1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Syncookies implementation for the Linux kernel 4 * 5 * Copyright (C) 1997 Andi Kleen 6 * Based on ideas by D.J.Bernstein and Eric Schenk. 7 */ 8 9 #include <linux/tcp.h> 10 #include <linux/siphash.h> 11 #include <linux/kernel.h> 12 #include <linux/export.h> 13 #include <net/secure_seq.h> 14 #include <net/tcp.h> 15 #include <net/route.h> 16 17 static siphash_aligned_key_t syncookie_secret[2]; 18 19 #define COOKIEBITS 24 /* Upper bits store count */ 20 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1) 21 22 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK 23 * stores TCP options: 24 * 25 * MSB LSB 26 * | 31 ... 6 | 5 | 4 | 3 2 1 0 | 27 * | Timestamp | ECN | SACK | WScale | 28 * 29 * When we receive a valid cookie-ACK, we look at the echoed tsval (if 30 * any) to figure out which TCP options we should use for the rebuilt 31 * connection. 32 * 33 * A WScale setting of '0xf' (which is an invalid scaling value) 34 * means that original syn did not include the TCP window scaling option. 35 */ 36 #define TS_OPT_WSCALE_MASK 0xf 37 #define TS_OPT_SACK BIT(4) 38 #define TS_OPT_ECN BIT(5) 39 /* There is no TS_OPT_TIMESTAMP: 40 * if ACK contains timestamp option, we already know it was 41 * requested/supported by the syn/synack exchange. 42 */ 43 #define TSBITS 6 44 #define TSMASK (((__u32)1 << TSBITS) - 1) 45 46 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport, 47 u32 count, int c) 48 { 49 net_get_random_once(syncookie_secret, sizeof(syncookie_secret)); 50 return siphash_4u32((__force u32)saddr, (__force u32)daddr, 51 (__force u32)sport << 16 | (__force u32)dport, 52 count, &syncookie_secret[c]); 53 } 54 55 56 /* 57 * when syncookies are in effect and tcp timestamps are enabled we encode 58 * tcp options in the lower bits of the timestamp value that will be 59 * sent in the syn-ack. 60 * Since subsequent timestamps use the normal tcp_time_stamp value, we 61 * must make sure that the resulting initial timestamp is <= tcp_time_stamp. 62 */ 63 u64 cookie_init_timestamp(struct request_sock *req, u64 now) 64 { 65 struct inet_request_sock *ireq; 66 u32 ts, ts_now = tcp_ns_to_ts(now); 67 u32 options = 0; 68 69 ireq = inet_rsk(req); 70 71 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK; 72 if (ireq->sack_ok) 73 options |= TS_OPT_SACK; 74 if (ireq->ecn_ok) 75 options |= TS_OPT_ECN; 76 77 ts = ts_now & ~TSMASK; 78 ts |= options; 79 if (ts > ts_now) { 80 ts >>= TSBITS; 81 ts--; 82 ts <<= TSBITS; 83 ts |= options; 84 } 85 return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ); 86 } 87 88 89 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport, 90 __be16 dport, __u32 sseq, __u32 data) 91 { 92 /* 93 * Compute the secure sequence number. 94 * The output should be: 95 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24) 96 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24). 97 * Where sseq is their sequence number and count increases every 98 * minute by 1. 99 * As an extra hack, we add a small "data" value that encodes the 100 * MSS into the second hash value. 101 */ 102 u32 count = tcp_cookie_time(); 103 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) + 104 sseq + (count << COOKIEBITS) + 105 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data) 106 & COOKIEMASK)); 107 } 108 109 /* 110 * This retrieves the small "data" value from the syncookie. 111 * If the syncookie is bad, the data returned will be out of 112 * range. This must be checked by the caller. 113 * 114 * The count value used to generate the cookie must be less than 115 * MAX_SYNCOOKIE_AGE minutes in the past. 116 * The return value (__u32)-1 if this test fails. 117 */ 118 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr, 119 __be16 sport, __be16 dport, __u32 sseq) 120 { 121 u32 diff, count = tcp_cookie_time(); 122 123 /* Strip away the layers from the cookie */ 124 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq; 125 126 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */ 127 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS); 128 if (diff >= MAX_SYNCOOKIE_AGE) 129 return (__u32)-1; 130 131 return (cookie - 132 cookie_hash(saddr, daddr, sport, dport, count - diff, 1)) 133 & COOKIEMASK; /* Leaving the data behind */ 134 } 135 136 /* 137 * MSS Values are chosen based on the 2011 paper 138 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson. 139 * Values .. 140 * .. lower than 536 are rare (< 0.2%) 141 * .. between 537 and 1299 account for less than < 1.5% of observed values 142 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values 143 * .. exceeding 1460 are very rare (< 0.04%) 144 * 145 * 1460 is the single most frequently announced mss value (30 to 46% depending 146 * on monitor location). Table must be sorted. 147 */ 148 static __u16 const msstab[] = { 149 536, 150 1300, 151 1440, /* 1440, 1452: PPPoE */ 152 1460, 153 }; 154 155 /* 156 * Generate a syncookie. mssp points to the mss, which is returned 157 * rounded down to the value encoded in the cookie. 158 */ 159 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 160 u16 *mssp) 161 { 162 int mssind; 163 const __u16 mss = *mssp; 164 165 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--) 166 if (mss >= msstab[mssind]) 167 break; 168 *mssp = msstab[mssind]; 169 170 return secure_tcp_syn_cookie(iph->saddr, iph->daddr, 171 th->source, th->dest, ntohl(th->seq), 172 mssind); 173 } 174 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence); 175 176 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp) 177 { 178 const struct iphdr *iph = ip_hdr(skb); 179 const struct tcphdr *th = tcp_hdr(skb); 180 181 return __cookie_v4_init_sequence(iph, th, mssp); 182 } 183 184 /* 185 * Check if a ack sequence number is a valid syncookie. 186 * Return the decoded mss if it is, or 0 if not. 187 */ 188 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 189 u32 cookie) 190 { 191 __u32 seq = ntohl(th->seq) - 1; 192 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr, 193 th->source, th->dest, seq); 194 195 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0; 196 } 197 EXPORT_SYMBOL_GPL(__cookie_v4_check); 198 199 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 200 struct request_sock *req, 201 struct dst_entry *dst, u32 tsoff) 202 { 203 struct inet_connection_sock *icsk = inet_csk(sk); 204 struct sock *child; 205 bool own_req; 206 207 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst, 208 NULL, &own_req); 209 if (child) { 210 refcount_set(&req->rsk_refcnt, 1); 211 tcp_sk(child)->tsoffset = tsoff; 212 sock_rps_save_rxhash(child, skb); 213 214 if (rsk_drop_req(req)) { 215 reqsk_put(req); 216 return child; 217 } 218 219 if (inet_csk_reqsk_queue_add(sk, req, child)) 220 return child; 221 222 bh_unlock_sock(child); 223 sock_put(child); 224 } 225 __reqsk_free(req); 226 227 return NULL; 228 } 229 EXPORT_SYMBOL(tcp_get_cookie_sock); 230 231 /* 232 * when syncookies are in effect and tcp timestamps are enabled we stored 233 * additional tcp options in the timestamp. 234 * This extracts these options from the timestamp echo. 235 * 236 * return false if we decode a tcp option that is disabled 237 * on the host. 238 */ 239 bool cookie_timestamp_decode(const struct net *net, 240 struct tcp_options_received *tcp_opt) 241 { 242 /* echoed timestamp, lowest bits contain options */ 243 u32 options = tcp_opt->rcv_tsecr; 244 245 if (!tcp_opt->saw_tstamp) { 246 tcp_clear_options(tcp_opt); 247 return true; 248 } 249 250 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps)) 251 return false; 252 253 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0; 254 255 if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack)) 256 return false; 257 258 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK) 259 return true; /* no window scaling */ 260 261 tcp_opt->wscale_ok = 1; 262 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK; 263 264 return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0; 265 } 266 EXPORT_SYMBOL(cookie_timestamp_decode); 267 268 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt, 269 const struct net *net, const struct dst_entry *dst) 270 { 271 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN; 272 273 if (!ecn_ok) 274 return false; 275 276 if (READ_ONCE(net->ipv4.sysctl_tcp_ecn)) 277 return true; 278 279 return dst_feature(dst, RTAX_FEATURE_ECN); 280 } 281 EXPORT_SYMBOL(cookie_ecn_ok); 282 283 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 284 const struct tcp_request_sock_ops *af_ops, 285 struct sock *sk, 286 struct sk_buff *skb) 287 { 288 struct tcp_request_sock *treq; 289 struct request_sock *req; 290 291 if (sk_is_mptcp(sk)) 292 req = mptcp_subflow_reqsk_alloc(ops, sk, false); 293 else 294 req = inet_reqsk_alloc(ops, sk, false); 295 296 if (!req) 297 return NULL; 298 299 treq = tcp_rsk(req); 300 301 /* treq->af_specific might be used to perform TCP_MD5 lookup */ 302 treq->af_specific = af_ops; 303 304 treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 305 #if IS_ENABLED(CONFIG_MPTCP) 306 treq->is_mptcp = sk_is_mptcp(sk); 307 if (treq->is_mptcp) { 308 int err = mptcp_subflow_init_cookie_req(req, sk, skb); 309 310 if (err) { 311 reqsk_free(req); 312 return NULL; 313 } 314 } 315 #endif 316 317 return req; 318 } 319 EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc); 320 321 /* On input, sk is a listener. 322 * Output is listener if incoming packet would not create a child 323 * NULL if memory could not be allocated. 324 */ 325 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb) 326 { 327 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 328 struct tcp_options_received tcp_opt; 329 struct inet_request_sock *ireq; 330 struct tcp_request_sock *treq; 331 struct tcp_sock *tp = tcp_sk(sk); 332 const struct tcphdr *th = tcp_hdr(skb); 333 __u32 cookie = ntohl(th->ack_seq) - 1; 334 struct sock *ret = sk; 335 struct request_sock *req; 336 int full_space, mss; 337 struct rtable *rt; 338 __u8 rcv_wscale; 339 struct flowi4 fl4; 340 u32 tsoff = 0; 341 342 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) || 343 !th->ack || th->rst) 344 goto out; 345 346 if (tcp_synq_no_recent_overflow(sk)) 347 goto out; 348 349 mss = __cookie_v4_check(ip_hdr(skb), th, cookie); 350 if (mss == 0) { 351 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED); 352 goto out; 353 } 354 355 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV); 356 357 /* check for timestamp cookie support */ 358 memset(&tcp_opt, 0, sizeof(tcp_opt)); 359 tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL); 360 361 if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) { 362 tsoff = secure_tcp_ts_off(sock_net(sk), 363 ip_hdr(skb)->daddr, 364 ip_hdr(skb)->saddr); 365 tcp_opt.rcv_tsecr -= tsoff; 366 } 367 368 if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt)) 369 goto out; 370 371 ret = NULL; 372 req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, 373 &tcp_request_sock_ipv4_ops, sk, skb); 374 if (!req) 375 goto out; 376 377 ireq = inet_rsk(req); 378 treq = tcp_rsk(req); 379 treq->rcv_isn = ntohl(th->seq) - 1; 380 treq->snt_isn = cookie; 381 treq->ts_off = 0; 382 treq->txhash = net_tx_rndhash(); 383 req->mss = mss; 384 ireq->ir_num = ntohs(th->dest); 385 ireq->ir_rmt_port = th->source; 386 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 387 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 388 ireq->ir_mark = inet_request_mark(sk, skb); 389 ireq->snd_wscale = tcp_opt.snd_wscale; 390 ireq->sack_ok = tcp_opt.sack_ok; 391 ireq->wscale_ok = tcp_opt.wscale_ok; 392 ireq->tstamp_ok = tcp_opt.saw_tstamp; 393 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0; 394 treq->snt_synack = 0; 395 treq->tfo_listener = false; 396 397 if (IS_ENABLED(CONFIG_SMC)) 398 ireq->smc_ok = 0; 399 400 ireq->ir_iif = inet_request_bound_dev_if(sk, skb); 401 402 /* We throwed the options of the initial SYN away, so we hope 403 * the ACK carries the same options again (see RFC1122 4.2.3.8) 404 */ 405 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb)); 406 407 if (security_inet_conn_request(sk, skb, req)) { 408 reqsk_free(req); 409 goto out; 410 } 411 412 req->num_retrans = 0; 413 414 /* 415 * We need to lookup the route here to get at the correct 416 * window size. We should better make sure that the window size 417 * hasn't changed since we received the original syn, but I see 418 * no easy way to do this. 419 */ 420 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark, 421 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 422 IPPROTO_TCP, inet_sk_flowi_flags(sk), 423 opt->srr ? opt->faddr : ireq->ir_rmt_addr, 424 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid); 425 security_req_classify_flow(req, flowi4_to_flowi_common(&fl4)); 426 rt = ip_route_output_key(sock_net(sk), &fl4); 427 if (IS_ERR(rt)) { 428 reqsk_free(req); 429 goto out; 430 } 431 432 /* Try to redo what tcp_v4_send_synack did. */ 433 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW); 434 /* limit the window selection if the user enforce a smaller rx buffer */ 435 full_space = tcp_full_space(sk); 436 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 437 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) 438 req->rsk_window_clamp = full_space; 439 440 tcp_select_initial_window(sk, full_space, req->mss, 441 &req->rsk_rcv_wnd, &req->rsk_window_clamp, 442 ireq->wscale_ok, &rcv_wscale, 443 dst_metric(&rt->dst, RTAX_INITRWND)); 444 445 ireq->rcv_wscale = rcv_wscale; 446 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst); 447 448 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff); 449 /* ip_queue_xmit() depends on our flow being setup 450 * Normal sockets get it right from inet_csk_route_child_sock() 451 */ 452 if (ret) 453 inet_sk(ret)->cork.fl.u.ip4 = fl4; 454 out: return ret; 455 } 456