306 		/* Clean up data we have read: This will do ACK frames. */
2307 		tcp_recv_skb(sk, seq, &offset);
2308 		tcp_cleanup_rbuf(sk, length + copylen);
2309 		ret = 0;
2310 		if (length == zc->length)
2311 			zc->recv_skip_hint = 0;
2312 	} else {
2313 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2314 			ret = -EIO;
2315 	}
2316 	zc->length = length;
2317 	return ret;
2318 }
2319 #endif
2320 
2321 /* Similar to __sock_recv_timestamp, but does not require an skb */
2322 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2323 			struct scm_timestamping_internal *tss)
2324 {
2325 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2326 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2327 	bool has_timestamping = false;
2328 
2329 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2330 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2331 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2332 				if (new_tstamp) {
2333 					struct __kernel_timespec kts = {
2334 						.tv_sec = tss->ts[0].tv_sec,
2335 						.tv_nsec = tss->ts[0].tv_nsec,
2336 					};
2337 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2338 						 sizeof(kts), &kts);
2339 				} else {
2340 					struct __kernel_old_timespec ts_old = {
2341 						.tv_sec = tss->ts[0].tv_sec,
2342 						.tv_nsec = tss->ts[0].tv_nsec,
2343 					};
2344 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2345 						 sizeof(ts_old), &ts_old);
2346 				}
2347 			} else {
2348 				if (new_tstamp) {
2349 					struct __kernel_sock_timeval stv = {
2350 						.tv_sec = tss->ts[0].tv_sec,
2351 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2352 					};
2353 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2354 						 sizeof(stv), &stv);
2355 				} else {
2356 					struct __kernel_old_timeval tv = {
2357 						.tv_sec = tss->ts[0].tv_sec,
2358 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2359 					};
2360 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2361 						 sizeof(tv), &tv);
2362 				}
2363 			}
2364 		}
2365 
2366 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2367 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2368 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2369 			has_timestamping = true;
2370 		else
2371 			tss->ts[0] = (struct timespec64) {0};
2372 	}
2373 
2374 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2375 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2376 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2377 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2378 			has_timestamping = true;
2379 		else
2380 			tss->ts[2] = (struct timespec64) {0};
2381 	}
2382 
2383 	if (has_timestamping) {
2384 		tss->ts[1] = (struct timespec64) {0};
2385 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2386 			put_cmsg_scm_timestamping64(msg, tss);
2387 		else
2388 			put_cmsg_scm_timestamping(msg, tss);
2389 	}
2390 }
2391 
2392 static int tcp_inq_hint(struct sock *sk)
2393 {
2394 	const struct tcp_sock *tp = tcp_sk(sk);
2395 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2396 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2397 	int inq;
2398 
2399 	inq = rcv_nxt - copied_seq;
2400 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2401 		lock_sock(sk);
2402 		inq = tp->rcv_nxt - tp->copied_seq;
2403 		release_sock(sk);
2404 	}
2405 	/* After receiving a FIN, tell the user-space to continue reading
2406 	 * by returning a non-zero inq.
2407 	 */
2408 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2409 		inq = 1;
2410 	return inq;
2411 }
2412 
2413 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2414 struct tcp_xa_pool {
2415 	u8		max; /* max <= MAX_SKB_FRAGS */
2416 	u8		idx; /* idx <= max */
2417 	__u32		tokens[MAX_SKB_FRAGS];
2418 	netmem_ref	netmems[MAX_SKB_FRAGS];
2419 };
2420 
2421 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2422 {
2423 	int i;
2424 
2425 	/* Commit part that has been copied to user space. */
2426 	for (i = 0; i < p->idx; i++)
2427 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2428 			     (__force void *)p->netmems[i], GFP_KERNEL);
2429 	/* Rollback what has been pre-allocated and is no longer needed. */
2430 	for (; i < p->max; i++)
2431 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2432 
2433 	p->max = 0;
2434 	p->idx = 0;
2435 }
2436 
2437 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2438 {
2439 	if (!p->max)
2440 		return;
2441 
2442 	xa_lock_bh(&sk->sk_user_frags);
2443 
2444 	tcp_xa_pool_commit_locked(sk, p);
2445 
2446 	xa_unlock_bh(&sk->sk_user_frags);
2447 }
2448 
2449 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2450 			      unsigned int max_frags)
2451 {
2452 	int err, k;
2453 
2454 	if (p->idx < p->max)
2455 		return 0;
2456 
2457 	xa_lock_bh(&sk->sk_user_frags);
2458 
2459 	tcp_xa_pool_commit_locked(sk, p);
2460 
2461 	for (k = 0; k < max_frags; k++) {
2462 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2463 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2464 		if (err)
2465 			break;
2466 	}
2467 
2468 	xa_unlock_bh(&sk->sk_user_frags);
2469 
2470 	p->max = k;
2471 	p->idx = 0;
2472 	return k ? 0 : err;
2473 }
2474 
2475 /* On error, returns the -errno. On success, returns number of bytes sent to the
2476  * user. May not consume all of @remaining_len.
2477  */
2478 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2479 			      unsigned int offset, struct msghdr *msg,
2480 			      int remaining_len)
2481 {
2482 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2483 	struct tcp_xa_pool tcp_xa_pool;
2484 	unsigned int start;
2485 	int i, copy, n;
2486 	int sent = 0;
2487 	int err = 0;
2488 
2489 	tcp_xa_pool.max = 0;
2490 	tcp_xa_pool.idx = 0;
2491 	do {
2492 		start = skb_headlen(skb);
2493 
2494 		if (skb_frags_readable(skb)) {
2495 			err = -ENODEV;
2496 			goto out;
2497 		}
2498 
2499 		/* Copy header. */
2500 		copy = start - offset;
2501 		if (copy > 0) {
2502 			copy = min(copy, remaining_len);
2503 
2504 			n = copy_to_iter(skb->data + offset, copy,
2505 					 &msg->msg_iter);
2506 			if (n != copy) {
2507 				err = -EFAULT;
2508 				goto out;
2509 			}
2510 
2511 			offset += copy;
2512 			remaining_len -= copy;
2513 
2514 			/* First a dmabuf_cmsg for # bytes copied to user
2515 			 * buffer.
2516 			 */
2517 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2518 			dmabuf_cmsg.frag_size = copy;
2519 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2520 					       SO_DEVMEM_LINEAR,
2521 					       sizeof(dmabuf_cmsg),
2522 					       &dmabuf_cmsg);
2523 			if (err)
2524 				goto out;
2525 
2526 			sent += copy;
2527 
2528 			if (remaining_len == 0)
2529 				goto out;
2530 		}
2531 
2532 		/* after that, send information of dmabuf pages through a
2533 		 * sequence of cmsg
2534 		 */
2535 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2536 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2537 			struct net_iov *niov;
2538 			u64 frag_offset;
2539 			int end;
2540 
2541 			/* !skb_frags_readable() should indicate that ALL the
2542 			 * frags in this skb are dmabuf net_iovs. We're checking
2543 			 * for that flag above, but also check individual frags
2544 			 * here. If the tcp stack is not setting
2545 			 * skb_frags_readable() correctly, we still don't want
2546 			 * to crash here.
2547 			 */
2548 			if (!skb_frag_net_iov(frag)) {
2549 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2550 				err = -ENODEV;
2551 				goto out;
2552 			}
2553 
2554 			niov = skb_frag_net_iov(frag);
2555 			if (!net_is_devmem_iov(niov)) {
2556 				err = -ENODEV;
2557 				goto out;
2558 			}
2559 
2560 			end = start + skb_frag_size(frag);
2561 			copy = end - offset;
2562 
2563 			if (copy > 0) {
2564 				copy = min(copy, remaining_len);
2565 
2566 				frag_offset = net_iov_virtual_addr(niov) +
2567 					      skb_frag_off(frag) + offset -
2568 					      start;
2569 				dmabuf_cmsg.frag_offset = frag_offset;
2570 				dmabuf_cmsg.frag_size = copy;
2571 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2572 							 skb_shinfo(skb)->nr_frags - i);
2573 				if (err)
2574 					goto out;
2575 
2576 				/* Will perform the exchange later */
2577 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2578 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2579 
2580 				offset += copy;
2581 				remaining_len -= copy;
2582 
2583 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2584 						       SO_DEVMEM_DMABUF,
2585 						       sizeof(dmabuf_cmsg),
2586 						       &dmabuf_cmsg);
2587 				if (err)
2588 					goto out;
2589 
2590 				atomic_long_inc(&niov->desc.pp_ref_count);
2591 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2592 
2593 				sent += copy;
2594 
2595 				if (remaining_len == 0)
2596 					goto out;
2597 			}
2598 			start = end;
2599 		}
2600 
2601 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2602 		if (!remaining_len)
2603 			goto out;
2604 
2605 		/* if remaining_len is not satisfied yet, we need to go to the
2606 		 * next frag in the frag_list to satisfy remaining_len.
2607 		 */
2608 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2609 
2610 		offset = offset - start;
2611 	} while (skb);
2612 
2613 	if (remaining_len) {
2614 		err = -EFAULT;
2615 		goto out;
2616 	}
2617 
2618 out:
2619 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2620 	if (!sent)
2621 		sent = err;
2622 
2623 	return sent;
2624 }
2625 
2626 /*
2627  *	This routine copies from a sock struct into the user buffer.
2628  *
2629  *	Technical note: in 2.3 we work on _locked_ socket, so that
2630  *	tricks with *seq access order and skb->users are not required.
2631  *	Probably, code can be easily improved even more.
2632  */
2633 
2634 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2635 			      int flags, struct scm_timestamping_internal *tss,
2636 			      int *cmsg_flags)
2637 {
2638 	struct tcp_sock *tp = tcp_sk(sk);
2639 	int last_copied_dmabuf = -1; /* uninitialized */
2640 	int copied = 0;
2641 	u32 peek_seq;
2642 	u32 *seq;
2643 	unsigned long used;
2644 	int err;
2645 	int target;		/* Read at least this many bytes */
2646 	long timeo;
2647 	struct sk_buff *skb, *last;
2648 	u32 peek_offset = 0;
2649 	u32 urg_hole = 0;
2650 
2651 	err = -ENOTCONN;
2652 	if (sk->sk_state == TCP_LISTEN)
2653 		goto out;
2654 
2655 	if (tp->recvmsg_inq) {
2656 		*cmsg_flags = TCP_CMSG_INQ;
2657 		msg->msg_get_inq = 1;
2658 	}
2659 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2660 
2661 	/* Urgent data needs to be handled specially. */
2662 	if (flags & MSG_OOB)
2663 		goto recv_urg;
2664 
2665 	if (unlikely(tp->repair)) {
2666 		err = -EPERM;
2667 		if (!(flags & MSG_PEEK))
2668 			goto out;
2669 
2670 		if (tp->repair_queue == TCP_SEND_QUEUE)
2671 			goto recv_sndq;
2672 
2673 		err = -EINVAL;
2674 		if (tp->repair_queue == TCP_NO_QUEUE)
2675 			goto out;
2676 
2677 		/* 'common' recv queue MSG_PEEK-ing */
2678 	}
2679 
2680 	seq = &tp->copied_seq;
2681 	if (flags & MSG_PEEK) {
2682 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2683 		peek_seq = tp->copied_seq + peek_offset;
2684 		seq = &peek_seq;
2685 	}
2686 
2687 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2688 
2689 	do {
2690 		u32 offset;
2691 
2692 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2693 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2694 			if (copied)
2695 				break;
2696 			if (signal_pending(current)) {
2697 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2698 				break;
2699 			}
2700 		}
2701 
2702 		/* Next get a buffer. */
2703 
2704 		last = skb_peek_tail(&sk->sk_receive_queue);
2705 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2706 			last = skb;
2707 			/* Now that we have two receive queues this
2708 			 * shouldn't happen.
2709 			 */
2710 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2711 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2712 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2713 				 flags))
2714 				break;
2715 
2716 			offset = *seq - TCP_SKB_CB(skb)->seq;
2717 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2718 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2719 				offset--;
2720 			}
2721 			if (offset < skb->len)
2722 				goto found_ok_skb;
2723 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2724 				goto found_fin_ok;
2725 			WARN(!(flags & MSG_PEEK),
2726 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2727 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2728 		}
2729 
2730 		/* Well, if we have backlog, try to process it now yet. */
2731 
2732 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2733 			break;
2734 
2735 		if (copied) {
2736 			if (!timeo ||
2737 			    sk->sk_err ||
2738 			    sk->sk_state == TCP_CLOSE ||
2739 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2740 			    signal_pending(current))
2741 				break;
2742 		} else {
2743 			if (sock_flag(sk, SOCK_DONE))
2744 				break;
2745 
2746 			if (sk->sk_err) {
2747 				copied = sock_error(sk);
2748 				break;
2749 			}
2750 
2751 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2752 				break;
2753 
2754 			if (sk->sk_state == TCP_CLOSE) {
2755 				/* This occurs when user tries to read
2756 				 * from never connected socket.
2757 				 */
2758 				copied = -ENOTCONN;
2759 				break;
2760 			}
2761 
2762 			if (!timeo) {
2763 				copied = -EAGAIN;
2764 				break;
2765 			}
2766 
2767 			if (signal_pending(current)) {
2768 				copied = sock_intr_errno(timeo);
2769 				break;
2770 			}
2771 		}
2772 
2773 		if (copied >= target) {
2774 			/* Do not sleep, just process backlog. */
2775 			__sk_flush_backlog(sk);
2776 		} else {
2777 			tcp_cleanup_rbuf(sk, copied);
2778 			err = sk_wait_data(sk, &timeo, last);
2779 			if (err < 0) {
2780 				err = copied ? : err;
2781 				goto out;
2782 			}
2783 		}
2784 
2785 		if ((flags & MSG_PEEK) &&
2786 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2787 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2788 					    current->comm,
2789 					    task_pid_nr(current));
2790 			peek_seq = tp->copied_seq + peek_offset;
2791 		}
2792 		continue;
2793 
2794 found_ok_skb:
2795 		/* Ok so how much can we use? */
2796 		used = skb->len - offset;
2797 		if (len < used)
2798 			used = len;
2799 
2800 		/* Do we have urgent data here? */
2801 		if (unlikely(tp->urg_data)) {
2802 			u32 urg_offset = tp->urg_seq - *seq;
2803 			if (urg_offset < used) {
2804 				if (!urg_offset) {
2805 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2806 						WRITE_ONCE(*seq, *seq + 1);
2807 						urg_hole++;
2808 						offset++;
2809 						used--;
2810 						if (!used)
2811 							goto skip_copy;
2812 					}
2813 				} else
2814 					used = urg_offset;
2815 			}
2816 		}
2817 
2818 		if (!(flags & MSG_TRUNC)) {
2819 			if (last_copied_dmabuf != -1 &&
2820 			    last_copied_dmabuf != !skb_frags_readable(skb))
2821 				break;
2822 
2823 			if (skb_frags_readable(skb)) {
2824 				err = skb_copy_datagram_msg(skb, offset, msg,
2825 							    used);
2826 				if (err) {
2827 					/* Exception. Bailout! */
2828 					if (!copied)
2829 						copied = -EFAULT;
2830 					break;
2831 				}
2832 			} else {
2833 				if (!(flags & MSG_SOCK_DEVMEM)) {
2834 					/* dmabuf skbs can only be received
2835 					 * with the MSG_SOCK_DEVMEM flag.
2836 					 */
2837 					if (!copied)
2838 						copied = -EFAULT;
2839 
2840 					break;
2841 				}
2842 
2843 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2844 							 used);
2845 				if (err < 0) {
2846 					if (!copied)
2847 						copied = err;
2848 
2849 					break;
2850 				}
2851 				used = err;
2852 			}
2853 		}
2854 
2855 		last_copied_dmabuf = !skb_frags_readable(skb);
2856 
2857 		WRITE_ONCE(*seq, *seq + used);
2858 		copied += used;
2859 		len -= used;
2860 		if (flags & MSG_PEEK)
2861 			sk_peek_offset_fwd(sk, used);
2862 		else
2863 			sk_peek_offset_bwd(sk, used);
2864 		tcp_rcv_space_adjust(sk);
2865 
2866 skip_copy:
2867 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2868 			WRITE_ONCE(tp->urg_data, 0);
2869 			tcp_fast_path_check(sk);
2870 		}
2871 
2872 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2873 			tcp_update_recv_tstamps(skb, tss);
2874 			*cmsg_flags |= TCP_CMSG_TS;
2875 		}
2876 
2877 		if (used + offset < skb->len)
2878 			continue;
2879 
2880 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2881 			goto found_fin_ok;
2882 		if (!(flags & MSG_PEEK))
2883 			tcp_eat_recv_skb(sk, skb);
2884 		continue;
2885 
2886 found_fin_ok:
2887 		/* Process the FIN. */
2888 		WRITE_ONCE(*seq, *seq + 1);
2889 		if (!(flags & MSG_PEEK))
2890 			tcp_eat_recv_skb(sk, skb);
2891 		break;
2892 	} while (len > 0);
2893 
2894 	/* According to UNIX98, msg_name/msg_namelen are ignored
2895 	 * on connected socket. I was just happy when found this 8) --ANK
2896 	 */
2897 
2898 	/* Clean up data we have read: This will do ACK frames. */
2899 	tcp_cleanup_rbuf(sk, copied);
2900 	return copied;
2901 
2902 out:
2903 	return err;
2904 
2905 recv_urg:
2906 	err = tcp_recv_urg(sk, msg, len, flags);
2907 	goto out;
2908 
2909 recv_sndq:
2910 	err = tcp_peek_sndq(sk, msg, len);
2911 	goto out;
2912 }
2913 
2914 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2915 		int *addr_len)
2916 {
2917 	int cmsg_flags = 0, ret;
2918 	struct scm_timestamping_internal tss;
2919 
2920 	if (unlikely(flags & MSG_ERRQUEUE))
2921 		return inet_recv_error(sk, msg, len, addr_len);
2922 
2923 	if (sk_can_busy_loop(sk) &&
2924 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2925 	    sk->sk_state == TCP_ESTABLISHED)
2926 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2927 
2928 	lock_sock(sk);
2929 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2930 	release_sock(sk);
2931 
2932 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2933 		if (cmsg_flags & TCP_CMSG_TS)
2934 			tcp_recv_timestamp(msg, sk, &tss);
2935 		if (msg->msg_get_inq) {
2936 			msg->msg_inq = tcp_inq_hint(sk);
2937 			if (cmsg_flags & TCP_CMSG_INQ)
2938 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2939 					 sizeof(msg->msg_inq), &msg->msg_inq);
2940 		}
2941 	}
2942 	return ret;
2943 }
2944 EXPORT_IPV6_MOD(tcp_recvmsg);
2945 
2946 void tcp_set_state(struct sock *sk, int state)
2947 {
2948 	int oldstate = sk->sk_state;
2949 
2950 	/* We defined a new enum for TCP states that are exported in BPF
2951 	 * so as not force the internal TCP states to be frozen. The
2952 	 * following checks will detect if an internal state value ever
2953 	 * differs from the BPF value. If this ever happens, then we will
2954 	 * need to remap the internal value to the BPF value before calling
2955 	 * tcp_call_bpf_2arg.
2956 	 */
2957 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2958 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2959 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2960 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2961 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2962 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2963 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2964 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2965 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2966 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2967 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2968 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2969 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2970 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2971 
2972 	/* bpf uapi header bpf.h defines an anonymous enum with values
2973 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2974 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2975 	 * But clang built vmlinux does not have this enum in DWARF
2976 	 * since clang removes the above code before generating IR/debuginfo.
2977 	 * Let us explicitly emit the type debuginfo to ensure the
2978 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2979 	 * regardless of which compiler is used.
2980 	 */
2981 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2982 
2983 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2984 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2985 
2986 	switch (state) {
2987 	case TCP_ESTABLISHED:
2988 		if (oldstate != TCP_ESTABLISHED)
2989 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2990 		break;
2991 	case TCP_CLOSE_WAIT:
2992 		if (oldstate == TCP_SYN_RECV)
2993 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2994 		break;
2995 
2996 	case TCP_CLOSE:
2997 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2998 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2999 
3000 		sk->sk_prot->unhash(sk);
3001 		if (inet_csk(sk)->icsk_bind_hash &&
3002 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
3003 			inet_put_port(sk);
3004 		fallthrough;
3005 	default:
3006 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3007 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
3008 	}
3009 
3010 	/* Change state AFTER socket is unhashed to avoid closed
3011 	 * socket sitting in hash tables.
3012 	 */
3013 	inet_sk_state_store(sk, state);
3014 }
3015 EXPORT_SYMBOL_GPL(tcp_set_state);
3016 
3017 /*
3018  *	State processing on a close. This implements the state shift for
3019  *	sending our FIN frame. Note that we only send a FIN for some
3020  *	states. A shutdown() may have already sent the FIN, or we may be
3021  *	closed.
3022  */
3023 
3024 static const unsigned char new_state[16] = {
3025   /* current state:        new state:      action:	*/
3026   [0 /* (Invalid) */]	= TCP_CLOSE,
3027   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3028   [TCP_SYN_SENT]	= TCP_CLOSE,
3029   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3030   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
3031   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
3032   [TCP_TIME_WAIT]	= TCP_CLOSE,
3033   [TCP_CLOSE]		= TCP_CLOSE,
3034   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
3035   [TCP_LAST_ACK]	= TCP_LAST_ACK,
3036   [TCP_LISTEN]		= TCP_CLOSE,
3037   [TCP_CLOSING]		= TCP_CLOSING,
3038   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3039 };
3040 
3041 static int tcp_close_state(struct sock *sk)
3042 {
3043 	int next = (int)new_state[sk->sk_state];
3044 	int ns = next & TCP_STATE_MASK;
3045 
3046 	tcp_set_state(sk, ns);
3047 
3048 	return next & TCP_ACTION_FIN;
3049 }
3050 
3051 /*
3052  *	Shutdown the sending side of a connection. Much like close except
3053  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3054  */
3055 
3056 void tcp_shutdown(struct sock *sk, int how)
3057 {
3058 	/*	We need to grab some memory, and put together a FIN,
3059 	 *	and then put it into the queue to be sent.
3060 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3061 	 */
3062 	if (!(how & SEND_SHUTDOWN))
3063 		return;
3064 
3065 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3066 	if ((1 << sk->sk_state) &
3067 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3068 	     TCPF_CLOSE_WAIT)) {
3069 		/* Clear out any half completed packets.  FIN if needed. */
3070 		if (tcp_close_state(sk))
3071 			tcp_send_fin(sk);
3072 	}
3073 }
3074 EXPORT_IPV6_MOD(tcp_shutdown);
3075 
3076 int tcp_orphan_count_sum(void)
3077 {
3078 	int i, total = 0;
3079 
3080 	for_each_possible_cpu(i)
3081 		total += per_cpu(tcp_orphan_count, i);
3082 
3083 	return max(total, 0);
3084 }
3085 
3086 static int tcp_orphan_cache;
3087 static struct timer_list tcp_orphan_timer;
3088 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3089 
3090 static void tcp_orphan_update(struct timer_list *unused)
3091 {
3092 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3093 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3094 }
3095 
3096 static bool tcp_too_many_orphans(int shift)
3097 {
3098 	return READ_ONCE(tcp_orphan_cache) << shift >
3099 		READ_ONCE(sysctl_tcp_max_orphans);
3100 }
3101 
3102 static bool tcp_out_of_memory(const struct sock *sk)
3103 {
3104 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3105 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3106 		return true;
3107 	return false;
3108 }
3109 
3110 bool tcp_check_oom(const struct sock *sk, int shift)
3111 {
3112 	bool too_many_orphans, out_of_socket_memory;
3113 
3114 	too_many_orphans = tcp_too_many_orphans(shift);
3115 	out_of_socket_memory = tcp_out_of_memory(sk);
3116 
3117 	if (too_many_orphans)
3118 		net_info_ratelimited("too many orphaned sockets\n");
3119 	if (out_of_socket_memory)
3120 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3121 	return too_many_orphans || out_of_socket_memory;
3122 }
3123 
3124 void __tcp_close(struct sock *sk, long timeout)
3125 {
3126 	bool data_was_unread = false;
3127 	struct sk_buff *skb;
3128 	int state;
3129 
3130 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3131 
3132 	if (sk->sk_state == TCP_LISTEN) {
3133 		tcp_set_state(sk, TCP_CLOSE);
3134 
3135 		/* Special case. */
3136 		inet_csk_listen_stop(sk);
3137 
3138 		goto adjudge_to_death;
3139 	}
3140 
3141 	/*  We need to flush the recv. buffs.  We do this only on the
3142 	 *  descriptor close, not protocol-sourced closes, because the
3143 	 *  reader process may not have drained the data yet!
3144 	 */
3145 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
3146 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3147 
3148 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3149 			end_seq--;
3150 		if (after(end_seq, tcp_sk(sk)->copied_seq))
3151 			data_was_unread = true;
3152 		tcp_eat_recv_skb(sk, skb);
3153 	}
3154 
3155 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3156 	if (sk->sk_state == TCP_CLOSE)
3157 		goto adjudge_to_death;
3158 
3159 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3160 	 * data was lost. To witness the awful effects of the old behavior of
3161 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3162 	 * GET in an FTP client, suspend the process, wait for the client to
3163 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3164 	 * Note: timeout is always zero in such a case.
3165 	 */
3166 	if (unlikely(tcp_sk(sk)->repair)) {
3167 		sk->sk_prot->disconnect(sk, 0);
3168 	} else if (data_was_unread) {
3169 		/* Unread data was tossed, zap the connection. */
3170 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3171 		tcp_set_state(sk, TCP_CLOSE);
3172 		tcp_send_active_reset(sk, sk->sk_allocation,
3173 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3174 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3175 		/* Check zero linger _after_ checking for unread data. */
3176 		sk->sk_prot->disconnect(sk, 0);
3177 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3178 	} else if (tcp_close_state(sk)) {
3179 		/* We FIN if the application ate all the data before
3180 		 * zapping the connection.
3181 		 */
3182 
3183 		/* RED-PEN. Formally speaking, we have broken TCP state
3184 		 * machine. State transitions:
3185 		 *
3186 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3187 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3188 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3189 		 *
3190 		 * are legal only when FIN has been sent (i.e. in window),
3191 		 * rather than queued out of window. Purists blame.
3192 		 *
3193 		 * F.e. "RFC state" is ESTABLISHED,
3194 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3195 		 *
3196 		 * The visible declinations are that sometimes
3197 		 * we enter time-wait state, when it is not required really
3198 		 * (harmless), do not send active resets, when they are
3199 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3200 		 * they look as CLOSING or LAST_ACK for Linux)
3201 		 * Probably, I missed some more holelets.
3202 		 * 						--ANK
3203 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3204 		 * in a single packet! (May consider it later but will
3205 		 * probably need API support or TCP_CORK SYN-ACK until
3206 		 * data is written and socket is closed.)
3207 		 */
3208 		tcp_send_fin(sk);
3209 	}
3210 
3211 	sk_stream_wait_close(sk, timeout);
3212 
3213 adjudge_to_death:
3214 	state = sk->sk_state;
3215 	sock_hold(sk);
3216 	sock_orphan(sk);
3217 
3218 	local_bh_disable();
3219 	bh_lock_sock(sk);
3220 	/* remove backlog if any, without releasing ownership. */
3221 	__release_sock(sk);
3222 
3223 	tcp_orphan_count_inc();
3224 
3225 	/* Have we already been destroyed by a softirq or backlog? */
3226 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3227 		goto out;
3228 
3229 	/*	This is a (useful) BSD violating of the RFC. There is a
3230 	 *	problem with TCP as specified in that the other end could
3231 	 *	keep a socket open forever with no application left this end.
3232 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3233 	 *	our end. If they send after that then tough - BUT: long enough
3234 	 *	that we won't make the old 4*rto = almost no time - whoops
3235 	 *	reset mistake.
3236 	 *
3237 	 *	Nope, it was not mistake. It is really desired behaviour
3238 	 *	f.e. on http servers, when such sockets are useless, but
3239 	 *	consume significant resources. Let's do it with special
3240 	 *	linger2	option.					--ANK
3241 	 */
3242 
3243 	if (sk->sk_state == TCP_FIN_WAIT2) {
3244 		struct tcp_sock *tp = tcp_sk(sk);
3245 		if (READ_ONCE(tp->linger2) < 0) {
3246 			tcp_set_state(sk, TCP_CLOSE);
3247 			tcp_send_active_reset(sk, GFP_ATOMIC,
3248 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3249 			__NET_INC_STATS(sock_net(sk),
3250 					LINUX_MIB_TCPABORTONLINGER);
3251 		} else {
3252 			const int tmo = tcp_fin_time(sk);
3253 
3254 			if (tmo > TCP_TIMEWAIT_LEN) {
3255 				tcp_reset_keepalive_timer(sk,
3256 						tmo - TCP_TIMEWAIT_LEN);
3257 			} else {
3258 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3259 				goto out;
3260 			}
3261 		}
3262 	}
3263 	if (sk->sk_state != TCP_CLOSE) {
3264 		if (tcp_check_oom(sk, 0)) {
3265 			tcp_set_state(sk, TCP_CLOSE);
3266 			tcp_send_active_reset(sk, GFP_ATOMIC,
3267 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3268 			__NET_INC_STATS(sock_net(sk),
3269 					LINUX_MIB_TCPABORTONMEMORY);
3270 		} else if (!check_net(sock_net(sk))) {
3271 			/* Not possible to send reset; just close */
3272 			tcp_set_state(sk, TCP_CLOSE);
3273 		}
3274 	}
3275 
3276 	if (sk->sk_state == TCP_CLOSE) {
3277 		struct request_sock *req;
3278 
3279 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3280 						lockdep_sock_is_held(sk));
3281 		/* We could get here with a non-NULL req if the socket is
3282 		 * aborted (e.g., closed with unread data) before 3WHS
3283 		 * finishes.
3284 		 */
3285 		if (req)
3286 			reqsk_fastopen_remove(sk, req, false);
3287 		inet_csk_destroy_sock(sk);
3288 	}
3289 	/* Otherwise, socket is reprieved until protocol close. */
3290 
3291 out:
3292 	bh_unlock_sock(sk);
3293 	local_bh_enable();
3294 }
3295 
3296 void tcp_close(struct sock *sk, long timeout)
3297 {
3298 	lock_sock(sk);
3299 	__tcp_close(sk, timeout);
3300 	release_sock(sk);
3301 	if (!sk->sk_net_refcnt)
3302 		inet_csk_clear_xmit_timers_sync(sk);
3303 	sock_put(sk);
3304 }
3305 EXPORT_SYMBOL(tcp_close);
3306 
3307 /* These states need RST on ABORT according to RFC793 */
3308 
3309 static inline bool tcp_need_reset(int state)
3310 {
3311 	return (1 << state) &
3312 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3313 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3314 }
3315 
3316 static void tcp_rtx_queue_purge(struct sock *sk)
3317 {
3318 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3319 
3320 	tcp_sk(sk)->highest_sack = NULL;
3321 	while (p) {
3322 		struct sk_buff *skb = rb_to_skb(p);
3323 
3324 		p = rb_next(p);
3325 		/* Since we are deleting whole queue, no need to
3326 		 * list_del(&skb->tcp_tsorted_anchor)
3327 		 */
3328 		tcp_rtx_queue_unlink(skb, sk);
3329 		tcp_wmem_free_skb(sk, skb);
3330 	}
3331 }
3332 
3333 void tcp_write_queue_purge(struct sock *sk)
3334 {
3335 	struct sk_buff *skb;
3336 
3337 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3338 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3339 		tcp_skb_tsorted_anchor_cleanup(skb);
3340 		tcp_wmem_free_skb(sk, skb);
3341 	}
3342 	tcp_rtx_queue_purge(sk);
3343 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3344 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3345 	tcp_sk(sk)->packets_out = 0;
3346 	inet_csk(sk)->icsk_backoff = 0;
3347 }
3348 
3349 int tcp_disconnect(struct sock *sk, int flags)
3350 {
3351 	struct inet_sock *inet = inet_sk(sk);
3352 	struct inet_connection_sock *icsk = inet_csk(sk);
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 	int old_state = sk->sk_state;
3355 	struct request_sock *req;
3356 	u32 seq;
3357 
3358 	if (old_state != TCP_CLOSE)
3359 		tcp_set_state(sk, TCP_CLOSE);
3360 
3361 	/* ABORT function of RFC793 */
3362 	if (old_state == TCP_LISTEN) {
3363 		inet_csk_listen_stop(sk);
3364 	} else if (unlikely(tp->repair)) {
3365 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3366 	} else if (tcp_need_reset(old_state)) {
3367 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3368 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3369 	} else if (tp->snd_nxt != tp->write_seq &&
3370 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3371 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3372 		 * states
3373 		 */
3374 		tcp_send_active_reset(sk, gfp_any(),
3375 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3376 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3377 	} else if (old_state == TCP_SYN_SENT)
3378 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3379 
3380 	tcp_clear_xmit_timers(sk);
3381 	__skb_queue_purge(&sk->sk_receive_queue);
3382 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3383 	WRITE_ONCE(tp->urg_data, 0);
3384 	sk_set_peek_off(sk, -1);
3385 	tcp_write_queue_purge(sk);
3386 	tcp_fastopen_active_disable_ofo_check(sk);
3387 	skb_rbtree_purge(&tp->out_of_order_queue);
3388 
3389 	inet->inet_dport = 0;
3390 
3391 	inet_bhash2_reset_saddr(sk);
3392 
3393 	WRITE_ONCE(sk->sk_shutdown, 0);
3394 	sock_reset_flag(sk, SOCK_DONE);
3395 	tp->srtt_us = 0;
3396 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3397 	tp->rcv_rtt_last_tsecr = 0;
3398 
3399 	seq = tp->write_seq + tp->max_window + 2;
3400 	if (!seq)
3401 		seq = 1;
3402 	WRITE_ONCE(tp->write_seq, seq);
3403 
3404 	icsk->icsk_backoff = 0;
3405 	WRITE_ONCE(icsk->icsk_probes_out, 0);
3406 	icsk->icsk_probes_tstamp = 0;
3407 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3408 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3409 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3410 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3411 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3412 	tp->snd_cwnd_cnt = 0;
3413 	tp->is_cwnd_limited = 0;
3414 	tp->max_packets_out = 0;
3415 	tp->window_clamp = 0;
3416 	tp->delivered = 0;
3417 	tp->delivered_ce = 0;
3418 	tp->accecn_fail_mode = 0;
3419 	tp->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
3420 	tcp_accecn_init_counters(tp);
3421 	tp->prev_ecnfield = 0;
3422 	tp->accecn_opt_tstamp = 0;
3423 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3424 		icsk->icsk_ca_ops->release(sk);
3425 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3426 	icsk->icsk_ca_initialized = 0;
3427 	tcp_set_ca_state(sk, TCP_CA_Open);
3428 	tp->is_sack_reneg = 0;
3429 	tcp_clear_retrans(tp);
3430 	tp->total_retrans = 0;
3431 	inet_csk_delack_init(sk);
3432 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3433 	 * issue in __tcp_select_window()
3434 	 */
3435 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3436 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3437 	__sk_dst_reset(sk);
3438 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3439 	tcp_saved_syn_free(tp);
3440 	tp->compressed_ack = 0;
3441 	tp->segs_in = 0;
3442 	tp->segs_out = 0;
3443 	tp->bytes_sent = 0;
3444 	tp->bytes_acked = 0;
3445 	tp->bytes_received = 0;
3446 	tp->bytes_retrans = 0;
3447 	tp->data_segs_in = 0;
3448 	tp->data_segs_out = 0;
3449 	tp->duplicate_sack[0].start_seq = 0;
3450 	tp->duplicate_sack[0].end_seq = 0;
3451 	tp->dsack_dups = 0;
3452 	tp->reord_seen = 0;
3453 	tp->retrans_out = 0;
3454 	tp->sacked_out = 0;
3455 	tp->tlp_high_seq = 0;
3456 	tp->last_oow_ack_time = 0;
3457 	tp->plb_rehash = 0;
3458 	/* There's a bubble in the pipe until at least the first ACK. */
3459 	tp->app_limited = ~0U;
3460 	tp->rate_app_limited = 1;
3461 	tp->rack.mstamp = 0;
3462 	tp->rack.advanced = 0;
3463 	tp->rack.reo_wnd_steps = 1;
3464 	tp->rack.last_delivered = 0;
3465 	tp->rack.reo_wnd_persist = 0;
3466 	tp->rack.dsack_seen = 0;
3467 	tp->syn_data_acked = 0;
3468 	tp->syn_fastopen_child = 0;
3469 	tp->rx_opt.saw_tstamp = 0;
3470 	tp->rx_opt.dsack = 0;
3471 	tp->rx_opt.num_sacks = 0;
3472 	tp->rcv_ooopack = 0;
3473 
3474 
3475 	/* Clean up fastopen related fields */
3476 	req = rcu_dereference_protected(tp->fastopen_rsk,
3477 					lockdep_sock_is_held(sk));
3478 	if (req)
3479 		reqsk_fastopen_remove(sk, req, false);
3480 	tcp_free_fastopen_req(tp);
3481 	inet_clear_bit(DEFER_CONNECT, sk);
3482 	tp->fastopen_client_fail = 0;
3483 
3484 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3485 
3486 	if (sk->sk_frag.page) {
3487 		put_page(sk->sk_frag.page);
3488 		sk->sk_frag.page = NULL;
3489 		sk->sk_frag.offset = 0;
3490 	}
3491 	sk_error_report(sk);
3492 	return 0;
3493 }
3494 EXPORT_SYMBOL(tcp_disconnect);
3495 
3496 static inline bool tcp_can_repair_sock(const struct sock *sk)
3497 {
3498 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3499 		(sk->sk_state != TCP_LISTEN);
3500 }
3501 
3502 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3503 {
3504 	struct tcp_repair_window opt;
3505 
3506 	if (!tp->repair)
3507 		return -EPERM;
3508 
3509 	if (len != sizeof(opt))
3510 		return -EINVAL;
3511 
3512 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3513 		return -EFAULT;
3514 
3515 	if (opt.max_window < opt.snd_wnd)
3516 		return -EINVAL;
3517 
3518 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3519 		return -EINVAL;
3520 
3521 	if (after(opt.rcv_wup, tp->rcv_nxt))
3522 		return -EINVAL;
3523 
3524 	tp->snd_wl1	= opt.snd_wl1;
3525 	tp->snd_wnd	= opt.snd_wnd;
3526 	tp->max_window	= opt.max_window;
3527 
3528 	tp->rcv_wnd	= opt.rcv_wnd;
3529 	tp->rcv_wup	= opt.rcv_wup;
3530 
3531 	return 0;
3532 }
3533 
3534 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3535 		unsigned int len)
3536 {
3537 	struct tcp_sock *tp = tcp_sk(sk);
3538 	struct tcp_repair_opt opt;
3539 	size_t offset = 0;
3540 
3541 	while (len >= sizeof(opt)) {
3542 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3543 			return -EFAULT;
3544 
3545 		offset += sizeof(opt);
3546 		len -= sizeof(opt);
3547 
3548 		switch (opt.opt_code) {
3549 		case TCPOPT_MSS:
3550 			tp->rx_opt.mss_clamp = opt.opt_val;
3551 			tcp_mtup_init(sk);
3552 			break;
3553 		case TCPOPT_WINDOW:
3554 			{
3555 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3556 				u16 rcv_wscale = opt.opt_val >> 16;
3557 
3558 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3559 					return -EFBIG;
3560 
3561 				tp->rx_opt.snd_wscale = snd_wscale;
3562 				tp->rx_opt.rcv_wscale = rcv_wscale;
3563 				tp->rx_opt.wscale_ok = 1;
3564 			}
3565 			break;
3566 		case TCPOPT_SACK_PERM:
3567 			if (opt.opt_val != 0)
3568 				return -EINVAL;
3569 
3570 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3571 			break;
3572 		case TCPOPT_TIMESTAMP:
3573 			if (opt.opt_val != 0)
3574 				return -EINVAL;
3575 
3576 			tp->rx_opt.tstamp_ok = 1;
3577 			break;
3578 		}
3579 	}
3580 
3581 	return 0;
3582 }
3583 
3584 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3585 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3586 
3587 static void tcp_enable_tx_delay(struct sock *sk, int val)
3588 {
3589 	struct tcp_sock *tp = tcp_sk(sk);
3590 	s32 delta = (val - tp->tcp_tx_delay) << 3;
3591 
3592 	if (val && !static_branch_unlikely(&tcp_tx_delay_enabled)) {
3593 		static int __tcp_tx_delay_enabled = 0;
3594 
3595 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3596 			static_branch_enable(&tcp_tx_delay_enabled);
3597 			pr_info("TCP_TX_DELAY enabled\n");
3598 		}
3599 	}
3600 	/* If we change tcp_tx_delay on a live flow, adjust tp->srtt_us,
3601 	 * tp->rtt_min, icsk_rto and sk->sk_pacing_rate.
3602 	 * This is best effort.
3603 	 */
3604 	if (delta && sk->sk_state == TCP_ESTABLISHED) {
3605 		s64 srtt = (s64)tp->srtt_us + delta;
3606 
3607 		tp->srtt_us = clamp_t(s64, srtt, 1, ~0U);
3608 
3609 		/* Note: does not deal with non zero icsk_backoff */
3610 		tcp_set_rto(sk);
3611 
3612 		minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
3613 
3614 		tcp_update_pacing_rate(sk);
3615 	}
3616 }
3617 
3618 /* When set indicates to always queue non-full frames.  Later the user clears
3619  * this option and we transmit any pending partial frames in the queue.  This is
3620  * meant to be used alongside sendfile() to get properly filled frames when the
3621  * user (for example) must write out headers with a write() call first and then
3622  * use sendfile to send out the data parts.
3623  *
3624  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3625  * TCP_NODELAY.
3626  */
3627 void __tcp_sock_set_cork(struct sock *sk, bool on)
3628 {
3629 	struct tcp_sock *tp = tcp_sk(sk);
3630 
3631 	if (on) {
3632 		tp->nonagle |= TCP_NAGLE_CORK;
3633 	} else {
3634 		tp->nonagle &= ~TCP_NAGLE_CORK;
3635 		if (tp->nonagle & TCP_NAGLE_OFF)
3636 			tp->nonagle |= TCP_NAGLE_PUSH;
3637 		tcp_push_pending_frames(sk);
3638 	}
3639 }
3640 
3641 void tcp_sock_set_cork(struct sock *sk, bool on)
3642 {
3643 	lock_sock(sk);
3644 	__tcp_sock_set_cork(sk, on);
3645 	release_sock(sk);
3646 }
3647 EXPORT_SYMBOL(tcp_sock_set_cork);
3648 
3649 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3650  * remembered, but it is not activated until cork is cleared.
3651  *
3652  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3653  * even TCP_CORK for currently queued segments.
3654  */
3655 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3656 {
3657 	if (on) {
3658 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3659 		tcp_push_pending_frames(sk);
3660 	} else {
3661 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3662 	}
3663 }
3664 
3665 void tcp_sock_set_nodelay(struct sock *sk)
3666 {
3667 	lock_sock(sk);
3668 	__tcp_sock_set_nodelay(sk, true);
3669 	release_sock(sk);
3670 }
3671 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3672 
3673 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3674 {
3675 	if (!val) {
3676 		inet_csk_enter_pingpong_mode(sk);
3677 		return;
3678 	}
3679 
3680 	inet_csk_exit_pingpong_mode(sk);
3681 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3682 	    inet_csk_ack_scheduled(sk)) {
3683 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3684 		tcp_cleanup_rbuf(sk, 1);
3685 		if (!(val & 1))
3686 			inet_csk_enter_pingpong_mode(sk);
3687 	}
3688 }
3689 
3690 void tcp_sock_set_quickack(struct sock *sk, int val)
3691 {
3692 	lock_sock(sk);
3693 	__tcp_sock_set_quickack(sk, val);
3694 	release_sock(sk);
3695 }
3696 EXPORT_SYMBOL(tcp_sock_set_quickack);
3697 
3698 int tcp_sock_set_syncnt(struct sock *sk, int val)
3699 {
3700 	if (val < 1 || val > MAX_TCP_SYNCNT)
3701 		return -EINVAL;
3702 
3703 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3704 	return 0;
3705 }
3706 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3707 
3708 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3709 {
3710 	/* Cap the max time in ms TCP will retry or probe the window
3711 	 * before giving up and aborting (ETIMEDOUT) a connection.
3712 	 */
3713 	if (val < 0)
3714 		return -EINVAL;
3715 
3716 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3720 
3721 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3722 {
3723 	struct tcp_sock *tp = tcp_sk(sk);
3724 
3725 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3726 		return -EINVAL;
3727 
3728 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3729 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3730 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3731 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3732 		u32 elapsed = keepalive_time_elapsed(tp);
3733 
3734 		if (tp->keepalive_time > elapsed)
3735 			elapsed = tp->keepalive_time - elapsed;
3736 		else
3737 			elapsed = 0;
3738 		tcp_reset_keepalive_timer(sk, elapsed);
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 int tcp_sock_set_keepidle(struct sock *sk, int val)
3745 {
3746 	int err;
3747 
3748 	lock_sock(sk);
3749 	err = tcp_sock_set_keepidle_locked(sk, val);
3750 	release_sock(sk);
3751 	return err;
3752 }
3753 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3754 
3755 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3756 {
3757 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3758 		return -EINVAL;
3759 
3760 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3761 	return 0;
3762 }
3763 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3764 
3765 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3766 {
3767 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3768 		return -EINVAL;
3769 
3770 	/* Paired with READ_ONCE() in keepalive_probes() */
3771 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3772 	return 0;
3773 }
3774 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3775 
3776 int tcp_set_window_clamp(struct sock *sk, int val)
3777 {
3778 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3779 	struct tcp_sock *tp = tcp_sk(sk);
3780 
3781 	if (!val) {
3782 		if (sk->sk_state != TCP_CLOSE)
3783 			return -EINVAL;
3784 		WRITE_ONCE(tp->window_clamp, 0);
3785 		return 0;
3786 	}
3787 
3788 	old_window_clamp = tp->window_clamp;
3789 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3790 
3791 	if (new_window_clamp == old_window_clamp)
3792 		return 0;
3793 
3794 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3795 
3796 	/* Need to apply the reserved mem provisioning only
3797 	 * when shrinking the window clamp.
3798 	 */
3799 	if (new_window_clamp < old_window_clamp) {
3800 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3801 	} else {
3802 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3803 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3804 	}
3805 	return 0;
3806 }
3807 
3808 int tcp_sock_set_maxseg(struct sock *sk, int val)
3809 {
3810 	/* Values greater than interface MTU won't take effect. However
3811 	 * at the point when this call is done we typically don't yet
3812 	 * know which interface is going to be used
3813 	 */
3814 	if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW))
3815 		return -EINVAL;
3816 
3817 	WRITE_ONCE(tcp_sk(sk)->rx_opt.user_mss, val);
3818 	return 0;
3819 }
3820 
3821 /*
3822  *	Socket option code for TCP.
3823  */
3824 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3825 		      sockptr_t optval, unsigned int optlen)
3826 {
3827 	struct tcp_sock *tp = tcp_sk(sk);
3828 	struct inet_connection_sock *icsk = inet_csk(sk);
3829 	struct net *net = sock_net(sk);
3830 	int val;
3831 	int err = 0;
3832 
3833 	/* These are data/string values, all the others are ints */
3834 	switch (optname) {
3835 	case TCP_CONGESTION: {
3836 		char name[TCP_CA_NAME_MAX];
3837 
3838 		if (optlen < 1)
3839 			return -EINVAL;
3840 
3841 		val = strncpy_from_sockptr(name, optval,
3842 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3843 		if (val < 0)
3844 			return -EFAULT;
3845 		name[val] = 0;
3846 
3847 		sockopt_lock_sock(sk);
3848 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3849 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3850 								    CAP_NET_ADMIN));
3851 		sockopt_release_sock(sk);
3852 		return err;
3853 	}
3854 	case TCP_ULP: {
3855 		char name[TCP_ULP_NAME_MAX];
3856 
3857 		if (optlen < 1)
3858 			return -EINVAL;
3859 
3860 		val = strncpy_from_sockptr(name, optval,
3861 					min_t(long, TCP_ULP_NAME_MAX - 1,
3862 					      optlen));
3863 		if (val < 0)
3864 			return -EFAULT;
3865 		name[val] = 0;
3866 
3867 		sockopt_lock_sock(sk);
3868 		err = tcp_set_ulp(sk, name);
3869 		sockopt_release_sock(sk);
3870 		return err;
3871 	}
3872 	case TCP_FASTOPEN_KEY: {
3873 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3874 		__u8 *backup_key = NULL;
3875 
3876 		/* Allow a backup key as well to facilitate key rotation
3877 		 * First key is the active one.
3878 		 */
3879 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3880 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3881 			return -EINVAL;
3882 
3883 		if (copy_from_sockptr(key, optval, optlen))
3884 			return -EFAULT;
3885 
3886 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3887 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3888 
3889 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3890 	}
3891 	default:
3892 		/* fallthru */
3893 		break;
3894 	}
3895 
3896 	if (optlen < sizeof(int))
3897 		return -EINVAL;
3898 
3899 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3900 		return -EFAULT;
3901 
3902 	/* Handle options that can be set without locking the socket. */
3903 	switch (optname) {
3904 	case TCP_SYNCNT:
3905 		return tcp_sock_set_syncnt(sk, val);
3906 	case TCP_USER_TIMEOUT:
3907 		return tcp_sock_set_user_timeout(sk, val);
3908 	case TCP_KEEPINTVL:
3909 		return tcp_sock_set_keepintvl(sk, val);
3910 	case TCP_KEEPCNT:
3911 		return tcp_sock_set_keepcnt(sk, val);
3912 	case TCP_LINGER2:
3913 		if (val < 0)
3914 			WRITE_ONCE(tp->linger2, -1);
3915 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3916 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3917 		else
3918 			WRITE_ONCE(tp->linger2, val * HZ);
3919 		return 0;
3920 	case TCP_DEFER_ACCEPT:
3921 		/* Translate value in seconds to number of retransmits */
3922 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3923 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3924 					   TCP_RTO_MAX / HZ));
3925 		return 0;
3926 	case TCP_RTO_MAX_MS:
3927 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3928 			return -EINVAL;
3929 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3930 		return 0;
3931 	case TCP_RTO_MIN_US: {
3932 		int rto_min = usecs_to_jiffies(val);
3933 
3934 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3935 			return -EINVAL;
3936 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3937 		return 0;
3938 	}
3939 	case TCP_DELACK_MAX_US: {
3940 		int delack_max = usecs_to_jiffies(val);
3941 
3942 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3943 			return -EINVAL;
3944 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3945 		return 0;
3946 	}
3947 	case TCP_MAXSEG:
3948 		return tcp_sock_set_maxseg(sk, val);
3949 	}
3950 
3951 	sockopt_lock_sock(sk);
3952 
3953 	switch (optname) {
3954 	case TCP_NODELAY:
3955 		__tcp_sock_set_nodelay(sk, val);
3956 		break;
3957 
3958 	case TCP_THIN_LINEAR_TIMEOUTS:
3959 		if (val < 0 || val > 1)
3960 			err = -EINVAL;
3961 		else
3962 			tp->thin_lto = val;
3963 		break;
3964 
3965 	case TCP_THIN_DUPACK:
3966 		if (val < 0 || val > 1)
3967 			err = -EINVAL;
3968 		break;
3969 
3970 	case TCP_REPAIR:
3971 		if (!tcp_can_repair_sock(sk))
3972 			err = -EPERM;
3973 		else if (val == TCP_REPAIR_ON) {
3974 			tp->repair = 1;
3975 			sk->sk_reuse = SK_FORCE_REUSE;
3976 			tp->repair_queue = TCP_NO_QUEUE;
3977 		} else if (val == TCP_REPAIR_OFF) {
3978 			tp->repair = 0;
3979 			sk->sk_reuse = SK_NO_REUSE;
3980 			tcp_send_window_probe(sk);
3981 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3982 			tp->repair = 0;
3983 			sk->sk_reuse = SK_NO_REUSE;
3984 		} else
3985 			err = -EINVAL;
3986 
3987 		break;
3988 
3989 	case TCP_REPAIR_QUEUE:
3990 		if (!tp->repair)
3991 			err = -EPERM;
3992 		else if ((unsigned int)val < TCP_QUEUES_NR)
3993 			tp->repair_queue = val;
3994 		else
3995 			err = -EINVAL;
3996 		break;
3997 
3998 	case TCP_QUEUE_SEQ:
3999 		if (sk->sk_state != TCP_CLOSE) {
4000 			err = -EPERM;
4001 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
4002 			if (!tcp_rtx_queue_empty(sk))
4003 				err = -EPERM;
4004 			else
4005 				WRITE_ONCE(tp->write_seq, val);
4006 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
4007 			if (tp->rcv_nxt != tp->copied_seq) {
4008 				err = -EPERM;
4009 			} else {
4010 				WRITE_ONCE(tp->rcv_nxt, val);
4011 				WRITE_ONCE(tp->copied_seq, val);
4012 			}
4013 		} else {
4014 			err = -EINVAL;
4015 		}
4016 		break;
4017 
4018 	case TCP_REPAIR_OPTIONS:
4019 		if (!tp->repair)
4020 			err = -EINVAL;
4021 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
4022 			err = tcp_repair_options_est(sk, optval, optlen);
4023 		else
4024 			err = -EPERM;
4025 		break;
4026 
4027 	case TCP_CORK:
4028 		__tcp_sock_set_cork(sk, val);
4029 		break;
4030 
4031 	case TCP_KEEPIDLE:
4032 		err = tcp_sock_set_keepidle_locked(sk, val);
4033 		break;
4034 	case TCP_SAVE_SYN:
4035 		/* 0: disable, 1: enable, 2: start from ether_header */
4036 		if (val < 0 || val > 2)
4037 			err = -EINVAL;
4038 		else
4039 			tp->save_syn = val;
4040 		break;
4041 
4042 	case TCP_WINDOW_CLAMP:
4043 		err = tcp_set_window_clamp(sk, val);
4044 		break;
4045 
4046 	case TCP_QUICKACK:
4047 		__tcp_sock_set_quickack(sk, val);
4048 		break;
4049 
4050 	case TCP_AO_REPAIR:
4051 		if (!tcp_can_repair_sock(sk)) {
4052 			err = -EPERM;
4053 			break;
4054 		}
4055 		err = tcp_ao_set_repair(sk, optval, optlen);
4056 		break;
4057 #ifdef CONFIG_TCP_AO
4058 	case TCP_AO_ADD_KEY:
4059 	case TCP_AO_DEL_KEY:
4060 	case TCP_AO_INFO: {
4061 		/* If this is the first TCP-AO setsockopt() on the socket,
4062 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4063 		 * in any state.
4064 		 */
4065 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4066 			goto ao_parse;
4067 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4068 					      lockdep_sock_is_held(sk)))
4069 			goto ao_parse;
4070 		if (tp->repair)
4071 			goto ao_parse;
4072 		err = -EISCONN;
4073 		break;
4074 ao_parse:
4075 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4076 		break;
4077 	}
4078 #endif
4079 #ifdef CONFIG_TCP_MD5SIG
4080 	case TCP_MD5SIG:
4081 	case TCP_MD5SIG_EXT:
4082 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4083 		break;
4084 #endif
4085 	case TCP_FASTOPEN:
4086 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4087 		    TCPF_LISTEN))) {
4088 			tcp_fastopen_init_key_once(net);
4089 
4090 			fastopen_queue_tune(sk, val);
4091 		} else {
4092 			err = -EINVAL;
4093 		}
4094 		break;
4095 	case TCP_FASTOPEN_CONNECT:
4096 		if (val > 1 || val < 0) {
4097 			err = -EINVAL;
4098 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4099 			   TFO_CLIENT_ENABLE) {
4100 			if (sk->sk_state == TCP_CLOSE)
4101 				tp->fastopen_connect = val;
4102 			else
4103 				err = -EINVAL;
4104 		} else {
4105 			err = -EOPNOTSUPP;
4106 		}
4107 		break;
4108 	case TCP_FASTOPEN_NO_COOKIE:
4109 		if (val > 1 || val < 0)
4110 			err = -EINVAL;
4111 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4112 			err = -EINVAL;
4113 		else
4114 			tp->fastopen_no_cookie = val;
4115 		break;
4116 	case TCP_TIMESTAMP:
4117 		if (!tp->repair) {
4118 			err = -EPERM;
4119 			break;
4120 		}
4121 		/* val is an opaque field,
4122 		 * and low order bit contains usec_ts enable bit.
4123 		 * Its a best effort, and we do not care if user makes an error.
4124 		 */
4125 		tp->tcp_usec_ts = val & 1;
4126 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4127 		break;
4128 	case TCP_REPAIR_WINDOW:
4129 		err = tcp_repair_set_window(tp, optval, optlen);
4130 		break;
4131 	case TCP_NOTSENT_LOWAT:
4132 		WRITE_ONCE(tp->notsent_lowat, val);
4133 		sk->sk_write_space(sk);
4134 		break;
4135 	case TCP_INQ:
4136 		if (val > 1 || val < 0)
4137 			err = -EINVAL;
4138 		else
4139 			tp->recvmsg_inq = val;
4140 		break;
4141 	case TCP_TX_DELAY:
4142 		/* tp->srtt_us is u32, and is shifted by 3 */
4143 		if (val < 0 || val >= (1U << (31 - 3))) {
4144 			err = -EINVAL;
4145 			break;
4146 		}
4147 		tcp_enable_tx_delay(sk, val);
4148 		WRITE_ONCE(tp->tcp_tx_delay, val);
4149 		break;
4150 	default:
4151 		err = -ENOPROTOOPT;
4152 		break;
4153 	}
4154 
4155 	sockopt_release_sock(sk);
4156 	return err;
4157 }
4158 
4159 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4160 		   unsigned int optlen)
4161 {
4162 	const struct inet_connection_sock *icsk = inet_csk(sk);
4163 
4164 	if (level != SOL_TCP)
4165 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4166 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4167 								optval, optlen);
4168 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4169 }
4170 EXPORT_IPV6_MOD(tcp_setsockopt);
4171 
4172 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4173 				      struct tcp_info *info)
4174 {
4175 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4176 	enum tcp_chrono i;
4177 
4178 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4179 		stats[i] = tp->chrono_stat[i - 1];
4180 		if (i == tp->chrono_type)
4181 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4182 		stats[i] *= USEC_PER_SEC / HZ;
4183 		total += stats[i];
4184 	}
4185 
4186 	info->tcpi_busy_time = total;
4187 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4188 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4189 }
4190 
4191 /* Return information about state of tcp endpoint in API format. */
4192 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4193 {
4194 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4195 	const struct inet_connection_sock *icsk = inet_csk(sk);
4196 	const u8 ect1_idx = INET_ECN_ECT_1 - 1;
4197 	const u8 ect0_idx = INET_ECN_ECT_0 - 1;
4198 	const u8 ce_idx = INET_ECN_CE - 1;
4199 	unsigned long rate;
4200 	u32 now;
4201 	u64 rate64;
4202 	bool slow;
4203 
4204 	memset(info, 0, sizeof(*info));
4205 	if (sk->sk_type != SOCK_STREAM)
4206 		return;
4207 
4208 	info->tcpi_state = inet_sk_state_load(sk);
4209 
4210 	/* Report meaningful fields for all TCP states, including listeners */
4211 	rate = READ_ONCE(sk->sk_pacing_rate);
4212 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4213 	info->tcpi_pacing_rate = rate64;
4214 
4215 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4216 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4217 	info->tcpi_max_pacing_rate = rate64;
4218 
4219 	info->tcpi_reordering = tp->reordering;
4220 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4221 
4222 	if (info->tcpi_state == TCP_LISTEN) {
4223 		/* listeners aliased fields :
4224 		 * tcpi_unacked -> Number of children ready for accept()
4225 		 * tcpi_sacked  -> max backlog
4226 		 */
4227 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4228 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4229 		return;
4230 	}
4231 
4232 	slow = lock_sock_fast(sk);
4233 
4234 	info->tcpi_ca_state = icsk->icsk_ca_state;
4235 	info->tcpi_retransmits = icsk->icsk_retransmits;
4236 	info->tcpi_probes = icsk->icsk_probes_out;
4237 	info->tcpi_backoff = icsk->icsk_backoff;
4238 
4239 	if (tp->rx_opt.tstamp_ok)
4240 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4241 	if (tcp_is_sack(tp))
4242 		info->tcpi_options |= TCPI_OPT_SACK;
4243 	if (tp->rx_opt.wscale_ok) {
4244 		info->tcpi_options |= TCPI_OPT_WSCALE;
4245 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4246 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4247 	}
4248 
4249 	if (tcp_ecn_mode_any(tp))
4250 		info->tcpi_options |= TCPI_OPT_ECN;
4251 	if (tp->ecn_flags & TCP_ECN_SEEN)
4252 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4253 	if (tp->syn_data_acked)
4254 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4255 	if (tp->tcp_usec_ts)
4256 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4257 	if (tp->syn_fastopen_child)
4258 		info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4259 
4260 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4261 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4262 						tcp_delack_max(sk)));
4263 	info->tcpi_snd_mss = tp->mss_cache;
4264 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4265 
4266 	info->tcpi_unacked = tp->packets_out;
4267 	info->tcpi_sacked = tp->sacked_out;
4268 
4269 	info->tcpi_lost = tp->lost_out;
4270 	info->tcpi_retrans = tp->retrans_out;
4271 
4272 	now = tcp_jiffies32;
4273 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4274 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4275 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4276 
4277 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4278 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4279 	info->tcpi_rtt = tp->srtt_us >> 3;
4280 	info->tcpi_rttvar = tp->mdev_us >> 2;
4281 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4282 	info->tcpi_advmss = tp->advmss;
4283 
4284 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4285 	info->tcpi_rcv_space = tp->rcvq_space.space;
4286 
4287 	info->tcpi_total_retrans = tp->total_retrans;
4288 
4289 	info->tcpi_bytes_acked = tp->bytes_acked;
4290 	info->tcpi_bytes_received = tp->bytes_received;
4291 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4292 	tcp_get_info_chrono_stats(tp, info);
4293 
4294 	info->tcpi_segs_out = tp->segs_out;
4295 
4296 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4297 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4298 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4299 
4300 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4301 	info->tcpi_data_segs_out = tp->data_segs_out;
4302 
4303 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4304 	rate64 = tcp_compute_delivery_rate(tp);
4305 	if (rate64)
4306 		info->tcpi_delivery_rate = rate64;
4307 	info->tcpi_delivered = tp->delivered;
4308 	info->tcpi_delivered_ce = tp->delivered_ce;
4309 	info->tcpi_bytes_sent = tp->bytes_sent;
4310 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4311 	info->tcpi_dsack_dups = tp->dsack_dups;
4312 	info->tcpi_reord_seen = tp->reord_seen;
4313 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4314 	info->tcpi_snd_wnd = tp->snd_wnd;
4315 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4316 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4317 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4318 
4319 	info->tcpi_total_rto = tp->total_rto;
4320 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4321 	info->tcpi_total_rto_time = tp->total_rto_time;
4322 	if (tp->rto_stamp)
4323 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4324 
4325 	info->tcpi_accecn_fail_mode = tp->accecn_fail_mode;
4326 	info->tcpi_accecn_opt_seen = tp->saw_accecn_opt;
4327 	info->tcpi_received_ce = tp->received_ce;
4328 	info->tcpi_delivered_e1_bytes = tp->delivered_ecn_bytes[ect1_idx];
4329 	info->tcpi_delivered_e0_bytes = tp->delivered_ecn_bytes[ect0_idx];
4330 	info->tcpi_delivered_ce_bytes = tp->delivered_ecn_bytes[ce_idx];
4331 	info->tcpi_received_e1_bytes = tp->received_ecn_bytes[ect1_idx];
4332 	info->tcpi_received_e0_bytes = tp->received_ecn_bytes[ect0_idx];
4333 	info->tcpi_received_ce_bytes = tp->received_ecn_bytes[ce_idx];
4334 
4335 	unlock_sock_fast(sk, slow);
4336 }
4337 EXPORT_SYMBOL_GPL(tcp_get_info);
4338 
4339 static size_t tcp_opt_stats_get_size(void)
4340 {
4341 	return
4342 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4343 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4344 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4345 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4346 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4347 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4348 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4349 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4350 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4351 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4352 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4353 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4354 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4355 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4356 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4357 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4358 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4359 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4360 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4361 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4362 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4363 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4364 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4365 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4366 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4367 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4368 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4369 		0;
4370 }
4371 
4372 /* Returns TTL or hop limit of an incoming packet from skb. */
4373 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4374 {
4375 	if (skb->protocol == htons(ETH_P_IP))
4376 		return ip_hdr(skb)->ttl;
4377 	else if (skb->protocol == htons(ETH_P_IPV6))
4378 		return ipv6_hdr(skb)->hop_limit;
4379 	else
4380 		return 0;
4381 }
4382 
4383 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4384 					       const struct sk_buff *orig_skb,
4385 					       const struct sk_buff *ack_skb)
4386 {
4387 	const struct tcp_sock *tp = tcp_sk(sk);
4388 	struct sk_buff *stats;
4389 	struct tcp_info info;
4390 	unsigned long rate;
4391 	u64 rate64;
4392 
4393 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4394 	if (!stats)
4395 		return NULL;
4396 
4397 	tcp_get_info_chrono_stats(tp, &info);
4398 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4399 			  info.tcpi_busy_time, TCP_NLA_PAD);
4400 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4401 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4402 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4403 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4404 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4405 			  tp->data_segs_out, TCP_NLA_PAD);
4406 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4407 			  tp->total_retrans, TCP_NLA_PAD);
4408 
4409 	rate = READ_ONCE(sk->sk_pacing_rate);
4410 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4411 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4412 
4413 	rate64 = tcp_compute_delivery_rate(tp);
4414 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4415 
4416 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4417 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4418 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4419 
4420 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS,
4421 		   READ_ONCE(inet_csk(sk)->icsk_retransmits));
4422 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4423 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4424 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4425 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4426 
4427 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4428 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4429 
4430 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4431 			  TCP_NLA_PAD);
4432 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4433 			  TCP_NLA_PAD);
4434 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4435 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4436 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4437 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4438 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4439 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4440 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4441 			  TCP_NLA_PAD);
4442 	if (ack_skb)
4443 		nla_put_u8(stats, TCP_NLA_TTL,
4444 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4445 
4446 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4447 	return stats;
4448 }
4449 
4450 int do_tcp_getsockopt(struct sock *sk, int level,
4451 		      int optname, sockptr_t optval, sockptr_t optlen)
4452 {
4453 	struct inet_connection_sock *icsk = inet_csk(sk);
4454 	struct tcp_sock *tp = tcp_sk(sk);
4455 	struct net *net = sock_net(sk);
4456 	int user_mss;
4457 	int val, len;
4458 
4459 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4460 		return -EFAULT;
4461 
4462 	if (len < 0)
4463 		return -EINVAL;
4464 
4465 	len = min_t(unsigned int, len, sizeof(int));
4466 
4467 	switch (optname) {
4468 	case TCP_MAXSEG:
4469 		val = tp->mss_cache;
4470 		user_mss = READ_ONCE(tp->rx_opt.user_mss);
4471 		if (user_mss &&
4472 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4473 			val = user_mss;
4474 		if (tp->repair)
4475 			val = tp->rx_opt.mss_clamp;
4476 		break;
4477 	case TCP_NODELAY:
4478 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4479 		break;
4480 	case TCP_CORK:
4481 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4482 		break;
4483 	case TCP_KEEPIDLE:
4484 		val = keepalive_time_when(tp) / HZ;
4485 		break;
4486 	case TCP_KEEPINTVL:
4487 		val = keepalive_intvl_when(tp) / HZ;
4488 		break;
4489 	case TCP_KEEPCNT:
4490 		val = keepalive_probes(tp);
4491 		break;
4492 	case TCP_SYNCNT:
4493 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4494 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4495 		break;
4496 	case TCP_LINGER2:
4497 		val = READ_ONCE(tp->linger2);
4498 		if (val >= 0)
4499 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4500 		break;
4501 	case TCP_DEFER_ACCEPT:
4502 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4503 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4504 				      TCP_RTO_MAX / HZ);
4505 		break;
4506 	case TCP_WINDOW_CLAMP:
4507 		val = READ_ONCE(tp->window_clamp);
4508 		break;
4509 	case TCP_INFO: {
4510 		struct tcp_info info;
4511 
4512 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4513 			return -EFAULT;
4514 
4515 		tcp_get_info(sk, &info);
4516 
4517 		len = min_t(unsigned int, len, sizeof(info));
4518 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4519 			return -EFAULT;
4520 		if (copy_to_sockptr(optval, &info, len))
4521 			return -EFAULT;
4522 		return 0;
4523 	}
4524 	case TCP_CC_INFO: {
4525 		const struct tcp_congestion_ops *ca_ops;
4526 		union tcp_cc_info info;
4527 		size_t sz = 0;
4528 		int attr;
4529 
4530 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4531 			return -EFAULT;
4532 
4533 		ca_ops = icsk->icsk_ca_ops;
4534 		if (ca_ops && ca_ops->get_info)
4535 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4536 
4537 		len = min_t(unsigned int, len, sz);
4538 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4539 			return -EFAULT;
4540 		if (copy_to_sockptr(optval, &info, len))
4541 			return -EFAULT;
4542 		return 0;
4543 	}
4544 	case TCP_QUICKACK:
4545 		val = !inet_csk_in_pingpong_mode(sk);
4546 		break;
4547 
4548 	case TCP_CONGESTION:
4549 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4550 			return -EFAULT;
4551 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4552 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4553 			return -EFAULT;
4554 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4555 			return -EFAULT;
4556 		return 0;
4557 
4558 	case TCP_ULP:
4559 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4560 			return -EFAULT;
4561 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4562 		if (!icsk->icsk_ulp_ops) {
4563 			len = 0;
4564 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4565 				return -EFAULT;
4566 			return 0;
4567 		}
4568 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4569 			return -EFAULT;
4570 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4571 			return -EFAULT;
4572 		return 0;
4573 
4574 	case TCP_FASTOPEN_KEY: {
4575 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4576 		unsigned int key_len;
4577 
4578 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4579 			return -EFAULT;
4580 
4581 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4582 				TCP_FASTOPEN_KEY_LENGTH;
4583 		len = min_t(unsigned int, len, key_len);
4584 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4585 			return -EFAULT;
4586 		if (copy_to_sockptr(optval, key, len))
4587 			return -EFAULT;
4588 		return 0;
4589 	}
4590 	case TCP_THIN_LINEAR_TIMEOUTS:
4591 		val = tp->thin_lto;
4592 		break;
4593 
4594 	case TCP_THIN_DUPACK:
4595 		val = 0;
4596 		break;
4597 
4598 	case TCP_REPAIR:
4599 		val = tp->repair;
4600 		break;
4601 
4602 	case TCP_REPAIR_QUEUE:
4603 		if (tp->repair)
4604 			val = tp->repair_queue;
4605 		else
4606 			return -EINVAL;
4607 		break;
4608 
4609 	case TCP_REPAIR_WINDOW: {
4610 		struct tcp_repair_window opt;
4611 
4612 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4613 			return -EFAULT;
4614 
4615 		if (len != sizeof(opt))
4616 			return -EINVAL;
4617 
4618 		if (!tp->repair)
4619 			return -EPERM;
4620 
4621 		opt.snd_wl1	= tp->snd_wl1;
4622 		opt.snd_wnd	= tp->snd_wnd;
4623 		opt.max_window	= tp->max_window;
4624 		opt.rcv_wnd	= tp->rcv_wnd;
4625 		opt.rcv_wup	= tp->rcv_wup;
4626 
4627 		if (copy_to_sockptr(optval, &opt, len))
4628 			return -EFAULT;
4629 		return 0;
4630 	}
4631 	case TCP_QUEUE_SEQ:
4632 		if (tp->repair_queue == TCP_SEND_QUEUE)
4633 			val = tp->write_seq;
4634 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4635 			val = tp->rcv_nxt;
4636 		else
4637 			return -EINVAL;
4638 		break;
4639 
4640 	case TCP_USER_TIMEOUT:
4641 		val = READ_ONCE(icsk->icsk_user_timeout);
4642 		break;
4643 
4644 	case TCP_FASTOPEN:
4645 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4646 		break;
4647 
4648 	case TCP_FASTOPEN_CONNECT:
4649 		val = tp->fastopen_connect;
4650 		break;
4651 
4652 	case TCP_FASTOPEN_NO_COOKIE:
4653 		val = tp->fastopen_no_cookie;
4654 		break;
4655 
4656 	case TCP_TX_DELAY:
4657 		val = READ_ONCE(tp->tcp_tx_delay);
4658 		break;
4659 
4660 	case TCP_TIMESTAMP:
4661 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4662 		if (tp->tcp_usec_ts)
4663 			val |= 1;
4664 		else
4665 			val &= ~1;
4666 		break;
4667 	case TCP_NOTSENT_LOWAT:
4668 		val = READ_ONCE(tp->notsent_lowat);
4669 		break;
4670 	case TCP_INQ:
4671 		val = tp->recvmsg_inq;
4672 		break;
4673 	case TCP_SAVE_SYN:
4674 		val = tp->save_syn;
4675 		break;
4676 	case TCP_SAVED_SYN: {
4677 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4678 			return -EFAULT;
4679 
4680 		sockopt_lock_sock(sk);
4681 		if (tp->saved_syn) {
4682 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4683 				len = tcp_saved_syn_len(tp->saved_syn);
4684 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4685 					sockopt_release_sock(sk);
4686 					return -EFAULT;
4687 				}
4688 				sockopt_release_sock(sk);
4689 				return -EINVAL;
4690 			}
4691 			len = tcp_saved_syn_len(tp->saved_syn);
4692 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4693 				sockopt_release_sock(sk);
4694 				return -EFAULT;
4695 			}
4696 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4697 				sockopt_release_sock(sk);
4698 				return -EFAULT;
4699 			}
4700 			tcp_saved_syn_free(tp);
4701 			sockopt_release_sock(sk);
4702 		} else {
4703 			sockopt_release_sock(sk);
4704 			len = 0;
4705 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4706 				return -EFAULT;
4707 		}
4708 		return 0;
4709 	}
4710 #ifdef CONFIG_MMU
4711 	case TCP_ZEROCOPY_RECEIVE: {
4712 		struct scm_timestamping_internal tss;
4713 		struct tcp_zerocopy_receive zc = {};
4714 		int err;
4715 
4716 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4717 			return -EFAULT;
4718 		if (len < 0 ||
4719 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4720 			return -EINVAL;
4721 		if (unlikely(len > sizeof(zc))) {
4722 			err = check_zeroed_sockptr(optval, sizeof(zc),
4723 						   len - sizeof(zc));
4724 			if (err < 1)
4725 				return err == 0 ? -EINVAL : err;
4726 			len = sizeof(zc);
4727 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4728 				return -EFAULT;
4729 		}
4730 		if (copy_from_sockptr(&zc, optval, len))
4731 			return -EFAULT;
4732 		if (zc.reserved)
4733 			return -EINVAL;
4734 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4735 			return -EINVAL;
4736 		sockopt_lock_sock(sk);
4737 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4738 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4739 							  &zc, &len, err);
4740 		sockopt_release_sock(sk);
4741 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4742 			goto zerocopy_rcv_cmsg;
4743 		switch (len) {
4744 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4745 			goto zerocopy_rcv_cmsg;
4746 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4747 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4748 		case offsetofend(struct tcp_zerocopy_receive, flags):
4749 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4750 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4751 		case offsetofend(struct tcp_zerocopy_receive, err):
4752 			goto zerocopy_rcv_sk_err;
4753 		case offsetofend(struct tcp_zerocopy_receive, inq):
4754 			goto zerocopy_rcv_inq;
4755 		case offsetofend(struct tcp_zerocopy_receive, length):
4756 		default:
4757 			goto zerocopy_rcv_out;
4758 		}
4759 zerocopy_rcv_cmsg:
4760 		if (zc.msg_flags & TCP_CMSG_TS)
4761 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4762 		else
4763 			zc.msg_flags = 0;
4764 zerocopy_rcv_sk_err:
4765 		if (!err)
4766 			zc.err = sock_error(sk);
4767 zerocopy_rcv_inq:
4768 		zc.inq = tcp_inq_hint(sk);
4769 zerocopy_rcv_out:
4770 		if (!err && copy_to_sockptr(optval, &zc, len))
4771 			err = -EFAULT;
4772 		return err;
4773 	}
4774 #endif
4775 	case TCP_AO_REPAIR:
4776 		if (!tcp_can_repair_sock(sk))
4777 			return -EPERM;
4778 		return tcp_ao_get_repair(sk, optval, optlen);
4779 	case TCP_AO_GET_KEYS:
4780 	case TCP_AO_INFO: {
4781 		int err;
4782 
4783 		sockopt_lock_sock(sk);
4784 		if (optname == TCP_AO_GET_KEYS)
4785 			err = tcp_ao_get_mkts(sk, optval, optlen);
4786 		else
4787 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4788 		sockopt_release_sock(sk);
4789 
4790 		return err;
4791 	}
4792 	case TCP_IS_MPTCP:
4793 		val = 0;
4794 		break;
4795 	case TCP_RTO_MAX_MS:
4796 		val = jiffies_to_msecs(tcp_rto_max(sk));
4797 		break;
4798 	case TCP_RTO_MIN_US:
4799 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4800 		break;
4801 	case TCP_DELACK_MAX_US:
4802 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4803 		break;
4804 	default:
4805 		return -ENOPROTOOPT;
4806 	}
4807 
4808 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4809 		return -EFAULT;
4810 	if (copy_to_sockptr(optval, &val, len))
4811 		return -EFAULT;
4812 	return 0;
4813 }
4814 
4815 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4816 {
4817 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4818 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4819 	 */
4820 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4821 		return true;
4822 
4823 	return false;
4824 }
4825 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4826 
4827 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4828 		   int __user *optlen)
4829 {
4830 	struct inet_connection_sock *icsk = inet_csk(sk);
4831 
4832 	if (level != SOL_TCP)
4833 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4834 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4835 								optval, optlen);
4836 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4837 				 USER_SOCKPTR(optlen));
4838 }
4839 EXPORT_IPV6_MOD(tcp_getsockopt);
4840 
4841 #ifdef CONFIG_TCP_MD5SIG
4842 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
4843 			   unsigned int header_len)
4844 {
4845 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4846 					   skb_headlen(skb) - header_len : 0;
4847 	const struct skb_shared_info *shi = skb_shinfo(skb);
4848 	struct sk_buff *frag_iter;
4849 	unsigned int i;
4850 
4851 	md5_update(ctx, (const u8 *)tcp_hdr(skb) + header_len, head_data_len);
4852 
4853 	for (i = 0; i < shi->nr_frags; ++i) {
4854 		const skb_frag_t *f = &shi->frags[i];
4855 		u32 p_off, p_len, copied;
4856 		const void *vaddr;
4857 		struct page *p;
4858 
4859 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
4860 				      p, p_off, p_len, copied) {
4861 			vaddr = kmap_local_page(p);
4862 			md5_update(ctx, vaddr + p_off, p_len);
4863 			kunmap_local(vaddr);
4864 		}
4865 	}
4866 
4867 	skb_walk_frags(skb, frag_iter)
4868 		tcp_md5_hash_skb_data(ctx, frag_iter, 0);
4869 }
4870 EXPORT_IPV6_MOD(tcp_md5_hash_skb_data);
4871 
4872 void tcp_md5_hash_key(struct md5_ctx *ctx,
4873 		      const struct tcp_md5sig_key *key)
4874 {
4875 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4876 
4877 	/* We use data_race() because tcp_md5_do_add() might change
4878 	 * key->key under us
4879 	 */
4880 	data_race(({ md5_update(ctx, key->key, keylen), 0; }));
4881 }
4882 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4883 
4884 /* Called with rcu_read_lock() */
4885 static enum skb_drop_reason
4886 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4887 		     const void *saddr, const void *daddr,
4888 		     int family, int l3index, const __u8 *hash_location)
4889 {
4890 	/* This gets called for each TCP segment that has TCP-MD5 option.
4891 	 * We have 2 drop cases:
4892 	 * o An MD5 signature is present, but we're not expecting one.
4893 	 * o The MD5 signature is wrong.
4894 	 */
4895 	const struct tcp_sock *tp = tcp_sk(sk);
4896 	struct tcp_md5sig_key *key;
4897 	u8 newhash[16];
4898 
4899 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4900 	if (!key) {
4901 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4902 		trace_tcp_hash_md5_unexpected(sk, skb);
4903 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4904 	}
4905 
4906 	/* Check the signature.
4907 	 * To support dual stack listeners, we need to handle
4908 	 * IPv4-mapped case.
4909 	 */
4910 	if (family == AF_INET)
4911 		tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4912 	else
4913 		tp->af_specific->calc_md5_hash(newhash, key, NULL, skb);
4914 	if (memcmp(hash_location, newhash, 16) != 0) {
4915 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4916 		trace_tcp_hash_md5_mismatch(sk, skb);
4917 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4918 	}
4919 	return SKB_NOT_DROPPED_YET;
4920 }
4921 #else
4922 static inline enum skb_drop_reason
4923 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4924 		     const void *saddr, const void *daddr,
4925 		     int family, int l3index, const __u8 *hash_location)
4926 {
4927 	return SKB_NOT_DROPPED_YET;
4928 }
4929 
4930 #endif
4931 
4932 /* Called with rcu_read_lock() */
4933 enum skb_drop_reason
4934 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4935 		 const struct sk_buff *skb,
4936 		 const void *saddr, const void *daddr,
4937 		 int family, int dif, int sdif)
4938 {
4939 	const struct tcphdr *th = tcp_hdr(skb);
4940 	const struct tcp_ao_hdr *aoh;
4941 	const __u8 *md5_location;
4942 	int l3index;
4943 
4944 	/* Invalid option or two times meet any of auth options */
4945 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4946 		trace_tcp_hash_bad_header(sk, skb);
4947 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4948 	}
4949 
4950 	if (req) {
4951 		if (tcp_rsk_used_ao(req) != !!aoh) {
4952 			u8 keyid, rnext, maclen;
4953 
4954 			if (aoh) {
4955 				keyid = aoh->keyid;
4956 				rnext = aoh->rnext_keyid;
4957 				maclen = tcp_ao_hdr_maclen(aoh);
4958 			} else {
4959 				keyid = rnext = maclen = 0;
4960 			}
4961 
4962 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4963 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4964 			return SKB_DROP_REASON_TCP_AOFAILURE;
4965 		}
4966 	}
4967 
4968 	/* sdif set, means packet ingressed via a device
4969 	 * in an L3 domain and dif is set to the l3mdev
4970 	 */
4971 	l3index = sdif ? dif : 0;
4972 
4973 	/* Fast path: unsigned segments */
4974 	if (likely(!md5_location && !aoh)) {
4975 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4976 		 * for the remote peer. On TCP-AO established connection
4977 		 * the last key is impossible to remove, so there's
4978 		 * always at least one current_key.
4979 		 */
4980 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4981 			trace_tcp_hash_ao_required(sk, skb);
4982 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4983 		}
4984 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4985 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4986 			trace_tcp_hash_md5_required(sk, skb);
4987 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4988 		}
4989 		return SKB_NOT_DROPPED_YET;
4990 	}
4991 
4992 	if (aoh)
4993 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4994 
4995 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4996 				    l3index, md5_location);
4997 }
4998 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4999 
5000 void tcp_done(struct sock *sk)
5001 {
5002 	struct request_sock *req;
5003 
5004 	/* We might be called with a new socket, after
5005 	 * inet_csk_prepare_forced_close() has been called
5006 	 * so we can not use lockdep_sock_is_held(sk)
5007 	 */
5008 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
5009 
5010 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
5011 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
5012 
5013 	tcp_set_state(sk, TCP_CLOSE);
5014 	tcp_clear_xmit_timers(sk);
5015 	if (req)
5016 		reqsk_fastopen_remove(sk, req, false);
5017 
5018 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
5019 
5020 	if (!sock_flag(sk, SOCK_DEAD))
5021 		sk->sk_state_change(sk);
5022 	else
5023 		inet_csk_destroy_sock(sk);
5024 }
5025 EXPORT_SYMBOL_GPL(tcp_done);
5026 
5027 int tcp_abort(struct sock *sk, int err)
5028 {
5029 	int state = inet_sk_state_load(sk);
5030 
5031 	if (state == TCP_NEW_SYN_RECV) {
5032 		struct request_sock *req = inet_reqsk(sk);
5033 
5034 		local_bh_disable();
5035 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
5036 		local_bh_enable();
5037 		return 0;
5038 	}
5039 	if (state == TCP_TIME_WAIT) {
5040 		struct inet_timewait_sock *tw = inet_twsk(sk);
5041 
5042 		refcount_inc(&tw->tw_refcnt);
5043 		local_bh_disable();
5044 		inet_twsk_deschedule_put(tw);
5045 		local_bh_enable();
5046 		return 0;
5047 	}
5048 
5049 	/* BPF context ensures sock locking. */
5050 	if (!has_current_bpf_ctx())
5051 		/* Don't race with userspace socket closes such as tcp_close. */
5052 		lock_sock(sk);
5053 
5054 	/* Avoid closing the same socket twice. */
5055 	if (sk->sk_state == TCP_CLOSE) {
5056 		if (!has_current_bpf_ctx())
5057 			release_sock(sk);
5058 		return -ENOENT;
5059 	}
5060 
5061 	if (sk->sk_state == TCP_LISTEN) {
5062 		tcp_set_state(sk, TCP_CLOSE);
5063 		inet_csk_listen_stop(sk);
5064 	}
5065 
5066 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
5067 	local_bh_disable();
5068 	bh_lock_sock(sk);
5069 
5070 	if (tcp_need_reset(sk->sk_state))
5071 		tcp_send_active_reset(sk, GFP_ATOMIC,
5072 				      SK_RST_REASON_TCP_STATE);
5073 	tcp_done_with_error(sk, err);
5074 
5075 	bh_unlock_sock(sk);
5076 	local_bh_enable();
5077 	if (!has_current_bpf_ctx())
5078 		release_sock(sk);
5079 	return 0;
5080 }
5081 EXPORT_SYMBOL_GPL(tcp_abort);
5082 
5083 extern struct tcp_congestion_ops tcp_reno;
5084 
5085 static __initdata unsigned long thash_entries;
5086 static int __init set_thash_entries(char *str)
5087 {
5088 	ssize_t ret;
5089 
5090 	if (!str)
5091 		return 0;
5092 
5093 	ret = kstrtoul(str, 0, &thash_entries);
5094 	if (ret)
5095 		return 0;
5096 
5097 	return 1;
5098 }
5099 __setup("thash_entries=", set_thash_entries);
5100 
5101 static void __init tcp_init_mem(void)
5102 {
5103 	unsigned long limit = nr_free_buffer_pages() / 16;
5104 
5105 	limit = max(limit, 128UL);
5106 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5107 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5108 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5109 }
5110 
5111 static void __init tcp_struct_check(void)
5112 {
5113 	/* TX read-mostly hotpath cache lines */
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5118 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5120 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5121 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, tcp_clean_acked);
5122 #endif
5123 
5124 	/* TXRX read-mostly hotpath cache lines */
5125 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5126 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5127 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5128 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5129 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5130 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5131 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5132 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5133 
5134 	/* RX read-mostly hotpath cache lines */
5135 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5136 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5137 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5138 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5139 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5140 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5141 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5142 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5143 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5144 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5145 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5146 
5147 	/* TX read-write hotpath cache lines */
5148 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5149 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5150 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5151 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5152 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5153 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5154 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5155 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5156 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5157 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5158 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5159 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, accecn_opt_tstamp);
5160 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5161 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5162 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5163 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5164 
5165 	/* TXRX read-write hotpath cache lines */
5166 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5167 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5168 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5169 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5170 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5171 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5172 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5173 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5174 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5175 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5176 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5177 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5178 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ce);
5179 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ecn_bytes);
5180 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5181 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5182 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_tstamp);
5183 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5184 
5185 	/* RX read-write hotpath cache lines */
5186 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5187 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5188 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5189 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5190 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5191 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5192 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5193 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5194 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5195 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_ecn_bytes);
5196 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5197 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5198 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5199 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5200 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5201 }
5202 
5203 void __init tcp_init(void)
5204 {
5205 	int max_rshare, max_wshare, cnt;
5206 	unsigned long limit;
5207 	unsigned int i;
5208 
5209 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5210 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5211 		     sizeof_field(struct sk_buff, cb));
5212 
5213 	tcp_struct_check();
5214 
5215 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5216 
5217 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5218 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5219 
5220 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5221 			    thash_entries, 21,  /* one slot per 2 MB*/
5222 			    0, 64 * 1024);
5223 	tcp_hashinfo.bind_bucket_cachep =
5224 		kmem_cache_create("tcp_bind_bucket",
5225 				  sizeof(struct inet_bind_bucket), 0,
5226 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5227 				  SLAB_ACCOUNT,
5228 				  NULL);
5229 	tcp_hashinfo.bind2_bucket_cachep =
5230 		kmem_cache_create("tcp_bind2_bucket",
5231 				  sizeof(struct inet_bind2_bucket), 0,
5232 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5233 				  SLAB_ACCOUNT,
5234 				  NULL);
5235 
5236 	/* Size and allocate the main established and bind bucket
5237 	 * hash tables.
5238 	 *
5239 	 * The methodology is similar to that of the buffer cache.
5240 	 */
5241 	tcp_hashinfo.ehash =
5242 		alloc_large_system_hash("TCP established",
5243 					sizeof(struct inet_ehash_bucket),
5244 					thash_entries,
5245 					17, /* one slot per 128 KB of memory */
5246 					0,
5247 					NULL,
5248 					&tcp_hashinfo.ehash_mask,
5249 					0,
5250 					thash_entries ? 0 : 512 * 1024);
5251 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5252 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5253 
5254 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5255 		panic("TCP: failed to alloc ehash_locks");
5256 	tcp_hashinfo.bhash =
5257 		alloc_large_system_hash("TCP bind",
5258 					2 * sizeof(struct inet_bind_hashbucket),
5259 					tcp_hashinfo.ehash_mask + 1,
5260 					17, /* one slot per 128 KB of memory */
5261 					0,
5262 					&tcp_hashinfo.bhash_size,
5263 					NULL,
5264 					0,
5265 					64 * 1024);
5266 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5267 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5268 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5269 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5270 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5271 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5272 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5273 	}
5274 
5275 	tcp_hashinfo.pernet = false;
5276 
5277 	cnt = tcp_hashinfo.ehash_mask + 1;
5278 	sysctl_tcp_max_orphans = cnt / 2;
5279 
5280 	tcp_init_mem();
5281 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5282 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5283 	max_wshare = min(4UL*1024*1024, limit);
5284 	max_rshare = min(32UL*1024*1024, limit);
5285 
5286 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5287 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5288 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5289 
5290 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5291 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5292 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5293 
5294 	pr_info("Hash tables configured (established %u bind %u)\n",
5295 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5296 
5297 	tcp_v4_init();
5298 	tcp_metrics_init();
5299 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5300 	tcp_tsq_work_init();
5301 	mptcp_init();
5302 }
5303