xref: /linux/net/ipv4/syncookies.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  Syncookies implementation for the Linux kernel
3  *
4  *  Copyright (C) 1997 Andi Kleen
5  *  Based on ideas by D.J.Bernstein and Eric Schenk.
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/siphash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/secure_seq.h>
20 #include <net/tcp.h>
21 #include <net/route.h>
22 
23 static siphash_key_t syncookie_secret[2] __read_mostly;
24 
25 #define COOKIEBITS 24	/* Upper bits store count */
26 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
27 
28 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
29  * stores TCP options:
30  *
31  * MSB                               LSB
32  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
33  * |  Timestamp | ECN | SACK | WScale  |
34  *
35  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
36  * any) to figure out which TCP options we should use for the rebuilt
37  * connection.
38  *
39  * A WScale setting of '0xf' (which is an invalid scaling value)
40  * means that original syn did not include the TCP window scaling option.
41  */
42 #define TS_OPT_WSCALE_MASK	0xf
43 #define TS_OPT_SACK		BIT(4)
44 #define TS_OPT_ECN		BIT(5)
45 /* There is no TS_OPT_TIMESTAMP:
46  * if ACK contains timestamp option, we already know it was
47  * requested/supported by the syn/synack exchange.
48  */
49 #define TSBITS	6
50 #define TSMASK	(((__u32)1 << TSBITS) - 1)
51 
52 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
53 		       u32 count, int c)
54 {
55 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
56 	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
57 			    (__force u32)sport << 16 | (__force u32)dport,
58 			    count, &syncookie_secret[c]);
59 }
60 
61 
62 /*
63  * when syncookies are in effect and tcp timestamps are enabled we encode
64  * tcp options in the lower bits of the timestamp value that will be
65  * sent in the syn-ack.
66  * Since subsequent timestamps use the normal tcp_time_stamp value, we
67  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
68  */
69 __u32 cookie_init_timestamp(struct request_sock *req)
70 {
71 	struct inet_request_sock *ireq;
72 	u32 ts, ts_now = tcp_time_stamp;
73 	u32 options = 0;
74 
75 	ireq = inet_rsk(req);
76 
77 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
78 	if (ireq->sack_ok)
79 		options |= TS_OPT_SACK;
80 	if (ireq->ecn_ok)
81 		options |= TS_OPT_ECN;
82 
83 	ts = ts_now & ~TSMASK;
84 	ts |= options;
85 	if (ts > ts_now) {
86 		ts >>= TSBITS;
87 		ts--;
88 		ts <<= TSBITS;
89 		ts |= options;
90 	}
91 	return ts;
92 }
93 
94 
95 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
96 				   __be16 dport, __u32 sseq, __u32 data)
97 {
98 	/*
99 	 * Compute the secure sequence number.
100 	 * The output should be:
101 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
102 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
103 	 * Where sseq is their sequence number and count increases every
104 	 * minute by 1.
105 	 * As an extra hack, we add a small "data" value that encodes the
106 	 * MSS into the second hash value.
107 	 */
108 	u32 count = tcp_cookie_time();
109 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
110 		sseq + (count << COOKIEBITS) +
111 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
112 		 & COOKIEMASK));
113 }
114 
115 /*
116  * This retrieves the small "data" value from the syncookie.
117  * If the syncookie is bad, the data returned will be out of
118  * range.  This must be checked by the caller.
119  *
120  * The count value used to generate the cookie must be less than
121  * MAX_SYNCOOKIE_AGE minutes in the past.
122  * The return value (__u32)-1 if this test fails.
123  */
124 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
125 				  __be16 sport, __be16 dport, __u32 sseq)
126 {
127 	u32 diff, count = tcp_cookie_time();
128 
129 	/* Strip away the layers from the cookie */
130 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
131 
132 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
133 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
134 	if (diff >= MAX_SYNCOOKIE_AGE)
135 		return (__u32)-1;
136 
137 	return (cookie -
138 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
139 		& COOKIEMASK;	/* Leaving the data behind */
140 }
141 
142 /*
143  * MSS Values are chosen based on the 2011 paper
144  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
145  * Values ..
146  *  .. lower than 536 are rare (< 0.2%)
147  *  .. between 537 and 1299 account for less than < 1.5% of observed values
148  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
149  *  .. exceeding 1460 are very rare (< 0.04%)
150  *
151  *  1460 is the single most frequently announced mss value (30 to 46% depending
152  *  on monitor location).  Table must be sorted.
153  */
154 static __u16 const msstab[] = {
155 	536,
156 	1300,
157 	1440,	/* 1440, 1452: PPPoE */
158 	1460,
159 };
160 
161 /*
162  * Generate a syncookie.  mssp points to the mss, which is returned
163  * rounded down to the value encoded in the cookie.
164  */
165 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
166 			      u16 *mssp)
167 {
168 	int mssind;
169 	const __u16 mss = *mssp;
170 
171 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
172 		if (mss >= msstab[mssind])
173 			break;
174 	*mssp = msstab[mssind];
175 
176 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
177 				     th->source, th->dest, ntohl(th->seq),
178 				     mssind);
179 }
180 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
181 
182 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
183 {
184 	const struct iphdr *iph = ip_hdr(skb);
185 	const struct tcphdr *th = tcp_hdr(skb);
186 
187 	return __cookie_v4_init_sequence(iph, th, mssp);
188 }
189 
190 /*
191  * Check if a ack sequence number is a valid syncookie.
192  * Return the decoded mss if it is, or 0 if not.
193  */
194 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
195 		      u32 cookie)
196 {
197 	__u32 seq = ntohl(th->seq) - 1;
198 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
199 					    th->source, th->dest, seq);
200 
201 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
202 }
203 EXPORT_SYMBOL_GPL(__cookie_v4_check);
204 
205 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
206 				 struct request_sock *req,
207 				 struct dst_entry *dst, u32 tsoff)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	struct sock *child;
211 	bool own_req;
212 
213 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
214 						 NULL, &own_req);
215 	if (child) {
216 		atomic_set(&req->rsk_refcnt, 1);
217 		tcp_sk(child)->tsoffset = tsoff;
218 		sock_rps_save_rxhash(child, skb);
219 		inet_csk_reqsk_queue_add(sk, req, child);
220 	} else {
221 		reqsk_free(req);
222 	}
223 	return child;
224 }
225 EXPORT_SYMBOL(tcp_get_cookie_sock);
226 
227 /*
228  * when syncookies are in effect and tcp timestamps are enabled we stored
229  * additional tcp options in the timestamp.
230  * This extracts these options from the timestamp echo.
231  *
232  * return false if we decode a tcp option that is disabled
233  * on the host.
234  */
235 bool cookie_timestamp_decode(struct tcp_options_received *tcp_opt)
236 {
237 	/* echoed timestamp, lowest bits contain options */
238 	u32 options = tcp_opt->rcv_tsecr;
239 
240 	if (!tcp_opt->saw_tstamp)  {
241 		tcp_clear_options(tcp_opt);
242 		return true;
243 	}
244 
245 	if (!sysctl_tcp_timestamps)
246 		return false;
247 
248 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
249 
250 	if (tcp_opt->sack_ok && !sysctl_tcp_sack)
251 		return false;
252 
253 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
254 		return true; /* no window scaling */
255 
256 	tcp_opt->wscale_ok = 1;
257 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
258 
259 	return sysctl_tcp_window_scaling != 0;
260 }
261 EXPORT_SYMBOL(cookie_timestamp_decode);
262 
263 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
264 		   const struct net *net, const struct dst_entry *dst)
265 {
266 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
267 
268 	if (!ecn_ok)
269 		return false;
270 
271 	if (net->ipv4.sysctl_tcp_ecn)
272 		return true;
273 
274 	return dst_feature(dst, RTAX_FEATURE_ECN);
275 }
276 EXPORT_SYMBOL(cookie_ecn_ok);
277 
278 /* On input, sk is a listener.
279  * Output is listener if incoming packet would not create a child
280  *           NULL if memory could not be allocated.
281  */
282 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
283 {
284 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
285 	struct tcp_options_received tcp_opt;
286 	struct inet_request_sock *ireq;
287 	struct tcp_request_sock *treq;
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	const struct tcphdr *th = tcp_hdr(skb);
290 	__u32 cookie = ntohl(th->ack_seq) - 1;
291 	struct sock *ret = sk;
292 	struct request_sock *req;
293 	int mss;
294 	struct rtable *rt;
295 	__u8 rcv_wscale;
296 	struct flowi4 fl4;
297 	u32 tsoff = 0;
298 
299 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
300 		goto out;
301 
302 	if (tcp_synq_no_recent_overflow(sk))
303 		goto out;
304 
305 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
306 	if (mss == 0) {
307 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
308 		goto out;
309 	}
310 
311 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
312 
313 	/* check for timestamp cookie support */
314 	memset(&tcp_opt, 0, sizeof(tcp_opt));
315 	tcp_parse_options(skb, &tcp_opt, 0, NULL);
316 
317 	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
318 		tsoff = secure_tcp_ts_off(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
319 		tcp_opt.rcv_tsecr -= tsoff;
320 	}
321 
322 	if (!cookie_timestamp_decode(&tcp_opt))
323 		goto out;
324 
325 	ret = NULL;
326 	req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
327 	if (!req)
328 		goto out;
329 
330 	ireq = inet_rsk(req);
331 	treq = tcp_rsk(req);
332 	treq->rcv_isn		= ntohl(th->seq) - 1;
333 	treq->snt_isn		= cookie;
334 	treq->ts_off		= 0;
335 	req->mss		= mss;
336 	ireq->ir_num		= ntohs(th->dest);
337 	ireq->ir_rmt_port	= th->source;
338 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
339 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
340 	ireq->ir_mark		= inet_request_mark(sk, skb);
341 	ireq->snd_wscale	= tcp_opt.snd_wscale;
342 	ireq->sack_ok		= tcp_opt.sack_ok;
343 	ireq->wscale_ok		= tcp_opt.wscale_ok;
344 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
345 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
346 	treq->snt_synack.v64	= 0;
347 	treq->tfo_listener	= false;
348 
349 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
350 
351 	/* We throwed the options of the initial SYN away, so we hope
352 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
353 	 */
354 	ireq->opt = tcp_v4_save_options(skb);
355 
356 	if (security_inet_conn_request(sk, skb, req)) {
357 		reqsk_free(req);
358 		goto out;
359 	}
360 
361 	req->num_retrans = 0;
362 
363 	/*
364 	 * We need to lookup the route here to get at the correct
365 	 * window size. We should better make sure that the window size
366 	 * hasn't changed since we received the original syn, but I see
367 	 * no easy way to do this.
368 	 */
369 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
370 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
371 			   inet_sk_flowi_flags(sk),
372 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
373 			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
374 	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
375 	rt = ip_route_output_key(sock_net(sk), &fl4);
376 	if (IS_ERR(rt)) {
377 		reqsk_free(req);
378 		goto out;
379 	}
380 
381 	/* Try to redo what tcp_v4_send_synack did. */
382 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
383 
384 	tcp_select_initial_window(tcp_full_space(sk), req->mss,
385 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
386 				  ireq->wscale_ok, &rcv_wscale,
387 				  dst_metric(&rt->dst, RTAX_INITRWND));
388 
389 	ireq->rcv_wscale  = rcv_wscale;
390 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
391 
392 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
393 	/* ip_queue_xmit() depends on our flow being setup
394 	 * Normal sockets get it right from inet_csk_route_child_sock()
395 	 */
396 	if (ret)
397 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
398 out:	return ret;
399 }
400